REMEDIAL INVESTIGATION REPORT 58th STREET SIDEWALK MASPETH, QUEENS, NY

Prepared for:

Consolidated Edison Company of New York, Inc.

Long Island City, NY

Prepared by:

Stantec Consulting Services Inc.

Auburn, NH

April 2010

REMEDIAL INVESTIGATION REPORT 58th STREET SIDEWALK MASPETH, QUEENS, NY

TABLE OF CONTENTS

Section No.	Title	Page No
1.0	INTRODUCTION	1
2.0	BACKGROUND	3
2.1 2.2	OFF-SITE GROUNDWATER OFF-SITE SOILS	_
3.0	OFF-SITE INVESTIGATION	6
3.1	SCOPE OF WORK PERFORMED	
3.1.1	Coordination with Local Utilities and Permitting	
3.1.2	Clearing of Monitoring Well Locations	
3.1.3	Borehole Advancement	
3.1.4	Monitoring Well Installation	
3.1.5	Well Gauging and Development	
3.1.6 3.2	Groundwater Sampling HYDROGEOLOGIC RESULTS	
3.2.1	Geology	
3.2.1	Hydrogeology	
3.3	ANALYTICAL RESULTS	
3.3.1	Soil Data	
3.3.2	Groundwater Gauging	
3.3.3	Groundwater Data	
3.3.4	LNAPL Data	
3.3.5	Data Usability/Reliability	
3.3.6	Ecological Assessments	
3.4	VARIATIONS	
4.0	APPLICABLE STANDARDS, CRITERIA, AND GUIDANCE	13
5.0	HUMAN HEALTH EXPOSURE ASSESSMENT	14
6.0	CONCLUSIONS	15
6.1	UPDATED CONCEPTUAL OFF-SITE MODEL	15
6.1.1	Regional Topography	
6.1.2	Off-site-Specific Geology	
6.1.3	Hydrologic Conditions	
6.2	NATURE AND EXTENT OF CONTAMINATION	
6.3	DESCRIPTION OF AREAS OF CONCERN	
6.4	FINDINGS	16
6.5	RECOMMENDATION	16

TABLE OF CONTENTS (CONT'D)

LIST OF TABLES

1	MW-301 and MW-302 Historic Product/Water Levels
2	MW-301 and MW-302 Reported Compounds in Groundwater
3	MW-301, MW-302, and MW-303 PCBs in Soils Results
4	East Wall Post Excavation Confirmatory Samples
5	Well Construction Details
6	Soil Sample Summary: PCBs and TPH
7	Recent Site Wide Water/Product Level Data
8	Historical Water Quality Sample Results: PCBs
9	Historical Water Quality Sample Results: VOCs
10	Historical Water Quality Sample Results: SVOCs

LIST OF FIGURES

1	Site Location Plan
2	Site Map
3	Geologic Cross Section A-A'
4	Geologic Cross Section B-B'
5	Groundwater Flow Map: February 2010
6	Total PCBs in Groundwater Exceeding T.O.G.S. Groundwater Standards
7	Total VOCs in Groundwater Exceeding T.O.G.S. Groundwater Standards

8

APPENDICES

Total SVOCs in Groundwater Exceeding T.O.G.S. Groundwater Standards

Α	Off-site Investigation Work Plan and NYSDEC Approval Letter
В	Boring Logs: MW-600 Series Wells
С	Laboratory Analytical Reports: November 2009 Soil Quality
D	Low Flow Sampling Data Sheets and Laboratory Analytical Reports: December 2009
	and February 2010 Sampling Events
Ε	Data Usability Summary Report

REMEDIAL INVESTIGATION REPORT OFF-SITE INVESTIGATION 58th Street Sidewalk MASPETH, QUEENS, NY

1.0 INTRODUCTION

The Consolidated Edison Company of New York (Con Edison) entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) in February 2000 to investigate and remediate a property located at 57-77 Rust Street in the Maspeth section of Queens County, New York (see Figure 1). The subject property, the former Con Edison Maspeth Substation, is approximately 0.5 acres in size and includes a one-story industrial building located in the southern portion of the property and a parking lot area in the northern portion. To the north of the former Substation parking lot area are attached row houses with small backyards and 57th Drive. To the east of the former Substation parking lot is the 58th Street sidewalk and 58th Street. To the west is Rust Street.

During the remediation of the former Con Edison Maspeth Substation property, PCB contamination found beneath the former Substation parking lot were observed to have migrated both to the north beneath three of the 57th Drive properties and also to the east beneath the 58th Street sidewalk in the vicinity of monitoring well MW-301. The PCB contaminants that were found beneath the three residential properties were remediated in parallel with the completion of the remediation of the former Substation parking lot. Assessment of PCB contaminants to the east was deferred until November 2009 and now is addressed and documented in this remedial investigation report. The area of concern on the 58th Street sidewalk abuts the eastern boundary line of the former Maspeth Substation and is identified hereinafter as "Off-site" (see Figure 2).

Based on subsurface investigation results from the former Substation parking lot area, it was determined that subsurface impacts beneath the former Substation parking lot were associated with residual PCB-containing free-phase product located on or near the water table (approximately 15 to 17 feet below land surface (bls)) as noted in the 1996 initial investigation report. From the data generated, the free-phase product appeared to be limited in extent and primarily contained within the parking lot area. To address these issues beneath the former Substation parking lot, a Remedial Action Work Plan, dated November 10, 2004 (the November 2004 RAWP) was subsequently submitted to, and approved by, the NYSDEC on January 31, 2005.

Due to the relatively small size of the parking lot area and the proximity of the one-story facility building (south), abutting row houses (north), Rust Street (west), and the 58th Street sidewalk (east), the excavation of the on-site soils and removal the free-phase product were determined to be practical and could be implemented effectively. The remedial excavation within the parking lot area was subsequently conducted between March 31, 2005 and July 3, 2008. A

Final Engineering Report (FER) describing the remedial excavation activities within this parking lot area was submitted to the NYSDEC in May 2009. An FER describing the remedial activities beneath the 57th Drive properties was also submitted to the NYSDEC in May 2009.

Throughout the remediation activities completed to date at the former Maspeth Substation (now privately owned), Con Edison used the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) No. 4046 Recommended Soil Cleanup Objective (RSCO) for surface soils (0-2 feet) of 1.0 ppm as the clean-up goal throughout the soil column for on-site soils. This was done in order to avoid future institutional controls. For the recent work beneath the 58th Street sidewalk, which is owned by the City of New York, a cleanup objective for PCBs of 10.0 ppm was used for subsurface soils (>2 feet).

During the course of the remedial excavation activities associated with the former Substation parking lot area in 2005 and 2006, low levels of PCB contamination were discovered at depth in sidewall soils along the eastern boundary of the Substation parking lot excavation (onsite), and underneath the 58th Street sidewalk (offsite). Onsite soils exceeding the onsite RSCO were removed during the remediation activities. The low levels of PCBs found in offsite soils did not exceed the offsite RSCO for PCBs of 10 ppm.

Impacts to groundwater, as observed in monitoring wells MW-301 and MW-302, include observed free-phase product and low concentrations of PCBs and semi-volatile organic compounds (SVOCs) at concentrations above NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards (see Tables 1 and 2). It should be noted that the last observable impact (sheen/product) on the water table in MW-302 was in September 2003. Based on these observations, the NYSDEC requested that Con Edison prepare a Work Plan to investigate and delineate the extent of these soil and groundwater impacts beneath the 58th Street sidewalk.

Stantec Consulting Services Inc. (Stantec – formerly Jacques Whitford Company, Inc.) subsequently submitted an *Off-site Investigation Work Plan for the 58th Street Sidewalk* to the NYSDEC. The Work Plan included the installation of three additional monitoring wells in the area of concern for the collection and analysis of both groundwater and soil samples. The monitoring wells are identified on Figure 2 as MW-601, MW-602, and MW-603. NYSDEC reviewed and commented on the Work Plan. After addressing NYSDEC's comments, Stantec submitted a revised *Off-Site Investigation Work Plan for the 58th Street Sidewalk* (the Work Plan) to NYSDEC in May 2009. In a letter dated June 1, 2009, NYSDEC approved the Work Plan. A copy of the Work Plan and the NYSDEC approval letter are included in Appendix A.

2.0 BACKGROUND

2.1 Off-site Groundwater

Groundwater impacts were initially observed in two monitoring wells installed beneath the sidewalk between the former Substation parking lot area and 58th Street. These impacts were first observed in the calendar years 2000 (MW-302) and 2001 (MW-301). The locations of these two monitoring wells are shown on Figure 2. These impacts consisted of free-phase product detected on the water table during sampling and/or gauging episodes on November 2, and December 5, 2000 (MW-302) and October 9, 2001 (MW-301) (see Table 1). On November 2, 2000, a sample of the free-phase product was collected from MW-302 and analyzed for PCBs and "fingerprinted" to determine the potential source of the material. The analytical results indicated that the product contained PCBs at 214 ppm. The type of PCB reported was Arochlor 1260, the same arochlor as detected within the soil and groundwater beneath the former substation parking lot area. The fingerprinting results identified the free-phase product as Suntrans transformer oil. On October 11, 2005, a sample of the free-phase product was collected from MW-301 and analyzed for PCBs and "fingerprinting". The analytical results indicated that the product contained PCBs at 229 ppm. The type of PCB reported was Arochlor 1260. The fingerprinting results identified the free-phase product as 10C transformer oil.

Between eight and twelve monitoring wells installed in and around the former Substation property were gauged on a regular basis from January 2001 through June 2004. When remedial activities began within the former Substation parking lot area, monitoring wells were gauged on an intermittent schedule from 2005 to 2008 (see Table 1). Following the completion of remediation activities in July 2008, the monitoring wells were gauged approximately monthly for an initial six-month period, followed by quarterly gauging. The wells are currently on a quarterly gauging schedule as per the NYSDEC-approved Work Plan for the Installation, Gauging, and Water Quality Testing of Post-Closure Monitoring Wells. The results of the gauging events for monitoring wells MW-301 and MW-302 are presented in Table 1.

Water quality samples were collected from MW-301 and MW-302 for PCB, VOC, and SVOC analyses in April 2001; July and November 2008; and January 2009; May, July, and October 2009; and February 2010. Tables 2, 8, 9, and 10 list the compounds detected in the groundwater collected from MW-301 and MW-302 (among others) during these groundwater sampling events.

In MW-301, PCB Arochlor 1260 was detected during five events above its groundwater standard of 0.09 micrograms per liter (ug/l) at values ranging from 0.85 ug/l in April 2001 to 8.03 ug/l in the July 2009 event. PCB Arochlor 1254 was detected in a single groundwater sampling event above its groundwater standard of 0.09 ug/l at a value of 0.128J ug/l in January 2009.

In MW-302, Arochlor 1254 was detected in the groundwater above its respective groundwater standard during four groundwater sampling events. PCB Arochlor 1254 was detected above its

groundwater standard of 0.09 micrograms per liter (ug/l) at values ranging from 0.138 J ug/l in February 2010 to 3.87 ug/l in the October 2009 event.

Other VOC and SVOC compounds were detected at levels that exceeded their respective TOGS groundwater standard in MW-301 and MW-302 during the groundwater sampling events. In MW-301, only bis (2-Ethylhexyl) phthalate) was detected at 5.31 J ug/l (above its groundwater standard of 5 ug/l) in the October 2009 groundwater sampling event. In MW-302, bis (2-Ethylhexyl)phthalate was detected in four events ranging from at 6.7 J to 53.5 ug/l (above its groundwater standard of 5 ug/l) and 1,4 – dichlorobenzene was detected during seven groundwater sampling events ranging from at 3.2 J to 16.2 ug/l (above its groundwater standard of 3 ug/l). Bis (2-Ethylhexyl) phthalate is a common compound detected in groundwater that has come into contact with PVC containing materials.

Based on the groundwater analytical data presented above, the Work Plan recommended installation and sampling of additional monitoring wells beneath the 58th Street sidewalk to determine the extent of the impacts in groundwater.

2.2 Off-site Soils

Soil samples were collected for chemical analyses during the installation of monitoring wells MW-301, MW-302 and MW-303. The analytical results were compared to the NYSDEC TAGM #4046 RSCO of 1.0 ppm for PCBs in surface soils (0-2 ft bls) and 10 ppm for subsurface soils (>2 ft bls). Soil samples collected from MW-301 and MW-302 both indicated the presence of PCBs (see Table 3) at low concentrations that did not exceed the appropriate PCB RSCOs. No PCBs were detected in any of the soil samples collected from MW-303. The highest concentration of PCBs in each of these soil borings was located in the "smear zone", where the water table (and associated floating product) fluctuates based upon hydrologic conditions.

During the remedial excavation of the former Substation parking lot area, post-excavation confirmatory soil samples were collected for chemical analyses throughout the excavation boundaries. Of these soil samples, ten were collected from the eastern wall of the former Substation parking lot excavation (see Table 4). The horizontal locations of these samples are shown on Figure 2. Initial confirmatory soil samples were collected at the boundary of the excavation (i.e. just inside the lagging at the x-location of zero according to the excavation-specific location ID). At two (x,y) locations (0,9 and 0,15), the PCB concentrations were 0.33 and 0.2 ppm, respectively. These soils were located on the former Substation property. Figure 2 shows that the limit of excavation (the lagging) was located approximately two feet west (onsite) of the property boundary and the City sidewalk. These impacted soils located behind the lagging were then hand-excavated in order to remove the affected soil.

Additional confirmatory soil samples were then collected from beyond (east of) these hand excavated areas (now beneath the 58th Street sidewalk). PCBs were not detected in the soils at concentrations above the 10 ppm RSCO. The horizontal locations of these soil samples are shown on Figure 2 and the analytical data is summarized in the table below.

Location	Depth (ft bls)	PCB RSCO	PCB Concentration (ppm)
-2,23	16	10	1.43
-2,24	7	10	7.14
-2,38	17	10	2.10
-2,40	5	10	0.095
0, 57	0-2	1	0.082
0, 57	2-6	10	< 0.0067
0, 57	6-10	10	<0.0069

Based on these analytical soil data, the nature and extent of on-site soil impacts appeared to have been delineated.

Based on the observation/detection of LNAPL in MW-301 and MW-302, the Work Plan recommended additional soil sampling at depth beneath the 58th Street sidewalk to delineate the horizontal and vertical extent of off-site impacts. The scope of work and results associated with implementation of the Work Plan are discussed in Section 3.0 below.

3.0 OFF-SITE INVESTIGATION

3.1 Scope of Work Performed

In order to determine the horizontal and vertical extent of PCB impacts in the area of concern in off-site soil and groundwater beneath the 58th Street sidewalk, three additional soil borings were advanced. These are identified as MW-601, MW-602, and MW-603 on Figure 2. Monitoring wells were then installed in the boreholes after reaching the (modified) target depth. Groundwater samples were collected from these additional off-site locations after the monitoring wells were properly developed and purged. The following paragraphs provide detailed information on the installation and sampling of monitoring wells MW-601 through MW-603.

The scope of work outlined below was conducted under a Con Edison-approved Environmental, Health and Safety Plan (EHASP). In addition, a NYSDEC-approved Community Air Monitoring Plan (CAMP) was implemented during this scope of work.

3.1.1 Coordination with Local Utilities and Permitting

Prior to the initiation of subsurface activities, the drilling contractor, Aquifer Drilling & Testing, Inc. (ADT), initiated a New York State Industrial Code Rule 753 to alert utility providers in the area to mark out their respective utilities, if present, in the vicinity of the proposed work. Additionally, ADT submitted a request for a sidewalk and parking lane opening permit to the New York City Department of Transportation (NYCDOT). A permit was issued by the NYCDOT on October 13, 2009.

3.1.2 Clearing of Monitoring Well Locations

On November 17, 2009, Stantec mobilized to the sidewalk area on 58th Street to oversee the clearing of the proposed soil boring locations by ADT utilizing a Vactron unit. Prior to the start of soil removal at each location, the surficial concrete was saw-cut in an approximate two-foot by two-foot square. Following removal of the concrete sidewalk, soils were loosened with a non-metallic pry bar and then vacuumed into 55-gallon steel drums. Soils were removed by this method to a depth of 7.5 feet bls at each of the soil boring locations.

Following completion of soil removal activities at each soil boring, one composite soil sample from a depth interval between 0 to 7.5 feet bls was collected from each soil boring location. The soil samples were collected from the sidewall of each borehole excavation with a hand auger and/or stainless steel spoon/scoop and placed in laboratory-supplied glassware. The soil samples were submitted under appropriate chain-of-custody protocols to Spectrum Analytical, Inc. (Spectrum) of Agawam, Massachusetts for analysis of PCBs via USEPA Method 8082 and total petroleum hydrocarbons (TPH) via USEPA Method 8100. The remaining soils from each cleared location were containerized and then assessed for evidence of impacts (PID readings, staining, odor, etc.). No elevated PID readings or visual or olfactory evidence of impacts were observed or detected. The drummed soils were then returned to the cleared holes, tamped into place, and the holes were temporarily patched at the surface with asphalt cold patch.

3.1.3 Borehole Advancement

Between November 18 and 23, 2009, Stantec oversaw the advancement of three soil borings (MW-601 through MW-603) in the locations that had been previously cleared (see Figure 2). Soil borings were advanced by ADT using a track-mounted hollow-stem auger (HSA) rig. Drilling was attempted using 6½-inch inside-diameter (ID) augers; however, the 6½-inch augers could not be advanced to the proposed sampling depth (28 ft bls) in soil borings MW-601 and MW-603. Drilling of these soil borings was completed using 4½-inch ID augers. Soil borings MW-601 and MW-603 were terminated at auger refusal at depths of 20 and 25.2 feet bls, respectively. Soil boring MW-602 was terminated at a depth of 26.2 feet bls at split-spoon refusal. The refusals may be associated with large diameter cobbles or boulders, which were also encountered on the adjacent Substation parking area site during past drilling and remediation activities. Bedrock was not encountered in any of the soil borings. Monitoring Well Logs are presented in Appendix B.

Soil samples were collected continuously from 8 ft bls to refusal depths at two-foot intervals using split-spoon samplers. The soil samples were characterized for lithology, grain size, color, moisture content, and evidence of impacts by Stantec personnel. The two-foot split-spoon samples were then composited and submitted for laboratory analysis. A total of five composite samples were collected for laboratory analysis from soil borings MW-602 and MW-603 and three composite samples were collected from soil boring MW-601 (plus the 0 to 7.5 ft soil samples collected during initial soil removal activities at each well (see Table 6)). The planned depth intervals for composite sampling were 8-12 ft, 12-16 ft, 16-20 ft, 20-24 ft and 24-28 ft; however, the intervals were adjusted based on the termination depth of each soil boring. Soil samples were kept in a cooler with ice, maintained at 4°C, and shipped via courier under appropriate chain-of-custody protocols to Spectrum for analysis of PCBs via USEPA Method 8082 and TPH via USEPA Method 8100. The laboratory analytical data reports are presented in Appendix C.

Soil cuttings from the soil borings were containerized in 55-gallon steel drums and transported off-site by Con Edison on a daily basis.

3.1.4 Monitoring Well Installation

Following advancement of the soil borings to termination depth, three monitoring wells were constructed; one in each soil boring. Monitoring wells MW-601 and MW-603 were constructed of 2-inch diameter PVC while monitoring well MW-602 was constructed as a 4-inch diameter PVC well. Monitoring wells were constructed such that the well screen, which ranged from 10 to 15 feet in length, straddled the observed water table. The water table was encountered in the three boreholes during drilling activities at depths ranging from 16 to 18 ft bls. The annulus around each screen was backfilled with Morie No. 1 sand to approximately two feet above the screened interval. An approximately two-foot thick bentonite pellet seal was installed above each sand pack. Boreholes were then filled with a cement-bentonite grout to within one foot of the land surface. The monitoring wells were fitted with locking J-plugs and completed at the surface with flush mounted road boxes set into cement. The cement at the surface was sloped for water to drain away from the cover. Well construction details for these 600-series wells are

presented in Table 5. Please note that Table 5 also presents well construction details for all monitoring wells associated with the former Maspeth Substation site (on- and off-site).

3.1.5 Well Gauging and Development

Following installation, the three monitoring wells were gauged for depth to water and depth to product using an electronic oil/water interface probe. The monitoring wells were subsequently developed utilizing a QED bladder pump and low-flow development techniques. Throughout the development process, parameters including pH, oxidation-reduction potential (ORP), specific conductivity (SC), temperature, dissolved oxygen (DO), and turbidity parameters were recorded. Although measurable free product was not observed in the newly installed wells, a sheen was observed on the purge water associated with monitoring well MW-601. Purge water was temporarily stored within the former Substation parking lot area in 30-gallon drums. The drums were properly labeled and transported by Con Edison personnel for appropriate off-site disposal.

Following well development, the newly-installed 600-series wells were surveyed relative to existing Site benchmarks. The survey data were then incorporated into Table 5.

3.1.6 Groundwater Sampling

<u>December 2009.</u> Stantec personnel mobilized to the 58th Street sidewalk area on December 15, 2009 to collect groundwater samples from the newly installed monitoring wells. Prior to sampling, an initial round of water level measurements was collected from monitoring wells MW-601, MW-602, and MW-603 with a decontaminated Solinst® oil/water interface probe (see Table 7). Once water level measurements were completed, Stantec field personnel purged and collected groundwater samples from the newly installed monitoring wells using low-flow groundwater sampling techniques. Equipment utilized for the groundwater sampling included Horiba U22 water quality meters and QED MP 15 bladder pumps utilizing carbon dioxide.

The groundwater in each monitoring well was purged via the low-flow method until field parameters stabilized, indicating that groundwater entering through the monitoring well screen was from the formation and not stagnant water from inside the monitoring well. The field parameters collected included flow rate, temperature, SC, pH, ORP, D.O., and turbidity. Purge data for the December 2009 sampling event are included on the Low Flow Sampling Data Sheets presented in Appendix D. The purged groundwater was containerized in 30-gallon steel drums. The drums were properly labeled and transported by Con Edison personnel for appropriate off-site disposal on a daily basis.

Once the field parameters stabilized, a groundwater sample was collected from each monitoring well and placed into laboratory-supplied, clean, pre-preserved sample containers. A duplicate sample (Dupe) was collected at monitoring well location MW-602. Groundwater samples were packed in coolers with ice following collection to maintain the temperature at 4°C. Samples were delivered to Spectrum via courier under appropriate chain-of-custody protocols. Upon arrival at the laboratory, it was observed that one glass container (for PCB analyses from MW-603) had broken during transit. Therefore, Stantec returned to the 58th Street sidewalk area on

December 18, 2009, re-purged the monitoring well (MW-603) in accordance with the procedures outlined above, and re-sampled the groundwater from this monitoring well for PCBs.

Spectrum analyzed the groundwater samples for PCBs by USEPA Method 8082 and VOCs by USEPA Method 8260B. The laboratory analytical data reports are presented in Appendix D.

<u>February 2010.</u> An additional round of groundwater sampling was conducted between February 1 and 3, 2010. During this sampling event, the 600-series wells were sampled in conjunction with a quarterly sampling event for all monitoring wells associated with the former Maspeth Substation site. Prior to sampling, an initial round of water level measurements was collected from each of the fifteen monitoring wells (see Figure 2) located within the former Substation parking lot area (MW-501, MW-502, MW-503, and MW-504) and around the perimeter of the former Substation parking lot area (MW-301, MW-302, MW-303, MW-304, MW-305, MW-306, MW-401, MW-402, MW-601, MW-602, and MW-603) (see Table 7). The water level in each monitoring well was measured with a decontaminated Solinst[®] oil/water interface probe.

Approximately 0.02-feet (1/4-inch) of free-phase product was measured in MW-602 (see Table 7). This product was subsequently bailed from the monitoring well by hand using a disposable bailer prior to initiating low-flow purge and groundwater sample procedures as described above. A sample of the product from MW-602 was also collected and submitted for PCB laboratory analysis.

Once water level measurements were completed, Stantec field personnel purged and collected groundwater samples from the fifteen wells using low-flow groundwater sampling techniques. Equipment utilized for the groundwater sampling included Horiba U22 water quality meters and QED MP 15 bladder pumps utilizing carbon dioxide. Purging methods and stabilization parameters were as described above. Low Flow Sampling Data Sheets from this sampling event are also presented in Appendix D. The purged groundwater was containerized in 30-gallon drums. The drums were properly labeled as non-hazardous and transported by Con Edison personnel off-site on February 5, 2010 for appropriate disposal.

Once the field parameters stabilized, groundwater samples were collected from each location and placed into laboratory-supplied, clean, pre-preserved sample containers. A duplicate sample (Dupe) was collected at monitoring well location MW-501. Groundwater samples were packed in coolers with ice following collection to maintain the temperature at 4°C. All of the samples were delivered to Spectrum via courier on February 4, 2010 under standard chain-of-custody protocols. Spectrum analyzed the groundwater samples for PCBs (USEPA Method 8082), VOCs (USEPA Method 8260B), semi-volatile organic compounds (SVOCs) (USEPA Method 8270C), and TPH (USEPA Method 8100 Modified). The free-phase product sample was analyzed for PCBs via USEPA Method 8082. The laboratory analytical data report for this event is also presented in Appendix D.

3.2 Hydrogeologic Results

3.2.1 Geology

Soils encountered beneath the 58th Street sidewalk included a layer of sand and gravel fill overlying well graded sand that exhibited some stratification, indicative of native soils. In addition, a layer of cobbles was encountered at several locations including MW-302 (21 ft bls to 23 ft bls), MW-602 (9.5 ft bls to 10 ft bls), and MW-603 (8 ft bls to 10 ft bls). Based on these observations, observations during excavation at the abutting Substation parking area, and regional geologic mapping, the previous assessment that the local geology was comprised of urban fill over ablation till was confirmed. Figure 4 is a cross-section drawn from south to north beneath the 58th Street sidewalk that includes the observations made during the advancement of the five 300- and 600-series soil borings.

3.2.2 Hydrogeology

As part of the Post-excavation requirements associated with the remedial activities conducted at the former Substation parking lot, water levels were measured and groundwater quality samples were collected on a quarterly basis beginning in July 2008. Recent well gauging measurement data and observations (from July 2008 to February 2010) are presented in Table 7.

The depth to water measured in the monitoring wells ranged from 8.74 ft from the top of the polyvinyl chloride (PVC) riser at MW-402 to 19.22 ft from the top of the PVC riser at MW-503. Figure 5 illustrates the contoured water level elevations and the assumed groundwater flow direction based on the February 2010 depth-to-water data. The depicted groundwater flow is consistent with previous data and illustrates that groundwater flows east to west across the sidewalk area towards the former Substation parking lot area. In addition, the groundwater level elevations beneath the sidewalk are approximately three feet higher than the water levels below the former Substation parking lot area. This differential existed prior to the remedial excavation beneath the parking area and cannot be attributed to the lagging left in place.

3.3 Analytical Results

3.3.1 Soil Data

Reported analytical soil results for samples collected from soil borings MW-601 through MW-603 are presented in Table 6. These results were compared to NYSDEC RSCOs. As shown in Table 6, no PCBs were detected above laboratory reporting limits in the samples collected from soil boring MW-601 or from depths greater than 16 feet bls in soil boring MW-602. PCBs were detected at low levels in samples collected from 0-7.5 ft (0.121 ppm), 8-12 ft (0.111 ppm), and 12-16 ft (0.181 ppm) in soil boring MW-602. Additionally, PCBs were detected at low levels in each of the six samples collected from soil boring MW-603 at levels ranging from 0.043 ppm (0 - 7.5 ft) to 0.1396 ppm (24 - 25.2 ft).

As shown in Table 6, no soil samples had PCB concentrations reported at levels that exceeded the subsurface soil RSCO of 10 ppm.

Levels of TPH were detected above laboratory reporting limits in one or more of the samples collected from soil borings MW-601 through MW-603. Reported concentrations ranged from 61.6 ppm (MW-602, 24-28 ft bls) to 3,370 ppm (MW-602, 8-12 ft bls) (Dupe).

Cross-sections have been developed which depict the subsurface soil quality and geology encountered beneath the 58th Street sidewalk area. Cross-section A - A' (see Figure 3) is a profile drawn along the eastern property line from south to north. The soil sample analytical data used to generate this section were obtained from the post-excavation confirmatory samples discussed in Section 2.2 above and presented in Table 4. Cross-section B - B' (see Figure 4) is a profile drawn through the center/axis of the 58th Street sidewalk from south to north. The analytical data used to generate this section were discussed in Sections 2.2 and Section 3.13 and on Tables 3 and 6. The locations of both cross-sections relative to the on- and off-site properties are shown on Figure 2.

The data depicted on Figure 3, located along the eastern property line, indicate residual soil PCB contamination at low levels. As the figure shows, the onsite soils (x = 0) are below the onsite RSCO of 1.0 ppm while the offsite soils ($x \le -2$) are below the offsite RSCO of 10 ppm.

Figure 4 illustrates the interval (15-17 ft bls at MW-301) beneath the sidewalk where residual PCB soil contamination (1.35 ppm) was detected at a level less than the 10 ppm RSCO. As described in Section 3.1.6 above, approximately 0.02-feet (1/4-inch) of free-phase product was measured in MW-602 during the February 2010 gauging event. This LNAPL thickness is not depicted on Figure 4.

3.3.2 Groundwater Gauging

As indicated in Table 7, measureable product was detected in monitoring well MW-602 at a thickness of 0.02 feet during the most recent sampling event conducted in February 2010. Measurable product was not detected in the remaining monitoring wells, although a sheen was noted on the purge water generated from monitoring wells MW-301, MW-302, and MW-603 during the same sampling episode (see Low Flow Data Sheets, Appendix D). Both monitoring wells MW-301 and MW-302 have historically reported measureable product on the water table; however, the wells have not reported measureable product since 2003 (MW-302) and 2008 (MW-301).

3.3.3 Groundwater Data

Reported analytical groundwater results for the analyzed constituents at the off-site monitoring wells are presented in Tables 8 through 10. These results were compared to NYSDEC TOGS groundwater standards and guidance values. Exceedances to these standards/guidance values are summarized below and illustrated on Figures 6 through 8:

• The results of PCBs analyses are presented in Table 8 and on Figure 6. PCBs were reported at levels above the TOGS PCB standard/guidance value of 0.09 μg/L (or ppb). PCBs were reported at levels ranging from 0.128 J to 8.03 ppb in MW-301; from 0.138 J to 3.87 ppb in MW-302; from 0.751 to 0.975 ppb in MW-601; at 0.655 ppb in MW-602; and

from 0.0967 J to 0.120 J in MW-603. As shown in Table 8, and presented on Figure 6, PCBs were reported in MW-402 at a concentration of 4.34 ppb in January 2009. However, this reported concentration was the only time PCBs were reported above the laboratory detection limit at this well, and is therefore assumed to be an anomalous value.

- The results of VOC analysis are presented in Table 9 and on Figure 7. As shown, only one VOC (1,4-dichlorobenzene) was detected at a concentration exceeding its groundwater standard (3 ppb) in monitoring wells MW-302, MW-602, and MW-603. This VOC was reported at concentrations ranging from 5.5 to 16.2 ppb in MW-302; at 3.8 ppb in MW-601 (December 2009 only); from 24.0 to 26.1 ppb in MW-602; and from 4.4 to 5.3 ppb in MW-603 in December 2009 and February 2010, respectively.
- The results of SVOC analysis are presented in Table 10 and on Figure 8. Two SVOCs were reported at concentrations above TOGS standards/guidance values. Bis(2-ethylhexyl)phthalate was reported above its TOGS Standard of 5 ppb at MW-301 (5.31 J ppb) and at MW-302 (from 6.70 to 53.5 ppb). 1,4-dichlorobenzene was reported above its TOGS standard of 3 ppb at MW-302 (from 3.20 J to 9.45 ppb) and at MW-602 (16.3 ppb). Note that, as described in Section 3.1.6 above, groundwater samples for SVOCs analysis were collected from the 600-series wells in February 2010 only.

3.3.4 LNAPL Data

Analytical results for PCBs from the sample of free product collected from MW-602 are presented in the laboratory report in Appendix D. The concentration of PCB Arochlor 1260 in this product sample was reported at 18.6 ppm.

3.3.5 Data Usability/Reliability

The laboratory reports associated with the soil quality samples were submitted for third-party data validation, per the Investigation Work Plan. Data Usability Summary Reports (DUSRs) were prepared for the analytical data packages generated during the investigation work. Copies of the DUSRs are included in Appendix E. The analytical data were consistently described as "usable" by the data validator.

3.3.6 Ecological Assessments

An ecological assessment was not performed because off-site conditions and surrounding natural resources did not warrant such an analysis. The sidewalk area is approximately 10 ft wide by 100 ft long and, is not located near surface water or sensitive natural resources.

3.4 Variations

The Work Plan was implemented without significant variations that may have influenced sample collection or analytical results.

4.0 Applicable Standards, Criteria, and Guidance

Each media of concern (soil, groundwater, and free-phase product) was evaluated separately against the appropriate NYSDEC cleanup standard or guidance. Applicable standards, criteria, and guidance (SCG) are described below:

Soil: In keeping with the SCGs used to evaluate remediation end points beneath the sidewalk area, the USEPA PCB Spill Cleanup residential/unrestricted access area cleanup policy for PCBs in surface and subsurface soil (40 CFR Part 761) and the current TAGM RSCOs for PCBs, VOCs and SVOCs in soils were used for comparison during this remedial investigation. In addition, TPH (analyzed by USEPA Method 8100 – Modified) was used as a guide during the remedial actions by delineating the extent of transformer oil, or related free-phase product, in the subsurface.

Groundwater. The TOGS Groundwater Standards were used to evaluate the quality of the groundwater beneath the sidewalk area.

Free-Phase Product. There are no promulgated free-phase product cleanup standards in New York State. Therefore, Con Edison previously utilized Division of Environmental Remediation Spill Response Guidance Policy – Spill Guidance Manual Section 1.6-Technical Field Guidance Corrective Action to evaluate remediation of residual free-phase product beneath the sidewalk area. The primary objectives of a product-recovery operation are to recover as much product, to the extent practical, to complete the recovery operation over a short duration, and to control the potential migration of product onto, or from, the off-site area. The presence and/or absence of separate free-phase product in both on- and off-site wells will be evaluated based on ongoing gauging activities.

5.0 Human Health Exposure Assessment

In accordance with the NYSDEC VCP requirements, Stantec (dba Jacques Whitford) completed a Qualitative Human Health Exposure Assessment (QHHEA) on the former Substation property in 2003. The purpose of the QHHEA was to assess the potential for individuals to be exposed to contaminants originating from the Site. The qualitative assessment evaluated exposure pathways based on the existing subsurface conditions at the time (2003), impacts from the proposed remedial program, and the proposed expansion of the existing building into the former Substation parking lot area.

Based on investigations at the former Substation parking lot, the source of contamination was the residual PCB-containing free-phase product located at the water table (approximately 12 to 18 ft bls) underlying the vacant former Substation parking lot area. It was also determined that migration of the PCB containing free-phase product from the source to areas where individuals may come into contact (exposed) was limited based on depth. The primary exposure pathway from these impacts would likely be during intrusive activities associated with the remedial action.

Inasmuch as the conditions beneath the 58th Street sidewalk are quite similar to the abutting Substation parking area, Stantec has adopted the results of the 2003 QHHEA for the current evaluation. Potential exposures to contaminants, which may occur from ingestion, inhalation, and/or dermal contact of impacted soil and/or groundwater, were limited to intrusive work (e.g., trenching activities associated with utility installation, subsurface remedial work, or building construction). In 2003, the property was covered with bluestone, concrete slab/pads (vacant former transformer yard area), and the existing one-story building footprint, thereby limiting exposure to impacted soil and groundwater. Again, the current scenario beneath the sidewalk is similar. The potential receptors were determined to include construction and utility personnel who may come into contact with the impacted media and on-site workers and local residents who may be exposed to dust from soil excavation activities. Potential exposure would likely be the same for the 58th Street sidewalk area.

The potential for ingestion, inhalation, or dermal contact with impacted groundwater was determined to be minimal as described below. Non-volatile contaminants (e.g., PCBs, SVOCs, metals) in groundwater do not pose an inhalation hazard since they do not become appreciably airborne unless the water enters the air as a mist. The potential for exposure to impacted groundwater was determined to be minimal since the depth to the water table is approximately 12 to 18 ft bls. Groundwater was also considered a minimal risk since the constituents of concern are generally non-volatile. Groundwater in the vicinity of the off-site area is also not used as a water supply source. Contact with groundwater may occur during excavation activities, monitoring, and/or dewatering activities undertaken by remediation specialists who operate under health and safety requirements as outlined by the Occupational Safety and Health Administration (OSHA).

6.0 Conclusions

6.1 Updated Conceptual Off-site Model

6.1.1 Regional Topography

Regional topography slopes downward from the sidewalk area to Maspeth Creek located approximately 0.6 miles to the west (see Figure 1). The sidewalk area has an elevation of approximately 28 feet above mean sea level (MSL). The creek surface is at approximately sea level (0 MSL).

6.1.2 Off-site-Specific Geology

Work performed to delineate geological/hydrogeological conditions beneath the sidewalk area during the RI included the following:

- Installation of monitoring wells MW-601 through MW-603 (see Figure 2);
- Review of data pertaining to previously installed monitoring wells MW-301 through MW-303 (see Figure 2);
- Review of sidewall soil data pertaining to remedial excavation activities conducted at the former Substation parking lot area;
- Periodic measurement of water levels and depths to product; and
- Periodic collection of groundwater quality samples.

Soils encountered beneath the sidewalk included a layer of sand and gravel fill overlying well graded sand that exhibited some stratification, indicative of native soils. In addition, a layer of cobbles was encountered at several locations including MW-302 (21 ft bls to 23 ft bls), MW-602 (9.5 ft bls to 10 ft bls), and MW-603 (8 ft bls to 10 ft bls).

6.1.3 Hydrologic Conditions

The water table located beneath the sidewalk slopes to the west. Groundwater levels have been observed to fluctuate from approximately 12 to 16 ft bls in MW-301 and from approximately 9 to 16 ft bls in MW-302. Groundwater levels measured recently in the 600-series monitoring wells ranged from 15 to 16 ft bls. There is a significant difference in water levels between the monitoring wells located beneath the sidewalk area and those monitoring wells located in the former Substation parking lot area.

A groundwater flow map, developed from data measured on February 1, 2010 (Figure 5) depicts the groundwater flow direction as being from east to west across the sidewalk area.

6.2 Nature and Extent of Contamination

The presence of free-phase product containing various concentrations of PCBs on the water table underlying the 58th Street Sidewalk was confirmed and delineated during the investigation activities described herein. Off-site free-phase product has historically been observed primarily

in MW-301 and MW-302 (at levels ranging from a sheen to 0.4 feet) and most recently in MW-602 (0.02 feet in February 2010).

The analytical data further indicates that the main contaminant of concern off-site is PCBs in the groundwater and within the free-phase product (at depth) on the groundwater surface.

Based on the investigation results, Stantec has determined that the subsurface impacts beneath the sidewalk are associated with residual PCB-containing free-phase product located at the water table (approximately 15 to 16 ft bls). From the data generated, the free-phase product appears to be limited in extent and primarily contained beneath the sidewalk.

6.3 Description of Areas of Concern

The results of the RI indicate that free-phase product, containing PCBs, is the primary issue of environmental concern beneath the sidewalk. As mentioned above, the water table was encountered at approximately 15 ft bls at off-site locations. However, seasonal fluctuation of the water table ranging from 12 to 16 ft bls has potentially created a smear zone over this interval in the subsurface soils.

6.4 Findings

The significant findings of this investigation are as follows:

- Soils impacted by PCBs at low levels did not exceed the subsurface RSCO of 10 ppm beneath the 58th Street sidewalk.
- Free-phase product, fingerprinted as transformer oil, containing PCBs ranging from 18.6 to 229 ppm have been observed on the water table beneath the 58th Street sidewalk.
- The slope of the water table is strongly to the west northwest towards the remediated soils beneath the parking area.

6.5 Recommendation

Based on these findings, Stantec recommends the following interim remedial action:

• In the short term, the off-site monitoring wells should be monitored on a monthly basis for the presence or absence of LNAPL. If LNAPL is present, it shall be removed from the monitoring well and an absorbent sock or skimmer installed in the well.

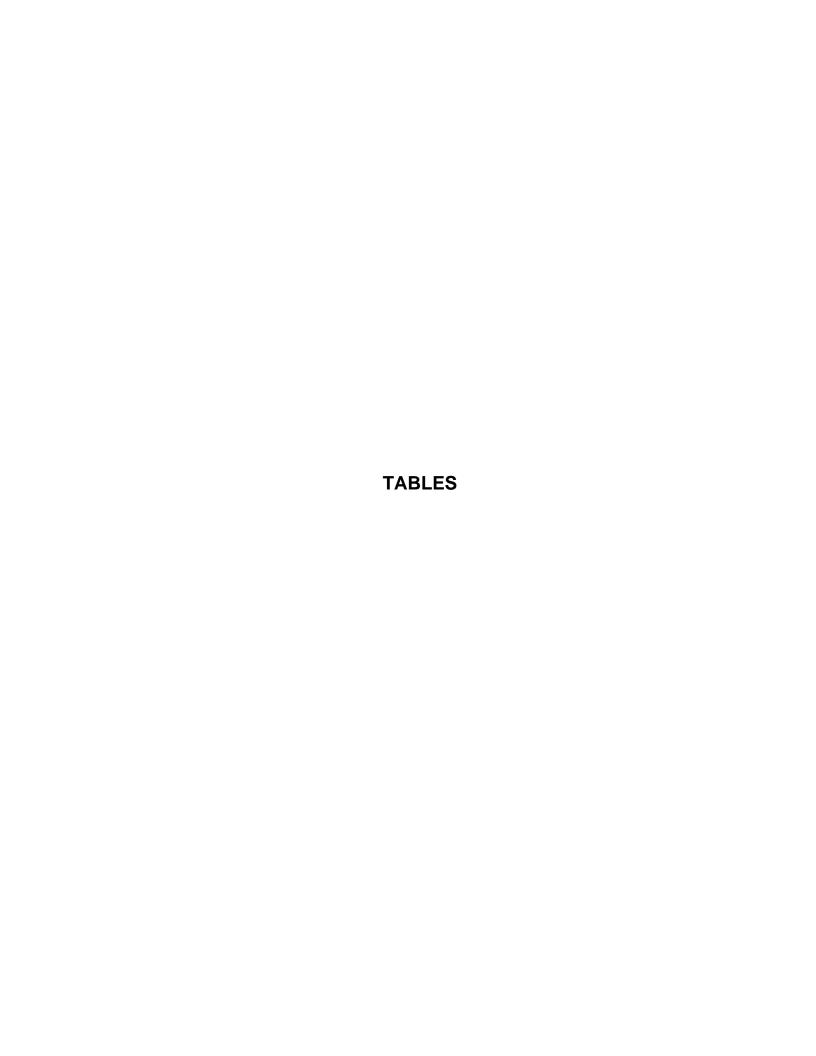


TABLE 1
MW-301 and MW-302 Historic Product/Water Levels

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
	2410	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness	2 op to Trato.	Elevation	Removed	
		(ft AD ²)	(ft TOPVC) 1	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
		(,)	(1.10.10)	(1.1.0.10)	(icci)	(loct)	(11 101 10)	(1001712)	(gai)	
MW-301	8-Jan-01	99.50	NM	NM	NA	NA	NA	NA	NA	Well Constructed
10100-301	15-Jan-01	99.50	None Detected	15.07	NA NA	NA NA	15.07	84.43	NA NA	Well Constructed
	1-Feb-01	99.50	None Detected	13.02	NA NA	NA NA	13.02	86.48	NA NA	
	3-Apr-01	99.50	None Detected	12.08	NA NA	NA NA	12.08	87.42	NA NA	
	27-Sep-01	99.50	None Detected	13.19	NA NA	NA NA	13.19	86.31	NA NA	
	9-Oct-01	99.50	14.90	15.02	0.12	0.07	14.91	84.59		Presence of oil called in to Mark Warrell
	26-Oct-01	99.50	15.30	15.63	0.12	0.19	15.33	84.17		Placed Soakease in well
	8-Nov-01	99.50	15.75	15.77	0.02	0.01	15.75	83.75		Replaced Soakease in well
	20-Nov-01	99.50	None Detected	15.86	NA	NA	15.86	83.64		Soakease removed from MW-301
	7-Dec-01	99.50	15.79	16.11	0.32	0.19	15.82	83.68	NPR	Soakease removed nom www-son
	21-Dec-01	99.50	None Detected	14.87	NA	NA	14.87	84.63	NA NA	
	4-Jan-02	99.50	15.50	15.68	0.18	0.11	15.52	83.98		Soakease placed in MW-301
	16-Jan-02	99.50	15.15	15.26	0.16	0.06	15.16	84.34		Re-placed Soakease in well with skimmer
	30-Jan-02	99.50	14.88	15.20	0.11	0.07	14.89	84.61		Hand bailed
	14-Feb-02	99.50	15.27	15.42	0.12	0.09	15.29	84.21		Hand bailed
	1-Mar-02	99.50	16.60	16.86	0.26	0.15	16.63	82.87	NPR	
	15-Mar-02	99.50	14.76	14.88	0.12	0.07	14.77	84.73	NPR	
	27-Mar-02	99.50	12.67	12.78	0.12	0.06	12.68	86.82		Hand bailed
	12-Apr-02	99.50	14.84	15.03	0.19	0.11	14.86	84.64		Hand bailed
	26-Apr-02	99.50	13.71	13.98	0.13	0.16	13.74	85.76		Hand bailed
	10-May-02	99.50	14.24	14.60	0.36	0.21	14.28	85.22		Hand bailed
	24-May-02	99.50	13.47	13.71	0.24	0.14	13.50	86.00	NPR	Trana banda
	7-Jun-02	99.50	12.41	12.59	0.18	0.11	12.43	87.07		Hand bailed
	21-Jun-02	99.50	14.56	14.91	0.35	0.21	14.60	84.90		Hand bailed
	3-Jul-02	99.50	14.86	15.13	0.27	0.16	14.89	84.61		Hand bailed
	18-Jul-02	99.50	15.64	15.99	0.35	0.21	15.68	83.82		Hand bailed
	31-Jul-02	99.50	15.72	16.14	0.42	0.25	15.76	83.74		Hand bailed
	14-Aug-02	99.50	15.14	15.25	0.11	0.06	15.15	84.35		Hand bailed
	28-Aug-02	99.50	15.04	15.24	0.20	0.12	15.06	84.44		Hand bailed
	11-Sep-02	99.50	12.87	13.26	0.39	0.23	12.91	86.59	NPR	
	9/12/2002	99.50	12.87	13.26	0.39	0.23	12.91	86.59	0.25	Hand bailed
	3-Oct-02	99.50	13.26	13.61	0.35	0.21	13.30	86.20	0.25	Hand bailed
	18-Oct-02	99.50	11.74	12.55	0.81	0.48	11.83	87.67		Hand bailed
	31-Oct-02	99.50	12.97	13.42	0.45	0.27	13.02	86.48	0.12	Hand bailed
	14-Nov-02	99.50	12.45	12.85	0.40	0.24	12.49	87.01		Hand bailed
	27-Nov-02	99.50	Oil on Probe	13.13	NA	NA	13.13	86.37	0.13	Hand bailed
	11-Dec-02	99.50	13.95	14.10	0.15	0.09	13.97	85.53	0.13	Hand bailed
	24-Dec-02	99.50	13.20	13.42	0.22	0.13	13.22	86.28	NPR	
	30-Dec-02	99.50	12.79	13.02	0.23	0.14	12.81	86.69		Hand bailed
	13-Jan-03	99.50	13.22	13.40	0.18	0.11	13.24	86.26	trace	Hand bailed
	27-Jan-03	99.50	13.41	13.60	0.19	0.11	13.43	86.07	trace	Hand bailed
	18-Apr-03	99.50	None Detected	14.41	NA	NA	14.41	85.09	trace	Bailed trace amount
	19-May-03	99.50	13.90	13.96	0.06	0.04	13.91	85.59		Bailed 8 ounces +/-
	,									
	13-Jun-03	99.50	16.43	16.70	0.27	0.16	16.46	83.04	trace	Bailed 8 ounces +/-

TABLE 1 (continued)
MW-301 and MW-302 Historic Product/Water Levels

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
VV CII	Date	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD 2)	(ft TOPVC) 1	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD 2)	(gal)	
MW-301	20-Jun-03	99.50	14.41	14.50	0.09	0.05	14.42	85.08	trace	Bailed 8 ounces +/-
(cont)	18-Jul-03	99.50	14.86	15.15	0.29	0.17	14.89	84.61	0.25	Bailed 0.25 gallons
	22-Aug-03	99.50	14.17	14.53	0.36	0.21	14.21	85.29	trace	Bailed trace amount
	19-Sep-03	99.50	15.35	15.61	0.26	0.15	15.38	84.12	0.5	Bailed 0.5 gallon
	22-Sep-03	99.50	15.61	15.61	sheen	NA	15.61	83.89	NPR	
	21-Oct-03	99.50	16.00	16.19	0.19	0.11	16.02	83.48	trace	Bailed trace amount.
	21-Nov-03	99.50	None Detected	13.03	NA	NA	13.03	86.47	0.25	Replaced spent Soakease (TM) with new one.
	19-Dec-03	99.50	13.00	13.00	sheen	NA	13.00	86.50	0.25	Replaced spent Soakease (TM) with new one.
	9-Jan-04	99.50	14.15	14.15	sheen	NA	14.15	85.35	0.25	Replaced Soakease
	14-Jan-04	99.50	None Detected	14.25	NA	NA	14.25	85.25	NA	
	20-Feb-04	99.50	14.56	14.57	0.01	0.01	14.56	84.94	NA	Inspected/returned soakease
	19-Mar-04	99.50	None Detected	12.76	NA	NA	12.76	86.74	NA	Inspected/returned soakease
	23-Apr-04	99.50	13.75	13.75	sheen	NA	13.75	85.75	trace	bailed trace amount
	25-May-04	99.50	None Detected	14.16	NA	NA	14.16	85.34	NA	
	18-Jun-04	99.50	14.75	14.76	0.01	0.01	14.75	84.75	trace	bailed trace amount
	11-Oct-05			2						Collected oil sample for PCB and fingerprint analysis
	1-Mar-06	99.50	16.08	16.11	0.03	0.02	16.08	83.42	NA	3.1
	3-Aug-06	99.50	16.42	16.78	0.36	0.21	16.46	83.04	NA	
	5-Dec-07	00.00	NM	NM	0.00	0.2.	101.10	00.0.		Pulled socks from MW-301 and 302
	6-Dec-07	99.50	15.85	15.95	0.10	0.06	15.86	83.64	NA	. 4104 55516 11511 1111 551 4114 552
	21-Jul-08	99.50	15.66	15.81	0.15	0.09	15.68	83.82	NA NA	WLs measured during development of 501 & 502
	28-Jul-08	99.50	None Detected	16.12	0.00	0.00	16.12	83.38	NA NA	TY LO Moderned during development of our diode
	29-Sep-08	99.50	None Detected	16.58	0.00	0.00	16.58	82.92	NA NA	
	5-Nov-08	99.50	None Detected	16.63	0.00	0.00	16.63	82.87	NA NA	
	2-Dec-08	99.50	None Detected	15.79	0.00	0.00	15.79	83.71	NA NA	
	2 000 00	33.30	None Detected	10.75	0.00	0.00	10.75	00.71	14/	
MW-302	14-Sep-00	99.22	NM	NM	NA	NA	NA	NA	NA	Well Constructed
	5-Dec-00	99.22	13.56	13.70	0.14	0.08	13.57	85.65	NPR	
	3-Apr-01	99.15	None Detected	8.82	NA	NA	8.82	90.33	NA	
	20-Jun-01	99.15 99.15	None Detected	9.62	NA 0.02	NA 0.00	9.62	89.53	NA NPR	
	22-Aug-01 4-Sep-01	99.15 99.15	13.09 13.41	13.12 13.44	0.03 0.03	0.02 0.02	13.09 13.41	86.06 85.74	NPR NPR	
	27-Sep-01	99.15	10.1	10.11	0.03	0.02	10.10	89.05	NPR	
	9-Oct-01	99.15	None Detected	12.71	NA	NA	12.71	86.44	NA	
	26-Oct-01	99.15	None Detected	13.46	NA	NA	13.46	85.69	NA	
	8-Nov-01	99.15	14.28	14.30	0.02	0.01	14.28	84.87	NPR	
	20-Nov-01	99.15	14.03	14.04	0.01	0.01	14.03	85.12	NPR	
	7-Dec-01 21-Dec-01	99.15 99.15	14.16 None Detected	14.21 12.75	0.05 NA	0.03 NA	14.17 12.75	84.98 86.40	NPR NA	
	4-Jan-02	99.15	13.64	13.66	0.02	0.01	13.64	85.51	NPR	
	16-Jan-02	99.15	13.29	13.30	0.01	0.01	13.29	85.86	trace	0.01 ft of product in skimmer

TABLE 1 (continued)
MW-301 and MW-302 Historic Product/Water Levels

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
	24.0	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD 2)	(ft TOPVC) 1	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD 2)	(gal)	
MW-302	30-Jan-02	99.15	13.03	13.04	0.01	0.01	13.03	86.12	trace	0.01 ft of product in skimmer
(cont)	14-Feb-02	99.15	None Detected	13.54	NA	NA	13.54	85.61	NA	0.01 ft of product in skimmer
	1-Mar-02	99.15	14.20	14.25	0.05	0.03	14.21	84.94	NPR	
	15-Mar-02	99.15	12.89	12.91	0.02	0.01	12.89	86.26	trace	0.2 ft product in skimmer
	27-Mar-02	99.15	7.06	7.07	0.01	0.01	7.06	92.09	trace	0.01 ft product in skimmer
	12-Apr-02	99.15	None Detected	13.04	NA	NA	13.04	86.11	NA	
	26-Apr-02	99.15	None Detected	9.20	NA	NA	9.20	89.95	NA	
	10-May-02	99.15	12.44	12.44	0.00	0.00	12.44	86.71	trace	0.01 ft product in skimmer
	24-May-02	99.15	None Detected	11.25	NA	NA	11.25	87.90	NA	
	7-Jun-02	99.15	5.97	5.97	0.00	0.00	5.97	93.18	NPR	Well seal damaged/replaced
	21-Jun-02	99.15	None Detected	12.41	NA	NA	12.41	86.74	NA	
	3-Jul-02	99.15	None Detected	12.93	NA	NA	12.93	86.22	NA	
	18-Jul-02	99.15	None Detected	13.93	NA	NA	13.93	85.22	NA	
	31-Jul-02	99.15	None Detected	13.82	NA	NA	13.82	85.33	NA	
	14-Aug-02	99.15	None Detected	13.58	NA	NA	13.58	85.57	NA	
	28-Aug-02	99.15	None Detected	13.32	NA	NA	13.32	85.83	NA	
	11-Sep-02	99.15	None Detected	11.26	NA	NA NA	11.26	87.89	NA NA	
	3-Oct-02	99.15	None Detected	11.31	NA	NA NA	11.31	87.84	NA NA	
	18-Oct-02	99.15	None Detected	7.84	NA	NA NA	7.84	91.31	NA NA	
	31-Oct-02	99.15 99.15	None Detected None Detected	10.73	NA NA	NA NA	10.73 8.12	88.42 91.03	NA NA	
	14-Nov-02 27-Nov-02	99.15 99.15	None Detected	8.12 10.04	NA NA	NA NA	10.04	89.11	NA NA	
	11-Dec-02	99.15	None Detected	12.00	NA NA	NA NA	12.00	87.15	NA NA	
	24-Dec-02	99.15	None Detected	10.39	NA NA	NA NA	10.39	88.76	NA NA	
	30-Dec-02	99.15	None Detected	9.51	NA NA	NA NA	9.51	89.64	NA NA	
	13-Jan-03	99.15	None Detected	11.14	NA NA	NA NA	11.14	88.01	NA NA	
	27-Jan-03	99.15	None Detected	12.92	NA	NA NA	12.92	86.23	NA NA	
	18-Apr-03	99.15	None Detected	10.43	NA	NA NA	10.43	88.72	NA NA	
	19-May-03	99.15	None Detected	13.41	NA	NA	13.41	85.74	NA	
	13-Jun-03	99.15	None Detected	6.20	NA	NA	6.20	92.95	NA	
	20-Jun-03	99.15	None Detected	8.15	NA	NA	8.15	91.00	NA	
	18-Jul-03	99.15	13.28	13.29	0.01	0.01	13.28	85.87	trace	Bailed trace amount
	22-Aug-03	99.15	None Detected	12.61	NA	NA	12.61	86.54	NA	
	19-Sep-03	99.15	14.44	14.47	0.03	0.02	14.44	84.71	trace	Bailed trace amount
	22-Sep-03	99.15	13.54	13.54	sheen	NA	13.54	85.61	NPR	
	21-Oct-03	99.15	None Detected	12.41	NA	NA	12.41	86.74	NA	
	21-Nov-03	99.15	None Detected	6.96	NA	NA	6.96	92.19	NA	
	19-Dec-03	99.15	None Detected	8.31	NA	NA	8.31	90.84	NA	
	9-Jan-04	99.15	None Detected	11.46	NA NA	NA	11.46	87.69	NA	
	14-Jan-04	99.15	None Detected	12.45	NA	NA NA	12.45	86.70	NA NA	
	20-Feb-04	99.15	None Detected	12.91	NA NA	NA NA	12.91	86.24	NA NA	
	19-Mar-04	99.15	None Detected	9.24	NA NA	NA NA	9.24	89.91	NA NA	
	23-Apr-04	99.15	None Detected	11.54	NA	NA	11.54	87.61	NA	

TABLE 1 (continued) MW-301 and MW-302 Historic Product/Water Levels

Well	Date	Measuring Point Elevation (ft AD ²)	Measured Depth To Product (ft TOPVC) 1	Measured Depth To Water (ft TOPVC) 1	Measured Product Thickness (feet)	Corrected Product Thickness (feet)	Corrected Depth to Water (ft TOPVC)	Corrected Groundwater Elevation (feet AD ²)	Volume Water/Product Removed (gal)	NOTES
MW-302	25-May-04	99.15	None Detected	12.02	NA	NA	12.02	87.13	NA	
(cont)	18-Jun-04	99.15	None Detected	11.30	NA	NA	11.30	87.85	NA	
	1-Mar-06	99.15	None Detected	15.46	NA	NA	15.46	83.69	NA	
	3-Aug-06	99.15	None Detected	15.88	NA	NA	15.88	83.27	NA	
	5-Dec-07		NM	NM						Pulled socks from MW-301 and 302
	6-Dec-07	99.15	None Detected	15.27	NA	NA	15.27	83.88	NA	
	28-Jul-08	99.15	None Detected	14.91	NA	NA	14.91	84.24	NA	
	29-Sep-08	99.15	None Detected	14.85	NA	NA	14.85	84.30	NA	
	5-Nov-08	99.15	None Detected	15.95	NA	NA	15.95	83.20	NA	
	2-Dec-08	99.15	None Detected	15.17	NA	NA	15.17	83.98	NA	

NOTES:

NA = Not Applicable Corrected Product Thickness = (Measured Product Thickness) x (Actual/measured thickness)

NM = Product detected but not measured, no interface probe Actual/measured thickness = 0.59

NPR = No Product Recovered
 * = Indicates a sheen but no measurable product

Corrected Depth to Water = Measured Depth to Product + [(Product Thickness) * (1 - Specific Gravity)]

¹ Top of PVC riser pipe S
² Assumed Datum: Paint spot on the M&A Linens facilty assumed to be 100.00 feet

Specific Gravity:
Gasoline

0.72 to 0.76 60° F

Diesel 0.80

No. 2 diesel 0.78 to 0.82 60° F

Motor oil 0.84

Field Tests Indicated Specific Gravity of Product = 0.89 to 0.90

TABLE 2
MW-301 and MW-302 Reported Compounds in Groundwater

Sample Loca	MW-301	MW-301	MW-301	MW-301	MW-302	MW-302	MW-302	MW-302	
Sample Da	4/4/2001	7/29/2008	11/6/2008	1/30/2009	4/4/2001	7/29/2008	11/6/2008	1/30/2009	
	GW Quality Stnd								
Analyte	(ppb)								
PCBs									
PCBs - Arochlor 1254	0.09				0.128 J				
PCBs - Arochlor 1260	0.09	0.85					1.99		
SVOCs									
Acenaphthylene	NS						0.189		
bis(2-Ethylhexyl)phthalate	5	1.90 B		2.66 J		1.60 JB	53.5	7.72	3.43 J
chlorobenzene	5						2.1		1.2
1,3 dichlorobenzene	3						1.2	1.41 J	1.2
1,4 dichlorobenzene	3	0.96 J		0.894 J	1.7	0.77 J	12.3	9.45	10.8
Di-n-butylphthalate	50	0.76 J				0.82 J			
Flourene	NS or 50*						0.256		
Naphthalene	10*	1.20				1.50			
1,2,4 Trimethylbenzene	5				0.8 J				

NOTES:

All results reported in parts per billion (ppb).

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

* Regulated Compounds Specifically Listed in STARS Memo # 1, Appendix B - Table 2.

NS = No Standard

Blank Space: Indicates not present at its respective Method Detection Limit.

Bold: Indicates compound reported above Regulatory Standards.

B: Detected in method blank.

J: Estimated value below calibrated Method Detection Limit.

Table 3 MW-301, MW-302, and MW-303 PCBs in Soil Results

Sample Loc	MW-301	MW-301	MW-302	MW-302	MW-303	MW-303	
Sample Depth (ft b	9 - 11	15 - 17	13 - 14	17 - 19	13 - 15	23 - 25	
Sample D	9/13/2000	9/13/2000	9/14/2000	9/14/2000	9/15/2000	9/15/2000	
	NYSDEC RSCO						
	(ppm)						
PCBs (Method 8082)	10 (Subsurface)	0.653	1.35	0.414	0.087	ND	ND

NOTES:

PCBs = Polychlorinated Biphenyls

ppm = parts per million

ND = Not Dectected

All results reported in ppm; all samples analyzed for PCBs according to Method 8081 or 8082.

Table 4 East Wall Post Excavation Confirmatory Samples

Former Maspeth Substation

Sample Location	Sample Date	Onsite/Off-site	Off-site Selected NYSDEC PCB RSCO (ppm)		Head Space (ppm)	TOTAL PCBs (ppm)	TOTAL TPH (ppm)	Comments	
EAST WALL									
MA-SW-0,9(13)	11/3/2005	Onsite	1	13	NA	0.33	3140	PCB 1260. 10C Transformer	
MA-SW-0,15(17)	11/3/2005	Onsite	1	17	NA	0.2	1350	PCB 1260. 10C Transformer	
MA-SW- ⁻ 2,24 (7)	1/12/2006	Off-site	10	7	NA	7.14	4600	PCB 1260. 10C Transformer	
MA-SW- ⁻ 2,23 (16)	1/27/2006	Off-site	10	16	NA	1.43	NA	PCB 1260	
MA-SW- ⁻ 2,40 (5)	1/24/2006	Off-site	10	5	NA	0.095	NA	PCB 1260	
MA-SW- ² ,38 (17)	1/26/2006	Off-site	10	17	NA	2.10	10800	PCB 1260. 10C Transformer	
MA-SW-0,57 (0-2)	8/18/2005	Onsite	1	1.5	2.1	0.82	710	PCB 1260. 10C Transformer	
MA-SW-0,57 (2-6)	8/17/2005	Onsite	1	4	0.0	< 0.0067	< 40.3	-	
MA-SW-0,57 (6-10)	8/17/2005	Onsite	1	9	1.3	< 0.0069	< 42.1	-	
MA-SW-0,57 (12)	11/1/2005	Onsite	1	12	NA	0.015	< 44.6	PCB 1260. 10C Transformer	

NOTES:

Grab Samples collected at 25-foot horizontal intervals along the eastern lagging at the following vertical depths: 0-2 ft, 2-6 ft, 6-10 ft, 10-14 ft, 14-18 ft.

bls = below land surface

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

NA = Not Analyzed

< = Less than laboratory Method Detection Limits</p>

Selected NYSDEC RSCO= Con Edison selected 1 ppm (the PCB surface RSCO) for <u>all</u> onsite soils and standard PCB RSCOs (1

for surface soils, 10 ppm for subsurface soils) for off-site soils. There are no RSCOs for TPH.

				TABLE 5							
			Well C	onstruction Deta	ails						
		Fo	ormer Maspeth S	ubstation/58th \$	Street Sidewa	lk	· · · · · ·				
	1	<u> </u>		1					1		
	Doto of	Ground	rations Top of	Total	Well	Caraa		Intonial	Caraanad		al Elevation
Well No.	Date of Installation	Surface	PVC	Depth	vveii Dia.	(ft bls)	nea	Interval (ft bls)	(ft AD)	nterv	(ft AD)
vveii ivo.	Ilistaliation	(ft AD)	(ft AD)	(ft bls)	(in)	Bot		Top	Bot		Top
MW-301	1/8/2001	99.6	99.50	23	2	23		13	76.6		86.6
10100-301	1/0/2001	99.0	33.30	23		23		13	70.0		00.0
MW-302	9/14/2000	99.5	99.15	25	2	24.5	-	9.5	75.0	-	90.0
MW-303	9/15/2000	99.7	99.52	25	2	25	-	10	74.7	-	89.7
MW-304	9/18/2000	99.7	98.55	25	2	25	-	10	74.7	-	89.7
MW-305	9/19/2000	97.3	97.19	25	2	25	-	10	72.3	-	87.3
MW-306	1/15/2001	97.5	97.30	25	2	25	-	10	72.5	-	87.5
MW401	1/12/2001	99.4	99.23	25	2	25	-	10	74.4	-	89.4
MW-402	1/12/2001	98.6	98.44	25	2	25	-	10	73.6	-	88.6
MW-501	4/7/2008	100.1	99.31	25	4	25	-	10	75.1	-	90.1
MW-502	4/7/2008	100.1	99.67	25	4	25	-	10	75.1	-	90.1
MW-503	4/7/2008	99.6	99.51	25	4	25	-	10	74.6	-	89.6
MW-504	4/7/2008	99.3	98.68	25	4	25	-	10	74.3	-	89.3
MW-601	11/23/2009	99.6	99.18	20	2	19.4	-	9.4	80.2	-	90.2
MW-602	11/19/2009	99.2	98.92	28	4	25	-	10	74.2	-	89.2
MW-603	11/20/2009	99.4	99.16	25	2	25	-	10	74.4	-	89.4
	<u> </u>										
NOTES											
AD = Assumed I	Datum: Paint spot on M	&A Linenes facilit	ty assumed to be	an arbitrary 100.0	00 foot.						
ft bls = feet belo	w land surface										
in = inches							\perp				
ft = feet											

Table 6
Soil Sample Summary: PCBs and TPH
58th Street Sidewalk Investigation
Former Maspeth Substation

Sample Location	Sample Date	Depth	Analistaa	PCB RSCOs	TOTAL PCBs	TOTAL TPH	
Sample Location	Sample Date	(feet bls)	Analytes	(ppm)	(ppm)	(ppm)	Comments
58th Street Sidewalk							
MW-301 (9-11)	9/13/2000	9 - 11	PCBs	10	0.653	NT	PCB Arochlor 1260, TPH - Not Analyzed
MW-301 (15-17)	9/13/2000	15 - 17	PCBs	10	1.350	NT	PCB Arochlor 1260, TPH - Not Analyzed
MW-302 (13-14)	9/14/2000	13 - 14	PCBs	10	0.414	NT	PCB Arochlor 1260, TPH - Not Analyzed
MW-302 (17-19)	9/14/2000	17 - 19	PCBs	10	0.087	NT	PCB Arochlor 1260, TPH - Not Analyzed
10100-302 (17-19)	9/14/2000	17 - 19	1 003	10	0.007	INI	1 CB Alochiol 1200, 11 11 - Not Analyzed
MW-601 (0-7.5)	11/16/2009	0 - 7.5	PCBs, TPH	1 or 10	< 0.0219	< 28.9	
MW-601 (8 -12)	11/23/2009	8 - 12	PCBs, TPH	10	< 0.0207	< 29.3	
MW-601 (12-16)	11/23/2009	12 - 16	PCBs, TPH	10	< 0.0206	180	TPH - Unidentified
MW-601 (16-18.3)	11/23/2009	16 - 18.3	PCBs, TPH	10	< 0.0216	< 29.5	
MW-602 (0-7.5)	11/17/2009	0 - 7.5	PCBs, TPH	1 or 10	0.121	< 27.5	PCB - Arochlor 1260.
MW-602 (8 -12)	11/18/2009	8 - 12	PCBs, TPH	10	0.111	2,390	PCB - Arochlor 1260. TPH - Unidentified
MW-602 (8 -12) Dupe	11/18/2009	8 - 12	PCBs, TPH	10	0.181	3,370	PCB - Arochlor 1260. TPH - Unidentified
MW-602 (12-16)	11/18/2009	12 - 16	PCBs, TPH	10	0.0208 J	555	PCB - Arochlor 1260. TPH - Unidentified
MW-602 (16-20)	11/18/2009	16 - 20	PCBs, TPH	10	< 0.0213	76.3	TPH - Unidentified
MW-602 (20-24)	11/18/2009	20 - 24	PCBs, TPH	10	< 0.0217	138	TPH - Unidentified
MW-602 (24-28)	11/18/2009	24 - 28	PCBs, TPH	10	< 0.0229	61.6	TPH - Unidentified
MANA COO (O 7.5)	44/40/0000	0.75	DOD- TOU	4 - 7 40	0.040	.00.5	DOD. Areables 4000
MW-603 (0-7.5)	11/16/2009	0 - 7.5	PCBs, TPH	1 or 10	0.043	< 28.5	PCB - Arochlor 1260.
MW-603 (10-12)	11/20/2009	10 - 12	PCBs, TPH	10	0.0884	124	PCB - Arochlor 1260. TPH - Unidentified
MW-603 (12-16)	11/20/2009	12 - 16	PCBs, TPH	10	0.131	299	PCB - Arochlor 1254 & Arochlor 1260. TPH - Unidentified
MW-603 (16-18)	11/20/2009	16 - 18	PCBs, TPH	10	0.0797	123	PCB - Arochlor 1254 & Arochlor 1260. TPH - Unidentified
MW-603 (20-22.8)	11/20/2009	20 - 22.8	PCBs, TPH	10	0.0958	167	PCB - Arochlor 1254 & Arochlor 1260. TPH - Unidentified
MW-603 (24-25.2)	11/20/2009	24-25.2	PCBs, TPH	10	0.1396	143	PCB - Arochlor 1254 & Arochlor 1260. TPH - Unidentified

NOTES:

Soil samples from 0 - 7.5 ft bls collected as individual grab samples then composited during clearing with Vactron Unit.

Soil samples from below 8 ft bls collected via split-spoon sampling during soil boring drilling.

bls = below land surface

RSCO= Recommended Soil Cleanup Objective

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

PCB RSCOs= The RSCO for surface soils (0-2 feet) is 1 ppm. The RSCO for subsurface soils is 10 ppm. There are no RSCOs for TPH.

NT = Not tested

< = Less than laboratory method detection limits.

J = Detected above MDL, but below reporting limt (result is an estimated value).

Table 7
Recent Site Wide Water/Product Level Data
Former Maspeth Substaion/58th Street

Well	Gauging	Measuring Point	Measured Depth To	Measured Depth To	Measured	Corrected	Corrected
Identification	Date	Elevation	Product	Groundwater	Product Thickness	Depth To Water	Groundwater Elevation
		(ft AD) 1	(ft TOPVC) ²	(ft TOPVC) ²	(feet)	(ft TOPVC)	(feet AD) 1
MW-301	7/28/2008	99.50	ND	16.12	NA	16.12	83.38
	9/29/2008	99.50	ND	16.58	NA	16.58	82.92
	11/5/2008	99.50	ND	16.63	NA	16.63	82.87
	1/28/2009	99.50	ND	15.28	NA	15.28	84.22
	5/19/2009	99.50	ND	15.44	NA	15.44	84.06
	7/23/2009	99.50	ND	15.96	NA	15.96	83.54
	10/27/2009	99.50	ND	16.54	NA	16.54	82.96
	2/3/2010	99.50	ND	16.33	NA	16.33	83.17
MW-302	7/28/2008	99.15	ND	14.91	NA	14.91	84.24
	9/29/2008	99.15	ND	14.85	NA	14.85	84.30
	11/5/2008	99.15	ND	15.95	NA	15.95	83.20
	1/28/2009	99.15	ND	16.47	NA	16.47	82.68
	5/19/2009	99.15	ND	14.62	NA	14.62	84.53
	7/23/2009	99.15	ND	15.22	NA	15.22	83.93
	10/27/2009	99.15	ND	15.59	NA	15.59	83.56
	2/3/2010	99.15	ND	15.90	NA	15.90	83.25
MW-303	7/28/2008	99.52	ND	15.44	NA	15.44	84.08
11111 505	9/29/2008	99.52	ND	16.54	NA	16.54	82.98
	11/5/2008	99.52	ND	16.75	NA	16.75	82.77
	1/28/2009	99.52	ND	15.17	NA	15.17	84.35
	5/19/2009	99.52	ND	15.40	NA	15.40	84.12
	7/23/2009	99.52	ND	15.83	NA	15.83	83.69
	10/27/2009	99.52	ND	17.03	NA	17.03	82.49
	2/3/2010	99.52	ND	16.88	NA	16.88	82.64
MW-304	7/28/2008	98.55	ND	14.60	NA	14.60	83.95
101 00 - 30 -	9/29/2008	98.55	ND	14.98	NA NA	14.98	83.57
	11/5/2008	98.55	ND ND	14.22	NA NA	14.22	84.33
	1/28/2009	98.55	ND ND	13.43	NA NA	13.43	85.12
	5/19/2009	98.55	ND ND	14.22	NA NA	14.22	84.33
	7/23/2009	98.55	ND ND	14.25	NA NA	14.22	84.20
	10/27/2009	98.55	ND ND	15.39	NA NA	15.39	83.16
	2/1/2010	98.55	ND ND	15.48	NA NA	15.48	83.07
	2/1/2010	90.33	ND	13.48	INA	13.48	65.07

Table 7
Recent Site Wide Water/Product Level Data
Former Maspeth Substaion/58th Street

Well	Gauging	Measuring Point	Measured Depth To	Measured Depth To	Measured	Corrected	Corrected
Identification	Date	Elevation	Product	Groundwater	Product Thickness	Depth To Water	Groundwater Elevation
		(ft AD) 1	(ft TOPVC) ²	(ft TOPVC) ²	(feet)	(ft TOPVC)	(feet AD) 1
MW-305	7/28/2008	97.19	ND	14.51	NA	14.51	82.68
	9/29/2008	97.19	ND	14.20	NA	14.20	82.99
	11/5/2008	97.19	ND	14.30	NA	14.30	82.89
	1/28/2009	97.19	ND	13.81	NA	13.81	83.38
	5/19/2009	97.19	ND	13.96	NA	13.96	83.23
	7/23/2009	97.19	ND	14.22	NA	14.22	82.97
	10/27/2009	97.19	ND	9.93	NA	9.93	87.26
	2/1/2010	97.19	ND	15.52	NA	15.52	81.67
MW-306	7/28/2008	97.30	ND	14.28	NA	14.28	83.02
	9/29/2008	97.30	ND	16.25	NA	16.25	81.05
	11/5/2008	97.30	ND	14.46	NA	14.46	82.84
	1/28/2009	97.30	ND	15.53	NA	15.53	81.77
	5/19/2009	97.30	ND	14.74	NA	14.74	82.56
	7/23/2009	97.30	ND	15.31	NA	15.31	81.99
	10/27/2009	97.30	ND	16.06	NA	16.06	81.24
	2/2/2010	97.30	ND	16.41	NA	16.41	80.89
					NA	0.00	0.00
MW-401	7/28/2008	99.23	ND	10.38	NA	10.38	88.85
	9/29/2008	99.23	ND	10.32	NA	10.32	88.91
	11/5/2008	99.23	ND	10.50	NA	10.50	88.73
	1/28/2009	99.23	ND	NR	NA	NR	=
	5/19/2009	99.23	ND	10.36	NA	10.36	88.87
	7/23/2009	99.23	ND	9.66	NA	9.66	89.57
	10/27/2009	99.23	ND	10.35	NA	10.35	88.88
	2/3/2010	99.23	ND	10.26	NA	10.26	88.97
MW-402	7/28/2008	98.44	ND	9.88	NA	9.88	88.56
1.1., 102	9/29/2008	98.44	ND	9.78	NA	9.78	88.66
	11/5/2008	98.44	ND	9.95	NA	9.95	88.49
	1/28/2009	98.44	ND	9.64	NA	9.64	88.80
	5/19/2009	98.44	ND	9.73	NA NA	9.73	88.71
	7/23/2009	98.44	ND	10.28	NA	10.28	88.16
	10/27/2009	98.44	ND	9.84	NA NA	9.84	88.60
	2/3/2010	98.44	ND	8.74	NA	8.74	89.70

Table 7
Recent Site Wide Water/Product Level Data
Former Maspeth Substaion/58th Street

Well	Gauging	Measuring Point	Measured Depth To	Measured Depth To	Measured	Corrected	Corrected
Identification	Date	Elevation	Product	Groundwater	Product Thickness	Depth To Water	Groundwater Elevation
		(ft AD) 1	(ft TOPVC) ²	(ft TOPVC) ²	(feet)	(ft TOPVC)	(feet AD) 1
MW-501	7/28/2008	99.31	ND	16.68	NA	16.68	82.63
	9/29/2008	99.31	ND	17.02	NA	17.02	82.29
	11/5/2008	99.31	ND	16.51	NA	16.51	82.80
	1/28/2009	99.31	ND	16.31	NA	16.31	83.00
	5/19/2009	99.31	ND	16.70	NA	16.70	82.61
	7/23/2009	99.31	ND	17.42	NA	17.42	81.89
	10/27/2009	99.31	ND	18.12	NA	18.12	81.19
	2/3/2010	99.31	ND	18.51	NA	18.51	80.80
MW-502	7/28/2008	99.67	ND	17.21	NA	17.21	82.46
	9/29/2008	99.67	ND	17.02	NA	17.02	82.65
	11/5/2008	99.67	ND	17.03	NA	17.03	82.64
	1/28/2009	99.67	ND	17.00	NA	17.00	82.67
	5/19/2009	99.67	ND	17.23	NA	17.23	82.44
	7/23/2009	99.67	ND	18.39	NA	18.39	81.28
	10/27/2009	99.67	ND	18.92	NA	18.92	80.75
	2/2/2010	99.67	ND	19.09	NA	19.09	80.58
MW-503	7/28/2008	99.51	ND	17.09	NA	17.09	82.42
11111 303	9/29/2008	99.51	ND	16.98	NA	16.98	82.53
	11/5/2008	99.51	ND	17.06	NA	17.06	82.45
	1/28/2009	99.51	ND	16.87	NA	16.87	82.64
	5/19/2009	99.51	ND	17.21	NA	17.21	82.30
	7/23/2009	99.51	ND	18.44	NA	18.44	81.07
	10/27/2009	99.51	ND	18.95	NA	18.95	80.56
	2/2/2010	99.51	ND	19.22	NA	19.22	80.29
MW-504	7/28/2008	98.68	ND	16.37	NA	16.37	82.31
IVI VV -304	9/29/2008	98.68	ND ND	16.29	NA NA	16.29	82.39
	11/5/2008	98.68	ND ND	16.29	NA NA	16.34	82.34
 	1/28/2008	98.68	ND ND	15.33	NA NA	15.33	83.35
-	5/19/2009	98.68	ND ND	16.42	NA NA	16.42	82.26
	7/23/2009	98.68	ND ND	17.65	NA NA	17.65	81.03
 	10/27/2009	98.68	ND ND	18.30	NA NA	18.30	80.38
	2/2/2010	98.68	ND	18.49	NA	18.49	80.19

Table 7
Recent Site Wide Water/Product Level Data
Former Maspeth Substaion/58th Street

Well Identification	Gauging Date	Measuring Point Elevation (ft AD) 1	Measured Depth To Product (ft TOPVC) 2	Measured Depth To Groundwater (ft TOPVC) ²	Measured Product Thickness (feet)	Corrected Depth To Water (ft TOPVC)	Corrected Groundwater Elevation (feet AD) ¹
MW-601	12/15/2009	99.18	ND	15.00	NA	15.00	84.18
	2/3/2010	99.18	ND	15.87	NA	15.87	83.31
MW-602	12/15/2009	98.92	ND	15.89	NA	15.89	83.03
	2/3/2010**	98.92	16.15	16.17	0.02	16.15	82.77
MW-603	12/15/2009	99.16	ND	15.15	NA	15.15	84.01
	2/3/2010	99.16	ND	15.48	NA	15.48	83.68

NOTES:

1 Assumed Datum (AD): Paint spot on M&A Linens facilty assumed to be 100.00 feet. MW-500 and MW-600 series wells were surveyed in November 2009. Measurieng point elevations for the 500-series wells are no longer assumed to be 100 as they have been depicted in previous reports.

2 Measured from Top of PVC (TOPVC) riser pipe to nearest 0.01 foot

ND: Not Detected NR: Not Recorded NA: Not Applicable

ft: feet

* Assume on-site elevation = 100 ft AD

Corrected Depth to Water = Measured Depth to Product + [(Product Thickness) * (1 - Specific Gravity)]

Specific Gravity:

Gasoline 0.72 to 0.76 60° F

Diesel 0.8

No. 2 diesel 0.78 to 0.82 60° F

Motor oil 0.84

Field Tests Indicated Specific Gravity of Product = 0.89 to 0.90

Table 8 **Historical Water Quality Sample Results: PCBs** 58th Street Sidewalk

Sample Loc	cation	MW-301							MW-302							
Sample D	Date	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	
PCBs (Method 8082)	TOGS Groundwater															
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	
Aroclor 1016	0.09															
Aroclor 1221	0.09															
Aroclor 1232	0.09															
Aroclor1242	0.09															
Aroclor 1248	0.09															
Aroclor 1254	0.09			0.128 J												
Aroclor 1260	0.09				1.63	8.03	2.82	1.44	1.99				0.965	3.87	0.138 J	
Aroclor 1262	0.09															
Aroclor 1268	0.09															

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Table 8_Hist PCBs.xls Page 1 of 3

Table 8 (continued) Historical Water Quality Sample Results: PCBs 58th Street Sidewalk

Sample Loc	cation				MW-303				MW-402							
Sample Date		7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	7/28/2008	11/5/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	
PCBs (Method 8082)	TOGS Groundwater															
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	
Aroclor 1016	0.09															
Aroclor 1221	0.09															
Aroclor 1232	0.09															
Aroclor1242	0.09															
Aroclor 1248	0.09															
Aroclor 1254	0.09															
Aroclor 1260	0.09										4.34					
Aroclor 1262	0.09															
Aroclor 1268	0.09							•								

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Table 8 (continued) Historical Water Quality Sample Results: PCBs 58th Street Sidewalk

Sample Loc	cation	MW-	-601	MW-602		MW-	-603	Field Blank							
Sample D	Pate	12/15/2009	2/3/2010	12/15/2009	2/3/2010	12/15/2009	2/3/2010	7/28/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	
PCBs (Method 8082)	TOGS Groundwater													1	
Analyte	Quality Std (ug/L)	ug/L	μg/L	ug/L	μg/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Aroclor 1016	0.09														
Aroclor 1221	0.09													1	
Aroclor 1232	0.09													1	
Aroclor1242	0.09													1	
Aroclor 1248	0.09													ł	
Aroclor 1254	0.09													1	
Aroclor 1260	0.09	0.751	0.975		0.655	0.120 J	0.0967 J								
Aroclor 1262	0.09		•												
Aroclor 1268	0.09													1	

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Table 9 Historical Water Quality Sample Results: VOCs 58th Street Sidewalk

Sample Loc	ation				MW-301				MW-302						
Sample D		7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010
VOCs (Method 8260B)	TOGS Groundwater	.,,_,		.,	0,=0,=00	.,,,_						0.00,000	.,_,,_,		
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L
Acetone	50														
Benzene	1						0.5 J								
Bromodichloromethane	50														
Bromomethane	5														
2-Butanone	NS														
n-Butylbenzene	5														
sec-Butylbenzene	5														
tert Butylbenzene	5														
Carbon disulfide	NS														
Chlorobenzene	5								2.1		1.2	0.5 J	1.5	1.9	1.4
Chloroform	7														
Chloromethane	NS														
1,2 Dichlorobenzene	3													0.4 J	
1,3 Dichlorobenzene	3								1.2		1.2	0.6 J	1.0	1.7	1.2
1,4 Dichlorobenzene	3			1.7	1.3	1.5	1.8	1.9	12.3	13.5	10.8	5.5	9.4	16.2	10.6
1,1-Dichloroethene	5														
Ethylbenzene	5														
2-Hexanone	50														
Isopropylbenzene	5														
4-Isopropyltolune	5														
Methylene chloride	5														
Methyl t-butyl ether (MTBE)	NS														
Naphthalene	10														
n-Propylybenzene	5														
Tetrachloroethene	5														
Toluene	5														
1,2,4 Trichlorobenzene	5						0.6 J							0.6 J	
Trichloroethene	5														
1,1,2 Trichlorotrifluoroethene	NS														
1,2,4 Trimethyl benzene	5			0.8 J											
1,3,5 Trimethylbenzene	5														
m, p-Xylene	5														
o-Xylene	5														
tert Butyl Alcohol	NS														

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

V11 = Analyte concentration confirmed by duplicate analysis.

Table 9 (continued) Historical Water Quality Sample Results: VOCs 58th Street Sidewalk

Sample Loc	cation				MW-303				MW-	-601	MW-	-602	MW	-603
Sample D	Date	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	12/15/2009	2/3/2010	12/15/2009	2/3/2010	12/15/2009	2/3/2010
VOCs (Method 8260B)	TOGS Groundwater													
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L	μg/L	ug/L	μg/L
Acetone	50													
Benzene	1										0.6 J			
Bromodichloromethane	50													
Bromomethane	5													
2-Butanone	NS													
n-Butylbenzene	5													
sec-Butylbenzene	5													
tert Butylbenzene	5													
Carbon disulfide	NS													
Chlorobenzene	5										2.1	2.6		
Chloroform	7			0.6 J										
Chloromethane	NS													
1,2 Dichlorobenzene	3										0.7 J	0.7 J	0.4J	
1,3 Dichlorobenzene	3								0.5 J		2.0	2.3	0.6 J	
1,4 Dichlorobenzene	3								3.8	2.8	24.0	26.1	5.3	4.4
1,1-Dichloroethene	5													
Ethylbenzene	5													
2-Hexanone	50													
Isopropylbenzene	5													
4-Isopropyltolune	5													
Methylene chloride	5													
Methyl t-butyl ether (MTBE)	NS													
Naphthalene	10													
n-Propylybenzene	5													
Tetrachloroethene	5													
Toluene	5													
1,2,4 Trichlorobenzene	5													
Trichloroethene	5													
1,1,2 Trichlorotrifluoroethene	NS													
1,2,4 Trimethyl benzene	5													
1,3,5 Trimethylbenzene	5													
m, p-Xylene	5													
o-Xylene	5													
tert Butyl Alcohol	NS													

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

V11 = Analyte concentration confirmed by duplicate analysis.

Table 9 (continued) Historical Water Quality Sample Results: VOCs 58th Street Sidewalk

Sample Loc	cation				Field Blank			
Sample D		7/29/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010
VOCs (Method 8260B)	TOGS Groundwater				5, 10, 200	.,_,,_,		
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L
Acetone	50	10.6	5.1 J	2.75 J	8.9 V11, J	12.5 V11		
Benzene	1							
Bromodichloromethane	50			2.9 V11				
Bromomethane	5							
2-Butanone	NS							
n-Butylbenzene	5							
sec-Butylbenzene	5							
tert Butylbenzene	5							
Carbon disulfide	NS							
Chlorobenzene	5							
Chloroform	7			30.1 V11				
Chloromethane	NS							
1,2 Dichlorobenzene	3							
1,3 Dichlorobenzene	3							
1,4 Dichlorobenzene	3							
1,1-Dichloroethene	5							
Ethylbenzene	5							
2-Hexanone	50							
Isopropylbenzene	5							
4-Isopropyltolune	5							
Methylene chloride	5							
Methyl t-butyl ether (MTBE)	NS							
Naphthalene	10							
n-Propylybenzene	5							
Tetrachloroethene	5							
Toluene	5				1.0 V11			
1,2,4 Trichlorobenzene	5							
Trichloroethene	5							
1,1,2 Trichlorotrifluoroethene	NS							
1,2,4 Trimethyl benzene	5							
1,3,5 Trimethylbenzene	5							
m, p-Xylene	5							
o-Xylene	5							
tert Butyl Alcohol	NS				54.8 V11			

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

V11 = Analyte concentration confirmed by duplicate analysis.

Table 10 Historical Water Quality Sample Results: SVOCs 58th Street Sidewalk

Sample Loca	ation				MW-301				MW-302						
Sample Da		7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010
SVOCs (Method 8270B)	TOGS Groundwater	.,_0,_00			3, 2, 2, 2, 2	.,_,_,_				, .,	.,,	0, = 0, = 0 0	.,_,,_,		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L
Acenapthene	20														
Acenaphthylene	NS								0.189						
Anthracene	50														
Benzo (a) anthracene	NS or 0.002*														
Benzo(a) pyrene	ND														
Benzo(b) fluoranthene	NS or 0.002*														
Benzo(g,h,i) perylene	NS														
Benzo(k) fluoranthene	NS or 0.002*														
bis(2-Ethylhexyl)phthalate	5		2.66 J			4.59 J	5.31 J		53.5	7.72	3.43 J		6.70	14.8	3.47 J
Butylbenzylphthalate	50														
4-Chloro-3-methylphenol	NS														
2-Chlorophenol	NS														
Chrysene	NS or 0.002*														
Dibenz(a,h)anthracene	NS														
1,3 dichlorobenzene	3									1.41 J			0.609 J	1.03 J	0.806 J
1,4 dichlorobenzene	3		0.894 J		0.767 J	0.791 J	1.11 J			9.45	7.29 J	3.20 J	5.25 J	8.45	6.75
Diethylphthalate	NS or 50*														
Dimethyl phthalate	NS or 50*														
Di-n-butylphthalate	NS														
2,4-Dinitrotoluene	5														
Di-n-octylphthalate	NS or 50*														
Fluoranthene	NS or 50*														
Flourene	NS or 50*								0.256						
Indeno(1,2,3-cd) pyrene	NS or 0.002*														
2-Methyl naphthalene	NS														
3,4 Methylphenol	NS														
Naphthalene	10														
4-Nitrophenol	NS														
N-Nitroso-di-n-prpoylamine	NS														
Pentachlorophenol	1														
Phenanthrene	NS or 50*														
Phenol	1														
Pyrene	NS or 50*														
1,2,4 trichlorobenzene	5														

Notes:

SVOCs = semi-volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ND = Non-Detectable

* = Guidance Value

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Table 10 (continued) Historical Water Quality Sample Results: SVOCs 58th Street Sidewalk

Sample Loca	ation				MW-303				MW-601	MW-602	MW-603
Sample Da	ate	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	2/3/2010	2/3/2010	2/3/2010
SVOCs (Method 8270B)	TOGS Groundwater										
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	μg/L	μg/L	μg/L
Acenapthene	20										
Acenaphthylene	NS										
Anthracene	50										
Benzo (a) anthracene	NS or 0.002*										
Benzo(a) pyrene	ND										
Benzo(b) fluoranthene	NS or 0.002*										
Benzo(g,h,i) perylene	NS										
Benzo(k) fluoranthene	NS or 0.002*										
bis(2-Ethylhexyl)phthalate	5		0.969 J				2.77 J	3.84 J		1.74 J	
Butylbenzylphthalate	50										
4-Chloro-3-methylphenol	NS										
2-Chlorophenol	NS										
Chrysene	NS or 0.002*										
Dibenz(a,h)anthracene	NS										
1,3 dichlorobenzene	3									1.59 J	
1,4 dichlorobenzene	3									16.3	2.60 J
Diethylphthalate	NS or 50*										
Dimethyl phthalate	NS or 50*										
Di-n-butylphthalate	NS										
2,4-Dinitrotoluene	5										
Di-n-octylphthalate	NS or 50*										
Fluoranthene	NS or 50*										
Flourene	NS or 50*										
Indeno(1,2,3-cd) pyrene	NS or 0.002*										
2-Methyl naphthalene	NS										
3,4 Methylphenol	NS										
Naphthalene	10										
4-Nitrophenol	NS										
N-Nitroso-di-n-prpoylamine	NS		-							-	
Pentachlorophenol	1										
Phenanthrene	NS or 50*										
Phenol	1										
Pyrene	NS or 50*										
1,2,4 trichlorobenzene	5										

Notes:

SVOCs = semi-volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ND = Non-Detectable

* = Guidance Value

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Table 10 (continued) Historical Water Quality Sample Results: SVOCs 58th Street Sidewalk

Sample Locati	on				Field E	Blank			
Sample Date	e	7/29/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	12/15/2009	2/3/2010
SVOCs (Method 8270B)									
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L
Acenapthene	20								
Acenaphthylene	NS								
Anthracene	50								
Benzo (a) anthracene	NS or 0.002*								
Benzo(a) pyrene	ND								
Benzo(b) fluoranthene	NS or 0.002*								
Benzo(g,h,i) perylene	NS								
Benzo(k) fluoranthene	NS or 0.002*								
bis(2-Ethylhexyl)phthalate	5						1.51 J		
Butylbenzylphthalate	50								
4-Chloro-3-methylphenol	NS								
2-Chlorophenol	NS								
Chrysene	NS or 0.002*								
Dibenz(a,h)anthracene	NS								
1,3 dichlorobenzene	3								
1,4 dichlorobenzene	3								
Diethylphthalate	NS or 50*								
Dimethyl phthalate	NS or 50*								
Di-n-butylphthalate	NS								
2,4-Dinitrotoluene	5								
Di-n-octylphthalate	NS or 50*								
Fluoranthene	NS or 50*								
Flourene	NS or 50*								
Indeno(1,2,3-cd) pyrene	NS or 0.002*								
2-Methyl naphthalene	NS								
3,4 Methylphenol	NS								
Naphthalene	10								
4-Nitrophenol	NS								
N-Nitroso-di-n-prpoylamine	NS								
Pentachlorophenol	1								
Phenanthrene	NS or 50*								
Phenol	1								
Pyrene	NS or 50*								
1,2,4 trichlorobenzene	5								

Notes

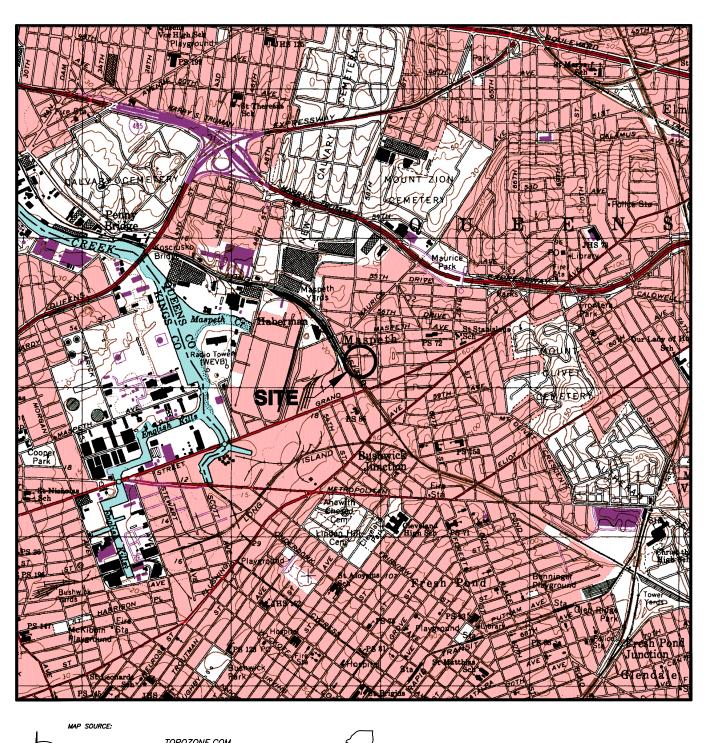
SVOCs = semi-volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ND = Non-Detectable

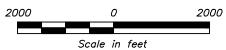

* = Guidance Value


ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

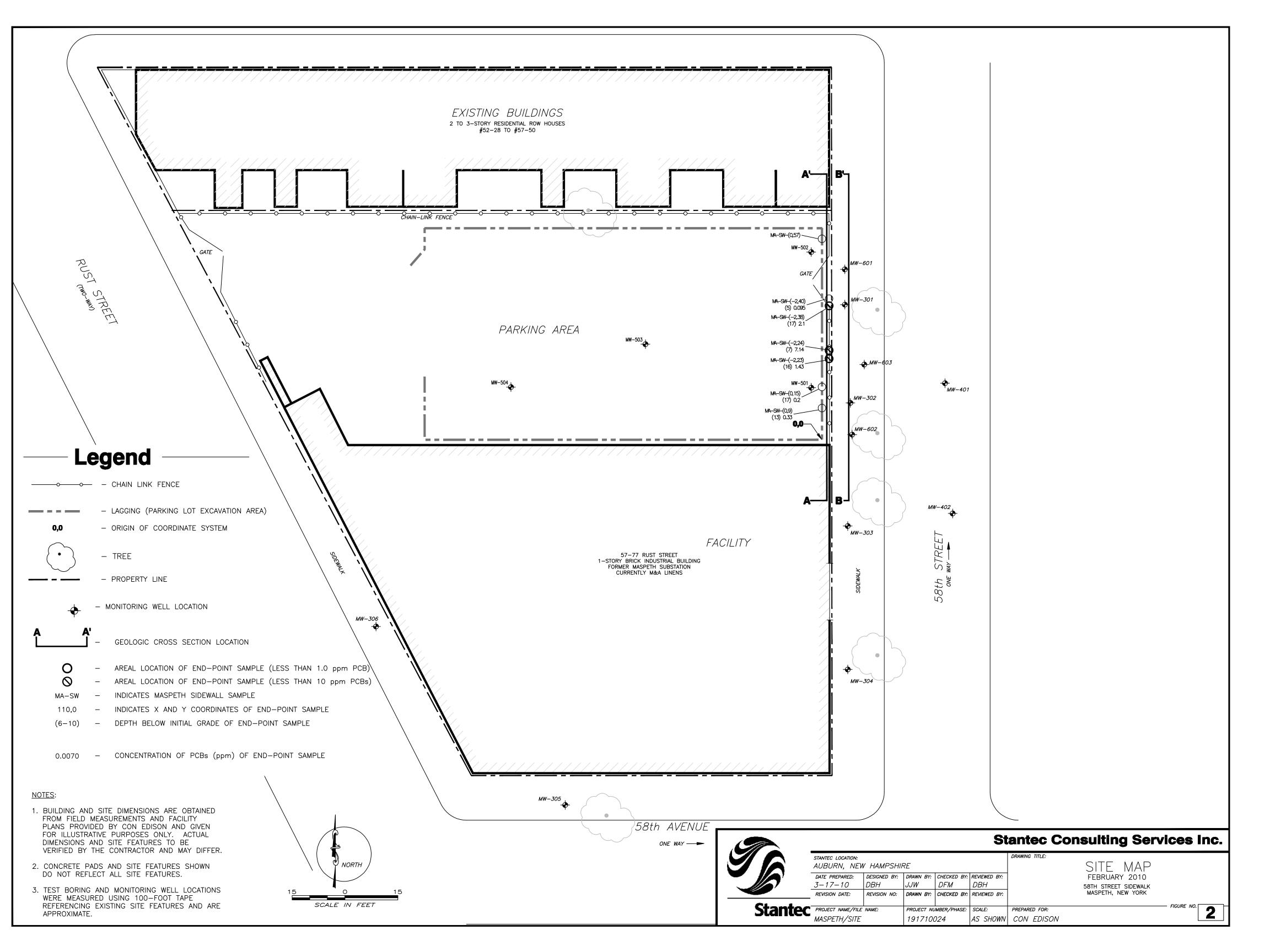
J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

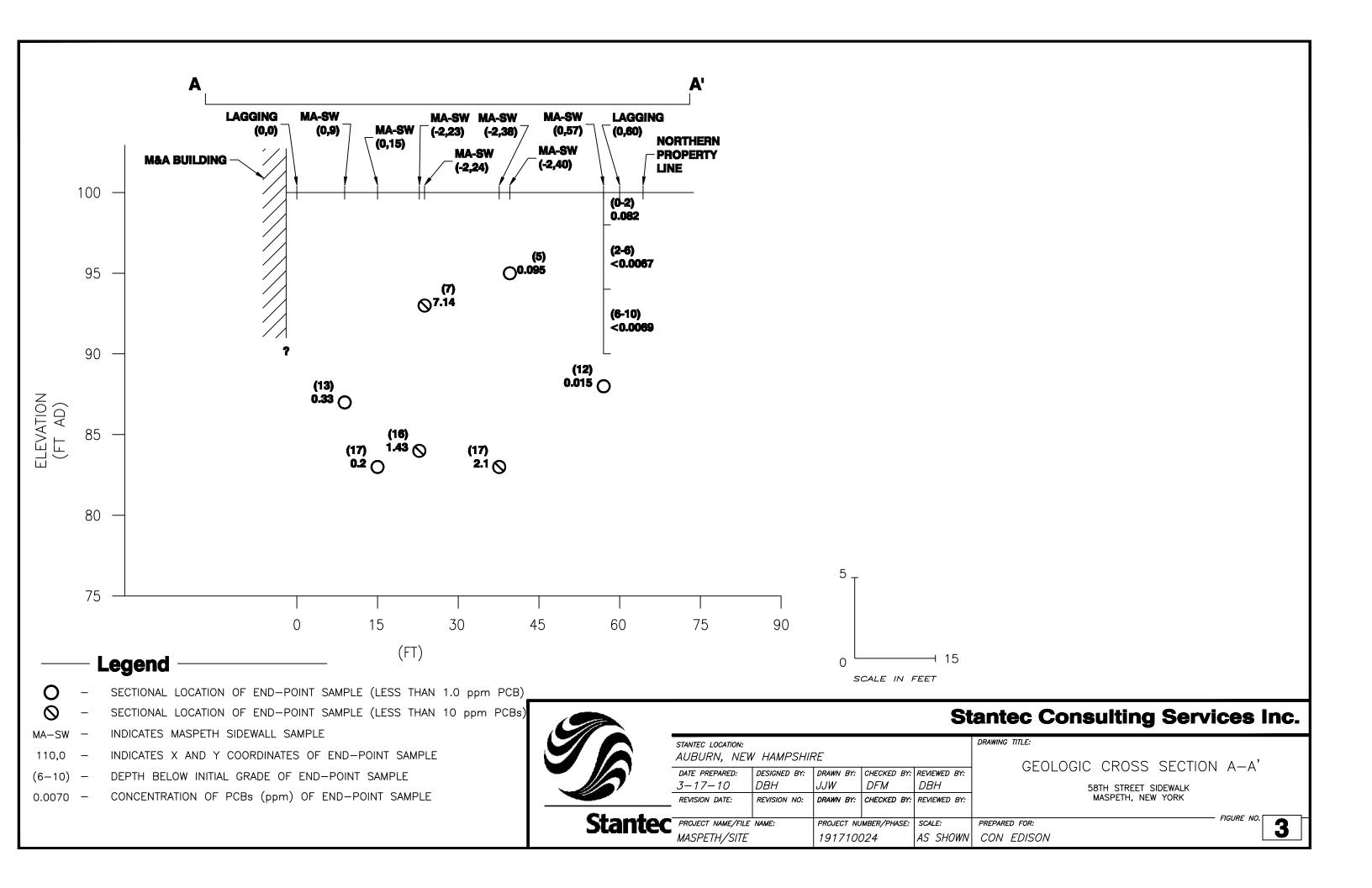


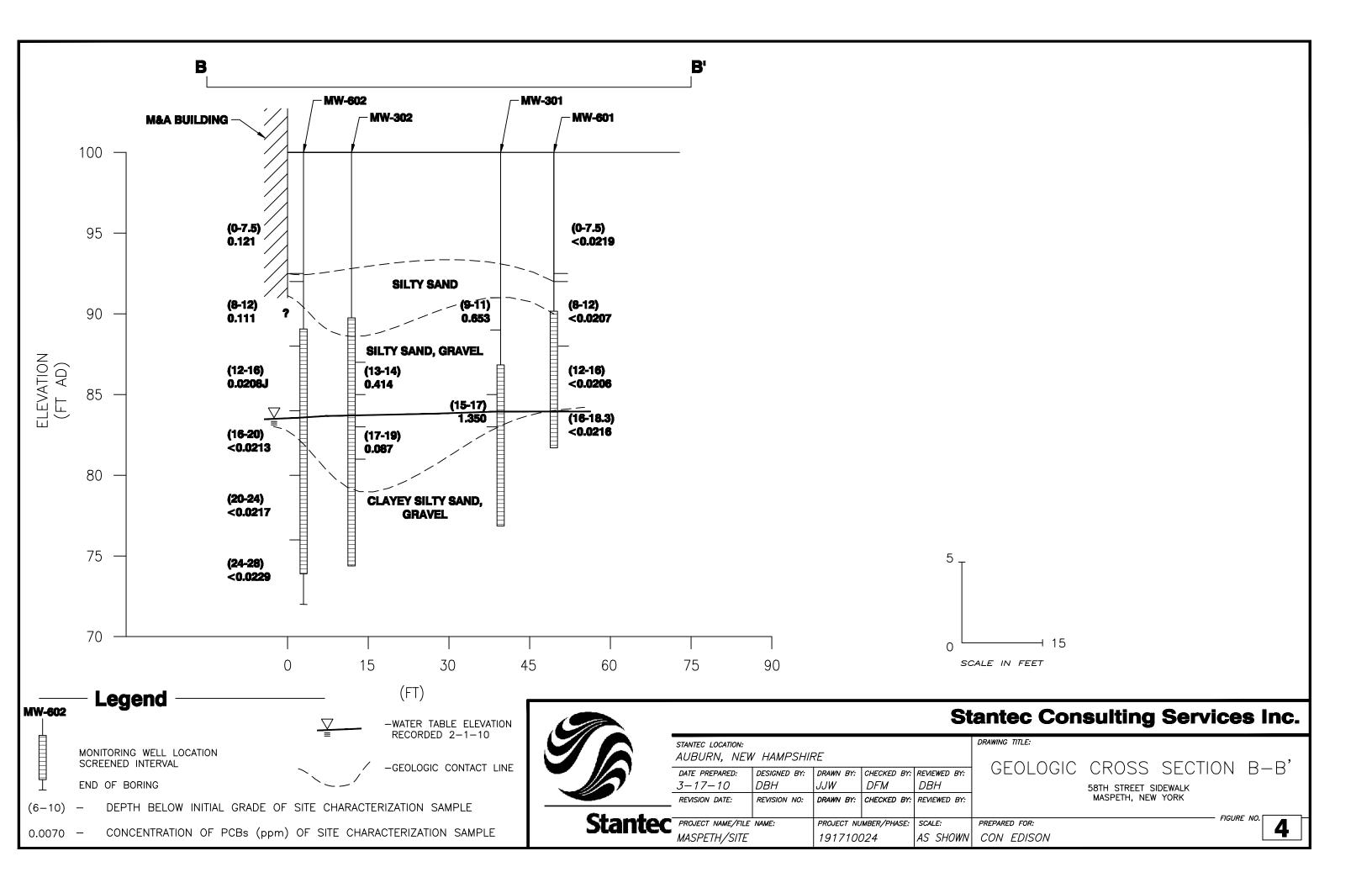
TOPOZONE.COM

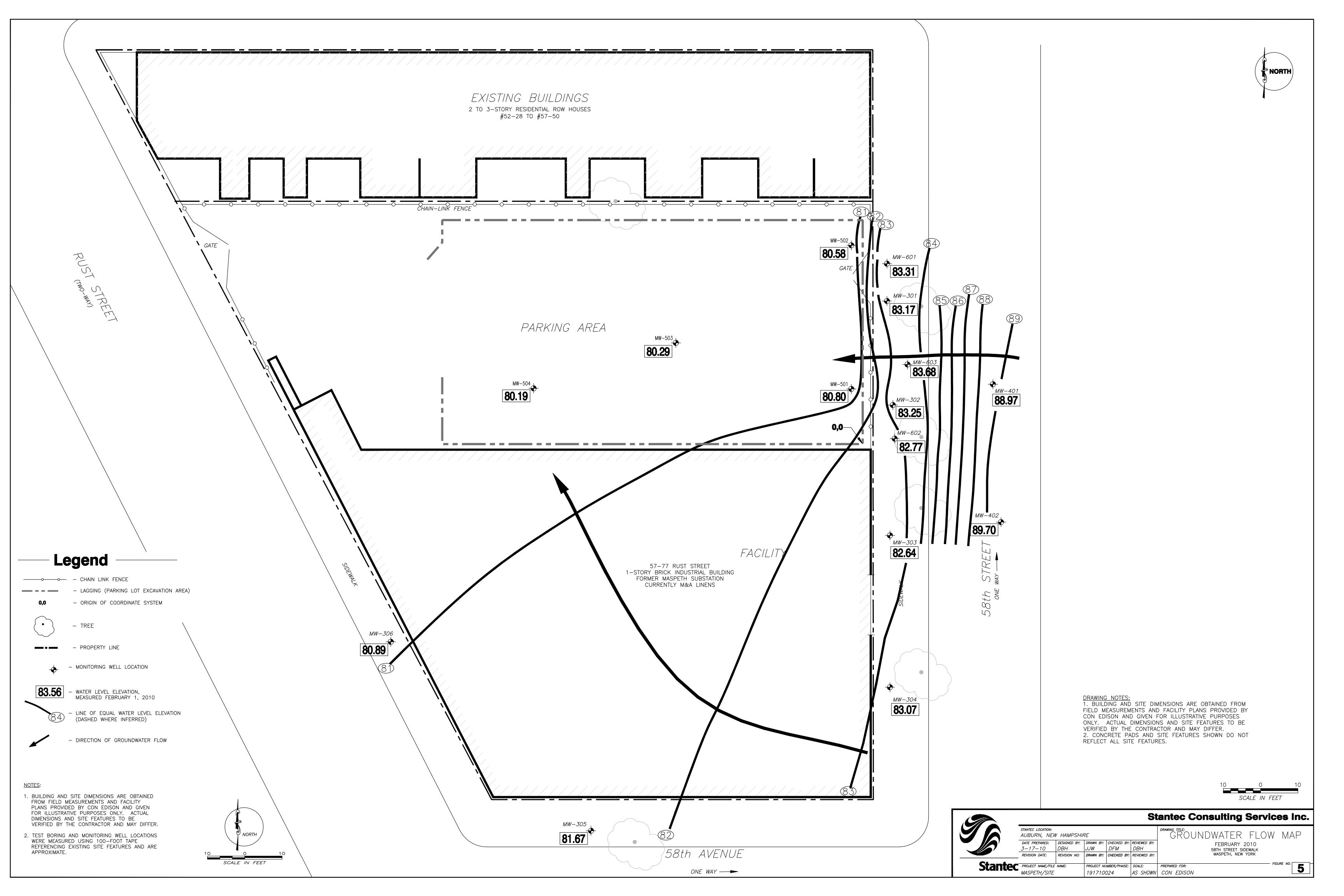
USGS NEW YORK [NY] QUAD 1991

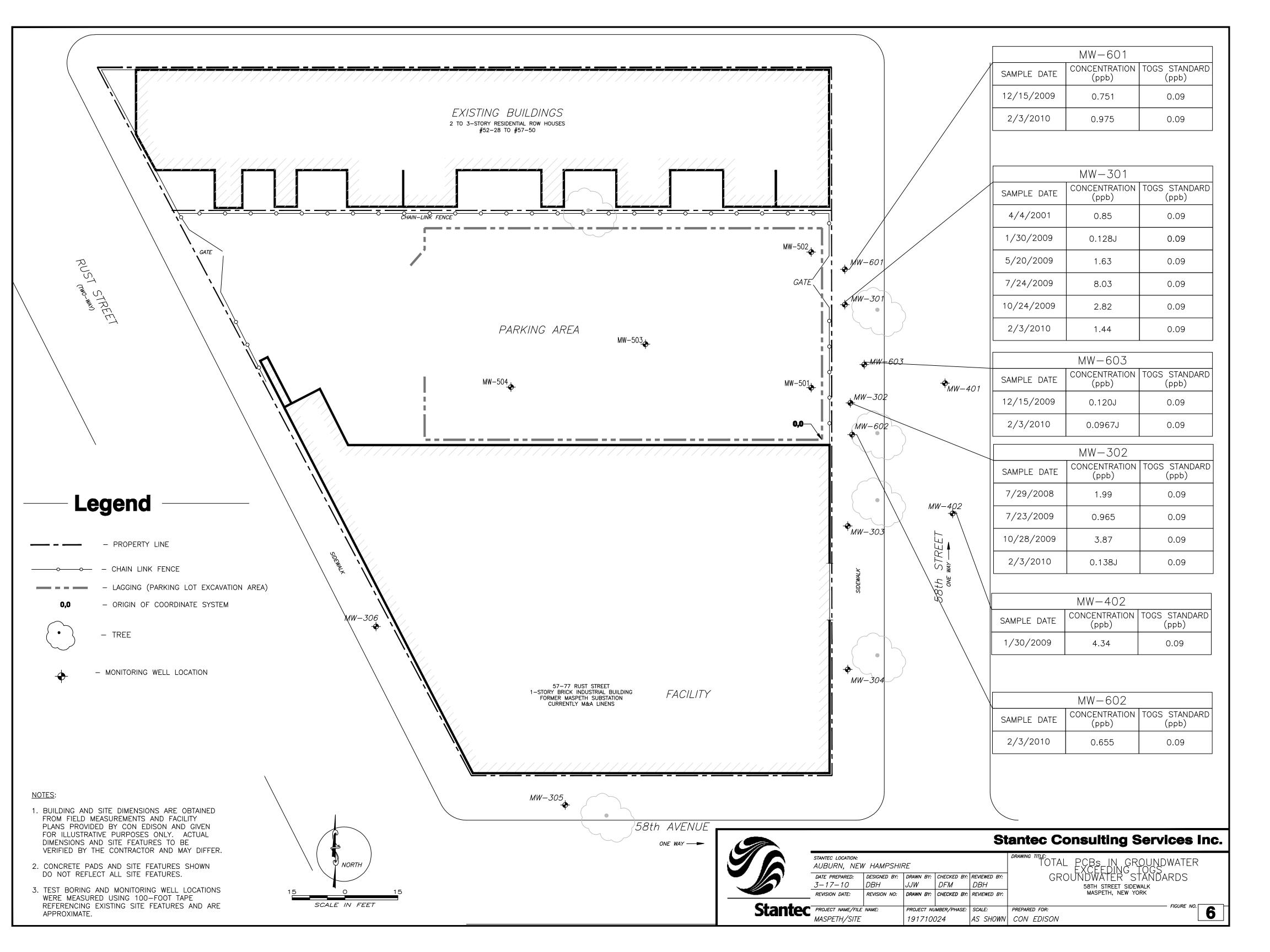
Stantec

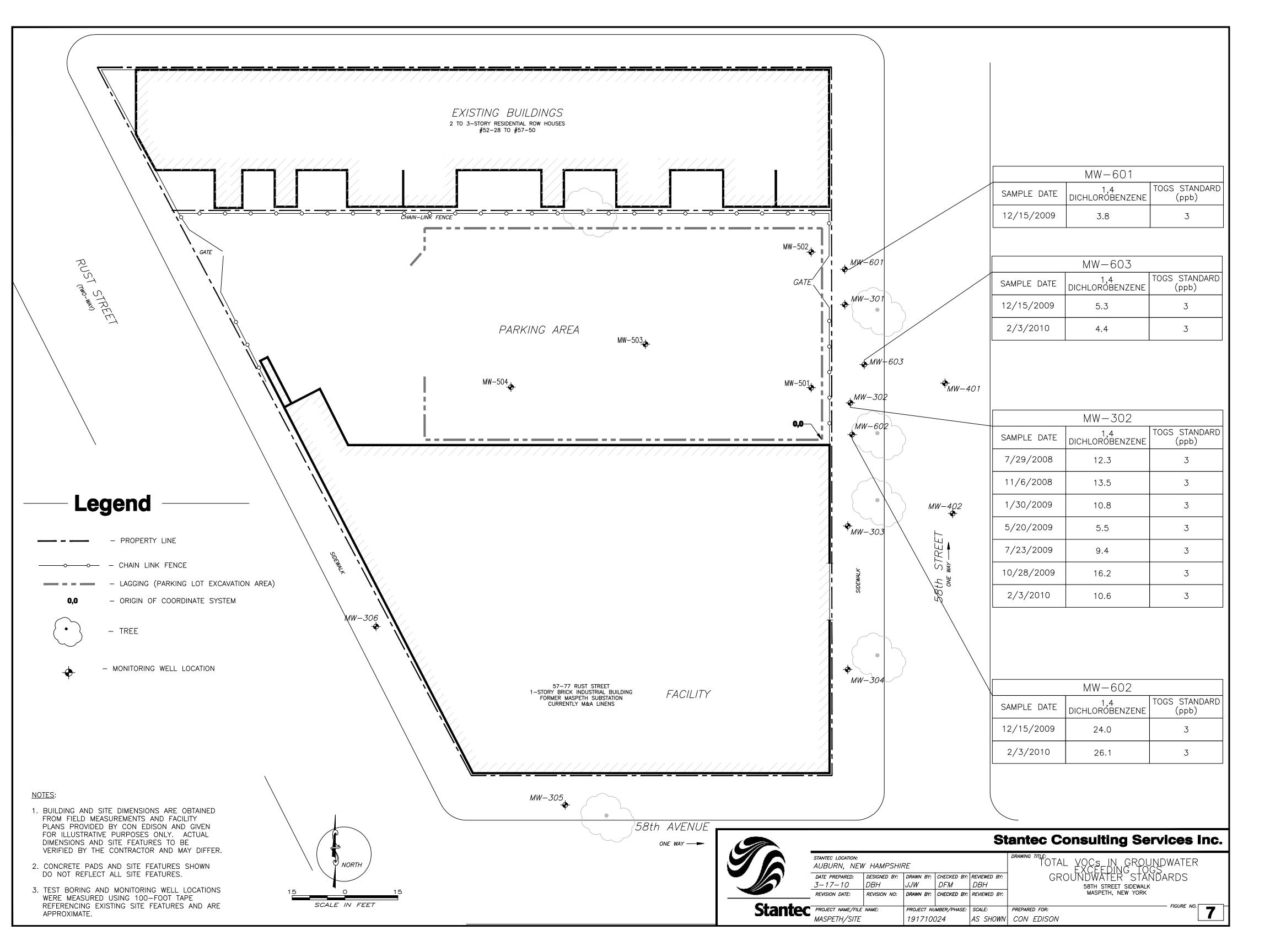

Stantec Consulting Services Inc.

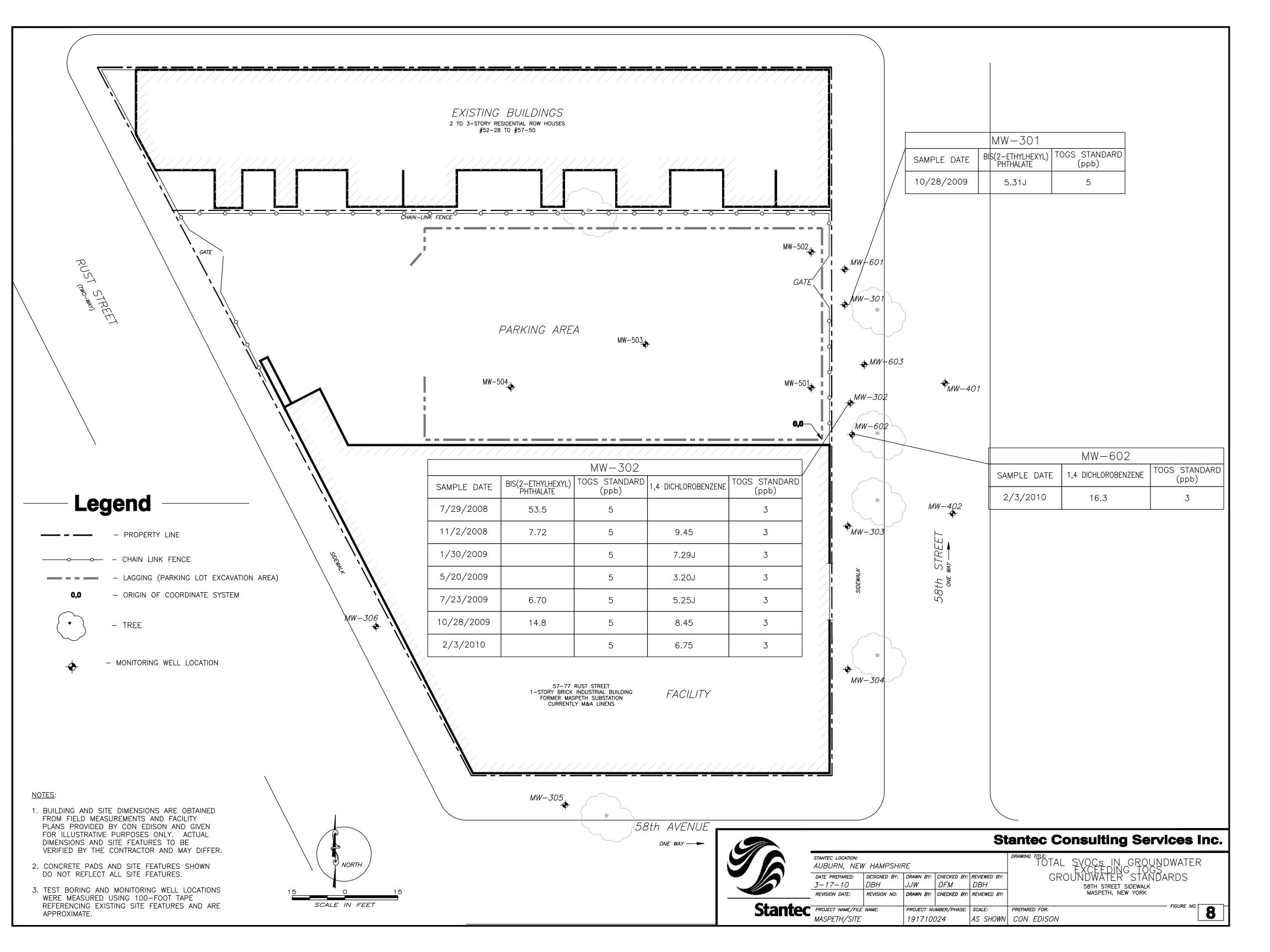

STANTEC LOCATION: AUBURN, NEW	STANTEC LOCATION: AUBURN, NEW HAMPSHIRE									
DATE PREPARED:	DESIGNED BY:	DRAWN BY:	CHECKED BY:	REVIEWED BY:						
3-17-10	DBH	JJW	DFM	DBH						
REVISION DATE:	REVISION NO:	DRAWN BY:	CHECKED BY:	REVIEWED BY:						
PROJECT NAME/FILE	NAME:	PROJECT NU	MBER/PHASE:	SCALE:						
MASPETH/SITE		1917100	124	1.24000						


SITE LOCATION PLAN


58TH STREET SIDEWALK MASPETH, NEW YORK


PREPARED FOR: 1:24000 | CON EDISON FIGURE NO.





APPENDIX A

Off-Site Investigation Work Plan and NYSDEC Approval Letter

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 2

47-40 21ST Street, Long Island City, NY 11101-5407 **Phone:** (718) 482-4995 • **FAX:** (718) 482-6358

Website: www.dec.ny.gov

June 1, 2009

Barry Cohen
Section Manager – EH & S Remediation
Consolidated Edison Company of New York, Inc.
30-01 20th Avenue, Building 138
Astoria, NY 11105

RE: Former Maspeth Substation

Off-site Investigation Work Plan For the 58th Street Sidewalk

Site ID: V00326

Dear Mr. Cohen:

The New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) have completed their review of the Off-Site Investigation Work Plan for the 58th Street Sidewalk ("work plan"), prepared by Jacques Whitford Company, Inc., dated May 2009. The work plan is hereby approved.

Con Edison and its contractors are solely responsible for safe execution of all invasive and other work performed under the work plan. Con Edison and its contractors must obtain any local, state, or federal permits or approvals that may be required to perform work under the work plan. Further, Con Edison and its contractors are solely responsible for the identification of utilities that might be affected by work under the work plan and implementation of all required, appropriate, or necessary health and safety measures during performance of work under the approved work plan. In addition, Con Edison and its contractors must implement and comply with the previously approved Community Air Monitoring Plan (CAMP) during all invasive activities.

If you have any questions, please contact me at (718) 482-4905.

Sincerely.

Bryan Wong

Environmental Engineer

Jane O'Connell - NYSDEC Albert DeMarco - NYSDOH Ed Wiederkehr - Con Edison

ec

OFF-SITE INVESTIGATION WORK PLAN 58TH STREET SIDEWALK MASPETH, QUEENS, NY

Prepared for:

Consolidated Edison Company of New York, Inc.

Long Island City, NY

Prepared by:

Jacques Whitford Company, Inc., now Stantec

Rochelle Park, NJ

Portsmouth, NH

May 2009

OFF-SITE INVESTIGATION WORK PLAN 58TH STREET SIDEWALK MASPETH, QUEENS, NY

TABLE OF CONTENTS

Section No.	Title	Page No
1.0	INTRODUCTION	1
2.0	HISTORICAL OBSERVATIONS	2
2.1 2.2 2.3	OFF-SITE GROUNDWATER OFF-SITE SOILS ON-SITE SOILS	3
2.4	On-site Groundwater	4
3.0	WORK PLAN APPROACH	5
4.0	WORK PLAN CONTENTS	6
4.1 4.2 4.3	ENVIRONMENTAL, HEALTH AND SAFETY PLAN (EHASP) COMMUNITY AIR MONITORING PLAN (CAMP)	6
5.0	SCOPE OF WORK	
5.1 5.2 5.3 5.4	COORDINATION WITH LOCAL UTILITIES AND PERMITTING	8 8
6.0	SUMMARY REPORT	
6.1	REMEDIAL ACTION WORK PLAN (RAWP)	
7.0	SCHEDULE	14

TABLE OF CONTENTS (CONT'D)

LIST OF TABLES

- 1 MW-301 and MW-302 Historic Product/Water Levels
- 2 MW-301 and MW-302 Reported Compounds in Groundwater
- 3 MW-301, MW-302, and MW-303 PCB in Soils Results
- 4 East Wall Post Excavation Confirmatory Samples

LIST OF FIGURES

- 1 Site Location Map
- 2 Proposed Moniotoring Well Locations

APPENDICES

- A Environmental, Health and Safety Plan (EHASP)
- B Community Air Monitoring Plan (CAMP)
- C Quality Assurance/Quality Control Plan (QA/QCP)

OFF-SITE INVESTIGATION WORK PLAN 58TH STREET SIDEWALK MASPETH, QUEENS, NY

1.0 INTRODUCTION

The former Maspeth Substation, located between Rust Street and 58th Street in Maspeth, Queens, New York, has been the subject of remedial investigations and remediation activities since 1996. Remediation activities on-site were completed in June 2008 and remediation activities off-site in the backyards of three row houses (57-40, 57-42, and 57-48 57th Drive) were completed in July 2008. The location of the Site is shown on Figure 1. Recent remediation activities included on-site excavation and disposal of soils impacted by polychlorinated biphenyls (PCBs) from within the former Consolidated Edison Company of New York, Inc. (Con Edison) property currently owned by M & A Linens. The Final Engineering Report (FER) for on-site remediation activities is currently being prepared for transmittal to the New York State Department of Environmental Conservation (NYSDEC) in March 2009.

During the course of the investigation and remediation of the former Con Edison property, PCB impacts (soil and groundwater) from the Site were observed beneath the 58th Street sidewalk, located immediately adjacent to and east of the Site. Off-site impacts were observed in two sampling locations, MW-301 and MW-302 (Figure 2). Both of these sampling points are located within the western sidewalk of 58th Street, immediately adjacent to the Site. Based on these observations, the NYSDEC has requested that Con Edison prepare a Work Plan to investigate and delineate the extent of these soil and groundwater impacts.

2.0 HISTORICAL OBSERVATIONS

2.1 Off-site Groundwater

Groundwater impacts were initially observed in two monitoring wells installed within the sidewalk between the former Site and 58th Street in 2000 (MW-302) and 2001 (MW-301). The two monitoring wells are shown on Figure 2. The impacts consisted of free-phase product detected on the water table during sampling and/or gauging episodes on November 2, and December 5, 2000 (MW-302) and October 9, 2001 (MW-301). On November 2, 2000, a sample of the free-phase product was collected from MW-302 and analyzed for PCBs and "fingerprinted" to determine the potential source of the material. The analytical results indicated that the product contained PCBs at 214 parts per million (ppm). The type of PCB reported was Arochlor 1260, the same arochlor as detected within the soil and groundwater beneath the former Con Edison property. The fingerprinting results identified the free-phase product as Suntrans transformer oil. On October 11, 2005, a sample of the free-phase product was collected from MW-301 and analyzed for PCBs and fingerprinting. The analytical results indicated that the product contained PCBs at 229 ppm. In addition, the type of PCB reported was Arochlor 1260. The fingerprinting results identified the free-phase product as 10C transformer oil.

On- and off-site monitoring wells were gauged on a regular basis from January 2001 through June 2004. When remedial activities began on-site, monitoring wells were gauged on a sporadic schedule. Following remediation activities, the monitoring wells have been gauged approximately monthly for a total of six events, and currently are on a quarterly gauging schedule. The off-site monitoring wells in the vicinity of the two impacted monitoring wells, MW-303, MW-401, and MW-402 did not contain free-phase product, thus minimizing the apparent extent of the free-phase product off-site. The results of the gauging events on monitoring wells MW-301 and MW-302 are tabulated in Table 1.

The water quality of the groundwater samples collected from monitoring wells located east of the former Con Edison property has been analyzed on four occasions, April 2001, July 2008, November 2008, and January 2009. Table 2 contains the compounds detected in the groundwater collected from MW-301 and MW-302 during the four groundwater sampling events.

Only two compounds have been reported over its NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standard in MW-301 during the four sampling events. PCB Arochlor 1260 was detected above its groundwater standard of 0.09 ug/l at a value of 0.85 ug/l during the April 2001 groundwater sampling event and PCB Arochlor 1254 was detected above its groundwater standard of 0.09 ug/l at a value of 0.128J ug/l during the January 2009 groundwater sampling event.

At MW-302, three compounds have been detected above their respective groundwater standards during the four groundwater sampling episodes. During the July 2008 sampling event, PCB Arochlor 1260 was reported above its groundwater standard of 0.09 ug/l at 1.99 ug/l, bis(2-Ethylhexyl)phthalate was detected above its groundwater standard of 5 ug/l at 53.5

ug/l, and 1,4 dichlorobenzene was detected above its groundwater standard of 3 ug/l at 12.3 ug/l. During the November 2008 groundwater sampling event, 1,4 dichlorobenzene was detected at 9.45 ug/l (above its groundwater standard of 3 ug/l) and bis(2-Ethylhexyl)phthalate was detected at 7.72 ug/l. During the January 2009 groundwater sampling event, 1,4 dichlorobenzene was detected at 10.8 ug/l (above its groundwater standard of 3 ug/l).

Based on the groundwater analytical data presented above, the installation and groundwater sampling of additional monitoring wells beneath the 58th Street sidewalk is recommended. The following text outlined in this Work Plan is intended to address the extent of PCB impacts in the groundwater beneath the 58th Street sidewalk.

2.2 Off-site Soils

Soil samples were collected for chemical analyses during the installation of off-site monitoring wells MW-301 and MW-302 (Figure 2) and MW-303. The analytical results were compared to the NYSDEC Technical and Administrative Guidance Memorandum ("TAGM") #4046 Recommended Soil Cleanup Objectives (RSCO) for PCBs in surface (0 to 2 ft bgs) soils (1 ppm) and subsurface (2 ft bgs) soils (10 ppm). Soil samples collected from MW-301 and MW-302 both indicated the presence of PCBs (see Table 3), however, below the RSCOs. At MW-301, PCBs were observed at 1.35 ppm at 15 to 17 feet below ground surface (ft bgs). At MW-302, PCBs were observed at 0.414 ppm at 13 to 14 ft bgs. No PCBs were detected in any of the soil samples collected from MW-303. The highest concentration of PCBs in each of these soil borings was located in the "smear zone", where the water table (and associated floating product) fluctuates based upon hydrologic conditions.

Post-excavation confirmatory soil samples were collected during the remedial excavation of the former Con Edison property. These soil samples were collected from the eastern wall of the onsite excavation following excavation to depth. As shown in Table 4, ten soil samples were collected as end-point samples along the eastern wall during remedial excavation activities. The locations of these samples are shown on Figure 2. Initial confirmatory soil samples were collected at the boundary of the excavation (at the x-location of zero according to the excavation-specific location ID). However, at locations y equals 24 and y equals 23, the collected soil samples indicated residual soil impacts were present. These soils were located on the former Con Edison property. Figure 2 shows that the limit of excavation (the lagging) was located approximately two feet west of the property boundary. The areas behind the lagging where impacted soils had been identified were hand-excavated to the extent practicable between the lagging and the property boundary.

Additional confirmatory soil samples were collected from beneath the sidewalk. At the four locations, PCBs were detected in soil at concentrations less than ten parts per million (ppm), the off-site RSCO for soils at depth. The locations of these soil samples are shown on Figure 2. At locations (-2, 23) and (-2, 24), soil samples collected from seven feet bgs and 16 feet bgs contained PCB concentrations of 7.14 and 1.43 ppm, respectively. At location (-2, 38), PCBs were detected at 2.1 ppm at 17 feet bgs and at (-2, 40) the PCB concentration was lower than the RSCO (10 ppm) at 0.095 ppb at a depth of five feet.

Based on these analytical soil data, the nature and extent of the off-site soil impacts appear to have been delineated. However, soil samples collected at x, y locations (0, 9) and (0, 15) at depths of 13 and 17 feet document the extent of the PCB concentrations in soil to the south. Soil samples previously collected at four depth intervals at x, y location (0, 57) document the PCB concentrations in soil to the north, but not to adequate depths. Based on the analytical soil data presented above, additional soil sampling at depth beneath the 58th Street sidewalk is recommended. The following text outlined in this Work Plan is intended to address the extent of PCB observations in the soil beneath the 58th Street sidewalk.

2.3 On-site Soils

Prior to the implementation of remediation activities at the Site, the on-site soils contained various concentrations of PCBs that ranged from 1.5 to 10.2 ppm at varying depths. In addition to PCBs, other compounds were also detected in the soils. VOCs (acetone and methylene chloride) were detected at concentrations that exceeded their respective SCGs ranging from 0.297 to 140 ppm and 1.8 ppm, respectively. SVOCs including benzo (a) pyrene (0.0919 to 0.233ppm), benzo (a) anthracene (0.283 ppm), and dibenzo (a,h) anthracene (0.048 ppm) were also detected on-site prior to the implementation of remediation activities at the Site.

2.4 On-site Groundwater

Prior to the implementation of remediation activities at the Site, groundwater collected from the on-site monitoring wells contained various concentrations of PCBs that ranged from 0.38 to 1.5 ppb. A VOC (1,4 - dichlorobenzene) was detected at concentrations that exceeded its TOGS groundwater standard ranging from 12.5 to 12.7 ppb in monitoring well MW-103A. An SVOC (1,4 - dichlorobenzene) was detected at concentrations that exceeded its TOGS groundwater standard ranging from 6.6 to 6.9 ppb in monitoring well MW-103A.

With the exception to PCBs, these compounds are generally not associated with dielectric fluids associated with the Con Edison electrical operations (feeders). In addition, two EPRI Reports: "Insulating Oil Characteristics Volume 1: Characterization Results" December 1996 and "Mineral Insulating Oils Used in the Power Industry, Chemical Composition and Dissolution Characteristics," September 2000 were consulted. Based on the analytical testing performed on Con Edison and non-Con Edison oil samples, 1,4 - dichlorobenzene was not detected in the oil.

3.0 WORK PLAN APPROACH

In order to determine the extent to which these PCB observations in soil and groundwater may exist, a total of three borings will be advanced. Monitoring wells will then be installed and groundwater sampled beneath the 58th Street sidewalk as outlined below. Figure 2 shows a total of three proposed monitoring well locations within the sidewalk area in the vicinity of existing monitoring wells MW-301 and MW-302. One location is to be advanced approximately 10 feet north of monitoring well location MW-301, and one south of monitoring well location MW-302. The final monitoring well is to be located adjacent to the western curb of 58th Street in the parking lane between MW-301 and MW-302.

4.0 WORK PLAN CONTENTS

This section is presented to describe the supporting documents associated with this Work Plan. The existing supporting documents associated with the previous investigative on-site work will be used for the off-site investigation. Only minor adjustments to these documents will be made to address the specific scope of work. The supporting documents include the Environmental, Health and Safety Plan (EHASP), the Community Air Monitoring Plan (CAMP), and the Quality Assurance/Quality Control Plan (QA/QCP). Each of these documents is discussed briefly, below.

4.1 Environmental, Health and Safety Plan (EHASP)

The current EHASP was updated from the May 7, 2007 version and is attached as Appendix A. Edits made to the existing EHASP, including the following:

- The description was expanded to include the impacts detected beneath the sidewalk;
- The task list was limited to soil boring advancement activities and monitoring well installation; and
- Waste Management was revised to conform to the daily collections described in the Scope of Work, below.

4.2 Community Air Monitoring Plan (CAMP)

The CAMP, attached as Appendix B, has been updated for the monitoring of the monitoring well installation. Additional modifications included:

- The title, referencing the sidewalk and parking lane setting;
- The limited tasks;
- An update of anticipated PCB and VOC concentrations in soils; and
- Referral to the hollow stem auger drilling method.

4.3 Quality Assurance/Quality Control Plan (QA/QCP)

The current QA/QCP was updated from the October 2004 version and is attached as Appendix C. Modifications to the QA/QCP were made and including the following:

- The title, referencing the sidewalk and parking lane setting:
- A description of soil sampling within the proposed hand cleared locations;
- A description of soil sampling within the proposed monitoring well locations;
- The use of an alternative DUSR subcontractor;
- The tabulation of the limited analytical requirements; and

•	Removal of description of Field Screening of Soil with Immunoassay Test Kit.

5.0 SCOPE OF WORK

5.1 Coordination with Local Utilities and Permitting

Prior to the initiation of any subsurface work, the selected subcontractor will initiate a New York State Industrial Code Rule 753 to alert their utility companies to the upcoming work at minimum 72 hours before the start of work. These utilities will markout their respective utilities in the vicinity of the proposed sampling locations. Con Edison's Utility Clearance Protocol will be followed, which includes obtaining plates, drawings, and utility maps and reviewing them against the markouts. Previous utility clearance notifications have identified water and sewer mains along the 58th Street sidewalk and roadway. These drawings, plates and maps will be evaluated against the utility markouts to safely locate the proposed sampling locations in the field.

A request for a sidewalk and parking lane opening permit will be made by the subcontractor to the NYCDOT. This permit will allow the subcontractor to advance the monitoring well locations within the sidewalk and in the parking lane and to install monitoring wells. Upon receipt of the permit, the stipulations noted on the permit will be reviewed and any adjustment to work hours, sidewalk and/or parking lane closure, etc. will be implemented. Con Edison and NYSDEC will be notified of any special conditions relative to the work. The Federal Manual of Uniform Traffic Control Devices will be implemented during this scope of work.

5.2 Hand Clearing Monitoring Well Locations

A total of three proposed sampling locations have been selected for advancement of soil borings via hollow stem auger (H.S.A.) method in order to characterize the subsurface soils beneath the sidewalk. The proposed locations of these soil borings are shown on Figure 2. Prior to the commencement of H.S.A. advancement, the soil boring locations will be hand-cleared to five feet below grade utilizing a Vactron. The surficial concrete will be saw-cut in a 2 foot by 2 foot square and the concrete containerized in a 55-gallon drum as C&D. Following removal of the concrete, soils will be loosened with various hand tools and then vacuumed out using the Vactron. If the excavated soils are visibly impacted, give off an odor, and/or have elevated PID readings, then a soil sample will be collected for PCB analyses and the soil will be containerized in a 55-gallon steel drum for off-site transportation and disposal. The excavation would be backfilled with clean sand and either plated or covered temporarily with asphalt patch. If the soils are not impacted, the soils will be returned to the excavation and plated or covered temporarily with asphalt patch. The following day a drill rig will set up and drill right through the pre-cleared excavations. See Section 5.3 for further details on borehole advancement.

5.3 Borehole Advancement

Once the soil boring locations have been cleared to 5 ft bgs, the borehole will be advanced with a truck mounted H.S.A. drilling rig or track mounted drilling rig based on potential height clearance issues. Samples will be collected continuously from 8 feet bgs in two foot intervals using split-spoon samplers. A total of five samples will be collected per boring and composited

into the following depth intervals (8-12 ft, 12-16 ft, 16-20 ft, 20-24 ft and 24-28 ft). The soil samples will be field-classified for soil type using the Unified Soil Classification System. All five soil samples from each boring will be collected for laboratory analysis. Samples will be kept in a cooler with ice maintained at 4°C and will be shipped via courier at the end of each day to the laboratory for chemical analyses. Samples will be analyzed for PCBs via Method 8082 and TPH via Method 8100.

If free-phase product is detected at the water table at these proposed sampling locations during soil sampling activities, the observation will be documented in the field logbook.

5.4 Monitoring Well Installation/Development/Sampling

Following advancement of the soil borings to depth, three monitoring wells will be installed within the 58th Street sidewalk/parking lane area.

Monitoring Well Installation

Each monitoring well will consist of 2-inch diameter PVC riser and approximately 15 feet screen (0.020 slot) (straddling the water table) and installed to a depth of approximately 25 feet bgs. A 1 foot sump will be installed below the screened interval to collect fines that may enter the monitoring well. The annulus around the screen will be filled with Morie No. 1 sand approximately 2 feet above the screened interval. A 2 foot bentonite pellet seal will be installed above the sand pack and hydrated with water for 30 minutes. The remainder of the borehole will be filled with a cement-bentonite grout to within 1 foot of the ground surface. A flushmount box will be cemented into place over the well fitted with a locking J-plug. The cement at the surface will be sloped for water to drain away from the cover.

Well Development

Following installation, the three monitoring wells will be developed in accordance with the following procedure. The workers will wear the appropriate personal protective clothing and perform ambient air monitoring of the work areas, as dictated by the EHASP and the CAMP. The driller will prepare the area around the monitoring well by laying out clean plastic sheeting on the ground surface near the monitoring well and place equipment and materials to be used on the plastic. Depth to water and depth to the bottom of the well will be measured using an electronic oil/water interface probe prior to developing. Dedicated polyethylene tubing with a WaterraTM check valve and surge-block will be installed in each monitoring well. The bottom of the tubing will be positioned so that it is at the approximate center of the water column or screened interval. A sufficient length of tubing will remain above ground to allow connection to a peristaltic or bladder pump.

The Waterra oscillating pump will be used to remove water and sediments from the monitoring well as well as the surrounding formation directly outside the screened interval. Periodically, a peristaltic pump or bladder pump will be attached to the dedicated polyethylene tubing to pump the monitoring well at periodic rates of one to two liters per minute to clear the well. All discharge water will be placed in fifty-five-gallon bung-topped NYSDOT-approved steel drums

for appropriate off-site disposal by Con Edison. This process will be repeated several times to maximize sediment removal from each monitoring well.

After several surge and pump sequences, the monitoring well will then be purged using low-flow development/sampling techniques, such as via a bladder pump or a peristaltic pump through a closed flow-through cell (for field parameter monitoring). During this stage of development, a low-flow pumping rate of 200 to 500 ml/minute will be utilized initially to further develop the monitoring well and to determine the appropriate flow rate that will result in a stabilized water level (i.e. at rate which creates a drawdown of 0.3 feet or less).

Throughout the low-flow development process, pH, Eh (redox potential), specific conductivity, temperature, dissolved oxygen, and turbidity parameters will be recorded every five minutes. Well development will continue until the aforementioned field parameters have stabilized for three consecutive readings or a maximum of four (4) hours for each monitoring well. The stabilization criteria are as follows:

- +/- 0.1 for pH
- +/- 3% for specific conductivity
- +/- 10% for Eh (redox potential)
- +/- 10% for dissolved oxygen and turbidity

The NYSDOT drums will not be filled more than 50% and, upon completion of development, will be labeled as "solid waste and purge water pending analysis" and temporarily stored off-site prior to disposal.

Groundwater Gauging

The three new monitoring wells will be gauged on a quarterly basis. The first gauging event for the new monitoring wells will begin in approximately May 2009 pending NYSDEC approval of this Work Plan. Prior to each event, oil absorbent pads will be placed around the monitoring wells to soak up any potential product spills during gauging. For the initial event, the depth to product and to the water table will be measured with an electronic oil/water interface probe. The oil/water interface probe shall be decontaminated using Simple Green® or equivalent between each monitoring well. If a measurable thickness of product is observed in a monitoring well, the product in the well will be removed via bailing with a polyethylene disposable bailer. Bailing will be performed at a relatively slow rate to facilitate additional product to enter the monitoring well. Product removed from each monitoring well will be collected in 5-gallon buckets and subsequently transferred to a NYSDOT-approved 55-gallon bung-topped drum for appropriate disposal by Con Edison. Oil absorbent wicks (such as Soakease® wicks) will then be placed into the well(s) that have shown measurable product and/or sheen.

At the start of subsequent gauging events, the absorbent wicks if present will be removed, placed directly into a 5-gallon bucket, and then transferred into a NYSDOT-approved 55-gallon open-topped drum. Each monitoring well will be allowed to stabilize for approximately 30

minutes. The monitoring wells will be gauged for depth to product and depth to water with the oil/water interface probe. New oil absorbent wicks will then be placed in the monitoring well and the well cap secured until the next quarterly gauging event.

All waste will be placed into drums and properly labeled. All solid waste (absorbent wicks, gloves, pads, etc.) will be contained in DOT-approved 55-gallon open-topped drum. All fluids will be contained in a DOT-approved 55-gallon bung-topped drum. The drums will be labeled as "solid waste and purge water pending analysis" and temporarily stored off-site in an area designated by Con Edison.

Groundwater Sampling

Following water level measurements, each of the three new monitoring wells will be purged and sampled using the low-flow method as described below. Initial samples will be collected approximately two weeks after completion of well development on the three new monitoring wells and then on a quarterly basis.

Appropriate personal protective clothing will be worn by Field Technician and ambient air monitoring will be performed in the work areas with a PID, as dictated by the EHASP. The Technician will prepare each sampling location by laying out clean plastic sheeting on the ground surface near the monitoring well and place equipment and materials to be used on the plastic. Prior to groundwater sampling, a decontaminated electronic oil/water interface probe will be used to gauge depth to product (if any) and depth to groundwater in each monitoring well. The measurements and observations will be recorded in the field logbook.

To purge and sample the monitoring wells, the Technician will position the bottom of dedicated polyethylene tubing, so that the bottom of the tubing is at the approximate center of the water column or screened interval. Sufficient length of tubing should remain above ground to allow connection to a positive displacement pump (i.e. bladder pump) and a closed flow-through cell for field parameter monitoring. The Technician will then purge groundwater at a rate of 200 to 500 ml/minute from the monitoring well. If the well is pumped dry, then time will be allowed for the monitoring well to recover to collect a groundwater sample.

During well purging, pH, Eh conductivity, temperature, dissolved oxygen, and turbidity will be measured every five minutes and recorded. These stabilization parameters will be measured every five minutes until these parameters have stabilized as described below. Every effort will be made to lower the turbidity to < 50 NTU before sampling. If the turbidity cannot be reduced below 50 NTU's, samples may be collected if other parameters are stable. Measurements will be recorded in the field logbook.

Parameter stabilization is considered to be achieved when three consecutive readings collected at each well volume, are within the following limits:

+/- 0.1 for pH

+/- 3% for specific conductivity

- +/- 10% for Eh (redox potential)
- +/- 10% for dissolved oxygen and turbidity

During well purging, the Technician will record pump tubing intake depth, water level, water level drawdown, and flow rate in the field logbook. The key field parameter for samples to be analyzed for VOCs is dissolved oxygen. The key field parameter for all other analytes is turbidity.

Well purging will continue in this manner until the aforementioned field parameters have stabilized for three consecutive readings or a maximum of four (4) hours for each well. If one or more of the key field parameters fails to stabilize after four hours, the monitoring well will be secured and purging (as described above) and sampling will be conducted the next day, as described in the USEPA's Groundwater Sampling Procedure for Low Stress (Low Flow) Purging and Sampling, and as preferred by NYSDEC.

After purging has been completed, and/or stabilization has been achieved, and/or the monitoring well has been allowed to recover, a groundwater sample will be collected through the dedicated tubing at a flow rate of approximately 100-250 ml/minute. Groundwater quality samples will be collected and submitted to an independent, certified, and approved laboratory for analysis of PCBs, and VOCs.

After completion of the sampling process at each monitoring well, the bladder pump will be disconnected from the polyethylene sampling tubing. The purge water collected in 5-gallon buckets during the purging process will be transferred to a NYSDOT-approved bung-topped 55-gallon drum. Drums will not be filled more than half way and properly labeled. The drums will be labeled as "purge water - pending analysis" and temporarily stored off-site in an area designated by Con Edison. The probe shall be decontaminated using Simple Green® or equivalent.

6.0 SUMMARY REPORT

Upon completion of analyses of the soil and/or groundwater, the data will be tabulated and evaluated against the TAGM 4046 RSCO and the TOGS groundwater standards. A Summary Report will be prepared detailing the results of the soil and groundwater sampling program. The areal and vertical extent of impacted soils will be delineated on a figure. The groundwater PCB concentrations in the monitoring wells will be shown on a figure and recommendations will be made regarding any further investigation activities.

6.1 Remedial Action Work Plan (RAWP)

If the proposed sampling program outlined herein delineates the soil and groundwater impacts at the off-site location, then a Remedial Action Work Plan will be prepared following evaluation of several remedial alternatives.

The goal of the remedy selection process is to remediate the Site to a level that is protective of public health and the environment under the conditions of the Site's Contemplated Use. Remediation activities must be protective of public health and the environment under the conditions of the Contemplated Use of the Site. Options include:

- Unrestricted To qualify for the unrestricted use category, Site conditions after remediation
 must be such that no engineering controls, use restrictions, or any other institutional controls
 are needed to make the Site protective of public health and the environment under any use.
 This also applies to sites where a no further action decision has been made after the Site
 investigation.
- Restricted Residential Residential uses such as homes, apartments, mobile home parks, dormitories, schools, and day-care facilities are allowed but require engineering and/or institutional controls for the use to be protective.
- Restricted Commercial Residential uses are not allowed in this category. Commercial uses are allowed but require engineering controls and/or institutional controls. Some types of "commercial" uses that could create "residential" types of exposures are excluded such as day-care and health care facilities.
- **Restricted Industrial** Residential and commercial uses are not allowed. Industrial uses are allowed but they require the use of engineering controls and/or institutional controls.

7.0 SCHEDULE

The following schedule is based upon approval of this Work Plan by the NYSDEC and receipt of authorization to proceed from Con Edison.

Milestone	Initiation Date
Receipt of Authorization to Proceed (A.T.P)	Based on A.T.P
Hand Clearing of Monitoring Well Locations	Week 2
Monitoring Well Drilling/Installation/Development	Week 2
Groundwater Sampling and Analyses	Week 5
Preparation of Summary Report	Week 8

TABLE 1
MW-301 and MW-302 Historic Product/Water Levels

Mell	Doto	Magazzina	Manageral	Manageral	M	0		0	C 37 1	
Well	Date	Measuring Point	Measured Depth To	Measured Depth To	Measured Product	Corrected	Corrected	Corrected	Volume	NOTES
		Elevation	Product	Water	Thickness	Product Thickness	Depth to Water	Groundwater	Water/Product	INOTES
		(ft AD ²)	(ft TOPVC)	(ft TOPVC) 1	1 1		(# TOD) (O)	Elevation (feet AD ²)	Removed	
-3327		(ILAD)	(ILTOPVC)	(ILTOPVC)	(feet)	(feet)	(ft TOPVC)	(reet AD)	(gal)	
MW-301	8-Jan-01	99.50	NM	NINA	NA	N A	N/A	21.0		NA 11 C 4 1
10100-301				NM	NA NA	NA NA	NA 15.07	NA		Well Constructed
ŀ	15-Jan-01	99.50	None Detected	15.07	NA NA	NA NA	15.07	84.43	NA	•
ļ	1-Feb-01	99.50	None Detected	13.02	NA	NA NA	13.02	86.48	NA NA	
	3-Apr-01	99.50	None Detected	12.08	NA NA	NA NA	12.08	87.42	NA NA	
	27-Sep-01 9-Oct-01	99.50 99.50	None Detected	13.19	NA NA	NA 0.07	13.19	86.31	NA NBB	
	9-Oct-01 26-Oct-01	99.50 99.50	14.90	15.02	0.12	0.07	14.91	84.59	NPR	Presence of oil called in to Mark Warrell
			15.30	15.63	0.33	0.19	15.33	84.17	NPR	Placed Soakease in well
	8-Nov-01	99.50	15.75	15.77	0.02	0.01	15.75	83.75	trace	Replaced Soakease in well
	20-Nov-01	99.50	None Detected	15.86	NA 0.32	NA 0.40	15.86	83.64		Soakease removed from MW-301
	7-Dec-01 21-Dec-01	99.50 99.50	15.79 None Detected	16.11	0.32	0.19	15.82	83.68	NPR	
		99.50 99.50	None Detected	14.87	NA 0.18	NA 0.11	14.87	84.63	NA trace	Cooksons also dia MM/ 201
	4-Jan-02		1	15.68	0.18	0.11	15.52	83.98	trace	Soakease placed in MW-301
	16-Jan-02	99.50	15.15	15.26	0.11	0.06	15.16	84.34	1	Re-placed Soakease in well with skimmer
	30-Jan-02	99.50	14.88	15.00	0.12	0.07	14.89	84.61	trace	Hand bailed
	14-Feb-02 1-Mar-02	99.50 99.50	15.27	15.42	0.15	0.09	15.29	84.21	trace	Hand bailed
	1 1	99.50	16.60	16.86	0.26	0.15	16.63	82.87	NPR	
	15-Mar-02		14.76	14.88	0.12	0.07	14.77	84.73	NPR	U an al la alla d
	27-Mar-02	99.50	12.67	12.78	0.11	0.06	12.68	86.82	trace	Hand bailed
j	12-Apr-02	99.50	14.84	15.03	0.19	0.11	14.86	84.64	trace	Hand bailed
	26-Apr-02	99.50 99.50	13.71 14.24	13.98 14.60	0.27 0.36	0.16 0.21	13.74 14.28	85.76 85.22	trace	Hand bailed
	10-May-02 24-May-02	99.50	13.47	13.71	0.36	0.21	13.50	86.00	trace NPR	Hand bailed
	7-Jun-02	99.50	13.47	13.71	0.24	0.14	12.43	87.07		Hand bailed
	21-Jun-02	99.50	14.56	14.91	0.16	0.11	14.60	84.90	trace	Hand bailed
	3-Jul-02	99.50	14.86	15.13	0.33	0.16	14.89	84.61	trace trace	Hand bailed
	18-Jul-02	99.50	15.64	15.13	0.27	0.10	15.68	83.82	trace	Hand bailed
	31-Jul-02	99.50	15.72	16.14	0.42	0.25	15.76	83.74	0.15	Hand bailed
	14-Aug-02	99.50	15.14	15.25	0.42	0.25	15.76	84.35	0.15	Hand bailed
	28-Aug-02	99.50	15.14	15.24	0.11	0.00	15.06	84.44	0.15	Hand bailed
	11-Sep-02	99.50	12.87	13.26	0.39	0.12	12.91	86.59	NPR	Tranci palied
	9/12/2002	99.50	12.87	13.26	0.39	0.23	12.91	86.59	0.25	 Hand bailed
	3-Oct-02	99.50	13.26	13.61	0.35	0.23	13.30	86.20	0.25	Hand bailed
	18-Oct-02	99.50	11.74	12.55	0.33	0.48	11.83	87.67	0.25	Hand bailed
	31-Oct-02	99.50	12.97	13.42	0.45	0.48	13.02	86.48	0.12	Hand bailed
	14-Nov-02	99.50	12.45	12.85	0.40	0.24	12.49	87.01	0.12	Hand bailed
	27-Nov-02	99.50	Oil on Probe	13.13	NA	NA	13.13	86.37	0.13	Hand bailed
	11-Dec-02	99.50	13.95	14.10	0.15	0.09	13.13	85.53	0.13	Hand bailed
	24-Dec-02	99.50	13.20	13.42	0.13	0.09	13.22	86.28	NPR	ITANU DANCU
	30-Dec-02	99.50	13.20	13.42	0.22	0.13	12.81	86.69	trace	Hand bailed
	13-Jan-03	99.50	13.22	13.40	0.23	0.14	13.24	86.26	11	Hand bailed
	27-Jan-03	99.50	13.41	13.40	0.18	0.11	13.43	86.07	ll	Hand bailed
		1	H. I		l		1		trace	
	18-Apr-03	99.50	None Detected	14.41	NA	NA	14.41	85.09	trace	Bailed trace amount
	19-May-03	99.50	13.90	13.96	0.06	0.04	13.91	85.59	trace	Bailed 8 ounces +/-
	13-Jun-03	99.50	16.43	16.70	0.27	0.16	16.46	83.04	trace	Bailed 8 ounces +/-

TABLE 1
MW-301 and MW-302 Historic Product/Water Levels

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
VVEII	Date	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	1	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC) 1	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
MW-301	20-Jun-03	99.50	14.41	14.50	0.09	0.05	14.42	85.08	trace	Bailed 8 ounces +/-
(cont)	18-Jul-03	99.50	14.86	15.15	. 0.29	0.17	14.89	84.61	0.25	Bailed 0.25 gallons
	22-Aug-03	99.50	14.17	14.53	0.36	0.21	. 14.21	85.29	trace	Bailed trace amount
	19-Sep-03	99.50	15.35	15.61	0.26	0.15	15.38	84.12	0.5	Bailed 0.5 gallon
	22-Sep-03	99.50	15.61	15.61	sheen	NA	15.61	83.89	NPR	
	21-Oct-03	99.50	16.00	16.19	0.19	0.11	16.02	83.48	trace	Bailed trace amount.
	21-Nov-03	99.50	None Detected	13.03	NA	NA	13.03	86.47	0.25	Replaced spent Soakease (TM) with new one.
	19-Dec-03	99.50	13.00	13.00	sheen	NA	13.00	86.50	0.25	Replaced spent Soakease (TM) with new one.
	9-Jan-04	99.50	14.15	14.15	sheen	NA	14.15	85.35	0.25	Replaced Soakease
	14-Jan-04	99.50	None Detected	14.25	NA	NA	14.25	85.25	NA	
	20-Feb-04	99.50	14.56	14.57	0.01	0.01	14.56	84.94	NA	Inspected/returned soakease
	19-Mar-04	99.50	None Detected	12.76	NA	NA	12.76	86.74	NA	Inspected/returned soakease
	23-Apr-04	99.50	13.75	13.75	sheen	NA	13.75	85.75	trace	bailed trace amount
	25-May-04	99.50	None Detected	14.16	NA	NA	14.16	85.34	NA	
	18-Jun-04	99.50	14.75 -	14.76	0.01	0.01	14.75	84.75	trace	bailed trace amount
	11-Oct-05									Collected oil sample for PCB and fingerprint analysis
1	1-Mar-06	99.50	16.08	16.11	0.03	0.02	16.08	83.42	NA	
	3-Aug-06	99.50	16.42	16.78	0.36	0.21	16.46	83.04	NA	
	5-Dec-07		NM	NM						Pulled socks from MW-301 and 302
	6-Dec-07	99.50	15.85	15.95	0.10	0.06	15.86	83.64	NA	·
	21-Jul-08	99.50	15.66	15.81	0.15	0.09	15.68	83.82	NA	WLs measured during development of 501 & 502
	28-Jul-08	99.50	None Detected	16.12	0.00	0.00	16.12	83.38	NA NA	
	29-Sep-08	99.50	None Detected	16.58	0.00	0.00	16.58	82.92	NA	
	5-Nov-08	99.50	None Detected	16.63	0.00	0.00	16.63	82.87	NA	
	2-Dec-08	99.50	None Detected	15.79	0.00	0.00	15.79	83.71	NA	
j	8-Jan-09	99.50	None Detected	15.05	0.00	0.00	15.05	84.45	NA	
	28-Jan-09	99.50	None Detected	15.28	0.00	0.00	15.28	84.22	NA	
MW-302	14-Sep-00	99.22	NM	l NM	NA NA	NA	NA	NA NA	NA NA	Well Constructed
	5-Dec-00	99.22	13.56	13.70	0.14	0.08	13.57	85.65	NPR	
	3-Apr-01	99.15	None Detected	8.82	NA	NA NA	8.82	90.33	NA	
	20-Jun-01	99.15	None Detected		NA	NA	9.62	89.53	NA	
	22-Aug-01	99.15	13.09	13.12	0.03	0.02	13.09	86.06	NPR	
1	4-Sep-01 27-Sep-01	99.15 99.15	13.41 10.1	13.44 10.11	0.03	0.02 0.01	13.41 10.10	85.74 89.05	NPR NPR	· ·
	9-Oct-01	99.15	None Detected		NA	NA	12.71	86.44	NA NA	
	26-Oct-01	99.15	None Detected	1	NA NA	NA NA	13.46	85.69	NA.	
	8-Nov-01	99.15	14.28	14.30	0.02	0.01	14.28	84.87	NPR	
ľ	20-Nov-01	99.15	14.03	14.04	0.01	0.01	14.03	85.12	NPR	
	7-Dec-01	99.15	14.16	14.21	0.05	0.03	14.17	84.98	NPR	
	21-Dec-01	99.15	None Detected	12.75	NA	NA NA	12.75	86.40	NA	

TABLE 1
MW-301 and MW-302 Historic Product/Water Levels

\A/-!! T	Det: I	N4 1	M	NA 1					77.7	
Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	NOTES
		Point Elevation	Depth To Product	Depth To Water	Product Thickness	Product	Depth to Water	Groundwater	Water/Product	INOTES
		(ft AD ²)	(ft TOPVC) 1	(ft TOPVC) 1	!	Thickness	(# TODYO)	Elevation (feet AD ²)	Removed	
					(feet)	(feet)	(ft TOPVC)	<u> </u>	(gal)	
MW-302	4-Jan-02	99.15	13.64	13.66	0.02	0.01	13.64	85.51	NPR	
(cont)	16-Jan-02	99.15	13.29	13.30	0.01	0.01	13.29	85.86	ll I	0.01 ft of product in skimmer
	30-Jan-02	99.15	13.03	13.04	0.01	0.01	13.03	86.12	lt i	0.01 ft of product in skimmer
	14-Feb-02	99.15	None Detected	13.54	NA	NA	13.54	85.61		0.01 ft of product in skimmer
	1-Mar-02	99.15	14.20	14.25	0.05	0.03	14.21	84.94	NPR	
	15-Mar-02	99.15	12.89	12.91	0.02	0.01	12.89	86.26	trace	0.2 ft product in skimmer
]	27-Mar-02	99.15	7.06	7.07	0.01	0.01	7.06	92.09	trace	0.01 ft product in skimmer
1 1	12-Apr-02	99.15	None Detected	13.04	NA NA	NA NA	13.04	86.11	NA NA	
1	26-Apr-02	99.15	None Detected	9.20	NA 0.00	NA 0.00	9.20	89.95	NA t	O Od A was dood in a bissues a
	10-May-02 24-May-02	99.15 99.15	12.44 None Detected	12.44 11.25	0.00 NA	0.00 NA	12.44 11.25	86.71 87.90	trace NA	0.01 ft product in skimmer
	7-Jun-02	99.15	5.97	5.97	0.00	0.00	5.97	93.18	ii	 Well seal damaged/replaced
	7-Jun-02 21-Jun-02	99.15	None Detected	12.41	NA	NA	12.41	86.74	NA NA	vveii seai uaitiayeu/repiaceu
	3-Jul-02	99.15	None Detected	12.41	NA NA	NA NA	12.93	86.22	NA NA	
İ	18-Jul-02	99.15	None Detected	13.93	NA NA	NA NA	13.93	85.22	NA NA	
	31-Jul-02	99.15	None Detected	13.82	NA I	NA NA	13.82	85.33	NA NA	
	14-Aug-02	99.15	None Detected	13.58	NA	NA NA	13.58	85.57	NA.	
	28-Aug-02	99.15	None Detected	13.32	NA	NA NA	13.32	85.83	NA	
	11-Sep-02	99.15	None Detected	11.26	NA NA	NA	11.26	87.89	NA	
	3-Oct-02	99.15	None Detected	11.31	NA	NA	11.31	87.84	NA	
1	18-Oct-02	99.15	None Detected	7.84	NA	NA	7.84	91.31	NA NA	•
	31-Oct-02	99.15	None Detected	10.73	NA	NA	10.73	88.42	NA -	
	14-Nov-02	99.15	None Detected	8.12	NA	NA	8.12	91.03	NA	
į.	27-Nov-02	99.15	None Detected	10.04	NA	NA	10.04	89.11	NA	
1	11-Dec-02	99.15	None Detected	12.00	NA	NA	12.00	87.15	NA	
	24-Dec-02	99.15	None Detected	10.39	NA	NA	10.39	88.76	NA	
i i	30-Dec-02	99.15	None Detected	9.51	NA	NA	9.51	89.64	NA	
	13-Jan-03	99.15	None Detected	11.14	NA	NA	11.14	88.01	NA NA	
	27-Jan-03	99.15	None Detected	12.92	NA	NA	12.92	86.23	NA NA	
	18-Apr-03	99.15	None Detected	10.43	NA	NA	10.43	88.72	NA NA	•
	19-May-03	99.15	None Detected	13.41	NA	NA	13.41	85.74	NA	
	13-Jun-03	99.15	None Detected	6.20	NA	NA	6.20	92.95	NA NA	
	20-Jun-03	99.15	None Detected	8.15	NA NA	NA	8.15	91.00	NA NA	
[]	18-Jul-03	99.15	13.28	13.29	0.01	0.01	13.28	85.87	trace	Bailed trace amount
	, ,	1	11		i .	1			li .	Danes have amount
	22-Aug-03	99.15	None Detected	12.61	NA 2.22	NA 2.22	12.61	86.54	NA	
	19-Sep-03	99.15	14.44	14.47	0.03	0.02	14.44	84.71	trace	Bailed trace amount
	22-Sep-03	99.15	13.54	13.54	sheen	NA	13.54	85.61	NPR	
	21-Oct-03	99.15	None Detected	12.41	NA	NA	12.41	86.74	NA	
	21-Nov-03	99.15	None Detected	6.96	NA	NA	6.96	92.19	NA	
	19-Dec-03	i	None Detected		NA	NA	8.31	90.84	NA NA	
	9-Jan-04	99.15	None Detected		NA NA	NA NA	11.46	87.69	NA.	
		l	ii –		1	li	1	1	ll.	
	14-Jan-04	99.15	None Detected	l	NA	NA	12.45	86.70	NA NA	
L	20-Feb-04	99.15	None Detected	12.91	NA	NA	12.91	86.24	NA	

TABLE 1
MW-301 and MW-302 Historic Product/Water Levels

Well	Date	Measuring Point	Measured Depth To	Measured Depth To	Measured Product	Corrected Product	Corrected Depth to Water	Corrected Groundwater	Volume Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness	2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Elevation	Removed	
		(ft AD ²)	(ft TOPVC) 1	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
MW-302	19-Mar-04	99.15	None Detected	9.24	NA	NA	9.24	89.91	NA	
(cont)	23-Apr-04	99.15	None Detected	11.54	NA	NA	11.54	87.61	NA	
	25-May-04	99.15	None Detected	12.02	NA	NA	12.02	87.13	NA	
	18-Jun-04	99.15	None Detected	11.30	NA	NA	11.30	87.85	NA	
	1-Mar-06	99.15	None Detected	15.46	NA	NA	15.46	83.69	NA	
	3-Aug-06	99.15	None Detected	15.88	NA	NA	15.88	83.27	NA	
	5-Dec-07		NM	NM						Pulled socks from MW-301 and 302
	6-Dec-07	99.15	None Detected	15.27	NA	NA	15.27	83.88	NA	
	28-Jul-08	99.15	None Detected	14.91	NA	NA	14.91	84.24	NA	
	29-Sep-08	99.15	None Detected	14.85	NA	NA	14.85	84.30	NA	
	5-Nov-08	99.15	None Detected	15.95	NA	NA	15.95	83.20	NA	
1	2-Dec-08	99.15	None Detected	15.17	NA	NA	15.17	83.98	NA	
	8-Jan-09	99.15	None Detected	14.52	NA	NA	14.52	84.63	NA	
	28-Jan-09	99.15	None Detected	14.49	NA	NA	14.49	84.66	NA	
	L							<u> </u>		

NA = Not Applicable

NM = Product detected but not measured, no interface probe

NPR = No Product Recovered

* = Indicates a sheen but no measurable product

Corrected Product Thickness = (Measured Product Thickness) x (Actual/measured thickness)

Actual/measured thickness = 0.59

Corrected Depth to Water = Measured Depth to Product + [(Product Thickness) * (1 - Specific Gravity)]

Specific Gravity:

Gasoline 0.72 to 0.76 60° F

Diesel 0.80

No. 2 diesel 0.78 to 0.82 60° F

Motor oil 0.84

Field Tests Indicated Specific Gravity of Product = 0.89 to 0.90

¹ Top of PVC riser pipe

² Assumed Datum: Paint spot on facilty assumed to be 100.00 feet

TABLE 2
MW-301 and MW-302 Reported Compounds in Groundwater

Sample Loca	MW-301	MW-301	MW-301	MW-301	MW-302	MW-302	MW-302	MW-302	
Sample Da	Sample Date			11/7/2008	1/30/2009	4/4/2001	7/28/2008	11/6/2008	1/30/2009
	GW Quality Stnd						·	,	
Analyte	(ppb)								:
PCBs - Arochlor 1254	0.09				0.128 J				
PCBs - Arochlor 1260	0.09	0.85					1.99		
Acenaphthylene	NS						0.189		
bis(2-Ethylhexyl)phthalate	5	1.90 B		2.66 J		1.60 JB	53.5	7.72	3.43 J
chlorobenzene	5						2.1		1.2
1,3 dichlorobenzene	3						1.2	1.41 J	1.2
1,4 dichlorobenzene	3	0.96 J		0.894 J	1.7	0.77 J	12.3	9.45	10.8
Di-n-butylphthalate	50	0.76 J				0.82 J			
Flourene	NS or 50*						0.256		
Naphthalene	10*	1.20				1.50			
1,2,4 Trimethylbenzene	5				0.8 J				
				l	<u> </u>			ļ	

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Gildance Series (TOGS) groundwater standards.

* Regulated Compounds Specifically Listed in STARS Memo # 1, Appendix B - Table 2.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Regulatory Standards

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

Table 3 MW-301, MW-302, and MW-303 PCB in Soil Results

Sample Loc	Sample Location			MW-302	MW-302	MW-303	MW-303
Sample Depth (ft b	Sample Depth (ft below ground)			13 - 14	17 - 19	13 - 15	23 - 25
Sample D	9/13/2000	9/13/2000	9/14/2000	9/14/2000	9/15/2000	9/15/2000	
	NYSDEC RSCO						
	(ppm)						
PCBs (Method 8082)	10 (Residential)	0.653	1.35	0.414	0.087	ND	ND

Notes:

PCBs = Polychlorinated bibhenyls

ppm = parts per million

ND = Not Dectected

All results reported in ppm; all samples analyzed for PCBs according to Method 8081 or 8082. Values in **Bold** denote exceedence of NYSDEC TAGM RSCO Recommended Cleanup Objective of 10 ppm for soils

Table 4
East Wall Post Excavation Confirmatory Samples

Former Maspeth Substation

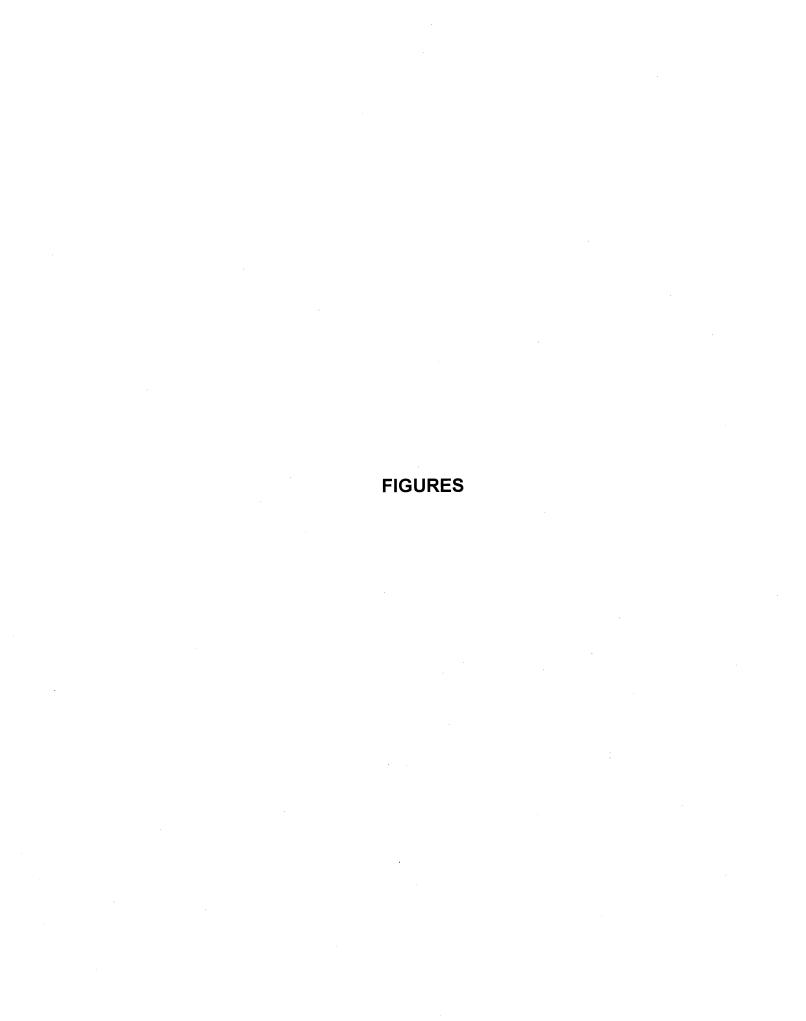
Sample Location	Sample Date	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)	Comments
EAST WALL								
MA-SW-0,9(13)	11/3/2005	13	na	PCBs, TPH	0511140	0.33	3140	PCB 1260. 10C Transformer
MA-SW-0,15(17)	11/3/2005	17	na	PCBs, TPH	0511140	0.2	1350	PCB 1260. 10C Transformer
MA-SW- ⁻ 2,24 (7)	1/12/2006	7 .	na	PCBs, TPH, VOCs, SVOCs	0601223	7.14	4600	PCB 1260. 10C Transformer
MA-SW- ⁻ 2,23 (16)	1/27/2006	16	na	PCBS	0601505	1.43	NA	PCB 1260
MA-SW- ⁻ 2,40 (5)	1/24/2006	5	na	PCBs	0601479	0.095	NA	PCB 1260
MA-SW- ⁻ 2,38 (17)	1/26/2006	17	na	PCBs, TPH	0601479	2.10	10800	PCB 1260. 10C Transformer
MA-SW-0,57 (0-2)	8/18/2005	1.5	2.1	PCBs, TPH	0508465	0.82	710	PCB 1260. 10C Transformer
MA-SW-0,57 (2-6)	8/17/2005	4	0.0	PCBs, TPH	0508465	< 0.0067	< 40.3	-
MA-SW-0,57 (6-10)	8/17/2005	9	1.3	PCBs, TPH	0508465	< 0.0069	< 42.1	-
MA-SW-0,57 (12)	11/1/2005	12	na	PCBs, TPH, VOCs, SVOCs	0511021	0.015	< 44.6	PCB 1260. 10C Transformer

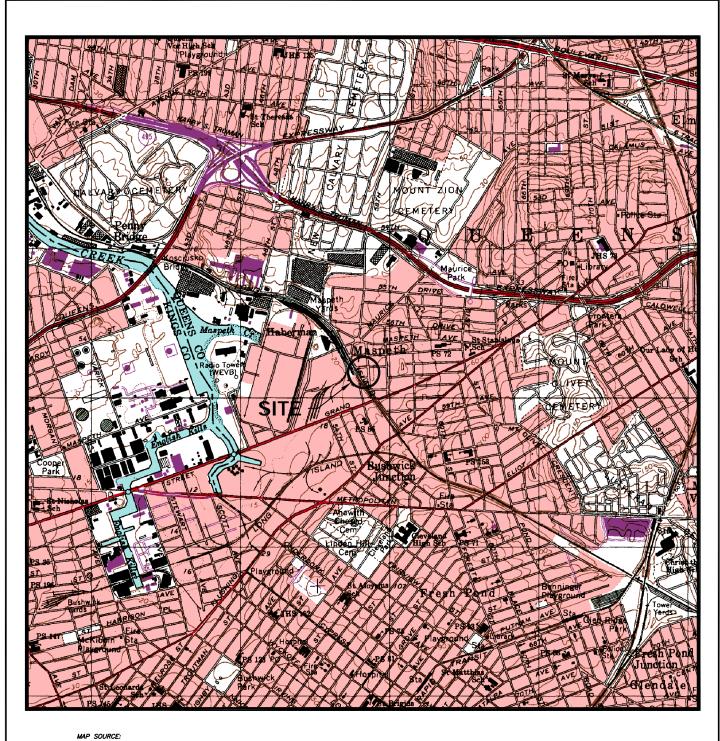
Notes:

Grab Samples collected at 25-foot intervals at the following vertical depths: 0-2 ft, 2-6 ft, 6-10 ft, 10-14 ft, 14-18 ft.

bls = below land surface

COC = Chain Of Custody
PCBs = Polychlorinated bibhenyls

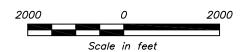

TPH = Total Petroleum Hydrocarbons


ppm = parts per million

NA = Not Analyzed

<= Less than laboratoy method detection limits</p>

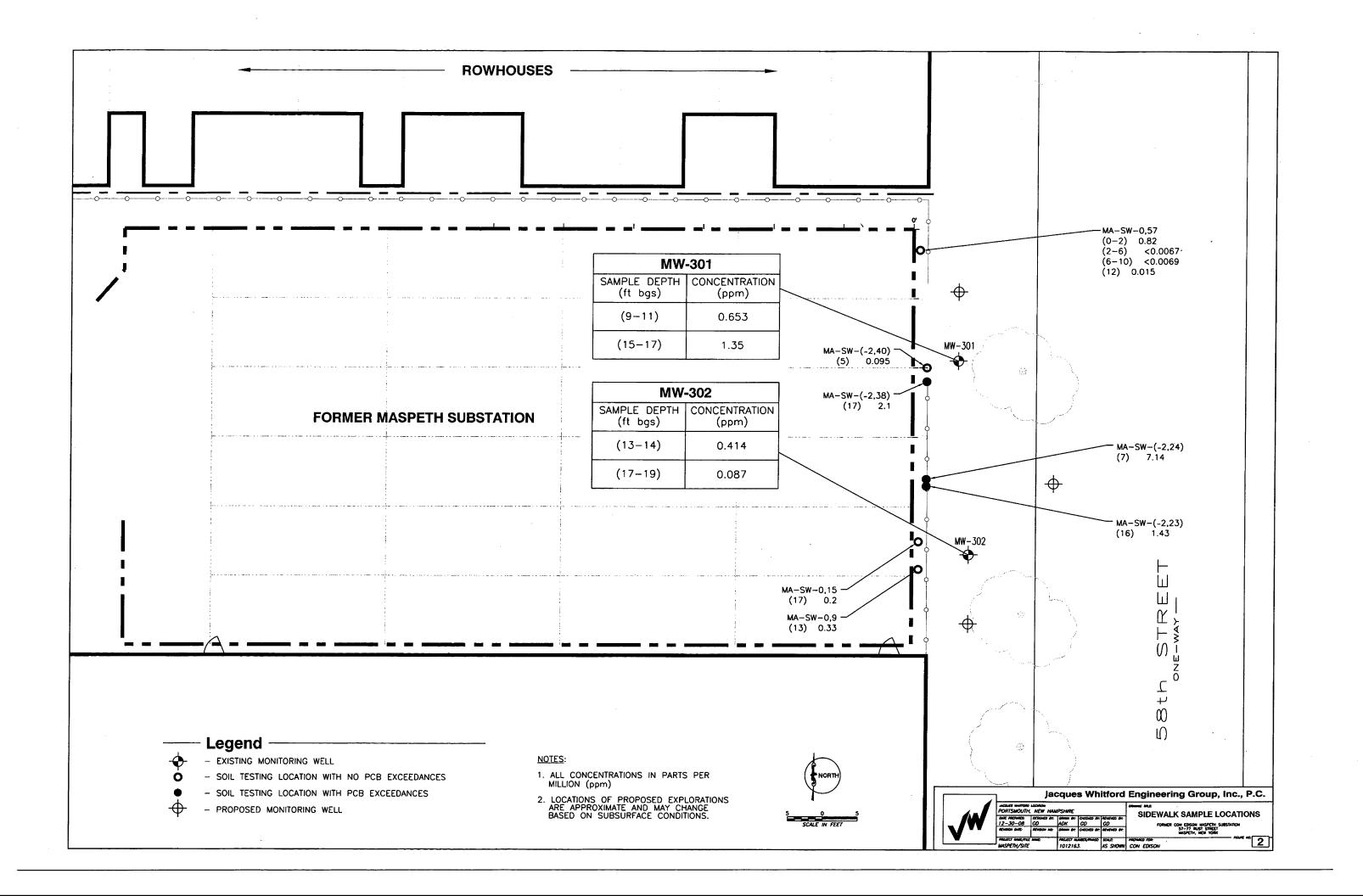
Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)



TOPOZONE.COM

USGS BROOKLYN [NY] QUAD 1995

Jacques Whitford Company, Inc.



JACQUES WHITFORD LOCATION: PORTSMOUTH, NEW HAMPSHIRE							
DATE PREPARED:	DESIGNED BY:	DRAWN BY:	CHECKED BY:	REVIEWED BY:			
7-16-04	DFM	TS	BSB	DFM			
REVISION DATE: 4-17-07	REVISION NO:	DRAWN BY: ADK	CHECKED BY:	REVIEWED BY:			
PROJECT NAME/FILE	PROJECT NU	SCALE:					
CON EDISON MA	SPETH/SITE	101216	1:24000				

DRAWING TITLE: **SITE LOCATION PLAN**

FORMER MASPETH SUBSTATION 57-77 RUST STREET MASPETH, QUEENS, NEW YORK

PREPARED FOR: CON EDISON

APPENDIX A

Environmental Health and Safety Plan (EHASP)

ENVIRONMENTAL, HEALTH AND SAFETY PLAN

JACQUES WHITFORD COMPANY, INC.

PROJECT IDENTIFICATION

Project Name: CON ED- MASPETH

Jobsite Address: 58th Street Sidewalk, Queens, New York

Jacques Whitford Project Number: 1012163.

Con Edison Order No. 615464-017

Client: Consolidated Edison Company of New York, Inc.

Date Prepared: May 29, 1998 Revised: March 18, 1999; November 1, 1999; July 31, 2000;

September 16, 200; October 1, 2003; October 14, 2004; May 2, 2007; December 7, 2008,

March 31, 2009

Anticipated Date of Work Start-Up: Fall 2004, May 7, 2007; May 2009

TABLE OF CONTENTS

Title	Page No,
Introduction	2
Personnel Training and Certifications	2
Abbreviations	2
Site Description	3
Site History	3
Project Overview	3
Waste Management, Characterization, and Disposal	4
Site Figure	5
Site Plan	6
Work Plan	7
Personnel and Responsibilities	7
Hazardous Material Summary	8
Hazards of Concern	8
Table of Chemicals and Safety Data	9
Overall Hazard Evaluation	11
Protective Clothing	
Monitoring Equipment	
Personnel Decontamination Procedures	
Equipment Decontamination	
Site Control and Communications.	
Heat/Cold Stress Monitoring and Safety Considerations	
Emergency Procedures	17
Emergency Equipment	19
Emergency Contacts	20
Hospital Route Map	
Environmental, Health & Safety Plan Approvals	22
Environmental, Health & Safety Revisions	23
Hazardous Waste Incident Report	
OSHA Training Certificates for On-site Personnel	
Selected Con Edison Health & Safety Procedures	26

ENVIRONMENTAL, HEALTH AND SAFETY PLAN JACQUES WHITFORD COMPANY, INC.

INTRODUCTION

This Environmental, Health and Safety Plan (EHASP) establishes guidelines and requirements for safety of on- and off-site personnel as well as visitors to the site during the conduct of field activities associated with the referenced project. All employees of JACQUES WHITFORD COMPANY, INC. (Jacques Whitford) involved in field activities of this project are required to abide by the provisions of this EHASP. They are required to read the EHASP and sign the attached Compliance Agreement. Subcontractors involved in field activities of this project will be advised of all risks that may be present while working on the 58th Street Sidewalk ("the Site"). Subcontractors are strongly encouraged to adopt this or a similar plan for the protection of their employees. The subcontractor has the responsibility of implementing environmental, health and safety precautions for their employees based on health hazard information provided by Jacques Whitford.

The environmental, health and safety guidelines and requirements presented herein are based on a review of available information and an evaluation of potential hazards. This EHASP outlines the environmental, health and safety procedures and equipment required for activities at this Site to minimize the potential for exposure to hazardous situations by field investigative personnel.

PERSONNEL TRAINING AND CERTIFICATIONS

All personnel (Jacques Whitford and subcontractors) involved in field activities must have taken the 40-hour hazardous waste training program and respirator fit testing as specified by the Occupational Safety and Health Administration (OSHA) regulations codified at 29 CFR 1920.120. Additionally, all yearly 8-hour updates must be completed and documented. Those personnel acting as Site supervisors shall have also completed the one-time 8-hour supervisor training program. Certifications will be provided to Con Edison if requested.

All Jacques Whitford Site workers shall be regularly monitored as part of corporate medical surveillance program. Subcontractors must show their compliance with an equivalent program. All on-site personnel must read the plan, understand it, agree to comply with all of its provisions, and acknowledge by signing the Environmental, Health and Safety Compliance Agreement attached herein.

ABBREVIATIONS

The following abbreviations will be used throughout the remainder of this EHASP:

PPL - Personal Protection Level

SCBA - Self-contained Breathing Apparatus

APR - Air Purifying Respirator
PEL - Permissible Exposure Limit
TLV - Threshold Limit Value
LEL - Lower Explosive Limit

SHSO - Site Health and Safety Officer
REZ - Radiation Exclusion Zone
MSDS - Material Safety Data Sheet
STEL - Short Term Exposure Limit

PPM - Parts Per Million

SITE DESCRIPTION

The former Maspeth Substation is located in the Borough of Queens at 57-77 Rust Street and contains one building and a fenced and gated outdoor parking lot area. The total area is approximately 0.5 acres. The parking lot area encompasses approximately 0.2 acres. The location of the former Maspeth Substation is shown on Figure 1

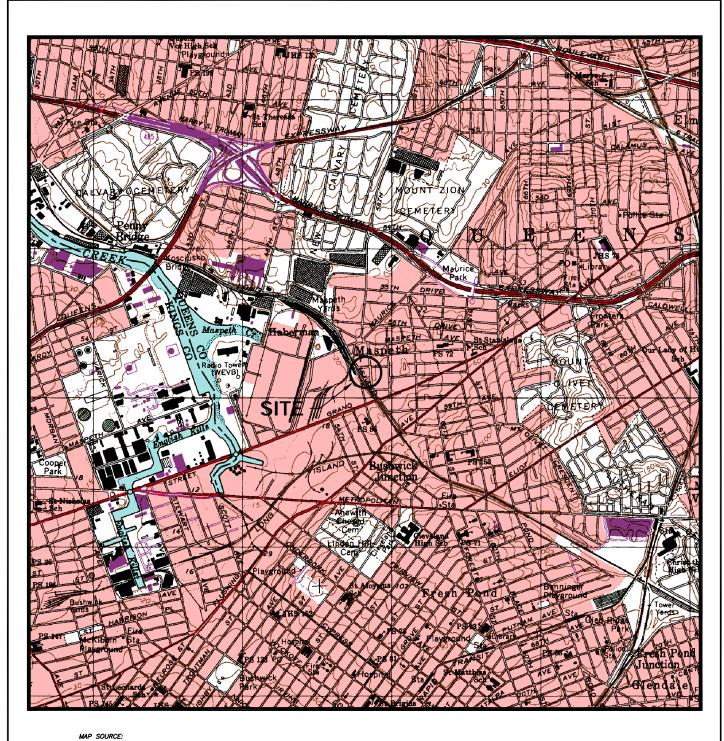
The former Maspeth Substation, located between Rust Street and 58th Street in Maspeth, Queens, New York, has been the subject of remedial investigations and remediation activities since 1996. Recent remediation activities included on-site excavation and disposal of soils impacted by polychlorinated biphenyls (PCBs) from within the former Consolidated Edison Company of New York, Inc. (Con Edison) property currently owned by M & A Linens. Remediation activities on-site were completed in June 2008. During the course of the investigation and remediation of the former Con Edison property, PCB impacts (soil and groundwater) from the former Maspeth Substation were observed beneath the 58th Street sidewalk, located immediately adjacent to and east of the former Maspeth Substation. Off-site impacts were observed in two sampling locations, MW-301 and MW-302 (Figure 2). Both of these sampling points are located within the western sidewalk of 58th Street, immediately adjacent to the former Maspeth Substation.

SITE HISTORY

The former Maspeth Substation was an active electrical substation from 1925 to 1985. In 1996, Site remediation activities were conducted by Con Edison during which PCB-contaminated soils, that contained >10 parts per million (ppm) PCBs, were excavated and disposed of accordingly. In December 1996, three monitoring wells were drilled and installed in order to obtain confirmatory groundwater samples. In the course of that investigation, PCB containing oil was found in one of the monitoring wells. In March 1999 Jacques Whitford completed subsurface investigations to assess the extent of PCB-contaminated oils at the site. Results are presented in the report Interim Report for the former Consolidated Edison of NY, Inc. Maspeth Substation, Queens, NY (Jacques Whitford, June 1999). In 2000 and 2001 Jacques Whitford completed additional subsurface investigations to evaluate the horizontal and vertical extent of PCB-contaminated oils at the site. Results are presented in the report Supplemental Remedial Investigation Report For The Former Consolidated Edison Company of NY, Inc. Maspeth Substation, Queens, NY (Jacques Whitford, May 2002). Surface and subsurface soil samples collected during these investigations were laboratory analyzed for PCBs, VOCs, SVOCs, and metals. The data indicate the soils do not contain levels of these parameters above regulatory standards. The data further suggested that a source of the free product was not evident. Additional work has been conducted by Jacques Whitford since the RIR, including a pumping test evaluation and a Qualitative Human Health Exposure Assessment, that were designed to evaluate remedial options. Finally, in February 2004, a pilot test was conducted to determine the applicability of using Pressure Pulse Technology as a cleanup option. Results of the pilot test indicated that the Site was unsuitable for this type of remediation. Based upon the analytical data and discussion with the NYSDEC, Con Edison selected an excavation/disposal approach to the on-site remediation. As part of the confirmation sampling conducted as part of that project, PCB- impacted soils were detected beneath the sidewalk east of the facility. The scope of work proposed herein is to delineate these soil impacts beneath the adjacent sidewalk.

PROJECT OVERVIEW

Task 1: Monitoring Well Installation

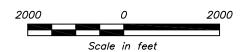

Up to 3 2-inch diameter PVC monitoring wells may be advanced within the 58th Street sidewalk following the evaluation of the soil analytical data and observations made in the field. The wells will be used for the collection of groundwater samples to determine groundwater quality and to document the presence/absence of free-phase product. Each well will be approximately 25 feet deep and the screened interval will be set such that it straddles the water table. All drilling spoils will be placed in DOT approved 55-gallon open topped drums.

Task 2: Monitoring Well Development, and Sampling

After completion of monitoring well installation, the wells will be properly developed using either positive displacement submersible or peristaltic pumps. Once developed, they will be sampled using USEPA developed low-flow sampling techniques. All sampling equipment will be decontaminated appropriately. All decontamination, development, and purging fluids will be placed in DOT approved 55-gallon bung topped drums.

WASTE MANAGEMENT, CHARACTERIZATION, AND DISPOSAL

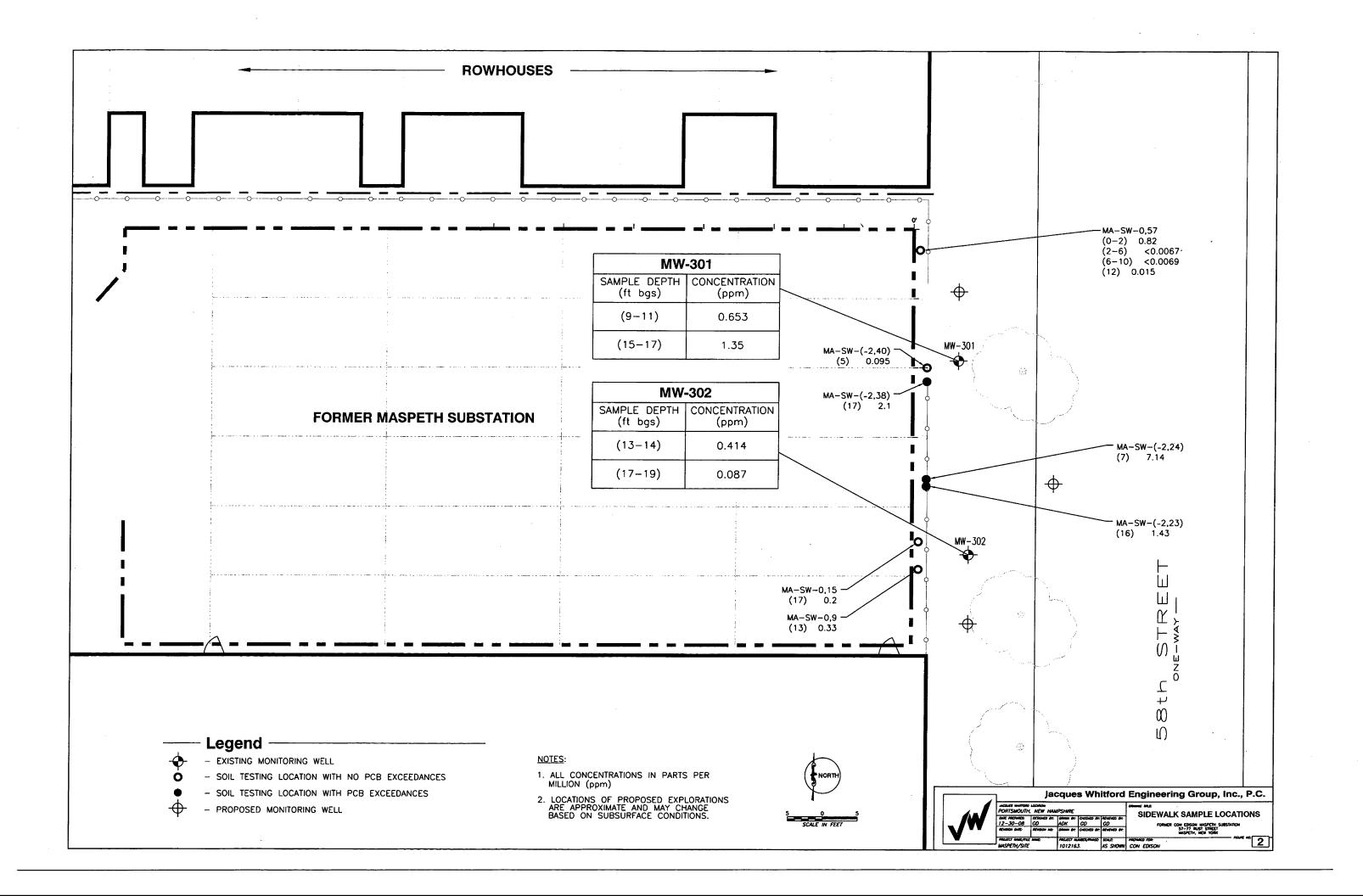
All concrete, soils, product, and water generated from the scope of work during the remedial activities will be transported under appropriate manifest to an approved licensed disposal facility on a daily basis. At the present time the disposal facility(s) has not been identified. It will be selected by Con Edison.



TOPOZONE.COM

USGS BROOKLYN [NY] QUAD 1995

Jacques Whitford Company, Inc.



JACQUES WHITFORD LOCATION: PORTSMOUTH, NEW HAMPSHIRE							
DATE PREPARED:	DESIGNED BY:	DRAWN BY:	CHECKED BY:	REVIEWED BY:			
7-16-04	DFM	TS	BSB	DFM			
REVISION DATE:	REVISION NO:	DRAWN BY:	CHECKED BY:	REVIEWED BY:			
4-17-07		ADK	DFM	DBH			
PROJECT NAME/FILE	PROJECT NU	SCALE:					
CON EDISON MA	SPETH/SITE	101216	1:24000				

DRAWING TITLE: **SITE LOCATION PLAN**

FORMER MASPETH SUBSTATION 57-77 RUST STREET MASPETH, QUEENS, NEW YORK

PREPARED FOR: CON EDISON

WORK PLAN	Prir	mary Level	For Invasive Tasks, Has Code 53 Been Called In	
1) Monitoring Well Installation,	,	(x) Invasive () Non-Invasive	() A () B () C (x) D (x) Modified	() Yes (x) No By Whom: Date: TBD If No, is property private? () Yes (x) No
2) Monitoring Well Development and Sampling		(x) Invasive () Non-Invasive	() A () B () C (x) D (x) Modified	() Yes (x) No By Whom: Date: TBD If No, is property private? () Yes (x) No

PERSONNEL AND RESPONSIBILITIES (Include Subcontractors)

<u>NAME</u>	<u>FIRM</u>	<u>RESPONSIBILITIES</u>	ON-SITE?
Craig Gendron	Jacques Whitford	Senior Engineer	Task - ()1 ()2 ()3
Gregory DelMastro	Jacques Whitford	Program Manager	Task- ()1 ()2 ()3
David B. Hill	Jacques Whitford	Admin. Project Manager	Task - ()1 ()2 ()3
Donald Moore	Jacques Whitford	Project Hydrogeologist	Task - $(x)1(x)2()3$
Bruce P. Bline	Jacques Whitford	Construction Inspector	Task - $(x)1(x)2()3$
David Chapman	Jacques Whitford	Staff Hydrogeologist	Task - $(x)1(x)2()3$

Jacques Whitford field personnel listed on this page have completed the training, medical, and respiratory program of the Jacques Whitford Health and Safety Program and OSHA Standard 29 CFR 1910.120.

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. PERSONNEL

Jeff Rutowski Construction Management Supervisor

Edward Wiederkehr Project Manager

HAZARDOUS MATERIAL SUMMARY Waste Type (check as many as applicable) (x) Liquid (x) Solid () Sludge () Gas () Unknown () Other (specify) Waste Characteristics (check as many as applicable) () Corrosive (x) Toxic () Flammable (x) Volatile () Inert () Reactive () Radioactive () Unknown () Other (specify) Chemicals **Solids** Sludges Solvents **Oils** () Acids () Flyash/Bottom Ash () Paint Pigments () Halogenated () Oily Wastes () Pickling () Asbestos () Metals Solvents (x)Other (specify) Oil from Liquors () Milling/Mine Sludges () Non-Halogenated () Caustics **Tailings** () POTW Sludge Solvents transformers () Pesticides () Ferrous Smelter () Aluminum () Other (specify) () Dyes/Inks () Non-Ferrous () Other (specify) () Cyanides Smelter () Phenols (x) Other (specify) Soils containing petroleum () Halogens (x) PCBs (x) Metals () Other (specify) Other () Laboratory () Pharmaceutical () Hospital () Radiological () Municipal () Other (specify) **HAZARDS OF CONCERN** (x) Heat Stress (see attached guidelines) (x) Noise (x) Cold Stress (see attached guidelines) () Inorganic Chemicals () Explosive/Flammable Substances (x) Organic Chemicals () Oxygen Deficient Atmosphere (x) Other (specify) () Radiological Electrical hazards associated with power distribution. All vehicles/equipment will follow Con Edison grounding procedures. () Biological

8

Chemical	PEL/REL./TLV	HEALTH HAZARDS
Petroleum hydrocarbons as gasoline	TLV = 300 ppm, 500 ppm STEL PEL = none	Irritate eyes and mucous membrane, dermatitis, headache, blurred vision, dizziness, slurred speech, liver and kidney damage, carcinogen
PCB-1242	$REL = 0.001 \text{ mg/m}^3$ $PEL = 1 \text{ mg/m}^3$ $TLV = 1 \text{ mg/m}^3$	Irritate eyes, chloracne, liver damage, reproductive effects, carcinogen
PCB-1254	$REL = 0.001 \text{ mg/m}^3$ $PEL = 0.5 \text{ mg/m}^3$ $TLV = 0.5 \text{ mg/m}^3$	Irritate eyes, chloracne, liver damage, reproductive effects, carcinogen
Arsenic	$REL = 0.002 \text{ mg/m}^3$ $PEL = 0.01 \text{ mg/m}^3$ $TLV = 0.01 \text{ mg/m}^3$	Ulceration of nasal septum, dermitits, GI disturbances, respiratory irritation, hyperpigmentation of skin, carcinogen
Cadmium	REL = Not promulgated $PEL = 0.005 \text{ mg/m}^{3}$ $TLV = 0.002 \text{ mg/m}^{3}$	Pulmonary edema, chest tightening, headache, chills, nausea, vomiting, diarrhea, mild anemia, carcinogen
Chromium	$REL = 0.05 \text{ mg/m}^3$ $PEL = 1.0 \text{ mg/m}^3$ $TLV = 0.15 \text{ mg/m}^3$	Irritates eyes, skin and lungs
Lead	$REL = 0.10 \text{ mg/m}^3$ $PEL = 0.05 \text{ mg/m}^3$ $TLV = 0.15 \text{ mg/m}^3$	Weakness, insomnia, pallor, constipation, tremors kidney disease, hypotension, irritated eyes
Mercury	$REL = 0.1 \text{ mg/m}^3$ $PEL = 0.1 \text{ mg/m}^3$ $TLV = 0.025 \text{ mg/m}^3$	Irritate eyes and skin, cough, chest pain, tremors, insomnia, irritability, indecision, headache, fatigue, stomatitis
Selenium	$REL = 0.2 \text{ mg/m}^3$ $PEL = 0.2 \text{ mg/m}^3$ $TLV = 0.2 \text{ mg/m}^3$	Irritate eyes, nose and throat, headache, chills, fever, metallic taste, garlic breath, GI disturbances, anemia, spleen damage
Silver	$REL = 0.01 \text{ mg/m}^3$ $PEL = 0.01 \text{ mg/m}^3$ $TLV = 0.1 \text{ mg/m}^3$	Blue-gray eyes, nasal irritation, throat and skin irritation, skin ulceration, GI disturbances
Benzene	REL = 0.10 ppm $PEL = 1.0 ppm$ $TLV = 10.0 ppm$	Irritates eyes, skin and nose; reepiratory effects, giddiness, headache, nausea, staggered gait, fatigue, carcinogen
Ethylbenzene	REL = 100 ppm $PEL = 100 ppm$ $TLV = 100 ppm$	Irritate eyes, skin, mucous membranes, headache, dermatitis, narcolepsy, coma

Toluene	REL = 100 ppm PEL = 200 ppm TLV = 50 ppm	Irritate eyes, nose, fatigue, weakness, confusion euphoria, dizziness, headache, dilated pupils, liver and kidney damage
Xylenes	REL = 100 ppm $PEL = 100 ppm$ $TLV = 100 ppm$	Irritate eyes, skin, nose, throat, dizziness, excitement, drowsiness, staggering gait, nausea, vomiting, dermatitis
Base Neutrals	No exposure data for these compounds	N/A

PEL = OSHA Permissible Exposure Limit REL = NIOSH Recommended Exposure Limit TLV = ACGIH Threshold Limit Value

OVERALL HAZARD EVALUATION Task 1: Monitoring Well Installation () High () Medium (x) Low () Unknown Justification: Exposure hazard justifies level A or B PPL. High -Medium -Exposure hazard justifies Level C PPL. Low -Exposure hazard justifies Level D PPL. Knowledge of existing hazards insufficient to determine proper level of protection. Use most conservative PPL (A Unknown or B) until site reconnaissance completed Task 2: Monitoring Well Development, and Sampling () High () Medium () Unknown (x) Low Justification: High -Exposure hazard justifies level A or B PPL. Medium -Exposure hazard justifies Level C PPL. Low -Exposure hazard justifies Level D PPL. Knowledge of existing hazards insufficient to determine proper level of protection. Use most conservative PPL (A Unknown or B) until site reconnaissance completed PROTECTIVE CLOTHING Task 1: Monitoring Well Installation Protection Level: () A ()B () C (x) D(x) Modified Respiratory: (x) Not needed Protect. Clothing: (x) Not needed Boots: () Not needed () SCBA, Airline: () Encapsulated Suit: (x) Boots: steel toe required () Splash Suit: () APR: () Overboots: () Cartridge: () Apron: () Escape Mask: () Tyvek Coverall () Other (specify below) () Other: () Saranex Coverall () Coverall: () Other: Head, Eye, and Ear: () Not needed Gloves: () Not needed (x) Safety Glasses () Undergloves: () Face Shield: (x) Gloves: latex surgical () Goggles: () Overgloves: PVC preferred (x) Ear Plugs: () Other: (x) Hard Hat: color cannot be blue or white () Other:

Comments:

Work anticipated in Modified Level D (no respiratory protection but dermal and hearing protection required during Task).

<u>Task 2</u>: Monitoring Well Development, and Sampling

Protection Level:	() A	() B	() C	(x) D	(x) Modified
Respiratory: (x) Not need	ed	Protect. Clothing	(x) Not needed		Boots: () Not needed
() SCBA, Airline: () APR: () Cartridge: () Escape Mask: () Other:		() Encapsulated () Splash Suit: () Apron: () Tyvek Covera () Saranex Cove () Coverall: () Other:	all		(x) Boots: <u>steel toe required</u>() Overboots:() Other (specify below)
Head, Eye, and Ear: () No	ot needed	Gloves: () Not no	eeded		
(x) Safety Glasses() Face Shield: () Goggles: (x) Ear Plugs: (x) Hard Hat: () Other:	color cannot be	() Undergloves: (x) Gloves: () Overgloves: () Other: blue or white		surgical preferred	
Comments: Work anticipated in Modi	ified Level D (no re	espiratory protectio	on but dermal pro	stection rea	uired during Task)

MONITORING EQUIPMENT: Specify by task, indicate type as necessary. Attach additional sheets as necessary.

<u>INSTRUMENT</u> <u>TASK</u> <u>ACTION LEVELS</u>

Photoionization Detector (x) 1 () 2 () 3 Parameter: Total Volatile Organics

Type: HNu/Microtip/Mini Rae

PPL

<u>Level</u> <u>At Concentration</u>

C 5.0 ppm to 50 ppm above background B 50 - 500 ppm above background

() Not needed

COMMENTS:

Action levels must be sustained for 15 minutes at the breathing zone to justify implementing specific PPL. The above action levels only apply if types of contaminants are unknown. If contaminants are known, contaminant-specific exposure data will be used to determine action levels. Background to TLV for specific compound will justify use of Level D PPL. TLV to compound-specific STEL or 3 x TLV will justify use of Level D PPL for 15 minutes only. If concentrations between TLV and STEL/3 x TLV are maintained for greater than 15 minutes, Level C will be implemented Project manager will be notified of any upgrade of PPL.

Dust Particle Monitor

TASK ACTION LEVELS

(x) 1 () 2 ()3 Parameter: Particulates

Type: MIE pDR-1000AN

PPL

Level At Concentration

D Background to $150 \mu g/m^3$ (micrograms per cubic meter) above

background (see CAMP)

C > 150 μ g/m³ above background (see CAMP)

() Not needed

COMMENTS:

Action levels must be sustained for 15 minutes at the breathing zone to justify implementing specific PPL. The above action levels only apply if types of contaminants are unknown. If contaminants are known, contaminant-specific exposure data will be used to determine action levels. Background to TLV for specific compound will justify use of Level D PPL. TLV to compound-specific STEL or 3 x TLV will justify use of Level D PPL for 15 minutes only. If concentrations between TLV and STEL or 3 x TLV are maintained for greater than 15 minutes, Level C will be implemented. Level B action levels will be determined on a project-specific basis. Project manager will be notified of any upgrade of PPL.

Detector Tubes

()1()2()3

Contaminant

TLV

STEL

Tube Type

Type: Draeger

(x) Not needed

COMMENTS:

PERSONNEL DECONTAMINATION PROCEDURES

ATTACH SITE MAP INDICATING EXCLUSION, DECONTAMINATION, AND SUPPORT ZONES (x) Not needed

Level C

- * Wash overboots and overgloves with detergent (i.e., Alconox) solution.
- * Rinse with potable water.
- * Remove tape from overboots and wrists.
- * Remove overboots, overgloves, and coverall.
- Discard all into plastic bag.
- * Remove respirator.
- * Remove undergloves and discard into plastic bag.
- * Wash face and hands with soap and water.

Modified Level D

- * Remove work gloves and disposable coveralls and place into secure drum; label and place drum in designated storage area.
- * Remove undergloves and discard into secure drum; label and place drum in designated storage area.
- * Wash face and hands with soap and water.

Respirators will be dissembled and rinsed with potable water in the field and allowed to drip dry, then inserted into a plastic bag after each use. They will be cleaned at the end of each day using alcohol wipes. Non-expendable reusable equipment (i.e., outer gloves, boots, hard-hats) will be thoroughly washed at the decontamination location. Decontamination will consist of scrubbing contaminated gloves and boots with an alconox (or equal) detergent followed by a water rinse. Equipment will either be allowed to drip dry or be wiped off with paper towels which will be collected in secure drums. The drums will be labeled and disposed of offsite on a daily basis.

() Not needed

<u>Containment and Disposal Method</u> (Personnel Protective Equipment)

Disposable protective clothing and non-reusable equipment will be collected in secure drums. The drums will be labeled and then placed in a designated storage area pending final disposal. Reusable protective equipment will be thoroughly washed at the decontamination location. Decontamination will consist of scrubbing contaminated gloves and boots with an alconox (or equal) detergent followed by a water rinse. Equipment will either be allowed to drip dry or be wiped off with paper towels which will be collected in secure drums. The drums will be labeled and disposed off-site on a daily basis.

EQUIPMENT DECONTAMINATION

Sampling Equipment

All sampling equipment will be decontaminated between each sampling station using the following procedures:

- * Wear clean surgical gloves (and outer gloves if task-required).
- * Dissemble equipment and place component parts on polyethylene sheeting.
- * Clean all component parts with warm detergent solution (i.e., alconox) using a brush to clean inside and outside surfaces.
- * Triple rinse surfaces with potable water or deionized water.
- * Allow all components to air dry.
- Reassemble equipment.

() Not needed

Containment and Disposal Method (Sampling Equipment)

Materials will be containerized (solids and water separately) and labeled with a permanent marker indicating the site, date, and medium (solid or water). Containerized materials will be disposed of daily by Con Edison.

() Not needed

Drilling Equipment

Drilling equipment will be decontaminated by steam cleaning prior to use and between separate boring locations. Steam cleaning will be conducted over a sheet plastic lined decon pit which will capture the decon fluids. The decon area will be located in an approved area of the Site before drilling commences.

() Not needed

Containment and Disposal Method (Drilling Equipment)

All fluids that are generated during decon/steam cleaning will be retained by the plastic lined containment area, and then pumped into a 55 gallon drum(s). Wastes generated at the site will be collected each day by Con Edison and properly disposed of off-site.

() Not needed

Construction Equipment

Construction equipment will be decontaminated by water pressure-rinse prior to departure from the Site. During the excavation process, water rinsate will be recovered at the decontamination pad and pumped to the on-site Fluid Treatment System. Particular care will be made to completely clean trucks and roll-offs that are transporting excavated soils from the Site. Excavation equipment will be periodically rinsed in the excavation. Final rinse will occur immediately prior to the equipment leaving the Site

(x) Not needed

Containment and Disposal Method (Construction Equipment)

All fluids that are generated during decon/water cleaning will be pumped to the on-site Fluid Treatment System, for treatment and disposal as described in the RAWP.

(x) Not needed, all fluids disposed daily

SITE CONTROL AND COMMUNICATIONS

Site workers should minimize contact of personnel and equipment with contaminated or potentially-contaminated materials. Access to the site for non-project personnel should be limited by the use of barriers such as tape, fencing, etc.

On-site personnel shall be made aware of environmental, health and safety precautions through review of this plan.

Emergency communications shall be facilitated by an on-site cell phone.

HEAT/COLD STRESS MONITORING AND SAFETY CONSIDERATIONS

The SHSO or Alternate shall monitor ambient temperature and implement the following work/rest regimes accordingly:

- * For ambient temperatures between -15^0 and 70^0 F, standard rest breaks (i.e., fifteen minutes every four hours should be used).
- * For temperatures below -15°F, work will be done at the discretion of the SHSO or Alternate.
- * For temperatures above 70°F, the following regime shall be followed for workers wearing permeable coveralls:

Adjusted Temperature (a)	Normal Work Ensemble (b)	Impermeable Ensemble
90°F or above	after 45 min. of work	after 15 min. of work
87.5^{0} F to 90^{0} F	after 60 min. of work	after 30 min. of work
82.5°F to 87.5°F	after 90 min. of work	after 60 min. of work
77.5^{0} F to 82.5^{0} F	after 120 min. of work	after 120 min. of work
77.2^{0} F to 77.5^{0} F	after 150 min. of work	after 120 min. of work

- a) Calculate the adjusted air temperature (ta adj) by using this equation: ta adj degrees $F = ta^0F + 13^0$ x sunshine). Measure air temperature (ta) with a standard mercury-in glass thermometer, with the bulb shielded from radiant heat. Estimate percent sunshine by judging what percent time the sun causes shadows. (100 percent sunshine -no cloud cover and a sharp, distinct shadow; 0 percent sunshine cloudy, no shadows).
- b) A normal work ensemble consists of cotton coveralls or other cotton clothing with long sleeves and pants.

Workers wearing semi-permeable or impermeable encapsulating protective clothing should be monitored when the temperature in the work area is above 70^{0} F. To monitor the worker, measure:

- 1. **Heart Rate** Count the radial pulse during a 30-second period as early as possible in the rest period. If the heart rate exceeds 110 beats per minute at the beginning of the rest period, shorten the next work cycle by one-third. If the heart rate exceeds 110 beats per minute at the next rest period, shorten the following work cycle by one-third. An alternate test is if the heart rate exceeds 140 beats per minute at the end of the work period, and 100 beats per minute at the end of the rest period, shorten the work cycle by one-third or lengthen the rest period by one-third.
- 2. **Oral Temperature** Use a clinical thermometer (3 minutes under the tongue or similar device to measure the oral temperature at the end of the work period (before drinking). <u>If oral temperature exceeds 99.6 F, shorten the next work cycle by one-third.</u> If oral temperature still exceeds 99.6 F at the beginning of the next rest period, shorten the following work cycle by one-third.

Do not permit a worker to wear a semi-permeable or impermeable garment when their temperature exceeds 100.6°F. Workers shall not be required to continue working if they feel any of the symptoms of heat stress. Rest periods should be a minimum of 15 minutes. Length of rest periods should be extended as appropriate or as recommended by the SHSO or Alternate.

EMERGENCY PROCEDURES

PERSONNEL EXPOSURE

General practice exposure emergency actions shall include:

Inhalation Exposure - The following actions should be taken based on the condition of the effected employee.

- If symptoms are present (dizziness, nausea, headache, shortness of breath, burning sensation in mouth, throat, or lungs), the victim should be escorted from the work zone immediately.
- If unconscious, the victim should be removed from the work zone immediately. Rescuers must be wearing proper respiratory and protective equipment before attempting the rescue.
- If the victim is no longer breathing, cardiopulmonary resuscitation (CPR) or some other form of artificial respiration should begin immediately and medical support personnel notified.

Skin Exposure - The skin should be thoroughly washed with copious amounts of soap and water. If clothing is contaminated, it should be removed immediately and the skin washed thoroughly with running water. All contaminated parts of the body, including the hair, should be thoroughly decontaminated. It may be necessary to wash repeatedly.

Ingestion - Medical support should be obtained immediately.

Eves - If a toxicant should get into the eyes, flush with generous amounts of water. Washing should be continued for at least fifteen minutes and medical attention should be obtained if deemed necessary by the SHSO or Alternate.

PERSONNEL INJURY

The following contingency plan will be enacted in the event of personnel injuries.

- 1. **Initial alarm and first aid.** Upon observation of an injury, quickly get attention of other nearby workers. Immediately act to protect the injured person from a life-threatening situation. Render appropriate first aid. Warn unsuspecting persons of the potential hazard.
- 2. Notify SHSO. Utilizing freon air horn or other rapid method, notify the SHSO or the SHSO representative of the situation. Identify the injured person, the type of injury and the project site location.
- 3. **Ambulance and hospital services.** The SHSO or other appropriate personnel will immediately assess the situation and, if necessary, notify the designated ambulance service and hospital of the emergency situation.
- 4. Follow-up. The Site Safety Officer will determine why the injury occurred and will take appropriate steps to prevent a similar recurrence. Events associated with the injury will be recorded in the project safety logbook.

FIRE/EXPLOSION

Upon notification of a fire or explosion on site, the designated emergency signal shall be sounded and all site personnel assembled at the designated access points. The Fire Department shall be alerted and all personnel moved to a safe distance from the involved area. Personnel in the immediate vicinity of a fire shall use fire extinguishers or other immediately available means if this can be done safety and the fire can be immediately controlled or stopped from spreading, but should not attempt to fight major fires or fires involving potential explosives. The Fire Department will be notified regarding site activities and should respond in case of an emergency.

EMERGENCY PROCEDURES (continued)

SPILLS

In the event of a liquid/solid spill:

- 1. First aid will be administered to injured/contaminated persons. Any person observing a spill will act immediately to safely remove and protect injured/contaminated persons from any life-threatening situation. First aid and decontamination procedures will be implemented as appropriate.
- Warn unsuspecting persons/vehicles of the hazard. All personnel will act to prevent any unsuspecting persons from 2. coming in contact with spilled materials by alerting other nearby persons and by obtaining assistance of other personnel who are familiar with spill control and clean-up techniques.
- 3. Stop the spill at the source, if possible. Without taking unnecessary risks, personnel will attempt to stop the spill at the source. This may involve activities such as uprighting a drum, closing a valve or temporarily sealing a hole with a plug. Personnel will not expend more than a brief effort prior to notifying the Project Manager.
- 4. Notify the Jacques Whitford and Con Edison Project Managers. Utilizing available mobile phone communications or other rapid communication procedures, the Con Edison Construction Management Inspector and the Project Managers will be notified of the spill, including information on material spilled, quantity, personnel injuries and immediate life-threatening hazards.
- 5. Spill assessment and primary containment. The SHSO will make a rapid assessment of the spill and direct primary containment measure. Depending upon the nature of the spill, primary containment measures may include, but are not limited to:
 - construction of a temporary containment berm utilizing on-site absorbent material;
 - digging a sump, installing a polyethylene liner and diverting the spill material into the sump;
 - placing drums under the leak to collect the spilling material before it flows over the ground;
 - transferring the material from its original container to another container.
- 6. The Project Manager will discuss with and obtain the SHSO's concurrence as to secondary spill containment procedures, if necessary. He will make a determination regarding the requirements for notifications of backup response personnel, and State and local officials including emergency response teams, and the National Response Center.
- 7. **Spill clean-up procedures.** The Project Manager will develop spill clean-up procedures taking into consideration associated hazards, quantity of spilled material, disposal methods, and costs.
- Spill clean-up. Personnel will clean up spills following the spill clean-up plan developed by the Project Manager. The 8. Project Manager will supervise the procurement of supplies necessary to clean up a spill. Such items may include, but are not limited to: front end loader, shovels, rakes, clay absorbent, polyethylene, personal safety equipment, steel drums, pumps and miscellaneous hand tools. All material and equipment will be located in the Containment Reduction Zone.
- 9. Spill clean-up inspection. The Project Manager will inspect the spill site to determine that the spill has been cleaned up satisfactorily. If necessary, soil, water or air samples may be taken and analyzed to demonstrate the effectiveness of the spill clean-up effort.
- 10. **Identify the cause of the spill and remedial action to prevent recurrence.** The Project Manager will determine the cause of the spill and determine remedial steps to ensure that recurrence is prevented.

EMERGENCY PROCEDURES (continued)

EVACUATION PROCEDURES

If at any time, the entire project site needs to be evacuated, the following procedures are to be carried out immediately:

- 1. The Project Manager or SHSO will initiate the site evacuation.
- 2. The SHSO will instruct that the evacuation signal will be given. This signal will consist of a repetitive three (3) blasts from the alarm system (air horn).
- 3. All personnel will immediately halt work and proceed off site by the shortest upwind route.
- 4. Unless otherwise directed, all site personnel will report to the field office or other staging area.

Following an emergency situation, the SHSO will fill out a Hazardous Waste Incident Report (copy attached) and submit it to the Corporate Health and Safety Officer and Project Manager for review and evaluation.

EMERGENCY EQUIPMENT

The following safety equipment is included in the standard Jacques Whitford Level D or Level C "Ready Bags". This equipment will provide appropriate protection from chemical and noise in most situations encountered. However, for a particular job, certain items which are not included in a standard ready bag may be required. The Project Manager and SHSO will be consulted on what extra or alternate equipment is needed.

<u>Level D</u>
* Hard hat with winter liner

Level C (in addition to Level D equipment)

* Full-face air-purifying respirator

- * Neoprene gloves

 * Nose-cup insert

- * Tyvek hood
- * Safety glasses and goggles
- * Disposable ear plugs
- * Disposable overboots
- * First aid kit
- * Eyewash kit
- * Fire extinguisher
- * Air horn
- * Duct tape

EMERGENCY CONTACTS

<u>CONTACTS</u>	<u>NAME</u>	PHONE NUMBER	<u>LOCATION</u>
Jacques Whitford Admin. Project Manager	David B. Hill	(603) 431-4899	Portsmouth, NH
Jacques Whitford Program Manager	Greg DelMastro	(201) 587-9040 (914) 391-9608 (cell)	Rochelle Park, NJ
Con Edison Project Manager	Edward Wiederkehr	(718) 267-3868 (917) 497-8921 (cell)	
Con Edison Construction Management	Jeff Rutowski	(646) 296-3133	
Fire Department		(718) 430-0261 or 911	
Police or Sheriff's Department	49th Precinct	(718) 918-2000 or 911	
City Poison Control Center		(212) 764-7667	
State Hazmat Emergency Agency		(800) 457-7362	
State Environmental Agency		(718) 482-4933 x 7114	
National Response Center		(800) 424-8802	Washington, DC
USEPA Environmental Response Team		(201) 321-6660	
Association of American Railroads Response Team		(202) 293-4048	
US Coast Guard Environmental Response Team		(800) 424-8802	
CHEMTREC		(800) 424-9300	

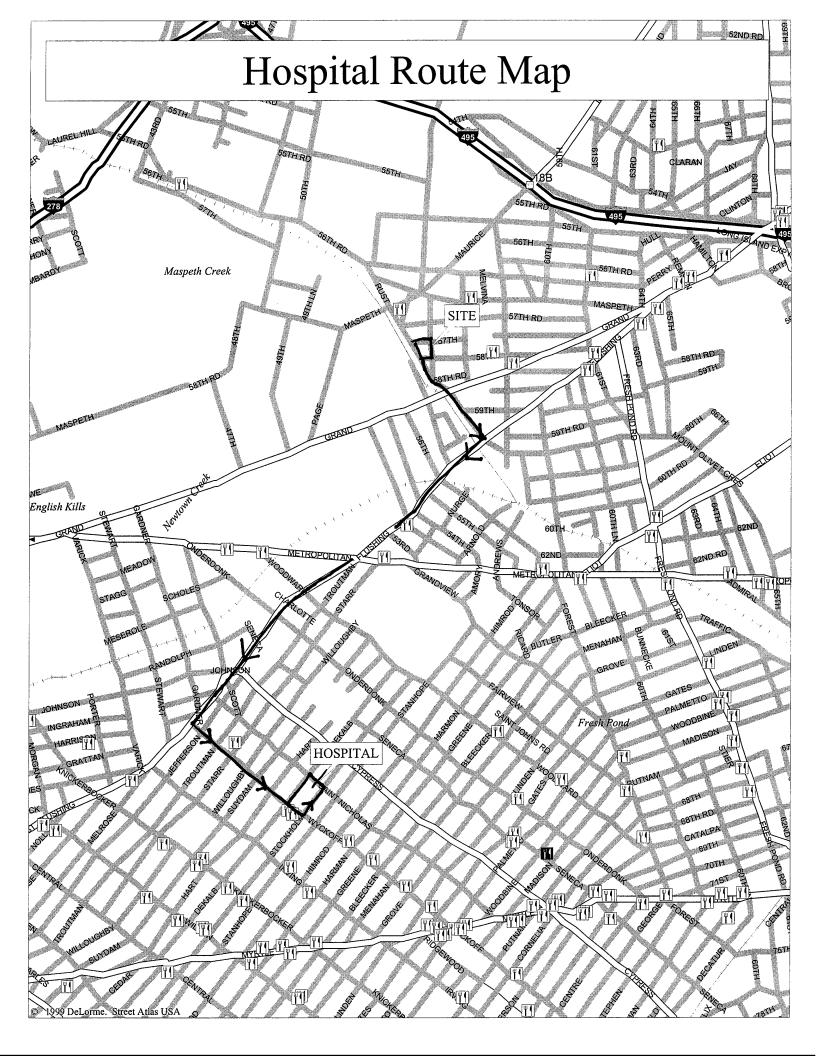
MEDICAL EMERGENCY

Hospital Name and Telephone Number: Wyckoff Heights Medical Center (718) 963-7272

Hospital Address: 374 Stockholm Street, Brooklyn, NY

Name of Contact at Hospital: Emergency Room

Telephone of 24-hour Ambulance: 911


Distance to Hospital: Approximately 0.5 miles

Route to Hospital: Go south on Rust Rd to Flushing Rd. Go west on Flushing Rd to Wyckoff

Avenue. Turn left onto Wyckoff Ave, turn left onto Stockholm Street,

hospital is on right

Map showing route to hospital attached

ENVIRONMENTAL, HEALTH AND SAFETY PLAN APPROVALS

Signature:	Date:
Jacques Whitford Corporate Health & Safety Coordinator	
Signature:	Date:
ENVIRONMENTAL, HEALTH AND SAFETY PLAN COMPLIANCE AG	
I (signatory below), have received a copy of the Environmental, Health and Substation_site. I have read the plan, understand it, and agree to comply with prohibited from working on the project for violating any of the safety requirement	all of its provisions. I understand that I could be
Signature/Firm	Date:
Signature/Firm_	Date:
Signature/Firm:	Date:

ENVIRONMENTAL, HEALTH AND SAFETY PLAN REVISIONS

Date:	
SHSO Approval:	_
Corporate Health and Safety Officer Approval:	
Revision (describe below)	
Date:	
SHSO Approval:	_
Corporate Health and Safety Officer Approval: Revision (describe below)	
Revision (describe below)	
Date:	
SHSO Approval:	_
Corporate Health and Safety Officer Approval:	
Revision (describe below)	
<u> </u>	

HAZARDOUS WASTE INCIDENT REPORT

DATE OF INCIDENT	DATE OF REPORT
DESCRIPTION OF INCIDENT, INCLUDING INJPERSONNEL INVOLVED (use additional sheets if	JURIES, PROPERTY DAMAGE AND EMERGENCY ACTION TAKEN AND f needed):
WITNESS OF INCIDENT:	
POSSIBLE OR KNOWN CAUSES:	
WHAT ACTIONS ARE NEEDED TO PREVENT	A SIMILAR INCIDENT?

OSHA TRAINING CERTIFICATES FOR ON-SITE PERSONNEL

The National Water Well Association recognizes

Bruce Bline for completion of all requirements for

Safety at Hazardous Materials Sites: A Hands-On Workshop

October 19-23, 1987

(Date of Course)

(Place of Course)

(Place of Course)

40 hours - 29CFR 1910.120(e)(2)

Stime P. Massany (Signature)

CERTIFICATE OF COMPLETION

this is to certify that

BRUCE BLINE

has successfully completed the
OSHA 10-HR CONSTRUCTION
&
HAZWOPER 8-HR REFRESHER

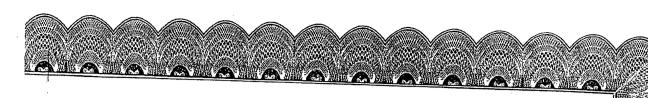
on

OCTOBER 8, 2008

Qichard & Gelitte

Regional Safety Specialist

www.jacqueswhitford.com


TRAINING SERVICES

Jason Ward

HAS BEEN CERTIFIED AS OF

July 20, 2001

701 CONCORD AVENUE CAMBRIDGE, MA 02138 TEL: (800) 786-2346 FAX: (617) 868-3132

CATE OF ACHIEVEMENT

EBI TRAINING SERVICES CAMBRIDGE, MA HAZARDOUS WASTE OPERATIONS

THIS IS TO CERTIFY THAT

Jason Ward

HAS SUCCESSFULLY COMPLETED 40 HOURS OF TRAINING IN HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE IN ACCORDANCE WITH THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS 29 CFR 1910.120 AND 1926.65

EnviroBusiness, Inc. 701 Concord Ave. Cambridge, MA 02138 800-786-2346

Julie MacDonald
Training Manager
July 20, 2001

CERTIFICATE OF COMPLETION

this is to certify that

JASON WARD

has successfully completed the

OSHA 10-HR CONSTRUCTION & HAZWOPER 8-HR REFRESHER

on

OCTOBER 8, 2008

Regional Safety Specialist

www.jacqueswhitford.com

SELECTED CON EDISON HEALTH & SAFETY PROCEDURES

9.0 - EXCAVATION AND TRENCHING

Overview |

Excavation operations are among the first actions taken at a project site. Accidental cave-ins of earth that has been excavated account for a large majority of fatalities each year. In many cases, workers receive no warnings when excavated ground collapses and are suddenly trapped under tons of soil.

Minimum Excavation Requirements

In order to perform work on any Con Edison facility or project, all contractors must, at least, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- ALL UTILITIES MUST BE MARKED-OUT BY APPROPRIATE AUTHORITIES PRIOR TO ANY EXCAVATION.
- A trench is considered an excavation.
- All underground hazards (electric lines, gas/water lines, boulders, etc.) must be deenergized or removed/supported appropriately.
- Hand digging must be conducted near known or suspected underground systems.
- Ramps or runways used as a means of entry/exit for excavations must be designed by a competent person.
- A ladder or other safe means of exit must be used in excavations greater than four feet deep and cannot be greater than 25 feet from all workers in the excavation.
- Entering an excavation during digging is prohibited.
- When the atmosphere in an excavation is/can become hazardous, Proper atmospheric testing must be conducted as required by the Confined Space Program, Section 6 in this manual.
- Daily inspections of the excavation and surrounding areas must be conducted by a competent person before work begins and as needed during the shift.
- Excavations must be shored or braced if nearby structures (buildings, sidewalks, etc.) may become unstable.
- All material, including excavated soil, must be stored at least two feet from the side of the excavation.

9.0 - EXCAVATION AND TRENCHING

- Workers may only pass over an excavation on properly constructed walkways/bridges with guardrails in place.
- Adequate physical barriers must be provided around all excavations.
- Adequate protective systems must be used in excavations unless:
 - The excavation is entirely in stable bedrock; or
 - The excavation is less than five feet deep <u>AND</u> has been examined by a competent person who has found no signs of potential cave-ins.
- All excavations greater than five feet deep must be properly sloped, shored, braced, shielded, or protected by a system designed by a professional engineer.
- If a potentially hazardous material is encountered during excavation, all work must stop until the material can be evaluated by an industrial hygienist, or equivalent.

Regulatory Citations

A complete text of the requirements for Excavations can be found in Title 29 Code of Federal Regulations, Part 1926, Subpart P.

Contacts

For additional information regarding Excavation requirements or clarification of these requirements, contact the New York regional OSHA office located at 201 Varick Street, Room 670, New York, New York 10014 (212-337-2378). The OSHA website can be found at www.OSHA.gov.

CON-ED/CONTRACTOR SAFETY/CSP 13

JANUARY 2000

13.0 - HAZARD COMMUNICATION PROGRAM

Overview

OSHA requires that the hazards associated with all chemicals used or stored at a job site be evaluated. This information must be communicated to employees who may be exposed to these chemicals or use them in their daily jobs. The process for informing employees about the chemicals, their locations, and potential hazards is called a Hazard Communication (HAZCOM) program. In general, this program includes requirements and procedures for container labeling and other forms of warning, procedures for obtaining and retaining material safety data sheets (MSDSs) and employee training.

Minimum HAZCOM Requirements

In order to work in any Con Edison facility or on any project, all contractors must, at least, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- If any hazardous material is used or stored at the job site, the contractor's <u>written</u> IIAZCOM program must be available to all contractor and Con Edison personnel for review upon request.
- The HAZCOM program must include procedures for:
 - Labeling containers and the use of warning forms;
 - Obtaining and retaining MSDSs;
 - Specific worker training requirements;
 - Documentation that these fraining requirements have been completed by each worker,
 - A list or inventory of hazardous material at the job site.
- The supervisor must inform all workers about the hazardous materials at the job site
 when they first are first assigned to a project and whenever a new hazardous material is
 brought to the site.
- Workers must be informed of the location of:
 - The HAZCOM program;
 - The list/inventory of hazardous substances;
 - The locations of MSDSs and the procedures for obtaining a copy of an MSDS;
 - These must all be available for each worker to review during their work period.
- The Con Edison representative must be informed of all chemicals brought to the site.

13.0 - HAZARD COMMUNICATION PROGRAM

- Each contractor must obtain information from the Con Edison representative regarding chemicals that Con Edison uses or stores at the site.
- When more than one contractor is working at a job site, each contractor must inform the
 other(s) concerning the location of their MSDSs and procedures for labeling and worker
 protection.
- THE PRIME CONTRACTOR IS RESPONSIBLE FOR COORDINATING THE HAZCOM PROGRAM ON THE JOB SITE.
- ALL containers will be labeled.
 - Labels on hazardous material containers will not be defaced or removed.
 - The labels will identify the substance in the container and appropriate warnings about the substance.
 - The material identity will match the material currently in the container, its MSDS, and the overall list/inventory.
- An MSDS must be available at the job site for every chemical that is present at that site.
- A documented training program will be provided to every worker at the job site. This training will include:
 - Information regarding the HAZCOM program;
 - Health and environmental hazards of every chemical used at the job site;
 - Ways to detect the presence of hazardous materials at a job site (including monitoring methods and devices used);
 - How to read and understand the information contained on an MSDS; and
 - How workers can protect themselves from harmful exposure (e.g., safe work practices, personal hygiene, and protective equipment).

Regulatory Citations

A complete text of the requirements for HAZCOM can be found in Title 29 Code of Federal Regulations, Part 1910, Section 1200, and Title 29 Code of Federal Regulations, Part 1926, Section 59.

Contacts

For additional information regarding HAZCOM requirements or clarification of these requirements, contact the New York regional OSHA office located at 201 Varick Street, Room 670, New York, New York 10014 (212-337-2378). The OSHA web site can be found at www.OSHA.gov.

14.0 - HEARING CONSERVATION

Overview

Noise is defined as unwanted sound. Noise can cause sudden traumatic temporary hearing loss, long-term slowly occurring hearing loss that is irreversible, disruption of communication, and masking of warning devices and alarms. These long-term effects may occur at noise levels lower that are constant and daily.

Minimum Hearing Conservation Requirements

In order to perform work on any Con Edison facility or project, all contractors must, at least, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- Workers must not be exposed to noise levels above those stated in the regulations.
- All noise levels must be measured on the A-weighted scale by a trained person.
- When noise exposure includes two or more periods at different noise levels, the combined noise exposure must be calculated.
- When noise levels exceed the permissible limits, worker exposure must be controlled through engineering controls, administrative controls, personal protective equipment (PPE), or a combination of these.
- Engineering controls consist of isolating, enclosing, or insulating equipment or operations or substituting quieter equipment or operations.
- Engineering controls are always preferred over other controls.
- Administrative controls involve rotating workers to jobs having lower noise exposures and reducing the time that each worker is exposed.
- PPE, for example carplugs and earmuffs, must be rated to reduce the noise exposure to within acceptable limits.
- A noise exposure at or above 85 decibels on the A-weighted scale (dBA) averaged over an eight hour time period (with or without PPE) requires a formal written hearing conservation program.
- A hearing conservation program must include:
 - Noise monitoring;

14.0 - HEARING CONSERVATION

- Procedures for employee notification;
- Provisions to permit employees to observe monitoring;
- Initial and annual audiometric testing, and an evaluation of the audiogram by a qualified professional;
- A noise training program for all affected workers; and
- Formal record keeping.
- The following table is a guide to common noise levels:

Permissible Duration	dBA	Examples of Noise Sources	
	15	Wooded Forest	
No protection or time	25	Quict Bedroom	
exposure calculation	35	Library	
required.	65	Normal Speaking	
	75	General Office Area	
Action Level for Hearing	85	Average Machine Shop	
Conservation Program		•	
8 Hours	90	- I	
6 Hours	92		
4 Hours	9.5		
3 Hours	97		
2 Hours	100	Air Spray Operation	
1.5 Hours	102		
30 Minutes	110	Power Table Saw	
15 Minutes	115		
7.5 Minutes	120		
4 Minutes	125	Rock-n-Roll Concert	
2 Minutes	130	Aircraft Jet Engine/Ear Pain Threshold	
NOT TO EXCEED	140		

A standard rule-of-thumb for noise states that when standing face-to-face at a distance of
 1 to 2 feet, if it is necessary to raise your voice to be heard, the background noise exceeds
 85 dBA.

Regulatory Citations

A complete text of the requirements for Hearing Conservation can be found in Title 29 Code of Federal Regulations, Part 1910, Section 95 and Part 1926, Section 52.

Contacts

For additional information regarding Hearing Conservation requirements or clarification of these requirements, contact the New York regional OSHA office located at 201 Variek Street, Room 670, New York, New York 10014 (212-337-2378). The OSHA website can be found at www.OSHA.gov.

18.0 - MATERIALS HANDLING

Overview

Materials handling can be accomplished in a variety of ways, lifted and moved both manually or using a mechanical means, such as a fork truck or crane. All types of material handling operations require safety planning and practices that are clearly defined.

Minimum Materials Handling Requirements

In order to perform work in any Con Edison facility or on any project, all contractors must, at least, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- Whenever possible, objects will be lifted and moved by mechanical devices (cranes, manually operated chain hoists, fork trucks, etc.) rather than by manual effort.
- The mechanical devices will be appropriate for the lifting or moving task and will be operated only by trained and authorized personnel.
- Objects that require special handling or rigging will only be moved under the guidance of a person who has been specifically trained to move such objects.
- · Lifting devices will be inspected, certified, and labeled to confirm their weight capacities.
- All devices shall be inspected by a trained and qualified individual at least once a year and will be inspected prior to each use by the user.
- Defective equipment will be taken out of service immediately and repaired or destroyed.
- Personnel will not pass under a raised load, nor will a suspended load be left unattended.
- Personnel will not be carried on lifting equipment, unless it is specifically designed to carry passengers
- The wheels of the truck being loaded or unloaded will be chocked to prevent movement.
- The lift and swing path of a crane will be watched and maintained clear of obstructions.
- Accessible areas within the swing radius of a crane will be guarded or barricaded.
- All reciprocating, rotating, or other moving parts will be guarded at all times.
- · Accessible fire extinguishers will be available in all mechanical lifting devices.

18.0 - MATERIALS HANDLING

- · Lifting devices will never be left near the edge of excavations or unstable areas.
- Mobile lifting equipment, equipped with outriggers will be set before any work is begun.
- Operations near overhead power lines are prohibited unless the power source has been shut off and locked out/tagged out or the appropriate clearance distances are maintained.
- Cranes may only be moved when directed by a signal person.
- Wire ropes will be removed from service when any abrasion, scrubbing, peening, evidences of corrosion, kinking, crushing, bird caging, or other damage exists.
- Unsafe behavior while driving a fork truck is not permitted.
- Each fork truck will be provided with an overhead guard.
- All mobile lifting devices shall be equipped with an audible backup warning device.
- All traffic regulations shall be observed when a lifting device is in operation.
- Only authorized personnel shall refill liquefied petroleum gas (LPG) tanks on fork trucks.
- Employees involved in heavy lifting will be properly trained in lifting procedures and should be physically qualified to protect the person and the material.
- Tiered or stacked material will be stored within acceptable height limits to avoid falling. Only material that will be immediately used may be stored on scaffolds or runways.
- Personnel will be trained in the procedures used for material handling. This training will
 address the requirements of applicable regulations, for example the training of personnel
 who operate powered industrial trucks.

Regulatory Citations

A complete text of the requirements for Materials Handling can be found in Title 29 Code of Federal Regulations, Part 1910, Subpart N and Part 1926, Subparts H and O.

Contacts

For additional information regarding Materials Handling requirements or clarification of these requirements, contact the New York regional OSHA office located at 201 Variek Street, Room 670, New York, New York 10014 (212-337-2378), or visit the OSHA web site at: www.OSHA.gov.

21.0 - NOISE

Overview

Local laws and regulations require that the noise produced during construction/work activities is neither excessive nor intrusive. The contractor must identify the measures that will be taken to assure the noise limits for the area in which they are working will not be exceeded. The noise levels that are acceptable generally depend on the location where the noise is generated and the time of day. In general, most regulations require that facility and commercial operations do not produce unnecessary noise as compared to the surrounding community. For operations within a fixed facility (for example, a generating station), the noise levels measured at the facility perimeter are used to determine impacts on the community. For a discussion of worker protection from excessive noise, refer to the Hearing Conservation EH&S Work Plan Guide.

Prior to working in any Con Edison facility or on any Con Edison project, all contractors must, at a minimum, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

Minimum Noise Requirements

- Local noise ordinances should be reviewed to determine the maximum levels of noise that can be generated at the job site during specific work periods.
- Local noise ordinances should be reviewed to determine whether octave band measurements are required.
- Noise measurements should be obtained by qualified personnel using the guidance of the American National Standards Institute (ANSI) standards and the results should be compared to the applicable ordinances.
- The sampling should be performed by a qualified person who is familiar with the make and type of equipment used in the measurements and experienced in general noise data collection procedures.
- To comply with ordinances, sampling should evaluate the sound levels associated with specific types of noise, for example:

Impulse noise is short bursts of noise. Periodic noise is steady, high-level noise

21.0 - NOISE

- The contractor is responsible for ensuring that all work performed by both his crew and subcontractors complies with applicable noise ordinances.
- Equipment and vehicles need to be maintained in good operating condition, i.e. mufflers, belts and tune-ups.

Regulatory Citations

A complete text of the requirements for noise can be found in the:

- New York City Administrative Code and Charter, Title 24, Chapter 2, Subchapter 6.
- New York City Zoning Resolutions Section 42-21, Article IV.
- Rockland County Health Code, Article IX.
- Westchester County regulations which can be obtained from local townships.

Contacts

For additional information regarding noise requirements or clarification of these requirements, contact the following agencies:

- For projects within the five boroughs, contact the New York City Department of Environmental Protection (NYCDEP) office located at 59-17 Junction Boulevard, 10th Floor, Corona, NY 11368 (718-337-4375 or visit their walk-up One Stop Information and Referral Center at 96-05 Horace Harding Expressway, Corona, NY 11368. NYCEP's web site can be found at www.ci.nyc.ny.us.
- For projects located in Rockland County, contact the Rockland County Department of Health on Sanatorium Road, Pamona, NY 10970 (914-634-2500). Rockland County's web site can be found at www.co.rockland.ny.us.
- For information on standard practices for monitoring noise, contact the American National Standards Institute (ANSI) at 11 West 42nd Street, New York, NY 10036 (212-642-4900). ANSIs web site can be found at www.ansi.org.

22.0 - OIL AND DIELECTRIC FLUID

Overview.

Federal and State laws require that specific procedures are followed to properly handle oil and dielectric fluid to prevent spills. These procedures shall address storing, handling, transferring, and processing these materials. In addition, spills of oils and dielectric fluids must be managed to protect workers, clean up affected areas, and prevent further damage to unaffected areas.

Minimum Oil and Dielectric Fluid Requirements

Prior to working in any Con Edison facility or on any Con Edison project, all contractors must, at a minimum, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- Di-electric fluids are assumed to contain between 50 and 499 ppm PCBs, unless analytical sampling indicated differently. The Contractor Guide for PCBs shall be used.
- Barge operations of 400,000 gals of fluid (a major oil storage facility (MOSF)) requires:
 - Licensed by New York State Department of Environmental Conservation (NYSDEC).
 - Written Spill Prevention Control and Countermeasure (SPCC) Plan and/or Facility
 Response Plan (FRP) for spill prevention and response.
 - Fully insured to cover the costs associated with a potential spill.
 - Prepare monthly reports of barrels transferred to NYSDEC.
- In Rockland County, temporary oil and/or dielectric fluid storage tank/containers brought on site registered as Petroleum Bulk Storage Facilities must meet the following criteria:
 - The number, type and capacity of temporary tanks/containers brought on site.
 - Describe control measures for the storage of tanks/containers onsite.
 - Store containers in a protected leak-proof, diked, roofed area to prevent damage.
 - Describe handling of rainwater and other contaminated liquids in diked areas.
 Describe inspection, reporting and cleanup program for temporary containers/tanks.
- For work in New York City, Fire Department (FDNY) permits for combustible liquid/mixture storage is required for storage of tanks/containers of petroleum on-site.
- A temporary oil and/or dielectric fluid tank larger than 660 gallons on site or more than 1,320 gallons of oil and/or dielectric fluid in several tanks, requires an SPCC Plan.
- Comprehensive spills management procedures will available.

22.0 - OIL AND DIELECTRIC FLUID

- Only trained personnel will handle oil/dielectric fluid as required by OSHA HazCom Standard (29CFR 1910.1200) and Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) and the HazCom EH&S Work Plan Guide.
- The contractor will ensure that all oil spills are reported as follows:
 - Report to Con Edison CIG on (212) 684-2030 or (800) 246-8CIG.
 - Report a spill of any size to a waterway to the federal National Response Center.
 - Non-de minimis spills must be reported to the NYS DEC.
 - Spills of 0.5 gallons (10 lbs.) of gasoline, naphtha, mineral spirits, or Stoddard solvents are reportable to the NYC Department of Environmental Protection.

Regulatory Citations

Requirements for management of oil/dielectric fluids less than 50 ppm PCBs can be found in:

- Title 29 Code of Federal Regulations (CFR) Part 1910.
- Title 33 CFR Parts 153 through 155, Title 40 CFR Parts 112 and 280.
- Title 49 CFR Part 194, Title 16 NYCRR Part 258
- Title 6 New York Code of Rules and Regulations (NYCRR), Parts 612 through 614.
- Title 17 NYCRR Parts 30 through 32, Title 27 NYC Administrative Code Chapter 4.
- Title 3 Rules of the City of New York (RCNY) Chapters 7, 8, 20, and 21.
- · Title 15 RCNY Chapter 11, Article 22 of the Westchester County Sanitary Code.
- Article 10 of the Sanitary Code of the County of Rockland.

Contacts

For additional information or clarification of these requirements, contact the following agencies:

- For projects within the five boroughs, contact the Region 2 NYSDEC office located at Hunters Point Plaza, 47-40 21st Street, Long Island City, NY 11101 (718-482-4900). For projects in Westchester, Rockland and Dutchess Counties, contact the NYSDEC Region 3 office at 21 South Putt Corners Road, New Paltz, NY 12561 (914-256-3000). Contact the NYCDEP at 59-17 Junction Blvd, 10st Floor, Corona, NY 11368 (718-337-4375).
- Projects located in Westchester County, contact the Westchester County Department of Environmental facilities at 207 North Avenue, New Rochelle, NY 10810 (914-637-3000).
- For projects located in Rockland County, contact the Rockland County Department of Health on Sanatorium Road, Pamona, NY 10970 (914-634-2500).
- Region II office of the Environmental Protection Agency (EPA) is located at 290 Broadway, New York, New York 10007 (212-637-3000).

23.0 - PCB MANAGEMENT

Overview

Federal and State laws require that specific procedures be followed to manage materials containing polychlorinated biphenyls (PCBs). These procedures include those for characterizing, marking, inspecting, labeling, storing, transporting, and disposing of these materials. In addition, spills of PCBs must be cleaned up in such a way as to protect workers, fully clean up affected areas, prevent further damage to unaffected areas from the spilled materials, and document that the clean up was performed properly.

Minimum PCB Requirements

Prior to working in any Con Edison facility or on any Con Edison project, all contractors must, at a minimum, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- Dielectric fluids shall be assumed to contain between 50 and 499 ppm PCBs unless written documentation or current analysis identifies exact concentration.
- The EH&S Work Plan Guide are requirements for Oil and Dielectric Fluid.
- Contractor shall identify PCB concentration of fluid contained in equipment and supplies brought on site and mark or label the equipment as required by regulation.
- · Contractor will determine concentration of PCBs in material prior to managing the waste.
- Combustible materials must be properly stored away from PCB-containing equipment.
- Cleanup of leaking PCB transformer must begin no later than 48 hours after discovery
- Wastes shall be labeled if 50 ppm or greater PCBs, or less than 50 ppm PCBs but came from a source material that contained 50 ppm or greater PCBs as follows:
 - II) as "hazardous waste", contents, location generated, concentration or if unknown. Identify the accumulation start date (the date when waste was first placed in the container, or for equipment, the date when the item was determined to be waste).
 - Place markings on the container/waste article consistent with 40 CFR 761.45.
 - If analytical results are pending, include the words "pending analysis".
- Prior to off-site transport, attach a shipping label showing site name, address, telephone number, USEPA generator ID number; manifest document number; accumulation start date; appropriate waste code for the material, and USDOT description

23.0 - PCB MANAGEMENT

- If PCB wastes must be stored on-site, the contractor must determine whether they are permitted to use the facility's PCB waste storage area (if one is present at the facility) or maintain their own temporary PCB waste storage area.
 - Wastes can be stored for no more than 30 days in a temporary storage area.
 - The storage area must be marked "hazardous waste".
 - Storage areas must be inspected and logged on a weekly basis...
 - Containers must be tightly closed during storage to prevent leaks and spills.
- All PCB spills must be reported to a Con Ed representative immediately. Cleanup is managed using approved procedures, trained personnel and appropriate disposal methods.
- When shipping PCB wastes for disposal, the contractor is responsible for completing hazardous waste manifests and land disposal restriction (LDR) forms. Prior to shipping wastes, the contractor must assure that the transporter:
 - signed the transported certification on the manifest, assigned a USEPA ID number.
 - Is carrying a copy of his/her valid current NYSDEC Part 364 transporter number.
 Is carrying a copy of the latest version of the "Emergency Response Guide".
 Has marked vehicle sides/rear with the NYS waste transporter permit number.
 Has marked the vehicle with the PCB label and Class 9 placard, if required.
- The contractor must identify the licensed disposal facility that will be used to dispose of PCB waste, including the facility's USEPA identification (ID) number and the method that will be used to dispose of each PCB waste type.

Regulatory Citations

The requirements for management of PCBs (50 ppm PCBs and greater) can be found in:

- Title 40 Code of Federal Regulations (CFR) Parts 262.31, 262.32, 262.34, and 761.
- Title 49 CFR Part 172.

Contacts

For additional information regarding PCB requirements or clarification of these requirements, contact the following agencies:

- For projects within the five boroughs, also contact the Region 2 NYSDEC office located at Hunters Point Plaza, 47-40 21st Street, Long Island City, NY 11101 (718-482-4900). For projects in Westchester, Rockland and Dutchess Counties, contact the NYSDEC Region 3 office at 21 South Putt Corners Road, New Paltz, NY 12561 (914-256-3000).
- Region II office of the USEPA is located at 290 Broadway, New York, New York 10007 (212-637-3000).

24.0 - PERSONAL PROTECTIVE EQUIPMENT

Overview

For many tasks, personal protective equipment (PPE) is as essential to the job as any tool. OSHA requires that every employer evaluate all tasks associated with a project to determine the hazards associated with these tasks and the appropriate PPE to be worn by each affected employee. This hazard assessment must be documented.

Minimum PPE Requirements

In order to perform work on any Con Edison facility or project, all contractors must, at least, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and include a process to meet these requirements.

- All employers must conduct a hazard assessment prior to the start of every project and as conditions change on the project to determine the types of PPE necessary for each task.
- The results of the hazard assessment must be communicated to every employee on the project prior to the start of work and as conditions change.
- All workers must be trained to recognize the need for and types of PPE necessary, the proper use of PPE, the limitations of PPE, and proper care and disposal of PPE.
- All workers must be trained in the procedures for inspecting PPE prior to use to ensure it provides the required protection.
- All PPE used must meet applicable American National Standards Institute (ANSI) standards.
- All PPE must be maintained in a sanitary and reliable condition.
- Where employees supply their own PPE, the employer is responsible for ensuring the adequacy, maintenance, and sanitation of this PPE.
- Hard hats must never be changed or modified in any way and must be appropriate for the type of work being performed. White hard hats are not permitted on any Con Edison site.
- Eye protection must be appropriate for the type of work being performed, and must be equipped with side shields.
- Burning goggles must be equipped with appropriate filtering lenses for the work being performed.

24.0 - PERSONAL PROTECTIVE EQUIPMENT

- Gloves must provide adequate wrist and hand protection based on the tasks being performed, and must be compatible with and resistant to any potential hazard (sharps, chemical, electrical, etc.).
- Safety shoes or boots must be fitted with protective toe guards.
- Additional PPE may be necessary for certain situations, for example overboots or rubber boots should be worn for wet conditions or chemical spiils, etc.
- Protective clothing (reusable or disposable) must be appropriate for the type of work being performed.
- Orange reflective vests, approved by the U.S. Department of Transportation, must be worn when working in areas exposed to or adjacent to vehicle traffic.
- Fall protection devices must meet the requirements defined in the Con Edison EHS Work Plan Guide for *Working at Elevation* which is in Section 33 of this manual.
- Workers required to wear hearing protection must be allowed to select the type of device they wish to wear from a number of suitable devices.
- · Flame resistant garments are required in areas where there is a potential for are or flash.

Regulatory Citations

A complete text of the requirements for Personal Protective Equipment can be found in Title 29 Code of Federal Regulations, Part 1910, Subpart I, and Part 1926, Section 28 and Subpart E.

Contacts

For additional information regarding Personal Protective Equipment requirements or clarification of these requirements, contact the New York regional OSHA office located at 201 Varick Street, Room 670, New York, New York 10014 (212-337-2378). The OSHA website can be found at www.OSHA.gov.

26.0 - RESPIRATORY PROTECTION PROGRAM

<u>Overview</u>

Respiratory protection is often necessary to allow employees to work safely in hazardous environments. When an airborne contaminant or oxygen-deficient atmosphere exceeds the regulated exposure limits, an employer must eliminate the hazard through engineering and administrative controls or use of the proper respiratory protective equipment.

Minimum Respiratory Protection Requirements

In order to perform work on any Con Edison facility or project, all contractors must, at least, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job-specific Environmental, Health and Safety Plan submitted to Con Edison and to include a procedure to meet these requirements.

- Contractor must have available a written Respiratory Protection Program (RPP).
- Perform Exposure Assessments to assess the need for respiratory protection based on limits established by OSHA, American Conference of Governmental Industrial Hygienist, National Institute of Occupational Safety and Health or Con Edison.
- Selection of the proper Air Purifying Respirators (APR) or Supplied Air Respirators (SAR) will depend on the characteristics of the workplace and the level of protection necessary. Characteristics include the concentration of airborne contaminants, immediately dangerous to life or health (IDLH) conditions, oxygen-deficient atmospheres, and the protection factor (PF) of each respirator.
- APR's will not be worn in oxygen-deficient atmospheres, IDLII conditions, when the
 contaminant exceeds the PF of the respirator, or when cartridges do not exist for a
 particular contaminant.
- Breathing air quality must meet the Compressed Gas Association's definition of "Grade D" air for all supplied air respirator use. This includes breathing air cylinders and five minute escape cylinders. Compressors shall meet applicable OSHA standards.
- In IDLH atmospheres prior to entry, a rescue plan shall be conveyed to crew members.
- The contractor will follow OSHA regulations regarding maintenance, inspection, proper use of cylinders, fittings, hoses, manifolds, etc., and recordkeeping.
- Self-Contained Breathing Apparatus (SCBA) shall be used in situations where the contaminant or concentration of a contaminant is unknown.

26.0 - RESPIRATORY PROTECTION PROGRAM

- Respirator use requires training with the properly selected respirator, medical evaluation to wear the respirator, and proper fit-testing of the respirator.
- Respirators shall be inspected, maintained, cleaned, disinfected, and stored according to the manufacturers' directions and applicable OSHA guidelines...
- Emergency equipment shall be inspected monthly and all records will be kept on file.
- The RPP administrator shall maintain results of periodic program review, and shall identify, based on the results of the review, any necessary changes which may need to be made to the respiratory program. Records shall identify the name of the person conducting the review, the date, and any observations made during the review.
- Based on the RPP outlined in this work plan guide, the program manager shall maintain the following records at all times:
 - Hazard Assessments.
 - Employee Training.
 - Fit-Testing.
 - Medical Surveillance.
 - Respirator and Fit-Test Equipment Maintenance and Repair.

Regulatory Citations

A complete text of the requirements for Respiratory Protection can be found in Title 29 Code of Federal Regulations, Part 1910, Section 134.

Contacts

For additional information regarding Confined Space requirements or clarification of these requirements, contact the New York regional OSHA office located at 201 Varick Street, Room 670, New York, New York 10014 (212-337-2378), or visit the OSHA web site at www.OSHA.gov.

29.0 - WASTE MANAGEMENT

Overview

Federal and State laws require that wastes be properly classified and managed as hazardous waste, solid waste, or universal waste. Waste classification will define the requirements for managing the materials. In general, waste management includes characterization, labeling, storage, transportation, disposal, personnel training, and reporting and recordkeeping.

Minimum Waste Management Requirements

Prior to working in any Con Edison facility or on any Con Edison project, all contractors must, at a minimum, meet the following requirements. Please note that additional requirements may be necessary based on job-specific activities. It is the responsibility of each contractor to identify these requirements in the job specific Environmental, Health and Safety Plan submitted to Con Edison, and include a process to meet these requirements.

- Contractors take title to all wastes generated if so stated in the specifications; however,
 CON EDISON RESERVES THE RIGHT TO TAKE TITLE TO ALL WASTES GENERATED BY THE
 CONTRACTOR'S ACTIVITIES AT CON EDISON FACILITIES AND WORK SITES.
- Contractor must have an active EPA waste generator identification for waste disposal.
- Contractor will comply with all applicable requirements for hazardous wastes generated, including:
 - Characterizing the waste, managing accumulated and stored waste.
 - Labeling of containers, storing the waste, inspecting the storage areas.
 - Filling out manifests and Land Disposal Restriction (LDR) forms.
 - Training of personnel concerning the proper procedures to use.
 - Ensuring that waste is disposed at a permitted facility.
 - Ensuring that reports and records are maintained.
- Contractor shall identify the procedures to classify wastes generated at the job site.
- Wastes shall be segregated when stored to prevent mixing of waste types.
- Storing of solid waste dumpsters will be properly maintained, able to store 150% of expected generation, and covered (with lids, doors, and/or tarps).
- Security measures will avoid non authorized personnel from tampening with wastes.
- · Contractor must evaluate the waste generated for recycling, instead of disposing of waste

29.0 - WASTE MANAGEMENT

- Contractor must identify the transportation/disposal firms and their permit numbers to manage and transport Con Edison waste. Only permitted treatment/disposal facilities may be used to receive solid and hazardous wastes generated from a Con Edison job site.
- Department of Transportation (DOT) requirements will be adhered to for waste packaging, shipping, and transport, including container selection and vehicle placards.
- All hazardous and solid waste transporters must have the appropriate permits and certifications prior to having waste.
- The contractor shall provide copies of all shipping papers and certificates of disposal that are obtained and prepared for wastes generated at the job site.

Regulatory Citations

A complete text of the requirements for waste management can be found in:

- Title 40 CFR, US EPA, Parts 172, 173, 260 through 262, 264, 265, and 268;
- Title 6 NYCRR, Parts 360, 364, 367, 370 through 374, and 376;
- Title 6 Rules of the City of New York (RCNY) Chapter 2; Title 16 RCNY Chapter 1;
- Westchester County, Chapter \$25 and Westchester County Local Law No. 14-1992;
- Dutchess County Local Law No. 4 of 1990

<u>Contacts</u> For additional information contact the following agencies:

- In five boroughs, contact the NYC Department of Sanitation at 125 Worth Street, NYC, NY 10013 (212-219-8090) www.ci.nyc.nyt.us and Region 2 NYSDEC at 47-40 21st Street, Long Island City, NY 11101 (718-482, 4900) "www.dec.state.nyt.us".
- Projects in Westchester, Rockland and Dutchess Counties, contact the Region 3 NYSDEC office at 21 South Putt Corners Road, New Paltz, NY 12561 (914-256 3000).
 Projects in Westchester County, contact the local municipality. Projects in Rockland County, contact the Rockland County Department of Health on Sanatorium Road, Pamona, NY 10970 (914-634 2500) "www.co.rockland.ny.us". Projects in Dutchess County, contact the Dutchess County Health Department, Division of Environmental Health Services in Poughkeepsie, NY (260) (934-486-3404) "www.dutchessny.gov".

APPENDIX B

Community Air Monitoring Plan (CAMP)

COMMUNITY AIR MONITORING PLAN

FOR THE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. 58th STREET SIDEWALK INVESTIGATION MASPETH, NEW YORK

Prepared for:
Consolidated Edison Company of New York, Inc.
Long Island City, New York

Prepared by:
Jacques Whitford Company, Inc.
Portsmouth, New Hampshire
Elmsford, New York

April 2009

COMMUNITY AIR MONITORING PLAN

FOR THE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. 58TH STREET SIDEWALK INVESTIGATION MASPETH, NEW YORK

TABLE OF CONTENTS

Section No.	<u>. Title</u>	<u>Page No.</u>
1.0 PURPO	DSE	1
2.0 MONIT	ORING PLAN	2
2.1	Continuous VOC Monitoring	2
	Continuous Dust Monitoring	

LIST OF FIGURES

- 1 Site Location Map
- 2 Sidewalk Sample Locations

1.0 PURPOSE

The purpose of this Community Air Monitoring Plan (CAMP) is to provide an additional margin of safety to residents and/or businesses located in the vicinity of the 58th Street Sidewalk (Site) adjacent to the former Maspeth Substation. The Site is located on the western sidewalk of 58th Street between 57th Drive and 58th Avenue in Maspeth, New York. The location of the Site is shown on Figure 1. Dust and volatile compounds may be generated during proposed investigation activities at the Site. This CAMP is designed to conform to New York State Department of Health's Generic Community Air Monitoring Plan (revised 1/6/00).

The compounds of concern at the Site are soils potentially impacted with dielectric fluids containing PCBs and, to a limited extent, volatile organic compounds (VOCs). Soil samples collected and submitted for laboratory analyses during previous investigation work from areas beneath, or within the vicinity of, the 58th Street sidewalk detected levels of PCBs ranging from 0.1 ppm to 7.1 ppm. Total VOCs in similarly-placed soils were reported at levels ranging up to 0.7 ppm (1, 2, 4, Trimethylbenzene). The potential impact to nearby residents and/or businesses may be generated from fugitive dust (potentially containing PCBs), which may become airborne as a result of the investigation activities noted below.

The proposed investigation activities depicted on Figure 2 are briefly described below.

• install up to 3 monitoring wells within the western sidewalk of 58th Street for the purpose of delineating the impact of PCBs in soils beneath the 58th Street sidewalk.

A Site-specific Environmental, Health and Safety Plan (EHASP) and a Quality Assurance/Quality Control Plan (QA/QCP) have also been developed to address the proposed activities listed above. The EHASP outlines the guidelines and requirements for the safety of on- and off-site personnel and visitors to the Site involved in the proposed investigation field activities. The QA/QCP details the quality assurance measures to be implemented during this project, including a description of instrument calibration procedures and quality assurance sampling requirements. The EHASP and QA/QCP are presented as Appendix A and Appendix C, respectively, to the Investigation Work Plan.

2.0 MONITORING PLAN

The community air monitoring network will consist of one photoionization detector (PID) for monitoring total VOCs and two particulate/dust monitors. The PID meter will be used to record the background or upwind VOC levels prior to beginning each day's work and then placed at the downwind perimeter of the work areas for real-time recording throughout the work day. The two dust monitors will be placed one upwind and one at the downwind perimeter of the work area for continuous monitoring. Based on previous experience at the adjacent former Maspeth Substation (monitoring well installation work), the upwind location will likely be near the northern property (fence) line of the former Con Edison facility. The property is currently owned by M&A Linens. The downwind perimeter will be considered just beyond the immediate work areas. (i.e. just beyond the drill rig while advancing each well).

2.1 Continuous VOC Monitoring

Total VOC concentrations will be monitored at the downwind perimeter of the work areas on a continuous basis. The PID meter (Photovac Micro-tip or equivalent) will be operated daily, beginning each morning prior to the start-up of work activities and ending each afternoon following the completion of the day's work. Readings will be collected continuously. Fifteen-minute averages will also be collected. All readings will be recorded and downloaded at the end of each day. An action level of 5 ppm (parts per million) above the background or upwind reading has been specified in the NYSDOH's community air monitoring plan and will be utilized by Jacques Whitford at this Site.

The Jacques Whitford on-site representative will review the data from the downwind perimeter PID meter every 15 minutes. The data will be evaluated for the following:

- A) If the VOC concentrations at the downwind perimeter of the work area do not exceed 5 ppm above background then investigation work activities will continue unabated.
- B) If the VOC concentrations at the downwind perimeter of the work area exceed 5 ppm above background, for a 15-minute interval, investigation work activities will be stopped and monitoring continued as described below:
 - If the organic vapor levels decrease at the downwind perimeter of the work area, per instantaneous readings, to below 5 ppm above background, investigation work activities will resume.
 - If the organic vapor levels at the downwind perimeter of the work area, per instantaneous readings, remain greater than 5 ppm over background but less than 25 ppm over background, investigation work activities can resume provided:
 - > The source of organic vapors is identified and corrective actions are taken to abate the emissions (see below).
 - The organic vapor level 200 feet downwind of the work area or half the distance to the nearest residential or commercial structure, whichever is less, is below 5 ppm over background for the 15-minute interval.

C) If the concentration at the downwind perimeter of the work area, for a fifteen-minute average reading, exceeds 25 ppm above background, investigation work activities will be shut down and corrective actions will be taken to abate the emissions.

Abatement measures are identified below.

During Monitoring Well Installation

- During saw cutting of the concrete sidewalk, the surface will be wetted down to minimize the generation of dust.
- The soil and concrete that is generated will be placed in 55-gallon steel drums, and temporarily staged on the sidewalk before being transported off-site for disposal by Con Edison on a daily basis.
- If the soil boring being advanced is near the proposed finished depth at the end of the workday, the boring will be continued to the finished depth (approximately 25 ft bgs for monitoring wells), the tools will be pulled and the well will be installed with the proper filter sand and seals (two-foot bentonite seal and cement-bentonite grout).
- If the boring is not near the proposed completion depth at the end of the workday, then the excess soil will be placed in a 55-gallon drum, and temporarily staged on the sidewalk before being transported off-site for disposal by Con Edison on a daily basis. Boring advancement will cease, the tools will be removed, the borehole will be backfilled with clean sand, and the downwind perimeter will be monitored for 30 minutes. If the downwind VOC levels drop to less than 5 ppm above background, boring advancement will re-commence. If the downwind VOC levels do not drop to less than 5 ppm above background, the ground surface will be sealed with concrete, and the work stopped for the day and/or until the issue is mitigated.

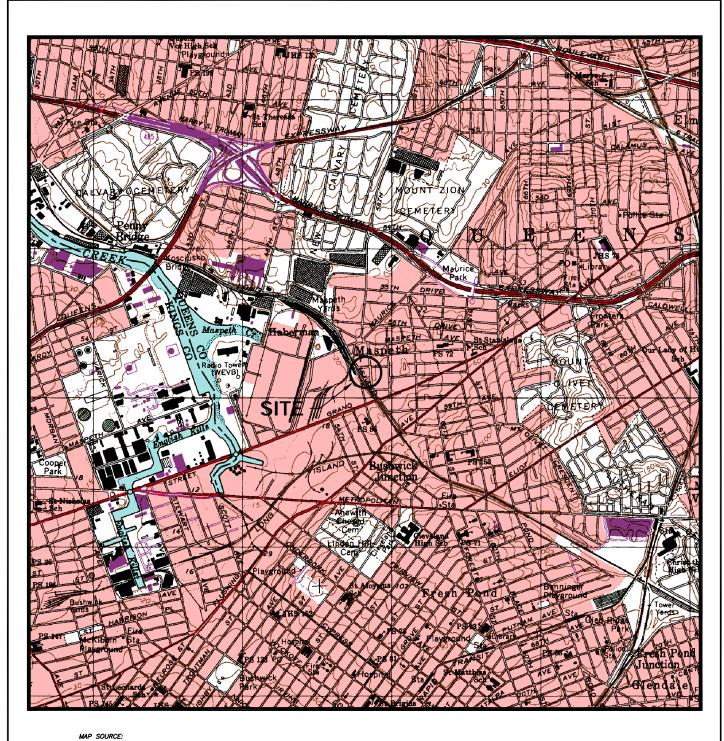
Based on previous investigative work on the adjacent property, VOC concentrations are anticipated to be at a low concentration and not anticipated to exceed the 5 ppm above background action level. However, the above-mentioned action items will be implemented if the readings exceed the 5-ppm action level.

2.2 Continuous Dust Monitoring

Each respirable dust monitor (MIE Brand, pDR-1000AN Modelor) will be operated daily, beginning each morning with the start-up of monitoring well installation activities and ending each afternoon following the completion of the day's work. Readings will be collected continuously. Fifteen-minute averages will also be collected. All readings will be recorded and downloaded at the end of each day. Action levels of 100 and 150 μ g/m³ (micrograms per cubic meter) above background or upwind has been specified in the NYSDOH's community air monitoring plan and will be utilized by Jacques Whitford at this Site.

The Jacques Whitford on-site representative will review the data from the downwind perimeter dust meter every 15 minutes. The data will be evaluated for the following:

A) If the downwind perimeter particulate level does not exceed 100 μg/m³ above background, for a 15-minute interval, then investigation work activities will continue unabated.

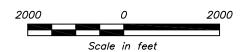

- B) If the downwind perimeter particulate level is $100 \, \mu g/m^3$ greater than the upwind location, for a 15-minute interval, then dust suppression activities will be undertaken (see below). Work will continue with dust suppression provided that the downwind particulate levels do not exceed $150 \, \mu g/m^3$ greater than the upwind location and provided that no visible dust is migrating from the work area.
- C) If, after re-starting work and dust suppression activities, the downwind perimeter particulate levels are greater than 150 $\mu g/m^3$ above the upwind level, work will be stopped for the day and corrective actions taken to abate the emissions.

Dust suppression techniques are identified below.

<u>During Monitoring Well Installation</u>

Jacques Whitford will mist the hollow stem augers with potable water using a portable 3 to 5-gallon garden sprayer to decrease the airborne dust production. During the saw cutting of the concrete sidewalk, the surface will be wetted with water to minimize the generation of airborne dust. Jacques Whitford will continue to evaluate the data from each dust monitor.

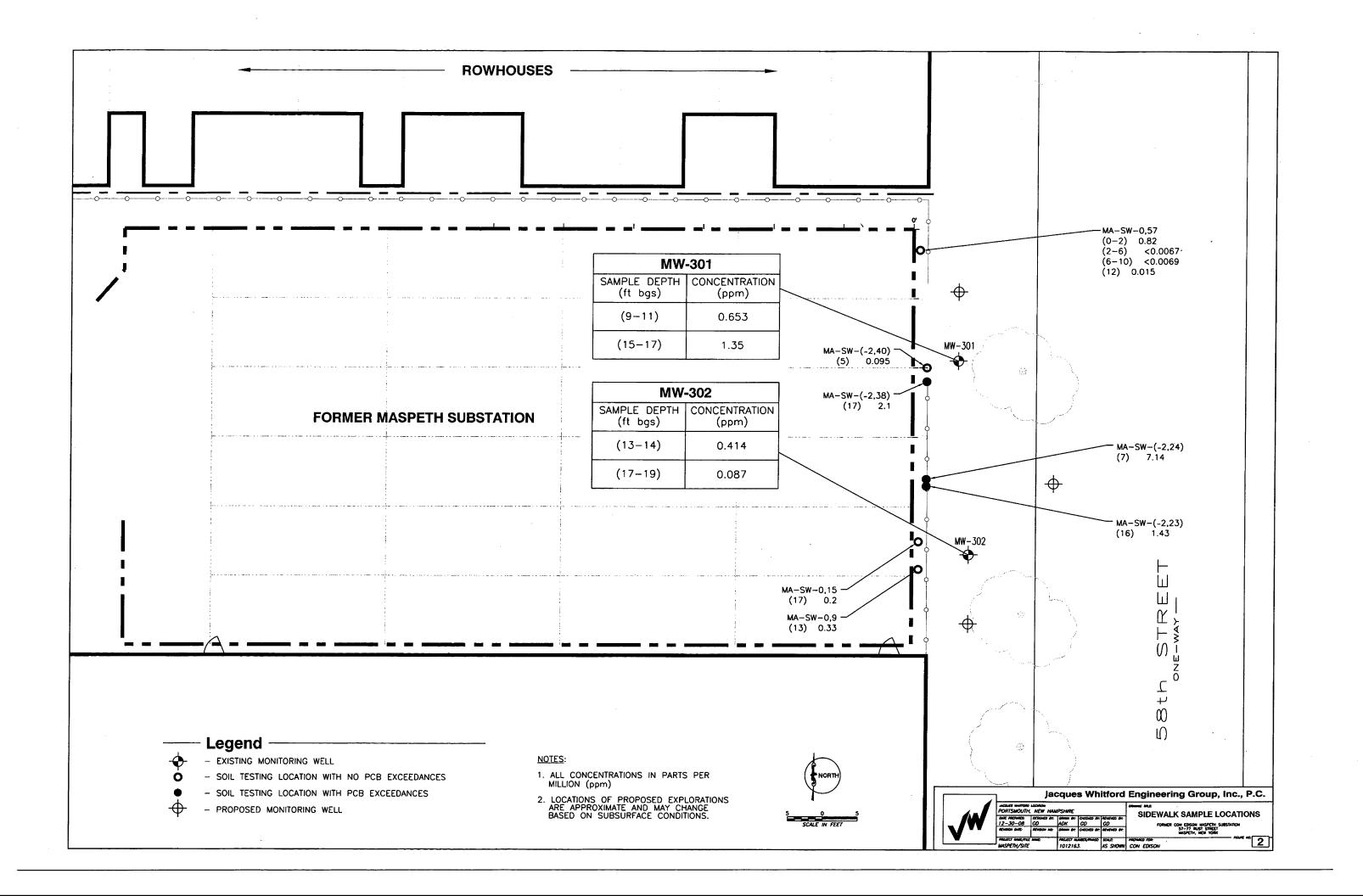
FIGURES



TOPOZONE.COM

USGS BROOKLYN [NY] QUAD 1995

Jacques Whitford Company, Inc.



JACQUES WHITFORD LOCATION: PORTSMOUTH, NEW HAMPSHIRE								
DATE PREPARED:	DESIGNED BY:	DRAWN BY:	CHECKED BY:	REVIEWED BY:				
7-16-04	DFM	TS	BSB	DFM				
REVISION DATE:	REVISION NO:	DRAWN BY:	CHECKED BY:	REVIEWED BY:				
4-17-07		ADK	DFM	DBH				
PROJECT NAME/FILE NAME:		PROJECT NUMBER/PHASE:		SCALE:				
CON EDISON MASPETH/SITE		1012163.		1:24000				

DRAWING TITLE: **SITE LOCATION PLAN**

FORMER MASPETH SUBSTATION 57-77 RUST STREET MASPETH, QUEENS, NEW YORK

PREPARED FOR: CON EDISON

APPENDIX C

Quality Assurance/Quality Control Plan (QA/QCP)

QUALITY ASSURANCE/QUALITY CONTROL PLAN

FOR THE
CONSOLIDATED EDISON COMPANY OF NEW YORK, INC.
58TH STREET SIDEWALK INVESTIGATION
MASPETH, NEW YORK

Prepared for:
CONSOLIDATED EDISON COMPANY OF NEW YORK, INC.
Long Island City, New York

Prepared by:

JACQUES WHITFORD COMPANY, INC.

Portsmouth, New Hampshire

Elmsford, New York

April 2009

QUALITY ASSURANCE/QUALITY CONTROL PLAN FOR THE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. 58TH STREET SIDEWALK INVESTIGATION MASPETH, NEW YORK

TABLE OF CONTENTS

Section N	No. <u>Title</u>	<u>Page No.</u>
1.0	INTRODUCTION	1
2.0	BACKGROUND	2
2.1 2.2 2.3 2.4	SITE HISTORY PROJECT OBJECTIVES PROJECT TASK DESCRIPTION END USE DATA	3 3
3.0	PROJECT MANAGEMENT	
3.1 3.2 3.3 3.4 3.5 3.6	CON EDISON PROJECT MANAGER	
4.0	QA OBJECTIVES FOR MEASUREMENT DATA	7
4.1 4.2 4.3 4.4 4.5 4.6	DATA PRECISION DATA ACCURACY DATA REPRESENTATIVENESS DATA COMPLETENESS DATA COMPARABILITY TRACEABILITY	
5.0	ANALYTICAL PROCEDURES	12
5.1 5.2	ANALYTICAL METHODS	12
6.0	SAMPLING METHODS AND FIELD MEASUREMENTS	
6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.2 6.3 6.4	2 Soil Boring Advancement 3 Soil Sampling	
7.0	SAMPLE HANDLING AND CUSTODY	22
7.1 7.2 7.3	SAMPLE LABELING	

TABLE OF CONTENTS (cont)

Section	No. <u>Title</u>	Page No.
8.0	EQUIPMENT CALIBRATION AND MAINTENANCE	25
8.1 8.2 8.3	RESPONSIBILITYCALIBRATIONPREVENTIVE MAINTENANCE	25
9.0	INTERNAL QUALITY CONTROL CHECKS	27
9.1 9.2	Laboratory Internal QC ChecksField Internal QC Checks	
10.0	ASSESSMENT AND OVERSIGHT	29
10.1 10.2	LABORATORY PERFORMANCE AND SYSTEM AUDITSFIELD PERFORMANCE AUDITS	
11.0	DATA REDUCTION, VERIFICATION, USABILITY AND REPORTING	30
11.1 11.2 11.3 11.4	DATA REDUCTION	30 31
12.0	CORRECTIVE ACTION	32
13.0	CORRECTIVE ACTION REPORTS TO MANAGEMENT	33
14.0	REFERENCES	34

LIST OF TABLES

- 1 Proposed Analytes/Containers/Preservation/Holding Times
- 2 Instrument Calibration Frequency
- 3 Summary of Investigation Samples

LIST OF FIGURES

- 1 Site Location Map
- 2 Proposed Soil Boring Locations

APPENDICES

- A. Instruction Manual: Personal Data RAM
- B. Resume of Donald Anne, Data Validator

QUALITY ASSURANCE/QUALITY CONTROL PLAN FOR THE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. 58TH STREET SIDEWALK INVESTIGATION MASPETH, NEW YORK

1.0 INTRODUCTION

This Quality Assurance/Quality Control Plan (QA/QCP) was developed by the Jacques Whitford Company, Inc. (Jacques Whitford) on behalf of the Consolidated Edison Company of New York, Inc. (Con Edison). This QA/QCP details the protocols and procedures that will be implemented during investigation activities performed on the 58th Street sidewalk (Site), adjacent to the former Maspeth Substation located at 57-77 Rust Street in Maspeth, Queens County, New York (see Figure 1). The proposed Site Investigation activities include the advancement of approximately three monitoring wells through the western sidewalk of 58th Street, which is adjacent to and east of the former Con Edison property. The Site is surrounded by a mixed residential and commercial area.

The primary objectives of the QA/QCP are to provide quality assurance (QA) and maintain quality control (QC) during sampling and testing activities that will be conducted as part of the Site Investigation and monitoring activities. Implementation of the QA/QCP will ensure that investigation activities are performed in a manner consistent with the data quality objectives (DQOs) described herein.

In summary, this QA/QCP identifies project responsibilities and prescribes guidance and specifications to satisfy QA/QC objectives and thus, promote:

- Collection of representative samples;
- Generation of data that are valid for the objectives of the Site Investigation;
- Consistent and complete documentation of field activities performed during Site Investigation; and
- Accountability of field and laboratory activities.

The QA/QC objectives will be achieved by:

- Adhering to standard sample collection, sample handling and analytical protocols and procedures;
- Implementing a sample tracking system and adhering to chain-of-custody protocols;
- Confirming the quality of the sampling and analytical methods through quantitative and qualitative data assessment methods; and
- Ensuring that all aspects of the measurement process, from field through laboratory, are documented to provide data that are technically sound and legally defensible.

2.0 BACKGROUND

2.1 Site History

The Site is immediately adjacent to the former Maspeth Substation, which is located in a mixed residential and commercial area. The former Maspeth Substation is located at 57-77 Rust Street in Maspeth, Queens County, New York. The Site to be investigated is located on the sidewalk, immediately east of the former Maspeth Substation. The Site is bounded by 58th Street to the east, 57th Drive and residences to the north, the former Maspeth Substation to the west and 58th Avenue to the south.

Between 1925 and 1985, Con Edison and its predecessor, the New York and Queens Electric Light & Power Company, operated an electric distribution substation at the Site. In June 1996, Con Edison sold the Site to LDC Realty Holdings, L.L.C. ("Encore"). In December 1997, RAW Realty & Equipment Company ("Raw") acquired the Substation from Encore. Encore and Raw conducted tire-recapping operations at the Substation. The former Substation property is presently owned and occupied by M & A Linens, a wholesale fabric supplier.

Subsurface soil and groundwater samples were collected during several phases of investigation work at the former Substation property and analyzed for pertinent parameters (including polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals). The investigation results indicated that limited exceedances of regulatory standards existed in subsurface soil and groundwater at the former Substation property. The results further indicated that the main contamination issue at the former Substation property was free-phase product (at depth) containing PCBs. Free product had been measured in monitoring wells, located primarily within the properties boundaries, ranging from a sheen on the groundwater surface to approximately two feet in thickeness. Some free-phase product was observed/measured in a monitoring well located within the western sidewalk on 58th Street. The specific PCB compound in the product had been reported as Arochlor-1260 at concentrations from 1.1 to 328 ppm. The seasonal fluctuation of the water table on the Substation property further suggested the product had likely created a smear zone at depths of approximately 12 to 18 feet below land surface (bls).

Con Edison evaluated a number of options for the remediation of the PCB-contaminated soil and free phase product at the former Substation property. Based on a review of the data collected and subsequent discussions with the New York State Department of Environmental Conservation (NYSDEC), Con Edison selected a remedial action consisting of "Soil Excavation/Free Product Removal". The target depth of the excavation was 18 feet bls.

Between 2004 and 2008, contractors retained by Con Edison removed the impacted soils from beneath the former substation property. A Final Engineering Report (FER) for this work is currently being prepared for transmittal to the NYSDEC. During the investigation and remediation on the former Con Edison property, PCB impacts noted on the former Con Edison property had migrated over the property line and impacted soil and/or groundwater off-site. Off-site impacts were observed in two locations. To the north, soils were observed to be impacted in the backyards of several residences abutting the Con Edison property. The contaminated soils in the abutting residential backyards were removed and appropriately backfilled during 2007 and 2008. An Off-site

Final Engineering Report (Off-Site FER) for this work in the backyards is currently being prepared for transmittal to the NYSDEC. The second location where impacts were observed to have migrated off-site was to the east, beneath the 58th Street sidewalk. The impacts that were observed off-site to the east included impacts to both soil and groundwater. Further investigation of these off-site impacts is the subject of the accompanying Work Plan.

2.2 Project Objectives

The objectives of the Site Investigation are as follows:

- Determine the extent of impacted soils beneath the 58th Street sidewalk;
- Determine the extent of free-phase product and/or groundwater impacts beneath the 58th Street sidewalk:
- Evaluate appropriate means to address the impacted soils and/or groundwater, if appropriate.

2.3 Project Task Description

The proposed Site Investigation will be comprised of the advancement of up to three monitoring wells to depths of approximately 25 feet beneath the 58th Street sidewalk. The monitoring well locations will be spaced approximately ten feet north, east, and south of existing monitoring wells MW-301 and MW-302 (see Figure 2). Soil samples will be collected during borehole advancement from previously fixed intervals throughout the length of the borehole. The soil samples will be transported to a NYSDEC-approved laboratory to be analyzed for PCBs and TPH. Monitoring wells will be constructed in the boreholes as a means to collect groundwater samples. Groundwater samples will be transported to a NYSDEC-approved laboratory to be analyzed for PCBs and VOCs.

2.4 End Use Data

The laboratory data generated during the Site Investigation will be used to confirm the goals of the project have been achieved. The level of analytical support must be carefully considered to ensure the data are of sufficient quality to satisfy the goals of the Site Investigation. Analytical support will be employed for different components of the investigation as follows:

- Level III: Analysis Using New York State ASP Methods. Level III analytical support data will be generated for laboratory analysis performed using SW-846 methodologies and methods contained in U.S. Environmental Protection Agency (EPA) "Methods for Chemical Analysis of Water and Waste," EPA-60014-79-020, 1983. All analyses will be in accordance with New York State ASP protocols with Category B deliverables. This level is used primarily in support of engineering studies using standard approved procedures. Level III analytical support will be used for analysis and reporting of all samples analyzed by the laboratory.
- <u>Level I: Field Screening.</u> This level is characterized by the use of portable instruments, such as a photoionization detector (PID), and dust meters.

These field instruments can provide real-time data to assist in the optimization of sampling point locations and for health and safety support. All routine air monitoring (as discussed in the Community Air Monitoring Plan and EHASP) and soil screening will be conducted using Level I analytical support.

3.0 PROJECT MANAGEMENT

Activities of personal involved in this project include supervision of field activities, health and safety, and the evaluation and interpretation of data, as discussed below.

The individuals who are responsible for ensuring the collection of valid measurements and data and the routine assessment of measurement systems for precision and accuracy include the Con Edison Project Manager, Remediation Project Manager, Project QA/QC Officer, and Laboratory QA/QC Officer.

The key project personnel and their primary responsibilities are summarized below.

Con Edison EH&S Remediation: Mr. Barry Cohen

Con Edison Project Manager: Mr. Edward Wiederkehr Remedial Engineer: Mr. Craig R. Gendron, P.E.

Administrative Project Manager: Mr. David Hill, Principal Geoscientist

Program/Project Manager: Mr. Gregory DelMastro, PG

Project QA/QC Officer:

Field Team Leader:

Health and Safety Officer:

Mr. Donald Moore, Senior Scientist

Mr. Bruce Bline, Field Geologist

Mr. Bruce Bline, Field Geologist

Laboratory QA/QC Officer: Ms. Dulce Litchfield Third-Party Data Validator: Mr. Donald Anne

3.1 Con Edison Project Manager

The Project Manager will serve as Con Edison's representative in reviewing the progress of work, overseeing all field activities, and participating in field meetings. In addition, the Con Edison Project Manager will be responsible for monitoring field activities to ensure compliance with the overall scope of work and health and safety requirements.

3.2 Investigation Project Manager

The Investigation Project Manager will be responsible for coordination and implementation of the elements of the Site Investigation. The Investigation Project Manager will be responsible for ensuring completion of the progress reports as well as participating in all major meetings with Con Edison, as needed, during the course of the project.

The Investigation Project Manager will also be responsible for adherence to project schedules; preparation of reports; development and monitoring of cost control measures; reviewing and assessing the performance of technical staff and laboratory subcontractors; maintaining complete, orderly project documentation; interacting with the Con Edison Project Manager and the NYSDEC throughout the project; and managing project-specific problems and resolving project related issues.

3.3 Project Quality Assurance and Quality Control Officer

The Project QA/QC Officer will be responsible for reviewing field notes and field laboratory measurements, for compliance with QA objectives (precision, accuracy and

completeness criteria) as stated in this QA/QCP, and notification to the Con Edison Project Manager of any QC deficiencies.

3.4 Laboratory Quality Assurance and Quality Control Officer

The Laboratory QA/QC Officer will be responsible for quality control procedures and QC checks in the laboratory, and will ensure strict adherence to laboratory protocols. In addition, the Laboratory QA/QC Officer will be responsible for tracking the movement of each sample from the time the samples are received at the laboratory until the final analytical data are assembled in the report. Test results and data management reports, including analytical data, quality control data, chain-of-custody documentation, the appropriate historical data, will be assembled electronically by the laboratory personnel under the supervision of the Laboratory QA/QC Officer. All calculations will be reviewed by the Laboratory QA/QC Officer.

3.5 Special Training / Certification

Training requirements beyond routine training for each of the project personnel are not warranted for the work prescribed in the Investigation Work Plan and/or this QA/QCP.

3.6 Project Documentation and Records

A project file will be maintained by the Investigation Project Manager, which will contain complete project documentation. This file will include project plans and specifications; field notebook(s); field logs and data records; photographs; maps and drawings; sample identification documents; chain-of-custody records; the entire analytical data package(s) provided by the laboratory including QC documentation; gas chromatograms; mass spectra; references and literature; report notes and calculations; progress and technical reports; correspondence; and other pertinent information. All such project records will be accessible to Con Edison and the NYSDEC.

4.0 QA OBJECTIVES FOR MEASUREMENT DATA

Data Quality Indicators (DQI) are qualitative and quantitative descriptors used to interpret the degree of acceptability or usability of data. The primary DQIs are precision, accuracy (bias), representativeness, comparability and completeness. Of these DQIs precision and accuracy are quantitative measures, and representativeness and comparability are qualitative measures of data quality.

Within a quantitative and qualitative context, the DQIs are evaluated and measured. In order to assess the data, laboratory and field QC samples will be collected. The QC samples include field duplicates; laboratory matrix spike/matrix spike duplicates; field, lab, and trip blanks; and laboratory control samples such as surrogates. The QC samples are discussed in Section 9.0 and are summarized in Table 3. To assess precision, comparability, and representativeness, QC samples will include field duplicates and laboratory matrix spike/matrix spike duplicates. Matrix spikes, blanks and laboratory control samples are used to assess accuracy; and blanks, and split-samples are used to assess representativeness.

4.1 Data Precision

Precision is a measure of mutual agreement among individual measurements of the same property. Precision is measured by analyzing field duplicate and laboratory duplicate samples. The relative percent difference or RPD of duplicate measurements can be used to evaluate analytical precision. The smaller a RPD, the greater the analytical precision. Relative Percent Difference is calculated from initial and duplicate sample analytical results using the following equation:

RPD% =
$$(C1-C2)$$
 x 100 $(C1+C2)/2$

where:

C1 = The larger of the two observed values.

C2 = The smaller of the two observed values.

Both spike recovery and RPD can be determined using the analytical results of matrix spike and matrix spike duplicate samples (MS/MSD).

Duplicate samples will be used to assess the overall effects of the sample collection and analysis procedures on precision; some samples will be collected in duplicate. One of the duplicates will be given a "coded" identifier and will be submitted as a 'blind' duplicate, along with the original sample for analysis. Comparisons of the results from the original sample and the blind duplicate will allow for an evaluation of the precision RPD. One coded field duplicate will be collected for every twenty environmental samples or during each separate activity covered in the QA/QCP. Matrix spike and matrix spike duplicate samples will also be collected.

The referenced analytical methods cite precision control limits or give guidance on how to establish precision control limits. Control limits are typically generated from multiple analyses and inter-laboratory comparison studies. Control limits are method, compound, and matrix dependent.

Acceptable levels of laboratory precision will vary according to the sample matrix, the specific analytical methods, and the analyte concentration relative to the method detection limit (MDL). Quality assurance objectives for precision will also be supported through the use of written laboratory standard operating procedures (SOPs) and properly calibrated instruments. Laboratory precision will be assessed by the analysis of matrix spike/matrix spike duplicate and/or laboratory duplicates. Laboratory precision is evaluated using United States Environmental Protection Agency (USEPA) guidelines for the specific method reference in concert with laboratory SOPs and this project-specific QA/QCP.

4.2 Data Accuracy

Accuracy/bias is the degree of agreement of a measurement with an accepted reference or true value. The difference is usually expressed as a percentage or ratio. Accuracy is a measure of the bias of a system. The accuracy/bias of laboratory analytical measures is evaluated through the analysis of method blanks, sample matrix spikes, matrix spike duplicates, sample surrogate recoveries, performance evaluation samples, and Laboratory Control Samples. Accuracy/bias-contamination is assessed by trip blanks (VOCs), equipment blanks, method blanks, and instrument blanks that evaluate how the data is affected by contamination.

Accuracy may be expressed as a percent difference (%D) calculated by the following equation:

%D =
$$\frac{(V_t - V_m)}{V_t} \times 100$$

Where:

 V_t = the true or real value expected.

 V_m = the measured or observed value.

This same relationship holds for the expression of accuracy as a percent recovery (%R) of a known method analyte or surrogate spike:

$$%R = (SSR - SR) \times 100$$

SA

Where:

SSR = the spiked sample result.
SR = the unspiked sample result.
SA = the value of the spike added.

Acceptable levels of accuracy and precision will be achieved by close adherence to all sampling procedures, sample preservation, decontamination procedures, and analytical methodology. Failure to achieve acceptable levels of accuracy and precision will trigger the implementation of a corrective action as described in Section 12.0 of this QA/QCP.

The objective for field measurement accuracy is to achieve and maintain the manufacturer's specifications for field equipment. The objective for accuracy of laboratory determinations is to maintain a system, which can be demonstrated to achieve measurements that are within accuracy criteria.

4.3 Data Representativeness

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variation, or environmental condition. Representativeness will be controlled by the consistent collection and analysis of samples according to standardized procedures. Representativeness can be assessed through the measures of precision and accuracy. Field documentation, field duplicate analyses, laboratory QC sample results, and data trend analysis all provide indices for the evaluation of data representativeness.

The degree that the data collected during the Site Investigation represent actual conditions at the Site is a function of the:

- Number and location of data collection points;
- Choice of parameters for physical and chemical analysis; and
- Choice of specific technologies for data collection.

Samples collected must be representative of the population. The sampling program has been developed on a "biased" sampling approach. The sample locations (monitoring well locations and depths) have been selected based on a review of Site information and engineering practicability.

Representativeness of specific samples will be achieved by the following:

- Using appropriate sampling procedures, sample containers, and equipment:
- Using appropriate analytical methodologies for the parameters and detection limits required;
- Using applicable techniques for homogenizing samples prior to analysis where appropriate;
- Analyzing the sample within the appropriate holding time; and
- Properly preserving and storing the samples.

Sampling devices will be cleaned between sampling points to minimize the potential of cross-contamination between samples and thus producing samples that "misrepresent" actual sample quality. Decontamination procedures are described in Section 6.3 of this QA/QCP.

A trip blank, which consists of sampling glassware filled with deionized, analyte-free water at the laboratory, will be included in each cooler of soil and groundwater samples shipped to the laboratory for VOC analysis.

The laboratory will make every reasonable effort to assure that soil samples are adequately homogenized prior to taking aliquots for analysis, so that the reported results are representative of the sample received. It must be recognized that excess handling

may expose the sample to significant risk of contamination and will be avoided if possible.

4.4 Data Completeness

Completeness is a measure (percentage) of the amount of valid data obtained from a measurement system relative to the amount that would be expected to be obtained under correct, normal conditions. Valid data are data that are soundly founded as evidenced by the successful attainment of the Data Quality Objectives set forth for their determination.

Completeness (A%) = No. of valid values reported for parameter y x 100
No. of samples collected for analysis for y

Based on Site accessibility, it is believed that 100 percent of the proposed samples can be collected. It is expected that the laboratory will provide data meeting QC acceptance criteria for 95 percent of all samples analyzed. Laboratory data will be reviewed by the laboratory and project QA/QC Officers for completeness. Corrective actions to achieve a complete data set may include any of the following: re-analysis, re-extraction and/or re-sampling.

The QA objective for completeness will be optimized by employing and evaluating frequent QC checks throughout the analytical process so that sample data can be assessed for validity of results and to allow for reanalysis within the hold time when QC indicates a problem.

4.5 Data Comparability

Comparability expresses the confidence with which one data set can be compared to another. The data generated from this Site should be comparable with similar sample matrix measurements made by others such as previous on-site investigations.

To assure that the measurements are comparable, sample collection and analysis will follow standard EPA methods; also, standard-reporting units will be used for all data. Soil sample analytical data will be reported in units of micrograms per kilogram (ug/kg) or parts per billion (ppb). Aqueous sample data for organic analytes will be reported in micrograms per liter (μ g/l).

The comparability objective for this project will be attained by:

- Previous studies at the site, equivalent sampling and testing will be used;
- Demonstrating traceability of standards to the National Institute of Standards and Technology or USEPA sources;
- Using standard methodologies;
- Reporting results from similar matrices in consistent units;
- Applying appropriate levels of QC within the context of the Laboratory Quality Assurance Program; and
- Participating in inter-laboratory performance evaluation studies in support of laboratory certification to document general laboratory performance.

4.6 Traceability

Traceability is defined as the ability to reconstruct and review all aspects of the measurement system through available documentation.

Field activities should have the following documentation to support traceability:

- Standard Operating Procedures;
- Field logbooks;
- Names of field personnel; and
- Field personnel training records.

The field measurements should be supported by the following additional documentation:

- Instrument identification numbers:
- Instrument calibration records;
- Instrument precision and accuracy data as measured in the field;
- · Source and concentration of the standards; and
- Instrument maintenance records.

Laboratory data traceability documentation exists in two forms: that which links final numerical results to authoritative measurement standards, and that which explicitly describes the history of each sample from collection to analysis. The subcontracted laboratory will provide the sample histories as part of the analytical laboratory report.

5.0 ANALYTICAL PROCEDURES

5.1 Analytical Methods

Soil and groundwater will be analyzed using Level III Analytical Support, as defined in Section 2.3 of this QA/QCP. The analyses will be performed in accordance with U.S. EPA SW-846 methodologies and methods contained in the document titled, "Methods for Chemical Analysis of Water and Wastes" SW-846, 3rd Edition, November 1986 (as updated), EPA-600/4-79-020, 1983 (as updated) and in accordance with New York State ASP protocols. The selected laboratory shall be a NYS DOH ELAP laboratory as well as CLP Tier accredited for each of the sampling categories (i.e., PCBs, VOCs, and TPH) in the sampling program.

Level I Analytical Support will be utilized for screening of dust and VOCs in ambient air using dust meters and PIDs as defined in Section 2.3 of this QA/QCP.

The methodologies for the analyses are summarized in Table 1.

5.2 Sample Containers, Preservatives and Holding Times

The types of containers used for specified analyses as well as the required preservation and applicable holding times are detailed in Table 1 of this QA/QCP. All sample containers will be obtained from the subcontracted analytical laboratory. Sample containers will be cleaned and quality controlled in accordance with OSWER Directive No. 9240.0-50A "Specifications and Guidance for Obtaining Contaminant Free Sample Containers".

All sample containers used will be IChem 300 Series, Eagle-Picher Level I, or equivalent. IChem 300 Series and Eagle-Picher Level I glassware come with a certificate of analysis.

6.0 SAMPLING METHODS AND FIELD MEASUREMENTS

This section of the QA/QCP outlines the procedures and requirements for sampling of soil, groundwater, and for field measurements. A summary of the scope of work for sample collection is included in Section 5 of the Work Plan. A detailed description of each task procedure is provided in the following Sections of the QA/QCP.

An effort will be made to utilize disposable sampling equipment during field sample collection. Should non-disposable sampling equipment be required, one field blank will be collected per twenty samples/media.

6.1 Soil and Groundwater Sampling

This section outlines the sample collection procedures that will be implemented during the Investigation program. The soil samples will be collected via the methods noted below.

6.1.1 Hand-Cleared Sampling

The following procedures apply to soil samples collected from the hand-cleared excavations (from 0 to 5 feet). One discrete grab sample from the sidewall will be collected from each of the three cleared excavations. Vertical sampling intervals will be from 0-2 feet (to monitor the surficial soil). This equals a total of three hand-cleared sampling locations.

- Wear the appropriate personal protective clothing and perform ambient air monitoring of the work areas, as dictated by the EHASP.
- Field locate the sampling locations by measuring distance relative to the established on-site 0,0 coordinate and using dimensions obtained from a scaled Site map.
- Clear the area to be sampled of any surface debris.
- Characterize the soil being removed by hand tools and Vactron in accordance with the Unified Soil Classification System (ASTM D2488-00).
- Use stainless steel utensils to collect discrete soil from the hand excavation and place material into a stainless steel bowl.
- Place in appropriate sample containers for the required PCBs testing.
- Samples for laboratory analyses will be labeled and placed in a laboratory-supplied cooler and packed on ice (to maintain a temperature of 4°C). The coolers will be picked up on-site by a laboratory courier and then transported to the laboratory for analyses.
- Decontaminate all non-disposable equipment following the procedures outline in Section 6.3 of this QA/QCP.
- Excess soil remaining after sampling will be containerized on-site for same-day removal.

6.1.2 Soil Boring Advancement

- Soil borings will be drilled with 4.25-inch (minimum) inner diameter (ID) hollow stem augers. Alternative methods may be used at the geologist's discretion with the authorization of Con Edison.
- Split-spoon samples will be collected continuously from the ground surface to the bottom of the boring (estimated at 25 feet).
- Split-spoon sampling will be conducted in accordance with ASTM Specification D-1586-84 for standard penetration test and split barrel sampling, unless otherwise authorized by the field geologist.
- After collecting each split-spoon sample, the borehole will be drilled to a depth equal to the top of the next sampling interval, unless the geologist authorizes otherwise.
- Soil samples retrieved from the borehole will be visually described for: 1) percent recovery, 2) soil type, 3) color, 4) moisture content, 5) texture, 6) grain size and shape, 7) consistency, 8) visible evidence of staining, and 9) any other observations. The descriptions will be in accordance with the Unified Soil Classification System (USCS).
- Soil samples will be immediately screened for the evolution of organic vapors with a photoionization detector (PID). A representative portion of the split-spoon sample will be placed in a plastic "ziplok" bag or an eight-ounce sample jar filled approximately half full. The sample jar will be covered with aluminum foil, the cap will then be screwed on tightly. Sample jars and/or ziplok bags will be labeled with the boring number and interval sampled. After a minimum of 10 minutes, the lid will be unscrewed and the tip of the PID will be inserted through the aluminum foil or into the bag to measure the headspace for organic vapors.
- Drill cuttings will be disposed of in accordance with methods specified in Section 5 of the Investigation Work Plan.
- All drilling equipment will be decontaminated between each boring in accordance with methods specified in Section 6.3.
- The designated field geologist will log borehole geology and headspace measurements in the field book and the Drilling Record shown in Figure 4. 1, or similar form.

6.1.3 Soil Sampling

- The number and frequency of samples to be collected from each boring and the associated analytical parameters are summarized on Table 3 below.
- Samples for PCB and TPH analyses will be placed into a stainless steel bowl, homogenized, and placed in appropriate containers.
- The sample containers will be labeled, placed in a laboratory supplied cooler and packed on ice (to maintain a temperature of 40 C). The coolers will be shipped overnight to the laboratory for analysis.
- Chain-of-custody procedures will be followed as outlined in Section 7.
- The sampling equipment will be decontaminated between samples in accordance with procedures described in Section 6.3.
- Excess soil remaining after sampling will be contained in accordance with methods specified in Section 5 of the Investigation Work Plan.
- The sample locations, descriptions, and depths will be recorded in the field book.

6.1.2 Monitoring Well Installation

- Wear the appropriate personal protective clothing and perform ambient air monitoring of the work areas, as dictated by the EHASP.
- Prepare the sampling Site by laying out clean plastic sheeting on level ground near the sampling area and place equipment and materials to be used on the plastic.
- Advance borehole via hollow stem augers to a design depth of approximately 25 feet bgs. Record all measurement details in the field logbook.
- Install a 2-inch diameter polyvinyl chloride (PVC) well consisting of approximately 10 feet of riser and a 15-foot length of PVC 20-slot well screen straddling the water table.
- Install a filter pack (Morie #1 or equivalent) in the annular space from the bottom of the hole to a depth of two feet above the top of the screen.
- Place a 1- to 2-foot thick bentonite pellet/chip seal immediately above the filter pack and add water and allow the bentonite to hydrate for approximately 30 minutes.
- Backfill the remaining annular space with a cement/bentonite grout to within 1foot of the surface.
- Finish the monitoring well at grade with a flush-mount curb box set in cement that is sloped away from the well to prevent water collection at the well.

6.1.3 Well Development

Following installation, all new monitoring wells will be developed as described below.

- Wear the appropriate personal protective clothing and perform ambient air monitoring of the work areas, as dictated by the EHASP.
- Prepare the wellhead by laying out clean plastic sheeting on level ground near the wellhead area and place equipment and materials to be used on the plastic.
- Measure the depth water and depth to the bottom of the well using an electronic oil/water interface probe prior to developing.
- Install dedicated polyethylene tubing with Waterra[™] check valve and surge-block in each well. Position the bottom of the tubing so that it is at the approximate center of the water column or well screen. A sufficient length of tubing will remain above ground to allow connection to a peristaltic or bladder pump.
- Utilize traditional Waterra pumping oscillations to remove water and sediments from the well and the formation outside the screen.
- Periodically attach a peristaltic pump or bladder pump to the dedicated polyethylene tubing to pump the well at periodic rates of one to two liters per minute to clear the well.
- Place all discharge water in five-gallon buckets for appropriate disposal (see below)
- Repeat this process several times to maximize sediment movement.
- After several surge and pump sequences, purge the well using low-flow development/sampling technique, (i.e. via a bladder pump or a peristaltic pump through a closed flow-through cell (for field parameter monitoring)).
- Collect the development water in five-gallon buckets.
- Every well volume, collect pH, specific conductivity, temperature, and turbidity measurements during development and record the results in the field logbook.

- Continue monitoring well development until the purge water is 50 NTUs, or a maximum of two hours.
- Upon completing the development, transfer the development water from the fivegallon buckets to NYSDOT-approved closed-top 55-gallon steel drums. Drums should not be filled more than half full and properly labeled.
- The drums will be labeled as waste fluids pending analysis and temporarily stored on-site in an area designated by Con Edison prior to same-day disposal by Con Edison.

6.1.4 Groundwater Sampling

As noted above, up to three newly installed monitoring wells will be gauged for the presence or absence of product and depth to water and subsequently sampled. Following water level measurements, each of the new temporary wells will be purged and low-flow sampled as outlined below. Sampling will be performed approximately two weeks after completing well development.

- Wear the appropriate personal protective clothing and perform ambient air monitoring of the work areas, as dictated by the EHASP.
- Prepare the sampling Site by laying out clean plastic sheeting on level ground near the sampling area and place equipment and materials to be used on the plastic;
- Collect the samples from the non-contaminated or known or suspected least contaminated wells first and then to wells of increasing contamination to avoid potential cross-contamination.
- Prior to sampling use a decontaminated electronic oil/water interface probe to gauge the depth to product (if any) and depth to groundwater.
- Record all measurements and any observations in the bound field logbook.
- Connect a positive displacement pump to the dedicated polyethylene tubing and position the pump at the approximate center of the water column or well screen.
 Sufficient length of tubing will remain above ground to allow connection to a closed flow-through cell for field parameter monitoring.
- Turn on the positive displacement and purge groundwater at a rate of 200-500 ml/minute from the well. If the well goes dry, allow the well to recover and collect a sample.
- Measure flow rate using a container calibrated for volume and a stopwatch.
- During well purging, pump groundwater through a flow-through cell or collect periodic samples into a clean container and measure and record the following parameters using a water quality multi-meter: pH, conductivity, temperature, and turbidity.
- Perform measurements each well volume until the well parameters have stabilized (described below). Every effort should be made to lower the turbidity to < 50 NTU before sampling. If the turbidity cannot be reduced below 50 NTU's, samples may be collected if all other parameters are stable. Measurements will be recorded in the field logbook.
- Parameter stabilization is considered to be achieved when three consecutive readings collected at each well volume, are within the following limits:
 - Turbidity (+/-10% for values greater than 1 NTU);
 - Dissolved Oxygen (+/-10%);
 - Specific conductance (+/-3%);

- Temperature (+/-0.1 degree Celsius);
- pH (± 0.1 unit); and
- Eh (redox potential ((+/-10%)).
- During well purging, record pump tubing intake depth, the water level, the water level drawdown, and flow rate in the field logbook.
- After purging has been completed, stabilization has been achieved, or the well has been allowed to recover, collect a groundwater sample through the tubing at a flow rate of 100-250 ml/minute.
- After all samples have been collected at each well, the positive displacement pump shall be disconnected from the polyethylene sampling tubing.
- During the purging process, collect the purge water in five-gallon buckets.
- Upon completing the purging or as necessary, transfer the purge water from the five-gallon buckets to NYSDOT-approved closed-top 55-gallon steel drums. Drums should not be filled more than half full and properly labeled.
- The drums will be labeled as waste fluids pending analysis and temporarily stored off-site prior to same-day disposal by Con Edison.
- The probe and pump shall be decontaminated following the procedures outlined in Section 6.4 of this QA/QCP.

6.2 Air Monitoring for VOCs and Airborne Dust

Specific details on action levels are described in the Community Air Monitoring Plan (CAMP) developed for the proposed work. The CAMP is provided in Appendix B of the Investigation Work Plan.

Photo-ionization detectors (PID) and respirable dust meters will be used for air monitoring at the Site. The PID will provide data regarding the presence or absence of VOCs in ambient air. Monitoring for VOCs in air will be performed with a Photovac Micro-tip or equivalent. Monitoring for airborne dust will be performed with a respirable dust monitor (MIE Brand, pDR-1000AN Modelor or equivalent).

The following procedure details use of the PID. Isobutylene span gas at a concentration of 100 ppm will be used to calibrate the PID.

- Calibration shall be performed on the frequencies specified in Section 8.2 of this QA/QCP. However, the PID should be checked periodically using calibration gas and re-calibrated as appropriate. The PID calibration should be checked more frequently should atmospheric conditions at the Site change noticeably during the day as indicated by changes from fair to rainy weather, cold front, sudden gusty winds, etc.
- Allow the PID lamp to warm up and confirm that the PID is responsive by using a solvent-based marker (e.g., SharpieTM) or calibration gas.
- Record both the maximum and steady PID readings in the field logbook.
- The PID readings should be allowed to return to zero prior to the next screening.
- PID readings that climb steadily or are anomalously high should be considered suspect. Check the PID for sensitivity to moisture by placing a saturated paper towel inside a clean empty sample bag, and using the PID to measure the headspace. If readings above the background for the bag are measured check the PID (filter, sample tube, detector window) and re-calibrate. If the apparent

- moisture effects are not corrected then obtain another PID for subsequent samples.
- PID readings that are anomalously low should be considered suspect and should be checked. Check the PID to confirm that the battery is charged, the pump is working, the probe tube and or filter are not clogged, lamp is on, and window is not fogged. Consult the manufacturer's instruction manual for additional trouble shooting procedures.
- Document all PID measurements, any anomalous PID readings, corrective/ maintenance measures, re-calibrations, changes in atmospheric conditions, etc. in the field notebook.

The following procedure details use of the dust meter. Ambient air at an upwind location will be used to calibrate each meter.

- Calibration will be performed each morning prior to beginning the days work
 activities and checked periodically and re-calibrated as appropriate. Dust meter
 calibration should be checked more frequently should atmospheric conditions at
 the Site change noticeably during the day as indicated by changes such as
 sudden gusty winds, etc.
- Program the dust meter to record airborne dust in both real-time concentrations (continuously) and in time averaged concentrations (fifteen-minute averages).
- Allow the dust meter to sample the air passively (i.e. without a pump);
- The dust meter readings should be allowed to return to zero prior to the next screening. Zeroing is accomplished by means of a hand-inflatable "zero air" pouch provided with each meter.
- Review the dust meter readings every 15 minutes and compare the readings with the action levels of 100 and 150 µg/m³ (micrograms per cubic meter) above background or upwind as specified in the NYSDOH's community air monitoring action levels.
- Consult the manufacturer's instruction manual for any trouble shooting procedures.
- Document all dust meter readings, any corrective/ maintenance measures, recalibrations, changes in atmospheric conditions, etc. in the field notebook.

6.3 Decontamination

Between soil and groundwater sampling events, the sampling equipment, and nondisposable field equipment will be decontaminated. Decontamination will be performed as follows:

Drilling Equipment

- All drilling equipment including the drilling rig, augers, bits, rods, tools, and tremie pipe will be cleaned with a high-pressure steam cleaning unit before beginning work.
- Tools, drill rods, and augers will be placed on sawhorses or polyethylene plastic sheets following steam cleaning. Direct contact with the ground will be avoided.
- All augers, rods, and tools will be decontaminated between each drilling location according to the above procedures.

Split-Spoon Equipment

- Rinse with potable water;
- Use a bristle brush and potable-water/AlconoxTM (or an equivalent nonphosphate soap) solution to remove residual soil;
- Rinse with potable water;
- Rinse with isopropanol; and
- Perform a final rinse with deionized water.

Groundwater Sampling Equipment

- Rinse with potable water;
- Use a bristle brush and potable-water/AlconoxTM (or an equivalent non-phosphate soap) solution to remove residual soil;
- Rinse with potable water;
- Rinse with isopropanol; and
- · Perform a final rinse with deionized water.

The water generated through the decontamination procedures will be stored in an onsite drum for daily disposal.

6.4 Field Documentation

Documentation of field observations and measurements will be primarily recorded in a field logbook. The field logbook will contain all field observations, notes, measurements, etc. Field logbooks utilized on this project will consist of a bound, water-resistant notebook. All pages of the logbook will be numbered sequentially and observations will be recorded in indelible ink. Field log sheets may also be used to record field measurement, observations, data, etc., but will be considered secondary records.

The field logbook for this project will be project-specific and will be maintained in the project files following completion of the Sidewalk Investigation.

For sampling and field activities, the following types of information may be recorded:

- Project name;
- Date:
- Time of notebook entry;
- Personnel;
- Specific activities being conducted;
- Weather conditions;
- Subcontractor information;
- Site observations:
- Site sketches; and
- Photograph log.

The following sections outline the information that will be documented in the field according to the media to be sampled and the activities to be performed:

Soil Sampling

- Personnel;
- Location diagram;
- Date and time of sampling (start and end);
- Sample location ID;
- Depth interval of sample collection;
- Parameters to be analyzed;
- Description of sampling procedures;
- PID readings;
- Description of visual observations of soil properties (soil type, color, odors, etc.);
- General observations:
- Weather conditions:
- Identification and description of any field duplicate samples; and
- Photograph logs.

Groundwater Sampling

- Personnel;
- Location diagram;
- Date and time of sampling (start and end);
- Sample location ID;
- Depth to water/depth to free-phase product;
- Recorded purging parameters (Temp, ph, Specific conductance, turbidity);
- Parameters to be analyzed;
- · Description of low-flow sampling procedures;
- PID readings;
- Description of visual observations of groundwater (LNAPL, sheen, color, odors, etc.);
- General observations;
- Weather conditions;
- Identification and description of any field duplicate samples; and
- Photograph logs.

Each soil and groundwater sample will be identified using an alphanumeric code in all field notes, chain-of-custody forms, and laboratory reports. The sample identification system will consist of the letters MA- for Site identification, followed by sample type and number, and depth, if appropriate.

Site Identification : MA – Maspeth

Sample Type: GW – Groundwater Sample

The monitoring well locations will be referenced by their Maspeth-specific location in an X, Y grid pattern. The point of origin (or 0, 0) will be the southeast corner of the H-pile and lagging system employed during the 2004 to 2008 remedial excavation activities at the Site. The X-axis will be from east to west and the Y-axis will be from south to north. Because the sidewalk is east of the 0, 0 point, all x-coordinates will be negative.

Sample Interval: (a-b) representing the sample interval in feet below ground

surface, if necessary.

Example: MA-GW -5, 25

Where: GW = Groundwater

-5, 25 = Location of well beneath sidewalk, five feet east of origin in

(negative) X-direction and 25 feet from origin in Y-direction.

Waterproof labels marked with indelible ink, or the equivalent, will be used on all sample containers. For QC samples the following stand alone notation, as in the case of trip blanks, or as suffix as in the case of MS for example, will be used in addition to the protocol outlined above.

Trip Blank - TB

Field Blank - FB

<u>Field Duplicates</u> – Instead of using the actual sample identifiers, duplicates will be designated by a letter starting with A (for the first duplicate). For these types of samples the sample interval will be the date followed by the date plus two. For example, the duplicate sample for a soil sample collected on May 23 may be labeled as MA-GP-A (5-7). Subsequent duplicates would be designated as "GP-B", "GP-C". This method has been established to ensure that the duplicates are submitted as blind samples to the analytical laboratory.

Matrix Spike - MS

Matrix Spike Duplicate – MSD

7.0 SAMPLE HANDLING AND CUSTODY

The sample handling, from collection in the field to shipment to the off-site laboratory, including tracking and custody requirements are outlined in this section.

7.1 Sample Labeling

Each sample bottle will be identified with a separate identification label. Labels may be pre-printed and/or augmented by notations made in indelible/waterproof ink. Entry errors will be crossed out with a single line, dated, and initialed. Each securely fixed label will include:

- Project identification;
- Sample identification;
- Sampler's name;
- Preservatives added:
- Type(s) of analysis(es) to be performed; and
- Date and time of collection.

7.2 Sample Handling

Samples will be stored in on-site coolers packed with ice until they are delivered to the laboratory for analysis. Bottles will be packed tightly with Styrofoam, bubble wrap, or similar soft packing materials to protect the containers from breakage. Ice will be added to the cooler along with the chain-of-custody (COC). Coolers will be stored in protected, cool areas to ensure that the samples stay as cool as possible (without freezing). Samples will be placed in coolers directly following sampling to prevent overexposure to sunlight. Field personnel will be responsible for the security of the samples prior to shipment. Coolers will be stored in a secure or monitored area prior to shipment to the laboratory.

Samples selected for laboratory analysis will be handled and maintained following chain-of-custody protocol. The Field Team Leader who is overseeing the field work will also be responsible for the security of samples prior to deliver to the lab. A chain-of-custody will be completed and maintained with the samples, prior to delivery to the laboratory.

Samples will be transported by vehicle to the laboratory for analysis. All coolers delivered to the laboratory will be sealed with mailing tape and a COC seal signed and dated by the person who signs the COC form for that particular cooler of samples. A COC seal will be taped over using clear mailing tape to prevent them from being broken during shipment. Samples will be transported to the laboratory within 24 hours of collection.

Field personnel responsible for sample collection will coordinate with the laboratory the quantity, type and delivery dates for the samples. Field personnel will update the laboratory on any changes in this information. If prompt delivery of samples cannot be guaranteed, the field personnel will be responsible for proper storage of samples until adequate transportation arrangements can be completed. The field personnel will keep the laboratory informed of all field-sampling activities. This communication will be important to allow the laboratory enough time to prepare for the sample's arrival.

7.3 Sample Custody

Sample custody will be designed to assure that each sample is accounted for at all times. The program's sample custody procedures that will be followed during the sample handling activities from the field to the laboratory are summarized below. The laboratory is responsible for sample receipt from the designated shipping agent, completion of the COC documents, verification of proper sample preservation, recording cooler temperatures, maintaining samples in secure properly designated areas, and maintaining internal chain-of-custody documents. The laboratory will notify the on-site engineering staff and/or Con Edison immediately of any sample receipt issues that impact sample integrity and data quality. The objective of the sample custody identification and control system will be to assure, to the extent practicable, that:

- The samples scheduled for collection are uniquely identified:
- The correct samples are analyzed and are traceable to their records;
- Important sample characteristics are preserved;
- Samples are protected from loss or damage;
- Any alteration of samples (e.g., filtration, preservation) is documented;
- A historic record of sample integrity is established; and
- Client confidentiality is maintained.

The COC protocol followed by field sampling personnel will include:

- Documenting procedures and amounts of reagents or supplies that become an integral part of the sample from sample preparation and preservation;
- Recording sampling locations, sample bottle identification, and specific sample acquisition measures on the appropriate forms;
- Using sample labels to document all information necessary for effective sample tracking; and
- Completing COC to establish sample custody in the field before sample shipment.

When coolers are packed and sealed for shipping, the sampling personnel responsible for relinquishing the cooler to the courier will sign the COC form.

The COC will be used to:

- Document sample handling procedures including sample location, sample number and number of containers corresponding to each sample number;
- Document the sample: and
- Document the COC process.

The COC form includes:

- The sample number and the sample bottle identification number, where applicable;
- The name(s) of the sampler(s) and the person shipping the samples;
- The purchase order number, if applicable;
- The project name and number;
- Signature of the samplers;

- The date and time the samples were delivered for shipping;
- The sample description(s);
- The matrix of the sample;
- The number of containers for a particular sample;
- Analysis, container type, and preservation information;
- Analytical data reporting requirements; and
- Category B deliverable will be requested in the notes section of the chain.

Correction or revision to a COC will be made by: drawing a single line through the original entry, writing the revision and initialing and dating the new entry.

Sample custody and control procedures are an integral part of any field operation. Sample custody is often implemented through chain-of-custody procedures.

8.0 EQUIPMENT CALIBRATION AND MAINTENANCE

A maintenance, calibration and operation program is implemented to ensure that routine calibration and maintenance is performed on all field instruments. The program provides instruments of the proper type, range, accuracy and precision to provide data compatible with the specified requirements and desired results. Calibration of measuring and testing instruments is performed internally using in-house reference standards or externally by agencies or manufacturers.

8.1 Responsibility

The Project QA/QC Officer is responsible for ensuring that the field instruments used in the investigations are calibrated and maintained according to manufacturer's specifications. Field instrument instruction manuals describing calibration, maintenance and field operating procedures for these instruments will be on file at the Site for easy reference by field personnel and other project personnel.

The Field Team Leader will be familiar with the field calibrations, operation and maintenance of the instruments, and will perform the prescribed field operating procedures outlined in the operation and field manuals accompanying the respective instruments. They will keep records of all field instrument calibrations and field checks in the field logbook.

8.2 Calibration

As specified in Table 2, field instruments, including PIDs, dust meters, water quality meters, and oil/water interface probe will be calibrated, at a minimum, at the start of each day of fieldwork. The PID and dust meters will be calibrated a minimum of twice daily. More frequent calibration may be warranted based on changes in responsiveness of the instruments or apparently anomalous readings. Refer to Section 6.3 for specific conditions and equipment performance that would indicate the need for more frequent calibration. Instruments that fail calibration or become inoperable during use will be removed from service and tagged to prevent inadvertent use. If on-site monitoring instruments fail the Project Health and Safety Officer will be contacted immediately and will either, provide replacement instruments or have the malfunction repaired immediately.

Calibration will be performed following manufacturers instruction as outlined in the instruction manuals for each field instrument including PIDs, dust, and water quality meters. The oil/water interface probe requires no calibration. The Field Team Leader shall have copies in the field of field equipment instruction manuals for all field instruments.

Records will be prepared and maintained for calibrated measuring and testing instruments to indicate that established calibration procedures have been followed (e.g. results of calibration, problems, corrective action). Records for field instruments used only for this specific project will be kept in the project files.

8.3 Preventive Maintenance

Routine maintenance is performed whenever an instrument is acquired for field use, and when returned from field use. Instrument manuals are kept on file for reference purposes should equipment need repair. Troubleshooting sections of manuals are often useful in assisting personnel performing maintenance tasks. Preventive maintenance, other than routine maintenance and calibration, is performed as needed.

Periodic preventive maintenance is required for sensitive equipment. The field instruments are maintained through periodic calibration and adjustment as required by the instrument manufacturer.

Preventive maintenance procedures and records for laboratory instruments will be maintained by the analytical laboratory and will be available to the Project Team upon request.

9.0 INTERNAL QUALITY CONTROL CHECKS

The QC samples discussed below will be collected during the field program and analyzed by the laboratory to assess laboratory and field QA/QC procedures and the data quality.

9.1 Laboratory Internal QC Checks

The Con Edison laboratory and the contractor laboratory (Spectrum Analytical) are certified by the New York State Department of Health in accordance with the Analytical Services Protocols (ASP). In general, ASP protocols or certification programs require the laboratory to specify the qualifications of personnel; list available instrumentation, analyses performance evaluation samples; and adhere to and document standard operating procedures and quality assurance plans.

It will be the responsibility of the Laboratory QA/QC Officer to document, in each data package provided, that both initial and ongoing instrument and analytical QC functions have been met. Internal quality control checks, including replicates, spiked samples, duplicate samples, laboratory control samples, reagent specifications and checks, and calibration checks, are performed in accordance with the specific methodologies used. The minimum criteria used for analysis will consist of a daily calibration, instrument blank analysis, and sample blank analysis. In addition, at least one spike, one duplicate and one control are analyzed daily for each parameter.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)

Analyses will be collected and submitted to assess laboratory QA/QC. MS/MSD will be run at a frequency of one per twenty samples. The MS and MSD will be collected as separate samples and, thus two volumes of aqueous organic samples will be collected in addition to the routine sample.

9.2 Field Internal QC Checks

For field quality assurance, three types of QA/QC samples will be collected: duplicate, field and trip blank samples. The proposed numbers of QA/QC samples, by type, are discussed below and summarized in Table 3. The sections below describe the purpose of each type of sample.

Field Blanks

Field blanks will be collected throughout the remediation work. Field blanks measure incidental or accidental sample contamination occurring during the entire sample handling process of sampling, transport, sample preparation and analysis. Field blanks can also check on the laboratory water quality and potential method contamination. One field blank will be collected per twenty samples for non-dedicated sampling equipment. Field blanks will be collected by pouring demonstrated analyte-free water over decontaminated soil-sampling devices and into the appropriate sample containers. The field blank will be labeled such that the identity of the sample as a blank will be concealed (i.e., blind blank). Field blanks will be analyzed for the same parameters.

Field Duplicates

The standard frequency for obtaining duplicate samples is one for every twenty samples. Duplicate samples serve as a check on the overall precision of the sampling and analytical methods. Duplicates will be collected in identical, laboratory prepared sample bottles, and will be analyzed for the same parameters. One set of samples will be given the sample identifier indicative of the sample location and the second set of sample bottles will be given a false sample identifier to disguise the identity of the replicated sample (i.e., blind duplicate). Actual sample identifiers for duplicate samples will be noted in the field logbook.

Trip Blanks

A trip blank sample will accompany field samples at a rate of one per shipment. Trip blanks will originate at the contract laboratory, and will be labeled as a trip blank. The water used by the laboratory to prepare the trip blank must be the same as the water used to prepare the method-blank. The trip blanks will accompany the sample containers throughout transport and sampling activities, and will be returned to the laboratory with the field samples. As such, trip blanks will accompany each daily sample shipment containing samples that will be analyzed for VOCs.

10.0 ASSESSMENT AND OVERSIGHT

10.1 Laboratory Performance and System Audits

The analytical laboratory will conduct internal quality control checks and audits in accordance with their internal operating procedures, method specific criteria and governing laboratory or certification programs. Procedures for laboratory performance and system audits will be outlined in the Laboratory Quality Assurance Plan (LQAP). The Laboratory QA Officer will be primarily responsible for conducting these audits. The LQAP will be available to the project team during the project.

The systems audit consists of evaluation of all components of the measurement systems to determine their proper selection and use. Systems audits are normally conducted prior to or shortly after systems are operational, and are then performed on a regularly scheduled basis. Performance audits are conducted periodically, and include the analysis of performance evaluation samples.

10.2 Field Performance Audits

The Project QA/QC Officer or designee will be responsible for auditing project personnel. An audit will be conducted initially during the program to ensure that proper procedures are followed and that subsequent data will be valid. The audit will focus on the details of the QA Program, and will evaluate the following:

- Project Responsibilities;
- Sample Custody Procedures;
- Document Control:
- Sample Identification System;
- QC Corrective Action Procedures:
- Sampling Techniques;
- Adherence to the Approved QA/QC Plan;
- Instrument Calibration;
- Decontamination Procedures; and
- Sample Packing and Shipping Procedures.

The audit will evaluate the implementation of the project QA Program.

The Project QA/QC Officer will also be responsible for conducting one evidence audit. The purpose of the evidence audit is to ensure that proper project documentation is maintained and has been distributed to project personnel.

11.0 DATA REDUCTION, VERIFICATION, USABILITY AND REPORTING

This section of the QA/QCP describes the process that will be followed to verify and validate the project data and field activities. Data verification activities will be performed to ensure that data collected as part of this Sidewalk Investigation are consistent with project quality objectives and measurement performance criteria.

11.1 Data Reduction

All data transformation and data reduction procedures will be clearly documented and placed in the project files. All data transformation and data reduction activities performed on the project data will be carefully monitored by both the Project Manager / Project QA/QC Officer, to ensure that data integrity is maintained.

11.2 Data Verification

Data verification and validation activities will be performed to ensure that data collected as part of the investigation work consistent with project quality objectives and measurement performance criteria.

Upon receipt of both electronic and hard copy analytical data, internal checks will be performed to detect possible errors. The data check will be performed by the Project QA/QC Officer. General checks will include the following:

- Verification of all data requested versus received (check of data against COCs);
- Verification of completeness of data packages;
- Verification of cross references between primary and duplicate samples; and
- A minimum of 10% verification of consistency between laboratory data reports and electronic data.

Rigorous quality control checks will be performed on tabular data and through visual checks. All quality control and quality assurance process documentation will be signed off for accountability reasons.

Data checks that will be completed manually for the following:

- Unknown exploration or sampling point ID;
- Misspelled chemical name:
- Unknown chemical synonym;
- New parameter;
- Inappropriate sample type;
- Invalid sample date/time;
- Sample depth outside starting and ending depths;
- Unknown target constituent list ID;
- Non-matching data for primary and duplicate samples;
- Duplicate record;
- Inappropriate test date/time;
- Holding time violation;
- Dilution factor less than or equal to zero;
- New (undefined) guery codes;

- Missing fields; and
- Relationships between custody and equipment blanks to primary samples.

For data that are generated in the field, the Project QA/QC Officer will work closely with field personnel to evaluate accuracy and integrity of data collection activities. The Project QA/QC Officer will review field sheets and field notes to verify consistency with field observations and activities.

Prior to release by the off-site laboratories, the data will be reviewed internally by the Laboratory QA/QC Officer against all specific QA/QC parameters. The laboratory will use a system of sign-offs in which each analyst will acknowledge that their part of the analysis is complete. Any deviations will be documented and explained in the final laboratory analytical report. The laboratory is responsible for the final results and overall quality of the laboratory data.

11.3 Data Evaluation and Usability

Acceptance criteria for all field and laboratory internal QA samples (field blanks, duplicates, MS/MSD) will be those specified in the corresponding SW-846 and ASP methodologies.

Critical functions for determining the usability of generated data are:

- Strict adherence to the analytical methods;
- Assurance that the instrumentation employed was operated in accordance with defined operating procedures;
- Assurance that quality parameters built into the analytical procedures have been adhered to: and
- Confirmation that the DQOs have been satisfied.

The procedures for assessing the precision, accuracy and completeness of data have been presented in Section 4.0 of the QA/QCP. It will be the responsibility of the Project QA/QC Officer and the Laboratory QA/QC Officer to ensure that these procedures are followed. The DQIs for each data set will be evaluated by comparison of the actual measurement performance criteria against the acceptable limits of these criteria.

11.4 Reconciliation with User Requirements

A Data Usability Summary Report (DUSR) will be prepared by a third-party data validator, Alpha Geoscience of Clifton Park, NY. A resume of the validator, Mr. Donald Anne, is included for NYSDEC approval (see Appendix B). Based on a comparison of the field and laboratory QC data, the Project QA/QC Officer will evaluate how well the analytical data satisfy the DQI and will develop statements regarding the usability of the data relative to the project objectives, project-specific DQOs, and end use of the data.

12.0 CORRECTIVE ACTION

If unacceptable conditions are identified as a result of audits or are observed during field sampling and analysis, the Project QA/QC Officer and the Project Manager will document the condition and initiate corrective procedures. The specific condition or problem will be identified, its cause will be determined, and appropriate action will be implemented.

A corrective action memorandum will be prepared, documenting the problem and detailing the corrective action to be initiated.

Corrective actions may include, but are not limited to, the corrective action matrix presented below.

CORRECTIVE ACTION MATRIX			
Problem	Corrective Action		
Sample exceeded holding time criteria.	Re-sample and re-analyze.		
Field instruments are not within calibration limits.	Calibrate instrument and retest once an acceptable calibration has been obtained.		
Procedures are observed that are not in accordance with the QA/QCP.	QA/QC officer is notified and involved personnel are retrained.		

The efficacy of any corrective action will be assessed by project management to ensure that the deficiency or problem has been adequately addressed.

13.0 CORRECTIVE ACTION REPORTS TO MANAGEMENT

Weekly written reports will be issued to the Con Edison Project Manager. The reports will include an assessment of the project status in relation to the agreed upon timetable.

The reports will also include, as appropriate, a summary of the most recent analytical results, CAMP data, audit findings, and any necessary corrective action procedures. A data quality assessment, which summarizes the measurement data accuracy, precision, completeness, and data qualifications, will be prepared using all available data. The reports will also include a statement addressing the continuing adequacy and relevance of the methodologies. The data quality assessment will be prepared by the Project QA/QC Officer.

14.0 REFERENCES

- U.S. Environmental Protection Agency, *EPA Requirements for Quality Assurance Project Plans*, Development Press, Office of Solid Waste and Emergency Response Directive 9355, 0-7B, March 1987.
- U.S. Environmental Protection Agency, *Data Quality Objectives for Remedial Response Activities*, Development Press, Office of Solid Waste and Emergency Response Directive 9355, 0-7B, March 1987.
- U.S. Environmental Protection Agency. 1986, Revision 1990. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846*, Third Edition. Office of Solid Waste and Emergency Response, Washington, D.C.

TABLES

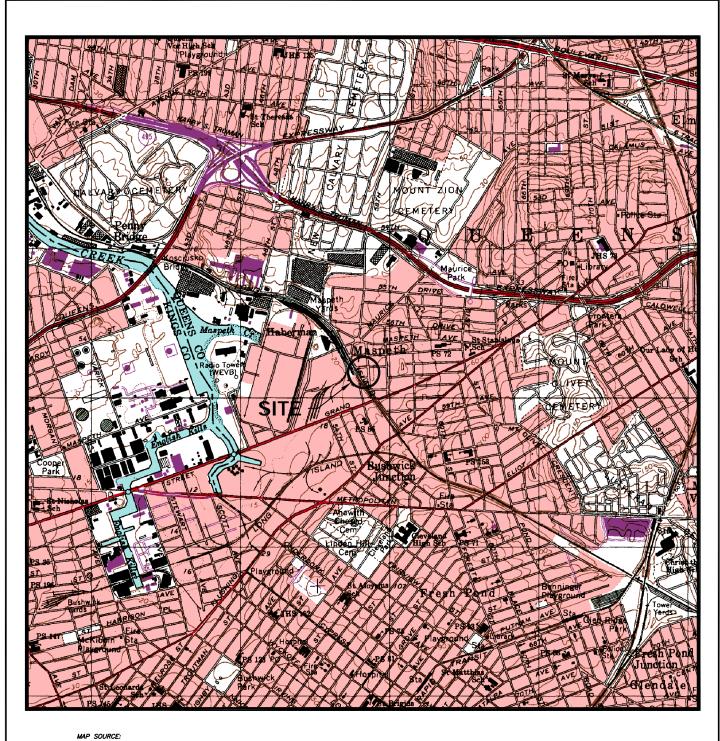
TABLE 1
PROPOSED ANALYTES/CONTAINERS/PRESERVATION/HOLDING TIMES

Parameter	Matrix	Analytical Method	Sample Container	Sample Preservation	Holding Times
PCBs	Soil	EPA Method 8082	(1) 4 oz clear glass	4° C	5 days to extraction then 40 days for analysis*
PCBs	Groundwater	EPA Method 8082	(1) 1L clear glass	4° C	5 days to extraction then 40 days for analysis*
VOCs	Groundwater	SW846 8260	(2) 40 ml clear glass VOA	4° C	7 days*
Total Petroleum Hydrocarbon	Soil	EPA Method 8100 – Modified	(1) 4 oz Amber Glass	4° C	14 days

^{*} calculated from the verified time of sampling receipt (VTSR)

TABLE 2 INSTRUMENT CALIBRATION FREQUENCY

Equipment ⁽¹⁾	Minimum Calibration Frequency ⁽²⁾
Photovac Micro-tip	Twice Daily
MIE Brand, pDR-1000AN Modelor	Twice Daily
Solinst Oil/Water Interface Probe and Water Quality Meter	Daily
NOTES:	
(1) Approved, equivalent field instrumentation may be used.	
(2) Complete calibration and maintenance instructions for all field equipment are provided in the attached instruction manuals.	

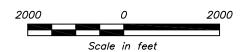

TABLE 3
SUMMARY OF INVESTIGATION SAMPLES

				Field S	amples		QC E	<u>Blanks</u>	
Matrix	Parameter	Analytical Method (A)	Field Samples (B)	Field Duplicate	MS/MSD (Total) (C)	Subtotal	Trip Blank	Field Bland	Total
Hand Cleared Monitoring Well Locations: Soils	PCBs	EPA SW8082	3	1	1	5	0	1	6
Monitoring Well Samples: Soils	PCBs TPH	EPA SW8082 EPA 8100 Modified	15 15	1 1	1	17 17	0 0	1 1	18 18
Monitoring Well Samples: Groundwater	PCBs VOCs	EPA SW8082 EPA 8260	3 3	1	1 1	5 5	0	1	6 6

Notes:

- (A) Results reported using NYSDEC ASP Category B deliverables.
- (B) The number of field samples assumes that all of the hand cleared locations and soil borings will proceed as proposed: The number of groundwater samples includes three newly installed wells.
- (C) Matrix spike/matrix spike duplicate for organic analyses; matrix spike and laboratory duplicate for inorganic analysis.

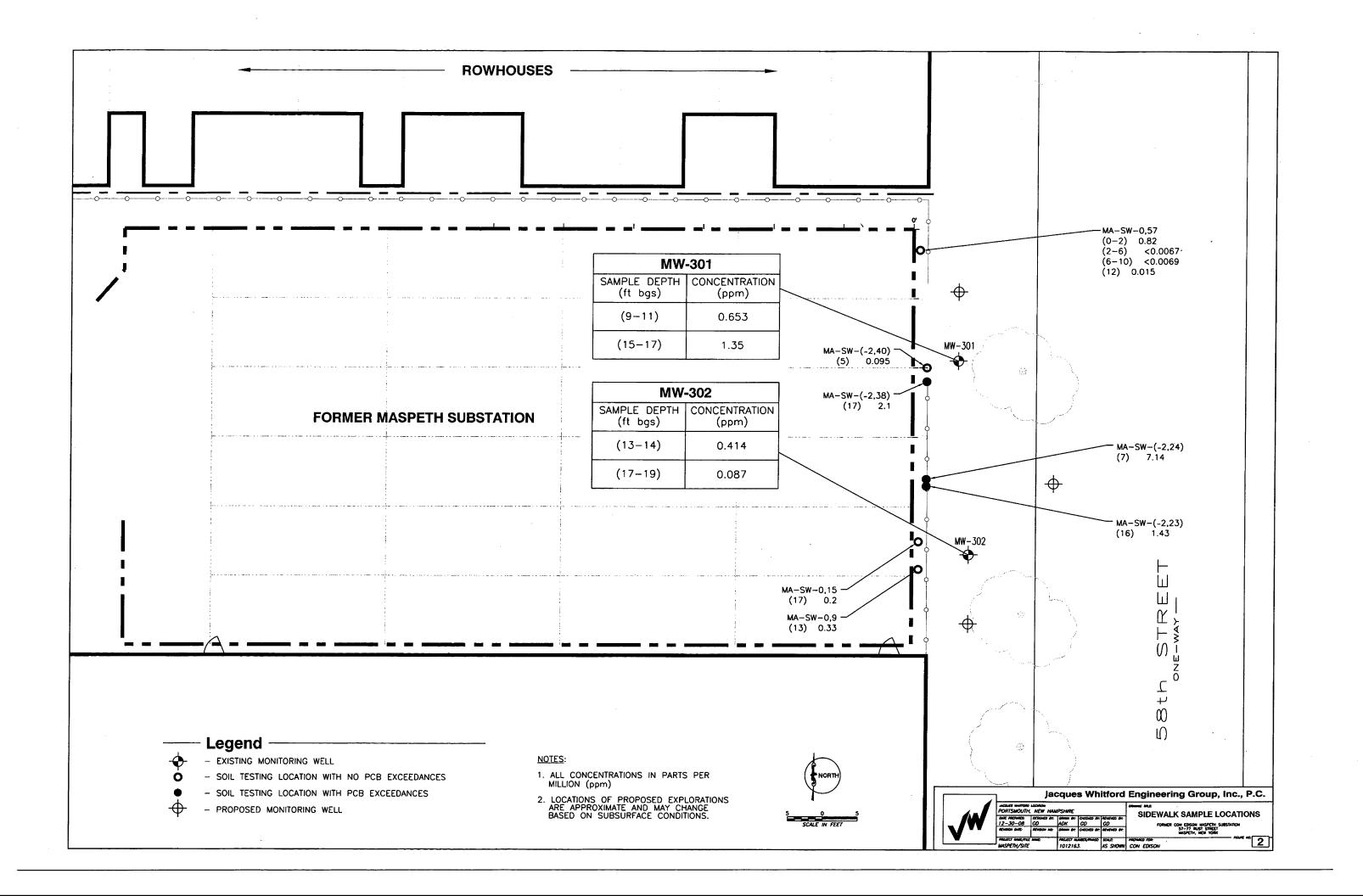
FIGURES



TOPOZONE.COM

USGS BROOKLYN [NY] QUAD 1995

Jacques Whitford Company, Inc.



JACQUES WHITFORD LOCATION: PORTSMOUTH, NEW HAMPSHIRE				
DATE PREPARED:	DESIGNED BY:	DRAWN BY:	CHECKED BY:	REVIEWED BY:
7-16-04	DFM	TS	BSB	DFM
REVISION DATE: 4-17-07	REVISION NO:	DRAWN BY: ADK	CHECKED BY:	REVIEWED BY:
PROJECT NAME/FILE	PROJECT NU	MBER/PHASE:	SCALE:	
CON EDISON MA	101216	<i>3</i> .	1:24000	

DRAWING TITLE: **SITE LOCATION PLAN**

FORMER MASPETH SUBSTATION 57-77 RUST STREET MASPETH, QUEENS, NEW YORK

PREPARED FOR: CON EDISON

APPENDIX A Instruction Manual:

personalDataRAM

personal DataRAM models pDR-1000AN and pDR-1200

INSTRUCTION MANUAL

April 2000 (Revised-jwj May 8, 2002)

Thermo Andersen Inc. 500 Technology Court Smyrna, Georgia USA 30082 Phone: 800-241-6898 or 770-319-9999 Fax: 770-319-0336

www.ThermoAndersen.com

CONTENTS

Section No. WARRANTY				
2.0		FICATIONS		
3.0		GUIDELINES		
	3.1	Handling Instructions	6	
	3.2	Safety Instructions	6	
	3.3	Handling and Operation	6	
		3.3.1 Model <i>p</i> DR-1000AN	6	
		3.3.2 Model <i>p</i> DR-1200	7	
	3.4	Air Sampling Guidelines	8	
	3.5	Environmental Constraints and Certifications	8	
4.0	ACCE	SSORIES	8	
	4.1	Standard Accessories	8	
	4.2	Optional Accessories	9	
5.0	INSTR	RUMENT LAYOUT	9	
	5.1	Front Panel	9	
	5.2	Bottom Base	10	
	5.3	Right Side Panel	10	
	5.4	Back Panel and Belt Clip	11	
	5.5	Sensing Chamber	11	
6.0	PREP	ARATION FOR OPERATION	11	
	6.1	Battery Installation	11	
	6.2	Battery Replacement	12	
	6.3	AC Power Supply	13	
	6.4	Rechargeable Battery Module	13	
	6.5	Zeroing the personal DataRAM	13	
		6.5.1 Zeroing the model pDR-1000AN	14	
		6.5.2 Zeroing the model <i>p</i> DR-1200	14	
	6.6	pDR-1200 Filter Holder Installation	15	

7.0	OPERATING MODES	15
	7.1 Start-Up Mode	
	7.2 Ready Mode	
	7.3 Run and Logging Mode Mode	
	7.3.1 Data Logging	
	7.3.2 Clearing of Memory	
	7.3.3 Run Mode Display and Commands	16
8.0	OPERATION	18
	8.1 Start-Up	
	8.2 Setting Up For A Run	19
	8.3 Measurement Run Procedure	20
	8.4 Abbreviated Run Start/Stop Instructions	22
	8.5 Resetting Procedure	22
9.0	COMMUNICATIONS WITH COMPUTER	23
	9.1 Hardware and Software Requirements	
	9.2 Software Installation Procedure	23
	9.3 Communications Between <i>personal</i> DataRAM and Computer	24
	9.4 Real-Time RS-232 Output	25
10.0	ANALOG SIGNAL OUTPUT	26
	10.1 Analog Output Description	26
	10.2 Analog Output Connection	26
11.0	ALARM	27
	11.1 Alarm Description and Operation	27
	11.2 Alarm Output	27
	11.3 Remote Alarm Unit	27
12.0	MAINTENANCE	28
	12.1 General Guidelines	28
	12.2 Cleaning of Optical Sensing Chamber	28
	12.2.1 Model <i>p</i> DR-1000AN	28
	12.2.2 Model <i>p</i> DR-1200	29
	12.3 Cyclone Cleaning (Model pDR-1200 only)	29
13.0	CALIBRATION	29
	13.1 Factory Calibration	
	13.2 Field Gravimetric Calibration	30
	13.3 Scattering Coefficient Calibration	31
	13.4 Internal Span Check	31

14.0	PARTICLE SIZE CLASSIFICATION (Model pDR-1200 only)	32
	14.1 Size Fractionated Monitoring	32
	14.2 Particle Sizing	32
15.0	CONVERSION BETWEEN personalDataRAM VERSIONS	
	15.1 Conversion procedure from <i>p</i> DR-1000AN to <i>p</i> DR-1200	33
	15.2 Conversion procedure from pDR-1200 to pDR-1000AN	34
16.0	SEQUENCE OF KEYSTROKES AND SCREENS	36

ONE YEAR LIMITED WARRANTY

THERMO ANDERSEN warrants to the original Purchaser that the apparatus to be delivered hereunder will be of the kind designated or specified and free of defects in workmanship or material (excluding rechargeable batteries and rechargeable battery packs). THERMO ANDERSEN makes no other express warranty, and disclaims any implied warranty of merchantability or fitness for purpose.

If the apparatus fails to conform to the above warranty, and notice is received by THERMO ANDERSEN from Purchaser within one year from the date of shipment, THERMO ANDERSEN will, at its option, either repair the defective part or parts or make available a repaired or replacement part. This warranty extends to all parts and labor involved in the required repair to the extent that said repair was not caused by negligence in operation of the apparatus by the Purchaser. THERMO ANDERSEN will perform the repair at its plant with all shipping and insurance costs paid by the Purchaser or, upon mutual consent of the parties, at a site designated by the Purchaser except, in the latter circumstances, the Purchaser will be responsible to reimburse THERMO ANDERSEN for all costs associated with travel, per diem and travel time of those THERMO ANDERSEN individual(s) deemed appropriate to effectuate the repair.

Repair or replacement of the apparatus in the manner and for the time period specified above, is the Purchaser's exclusive remedy and will satisfy all liabilities of THERMO ANDERSEN to Purchaser arising out of the supply or use of the apparatus, whether based on contract, warranty, negligence or otherwise. In no event will THERMO ANDERSEN be liable for any incidental or consequential loss or damage resulting from any failure of the apparatus to conform to the contract of sale.

Rechargeable batteries and rechargeable battery packs shall be warranted for 30 days to be free of defects in workmanship or material. During this 30 days rechargeable batteries and rechargeable battery packs that fail shall be returned to THERMO ANDERSEN for evaluation before warranty replacements are sent.

1.0 GENERAL DESCRIPTION

The MIE *personal* DataRAM™ (for Personal Data-logging Real-time Aerosol Monitor) is a technologically advanced instrument designed to measure the concentration of airborne particulate matter (liquid or solid), providing direct and continuous readout as well as electronic recording of the information.

The *personal* DataRAM is available in two versions: model pDR-1000AN and model pDR-1200. The model pDR-1000AN operates as a passive air sampler whereas the model pDR-1200 uses active air sampling. The user can convert from one to the other of these two versions by means of optional conversion kits offered by MIE, Inc. (see Sections 4.2 and 15.0 of this manual).

The model pDR-1000AN samples passively (i.e., without a pump) the air surrounding the monitor; air accesses freely the sensing chamber of the instrument by means of convection, diffusion, and adventitious air motion. The model pDR-1200, on the other hand, requires a separate air driver (not included) such as a personal-type pump for its operation.

In addition, the model pDR-1200 includes a particle size-selective inlet cyclone which permits size segregated measurements (i.e., PM10, PM2.5, respirable, etc.) as well as enables the user to perform aerodynamic particle sizing by varying the sampling flow rate. The model pDR-1200 incorporates, downstream of its photometric sensing stage, a standard 37-mm filter holder on which all sampled particles are collected for subsequent analysis or gravimetric referencing/calibration, if so desired.

The *personal* DataRAM is the result of many years of field experience acquired with thousands of units of its well known predecessor, the MIE MINIRAM, and embodies many technological advances made possible by the latest electronic hardware and software. The *personal* DataRAM is also a worthy miniaturized companion to the MIE DataRAM, a recognized paragon of portable aerosol monitors.

The *personal* DataRAM is a high sensitivity nephelometric (i.e. photometric) monitor whose light scattering sensing configuration has been optimized for the measurement of the respirable fraction of airborne dust, smoke, fumes and mists in industrial and other indoor environments.

The *personal* DataRAM is an ultra-compact, rugged and totally self-contained instrument designed for hand-held, belt-worn, as well as unattended operation. It is powered either by its internal replaceable battery, or by an optional attachable rechargeable battery pack, or by an AC supply (included as standard accessory). For the model *p*DR-1200, power to an adjunct pump must be provided separately.

Zeroing is accomplished by means of a hand-inflatable "zero air" pouch included with the model *p*DR-1000AN, and by an inlet filter cartridge provided with the model *p*DR-1200. In addition, the instrument automatically checks agreement with its original factory calibration by checking its optical background during the zeroing sequence.

The *personal* DataRAM covers a wide measurement range: from 0.001 mg/m^3 (1 $\mu\text{g/m}^3$) to 400 mg/m^3 , a 400,000-fold span, corresponding to very clean air up to extremely high particle levels.

In addition to the auto-ranging real-time concentration readout, the *personal* DataRAM offers the user a wide range of information by scrolling its two-line LCD screen, such as run start time and date, time averaged concentration, elapsed run time, maximum and STEL values with times of occurrence, etc.

Operating parameters selected and diagnostic information displays are also available. Furthermore, the *personal* DataRAM features complete, large capacity internal data logging capabilities with retrieval through an externally connected computer. The stored information (up to 13,000 data points) includes average concentration values, maximum and STEL values with time information as well as tag numbers.

Selectable alarm levels with built-in audible signal and switched output, a RS-232 communications port, and a programmable analog concentration output (voltage and current) are all part of this versatile instrument.

A custom software package is provided with the *personal*DataRAM to program operating/logging parameters (e.g. logging period, alarm level, concentration display averaging time, etc.) as well as to download stored or real-time data to a PC or laptop for tabular and/or graphic presentation. If required, the data can also be imported to standard spreadsheet packages (e.g. Microsoft ExcelTM, Lotus 1-2-3TM, etc.).

2.0 SPECIFICATIONS

- Concentration measurement range (auto-ranging)¹: 0.001 to 400 mg/m³
- Scattering coefficient range: 1.5×10^{-6} to 0.6 m^{-1} (approx.) @ $\lambda = 880 \text{ nm}$
- Precision/repeatability over 30 days (2-sigma)²:
 ± 2% of reading or ±0.005 mg/m³, whichever is larger, for 1-sec. averaging time
 ±0.5% of reading or ±0.0015 mg/m³, whichever is larger, for 10-sec. averaging time
 ±0.2% of reading or ±0.0005 mg/m³, whichever is larger, for 60-sec. averaging time
- Accuracy¹: ±5% of reading ±precision
- Resolution: 0.1% of reading or 0.001 mg/m³, whichever is larger
- Particle size range of maximum response: 0.1 to 10 μm
- Flow rate range (model *p*DR-1200 only): 1 to 10 liters/minute (external pump required)
- Aerodynamic particle sizing range (model pDR-1200 only): 1.0 to 10 μm
- Concentration display updating interval: 1 second
- Concentration display averaging time³: 1 to 60 seconds
- Alarm level adjustment range³: selectable over entire measurement range
- Alarm averaging time³: real-time (1 to 60 seconds), or STEL (15 minutes)
- Datalogging averaging periods³: 1 second to 4 hours
- Total number of data points that can be logged in memory: 13,391
- Number of data tags (data sets): 99 (maximum)
- Logged data:
 - Each data point: average concentration, time/date, and data point number
 - Run summary: overall average and maximum concentrations, time/date of maximum, total number of logged points, start

time/date, total elapsed time (run duration), STEL concentration and time/date of occurrence, averaging (logging) period, calibration factor, and tag number.

- Elapsed time range: 0 to 100 hours (resets to 0 after 100 hours)
- Time keeping and data retention: > 10 years
- Readout display: LCD 16 characters (4 mm height) x 2 lines
- Serial interface: RS-232, 4,800 baud
- Computer requirements: IBM-PC compatible, 486 or higher, Windows™ '95 or higher, ≥ 8 MB memory, hard disk drive, 3.5" floppy, VGA or higher resolution monitor
- Outputs:
 - * Real-time digital signal (1 sec⁻¹): concentration, 16-character code
 - * Real-time analog signal: 0 to 5 V and 4 to 20 mA. Selectable full scale ranges of 3 : 0 0.1, 0 0.4, 0 1.0, 0 4.0, 0 10, 0 40, 0 100, and 0 400 mg/m 3 . Minimum load impedance for voltage output: 200 k Ω . Maximum load impedance for current output: 300 Ω (when powered by AC power supply)
 - * Alarm output: 1 Hz square wave, 5 V peak-to-peak amplitude. Load impedance > $100~\text{k}\Omega$
- Internal battery: 9V alkaline, 20-hour run time (typ.)
- Current consumption: 15 to 25 mA (in Run Mode); 10 to 20 mA (in Ready Mode)
- AC source: universal voltage adapter (included) 100-250 V~, 50-60 Hz (CE marked)
- Optional battery pack: model *p*DR-BP, rechargeable NiMH, 72-hour run time (typ.)
- Operating environment: -10° to 50° C (14° to 122° F), 10 to 95% RH, non condensing
- Storage environment: -20° to 70° C (-4° to 158° F)
- Dimensions (max. external):
 - * Model pDR-1000AN: 153 mm (6.0 in) H x 92 mm (3.6 in) W x 63 mm (2.5 in) D

- * Model pDR-1200 (including cyclone and filter holder): 160 mm (6.3 in) H x 205 mm (8.1in) W x 60 mm (2.4 in) D
- Weight:
 - * Model *p*DR-1000AN: 0.5 kg (18 oz)
 - * Model *p*DR-1200: 0.68 kg (24 oz)
- Cyclone (included in model pDR-1200 only): BGI model GK 2.05
- Filter holder (included in model pDR-1200 only): Millipore type MAWP 037 AO (with 0.8 μ m pore size filter)

¹Referred to gravimetric calibration with SAE Fine (ISO Fine) test dust (mmd = 2 to 3 μ m, σ_g = 2.5, as aerosolized)

²At constant temperature and full battery voltage

³User selectable

3.0 USER GUIDELINES

3.1 Handling Instructions

The *personal*DataRAM is a sophisticated optical/electronic instrument and should be handled accordingly. Although the *personal*DataRAM is very rugged, it should not be subjected to excessive shock, vibration, temperature or humidity. As a practical guideline, the *personal*DataRAM should be handled with the same care as a portable CD player.

If the *personal*DataRAM has been exposed to low temperatures (e.g. in the trunk of a car during winter) for more than a few minutes, care should be taken to allow the instrument to return near room temperature before operating it indoors. This is advisable because water vapor may condense on the interior surfaces of the *personal*DataRAM causing temporary malfunction or erroneous readings. Once the instrument warms up to near room temperature, such condensation will have evaporated. If the *personal*DataRAM becomes wet (e.g. due to exposure to water sprays, rain, etc.), allow the unit to dry thoroughly before operating.

Whenever the *personal*DataRAM is shipped care should be taken in placing it in its carrying case and repackaging it with the original cardboard box with the factory provided padding.

3.2 Safety Instructions

- Read and understand all instructions in this manual.
- Do not attempt to disassemble the instrument. If maintenance is required, return unit to the factory for qualified service.
- The *personal* DataRAM should be operated only from the type of power sources described in this manual.
- When replacing the internal 9-V battery, follow the instructions provided on the back panel of the unit.
- Shut off personalDataRAM and any external devices (e.g. PC) before connecting or disconnecting them.
- Shut off *personal* DataRAM before replacing the internal battery, or when plugging in or disconnecting the AC power supply or the optional rechargeable battery pack.

3.3 Handling and Operation

3.3.1 Model *p*DR-1000AN

The model *p*DR-1000AN can be operated in any position or orientation. Exposure to high intensity fluctuating light of the interior of the sensing chamber, through the

front and back slotted air openings (see Section 5.5), should be avoided. Such large intensity transients may cause erroneous readings. Direct access of sunlight to the sensing chamber should be prevented.

Typical modes of instrument support/handling include:

- Hand-held. Do not obstruct or cover the sensing chamber opening slots on front and back of unit.
- Belt attached. Use belt clip provided as standard accessory. The unit can be worn
 - on a waist belt, or with optional shoulder belt (model *p*DR-SS) for breathing zone monitoring.
- Table top operation. The *p*DR-1000AN can be placed on a table either in an upright position (i.e., resting on its lower protective bumper), or on its back (i.e., resting on the rear edges of its two protective bumpers).
- Tripod mounted. The unit can be attached to any standard tripod using the threaded bushing on the bottom of the monitor (see Figure 3).
- Fixed point operation. The model *p*DR-1000AN can be mounted at a fixed location (e.g., wall or post) using the optional wall mounting bracket, model *p*DR-WB.

3.3.2 Model *p*DR-1200

The pDR-1200 requires an external air suction device, such as a small diaphragm pump (e.g., model pDR-PU) for its sampling operation. The inlet of the pump must be connected by means of tubing to the hose fitting on the pDR-1200 filter holder attached to sensing chamber (see Figure 2).

The inlet metal tube of the cyclone can be oriented in any desired direction (i.e., upward, forward, downward or backward) by rotating the cyclone body within its holder cup on the right side of the sensing chamber (see Figure 2).

Always ensure unobstructed access to the cyclone inlet when sampling directly the air in the instrument's vicinity. Alternatively, tubing can be connected to the cyclone inlet in order to extract a sample stream from a duct, chamber or other enclosed volume.

Typical modes of instrument support/handling include:

- Hand-held. For example, using a personal type pump, clipped to the belt and using a tubing connection to the pDR-1200.
- Belt attached. Use belt clip kit provided as standard accessory. The unit can be worn on a waist belt, or with the optional shoulder belt (model *p*DR-SS) for breathing zone monitoring. A personal pump can then be belt-worn as well.
- Table top operation. The pDR-1200 can be placed on a table either in an upright position (i.e. resting on its lower protective bumper), or on its back (i.e. resting on its backside).
- Tripod mounted. The unit can be attached to any standard tripod using the

- threaded opening on the bottom base (see accessory attachment fitting on Fig. 4).
- Wall mounted for fixed point monitoring. Use optional wall mounting bracket, model pDR-WB, either in combination with model pDR-PU pump module and model pDR-AC power supply (powering both the pDR-1200 and the pDR-PU), or with a separate pump.

3.4 Air Sampling Guidelines

Although the *personal* DataRAM is designed primarily for intramural use, i.e. for indoor air quality, in-plant, or mining environment monitoring, its active sampling version (model *p*DR-1200) also makes it compatible with extramural use (i.e. ambient monitoring). General ambient monitoring applications, however, are performed preferentially using an appropriate inlet configuration, in order to ensure representative particle sampling under conditions of variable wind speed and direction. Consult with MIE for such outdoor applications.

For typical area monitoring applications, the *personal*DataRAM should be placed and operated centrally within the area to be monitored, away from localized air currents due to fans, blowers, ventilation intakes/exhausts, etc. This is to ensure representative sampling within the area to be assessed.

3.5 Environmental Constraints and Certifications

The *personal* DataRAM is designed to be reasonably dust and splash resistant, however, it is not weatherproof. To operate the unit outdoors provisions should be made to protect it from environmental extremes outside its specified range, and <u>from any exposure to precipitation</u>.

The *personal* DataRAM is certified for compliance with the electromagnetic radiation limits for a Class A digital device, pursuant to part 15 of the FCC Rules. The unit also complies and is marked with the CE (European Community) approval for both immunity to electromagnetic radiation and absence of excessive emission interference.

4.0 ACCESSORIES

4.1 Standard Accessories

The *personal* DataRAM is provided to the user with the following standard accessories:

- Soft-shell carrying case (MIE model *p*DR-CC-1)
- Digital communications cable (MIE model pDR-DCC)
- Analog signal/alarm output cable (MIE model pDR-ANC)
- Communications software disk (MIE model pDR-COM)
- Z-Pouch zeroing kit (MIE model pDR-ZP)(for use with pDR-1000AN only)

- Zeroing filter cartridge and tubing (MIE model pDR-ZF)(for use with pDR-1200 only)
- Belt clip kit (MIE model *p*DR-CA)
- AC power supply (and charger for optional MIE model pDR-BP) (MIE model pDR-AC)
- Metal cyclone (MIE model *p*DR-GK2.05)(for use with *p*DR-1200 only)
- 37-mm filter holder and hose fitting (MIE model pDR-FH)(for use with pDR-1200 only)
- Instruction manual

4.2 Optional Accessories

The following optional accessories are available from MIE for use with the *personal*DataRAM:

- Rechargeable battery module (MIE model *p*DR-BP)
- Shoulder strap (MIE model pDR-SS)
- Remote alarm unit (MIE model *p*DR-RA)
- Wall mounting bracket (MIE model pDR-WB)
- Active sampling kit to convert model *p*DR-1000AN to model *p*DR-1200 (MIE model *p*DR-ASC)
- Upper bumper kit to convert model pDR-1200 to model pDR-1000AN (MIE model pDR-UB)
- Attachable pump unit (MIE model pDR-PU)(for use with pDR-1200 only)

5.0 INSTRUMENT LAYOUT

The user should become familiar with the location and function of all externally accessible controls, connectors and other features of the *personal* DataRAM. Refer to Figures 1 through 6.

All user related functions are externally accessible. All repair and maintenance should be performed by qualified MIE personnel. Please contact the factory if any problem should arise. Do not attempt to disassemble the *personal*DataRAM, except as described in Section 12.0 (Maintenance), **otherwise voiding of instrument warranty will result**.

5.1 Front Panel

Refer to Figures 1 (for model pDR-1000AN) or 2 (for model pDR-1200) for location of controls and display.

The front panel contains the four touch switches (keys) and the LCD screen required for the operation of the *personal* DataRAM.

The four touch switches provide tactile ("popping") feedback when properly actuated.

The ON/OFF key serves only to turn on the unit (while it is in the off state), and to turn it off (when it is operating).

The EXIT and ENTER keys serve to execute specific commands that may be indicated on the screen, and the NEXT key generally serves to scroll the displayed information, e.g. to review the operating parameters that have been programmed, display maximum/STEL values, diagnostic values, etc.

If an incorrect command is keyed (e.g. ENTER when the *personal* DataRAM displays real-time concentration) a beep is heard to alert the user.

The two-line, 16-character per line LCD indicates either measured values of concentration (instantaneous and time averaged on the same screen), elapsed run time, maximum and STEL (short term excursion limit) values, operating and logging parameters, diagnostics, or other messages.

The acoustic alarm transducer is located directly behind the center of the MIE arrow logo on the front panel.

5.2 Bottom Base

Refer to Figures 3 (for model *p*DR-1000AN) or 4 (for model *p*DR-1200). The base of the *personal*DataRAM contains the following: a) internal battery compartment cover, b) external DC power input receptacle, and c) threaded bushing for the attachment of optional battery pack, tripod, or other mounting/support hardware.

Only the internal battery compartment cover should be opened by the user, for removal and replacement of the on-board 9-V battery. Removal of the base plate could result in voiding of instrument warranty.

5.3 Right Side Panel

Refer to Figures 5 (for model pDR-1000AN) or 6 (for model pDR-1200) which shows the manner of attachment of the belt clip assembly (belt clip should be attached only if required by the user). The right side panel (as viewed from front panel) contains the 6-contact modular jack connector receptacle for digital (RS-232) communications and analog signal output. This connector also provides the alarm output control for a remote/auxiliary alarm signal. The contacts (from top to bottom) are:

- 1: 4 20 mA analog output (positive)
- 2: Alarm output
- 3: Digital data transmission
- 4: Digital input

- 5: Common ground (signal returns)
- 6: 0 to 5 V analog output (positive)

The digital communications cable provided as a standard accessory is to be inserted into this receptacle for interconnection to a computer (for data downloading or to reprogram parameters). The analog output cable is provided with flying leads for interconnection with other data processing and/or control systems.

WARNING: The modular jack receptacle on the side of the *personal* DataRAM should be used only for communications with computers and alarm circuitry. **Do not, under any circumstance, connect any communications equipment (e.g., telephone) to this receptacle.**

5.4 Back Panel and Belt Clip

The back panel consists of a label with important user information on safety procedures and certifications, model and serial numbers, etc.

The back panel is provided with mounting hardware for the attachment of the belt clip kit (see Figures 5 or 6 for mounting configuration of the belt clip).

5.5 Sensing Chamber

Referring to Figure 1 or 2, the upper mid-section of the *personal* DataRAM contains the optical sensing chamber. This chamber is the only internal section that the user should access for maintenance purposes (see Section 12.2).

On the model pDR-1000AN, air enters the sensing chamber through the two slot shaped inlets (one on the front and other on the back) under the protective bumper. During instrument operation those two openings should remain unobstructed in order to ensure free access of the surrounding air. When the model pDR-1000AN is used as personal monitor, i.e., clipped to a person's belt, the rear air inlet opening may be partially obstructed, but care should be exercised in ensuring that the front air inlet remains free of any obstructions.

On the model pDR-1200, air enters the sensing chamber through the opening in the cyclone receptacle cup (black cup on right side of sensing chamber), passes through the photometric stage, and exits through the opening in the filter holder receptacle cup (black cup on left side of sensing chamber), after which the air passes through the filter.

6.0 PREPARATION FOR OPERATION

6.1 Battery Installation

When shipped from the factory, the *personal* DataRAM will arrive without its replaceable 9V battery installed. Two fresh alkaline batteries are factory packed

separately in the carrying case, one of which should be installed in the *personal*DataRAM when preparing it for operation.

NOTE: Whenever the *personal* DataRAM is to be left unused for an extended time (i.e. longer than a month), the 9V battery should be removed from the unit.

Removing the battery will lose neither the program, time/date keeping, nor stored data.

To install the battery proceed as follows:

- Hold the *personal* DataRAM upside down.
- Loosen thumbscrew that secures the battery compartment cover (see Figure 3 or 4), and remove that cover.
- Observe battery polarity and the back panel battery orientation pattern (the negative battery terminal is the one closer to the side of the instrument).
- Insert the battery by sliding it in until it bottoms out. It should protrude slightly above the bottom surface of the instrument.
- Place battery compartment cover over battery and, while pushing down the cover firmly (taking care that the cover seats flush on the bottom surface of the *personal*DataRAM), tighten thumbscrew securely.

6.2 Battery Replacement

Normally, only alkaline type 9V batteries (type 1604A, or equivalent) should be used with the *personal* DataRAM.

Only fresh batteries should be used in order to ensure the maximum operating time. The *personal* DataRAM shuts itself off whenever the battery voltage falls below 6 volts (while retaining all programming and data). A fresh 9V alkaline battery, at room temperature, should provide typically 20 hours of continuous operation (please note that not all manufacturers produce batteries of equal capacity). Intermittent operation should extend the total running time because of partial battery recovery effects.

The approximate remaining battery capacity is indicated by the *personal* DataRAM (see Section 8.2) in increments of 1%, starting from 99%. If the remaining battery capacity is 40% or less, immediate restarting after shut off is automatically inhibited to prevent incomplete runs. If, nevertheless, a new run is to be initiated with low remaining battery capacity, do not shut off the *personal* DataRAM at the end of the previous run (i.e., remain in the Ready Mode, see section 7.0).

When significantly extended operating times are required (beyond the typical 20 hours), the use of either lithium or zinc-air batteries can be considered. The use of such alternative battery types can provide about 2 to 3 times longer operation than alkaline batteries.

6.3 AC Power Supply

A universal line voltage AC to DC power supply (MIE model pDR-AC) is provided as standard accessory with the personalDataRAM. This power supply can be used with any line with a voltage between 100 and 240 VAC (50 to 60 Hz). When using that power supply, its output plug should be inserted into the external DC receptacle at the base of the personalDataRAM (see Figure 3 or 4). Insertion of that connector automatically disables the internal 9V battery of the instrument. Removal of the pDR-AC plug from the instrument automatically re-connects the internal 9V battery.

NOTE: Before plugging in or unplugging the external power supply, the *personal* DataRAM must be shut off.

6.4 Rechargeable Battery Module

A rechargeable battery pack (MIE model *p*DR-BP) is available as an optional accessory. This unit attaches directly to the base of the *personal*DataRAM.

The pDR-BP contains a sealed nickel-metal-hydride battery, which provides typically 72 hours of continuous operation between successive charges (for 3-hour charging).

The use of the personalDataRAM, in combination with the pDR-BP connected to the a.c. power line ensures totally uninterruptible operation over indefinitely long time. In this operating mode, line power interruptions lasting up to 72 hours have no effect on measurement run continuity.

To attach the *p*DR-BP to the *personal*DataRAM, the instrument should be shut off. Carefully plug the *p*DR-BP into the external DC RECEPTACLE on the *personal*DataRAM. Rotate the large thumbscrew at the opposite end of the *p*DR-BP tightening it firmly. The *p*DR-BP can be recharged by means of the AC power supply of the *personal*DataRAM.

Detailed instructions for the use of the rechargeable battery module are furnished with that accessory.

6.5 Zeroing the *personal* DataRAM

One of the most important steps to be performed by the user before initiating a measurement run with the *personal* DataRAM is to zero the instrument. This is required to ensure maximum accuracy of concentration measurements, especially at low levels, i.e. below about 0.1 mg/m^3 .

During the 2-minute pre-run automatic zeroing sequence (see Section 8.1), the *personal* DataRAM registers its own optical background, stores that level in its

memory, and then subtracts that background from all measured concentration values, until the zero is updated again by the user.

Although zeroing can be performed as often as desired (e.g., before every run), in practice it should not be necessary to do so more than once-a-month or even less frequently, except if average particulate concentrations should exceed about 0.5 mg/m³.

6.5.1 Zeroing the model *p*DR-1000AN

Zeroing of the model pDR-1000AN requires a particle-free environment such as a clean room, clean bench, duct or area directly downstream of a HEPA filter, or the pDR-1000AN Z-Pouch (standard accessory). In some cases, a very clean, well air conditioned office may offer a sufficiently low particle concentration environment (i.e., $\leq 5 \, \mu g/m^3$) for zeroing, as determined by another monitor (e.g., MIE DataRAM).

To zero the model *p*DR-1000AN by means of its Z-Pouch, proceed as follows:

- Wipe the outside surfaces of the *p*DR-1000AN to remove as much dust from those surfaces as possible before placing the instrument inside the Z-Pouch.
- In a reasonably clean environment, open the zipper of the Z-Pouch and place the *p*DR-1000AN inside it. Close the zipper shut.
- Open the small nipple on the Z-Pouch, and insert the fitting of the hand pump/in-line filter unit into the nipple.
- Start pumping the hand-pump until the Z-Pouch begins to bulge, and proceed with the steps in Section 8.1, pressing the keys of the instrument through the wall of the Z-Pouch. Then continue pumping.
- After completing the zeroing (step 2. of Section 8.1) procedure, open the Z-Pouch zipper and remove the *p*DR-1000AN. Close the zipper and flatten the Z-Pouch while plugging its nipple, in order to prevent dust contamination of the interior of the Z-Pouch.
- The *p*DR-1000AN is now zeroed and ready for a measurement run.

6.5.2 Zeroing the model pDR-1200

To provide the particle-free air required to zero the pDR-1200, either of two methods can be used: a) place the instrument on a clean-air bench or in a clean room, or b) connect to the cyclone inlet the green zeroing filter cartridge supplied with the pDR-1200. In either case, proceed as follows:

• After implementing either of the two methods, above, run the attached pump for at least one minute (e.g., at 4 liters/minute), and then proceed as described in Section 8.1 of this instruction manual, while continuing to run the pump (or leaving the unit in the clean air environment).

- Once the CALIBRATION: OK message appears on the pDR-1200 display, stop the pump and disconnect the zeroing filter cartridge from the cyclone inlet (or remove pDR-1200 from clean bench/room).
- The *p*DR-1200 is now zeroed and ready for a measurement run.

Note: While the pDR-1200 is used to monitor high dust concentrations (≥ 0.5 mg/m³), the flow through its sensing chamber should not be stopped before purging it, which can be done by connecting the green zeroing filter to the cyclone inlet and continuing to run the pump for about 2 minutes before shutting it off. This is to prevent dust contamination of the sensing chamber.

6.6 *p*DR-1200 Filter Holder Installation

The 37-mm filter holder provided with the pDR-1200 must be installed before operation of the instrument, in order to connect a sampling pump. To install the filter holder, remove protective cover, and insert the open collar over the black attachment cup with the external o-ring, on the left side of the pDR-1200 sensing chamber. Ensure complete insertion.

To replace the membrane filter separate the two sections of the plastic holder prying them apart with screwdriver or a coin. Make sure to place backing under the membrane filter before rejoining the two plastic rings.

7.0 OPERATING MODES

The *personal*DataRAM has several different operating modes which will be described in what follows. The specific commands and displays within each of these operating modes will be explained in detail in Section 8.0. A complete flow chart of keystrokes and screens is provided in Section 16.0.

7.1 Start-Up Mode

The *personal*DataRAM enters the Start-Up Mode as soon as the instrument is switched on. The user then has the choice to:

- a) Wait before proceeding;
- b) Zero the instrument and check its readiness; or
- c) Proceed directly to the Ready Mode.

7.2 Ready Mode

Once the *personal* DataRAM is in the Ready Mode, the user is presented with the following alternatives:

- a) Start a run immediately, or after any of the subsequent steps;
- b) Review (by scrolling the display) all operating parameters, status and diagnostic data;

- c) Activate or deactivate the logging function; activate, select (instantaneous or STEL), or deactivate alarm;
- d) Program parameters or output logged data through a computer.

7.3 Run and Logging Mode

The Run Mode is the measurement/logging mode. The user can operate the *personal* DataRAM in this mode either with or without data logging. For example, the instrument may be used first as a survey monitor without logging, for walk-through assessment of an industrial plant, before deciding where to set up the unit for continuous monitoring and logging.

7.3.1 Data Logging

In order to activate the logging function, the unit must be in (or returned to) the Ready Mode (see Section 8.2).

If data logging has been enabled, the data will be logged in the next free (unrecorded) tag or data set. For example, if data had been recorded previously in tags # 1, 2 and 3 then, when a new run is initiated, the new data will be stored in tag #4. The data can be separated into number of sets (tags) up to a total of 99.

Any number of individual data points can be stored in a given tag, i.e. up to a maximum of 13,000 points (i.e. the total memory capacity of the *personal* DataRAM) assuming that no other data had been logged in other tags. This means that the total memory capacity of 13,000 data points can be grouped into any number of the available 99 data sets (tags).

7.3.2 Clearing of Memory

Data recorded in the *personal*DataRAM memory can be erased either through an external PC command using the MIE *p*DR-COM Custom Communications software provided as a standard accessory, or resetting the instrument (see Section 8.5). The PC method permits to erase the data in any number of selected tags, whereas the resetting method results in the deletion of all data stored in the *personal*DataRAM.

7.3.3 Run Mode Display and Commands

When a measurement run has been initiated (see Section 8.3), the user has the following display choices:

- a) Instantaneous and time-averaged concentrations (both on the same screen);
- b) Elapsed run time, and run start time and date (both on the same screen);
- c) Maximum displayed concentration from run start, and time/date at which current maximum occurred;
- d) Short term excursion limit (STEL) from run start, and time/date at which current STEL occurred;
- e) Remaining battery charge, and (if logging function is enabled) remaining free memory.
- f) Analog output concentration range (if enabled)

The user can command the termination of the run at any time returning it to the Ready Mode. To download logged data into a PC, the *personal* DataRAM must be in the Ready Mode. No changes in the program parameters or operating conditions can be made while in the Run Mode.

The *personal* DataRAM can be shut off from any of the three operating modes. Even if shut off while in the Run Mode, the instrument will save all stored data.

8.0 OPERATION

8.1 Start-Up

	KEY	DISPLAY	NOTES
1.	ON/OFF	START ZERO:ENTER GO TO RUN: NEXT	Before starting a run with the <i>personal</i> DataRAM, zero it (see Section 6.5) and key ENTER while the unit is exposed to particle-free air. Alternatively, key NEXT to go to RUN/READY mode. If ENTER is keyed:
2.	ENTER	ZEROING V2.00	Keep clean air flowing while ZEROING is displayed* for 1.1 min., followed by one of these screens:
		CALIBRATION: OK	or,
		BACKGROUND HIGH	or,
		MALFUNCTION	If CALIBRATION: OK, then go to step 3. If one of the other two screens is displayed, consult Section 12.0.
3.	NEXT	START RUN: ENTER READY: NEXT	To start a measurement run key ENTER (Section 8.3, step 1). To set up for a run and scroll logging/operating parameters, key NEXT (see Section 8.2).
4.	ON/OFF	TURN OFF PDR? Y:ENTER N:NEXT	Keying ON/OFF while the unit is operating will elicit this message to prevent accidental shut off. To confirm shut down, key ENTER . To continue operation, key NEXT .

 $^{{}^{\}star}$ The number following the V on the screen refers to the installed firmware version.

8.2 Setting Up For A Run (Ready Mode)

	KEY	DISPLAY	NOTES
1.	NEXT	LOGGING DISABLED	This screen indicates the logging status. To enable the logging function, key ENTER. Toggling of the on/off logging status can be done by keying ENTER.
2.	ENTER	LOG INTRVL 600s TAG#: 4	This message indicates that logging is enabled. Example is for 10-min log period, selected through the PC (see Section 9.0), and next free tag is #4.
3.	NEXT	ALARM: OFF	This screen indicates the alarm status. Keying ENTER repeatedly toggles through the 3 alarm modes:
4.	ENTER	ALARM: INSTANT LEVEL:1.50 mg/m3	This enables the alarm based on the real-time concentration. The level (e.g. 1.50 mg/m3) must be set on the PC.
5.	ENTER	ALARM: STEL LEVEL:0.50 mg/m3	This enables the alarm based on the 15-min STEL value. The level (e.g. 0.50 mg/m3) must be set on the PC.
6.	NEXT	ANALOG OUTPUT: DISABLED	This screen indicates the analog signal output status. Keying ENTER will enable the analog output. Toggling the analog output on/off can be done by keying ENTER :
7.	ENTER	ANALOG OUTPUT: 0 – 0.400 mg/m3	This enables the analog output. The concentration range (e.g., $0 - 0.400$ mg/m ³) must be set on the PC.
8.	NEXT	CAL FACTOR: 1.00 DIS AVG TIME 10s	This screen displays the calibration factor and the display averaging time. Both values can be edited via PC.

9.	NEXT	BATTERY LEFT 83% MEMORY LEFT 96%	This screen displays the remaining battery charge, and the remaining percentage of free memory.
10.	NEXT	CONNECT TO PC	When this screen has been selected, the operating parameters can be edited and/or the logged data can be downloaded via the PC (see Section 9.0). If NEXT is keyed again, the screen returns to RUN/READY:
11.	NEXT	START RUN: ENTER READY: NEXT	The instrument is now ready to run following the procedure in section 8.3.

8.3 Measurement Run Procedure

	KEY	DISPLAY	NOTES
1.	ENTER	LOGGING DISABLED	or, if logging was enabled:
		LOG INTRVL 600s TAG #: 4	<u>Logging status will be displayed</u> <u>for 3 seconds</u> .
		CONC*0.047 mg/m3 TWA 0.039 mg/m3	After a 3-second delay, the concentration screen appears (values shown here are examples). CONC is the real-time and TWA is the time-averaged concentration. The * appears only if logging has been enabled.
2.	EXIT	TERMINATE RUN? Y:ENTER N:EXIT	To terminate the current run and return to the Ready Mode, key ENTER . To continue the run, key EXIT .
3.	EXIT	CONC*0.047 mg/m3 TWA 0.039 mg/m3	Keying NEXT successively scrolls the display to show various run values (elapsed run time, maximum, STEL, etc.). Keying EXIT from any of those screens returns to the concentration display.

4.	NEXT	ET 06:12:49 ST 08:18:26MAY15	This screen shows the elapsed run time (ET) and the run start time/date (ST).
5.	NEXT	MAX: 0.113 mg/m3 T 10:08:44 MAY15	This screen shows the maximum concentration of current run and time/date of occurrence.
6.	NEXT	STEL:0.058 mg/m3 T 09:59:22 MAY15	This screen shows the 15-min STEL value of the current run and the time/date of occurrence.
7.	NEXT	BATTERY LEFT 83%	or, if logging was enabled:
		BATTERY LEFT 83% MEMORY LEFT 96%	This screen shows the amount of usable charge left in the battery and, if logging has been enabled, the overall amount of free memory left.
8.	NEXT	ANALOG OUTPUT: 0 – 0.400 mg/m3	This screen shows the status of the analog signal output, and the range, if this output has been enabled.
9.	NEXT	CONC*0.047 mg/m3 TWA 0.039 mg/m3	The last NEXT command returns the display to the concentration screen.
10.	EXIT	TERMINATE RUN? Y:ENTER N:NEXT	As indicated in step 2, to end current run, key ENTER , to return to the Ready Mode:
11.	ENTER	START RUN: ENTER READY: NEXT	This keystroke terminates the current run and returns the unit to the Ready Mode.

If during a run the instrument memory is filled completely, or if all 99 tags have been used, the run is automatically terminated and the display will indicate:

RUN TERMINATED FULL MEMORY

If a new run is initiated after the memory has been filled, the *personal* DataRAM can be operated only as a monitor without logging. The memory must then be cleared (see Section 7.3.2) first before logging can be enabled again.

8.4 Abbreviated Run Start/Stop Instructions

To power-up and start a measurement run without zeroing and without logging, proceed as follows:

• Key sequentially **ON/OFF**, **NEXT** and **ENTER**.

To terminate run and shut down, proceed as follows starting from the concentration screen (otherwise key **EXIT** first):

• Key sequentially **EXIT**, **ENTER**, **ON/OFF** and **ENTER**.

8.5 Resetting Procedure

The *personal*DataRAM memory can be reset through commands entered on its own keypad (i.e. without requiring a PC).

Resetting accomplishes the following:

- Erases all stored data from memory;
- Resets all parameters and operating conditions to their default values and conditions; and
- Cancels the zero correction offset.

The procedure to reset the instrument is as follows:

Starting with the unit shut off, press the EXIT and ENTER keys at the same time, and while holding down those two keys, press ON. The screen will then indicate: PDR SELF-TEST... and several diagnostic screens will appear in rapid sequence (see Section 16.0, Resetting/Electronics Checking Mode), ending in the message TESTING COMPLETE. Shut off unit. When turned on again, the *personal* DataRAM memory will have been reset, as described above.

The **default** values and operating conditions of the *personal* DataRAM are:

- Logging period (LOG INTRVL): 60 seconds
- Logging status: disabled (LOGGING DISABLED)
- Alarm level: 1 mg/m³
- Alarm status: disabled (ALARM: OFF)
- Analog output: 0 to 4 mg/m³
- Analog output status: disabled (ANALOG OUTPUT :DISABLED)
- Real-time display averaging time (DIS AVG TIME): 10 seconds
- Calibration factor (CAL FACTOR): 1.00

When turning on the *personal*DataRAM after resetting the instrument, it should be zeroed (see steps 1. and 2. of Section 8.1) before a run is initiated. Otherwise, its internal optical background level will not be subtracted from the indicated concentration readings. Alternatively, if the instrument is not zeroed after resetting, it will indicate its unsubtracted optical background when run under particle free conditions.

9.0 COMMUNICATIONS WITH COMPUTER

9.1 Hardware and Software Requirements

The computer requirements to install the software provided with the *personal* DataRAM (MIE pDR-COM) are the following:

- IBM-PC compatible
- 486 or better processor
- Minimum operating system: Windows 95™ or better
- ≥ 8 MB of RAM
- 2 MB hard disk drive
- 3.5" floppy drive
- VGA or higher resolution monitor

NOTE: When large files are logged in the *personal* DataRAM in one single tag, a faster computer speed is required to handle the data. For example, if all 13,000 data points are logged in one tag, a Pentium I or II processor with a minimum speed of 166 MHz will be required. If, however, the maximum number of data points per tag is 1,000 or below, a 33 MHz, 486 DX processor will suffice.

MIE custom hardware and software (provided as standard accessories):

- Digital communications cable (MIE model pDR-DCC)
- Software floppy disk (3.5", MIE model *p*DR-COM)

9.2 Software Installation Procedure

To install the MIE provided software in the computer, proceed as follows:

- 1. Insert the 3.5" disk labeled "pDR-COM" into computer.
- 2. For Windows 95^{TM} users, select **Start** and then **Run**. For Windows 3.1 and 3.11 users, from Program Manager select **File** and then **Run**.
- 3. Type in on the **Command Line**: a: install (or b: install, as required).
- 4. The message "**Do you wish to install** *p***DR-COM?**" will appear. Click **OK** to continue, or **Cancel**.

- 5. A message appears allowing the option to change the default directory: "C:\PDRCOM". It is advisable to leave the default directory (unless you address the hard drive by a different letter), and select **OK**.
- 6. After a successful installation, the message "Installation Complete!" will appear.

9.3 Communication Between personal DataRAM and Computer

To effect the communication between the *personal*DataRAM (via the *p*DR-COM software installed in the computer as described in the preceding section) and the PC proceed as follows:

- 1. Connect the personalDataRAM to one of the computer's serial ports using the pDR-DCC cable provided by MIE. This cable has a 9-pin female connector for the computer port.
- 2. Key **ON** the *personal*DataRAM and then key **NEXT** repeatedly until CONNECT TO PC is displayed on the *personal*DataRAM.
- 3. On the computer, double click on the pDR-COM icon. A four-tabbed notebook display should appear. Click on the Com Port Select and select the port to which the pDR-DCC cable has been connected.
- 4. From the four-tabbed notebook displayed on the computer screen select the tab with the desired option. The options are:
- **Main**: This page allows the user to input the *personal* DataRAM serial number (or any other desired label), and select the Serial Com Port.
- **Logged data**: This page allows the user to download, tabulate, print data, or transfer to a CSV file the data stored in the *personal*DataRAM. This page also serves to display real-time numerical data when the computer is connected to the *personal*DataRAM in the Run Mode.
- **Graph data**: This page enables the downloading and graphing of stored data to the computer screen and to a printer. In the Run Mode, this page displays the real-time data in graphic format.
- Configure pDR: This screen allows the user to edit the operating/logging parameters. Click on the item to be edited and select or type in the new value. To review the parameter values currently programmed into the *personal*DataRAM, click on Get configuration. After editing the parameters, click on Set configuration to input the new values into the *personal*DataRAM program.

Most operations within pDR-COM are self-evidently labeled, including fly-over dialog boxes. In addition, instructions may be found in the On-line Help files by selecting **Help** and then **Contents**.

The following operating/logging parameters of the *personal*DataRAM are selected (edited) via the computer:

- Current date (month and day of the month)
- Current time (hour, minute and second)
- Display averaging time (1 to 60 seconds, in 1-second increments)
- Calibration factor (0.01 to 9.99, in 0.01 increments)
- Logging interval (1 to 14,400 seconds, in 1-second increments)
- Analog output full scale concentration (0.1, 0.4, 1, 4, 10, 40, 100, or 400 mg/m³)
- Analog output status (enabled, or disabled) (can also be selected directly through *personal* DataRAM keyboard, see Section 8.2)
- Alarm level (0.001 to 409.599 mg/m 3 , in 1- μ g/m 3 increments)
- Alarm mode (Off, Instantaneous, or STEL) (can also be selected directly through *personal*DataRAM keyboard, see Section 8.2)

The serial number of the *personal*DataRAM is transferred automatically to the PC and displayed on its screen.

In addition, the user can input any other identification for the instrument (up to 20 characters).

Note: The year is entered as a two-digit number; year 2000 is treated correctly as a leap year (*personal* DataRAM version 1.70 or higher).

9.4 Real-Time RS-232 Output

During the RUN mode, the *personal*DataRAM can communicate real-time concentration data through its serial port via the *p*DR-COM software package. This software application decodes the data and displays it on the computer screen in both graphical and tabulated form.

In order to use this output with some other application, the following information will enable the user to decipher the encoded output signal.

The communication settings for the digital output of the *personal* DataRAM are:

- Baud rate: 4800 bps
- Data bits: 8
- Stop bits: 1
- Parity: none
- Flow control: Xon/Xoff

Every second during a run, the *personal* DataRAM serial port will output a sixteen-character code. It consists of two brackets with 14 hexadecimal digits between them,

representing sum check (2 digits), sensed concentration (8 digits), and calibration factor (%, 4 digits). The concentration in $\mu g/m^3$ is obtained by multiplying the sensed concentration times the calibration factor and dividing by 100.

10.0 ANALOG SIGNAL OUTPUT

10.1 Analog Output Description

The *personal* DataRAM incorporates the capability to provide both a voltage and a current signal output directly proportional to the sensed concentration of airborne particulates. Both these analog signal outputs are concurrently available. These outputs are provided, principally, for fixed point applications with hard-wired installations, such as for continuous HVAC monitoring and control.

The particulate concentration range corresponding to the output voltage and current ranges (0 to 5 V and 4 to 20 mA) can be user selected (via a PC). The most sensitive range available is 0 to 0.100 mg/m^3 , and the least sensitive range is 0 to 400 mg/m^3 . For example, if the user selects the analog output range of 0 to 0.400 mg/m^3 then the analog output signal levels, at a concentration of 0.200 mg/m^3 , would be 2.5 V and 12 mA.

Selection of the concentration range of the analog output must be performed on the PC. This range is independent of the digital display, data logging and real-time digital output range which are controlled automatically (auto-ranging).

Enabling the analog output increases the current consumption from the power source (battery or power supply) of the *personal* DataRAM by typically 5 mA when no load is connected to the analog signal current output. If such a load is connected then the current consumption of the *personal* DataRAM further increases by the magnitude of the output signal current (up to a maximum increment of 20 mA). Therefore, when not using the analog output, it is advisable to disable that output (see Section 8.2) in order to minimize power consumption (this is important only when powering the *personal* DataRAM from a battery source).

10.2 Analog Output Connection

The *personal* DataRAM is provided with a cable (model pDR-ANC) which has a 6-contact plug at one end and flying leads at the other. There are 4 leads for the analog and alarm outputs. The additional two contacts of the connector are used only for digital communication with a PC, for which a separate cable (model pDR-DCC) is provided.

Counting from top to bottom on the *personal* DataRAM connector receptacle, contact #1 is the positive 4 – 20 mA analog output, contact #2 is the alarm output, contact #5 is the common ground (return for all signals), and contact #6 is the positive 0 – 5 V analog output.

For the 0-5 V output signal, the externally connected load must have an impedance of more than 200 kilo-ohms. For the 4-20 mA output signal, the externally connected load must have an impedance of less than 200 ohms when powering the *personal* DataRAM with a battery, or less than 300 ohms when using the its AC supply.

Since both voltage and current outputs are present at the same time, both can be used concurrently, if so required.

The accuracy of the analog output signals is better than 1% of the reading with respect to the digital reading.

11.0 ALARM

11.1 Alarm Description and Operation

The *personal* DataRAM alarm function is provided both as an audible signal as well as an electrical output. The audible alarm consists of a series of beeps generated by an on-board piezo-transducer. The electrical output, available at the digital communications port, consists of a 1 Hz square wave signal which can be used to trigger/activate other equipment through an appropriate interface (consult with the factory).

The alarm function can be enabled/disabled by the user through the *personal*DataRAM keyboard (see Section 8.2). Setting of the alarm level must be performed on the PC (see Section 9.0).

The alarm is triggered whenever the preset alarm level is exceeded based either on: a) the displayed real-time concentration, if ALARM: INSTANT was selected (see Section 8.2), or b) a 15-minute running average concentration, if ALARM: STEL was selected. When the concentration falls below that level the alarm condition stops. While the alarm is on the user can stop it (i.e. silence the alarm) by pressing any key of the *personal* DataRAM. If the concentration continues to exceed the set alarm level after 10 seconds, however, the alarm restarts.

11.2 Alarm Output

A pulsed voltage output is available on the *personal* DataRAM in synchronism with the audible signal. This signal consists of a 1 Hz square wave with an amplitude of 5 V pp. An externally connected load should have an impedance of no less than 100 kilo-ohms. This alarm output signal is available at pins 2 and 5 (counting from top to bottom) of the 6-contact output/communications port on the side of the *personal* DataRAM (see Figure 5 or 6).

11.3 Remote Alarm Unit

An alarm relay unit (MIE model pDR-RA) is available as an optional accessory for the personalDataRAM. The pDR-RA, when connected to the alarm output of the

personal DataRAM, provides a switched output triggered by the alarm signal of the monitor. This switched output (up to 8 amperes, 250 volts) can be used to activate or deactivate other equipment (e.g. ventilation systems, machinery, etc.), or to control remotely located (by wire connection) alarm indicators (e.g. buzzers, lights, etc.).

12.0 MAINTENANCE

12.1 General Guidelines

The *personal* DataRAM is designed to be repaired at the factory. Access to the internal components of the unit by others than authorized MIE personnel voids warranty. The exception to this rule is the occasional cleaning of the optical sensing chamber.

Unless a MALFUNCTION message is displayed, or other operational problems occur, the *personal* DataRAM should be returned to the factory once every two years for routine check out, test, cleaning and calibration check.

12.2 Cleaning of Optical Sensing Chamber

Continued sampling of airborne particles may result in gradual build-up of contamination on the interior surfaces of the sensing chamber components. This may cause an excessive rate of increase in the optical background. If this background level becomes excessive, the *personal* DataRAM will alert the user at the completion of the zeroing sequence, as indicated in Section 8.1, by the display of a BACKGROUND HIGH message. If this message is presented, the *personal* DataRAM can continue to be operated providing accurate measurements. However, it is then advisable to clean the interior of the sensing chamber at the first convenient opportunity, proceeding as indicated below.

12.2.1 Model pDR-1000AN

- Remove the two screws on the top of the large protective bumper that covers the sensing chamber (see Figure 1);
- Remove the large protective bumper by lifting it firmly upwards and away from the sensing chamber;
- Remove the socket-head screws on the front and back black covers that were
 exposed by removal of the large top bumper. Lift away the freed front and back
 covers of the sensing chamber; set them aside carefully and such that they can
 be reattached in the same position as they were previously; avoid touching the
 dull black side of these plates;
- Using filtered (particle-free) pressurized air, blow the inside of the sensing chamber taking great care in not marring or scratching any of the exposed surfaces;
- Reposition the two sensing chamber cover plates in the same location (front and back) as they had been originally. Insert and tighten socket head screws firmly

- making sure that the two plates are aligned perfectly with the top of the sensing chamber;
- Reposition large protective bumper over sensing chamber pushing down until
 properly seated. Insert the two top screws holding down the bumper and
 tighten gently (do not over-tighten);
- Check optical background by zeroing the *p*DR-1000AN as indicated in Section 8.1. If the sensing chamber cleaning was performed correctly, the message CALIBRATION: OK should be displayed at the end of the zeroing period.

12.2.2 Model *p*DR-1200

- Remove the two screws (one in the front and one in the back) holding the front and back gasketed covering plates of the sensing chamber, and set these plates aside, such that they may be reattached in the same location as they were previously.
- Using filtered (particle-free) pressurized air, blow the inside of sensing chamber taking great care in not marring or scratching any of the exposed surfaces.
- Reposition the two sensing chamber cover plates in the same location (front and back) as they had been originally. Insert and tighten socket head screws firmly making sure that the two plates are aligned perfectly with the top of the sensing chamber.
- Check optical background by zeroing the *p*DR-1200 as indicated in Section 8.1. If the sensing chamber cleaning was performed correctly, the message CALIBRATION: OK should be displayed at the end of the zeroing period.

12.3 Cyclone Cleaning (Model *p*DR-1200 only)

The cyclone will require occasional cleaning. It is advisable to do so whenever the sensing chamber of the pDR-1200 is cleaned (see above). To clean the cyclone, remove it from its black attachment cup on the sensing chamber , and unscrew the grit pot (narrower knurled end). Use clean pressurized air to blow out the grit pot and through all openings of cyclone body. Reattach grit pot to cyclone body and insert cyclone body into attachment cup making sure it is fully inserted.

13.0 CALIBRATION

13.1 Factory Calibration

Each *personal*DataRAM is factory calibrated against a set of reference monitors that, in turn, are periodically calibrated against a gravimetric standard traceable to the National Institute of Standards and Testing (NIST).

The primary factory reference method consists of generating a dust aerosol by means of a fluidized bed generator, and injecting continuously the dust into a mixing chamber from which samples are extracted concurrently by two reference filter collectors and by two master real-time monitors (MIE DataRAMs) that are used for the routine calibration of every *personal* DataRAM.

The primary dust concentration reference value is obtained from the weight increase of the two filters due to the dust collected over a measured period of time, at a constant and known flow rate. The two master real-time monitors are then adjusted to agree with the reference mass concentration value (obtained from averaging the measurements of the two gravimetric filters) to within ±1%.

Three primary, NIST traceable, measurements are involved in the determination of the reference mass concentration: the weight increment from the dust collected on the filter, the sampling flowrate, and the sampling time. Additional conditions that must be met are: a) suspended dust concentration uniformity at all sampling inlets of the mixing chamber; b) identical sample transport configurations leading to reference and instrument under calibration; and c) essentially 100% collection efficiency of filters used for gravimetric reference for the particle size range of the test dust.

The test dust used for the MIE factory calibration of the *personal*DataRAM is SAE Fine (ISO Fine) supplied by Powder Technology, Inc. It has the following physical characteristics (as dispersed into the mixing chamber):

- Mass median aerodynamic particle diameter: 2 to 3 μm
- Geometric standard deviation of lognormal size distribution: 2.5
- Bulk density: 2.60 to 2.65 g/cm³
- Refractive index: 1.54

13.2 Field Gravimetric Calibration

If desired, the *personal* DataRAM can be calibrated gravimetrically for a particular aerosol (dust, smoke, mist, etc.) under field conditions (actual conditions of use). To effect such calibration in the particle environment of interest, proceed as indicated below.

For field calibration of the model pDR-1000AN, a personal type filter sampler is placed side-by-side (collocated) to the pDR-1000AN to be calibrated, and the two units should be started simultaneously. For the model pDR-1200, its own filter and attached pump can be conveniently used for the same purpose.

- Weigh and load into filter holder a fresh membrane filter.
- Start pump.
- Immediately turn on *personal* DataRAM and start a run such that the pump and the *personal* DataRAM are started nearly simultaneously.

The duration of this comparison run should be sufficient to collect a mass of at least 1 mg on the reference filter (in order to permit accurate weighing of the collected mass by means of an analytical balance). The time-weighted average (TWA) reading of the *personal* DataRAM can be used to estimate the required sampling time to collect the above-mentioned mass on the filter. To estimate the required sampling time (ET as measured on the *personal* DataRAM) in minutes, read the TWA value

(see Section 8.3) after an elapsed time (ET) of one minute or more, and apply the following relationship:

$$ET \ge 500/TWA$$

For example, if TWA = 2.5 mg/m^3 , then ET $\geq 200 \text{ minutes}$ (approximately 3 hours). If the TWA value changes significantly as the run proceeds, recalculate the required ET accordingly.

At the end of the run (after time ET has elapsed), record TWA, ET and the flow rate Q used to sample the air. Weigh the filter on an analytical balance and obtain Δm , the mass increment due to the collected particles.

Calculate the average gravimetric concentration C, as follows:

$$C = 1000 \Delta m/ETxQ$$

Compare the recorded value of TWA and the calculated value C, and calculate the calibration factor to be programmed into the *personal* DataRAM (see Section 9.0) as follows:

$$CAL FACTOR = C/TWA$$

For example, if C was found to be 3.2 mg/m³, and TWA had been determined to be 2.5 mg/m³, the CAL FACTOR equals 1.28. Select this value on the PC, as described in Section 9.0. This completes the gravimetric calibration of the *personal* DataRAM for a specific aerosol.

13.3 Scattering Coefficient Calibration

Users interested in using the *personal* DataRAM for scattering coefficient measurements (e.g., for atmospheric visibility monitoring) should contact the factory. A special primary Rayleigh scattering calibration for such purpose can be performed by MIE.

13.4 Internal Span Check

The zeroing procedure (see Section 8.1) and the resulting normal diagnostic display of "CALIBRATION: OK" (step 2) informs the user that the instrument's calibration agrees with the original factory setting. This is an internal span check that consists of an automatic comparison between the initial (factory) optical background of the *personal* DataRAM (registered in its non-volatile memory), and the current optical background sensed during the zeroing sequence.

14.0 PARTICLE SIZE CLASSIFICATION (model pDR-1200 only)

The particle size selective cyclone of the pDR-1200 provides the user with two important capabilities: a) to measure the particulate matter concentration of a specific aerodynamic size fraction, and b) to determine the mass median size of a particle population. These two applications will be discussed in what follows. For both these applications, a variable measured flow rate pump is required, such as the MIE model pDR-PU (for which a separate instruction manual is provided).

14.1 Size Fractionated Monitoring

The pDR-1200 can be used to monitor a specific particle size fraction below a selectable cut off equivalent aerodynamic diameter. The particle size cut point can be selected by adjustment of the sampling flow rate. The higher this flow rate through the cyclone the smaller the cut off particle diameter. Figure 7 is a graph showing the dependence of the particle cut off size in micrometers as a function of the sampling flow rate in liters per minute. The cut off size is the particle aerodynamic diameter at which the collection efficiency of the cyclone is 50%, or conversely, the size at which the cyclone transmission is 50%. For example, to obtain a particle size cut off of 2.5 μ m (i.e., PM2.5), the required sampling flow rate is 4 liters/minute. A that flow rate only particles smaller than (approximately) 2.5 μ m are allowed to pass into the pDR-1200 sensing stage, to be monitored and then to be collected on the filter.

As can be seen on Fig. 7, the lowest particle size cut for the GK 2.05 cyclone included with the pDR-1200 is about 1 μ m, and the largest is about 12 μ m. For particle size classification outside this range, consult with MIE.

14.2 Particle Sizing

The selectable particle size capability of the cyclone, in combination with the concentration measuring capability of the photometric system of the pDR-1200 permits the user to determine the mass median aerodynamic particle diameter of an aerosol, i.e., of the airborne particle population being sampled.

One simple procedure to determine the median particle size is as follows (please refer to the graph of Fig. 7):

- Remove cyclone from its black attachment cup and set cyclone aside
- Start pump and sample aerosol at a flow rate between 2 and 4 liters/minute
- Press ON key on pDR-1200 panel and after about one minute key NEXT and then ENTER
- After an elapsed time (ET) of about one minute, read and note TWA concentration
- Shut off pump

- Plug in cyclone into its attachment cup
- Start pump and run at about 1 liter/minute. Observe real-time concentration (CONC) reading
- Increase flow rate very slowly and gradually until CONC reading is one-half of the initial concentration measured without the cyclone. Continue sampling at this

flow rate for about one minute and confirm that TWA reading is about one-half of the initial one. Otherwise readjust flow rate. Note final flow rate at which the TWA value has decreased to one-half the value noted without the cyclone.

• Enter the final flow rate for which the TWA value is one-half of the initial value into the graph of Fig. 7 and read the corresponding d50 particle size in micrometers. This represents the mass median particle diameter of the aerosol.

For example, if the TWA value without the cyclone was 0.8 mg/m^3 , and the flow rate (with the cyclone attached) required to reduce the TWA to 0.4 mg/m^3 is 2 liters/minute, the mass median particle size (as obtained from the curve of Fig. 7) is approximately $5.5 \mu m$.

15.0 CONVERSION BETWEEN personal DataRAM VERSIONS

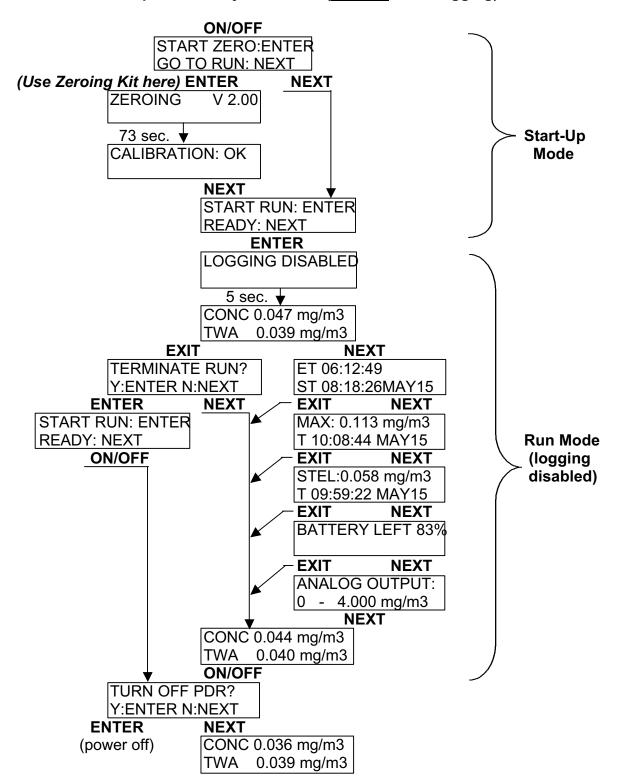
The personalDataRAM user has the option to convert from a model pDR-1000AN to a modelpDR-1200 or vice versa using the appropriate conversion kit. To convert from a pDR-1000AN to a pDR-1200 (i.e., from a passive air sampling configuration to an active one), the user requires the model pDR-ASC conversion kit. To convert from a pDR-1200 to a pDR-1000AN (i.e., from an active air sampling configuration to a passive one), the user requires the model pDR-UB conversion kit.

15.1 Conversion Procedure From *p*DR-1000AN to *p*DR-1200

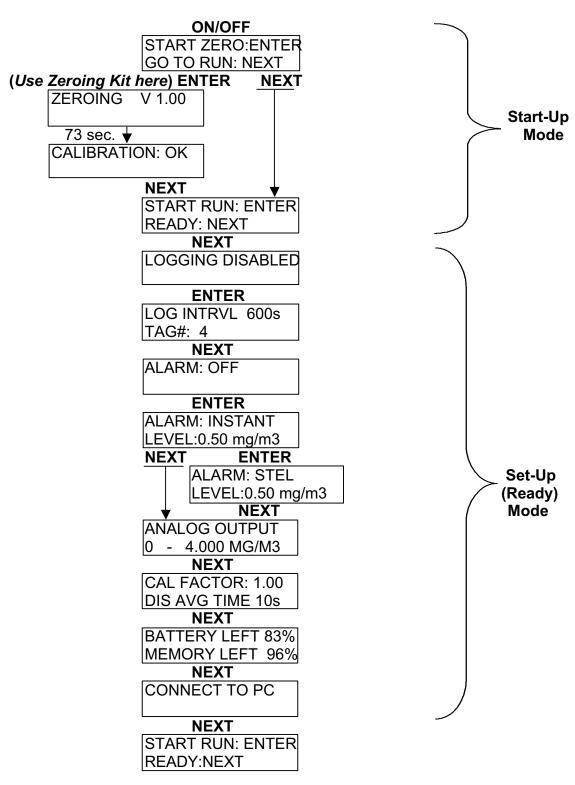
To effect this conversion use model pDR-ASC conversion kit. As you remove parts from the pDR-1000AN, in order to attach the conversion kit components, store these parts carefully for possible future re-conversion. Proceed as follows:

- Remove the two screws on the top of the large protective bumper that covers the sensing chamber (see Figure 1). This bumper is not used on the pDR-1200;
- Remove the large protective bumper by lifting it firmly upwards and away from the sensing chamber;
- Reinsert in the upper two threaded holes and tighten the two screws that had held the protective bumper;
- Remove the socket-head screws on the front and back black covers that were exposed by removal of the large top bumper. Lift away the freed front and back covers of the sensing chamber; store them carefully for future use, ensuring that their surfaces are not scratched or marred;

- Position one of the two gasketed (soft rubber) sensing chamber cover plates
 provided in the conversion kit on the front side of the sensing chamber. Insert
 and tighten the included socket head screw firmly making sure that the plate is
 aligned perfectly with the top of the sensing chamber. Similarly, attach the other
 cover plate on the back side of the sensing chamber;
- Identify the two black cups of the *p*DR-ASC conversion kit. One of them has an external o-ring (filter holder cup), and the other has no o-ring (cyclone cup); refer to Figures 2 and 4 for the location of these cups on the *p*DR-1200 sensing chamber. These cups can be installed on either side of the sensing chamber, i.e., the cyclone can be either on the left or the right side of the sensing chamber (Figure 2 shows the case where the cyclone is on the right side);
- Attach one cup to the left side of the sensing chamber using the two black socket head screws. Tighten screws firmly. Similarly, attach the other cup to the right side of the sensing chamber;
- Take the cyclone/filter holder unit provided as part of the conversion kit, and separate the 37-mm plastic filter holder from the metal cyclone by firmly pulling the two units apart;
- Carefully slide the large open end of the plastic filter holder over the cup with the external o-ring, previously attached to the sensing chamber. Ensure that the cup is fully inserted into the filter holder;
- Carefully insert the large diameter open end of the metal cyclone into the other cup on the opposite side of the sensing chamber. The cyclone inlet (small short metal tube on side of cyclone) can be oriented as desired (upwards, as shown in Figure 2, sideways, downwards, etc.). Ensure that the cyclone is fully inserted into the cup;
- When ready to operate, connect a length of tubing between the barbed fitting at the downstream end of the plastic filter holder and the pump to be used in combination with the *p*DR-1200.
- Perform a zeroing sequence (see Sections 6.5.2 and 8.1) before starting a run. This completes the conversion of the pDR-1000AN to the pDR-1200.

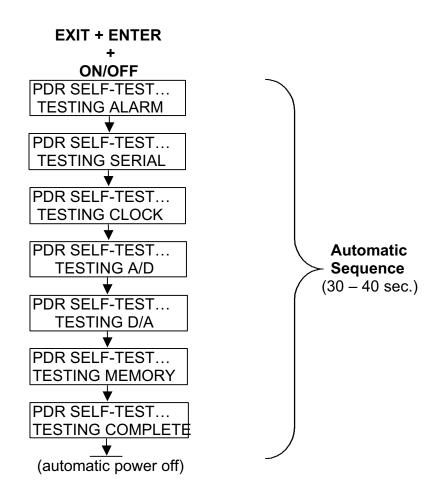

15.2 Conversion Procedure from pDR-1200 to pDR-1000AN

To effect this conversion use model pDR-UB conversion kit. As you remove parts from the pDR-1200, in order to attach the conversion kit components, store these parts carefully for possible future re-conversion. Proceed as follows:


- Pull off both the cyclone and the filter holder from their respective cups on the two sides of the sensing chamber;
- Loosen the two screws that hold each of the two cups on the sides of the sensing chamber (total of 4 screws), and remove the two side cups;
- Loosen the single screw on each of the two (front and back) gasketed sealing covers enclosing the sensing chamber, and remove the two covers;
- Identify the two flat sensing chamber cover plates provided in the conversion kit; one face of each of each of these two plates has a dull black finish (antireflective); avoid touching those surfaces;

- Position one of the two sensing chamber cover plates over the open front of the sensing chamber with the dull surface on the inside, and such that the hole in the plate is aligned with the corresponding threaded mounting hole on the upper wall of the sensing chamber. Insert and tighten firmly black socket head screw provided with the conversion kit, making sure that the plate is aligned perfectly with the top of the sensing chamber. Similarly, attach the other cover plate to the rear of the sensing chamber, with the dull surface facing inward;
- Loosen and remove the two small screws on the top surface of the sensing chamber;
- Position large protective bumper (provided in the conversion kit) over sensing chamber pushing down until properly seated. Insert the two top screws (two shiny Phillips-head screws provided in the conversion kit) Into the two holes In the bumper while holding down the bumper, and tighten gently (do not overtighten) making sure that the heads of these screws are well Inside their cavities In the bumper;
- Perform a zeroing sequence (see Sections 6.5.1 and 8.1) before starting a run. This completes the conversion from a pDR-1200 to a pDR-1000AN.

16.0 SEQUENCE OF KEYSTROKES AND SCREENS (pDR-1000 AN, -1200, HPM-1000) Start-Up and Survey Run Mode (*Without* Data Logging)



Start-Up, Set-Up and Run Mode (With Data Logging)

(Continues on next page)

NOTE: After the preceding resetting sequence, the instrument should be zeroed, otherwise its optical background will remain unsubtracted.

APPENDIX B

Resume of Data Validator

DONALD C. ANNÉ SENIOR CHEMIST

EDUCATION: M.S., Chemical Oceanography, Florida Institute of Technology, 1981

B.A., Earth Sciences, Millersville University of Pennsylvania, 1975

SPECIAL Certified 40-Hour OSHA Health and Safety
TRAINING: Certified 8-Hour OSHA Supervisory Course
Ground Water Geochemistry (NWWA)

Ground Water Pollution and Hydrology (Princeton Associates)

Quality Assurance Programs for Environmental Monitoring Data

(Stat-A-Matrix)

PROFESSIONAL AFFILIATIONS:

American Chemical Society (AFS), 1979-Present

EXPERIENCE SUMMARY:

Mr. Anné has more than 27 years of environmental chemistry experience specializing in data validation, environmental sampling, analytical methodologies, petroleum fingerprinting, laboratory audits, field sampling audits, and preparing Quality Assurance Project Plans and Quality Assurance Manuals. Mr. Anné's experience includes analytical laboratory work with gas chromatography, atomic absorption, infrared spectrometry and wet chemistry methods.

PROJECT EXPERIENCE:

Quality Assurance/Quality Control of Chemical Data

Mr. Anné has more than 20 years experience as a data validator and quality assurance officer. Mr. Anné has validated data for most EPA Regions and under several independent state programs, including the NYSDEC. He has performed laboratory and field audits as well as written Quality Assurance Project Plans. Mr. Anné has written, reviewed, and initiated laboratory Quality Assurance Manuals for laboratories to maintain their regulatory compliance. Typical project experience includes:

- Senior Chemist responsible for data validation. Reviewed chemical data for several projects under the New Jersey ISRA regulations. The clients included industry and utilities.
- Supervising Environmental Scientist responsible for data validation. Reviewed chemical laboratory data for adherence to QA/QC protocols for several key projects, including National Priorities List sites and RCRA Corrective Actions located in EPA Regions I, II, III, IV, V, and IX. Validated analytical data, outlined problems and actions to be taken, and qualified all affected data. Consulted with project managers on data usability, and recommended corrective actions to support project goals. Responded to comments made by regulators regarding data quality.
- Supervising Environmental Scientist recognized by the New York State Department of Environmental Conservation
 (NYSDEC) to perform third party data validation. Attended NYSDEC workshop on data validation as part of the
 requirements set forth by NYSDEC. Performed data validation in support of NYSDEC STARS and ASP programs
 as well as data in support of the NYSDEC Part 360 Regulations for landfills. Validated data for an Albany area
 municipal landfill.
- Supervising Environmental Scientist responsible for developing and preparing Quality Assurance Project Plans (QAPPs) for several state and federal Superfund sites and federal RCRA corrective action sites. Negotiated with regulators for the acceptance of the QAPPs. The sites were located throughout the eastern United States.

 Environmental Chemist responsible for developing a laboratory QA/QC program which fulfilled requirements of the EPA and agencies from the States of Texas and Louisiana. Implemented and managed the program throughout DOE's SPR Environmental laboratories. Received verbal commendations from EPA and the Texas Water commission on the QA/QC Program.

Environmental Chemistry

Mr. Anné is experienced in sampling soil, water, air, and wastes in accordance with federal and state guidelines. He has performed field sampling audits and prepared sampling plans for numerous projects in accordance with applicable programmatic requirements. Mr. Anné is familiar with the geochemical aspects of fate and transport of contaminants. Mr. Anné's typical project experience includes:

- Data manager for the Pennwalt Corporation's RCRA Corrective Action RFI Phase I program. The project
 included quantifying and characterizing soil contamination and hydrogeologic flow systems of 12 SWMUs
 at a flourochemicals plant in Thorofare, New Jersey. Validated and prepared QA/QC reports for data
 generated during the project. Qualified all data in preparation of the final report. Work was performed
 under the direction of NJDEP.
- Project Chemist in charge of field sampling activities, including coordinating and scheduling all
 subcontracted laboratory work for more than 25 sites in Connecticut. Trained field teams in sampling
 techniques for soil, groundwater, and surface water; chain of custody requirements; sampling QA/QC
 protocols; and analytical requirements. Work was performed under the scrutiny of ConnDEP.
- Field Team Leader for a major hazardous waste drum excavation project. Supervised all field activities including site safety; excavation; removal, sampling, and over packing of drums; staging and sampling of contaminated soil; and preparation of samples. Coordinated excavation and laboratory subcontractors. Work was performed under the scrutiny of ConnDEP.
- Created an environmental monitoring program for the Bryan Mound site of DOE's Strategic Petroleum
 Reserve for testing ground water and surface water. Developed sampling protocols, frequency of sampling,
 and lists of target analytes. This program was designed to provide baseline data for pre-spill conditions in
 the event of a release. The site was under scrutiny by EPA Region V and the Texas Water commission.
- Project Chemist responsible for developing analytical QA/QC program that included sampling and chemical analyses of surface water, groundwater, soil, and sediment matrices as part of a Remedial Investigation/Feasibility Study (RI/FS). The RI/FS involved more than 25 sites throughout the State of Connecticut. Work was under the guidance of ConnDEP.

Analytical Chemistry

Mr. Anné has experience working in both fixed-base and mobile laboratories. His experience includes the use of gas chromatography, atomic absorption spectrometers, infrared spectrometers, and numerous wet chemistry and preparation equipment methods. He has served in the laboratory as an analyst, laboratory advisor, and QA officer. He has interfaced with regulators in the area of analytical chemistry and has experience in petroleum fingerprinting techniques and methods. Typical projects include:

- Performed bench scale experiments for St. Lawrence Zinc in order to obtain the optimum level of Phlotec necessary to treat discharged water to resolve an N.O.V. for the SPDES outfall. The optimum level of Phlotec would precipitate enough dissolved zinc for the water to meet the discharge requirement. Also performed routine analyses of samples after implementing the treatment, to insure that the proper concentration was being used.
- Environmental Chemist in charge of project to design updates for the DOE's laboratories at its SPR facilities. Evaluated IR and FT-IR instrumentation and personal computers to link with existing and future instrumentation. Wrote procedures for the acceptance of an alternative oil & grease method for NPDES permit

monitoring by EPA Region V. Coordinated all site activities necessary for implementing upgrades.

- Environmental Chemist in charge of replacing obsolete total organic carbon (TOC) analyzers for the SPR
 laboratories. Evaluated state-of-the-art TOC analyzers and recommended replacement TOC analyzer.
 Negotiated with supplier and wrote technical specification for the bid process required by DOE. Supervised installation and set-up of all new TOC analyzers.
- Analytical Chemist for Berkley Products Company responsible for product development. Analyzed
 competitor's products and formulated new coatings with equal or better quality. Responsible for solvent
 operations which included managing the waste solvent recovery operations, solvent formulation, and
 manufacturing QA/QC. Worked with sales and manufacturing staff to address and resolve client complaints.
 Received two cash bonuses for suggestions on the manufacture of products which saved the company money.
- Analytical Chemist for the mobile laboratory responsible for sample preparation in support of several projects
 for a range of clients located in three EPA regions and in conjunction with several state agencies. Extracted,
 concentrated, and prepared water and soil samples for analyses by GC/FIND, GC/ECD, GC/PID, and GC/MS.
 Samples were prepared for PCB, pesticide, polynuclear aromatic hydrocarbon, and petroleum hydrocarbon
 analyses.

EMPLOYMENT: 2005- present, Alpha Geoscience

1998-2005, Alpha Environmental Consultants, Inc.

1990-1998, McLaren/Hart

1986-1990, Fred C. Hart Associates 1985-1986, Boeing Petroleum Services

1982-1985, Petroleum Operations and Support Services

1981-1982, Dravo Utility Constructors 1979-1981, Florida Institute of Technology 1975-1979, Berkley Products Company

APPENDIX B

Boring Logs
MW-600-Series Wells

DATES: BORING

11/16/2009 to 11/23/2009

MONITORING WELL LOG

MW-601

DATUM

CLIENTConsolidated EdisonPROJECT No.191710024LOCATION57-77 Rust Street, Maspeth, NYBOREHOLE No.MW-601

WATER LEVEL

15.00 ft

/OC CONCENTRATION (ppm or % LEL) **SAMPLES ELEVATION (ft)** STRATA PLOT **WATER LEVEI** WELL RECOVERY N-VALUE OR RQD DEPTH NUMBER SOIL DESCRIPTION TYPE CONSTRUCTION in. 0 Vactor clearance of borehole. Cuttings described as Light Flush-Mounted Roadbox brown, F-M SAND, some rounded Gravel, some small Cobbles. 2" PVC Riser in Grout 5 2" PVC Riser in Hydrated Bentonite Reddish brown, poorly-graded F-M SAND, some Silt, dense, 2" PVC Riser in #1 Filter Sand SS S-1 moist. 20.4 38 10 Reddish brown, well-graded F-M SAND, trace F Gravel, medium dense, moist. SS S-2 18 30 Reddish brown, poorly-graded F-M SAND, some Silt, 2" PVC Screen in #1 Filter Sand medium dense, moist. SS S-3 12 30 (19.4'-9.4') Yellowish brown, well-graded F-M SAND, some Silt, trace F ∇ SS -15 Gravel, dense, moist. S-4 16.8 46 Yellowish brown to olive brown, well-graded F-M SAND, SS S-5 14.4 64 some Silt, trace F Gravel, dense, moist. Olive brown, well-graded F-M SAND, some Silt, trace F Gravel, dense, wet. 20 Bottom of boring @ 20'. Auger Refusal. 25 30 Driller: Aquifer Drilling & Testing; Stantec Field Representative: D. Chapman Drill Rig: Track-Mounted Davey DK527

STANTEC-MON-I BORING LOGS.GPJ JW NHP.GDT 3/18/10

MONITORING WELL LOG

MW-602

CLIENT Consolidated Edison PROJECT No. 191710024

LOCATION 57-77 Rust Street, Maspeth, NY BOREHOLE No. MW-602

DATES: BORING 11/16/2009 to 11/19/2009 WATER LEVEL 15.89 ft DATUM ____

DA	ATES: BC	DRING11/16/2009 to 11/19/2009	WATER L	EVE	EL _	15.89 ft	DATUM				
_]	(#)		F	님				SA	MPLES		NOI
DEPTH (ft)	ELEVATION (ft)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL		WELL	TYPE	NUMBER	RECOVERY	N-VALUE OR RQD	VOC CONCENTRATION
									in.		00
0 -		Vactor clearance of borehole. Cuttings described as light brown, F-M SAND, some rounded Gravel, some small Cobbles.				Flush-Mounted Roadbox					
5 -						4" PVC Riser in Grout					
- - - -						4" PVC Riser in Hydrated Bentonite					
3		Light Brown, F-M SAND, some F Gravel, moist.		:		4" PVC Riser in #1 Filter Sand	CC	S-1	16.8	52	
		Gray Orange, mottled F SAND, petroleum like odor, mo	ist. :	1			33	3-1	10.0	32	
10- - - -		Cobble. Olive Gray, F-M SAND, some Silt, some rounded F Graslight petroleum like odor, moist.	vel,				SS	S-2	21.6	24	
-						4" PVC Screen in #1 Filter Sand (25'-10')	SS	S-3	8.4	35	
15- -		Light Brown, F-C SAND, some F Gravel, trace Silt, moist-wet.		⊽			SS	S-4	12	23	
-							SS	S-5	15.6	37	
-		Gray, F SAND, some Silt, some Gravel, wet.				생 점	SS	S-6	13.2	81	
20-		Gray, Silty F-C SAND, some F Gravel, wet.					SS	S-7	14.4	71	
-		Light Brown, Silty F-C SAND, some F Gravel, wet.									
+		Gray, F-C SAND, some F Gravel, dense, wet.					SS	S-8	19.2	48	
- 25-							SS	S-9	9.6	43	
]		Gray-Brown, F-C SAND, some F Gravel, trace gray Clay (thin seam), wet.	y ::::			4	SS	S-10	4.8	50/3"	
-		Botton of boring @ 26.8'. Split Spoon Refusal.									
30											

MONITORING WELL LOG

PROJECT No. 191710024 **Consolidated Edison** LOCATION 57-77 Rust Street, Maspeth, NY BOREHOLE No. <u>MW-603</u>

	ATES: BO	PRING 11/17/2009 to 11/20/2009 WAT	ER L	EVE	EL _	15.15 ft		ATUM	1)	
DEPTH (#)	ELEVATION (ft)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL		WELL	TYPE	NUMBER	RECOVERY STAM	N-VALUE OR RQD	VOC CONCENTRATION (ppm or % LEL)
) - - - -		Vactor clearance of borehole. Cuttings described as Light brown, F-M SAND, some rounded Gravel, some Cobbles.				Flush-Mounted Roadbox			in.		000
- - - 5 -						2" PVC Riser in Grout					
-		8-10 feet: Auger through Cobbles. No Sample.			.: ·	2" PVC Riser in Hydrated Bentonite					
-		6-10 leet. Auger unough Coobles. No Sample.				2" PVC Riser in #1 Filter Sand	AUC	NS			
0 - - - - -		Brown, well-graded SAND, trace F Gravel, trace Brick, medium dense, moist.					SS	S-1	10.8	26	
-						2" PVC Screen in #1 Filter Sand (25'-10')	SS	S-2	4.8	24	
5-		Brown to olive brown, Silty F-M SAND, trace F Gravel, medium dense, moist.		Σ			SS	S-3	12	17	
-		Olive brown, Silty F-M SAND, trace F Gravel, dense, wet.				4 4 4	SS	S-4	20.4	41	
-		BOULDER.				8 3 3	AUC	NS			
0- <u> </u> -0! -		Olive brown, Silty F-M SAND, dense, moist-wet.					SS	S-5	24	32	
-							SS	S-6	9.6	50	
25-		Olive brown, Silty F-M SAND, trace F Gravel, dense, wet.					SS	S-9	9.6	63	
		Bottom of boring @ 25.2'. Auger refusal on cobbles.									
0		Driller: Aquifer Drilling & Testing; Stantec Field Represer	ntoti		Chair	man					

STANTEC-MON-I BORING LOGS.GPJ JW NHP.GDT 3/18/10

APPENDIX C

Laboratory Analytical Reports: November 2009 Soil Quality Report Date: 04-Dec-09 09:41

\checkmark	Final Report
\Box	Re-Issued Report
	Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

Stantec Consulting Services 5 Dartmouth Drive, Suite 101 Auburn, NH 03032

Attn: Don Moore

Project: Maspeth - Queens, NY

Project #: 191710024

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB04535-01	MW-601 (0-7.5)	Soil	16-Nov-09 12:30	19-Nov-09 19:00
SB04535-02	MW-603 (0-7.5)	Soil	16-Nov-09 15:00	19-Nov-09 19:00
SB04535-03	MW-602 (0-7.5)	Soil	17-Nov-09 09:45	19-Nov-09 19:00
SB04535-04	Dupe	Soil	18-Nov-09 00:00	19-Nov-09 19:00
SB04535-05	MW-602 (8-12)	Soil	18-Nov-09 11:50	19-Nov-09 19:00
SB04535-06	MW-602 (12-16)	Soil	18-Nov-09 12:20	19-Nov-09 19:00
SB04535-07	MW-602 (16-20)	Soil	18-Nov-09 13:00	19-Nov-09 19:00
SB04535-08	MW-602 (20-24)	Soil	18-Nov-09 14:40	19-Nov-09 19:00
SB04535-09	MW-602 (24-28)	Soil	18-Nov-09 15:15	19-Nov-09 19:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924

Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D.
President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 19 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 4.3 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 4.8 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Case Narrative:

The Chain of Custody requested that sample SB04535-06, client ID MW-602 (12-16) be spiked for MS/MSD. This QC spike was done for PCBs by method SW846 8082, however modified method TPH SW846 8100 does not require this to be performed. The sample was chosen for the source batch duplicate for the fingerprint analysis.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

+SW846 8100Mod.

Duplicates:	
9120023-DUP1	Source: SB04535-06
Transformer Oil	
Dielectric Fluid	
Samples:	
SB04535-04	Dupe
Transformer Oil	
Dielectric Fluid	
SB04535-05	MW-602 (8-12)
Transformer Oil	
Dielectric Fluid	
SB04535-06	MW-602 (12-16)
Transformer Oil	
Dielectric Fluid	
SB04535-07	MW-602 (16-20)
Transformer Oil	
Dielectric Fluid	
SB04535-08	MW-602 (20-24)
Transformer oil	
Dielectric Fluid	

SW846 8082

SW846 8082

Samples:

SB04535-04 *Dupe*

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

Decachlorobiphenyl (Sr)

SB04535-05

MW-602 (8-12)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

Decachlorobiphenyl (Sr)

Sample Identification MW-601 (0-7.5) SB04535-01

Client Project # 191710024

Matrix Soil Collection Date/Time 16-Nov-09 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	82										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	21.9	9.31	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	21.9	12.5	1		"	"	"	Χ
11141-16-5	Aroclor-1232	BDL	U	μg/kg dry	21.9	12.8	1		"	"	"	Χ
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	21.9	7.24	1	"	"	"	"	Χ
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	21.9	8.82	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	21.9	12.9	1	"	"	"	"	Χ
11096-82-5	Aroclor-1260	BDL	U	μg/kg dry	21.9	9.01	1		"	"	"	Χ
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	21.9	10.6	1	"	"	"	"	Χ
11100-14-4	Aroclor-1268	BDL	U	μg/kg dry	21.9	15.4	1	"	"	"	"	Х
Surrogate	recoveries:											
10386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr)	84		30-15	50 %			"	"	"	"	
10386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr) [2	C] 84		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	91		30-15	50 %			"	"	"	"	
Extractal	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3550B/C											
8006-61-9	Gasoline	BDL	U	mg/kg dry	28.9	9.6	1	+SW846 8100Mod.	25-Nov-09	01-Dec-09	9112029	
68476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	28.9	9.9	1	"	"	"	"	
68476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	28.9	2.9	1	"	"	"	"	
68553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	28.9	10.6	1	"	"	"	"	
M0980000C	Motor Oil	BDL	U	mg/kg dry	28.9	18.9	1	"	"	"	"	
8032-32-4	Ligroin	BDL	U	mg/kg dry	28.9	7.2	1	"	"	"	"	
J00100000	Aviation Fuel	BDL	U	mg/kg dry	28.9	7.2	1	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	28.9	2.9	1	"	"	"	"	
	Dielectric Fluid	BDL	U	mg/kg dry	28.9	7.2	1	"	"	"	"	
	Unidentified	BDL	U	mg/kg dry	28.9	7.2	1	"	"	"	"	
	Other Oil	BDL	U	mg/kg dry	28.9	2.9	1	"	"	"	"	
	Total Petroleum Hydrocarbons	BDL	U	mg/kg dry	28.9	2.9	1	u	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	71		40-14	10 %			II .	"	"	"	
General (Chemistry Parameters											
								SM2540 G Mod				

Sample Identification MW-603 (0-7.5) SB04535-02

Client Project # 191710024

Matrix Soil Collection Date/Time 16-Nov-09 15:00

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 8	082										
Prepared by method SW846 3545A											
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	20.5	8.74	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	20.5	11.8	1	11	"	"	"	Х
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	20.5	12.0	1		"	"	"	Х
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	20.5	6.80	1	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	20.5	8.28	1	"	"	"	"	Χ
11097-69-1 Aroclor-1254	BDL	U	μg/kg dry	20.5	12.1	1	"	"	"	"	Χ
11096-82-5 Aroclor-1260	43.0		μg/kg dry	20.5	10.3	1	11	"	"	"	Х
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	20.5	9.96	1	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	20.5	14.4	1	"	"	"	"	X
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	83		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2C] 84		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	112		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	95		30-15	50 %			"	"	"	"	
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3550B/C											
8006-61-9 Gasoline	BDL	U	mg/kg dry	28.5	9.5	1	+SW846 8100Mod.	25-Nov-09	01-Dec-09	9112029	
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	28.5	9.7	1	"	"	"	"	
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	28.5	2.8	1	"	"	"	"	
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	28.5	10.4	1	"	"	"	"	
M09800000 Motor Oil	BDL	U	mg/kg dry	28.5	18.6	1	"	"	"	"	
8032-32-4 Ligroin	BDL	U	mg/kg dry	28.5	7.1	1	"	"	"	"	
J00100000 Aviation Fuel	BDL	U	mg/kg dry	28.5	7.1	1	"	"	"	"	
Hydraulic Oil	BDL	U	mg/kg dry	28.5	2.8	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/kg dry	28.5	7.1	1	"	"	"	"	
Unidentified	BDL	U	mg/kg dry	28.5	7.1	1	"	"	"	"	
Other Oil	BDL	U	mg/kg dry	28.5	2.8	1	"	"	"	"	
Total Petroleum Hydrocarbons	BDL	U	mg/kg dry	28.5	2.8	1	II .	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	46		40-14	10 %			II .	"	"	"	
General Chemistry Parameters											
% Solids	89.5		%			1 :	SM2540 G Mod	30-Nov-09	01-Dec-09	9112197	

Sample Identification MW-602 (0-7.5) SB04535-03

Client Project # 191710024

Matrix Soil Collection Date/Time 17-Nov-09 09:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Semivolati	ile Organic Compounds by GC											
Polychlori	inated Biphenyls by SW846 80) <u>82</u>										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	20.4	8.71	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	20.4	11.7	1	"	"	"	"	Χ
1141-16-5	Aroclor-1232	BDL	U	μg/kg dry	20.4	11.9	1	"	"	"	"	Χ
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	20.4	6.78	1	"	"	"	"	Х
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	20.4	8.25	1	"	"	"	"	Х
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	20.4	12.1	1	"	"	"	"	Х
1096-82-5	Aroclor-1260	121		μg/kg dry	20.4	10.3	1	"	"	"	"	Х
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	20.4	9.92	1	"	"	"	"	Х
1100-14-4	Aroclor-1268	BDL	U	μg/kg dry	20.4	14.4	1	"	"	"	"	Χ
Surrogate i	recoveries:											
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	86		30-15	50 %			"	"	"	"	
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2	PC] 66		30-15	50 %			"	"	"	"	
051-24-3	Decachlorobiphenyl (Sr)	118		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	84		30-15	50 %			"	"	"	"	
Extractabl	le Petroleum Hydrocarbons											
ГРН 8100) by GC											
Prepared	by method SW846 3550B/C											
006-61-9		BDL	U	mg/kg dry	27.5	9.1	1	+SW846 8100Mod.	25-Nov-09	01-Dec-09	9112029	
8476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	27.5	9.4	1	"	"	"	"	
8476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	27.5	2.8	1	"	"	"	"	
8553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	27.5	10.0	1	"	"	"	"	
109800000	Motor Oil	BDL	U	mg/kg dry	27.5	18.0	1	"	"	"	"	
8032-32-4	Ligroin	BDL	U	mg/kg dry	27.5	6.9	1	"	"	"	"	
00100000	Aviation Fuel	BDL	U	mg/kg dry	27.5	6.9	1	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	27.5	2.8	1	"	"	"	"	
	Dielectric Fluid	BDL	U	mg/kg dry	27.5	6.9	1	n n	"	"	"	
	Unidentified	BDL	U	mg/kg dry	27.5	6.9	1	n n	"	"	"	
	Other Oil	BDL	U	mg/kg dry	27.5	2.8	1	"	"	"	"	
	Total Petroleum Hydrocarbons	BDL	U	mg/kg dry	27.5	2.8	1	"	"	"	"	
Surrogate i	recoveries:											
3386-33-2	1-Chlorooctadecane	75		40-14	10 %			"	"	"	"	
General C	Themistry Parameters											
		92.3		%			1 :	SM2540 G Mod				

Sample Identification **Dupe**SB04535-04

Client Project # 191710024

Matrix Soil Collection Date/Time 18-Nov-09 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	82										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	20.4	8.68	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	20.4	11.7	1	11	"	"	"	Х
11141-16-5	Aroclor-1232	BDL	U	μg/kg dry	20.4	11.9	1		"	"	"	Х
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	20.4	6.75	1	"	"	"	"	Χ
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	20.4	8.22	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	20.4	12.0	1	"	"	"	"	Χ
11096-82-5	Aroclor-1260	181		μg/kg dry	20.4	10.2	1		"	"	"	Х
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	20.4	9.89	1	"	"	"	"	Χ
11100-14-4	Aroclor-1268	BDL	U	μg/kg dry	20.4	14.3	1	"	"	"		Х
Surrogate	recoveries:											
_	2 4,4-DB-Octafluorobiphenyl (Sr)	76		30-15	50 %			"	"	"	"	
10386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr) [2	C] 99		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	186	SGC	30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	117		30-15	50 %			"	"	"	"	
Extractal	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3550B/C											
8006-61-9	Gasoline	BDL	U	mg/kg dry	28.6	9.5	1	+SW846 8100Mod.	25-Nov-09	01-Dec-09	9112029	
68476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	28.6	9.8	1	"	"	"	"	
68476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	28.6	2.9	1	"	"	"	"	
68553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	28.6	10.4	1	"	"	"	"	
M09800000	Motor Oil	BDL	U	mg/kg dry	28.6	18.7	1	"	"	"	"	
8032-32-4	Ligroin	BDL	U	mg/kg dry	28.6	7.1	1	"	"	"	"	
J00100000	Aviation Fuel	BDL	U	mg/kg dry	28.6	7.1	1	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	28.6	2.9	1	"	"	"	"	
	Dielectric Fluid	Calculated	d asZ-2	mg/kg dry	28.6	7.1	1	"	"	"	"	
	Unidentified	3,370		mg/kg dry	28.6	7.1	1	"	"	"	"	
	Other Oil	BDL	U	mg/kg dry	28.6	2.9	1	"	"	"	"	
	Total Petroleum Hydrocarbons	3,370		mg/kg dry	28.6	2.9	1	n n	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	116		40-14	10 %			"	"	"	"	
General (Chemistry Parameters											
								SM2540 G Mod				

Sample Identification MW-602 (8-12) SB04535-05

Client Project # 191710024

Matrix Soil Collection Date/Time 18-Nov-09 11:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC											
Polychlo	rinated Biphenyls by SW846 80	<u>82</u>										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	21.2	9.04	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	21.2	12.2	1	11	"	"	"	Х
11141-16-5	Aroclor-1232	BDL	U	μg/kg dry	21.2	12.4	1		"	"	"	Χ
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	21.2	7.04	1	"	"	"	"	Χ
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	21.2	8.56	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	21.2	12.5	1	"	"	"	"	Χ
11096-82-5	Aroclor-1260	111		μg/kg dry	21.2	10.7	1		"	"	"	Χ
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	21.2	10.3	1	"	"	"	"	Χ
11100-14-4	Aroclor-1268	BDL	U	μg/kg dry	21.2	14.9	1	"	"	"	"	Х
Surrogate	recoveries:											
_	2 4,4-DB-Octafluorobiphenyl (Sr)	73		30-15	50 %				"	"	"	
10386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr) [2	C] 90		30-15	50 %				"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	185	SGC	30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	112		30-15	50 %			"	"	"	"	
Extractal	ble Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3550B/C											
	Gasoline	BDL	U	mg/kg dry	56.9	18.9	2	+SW846 8100Mod.	25-Nov-09	01-Dec-09	9112029	
68476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	56.9	19.4	2	"	"	"	"	
68476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	56.9	5.7	2	"	"	"	"	
68553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	56.9	20.8	2	"	"	"	"	
M09800000	Motor Oil	BDL	U	mg/kg dry	56.9	37.2	2	"	"	"	"	
8032-32-4	Ligroin	BDL	U	mg/kg dry	56.9	14.2	2	"	"	"	"	
J00100000	Aviation Fuel	BDL	U	mg/kg dry	56.9	14.2	2	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	56.9	5.7	2	"	"	"	"	
	Dielectric Fluid	Calculated	d asz-2	mg/kg dry	56.9	14.2	2	"	"	"	"	
	Unidentified	2,390		mg/kg dry	56.9	14.2	2	"	"	"	"	
	Other Oil	BDL	U	mg/kg dry	56.9	5.7	2	"	"	"	"	
	Total Petroleum Hydrocarbons	2,390		mg/kg dry	56.9	5.7	2	"	"	"	"	
Surrogate	recoveries:											
•	1-Chlorooctadecane	113		40-14	10 %			m m	"	"	"	
General (Chemistry Parameters											

Sample Identification MW-602 (12-16) SB04535-06

Client Project # 191710024

Matrix Soil Collection Date/Time 18-Nov-09 12:20

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.		
Semivolatile Organic Compounds by GC													
Polychlorinated Biphenyls by SW846 80)8 <u>2</u>												
Prepared by method SW846 3545A													
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	21.8	9.28	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х		
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	21.8	12.5	1	11	"	"	"	Х		
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	21.8	12.7	1		"	"	"	Х		
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	21.8	7.22	1	"	"	"	"	Χ		
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	21.8	8.79	1	"	"	"	"	Χ		
11097-69-1 Aroclor-1254	BDL	U	μg/kg dry	21.8	12.9	1	"	"	"	"	Χ		
11096-82-5 Aroclor-1260	20.8	J	μg/kg dry	21.8	10.9	1		"	"	"	Х		
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	21.8	10.6	1	"	"	"	"	Χ		
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	21.8	15.3	1	"	"	"		Х		
Surrogate recoveries:													
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	94		30-15	50 %			"	"	"	"			
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2	2C] 87		30-15	50 %			"	"	"	"			
2051-24-3 Decachlorobiphenyl (Sr)	150		30-15	50 %			"	"	"	"			
2051-24-3 Decachlorobiphenyl (Sr) [2C]	99		30-15	50 %			11	"	"	"			
Extractable Petroleum Hydrocarbons													
TPH 8100 by GC													
Prepared by method SW846 3550B/C													
8006-61-9 Gasoline	BDL	U	mg/kg dry	28.9	9.6	1	+SW846 8100Mod.	01-Dec-09	01-Dec-09	9120023			
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	28.9	9.9	1	"	"	"	"			
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	28.9	2.9	1	"	"	"	"			
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	28.9	10.5	1	"	"	"	"			
M09800000 Motor Oil	BDL	U	mg/kg dry	28.9	18.9	1	"	"	"	"			
8032-32-4 Ligroin	BDL	U	mg/kg dry	28.9	7.2	1	"	"	"	"			
J00100000 Aviation Fuel	BDL	U	mg/kg dry	28.9	7.2	1	"	"	"	"			
Hydraulic Oil	BDL	U	mg/kg dry	28.9	2.9	1	"	"	"	"			
Dielectric Fluid	Calculate	d asZ-2	mg/kg dry	28.9	7.2	1	"	"	"	"			
Unidentified	555		mg/kg dry	28.9	7.2	1	"	"	"	"			
Other Oil	Calculate	d as	mg/kg dry	28.9	2.9	1	"	"	"	"			
Total Petroleum Hydrocarbons	555		mg/kg dry	28.9	2.9	1	n n	"	"	"			
Surrogate recoveries:													
3386-33-2 1-Chlorooctadecane	103		40-14	10 %			"	"	"	"			
General Chemistry Parameters													
% Solids	89.1		%			1	SM2540 G Mod	30-Nov-09	01-Dec-09	9112197			

Sample Identification MW-602 (16-20) SB04535-07

Client Project # 191710024

Matrix Soil Collection Date/Time 18-Nov-09 13:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Semivolatí	ile Organic Compounds by GC											
Polychlori	inated Biphenyls by SW846 80	82										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	21.3	9.06	1	SW846 8082	30-Nov-09	01-Dec-09	9112136	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	21.3	12.2	1	11	"	"	"	Х
	Aroclor-1232	BDL	U	μg/kg dry	21.3	12.4	1	11	"	"	"	Х
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	21.3	7.05	1	"	"	"	"	Х
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	21.3	8.58	1	"	"	"	"	Х
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	21.3	12.6	1	"	"	"	"	Х
11096-82-5	Aroclor-1260	BDL	U	μg/kg dry	21.3	8.77	1	"	"	"	"	Х
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	21.3	10.3	1	"	"	"	"	Χ
11100-14-4	Aroclor-1268	BDL	U	μg/kg dry	21.3	15.0	1	n n	"	"	"	Х
Surrogate	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	91		30-15	60 %			"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2	C] 83		30-15	60 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	118		30-15	60 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85		30-15	60 %			II .	"	"	"	
Extractab	le Petroleum Hydrocarbons											
TPH 8100	0 by GC											
repared	by method SW846 3550B/C											
3006-61-9	Gasoline	BDL	U	mg/kg dry	29.0	9.6	1	+SW846 8100Mod.	25-Nov-09	01-Dec-09	9112029	
8476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	29.0	9.9	1	"	"	"	"	
8476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	29.0	2.9	1	"	"	"	"	
88553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	29.0	10.6	1	"	"	"	"	
M09800000	Motor Oil	BDL	U	mg/kg dry	29.0	19.0	1	"	"	"	"	
3032-32-4	Ligroin	BDL	U	mg/kg dry	29.0	7.2	1	"	"	"	"	
100100000	Aviation Fuel	BDL	U	mg/kg dry	29.0	7.2	1	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	29.0	2.9	1	"	"	"	"	
	Dielectric Fluid	Calculate	d asZ-2	mg/kg dry	29.0	7.2	1	"	"	"	"	
	Unidentified	76.3		mg/kg dry	29.0	7.2	1	"	"	"	"	
	Other Oil	Calculate	d as	mg/kg dry	29.0	2.9	1	"	"	"	"	
	Total Petroleum Hydrocarbons	76.3		mg/kg dry	29.0	2.9	1	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	99		40-14	10 %			II .	"	"	"	
General C	Chemistry Parameters											
	% Solids	90.9		%			1 :	SM2540 G Mod	30-Nov-09	01-Dec-09	9112197	

Sample Identification MW-602 (20-24) SB04535-08

Client Project # 191710024

Matrix Soil Collection Date/Time 18-Nov-09 14:40 Received 19-Nov-09

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	82										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	21.7	9.22	1	SW846 8082	01-Dec-09	01-Dec-09	9120009	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	21.7	12.4	1	11	"	"	"	Χ
11141-16-5	Aroclor-1232	BDL	U	μg/kg dry	21.7	12.6	1		"	"	"	Χ
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	21.7	7.18	1	"	"	"	"	Χ
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	21.7	8.73	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	21.7	12.8	1	"	"	"	"	Χ
11096-82-5	Aroclor-1260	BDL	U	μg/kg dry	21.7	8.93	1		"	"	"	Χ
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	21.7	10.5	1	"	"	"	"	Χ
11100-14-4	Aroclor-1268	BDL	U	μg/kg dry	21.7	15.2	1	"	"	"		Х
Surrogate	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95		30-15	50 %			"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2	C] 88		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	109		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125		30-15	50 %			"	"	"	"	
Extractab	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3550B/C											
8006-61-9	Gasoline	BDL	U	mg/kg dry	28.3	9.4	1	+SW846 8100Mod.	01-Dec-09	01-Dec-09	9120023	
68476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	28.3	9.7	1	"	"	"	"	
68476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	28.3	2.8	1	"	"	"	"	
68553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	28.3	10.3	1	"	"	"	"	
M09800000	Motor Oil	BDL	U	mg/kg dry	28.3	18.5	1	"	"	"	"	
8032-32-4	Ligroin	BDL	U	mg/kg dry	28.3	7.1	1	"	"	"	"	
J00100000	Aviation Fuel	BDL	U	mg/kg dry	28.3	7.1	1	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	28.3	2.8	1	"	"	"	"	
	Dielectric Fluid	Calculate	d asZ-2	mg/kg dry	28.3	7.1	1	"	"	"	"	
	Unidentified	138		mg/kg dry	28.3	7.1	1	"	"	"	"	
	Other Oil	Calculate	d as	mg/kg dry	28.3	2.8	1	"	"	"	"	
	Total Petroleum Hydrocarbons	138		mg/kg dry	28.3	2.8	1	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	91		40-14	10 %			"	"	"	"	
General (Chemistry Parameters											
				%			1 :	SM2540 G Mod				

Sample Identification MW-602 (24-28) SB04535-09

Client Project # 191710024

Matrix Soil Collection Date/Time 18-Nov-09 15:15 Received 19-Nov-09

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 80	082										
Prepared by method SW846 3545A											
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	22.9	9.75	1	SW846 8082	01-Dec-09	01-Dec-09	9120009	Χ
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	22.9	13.1	1	"	"	"	"	Χ
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	22.9	13.4	1	"	"	"	"	X
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	22.9	7.59	1	"	"	"	"	Х
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	22.9	9.23	1	"	"	"	"	Х
11097-69-1 Aroclor-1254	BDL	U	μg/kg dry	22.9	13.5	1	"	"	"	"	Х
11096-82-5 Aroclor-1260	BDL	U	μg/kg dry	22.9	9.44	1	"	"	"	"	X
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	22.9	11.1	1	"	"	"	"	Х
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	22.9	16.1	1	"	"	"	"	Χ
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	91		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2	2C] 90		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	94		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	120		30-15	50 %			"	"	"	"	
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3550B/C											
8006-61-9 Gasoline	BDL	U	mg/kg dry	30.6	10.2	1	+SW846 8100Mod.	01-Dec-09	01-Dec-09	9120023	
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	30.6	10.4	1	"	"	"	"	
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	30.6	3.1	1	"	"	"	"	
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	30.6	11.2	1	"	"	"	"	
M09800000 Motor Oil	BDL	U	mg/kg dry	30.6	20.0	1	"	"	"	"	
8032-32-4 Ligroin	BDL	U	mg/kg dry	30.6	7.6	1	"	"	"		
J00100000 Aviation Fuel	BDL	U	mg/kg dry	30.6	7.6	1	"	"	"	"	
Hydraulic Oil	BDL	U	mg/kg dry	30.6	3.1	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/kg dry	30.6	7.6	1	"	"	"	"	
Unidentified	61.6		mg/kg dry	30.6	7.6	1	"	"	"	"	
Other Oil	Calculate	d as	mg/kg dry	30.6	3.1	1	"	"	"	"	
Total Petroleum Hydrocarbons	61.6		mg/kg dry	30.6	3.1	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	110		40-14	10 %			"	"	"	"	
General Chemistry Parameters											
% Solids	86.3		%			1 :	SM2540 G Mod	. 30-Nov-09	01-Dec-09	9112197	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9112136 - SW846 3545A										
Blank (9112136-BLK1)										
Prepared & Analyzed: 30-Nov-09										
Aroclor-1016	BRL	U	μg/kg wet we	20.0						
Aroclor-1016 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1221	BRL	U	μg/kg wet we	20.0						
Aroclor-1221 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1232	BRL	U	μg/kg wet we	20.0						
Aroclor-1232 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1242	BRL	U	μg/kg wet we	20.0						
Aroclor-1242 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1248	BRL	U	μg/kg wet we	20.0						
Aroclor-1248 [2C]	BRL	U	µg/kg wet we	20.0						
Aroclor-1254	BRL	U	μg/kg wet we	20.0						
Aroclor-1254 [2C]	BRL	U	µg/kg wet we	20.0						
Aroclor-1260	BRL	U	μg/kg wet we	20.0						
Aroclor-1260 [2C]	BRL	U	µg/kg wet we	20.0						
Aroclor-1262	BRL	U	μg/kg wet we	20.0						
Aroclor-1262 [2C]	BRL	U	µg/kg wet we	20.0						
Aroclor-1268	BRL	U	μg/kg wet we	20.0						
Aroclor-1268 [2C]	BRL	U	μg/kg wet we	20.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet we		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [19.2		μg/kg wet we		20.0		96	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	20.2 21.2		µg/kg wet we µg/kg wet we		20.0 20.0		101 106	30-150 30-150		
_CS (9112136-BS1)			P33		20.0		, 55	00 /00		
Prepared & Analyzed: 30-Nov-09										
Aroclor-1016	235		μg/kg wet we	20.0	250		94	50-140		
Aroclor-1016 [2C]	203		μg/kg wet we		250		81	50-140		
Aroclor-1260	214		µg/kg wet we		250		86	50-140		
Aroclor-1260 [2C]	210		μg/kg wet we		250		84	50-140		
Surrogate: 4.4-DB-Octafluorobiphenyl (Sr)	15.8		μg/kg wet we	20.0	20.0		79	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2	15.6		μg/kg wet we		20.0		78	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.4		μg/kg wet we		20.0		97	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.4		μg/kg wet we		20.0		97	30-150		
_CS Dup (9112136-BSD1)										
Prepared & Analyzed: 30-Nov-09										
Aroclor-1016	223		μg/kg wet we	20.0	250		89	50-140	5	30
Aroclor-1016 [2C]	207		μg/kg wet we	20.0	250		83	50-140	2	30
Aroclor-1260	220		μg/kg wet we	20.0	250		88	50-140	3	30
Aroclor-1260 [2C]	218		μg/kg wet we	20.0	250		87	50-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.4		μg/kg wet we		20.0		82	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	15.7		μg/kg wet we		20.0		78	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	20.4 19.8		µg/kg wet we µg/kg wet we		20.0 20.0		102 99	30-150 30-150		
		5 NG	F3.13		_0.0			23 .30		
Ouplicate (9112136-DUP1) Prepared & Analyzed: 30-Nov-09	ce: SB0453	5-00								
•	DDI.	U	ua/ka day day	21.7		BRL				40
Aroclor 1016	BRL	U	μg/kg dry dry							
Aroclor 1221	BRL	U	μg/kg dry dry			BRL				40 40
Aroclor 1221	BRL		μg/kg dry dry			BRL				40
Aroclor 1221 [2C]	BRL	U	μg/kg dry dry			BRL				40
Arcelor-1232	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1232 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40

This laboratory report is not valid without an authorized signature on the cover page.

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• • • •	Result	1105	Onto	KDL	LOVOI	resuit	/VICEC	Limito	NI D	Limit
Batch 9112136 - SW846 3545A										
	Source: SB0453	5-06								
Prepared & Analyzed: 30-Nov-09										
Aroclor-1242	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1242 [2C]	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1248	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1248 [2C]	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1254	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1254 [2C]	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1260	14.0	J	μg/kg dry dry			20.7			39	40
Aroclor-1260 [2C]	14.4	J	μg/kg dry dry	21.7		20.8			36	40
Aroclor-1262	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1262 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1268	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1268 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40
Surrogate: 4,4-DB-Octafluorobiphenyl (Si	,		μg/kg dry dry		21.7		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si	· •		μg/kg dry dry		21.7		89	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	26.1 22.4		µg/kg dry dry µg/kg dry dry		21.7 21.7		121 104	30-150 30-150		
, , , , , ,			μg/kg diy diy		21.1		104	30-130		
Matrix Spike (9112136-MS1) Prepared & Analyzed: 30-Nov-09	Source: SB0453	5-06								
·	254			00.4	070	DDI	04	40 405		
Aroclor-1016	251		μg/kg dry dry		276	BRL	91	40-135		
Aroclor-1016 [2C]	236		μg/kg dry dry		276	BRL	85	40-135		
Aroclor-1260	275		μg/kg dry dry		276	20.7	92	40-135		
Aroclor-1260 [2C]	318		μg/kg dry dry	22.1	276	20.8	108	40-135		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si	,		μg/kg dry dry		22.1 22.1		93 96	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr)	7) [.		µg/kg dry dry µg/kg dry dry		22.1 22.1		96 148	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.6		μg/kg dry dry		22.1		116	30-150		
Matrix Spike Dup (9112136-MSD1)	Source: SB0453	5-06								
Prepared: 30-Nov-09 Analyzed: 01-Dec-0	9									
Aroclor-1016	249		μg/kg dry dry	22.2	278	BRL	90	40-135	1	15
Aroclor-1016 [2C]	232		μg/kg dry dry	22.2	278	BRL	83	40-135	2	15
Aroclor-1260	255		μg/kg dry dry	22.2	278	20.7	84	40-135	9	20
Aroclor-1260 [2C]	285		ua/ka day day	22.2	270	20.8	95	40-135	13	20
	_00		μg/kg dry dry		278	_0.0				
Surrogate: 4,4-DB-Octafluorobiphenyl (Si			μg/kg dry dry μg/kg dry dry		22.2		83	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si	r) 18.4 r) [: 20.1		μg/kg dry dry μg/kg dry dry		22.2 22.2		83 91	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr)	r) 18.4 r) [: 20.1 28.3		µg/kg dry dry µg/kg dry dry µg/kg dry dry		22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	r) 18.4 r) [: 20.1		μg/kg dry dry μg/kg dry dry		22.2 22.2		83 91	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	r) 18.4 r) [: 20.1 28.3		µg/kg dry dry µg/kg dry dry µg/kg dry dry		22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1)	r) 18.4 r) [: 20.1 28.3		µg/kg dry dry µg/kg dry dry µg/kg dry dry		22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09	r) 18.4 r) [: 20.1 28.3 23.7		µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry		22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016	r) 18.4 r) [: 20.1 28.3 23.7	U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry	20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016	r) 18.4 r) [: 20.1 28.3 23.7 BRL BRL	U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we µg/kg wet we	20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09	BRL BRL BRL BRL	U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we µg/kg wet we µg/kg wet we	20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 Aroclor-1016 [2C] Aroclor-1221	r) 18.4 r) [: 20.1 28.3 23.7 BRL BRL	U U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we µg/kg wet we µg/kg wet we µg/kg wet we	20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 Aroclor-1016 [2C] Aroclor-1221	BRL BRL BRL BRL	U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we µg/kg wet we µg/kg wet we	20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 Aroclor-1016 [2C] Aroclor-1221 Aroclor-1221 [2C] Aroclor-1232	BRL BRL BRL BRL BRL	U U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we µg/kg wet we µg/kg wet we µg/kg wet we	20.0 20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 Aroclor-1016 [2C] Aroclor-1221 Aroclor-1221 [2C] Aroclor-1232 Aroclor-1232 [2C]	BRL BRL BRL BRL BRL BRL BRL	U U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we	20.0 20.0 20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 [2C]	BRL BRL BRL BRL BRL BRL BRL BRL BRL	U U U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 Aroclor-1016 [2C] Aroclor-1221 Aroclor-1221 [2C] Aroclor-1232 Aroclor-1232 [2C] Aroclor-1242 Aroclor-1242 [2C]	BRL	U U U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Si Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C] Batch 9120009 - SW846 3545A Blank (9120009-BLK1) Prepared & Analyzed: 01-Dec-09 Aroclor-1016 Aroclor-1016 [2C] Aroclor-1221 Aroclor-1221 [2C] Aroclor-1232 Aroclor-1232 [2C] Aroclor-1242	BRL	U U U U U	µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg dry dry µg/kg wet we	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	22.2 22.2 22.2		83 91 128	30-150 30-150		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9120009 - SW846 3545A										
Blank (9120009-BLK1)										
Prepared & Analyzed: 01-Dec-09										
Aroclor-1254 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1260	BRL	U	μg/kg wet we	20.0						
Aroclor-1260 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1262	BRL	U	μg/kg wet we	20.0						
Aroclor-1262 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1268	BRL	U	μg/kg wet we	20.0						
Aroclor-1268 [2C]	BRL	U	μg/kg wet we	20.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet we		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [18.6		μg/kg wet we		20.0		93	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.4		μg/kg wet we		20.0		112	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.5		μg/kg wet we		20.0		113	30-150		
LCS (9120009-BS1)										
Prepared & Analyzed: 01-Dec-09										
Aroclor-1016	242		µg/kg wet we	20.0	250		97	50-140		
Aroclor-1016 [2C]	239		µg/kg wet we	20.0	250		96	50-140		
Aroclor-1260	260		μg/kg wet we	20.0	250		104	50-140		
Aroclor-1260 [2C]	222		μg/kg wet we	20.0	250		89	50-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.8		μg/kg wet we		20.0		84	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	18.2		μg/kg wet we		20.0		91	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.1		μg/kg wet we		20.0		111	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.9		μg/kg wet we		20.0		115	30-150		
LCS Dup (9120009-BSD1)										
Prepared & Analyzed: 01-Dec-09										
Aroclor-1016	223		μg/kg wet we	20.0	250		89	50-140	8	30
Aroclor-1016 [2C]	231		μg/kg wet we	20.0	250		92	50-140	4	30
Aroclor-1260	221		μg/kg wet we	20.0	250		88	50-140	16	30
Aroclor-1260 [2C]	221		μg/kg wet we	20.0	250		88	50-140	0.6	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	18.7		μg/kg wet we		20.0		94	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	17.2		μg/kg wet we		20.0		86	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.4		μg/kg wet we		20.0		97	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.7		μg/kg wet we		20.0		109	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9112029 - SW846 3550B/C										
Blank (9112029-BLK1)										
Prepared: 25-Nov-09 Analyzed: 30-Nov-09										
Gasoline	BRL	U	mg/kg wet wε	13.3						
Fuel Oil #2	BRL	U	mg/kg wet wε	13.3						
Fuel Oil #4	BRL	U	mg/kg wet wε	13.3						
Fuel Oil #6	BRL	U	mg/kg wet wε	13.3						
Motor Oil	BRL	U	mg/kg wet wε	13.3						
Ligroin	BRL	U	mg/kg wet wε	13.3						
Aviation Fuel	BRL	U	mg/kg wet wε	13.3						
Hydraulic Oil	BRL	U	mg/kg wet wε	13.3						
Dielectric Fluid	BRL	U	mg/kg wet wε	13.3						
Unidentified	BRL	U	mg/kg wet wε	13.3						
Other Oil	BRL	U	mg/kg wet wε	13.3						
Total Petroleum Hydrocarbons	BRL	U	mg/kg wet wε	13.3						
Surrogate: 1-Chlorooctadecane	3.06		mg/kg wet wε		3.33		92	40-140		
LCS (9112029-BS1)										
Prepared: 25-Nov-09 Analyzed: 30-Nov-09										
Fuel Oil #2	681		mg/kg wet wε	13 3	667		102	40-140		
Surrogate: 1-Chlorooctadecane	3.11		mg/kg wet wε	10.0	3.33		93	40-140		
_	•		g.ngot		0.00					
Batch 9120023 - SW846 3550B/C										
Blank (9120023-BLK1)										
Prepared & Analyzed: 01-Dec-09										
Gasoline	BRL	U	mg/kg wet w€							
Fuel Oil #2	BRL	U	mg/kg wet w€							
Fuel Oil #4	BRL	U	mg/kg wet w€							
Fuel Oil #6	BRL	U	mg/kg wet w€							
Motor Oil	BRL	U	mg/kg wet w€							
Ligroin	BRL	U	mg/kg wet w€							
Aviation Fuel	BRL	U	mg/kg wet w€							
Hydraulic Oil	BRL	U	mg/kg wet w€							
Dielectric Fluid	BRL	U	mg/kg wet w€							
Unidentified	BRL	U	mg/kg wet w€	13.3						
Other Oil	BRL	U	mg/kg wet w€	13.3						
Total Petroleum Hydrocarbons	BRL	U	mg/kg wet w€							
Surrogate: 1-Chlorooctadecane	3.40		mg/kg wet w€		3.33		102	40-140		
LCS (9120023-BS1)										
Prepared: 01-Dec-09 Analyzed: 02-Dec-09										
Fuel Oil #2	659		mg/kg wet wε	13.3	667		99	40-140		
Surrogate: 1-Chlorooctadecane	4.18		mg/kg wet w€		3.33		125	40-140		
Duplicate (9120023-DUP1) S	ource: SB04535	-06								
Prepared & Analyzed: 01-Dec-09										
Gasoline	BRL	U	mg/kg dry dry			BRL				50
Fuel Oil #2	BRL	U	mg/kg dry dry	28.6		BRL				50
Fuel Oil #4	BRL	U	mg/kg dry dry	28.6		BRL				50
Fuel Oil #6	BRL	U	mg/kg dry dry	28.6		BRL				50
Motor Oil	BRL	U	mg/kg dry dry	28.6		BRL				50
Ligroin	BRL	U	mg/kg dry dry	28.6		BRL				50
Aviation Fuel	BRL	U	mg/kg dry dry	28.6		BRL				50
Hydraulic Oil	BRL	U	mg/kg dry dry	28.6		BRL				50
Dielectric Fluid	Calculated as	Z-2	mg/kg dry dry			alculated a	a			50

This laboratory report is not valid without an authorized signature on the cover page.

Extractable Petroleum Hydrocarbons - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9120023 - SW846 3550B/C										
<u>Duplicate (9120023-DUP1)</u>	Source: SB04535	5-06								
Prepared & Analyzed: 01-Dec-09										
Unidentified	525		mg/kg dry dry	28.6		555			6	50
Other Oil	Calculated as	S	mg/kg dry dry	28.6		alculated a	ı			50
Total Petroleum Hydrocarbons	525		mg/kg dry dry	28.6		555			6	50
Surrogate: 1-Chlorooctadecane	3.64		mg/kg dry dry		3.58		102	40-140		
	Gener	ral Che	mistry Parar	neters - (Quality Co	ntrol				
					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9112197 - General Preparat	tion									
<u>Duplicate (9112197-DUP1)</u>	Source: SB04535	5-01								
Prepared: 30-Nov-09 Analyzed: 01-E	Dec-09									
% Solids	89.2		%			88.7			0.6	20

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

SGC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

U Analyte included in the analysis, but not detected

Z-2 Transformer Oil

BDL Below Detection Limit - Analyte NOT DETECTED at or above the minimum detection limit

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Leja

CHAIN OF CUSTODY RECORD

Page 1 of 1

SB 64535 @ Special Handling:

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

50	STANTEC GETMOUTH DR		Invoice '	Го:	SA	ME						ject No.: _				20 cm 1 22 day 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Aub	ioin, NH 03	032	3 6	iye.			甚	1,3	(8)			Name: _				THE R. P. LEWIS CO., LANSING, MICH.
12			1 3 2 1	į				1085			Loc	ation:	MAS	PETH	Q	Veens State: NY
Telephone #	Danyld Moore		P.O. No.	7		lege.	ŔQ	N:_			San	npler(s):	B	Blive	_	
	2S2O ₃ 2=HCl 3=H ₂	SO ₄ 4=HNO ₃	5=NaOH	6=Asc	orbic /	Acid	7=(CH₃C	H		List	preservat	ive co	de below	v:	QA/QC Reporting Notes: (check as needed)
	ng Water GW=Groun			g die			Cor	ntain	ers:	- 嬰		Ana	lyses:	- 9 9		☐ Provide MA DEP MCP CAM Report
O=Oil SW X1=	/= Surface Water SO= X2=	Soil SL=Slud				ials	Glass	lass	shotes Au	200	20018	adibyan		Andreas	threshing.	□ Provide CT DPH RCP Report QA/QC Reporting Level □ Standard □ No QC
E	G=Grab C=C	Composite .	4 1			# of VOA Vials	# of Amber Glass	of Clear Glass	of Plastic	800	0	8 3		Street or	H 0	A Other NYSDEC CATB
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# of V	# of A	# of C	# of P	PCB.	TPH	0.00	400	2 7 10 10	The second	State specific reporting standards:
\$535-01	Mw-601(0-7.5)	11/16/09	1230	C	50	1	1		8 8	X	X		Ĭă.	10 3	9-15	16 2161
	MW-603(0-7.5)	11/16/09	1500	C	50	1000	1		2 2 3	8	χ		ŏ.	148 E		
1.03	MW-602(0-7.5)	11/17/09	945	C	So	3,135	ı		300	×	X	2.0	194			
- cel	DUPE	11/18/09	2 H H H	C	50	- 2	1	,	8 8 8	X	X	1 2 2	134		5 5	
- 03	MW-602 (8-12)	11/18/09	1150	G	50		1		ž 14] j	X	X	8 24	151		20 1	1. 强烈强烈战器 1. 1
- 96	mw-602(12-16)	11/18/09	1220	C	50		1			×	X	150		7 E. S.	關語	
	ms/msb	11/18/09	1220	G	50		1	- ē		K	X		9	1 - 5 B	a 8	
	mw-602(16-20)	11/18/09	1300	C	30	10 H	1	3	7 2 4	K	X	14,5	ĕ.	1 88	3 4	
	MW-602(20-24)	11/18/09	1440	C	SO	BANG.	1	13	38	K	X		8.		E E	
0,00	mw-602(24-28)	11/18/09	1515	C	50		1		9.8	X	X			1	ā ķ	
Rel	ingnished by:	Reco	eived by:		A 100	Date:		11.00	Time:	To	mp°C	□ EDD	Form	nat	ř ř	
111	18/1	(O)	Sulf)	11-	19-19	9	1	50	1	1.3	□ E-ma		HI THE POIL	Ŋ.	
79	Bill		4		11/	19/	39	10	1:0	04	.8		. /			
	//							500		53 (50)		☐ Ambient	Da lood	☐ Refrigera	ated 🔲	Fridge temp "C Freezer temp_"C

Report Date: 09-Dec-09 11:17

\checkmark	Final Report
_	Re-Issued Report
	Revised Report

Laboratory Report

Stantec Consulting Services 5 Dartmouth Drive, Suite 101 Auburn, NH 03032

Attn: Don Moore

Project: Maspeth - Queens, NY

Project #: 191710024

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB04789-01	MW-603 (10-12)	Soil	20-Nov-09 08:55	24-Nov-09 19:45
SB04789-02	MW-603 (12-16)	Soil	20-Nov-09 08:55	24-Nov-09 19:45
SB04789-03	MW-603 (16-18)	Soil	20-Nov-09 09:20	24-Nov-09 19:45
SB04789-04	MW-603 (20-22.8)	Soil	20-Nov-09 09:45	24-Nov-09 19:45
SB04789-05	MW-603 (24-25.2)	Soil	20-Nov-09 10:00	24-Nov-09 19:45
SB04789-06	MW-601 (8-12)	Soil	23-Nov-09 08:40	24-Nov-09 19:45
SB04789-07	MW-601 (12-16)	Soil	23-Nov-09 09:15	24-Nov-09 19:45
SB04789-08	MW-601 (16-18.3)	Soil	23-Nov-09 09:50	24-Nov-09 19:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D.
President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 16 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 4.5 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 6.0 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

+SW846 8100Mod.

Samples:

samples:	
SB04789-01	MW-603 (10-12)
Transformer oil	
Dielectric Fluid	
SB04789-02	MW-603 (12-16)
Transformer oil	
Dielectric Fluid	
SB04789-03	MW-603 (16-18)
Transformer oil	
Dielectric Fluid	
SB04789-04	MW-603 (20-22.8)
Transformer oil	
Dielectric Fluid	
SB04789-05	MW-603 (24-25.2)
Transformer oil	
Dielectric Fluid	
SB04789-07	MW-601 (12-16)
Transformer oil	
Dielectric Fluid	

Sample Identification MW-603 (10-12) SB04789-01

Client Project # 191710024

Matrix Soil Collection Date/Time 20-Nov-09 08:55

CAS No. Analyte((s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organ	nic Compounds by GC											
Polychlorinated B	iphenyls by SW846 80)8 <u>2</u>										
Prepared by meth	od SW846 3545A											
12674-11-2 Aroclor-1	016	BDL	U	μg/kg dry	20.6	8.79	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2 Aroclor-1	221	BDL	U	μg/kg dry	20.6	11.8	1	11	"	"	"	Х
11141-16-5 Aroclor-1	232	BDL	U	μg/kg dry	20.6	12.0	1		"	"	"	Χ
53469-21-9 Aroclor-1	242	BDL	U	μg/kg dry	20.6	6.84	1	"	"	"	"	Χ
12672-29-6 Aroclor-1	248	BDL	U	μg/kg dry	20.6	8.32	1	"	"	"	"	Χ
11097-69-1 Aroclor-1	254	BDL	U	μg/kg dry	20.6	12.2	1	"	"	"	"	Χ
11096-82-5 Aroclor-1	260	88.4		μg/kg dry	20.6	8.50	1		"	"	"	Χ
37324-23-5 Aroclor-1	262	BDL	U	μg/kg dry	20.6	10.0	1	"	"	"	"	Χ
11100-14-4 Aroclor-1	268	BDL	U	μg/kg dry	20.6	14.5	1	"	"	"		Х
Surrogate recoveries	s:											
10386-84-2 4,4-DB-C	Octafluorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-C	Octafluorobiphenyl (Sr) [2	PC] 90		30-15	50 %			"	"	"	"	
2051-24-3 Decachlo	probiphenyl (Sr)	110		30-15	50 %			"	"	"	"	
2051-24-3 Decachlo	probiphenyl (Sr) [2C]	115		30-15	50 %			"	"	"	"	
Extractable Petrole	eum Hydrocarbons											
TPH 8100 by GC												
Prepared by meth	od SW846 3545A											
8006-61-9 Gasoline		BDL	U	mg/kg dry	29.2	9.7	1	+SW846 8100Mod.	03-Dec-09	04-Dec-09	9120241	
68476-30-2 Fuel Oil a	# 2	BDL	U	mg/kg dry	29.2	10.0	1	"	"	"	"	
68476-31-3 Fuel Oil a	¥ 4	BDL	U	mg/kg dry	29.2	2.9	1	"	"	"	"	
68553-00-4 Fuel Oil #	# 6	BDL	U	mg/kg dry	29.2	10.6	1	"	"	"	"	
M09800000 Motor Oi	I	BDL	U	mg/kg dry	29.2	19.1	1	"	"	"	"	
8032-32-4 Ligroin		BDL	U	mg/kg dry	29.2	7.3	1	"	"	"	"	
J00100000 Aviation	Fuel	BDL	U	mg/kg dry	29.2	7.3	1	"	"	"	"	
Hydraulid	Oil	BDL	U	mg/kg dry	29.2	2.9	1	"	"	"	"	
Dielectric	Fluid	Calculate	d asZ-2	mg/kg dry	29.2	7.3	1	"	"	"	"	
Unidentif	ïed	124		mg/kg dry	29.2	7.3	1	"	"	"	"	
Other Oil		Calculate	d as	mg/kg dry	29.2	2.9	1	"	"	"	"	
Total Pet	roleum Hydrocarbons	124		mg/kg dry	29.2	2.9	1	n n	"	"	"	
Surrogate recoveries	s:											
3386-33-2 1-Chloro	octadecane	113		40-14	10 %			"	"	"	"	
General Chemistry	Parameters											
% Solids		90.4		%			1 :	SM2540 G Mod				

Sample Identification MW-603 (12-16) SB04789-02

Client Project # 191710024

Matrix Soil Collection Date/Time 20-Nov-09 08:55

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolati	ile Organic Compounds by GC											
Polychlori	nated Biphenyls by SW846 80	<u>82</u>										
Prepared	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	21.1	8.96	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	21.1	12.1	1	11	"	"	"	Χ
11141-16-5	Aroclor-1232	BDL	U	μg/kg dry	21.1	12.3	1	"	"	"	"	Χ
53469-21-9	Aroclor-1242	BDL	U	μg/kg dry	21.1	6.98	1	"	"	"	"	Χ
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	21.1	8.49	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	57.2		μg/kg dry	21.1	12.4	1	"	"	"	"	Χ
11096-82-5	Aroclor-1260	73.8		μg/kg dry	21.1	8.68	1	"	"	"	"	Χ
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	21.1	10.2	1	"	"	"	"	Χ
11100-14-4	Aroclor-1268	BDL	U	μg/kg dry	21.1	14.8	1	n n	"	"	"	Х
Surrogate r	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2	C] 100		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	110		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115		30-150 % " " " "								
Extractabl	le Petroleum Hydrocarbons											
TPH 8100) by GC											
Prepared	by method SW846 3545A											
8006-61-9	Gasoline	BDL	U	mg/kg dry	29.0	9.6	1	+SW846 8100Mod.	03-Dec-09	04-Dec-09	9120241	
68476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	29.0	9.9	1	"	"	"	"	
68476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	29.0	2.9	1	"	"	"	"	
68553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	29.0	10.6	1	"	"	"	"	
M09800000	Motor Oil	BDL	U	mg/kg dry	29.0	19.0	1	"	"	"	"	
8032-32-4	Ligroin	BDL	U	mg/kg dry	29.0	7.3	1	"	"	"	"	
J00100000	Aviation Fuel	BDL	U	mg/kg dry	29.0	7.3	1	"	"	"	"	
	Hydraulic Oil	BDL	U	mg/kg dry	29.0	2.9	1	"	"	"	"	
	Dielectric Fluid	Calculate	d asZ-2	mg/kg dry	29.0	7.3	1	"	"	"	"	
	Unidentified	299		mg/kg dry	29.0	7.3	1	"	"	"	"	
	Other Oil	Calculate	d as	mg/kg dry	29.0	2.9	1	"	"	"	"	
	Total Petroleum Hydrocarbons	299		mg/kg dry	29.0	2.9	1	n n	"	"	"	
Surrogate r	recoveries:											
3386-33-2	1-Chlorooctadecane	87		40-14			"	"	"	"		
General C	hemistry Parameters											
		89.7		%			1 :	SM2540 G Mod				

Sample Identification MW-603 (16-18) SB04789-03

Client Project # 191710024

Matrix Soil Collection Date/Time 20-Nov-09 09:20

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 80	<u>)82</u>										
Prepared by method SW846 3545A											
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	21.4	9.10	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	X
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	21.4	12.2	1	"	"	"	"	X
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	21.4	12.5	1	"	"	"	"	X
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	21.4	7.08	1	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	21.4	8.62	1	"	"	"	"	Χ
11097-69-1 Aroclor-1254	31.7		μg/kg dry	21.4	7.81	1	"	"	"	"	Χ
11096-82-5 Aroclor-1260	48.0		μg/kg dry	21.4	8.80	1	"	"	"	"	Χ
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	21.4	10.4	1	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	21.4	15.0	1	"	"	"	"	Х
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	85		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2	PC] 90		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	110 30-150 % " " " "								"		
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3545A											
8006-61-9 Gasoline	BDL	U	mg/kg dry	28.9	9.6	1	+SW846 8100Mod.	03-Dec-09	04-Dec-09	9120241	
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	28.9	9.9	1	"	"	"	"	
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	28.9	2.9	1	··	"	"	"	
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	28.9	10.5	1	"	"	"	"	
M09800000 Motor Oil	BDL	U	mg/kg dry	28.9	18.9	1		"	"	"	
8032-32-4 Ligroin	BDL	U	mg/kg dry	28.9	7.2	1	··	"	"	"	
J00100000 Aviation Fuel	BDL	U	mg/kg dry	28.9	7.2	1		"	"	"	
Hydraulic Oil	BDL	U	mg/kg dry	28.9	2.9	1		"	"	u u	
Dielectric Fluid	Calculate	ed asZ-2	mg/kg dry	28.9	7.2	1		"	"	u u	
Unidentified	123		mg/kg dry	28.9	7.2	1		"	"	"	
Other Oil	Calculate	d as	mg/kg dry	28.9	2.9	1		"	"	u u	
Total Petroleum Hydrocarbons	123		mg/kg dry	28.9	2.9	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	93		40-140 %				"	"	"	"	
General Chemistry Parameters											
% Solids	89.4		%			1	SM2540 G Mod	. 04-Dec-09	04-Dec-09	9120444	

Sample Identification MW-603 (20-22.8) SB04789-04

Client Project # 191710024

Matrix Soil Collection Date/Time 20-Nov-09 09:45

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 80) <u>82</u>										
Prepared by method SW846 3545A											
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	21.7	9.25	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	21.7	12.5	1	"	"	"	"	Χ
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	21.7	12.7	1	"	"	"	"	Χ
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	21.7	7.20	1	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	21.7	8.77	1	"	"	"	"	Χ
11097-69-1 Aroclor-1254	36.5		μg/kg dry	21.7	7.94	1	"	"	"	"	Χ
11096-82-5 Aroclor-1260	59.3		μg/kg dry	21.7	8.96	1	"	"	"	"	Χ
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	21.7	10.6	1	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	21.7	15.3	1	"	"	"	"	Х
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2	C] 95		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	100		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	110 30-150 % " " "									"	
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3545A											
8006-61-9 Gasoline	BDL	U	mg/kg dry	28.2	9.4	1	+SW846 8100Mod.	03-Dec-09	04-Dec-09	9120241	
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	28.2	9.6	1	"	"	"	"	
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	28.2	2.8	1	"	"	"	"	
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	28.2	10.3	1	"	"	"	"	
M09800000 Motor Oil	BDL	U	mg/kg dry	28.2	18.4	1	"	"	"	"	
8032-32-4 Ligroin	BDL	U	mg/kg dry	28.2	7.0	1	"	"	"	"	
J00100000 Aviation Fuel	BDL	U	mg/kg dry	28.2	7.0	1	"	"	"	"	
Hydraulic Oil	BDL	U	mg/kg dry	28.2	2.8	1	"	"	"	"	
Dielectric Fluid	Calculate	d asZ-2	mg/kg dry	28.2	7.0	1	"	"	"	"	
Unidentified	167		mg/kg dry	28.2	7.0	1	"	"	"	"	
Other Oil	Calculate	d as	mg/kg dry	28.2	2.8	1	"	"	"	"	
Total Petroleum Hydrocarbons	167		mg/kg dry	28.2	2.8	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	92		40-14			"	"	"	"		
General Chemistry Parameters											
% Solids	89.6		%			1 :	SM2540 G Mod	. 04-Dec-09	04-Dec-09	9120444	

Sample Identification MW-603 (24-25.2) SB04789-05

Client Project # 191710024

Matrix Soil Collection Date/Time 20-Nov-09 10:00

CAS No. An	nalyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Semivolatile (Organic Compounds by GC											
Polychlorina	ted Biphenyls by SW846 808	<u>82</u>										
Prepared by	method SW846 3545A											
12674-11-2 Arc	oclor-1016	BDL	U	μg/kg dry	20.8	8.86	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2 Arc	oclor-1221	BDL	U	μg/kg dry	20.8	11.9	1	"	"	"	"	Χ
1141-16-5 Arc	oclor-1232	BDL	U	μg/kg dry	20.8	12.1	1	"	"	"	"	Х
53469-21-9 Arc	oclor-1242	BDL	U	μg/kg dry	20.8	6.90	1	"	"	"	"	Х
12672-29-6 Arc	oclor-1248	BDL	U	μg/kg dry	20.8	8.39	1	"	"	"	"	Х
11097-69-1 Arc	oclor-1254	43.3		μg/kg dry	20.8	7.61	1	"	"	"	"	Х
1096-82-5 Arc	oclor-1260	96.3		μg/kg dry	20.8	10.5	1	"	"	"	"	Х
37324-23-5 Arc	oclor-1262	BDL	U	μg/kg dry	20.8	10.1	1	"	"	"	"	Χ
11100-14-4 Ard	oclor-1268	BDL	U	μg/kg dry	20.8	14.6	1	"	"	"	"	Χ
Surrogate rec	overies:											
0386-84-2 4,4	4-DB-Octafluorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
0386-84-2 4,4	4-DB-Octafluorobiphenyl (Sr) [20	C] 95		30-15	50 %			"	"	"	"	
051-24-3 De	ecachlorobiphenyl (Sr)	105		30-15	50 %			"	"	"	"	
2051-24-3 De	ecachlorobiphenyl (Sr) [2C]	120 30-150 % " " " "									"	
Extractable F	Petroleum Hydrocarbons											
ΓΡΗ 8100 by	y GC											
Prepared by	method SW846 3545A											
006-61-9 Ga		BDL	U	mg/kg dry	29.5	9.8	1	+SW846 8100Mod.	03-Dec-09	04-Dec-09	9120241	
8476-30-2 Fu	el Oil #2	BDL	U	mg/kg dry	29.5	10.1	1	"	"	"	"	
8476-31-3 Fu	el Oil #4	BDL	U	mg/kg dry	29.5	3.0	1	"	"	"	"	
8553-00-4 Fu	el Oil #6	BDL	U	mg/kg dry	29.5	10.8	1	"	"	"	"	
ио9800000 Мс	otor Oil	BDL	U	mg/kg dry	29.5	19.3	1	"	"	"	"	
032-32-4 Lig	groin	BDL	U	mg/kg dry	29.5	7.4	1	"	"	"	"	
00100000 Av	riation Fuel	BDL	U	mg/kg dry	29.5	7.4	1	"	"	"	"	
Ну	draulic Oil	BDL	U	mg/kg dry	29.5	3.0	1	"	"	"	"	
Die	electric Fluid	Calculated	d asZ-2	mg/kg dry	29.5	7.4	1	"	"	"	"	
Un	nidentified	143		mg/kg dry	29.5	7.4	1	"	"	"	"	
Otl	her Oil	Calculated	d as	mg/kg dry	29.5	3.0	1	u u	"	"	"	
To	tal Petroleum Hydrocarbons	143		mg/kg dry	29.5	3.0	1	n n	"	"	"	
Surrogate rec	overies:											
3386-33-2 1-0	Chlorooctadecane	63		40-14			"	"	"	"		
General Che	mistry Parameters											
	Solids	89.1		%			1 :	SM2540 G Mod	04 D 00		0.100.1.1	

Sample Identification MW-601 (8-12) SB04789-06

Client Project # 191710024

Matrix Soil Collection Date/Time 23-Nov-09 08:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Semivolati	le Organic Compounds by GC											
Polychlorir	nated Biphenyls by SW846 80	082										
Prepared I	by method SW846 3545A											
12674-11-2	Aroclor-1016	BDL	U	μg/kg dry	20.7	8.81	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2	Aroclor-1221	BDL	U	μg/kg dry	20.7	11.9	1	"	"	"	"	Χ
1141-16-5	Aroclor-1232	BDL	U	μg/kg dry	20.7	12.1	1	"	"	"	"	Х
3469-21-9	Aroclor-1242	BDL	U	μg/kg dry	20.7	6.85	1	"	"	"	"	Х
12672-29-6	Aroclor-1248	BDL	U	μg/kg dry	20.7	8.34	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	BDL	U	μg/kg dry	20.7	12.2	1	"	"	"	"	Χ
1096-82-5	Aroclor-1260	BDL	U	μg/kg dry	20.7	8.52	1	"	"	"	"	Χ
37324-23-5	Aroclor-1262	BDL	U	μg/kg dry	20.7	10.0	1	"	"	"	"	Х
1100-14-4	Aroclor-1268	BDL	U	μg/kg dry	20.7	14.6	1	"	"	"	"	Χ
Surrogate re	recoveries:											
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2	2C] 90		30-15	50 %			"	"	"	"	
051-24-3	Decachlorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110		30-15	50 %			"	"	"	"	
Extractabl	le Petroleum Hydrocarbons											
ГРН 8100	by GC											
Prepared I	by method SW846 3550B/C											
006-61-9		BDL	U	mg/kg dry	29.3	9.7	1	+SW846 8100Mod.	04-Dec-09	05-Dec-09	9120350	
8476-30-2	Fuel Oil #2	BDL	U	mg/kg dry	29.3	10.0	1	"	"	"	"	
8476-31-3	Fuel Oil #4	BDL	U	mg/kg dry	29.3	2.9	1	"	"	"	"	
8553-00-4	Fuel Oil #6	BDL	U	mg/kg dry	29.3	10.7	1	"	"	"	"	
/09800000 I	Motor Oil	BDL	U	mg/kg dry	29.3	19.1	1	"	"	"	"	
032-32-4 I	Ligroin	BDL	U	mg/kg dry	29.3	7.3	1	"	"	"	"	
00100000	Aviation Fuel	BDL	U	mg/kg dry	29.3	7.3	1	"	"	"	"	
ľ	Hydraulic Oil	BDL	U	mg/kg dry	29.3	2.9	1	"	"	"	"	
ī	Dielectric Fluid	BDL	U	mg/kg dry	29.3	7.3	1	"	"	"	"	
ı	Unidentified	BDL	U	mg/kg dry	29.3	7.3	1	"	"	"	"	
(Other Oil	BDL	U	mg/kg dry	29.3	2.9	1	"	"	"	"	
-	Total Petroleum Hydrocarbons	BDL	U	mg/kg dry	29.3	2.9	1	"	"	"	"	
Surrogate re	recoveries:											
3386-33-2	1-Chlorooctadecane	99	40-140 %					"	"	"	"	
General Cl	hemistry Parameters											
	% Solids	89.2		%			1 :	SM2540 G Mod				

Sample Identification MW-601 (12-16) SB04789-07

Client Project # 191710024

Matrix Soil Collection Date/Time 23-Nov-09 09:15

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by	GC										
Polychlorinated Biphenyls by SW84	16 8082										
Prepared by method SW846 3545A	<u> </u>										
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	20.6	8.78	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	20.6	11.8	1	11	"	"	"	Х
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	20.6	12.0	1		"	"	"	Χ
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	20.6	6.83	1	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	20.6	8.31	1	"	"	"	"	Χ
11097-69-1 Aroclor-1254	BDL	U	μg/kg dry	20.6	12.2	1	"	"	"	"	Χ
11096-82-5 Aroclor-1260	BDL	U	μg/kg dry	20.6	8.49	1		"	"	"	Χ
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	20.6	10.0	1	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	20.6	14.5	1	"	"	"		Х
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 85		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2C] 90		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	85		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C] 105	05 30-150 % " " " "									
Extractable Petroleum Hydrocarbons	s										
TPH 8100 by GC											
Prepared by method SW846 3550E	3/C										
8006-61-9 Gasoline	BDL	U	mg/kg dry	29.0	9.7	1	+SW846 8100Mod.	04-Dec-09	05-Dec-09	9120350	
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	29.0	9.9	1	"	"	"	"	
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	29.0	2.9	1	"	"	"	"	
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	29.0	10.6	1	"	"	"	"	
M09800000 Motor Oil	BDL	U	mg/kg dry	29.0	19.0	1	"	"	"	"	
8032-32-4 Ligroin	BDL	U	mg/kg dry	29.0	7.3	1	"	"	"	"	
J00100000 Aviation Fuel	BDL	U	mg/kg dry	29.0	7.3	1	"	"	"	"	
Hydraulic Oil	BDL	U	mg/kg dry	29.0	2.9	1	"	"	"	"	
Dielectric Fluid	Calculate	d asZ-2	mg/kg dry	29.0	7.3	1	"	"	"	"	
Unidentified	180		mg/kg dry	29.0	7.3	1	"	"	"	"	
Other Oil	Calculate	d as	mg/kg dry	29.0	2.9	1	"	"	"	"	
Total Petroleum Hydrocarbon	ns 180		mg/kg dry	29.0	2.9	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	85		40-14			"	"	"	"		
General Chemistry Parameters											
	89.7		%			1 :	SM2540 G Mod				

Sample Identification MW-601 (16-18.3) SB04789-08

Client Project # 191710024

Matrix Soil Collection Date/Time 23-Nov-09 09:50

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 80	<u>)82</u>										
Prepared by method SW846 3545A											
12674-11-2 Aroclor-1016	BDL	U	μg/kg dry	21.6	9.18	1	SW846 8082	02-Dec-09	05-Dec-09	9120125	Х
11104-28-2 Aroclor-1221	BDL	U	μg/kg dry	21.6	12.4	1	"	"	"	"	Х
11141-16-5 Aroclor-1232	BDL	U	μg/kg dry	21.6	12.6	1		"	"	"	Χ
53469-21-9 Aroclor-1242	BDL	U	μg/kg dry	21.6	7.14	1	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	μg/kg dry	21.6	8.69	1	"	"	"	"	Χ
11097-69-1 Aroclor-1254	BDL	U	μg/kg dry	21.6	12.7	1	"	"	"	"	Χ
11096-82-5 Aroclor-1260	BDL	U	μg/kg dry	21.6	8.88	1		"	"	"	Χ
37324-23-5 Aroclor-1262	BDL	U	μg/kg dry	21.6	10.5	1	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/kg dry	21.6	15.2	1	"	"	"	"	X
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2	PC] 95		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	90		30-15	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	105	05 30-150 % " " " "									
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3550B/C											
8006-61-9 Gasoline	BDL	U	mg/kg dry	29.5	9.8	1	+SW846 8100Mod.	04-Dec-09	05-Dec-09	9120350	
68476-30-2 Fuel Oil #2	BDL	U	mg/kg dry	29.5	10.1	1	"	"	"	"	
68476-31-3 Fuel Oil #4	BDL	U	mg/kg dry	29.5	3.0	1	"	"	"	"	
68553-00-4 Fuel Oil #6	BDL	U	mg/kg dry	29.5	10.8	1	"	"	"	"	
M09800000 Motor Oil	BDL	U	mg/kg dry	29.5	19.3	1	"	"	"	"	
8032-32-4 Ligroin	BDL	U	mg/kg dry	29.5	7.4	1	"	"	"	"	
J00100000 Aviation Fuel	BDL	U	mg/kg dry	29.5	7.4	1	"	"	"	"	
Hydraulic Oil	BDL	U	mg/kg dry	29.5	3.0	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/kg dry	29.5	7.4	1	"	"	"	"	
Unidentified	BDL	U	mg/kg dry	29.5	7.4	1	"	"	"	"	
Other Oil	BDL	U	mg/kg dry	29.5	3.0	1	"	"	"	"	
Total Petroleum Hydrocarbons	BDL	U	mg/kg dry	29.5	3.0	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	84	40-140 %					"	"	"	"	
General Chemistry Parameters											
% Solids	87.9		%			1	SM2540 G Mod	. 04-Dec-09	04-Dec-09	9120444	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9120125 - SW846 3545A										
Blank (9120125-BLK1)										
Prepared: 02-Dec-09 Analyzed: 03-Dec-09										
Aroclor-1016	BRL	U	μg/kg wet we	20.0						
Aroclor-1016 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1221	BRL	U	μg/kg wet we	20.0						
Aroclor-1221 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1232	BRL	U	μg/kg wet we	20.0						
Aroclor-1232 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1242	BRL	U	μg/kg wet we	20.0						
Aroclor-1242 [2C]	BRL	U	μg/kg wet we	20.0						
Aroclor-1248	BRL	U	μg/kg wet we	20.0						
Aroclor-1248 [2C]	BRL	U	μg/kg wet we							
Aroclor-1254	BRL	U	μg/kg wet we							
Aroclor-1254 [2C]	BRL	U	μg/kg wet we							
Aroclor-1260	BRL	U	µg/kg wet we							
Aroclor-1260 [2C]	BRL	U	μg/kg wet we							
Aroclor-1262	BRL	U	μg/kg wet we							
Aroclor-1262 [2C]	BRL	U	μg/kg wet we							
Aroclor-1268	BRL	U	µg/kg wet we							
Aroclor-1268 [2C]	BRL	U	μg/kg wet we							
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		µg/kg wet we		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [15.0		μg/kg wet we		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	15.0 16.0		μg/kg wet we μg/kg wet we		20.0 20.0		75 80	30-150 30-150		
.CS (9120125-BS1)										
Prepared: 02-Dec-09 Analyzed: 03-Dec-09										
Aroclor-1016	173		µg/kg wet we	20.0	250		69	50-140		
Aroclor-1016 [2C]	177		μg/kg wet we		250		71	50-140		
Aroclor-1260	179		μg/kg wet we	20.0	250		72	50-140		
Aroclor-1260 [2C]	177		μg/kg wet we	20.0	250		71	50-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	14.0		μg/kg wet we		20.0		70	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [14.0		μg/kg wet we		20.0		70	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.0		μg/kg wet we		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.0		μg/kg wet we		20.0		80	30-150		
.CS Dup (9120125-BSD1)										
Prepared: 02-Dec-09 Analyzed: 03-Dec-09										
Aroclor-1016	181		μg/kg wet we		250		73	50-140	5	30
Aroclor-1016 [2C]	184		µg/kg wet we	20.0	250		74	50-140	4	30
Aroclor-1260	186		μg/kg wet we	20.0	250		74	50-140	4	30
Aroclor-1260 [2C]	190		μg/kg wet we	20.0	250		76	50-140	7	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet we		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [: Surrogate: Decachlorobiphenyl (Sr)	15.0 16.0		μg/kg wet we μg/kg wet we		20.0 20.0		75 80	30-150 30-150		
Surrogate: Decacniorobiphenyi (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	16.0 16.0		μg/kg wet we		20.0		80 80	30-150 30-150		
	ce: SB0478	9-03	. 5 5 5							
Prepared: 02-Dec-09 Analyzed: 05-Dec-09	JDU4/0	J-0J								
Aroclor-1016	BRL	U	μg/kg dry dry	21 7		BRL				40
		U								
Aroclor-1016 [2C]	BRL		μg/kg dry dry			BRL				40
Aroclor-1221	BRL	U	μg/kg dry dry			BRL				40
Arcelor-1221 [2C]	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1232	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1232 [2C]	BRL	U	μg/kg dry dry	04.7		BRL				40

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
eatch 9120125 - SW846 3545A										
Ouplicate (9120125-DUP1) Source	ce: SB0478	9-03								
Prepared: 02-Dec-09 Analyzed: 05-Dec-09										
Aroclor-1242	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1242 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1248	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1248 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1254	20.5	J	μg/kg dry dry	21.7		30.2			38	40
Aroclor-1254 [2C]	22.8		μg/kg dry dry			31.7			33	40
Aroclor-1260	32.4		μg/kg dry dry	21.7		48.0			39	40
Aroclor-1260 [2C]	32.3		μg/kg dry dry	21.7		46.5			36	40
Aroclor-1262	BRL	U	μg/kg dry dry			BRL				40
Aroclor-1262 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1268	BRL	U	μg/kg dry dry	21.7		BRL				40
Aroclor-1268 [2C]	BRL	U	μg/kg dry dry	21.7		BRL				40
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.5		μg/kg dry dry		21.7		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [20.6		μg/kg dry dry		21.7		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.7		μg/kg dry dry		21.7		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	23.8		μg/kg dry dry		21.7		110	30-150		
Matrix Spike (9120125-MS1) Source	ce: SB0478	9-03								
Prepared: 02-Dec-09 Analyzed: 05-Dec-09										
Aroclor-1016	243		μg/kg dry dry	21.5	268	BRL	91	40-135		
Aroclor-1016 [2C]	238		μg/kg dry dry	21.5	268	BRL	89	40-135		
Aroclor-1260	309		μg/kg dry dry	21.5	268	48.0	97	40-135		
Aroclor-1260 [2C]	286		μg/kg dry dry	21.5	268	46.5	89	40-135		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.4		μg/kg dry dry		21.5		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	19.3		μg/kg dry dry		21.5		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	22.5 24.7		µg/kg dry dry µg/kg dry dry		21.5 21.5		105 115	30-150 30-150		
. , , , , .			µg/kg diy diy		21.0		775	30-730		
Matrix Spike Dup (9120125-MSD1) Source Prepared: 02-Dec-09 Analyzed: 05-Dec-09	ce: SB0478	9-03								
Aroclor-1016	257		μg/kg dry dry	21.6	270	BRL	95	40-135	5	15
Aroclor-1016 [2C]	264		μg/kg dry dry		270	BRL	98	40-135	10	15
Aroclor-1260	322		μg/kg dry dry		270	48.0	102	40-135	4	20
Aroclor-1260 Aroclor-1260 [2C]	309		μg/kg dry dry μg/kg dry dry		270	46.5	97	40-135	9	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.6		μg/kg dry dry	21.0	21.6	70.5	100	30-150	<u> </u>	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	21.6 21.6		μg/kg dry dry μg/kg dry dry		21.6 21.6		100	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.7		μg/kg dry dry		21.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	27.0		μg/kg dry dry		21.6		125	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 9120241 - SW846 3545A										
Blank (9120241-BLK1)										
Prepared & Analyzed: 03-Dec-09										
Gasoline	BRL	U	mg/kg wet wε	13.3						
Fuel Oil #2	BRL	U	mg/kg wet wε	13.3						
Fuel Oil #4	BRL	U	mg/kg wet wε	13.3						
Fuel Oil #6	BRL	U	mg/kg wet wε	13.3						
Motor Oil	BRL	U	mg/kg wet wε	13.3						
Ligroin	BRL	U	mg/kg wet wε	13.3						
Aviation Fuel	BRL	U	mg/kg wet wε	13.3						
Hydraulic Oil	BRL	U	mg/kg wet wε	13.3						
Dielectric Fluid	BRL	U	mg/kg wet wε	13.3						
Unidentified	BRL	U	mg/kg wet wε	13.3						
Other Oil	BRL	U	mg/kg wet wε	13.3						
Total Petroleum Hydrocarbons	BRL	U	mg/kg wet wε	13.3						
Surrogate: 1-Chlorooctadecane	3.14		mg/kg wet wε		3.33		94	40-140		
LCS (9120241-BS2)										
Prepared & Analyzed: 03-Dec-09										
Fuel Oil #2	584		mg/kg wet wε	13.3	667		88	40-140		
Surrogate: 1-Chlorooctadecane	3.68		mg/kg wet wε		3.33		110	40-140		
Batch 9120350 - SW846 3550B/C			99							
Blank (9120350-BLK1)										
Prepared: 04-Dec-09 Analyzed: 05-Dec-09										
Gasoline	BRL	U	mg/kg wet wε	12.2						
Fuel Oil #2	BRL	U	mg/kg wet wε							
Fuel Oil #4	BRL	U	mg/kg wet wε							
Fuel Oil #6	BRL	U	mg/kg wet wε							
Motor Oil	BRL	U	mg/kg wet wε							
Ligroin	BRL	U	mg/kg wet wε							
Aviation Fuel	BRL	U	mg/kg wet we							
Hydraulic Oil	BRL	U	mg/kg wet wε							
Dielectric Fluid	BRL	U	mg/kg wet we							
Unidentified	BRL	U	mg/kg wet we							
Other Oil	BRL	U	mg/kg wet we							
Total Petroleum Hydrocarbons	BRL	U	mg/kg wet we mg/kg wet we							
Surrogate: 1-Chlorooctadecane	3.09		mg/kg wet we		3.33		93	40-140		
LCS (9120350-BS1)			5 5							
Prepared: 04-Dec-09 Analyzed: 05-Dec-09										
Fuel Oil #2	679		mg/kg wet wε	13.3	667		102	40-140		
Surrogate: 1-Chlorooctadecane	2.63		mg/kg wet wε		3.33		79	40-140		

General Chemistry Parameters - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9120443 - General Preparatio	n									
Duplicate (9120443-DUP1)	Source: SB04789	-01								
Prepared & Analyzed: 04-Dec-09										
% Solids	86.2		%			90.4			5	20
Batch 9120444 - General Preparatio	n									
<u>Duplicate (9120444-DUP1)</u>	Source: SB04789	-02								
Prepared & Analyzed: 04-Dec-09										
% Solids	90.2		%			89.7			0.5	20

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected

Z-2 Transformer oil

BDL Below Detection Limit - Analyte NOT DETECTED at or above the minimum detection limit

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Kim Wisk

CHAIN OF CUSTODY RECORD

Page / of /

Special Handling:

Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

- All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless

6. 32	HANDAG TECHNOLOGY														STIES WISS	o mish becca.	
	Stantec 5 Dartmouth Dr.	5. 40 101	Invoice	To: _ \$	Same	e ·	2.		1			Pro	ject No.	: 19	17/0	1029	
	Auburn, NH 03		- [0 1			, Ĕ		4	52 -	_					1.00	4 2 3 37
-	WEST, NH US	032		<u> </u>	· ,		Ê		-		_		Name:			-	
Telephone #		2.		ř.			ŝ.		Ë			Loc	ation:	Has	peH), Q	ueens State: NY
	Donald Moon	-us	P.O. No	ē			RQ	N: _				San	pler(s)	Dan	od C	hapm	31
	S2O ₃ 2=HCl 3=H ₂		5=NaOH	6=Aso	corbic /	Acid	7=0	CH ₃ C	Н			List	preserv	ative c	ode be	low:	QA/QC Reporting Notes:
DW=Drinki	ng Water GW=Groun	idwater WW	-Wastewater				Cor	ntain	ers:				A	nalyses	: 0	V B	
	'= Surface Water SO= X2=	Soil SL=Slu X3			- Todaston	Vials	of Amber Glass	of Clear Glass	7000 PM	28	90		10.27,03,00.0	1874	Sundrana S		□ Provide MA DEP MCP CAM Report □ Provide CT DPH RCP Report QA/QC Reporting Level □ Standard □ No QC
9	G=Grab C=C	1 2		8.		mber	lear (astic	80	8		2		1 8	200	MOther NYDEC CATB	
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# of VOA	# of A	Jo #.	# of Plastic	828	TPH	*	901	Sect 1194	STREET, STREET		State specific reporting standards:
04789-01	MW-603(10-12)	11/20/09	0855	G	50	1	1		3 3	X	X	Ā	i i	3 3	í š	3 8 3	
1-02	MW-G03 (12-16)	11/20/09	09/5	C	50		1		<u> </u>	X	X	9		3 8	東方	ğ. 3 i	1.8 8.2.3 '
THE RESERVE AND ADDRESS OF THE PARTY OF THE	MW-603 (6-18)	I American Company	0920	C	50	. 20	1		3 5	X	X	2	1	2 8	1:	2 8	1 4 5 4 4
1.04	MW-603 (20-22)	6) 11/20/09	0945	C	50	ē	1		a	X	X	7	2	2.8.	1 8	B.B. 5	F2.51
1-05	HW-603 (24-25.2	1/20/09	1000	G	50	1.8	1		8 4	X	X	188	8 2	¥ 5.		5 3 4	1 2 2 2 2 2 .
	MW-601 (8-12)	11/23/09	0340	С	So	3.5	Ĭ		š :	×	X	ĕ	111	8 5		1 K	1 1 1 1 1 1 1
	MW-601 (12-16)	11/23/09	0915	C	So	33.5	1	Š	- E	X	X	×	1 1 1	3 8	13	\$ 10 m	
	MW-601 (16-183)		0350	C	So		6	E	2 8	×	Х	ő.	14.8	18 3.	1 9	3 8 8	
V	世事話方式等量		. 建基层基	3 .5 8		V 08	8: 3	1 8	9 1	¥.	ŝ. :-	60	2 8	g 18	50	311	
		8 8 9 B B	.1		F 50		Ē. 3		3 3	8	£1E	Jay Luci	9.3	3 3	1 4	11	1. 通 智
	inquished by:	eWell by:	1 25 4	2 3	Date:		1	Time	. 8	Ten	ip°C\	D ED	D Forr	nat	0 11		
Dane	W.Chym DD	1/m	Da 185 Da	11/2	4/05)	15	38		14	5	100 .75	nail to	-1 555	7.73		
-		100	11/2	14/	09	19	14	5		-			F. W.	9 1 9			
									☐ Ambier	t Milced	Refi	iserated [Fridge temp °C Freezer temp °C				

Appendix D Low Flow Sampling Data Sheets and Laboratory Analytical Reports December 2009 and February 2010 Sampling Events

	ŝ		4	
Sheet	ď	of	di	

Site:			E774				·····		Field Perso	onnel:	B. B/.	Ne_				
Date:	12	15	109					·	Weather:		Cloudy	400 5	>			
Monitor V Well Perm		: /	NW -60	0[Well Depti		18.	7		/		open Interva			
wen rem	111 #.	·····				Well Diam	eter: Vater Before	Course		e79			ce (feet belo		17.7	
	PURGING	SAMPLING	pł (pH	I units)	Condi	ecific activity os/cm)	Re Pote	edox ential nv)	Diss Ox	olved ygen ug/l)	Turl	oidity TU)		erature	BL4do Pumping Rate	Depth to Water
TIME	<u>M</u>	SA	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	~ /	READING		READING		(ml/min)	(feet below TOC
835	X		5.66	NA	.538	NA ·	95	NA	2.88	NA	>800	NA	16.46	NA	SO	15,28
840	X		5.61	-0.05	502	- 36	105	+10	2.88	. <u>spijonavinta</u>) 800	Catalana	16.24	-0,22	80	15.35
845	X		5.61	Commission	524	+2	109	+4	2.53	-0.05	7800	< TORNAL P	15.49	-0,75	SO	5.4
85D	V		5-60	-0.01	0.499	- 6	112	+ 3	2.71	-0.12	994		15,15	~0.34	80	15,44
455	X		5.59	-0.01	0.496	-0.003	114	+2	2.58	-013	694	-300	15.09	20.06	50	15.76
900	V		5.54	plants,	0.495	-0,00j	117	+ 3	2.40	-0.18	518	- 186	15.13	10.04	5-6	15.50
905	χ		5.59	-	0.497	+0.002	117		230	-0.10	502	- 16	15.17	+004	90	15.53
910	K		5-60	10.01	0.500	10.003	119	+2	2. 23	-0.07	337	-165	15.25	40.03	50	15.58
920	X		5.61	10.01	P5¿.٥	to 004	120	+ 1	2.34	10.01	RYY	- 89	15,23	-0.cz	80	15,53
925	К		5.63	10.02	0.511	+0.007	122	+2	Z-58	+0.24	184	- 64	13.67	-1.56	50	15.59
930	X		5.59	-0.04	0.496	-0015	123	ajor j	2.19	-0.39	176	4	14.38	+0.71	80	15.64
935	X		5.60	40,01	0.497	40.00i	124	+(2.14	-0.05	156	- 20	14,40	40.42	80	15.65
Comments							\\							0 my for Re		

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet <u>2</u> of <u>2</u>

Site:			STU						Field Pers	onnel:	3 BU	Ne	**************************************			
Date:	12	1151	09						Weather:		"لى دىدا	40"	5			
Monitor W Well Perm		:	MW-601			Well Deptl Well Diam	eter:	8.7 Z	3 8				Open Interva ke (feet belo			
		,	·			Depth to V	Vater Before	Pump Insta	allation:	15,00	>		del of Pump		D Block	1 20
TIME	PURGING	SAMPLING	pH (pH READING	units)	Condi	cific activity os/cm) CHANGE	Pote	dox ential nv) CHANGE	Ox	olved ygen ig/l) ICHANGE	1	oidity TU)	, .	erature centigrade)	Pumping Rate (ml/min)	Depth to Water
135	×		5.60	NA	0497	NA ·	124	NA	2.14	NA	156	NA	14,50	NA NA	70	(feet below TOC
940	X		5.62	10.02	0.501	40,004	121	-3	2.11	-0.03	133	-23	15.06	40.26	So	15.68
945	x		5.62	40000		t0.005	123	+2	1.96	-0.15	123	-10	15.28	10.22	‰	15.71
, , , ,	K		5.64	40.02		+0.001	126	+3	5.01	to-05	112		15.43	+0.15	80	15.74
955	X		5.64		0-505	/	व्यक्त	12	2-04	+0.63	101	- (1	15.53	+0.10	50	15.77
1000	<		5.65	+0.0j	0-506	+0.001	129	+1	2.11	40.07	95	<u>-6</u>	15.61	40,08	50	15.85
1005	X		5.65		0.509	+0.003	129	400	2,27	+0-16	91.7	-3, 3	15.59	-0.02	50	15.82
1010	X		5-65		6.510	+0.001	130	+1	2.18	-0.09	84.6	_7.1	15-56	-0.03	80	15.86
1015	X		5.67		0.514	,		·<2000-	2-19	40.01	81.1	- 3.5	15.48	- 0.08	80	15.90
1020	X	X	5.67	CONTRACT OF THE PARTY OF THE PA	0.517	40,003	131	+(2.17	-0.02	¥0 · (-1.0	15.50	40.02	80	15.92
Comments:	:		-				1		1							

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet _ f __ of _ (

Site:	MA	SPE	ETH	· · · · · · · · · · · · · · · · · · ·			77		Field Perso	nnel· 4	BBLIVE					
Date:	1	2/1	5/09						Weather:		ody	40°5		w		
	` `	-	<u>- </u>	···	***************************************			***************************************	1 · · · · · · · · · · · · · · · · · · ·	<u></u>	Chan	40)			**************************************	
Monitor W			MW -6	02		Well Depti	n:	25	. (Screened/0	pen Interva	11.		i de la composiçõe de la c
Well Perm	it#:					Well Diam		i 4"					ke (feet belo			
						Depth to V	Vater Before	Pump Insta	llation:	15.89			del of Pump		D Block	(29
	75	Ş			Spe	cific		dox		olved			l l	2 C Street	Z Suren	Depth
	PURGING	SAMPLING	pŀ	I	Condi	activity	Pote	ential	Ox	ygen	Turt	oidity	Temperature		Pumping	to
	8	M		units)	(umh	os/cm)	(n	nv)		g/l)	1	ľU)		centigrade)	Rate	Water
TIME	<u></u>	SA	READING		READING	CHANGE	READING	CHANGE	READING	CHANGE	READING		READING		(ml/min)	(feet below TOC)
1340	Х		6.72	NA	1.07	NA	-47	NA	0.19	NA	209	NA	15.96	NA		16.09
1345	X		6.71	-0.01	1.07	(COURT)	-90	- 3	0.07	-0.12	148	- 61	16.17	-0.21		16.19
1350	×		6.71	ictorians _p	1,07	√.Bottoom*	-92	- Z	0.00	-0.07	135	-13	16.20	10.03		16.22
1355	X		6.71	-78eg.	1.07	COLUMN TO STATE OF THE STATE OF	-92	~	0.00	Comment of the Commen	133	- 2	16.26	to.06		16.31
1400	X		6.71		1.07		-93		0.00	0100000	Commen	-17	16.27	-0.01		16.46
1405	χ		6.71		1.07		-94	-1	0,00	a:::::::::::::::::::::::::::::::::::::	109	-7	16.29	40.02		16.47
1410	X	-	611		1.07		-93	+1	0:00	***************************************	103	-	16.34	40.05		-i6.55
1415	7	X	6.71	. Calendaria	7.07	- NEWSTREET	-93	- Japane	0.00	Comp.	" O "	- 2	16.31	-0.03		16.62
				u												
Comments:		2	2 sold	Himal	sets	d 5	njle.	FA	W5/W	6 <u>D</u>				•		

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet 1 of 2

Date: 12 13 69	MANAGEMENT AND	COLON ACCUSATION AND ACCUSATION ASSESSMENT			j P	BBII	onnel:	Field Perso						éTH_			Site:
Well Parmit #: Well Diameter: 2" Pump Intake (feet below TOC): Depth to Water Before Pump Installation: 15.15 Make/ Model of Pump: Q.E.D. Blank (feet below TOC):						4	Claud	Weather:						15/09	12/		Date:
Well Permit #: Well Diameter: Z			.1.	Oman Intony	Screenedic	1			1.4	n: 🥒	Well Deptl		603	mw-	:	Well#	Monitor \
Depth to Water Before Pump Installation: 15.15 Make/Model of Pump: 0.60 0.60								i i								nit#:	Well Perr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ala	R (sed d				ζ	15.15	allation:	Pump Insta								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth	1			1			Diss	dox	Re	cific	Spe			Ş		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pumping	erature	Temperature		Turl	ygen	Ox	ential	Pote			pI	15	Įž		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water	9 1					g/l)	(m	nv)	(n	os/cm)	(umh	units)	(pH	Σ	RG	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(feet below TOC)	-11							CHANGE	READING	CHANGE	READING	CHANGE	READING	SA	PU	TIME
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/5.29											2.41	NA	6.40		X	1/30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.34	120	-0.25	15.7H	Š. georgia	7 800	-0,53	0.02	-10	-72	40.06	2.47	+0.09	6.49		X	1135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.45	120	t0.30	16.04	(Producer)	>800	-0.02	0:00	- 9	-81	10.01	2.48	+0.03	l		X	1140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.63	120	+0.06	16.10	Grange,	> 800	(Constant)	0.00	_(-87	ć.ngs	2.48	to:01	<u> </u>		X	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.85	120	10:02	16.12	contrary.	>800	- Section 18	0.00	- 2	-89		2.48	+0.01	ļ		X	1150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,87	120	-1.13	14.99	the copyrights	7500	¢;m•	0.00	- Allegane	-89	+0.05	2.53	40.01	6.55		×	1155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15:76	120	-0:17	14.25	***************************************	> ४००	C managed	0.00	+3	-86	-0.04	2.49	~	6.55		7	1200
1215 × 6.57 +0.02 2.4890 - 0.00 - 820 - 16.05 +0.70 120 1220 × 6.57 - 2.50 +0.02 -89 +1 0.00 - 646 -174 15.60 -0.45 120	16.01	120	+1.13	15.75	-	כיטיצ ד	<	0.00	-	-86	-0.01		-0.01			X	1205
1220 X 6.57 - 2.50 4002 -89 +1 0,00 - 646 -174 15,60 -0,45 120	16.15	120	+0.10	15.85	formuna,	780	*	0,00	- 4	-90		2.48	10.01			X	1210
1 13,60 -0.75	16.32	120	t0.20	16.05	-	820	No attaches	0.00	~~	-90	C Tables	2.48	+0.02			X	
	16.35	120	-0,45	15,60	-174	646		0.00	informa in a	- 59	4002	2.50				X	
1000 300 -66 15 87 40/19 100	16.44	(20	40:29	15.89	-66	580	*******	0,00	+(-88		2.48	Carry,	6.57		X	1225
Comments:	Management of the Control of the Con	and the second s	- U.							1						;;	comments

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet 2 of 2_

Site: Date:			PETH						Field Perso		222369	2				
Date:	······	121	5/07						Weather:	لكورول	40"5					
Monitor W		:	MW - 6	०७		Well Deptl		, q				Screened/C	pen Interva	al:		
Well Perm	it #:					Well Diam	eter:	2"				Pump Intal	ce (feet belo	w TOC):		
·	T		1				Vater Before			15.15		Make/ Mod	del of Pump	: OED	Blocker	
	9	SAMPLING	n.F	ı		cific	1	dox	Dissolved		· ·					Depth
	PURGING	MPL		7		Conductivity (umhos/cm)		Potential (mv)		Oxygen (mg/l)		oidity TU)	Temperature (degrees centigrade)		Pumping Rate	to Water
TIME	M	SA	READING		READING	<u> </u>	READING		READING		READING		READING		(ml/min)	(feet below TOC
1225	×		6.57	NA	2.48	NA	-88	NA	ව . රව	NA	SEO	NA	15.79	NA	120	16.44
1230	X		6.57	40000	2.47	-0.01	-48		0.10	he's statement	477	-103	16.14	to, 25	120	16.5D
1235	7		6.58	40.01	2.48	40.01	-87	41	0.00	- 1970-1970	407	- 70	16.19	+0.05	120	16.57
1240	Х		6.57	-0.01	2.47	-0.01	-67		0.00	**Company	293	- 114	16.27	40.08	120	16-64
1245	X		6.57		2.46	-0.01	-87	455555	0.00		259	- 34	16.22	-0.05	120	16.69
1250	X		6.57		2.45	-0.01	-48	- !	0.00	e Tomostico	222	-37	16-20	-0.02	120	16.77
255	X		6.57	4stances	2.44	-0.0(-13	-5	0.00	(Finance	193	- 29	16.19	~0.01	120	16.64
1300_	X		6.57		2.44		-93	C. Colombia	0.00	o'jeanne	189	- V	16.18	_0.01	120	<i>j</i> 6-87
1305	X	X	6.57		2.43	9.01	-96	-3	0.00	On Difference .	198	+ 11	16.17	-0.01	120	16.40
			i o													
Comments																
zomments:	•						,							•		

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Report Date: 30-Dec-09 09:26

✓	Final Report
	Re-Issued Report
	Revised Report

Laboratory Report

Stantec Consulting Services 5 Dartmouth Drive, Suite 101 Auburn, NH 03032

Attn: Don Moore

Project: Maspeth - Maspeth, NY

Project #: 191710024

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB05768-01	Trip Blank	Deionized Water	15-Dec-09 00:00	17-Dec-09 10:30
SB05768-02	Dupe	Ground Water	15-Dec-09 00:00	17-Dec-09 10:30
SB05768-03	MW-601	Ground Water	15-Dec-09 10:20	17-Dec-09 10:30
SB05768-04	Equip Blank	Ground Water	15-Dec-09 11:05	17-Dec-09 10:30
SB05768-05	MW-603	Ground Water	15-Dec-09 13:05	17-Dec-09 10:30
SB05768-06	MW-602	Ground Water	15-Dec-09 14:15	17-Dec-09 10:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 26 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The samples were received 3.1 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260B

Laboratory Control Samples:

9121910-BS1

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

1,1,2-Trichlorotrifluoroethane (Freon 113)

Tert-Butanol / butyl alcohol

Spikes:

9121910-MS1 Source: SB05768-06

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,2-Trichlorotrifluoroethane (Freon 113)

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,3,5-Trichlorobenzene

1,3,5-Trimethylbenzene

1,4-Dioxane

Hexachlorobutadiene

Naphthalene

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Trichlorofluoromethane (Freon 11)

9121910-MSD1 Source: SB05768-06

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1,2-Trichlorotrifluoroethane (Freon 113)

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,2-Dichloroethane

1,3,5-Trichlorobenzene

1,3,5-Trimethylbenzene

1,4-Dioxane

Hexachlorobutadiene

Naphthalene

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Trichlorofluoromethane (Freon 11)

Client Project # 191710024

Matrix Deionized Water Collection Date/Time 15-Dec-09 00:00 Received 17-Dec-09

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
repared	by method SW846 5030 Water	MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freor 113)	₁ BDL	U	μg/l	1.0	1.0	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
7-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
8-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
7-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
4-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
07-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
8-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
42-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
0061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
0061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
00-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	X
8-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Χ
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	X
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
03-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ

Matrix Deionized Water Collection Date/Time 15-Dec-09 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
	by method SW846 5030 Water	MS										
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
179601-23-	-1m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	· ·	"	"	"	Χ
Surrogate	recoveries:		·	·	·		·		·	<u> </u>		
460-00-4	4-Bromofluorobenzene	98		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	101		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	113		70-1	30 %			"			"	

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freor 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
7-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"		Х
1-43-2	Benzene	0.5	J	μg/l	1.0	0.5	1	"	"	"		Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"		
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"		Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"		Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"		Х
8-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"		Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1	"	"	"		Х
08-90-7	Chlorobenzene	2.2		μg/l	1.0	0.5	1		"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"		Х
7-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
1-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1		"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"		Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
4-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	0.6	J	μg/l	1.0	0.4	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	2.1		μg/l	1.0	0.5	1		"	"	"	Х
06-46-7	1,4-Dichlorobenzene	24.2		μg/l	1.0	0.5	1	"	"	"		Х
5-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1		"	"	"	Х
07-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"		Х
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"		Х
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"		Х
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"		X
8-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"		X
42-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"			X
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"		Х
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1	"	"	"		Х
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"		X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"		X
00-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"		X
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"		X
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"		X
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"		X
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	11	"	"		X
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"		"		X
08-10-1	•	BDL	U	μg/l μg/l	10.0	1.1	1	"		"		X
5-09-2	4-Methyl-2-pentanone (MIBK) Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"		"		X
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"		"		X
1 20-0	n-Propylbenzene	BDL	U	μg/l μg/l	1.0	0.5	1		"	"		X

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	MS										
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	0.6	J	μg/l	1.0	0.6	1	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
179601-23-	-1m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1		"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98		70-1	130 %			"	"	"	"	
2037-26-5	Toluene-d8	101		70-1	130 %			"	"	"	"	
	1,2-Dichloroethane-d4	117			130 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	111		70-1	130 %			"	"	"	"	
Semivola	tile Organic Compounds by GC											
	rinated Biphenyls by SW846 808	32										
-	d by method SW846 3510C	_										
	2 Aroclor-1016	BDL	U	μg/l	0.208	0.0934	1	SW846 8082	21-Dec-09	21-Dec-09	9121552	Х
	Aroclor-1221	BDL	U	μg/l	0.208	0.0986		"	"	"	"	Х
	5 Aroclor-1232	BDL	U	μg/l	0.208	0.0773		"	"	"	"	Х
	Aroclor-1242	BDL	U	μg/l	0.208	0.108	1	"	"	"	"	X
	Aroclor-1248	BDL	U	μg/l	0.208	0.0859	1		"	"		X
	Aroclor-1254	BDL	U	μg/l	0.208	0.145	1	"	"	"	"	X
	Aroclor-1260	BDL	U	μg/l	0.208	0.112	1	ıı	"	"	"	X
	5 Aroclor-1262	BDL	U	μg/l	0.208	0.0693	1	"	"	"	"	X
	Aroclor-1268	BDL	U	μg/l	0.208	0.0520	1	"	"	"	"	X
			-	ra.			*					
_	recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	83		20.4	150 %				"		"	
					150 % 150 %					"	"	
	2 4,4-DB-Octafluorobiphenyl (Sr) [2C	=								"	"	
								"		"	"	
2051-24-3	Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]	65 83			150 % 150 %			"	"	"		

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 10:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds											
olatile C	<u> Organic Compounds</u>											
repared	by method SW846 5030 Water	MS										
6-13-1	1,1,2-Trichlorotrifluoroethane (Freor 113)	₁ BDL	U	μg/l	1.0	1.0	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
7-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
1-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	>
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	>
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	X
1-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	X
3-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	X
)4-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
3-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	>
3-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	>
8-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	>
-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	>
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	>
-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
6-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	")
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	")
6-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	>
-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	")
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	")
1-73-1	1,3-Dichlorobenzene	0.5	J	μg/l	1.0	0.5	1	"	"	"	"	>
06-46-7	1,4-Dichlorobenzene	3.8		μg/l	1.0	0.5	1	"	"	"	")
5-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	")
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	")
7-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	")
6-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
6-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	>
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	>
4-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
3-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	>
0061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	W .	"	"	"	>
0061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	W .	"	"	"	>
0-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	II .	"	"	"	>
-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	u u	"	"	"	>
1-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	>
-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	W .	"	"	"	>
34-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	II .	"	"	"	>
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	II .	"	"	"	>
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	u u	"	"	"	>
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	>
03-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"		>

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 10:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
olatile (Organic Compounds											
	Organic Compounds											
repared	by method SW846 5030 Water	MS										
00-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	SW846 8260B			9121910	Х
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
9-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
08-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
7-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
08-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
9-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
5-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
6-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
5-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
09-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
0-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
08-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
5-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1		"	"	"	Х
23-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1		"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1		"	"	"	Х
4-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
urrogate	recoveries:											
60-00-4	4-Bromofluorobenzene	97		70-1	30 %			"	"	"	"	
037-26-5	Toluene-d8	101		70-1	30 %			"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	115		70-1	30 %			"	"	"	"	
868-53-7	Dibromofluoromethane	111		70-1	30 %			n	"	"	"	
emivola	tile Organic Compounds by GC											
olychlo	rinated Biphenyls by SW846 808	<u>2</u>										
repared	by method SW846 3510C											
2674-11-2	Aroclor-1016	BDL	U	μg/l	0.208	0.0934	1	SW846 8082	21-Dec-09	21-Dec-09	9121552	Х
1104-28-2	Aroclor-1221	BDL	U	μg/l	0.208	0.0986	1	"	"	"	"	Х
1141-16-5	Aroclor-1232	BDL	U	μg/l	0.208	0.0773	1		"	"	"	Х
	Aroclor-1242	BDL	U	μg/l	0.208	0.108	1	"	"	"		Х
	Aroclor-1248	BDL	U	μg/l	0.208	0.0859	1	u u	"	"	"	Х
	Aroclor-1254	BDL	U	μg/l	0.208	0.145	1	"	"	"		Х
	Aroclor-1260	0.751		μg/l	0.208	0.0772	1	n n	"	"	"	Х
	Aroclor-1262	BDL	U	μg/l	0.208	0.0693	1	"	"	"		Х
7324-23-5		BDL	U	μg/l	0.208	0.0520	1	"	"	"	"	Х
	A10001-1200			-								
1100-14-4												
1100-14-4 Surrogate	recoveries:	82		30 1	50 %			"	"	"		
1100-14-4 Surrogate 0386-84-2	recoveries: 4,4-DB-Octafluorobiphenyl (Sr)	82 1.76			50 %			"	"	"	"	
1100-14-4 Surrogate 0386-84-2 0386-84-2	recoveries:			30-1	50 % 50 % 50 %			" "	" "	" "	"	

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 11:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freor	₁ BDL	U	μg/l	1.0	1.0	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Χ
67-64-1	113) Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"		Х
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Χ
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ

Sample Identification Equip Blank SB05768-04

Client Project # 191710024

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 11:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
	by method SW846 5030 Water	MS										
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
179601-23-	-1m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	X
Surrogate	recoveries:		<u> </u>	<u> </u>	<u> </u>		<u> </u>		·	<u> </u>	<u> </u>	
460-00-4	4-Bromofluorobenzene	97		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	100		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	113		70-1	30 %			u u	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 13:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (<u> Organic Compounds</u>											
Prepared	by method SW846 5030 Water	MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freor 113)	₁ BDL	U	μg/l	1.0	1.0	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	X
71-43-2	Benzene	0.6	J	μg/l	1.0	0.5	1	··	"	"	"	Х
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	··	"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
8-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	··	"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
7-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	··	"	"	"	Х
4-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	··	"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	··	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	··	"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	··	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
4-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	··	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	0.4	J	μg/l	1.0	0.4	1	··	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	0.6	J	μg/l	1.0	0.5	1	··	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	5.3		μg/l	1.0	0.5	1	··	"	"	"	Х
5-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	··	"	"	"	Х
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	··	"	"	"	Х
07-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	··	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	· ·	"	"	"	Χ
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
8-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
42-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	· ·	"	"	"	Χ
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
0061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	u u	"	"	"	Χ
0061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
00-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
8-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	II .	"	"	"	Х
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	X
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
03-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	u u	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 13:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
	by method SW846 5030 Water	MS										
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
179601-23-	-1m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1		"	"	"	Χ
Surrogate	recoveries:		·	·	·		·		·			
460-00-4	4-Bromofluorobenzene	98		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	101		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	113		70-1	30 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 14:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freor 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Χ
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	X
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	X
71-43-2	Benzene	0.6	J	μg/l	1.0	0.5	1	"	"	"	"	X
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	X
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	X
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	X
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	X
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	X
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
108-90-7	Chlorobenzene	2.1		μg/l	1.0	0.5	1	"	"	"	"	X
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	X
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	X
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	X
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	X
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
95-50-1	1,2-Dichlorobenzene	0.7	J	μg/l	1.0	0.4	1	"	"	"	"	X
541-73-1	1,3-Dichlorobenzene	2.0		μg/l	1.0	0.5	1	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	24.0		μg/l	1.0	0.5	1	"	"	"	"	X
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	X
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	X
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	u u	"	"	X
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	X
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	u u	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	11	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	11	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Χ
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Χ
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 15-Dec-09 14:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	MS										
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	SW846 8260B	28-Dec-09	28-Dec-09	9121910	Х
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	0.6	J	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
179601-23-	-1m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	97		70-1	130 %			"	"	"	"	
2037-26-5	Toluene-d8	102		70-1	130 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	125		70-1	130 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	113		70-1	130 %			"	"	"	"	
Semivola	tile Organic Compounds by GC											
Polychlo	rinated Biphenyls by SW846 808	<u>2</u>										
Prepared	by method SW846 3510C											
12674-11-2	Aroclor-1016	BDL	U	μg/l	0.211	0.0943	1	SW846 8082	21-Dec-09	21-Dec-09	9121552	Х
	Aroclor-1221	BDL	U	μg/l	0.211	0.0997	1	"	"	"	"	Х
	Aroclor-1232	BDL	U	μg/l	0.211	0.0781	1	"	"	"	"	Х
	Aroclor-1242	BDL	U	μg/l	0.211	0.110	1	"	"	"	"	Х
	Aroclor-1248	BDL	U	μg/l	0.211	0.0868	1	"	"	"	"	Х
	Aroclor-1254	BDL	U	μg/l	0.211	0.146	1	"	"	"	"	Х
	Aroclor-1260	BDL	U	μg/l	0.211	0.113	1	11	"	"	"	Х
	Aroclor-1262	BDL	U	μg/l	0.211	0.0700	1	"	"	"	"	Х
	Aroclor-1268	BDL	U	μg/l	0.211	0.0526	1	п	"	"	"	Х
	recoveries:											
_	4,4-DB-Octafluorobiphenyl (Sr)	79		30-1	150 %				"	"		
	2 4,4-DB-Octafluorobiphenyl (Sr) [2C				150 %			"	"	"		
10386-84-2		•										
	Decachlorobiphenyl (Sr)	59		30-1	150 %			"	"	"	"	

Analyte(s) Batch 9121910 - SW846 5030 Water MS	Result	Flag		*RDL	Level	Result	%REC	Limits	RPD	Limit
9attii 7121710 - 5 W 040 5030 W ater MS			Units				,			
Blank (9121910-BLK1)										
Prepared & Analyzed: 28-Dec-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	U	μg/l	1.0						
Acetone	BRL	U	μg/l	10.0						
Acrylonitrile	BRL	U	μg/l	0.5						
Benzene	BRL	U	μg/l	1.0						
Bromobenzene	BRL	U	μg/l	1.0						
Bromochloromethane	BRL	U	μg/l	1.0						
Bromodichloromethane	BRL	U	μg/l	0.5						
Bromoform	BRL	U	μg/l	1.0						
Bromomethane	BRL	U	μg/l	2.0						
2-Butanone (MEK)	BRL	U	μg/l	10.0						
n-Butylbenzene	BRL	U	μg/l	1.0						
sec-Butylbenzene	BRL	U	μg/l	1.0						
tert-Butylbenzene	BRL	U	μg/l	1.0						
Carbon disulfide	BRL	U	μg/l	5.0						
Carbon tetrachloride	BRL	U	μg/l	1.0						
Chlorobenzene	BRL	U	μg/l	1.0						
Chloroethane	BRL	U	μg/l	2.0						
Chloroform	BRL	U	μg/l	1.0						
Chloromethane	BRL	U	μg/l	2.0						
2-Chlorotoluene	BRL	U	μg/l	1.0						
4-Chlorotoluene	BRL	U	μg/l	1.0						
1,2-Dibromo-3-chloropropane	BRL	U	μg/l	2.0						
Dibromochloromethane	BRL	U	μg/l	0.5						
1,2-Dibromoethane (EDB)	BRL	U	μg/l	0.5						
Dibromomethane	BRL	U	μg/l	1.0						
1,2-Dichlorobenzene	BRL	U	μg/l	1.0						
1,3-Dichlorobenzene	BRL	U	μg/l	1.0						
1,4-Dichlorobenzene	BRL	U	μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL	U	μg/l	2.0						
1,1-Dichloroethane	BRL	U	μg/l	1.0						
1,2-Dichloroethane	BRL	U	μg/l	1.0						
1,1-Dichloroethene	BRL	U	μg/l 	1.0						
cis-1,2-Dichloroethene	BRL	U	μg/l	1.0						
trans-1,2-Dichloroethene	BRL	U	μg/l	1.0						
1,2-Dichloropropane	BRL	U	μg/l	1.0						
1,3-Dichloropropane	BRL	U	μg/l	1.0						
2,2-Dichloropropane	BRL	U	μg/l	1.0						
1,1-Dichloropropene	BRL	U	μg/l	1.0						
cis-1,3-Dichloropropene	BRL	U	μg/l	0.5						
trans-1,3-Dichloropropene	BRL	U	μg/l	0.5						
Ethylbenzene	BRL	U	μg/l	1.0						
Hexachlorobutadiene	BRL	U	μg/l	0.5						
2-Hexanone (MBK)	BRL	U	μg/l	10.0						
Isopropylbenzene	BRL	U	μg/l	1.0						
4-Isopropyltoluene	BRL	U	μg/l	1.0						
Methyl tert-butyl ether	BRL	U	μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	U	μg/l	10.0						
Methylene chloride Naphthalene	BRL BRL	U	µg/l µg/l	5.0 1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9121910 - SW846 5030 Water MS										
Blank (9121910-BLK1)										
Prepared & Analyzed: 28-Dec-09										
n-Propylbenzene	BRL	U	μg/l	1.0						
Styrene	BRL	U	μg/l	1.0						
1,1,1,2-Tetrachloroethane	BRL	U	μg/l	1.0						
1,1,2,1-Tetrachloroethane	BRL	U	μg/l	0.5						
Tetrachloroethene	BRL	U	μg/l	1.0						
Toluene	BRL	U	μg/l	1.0						
1,2,3-Trichlorobenzene	BRL	U	μg/l	1.0						
1,2,4-Trichlorobenzene	BRL	U	μg/l	1.0						
1,3,5-Trichlorobenzene	BRL	U	μg/l	1.0						
1,1,1-Trichloroethane	BRL	U	μg/l	1.0						
1,1,2-Trichloroethane	BRL	U	μg/l	1.0						
Trichloroethene	BRL	U	μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL	U	μg/l	1.0						
1,2,3-Trichloropropane	BRL	U	μg/l	1.0						
1,2,4-Trimethylbenzene	BRL	U	μg/l	1.0						
1,3,5-Trimethylbenzene	BRL	U	μg/l	1.0						
Vinyl chloride	BRL	U	μg/l	1.0						
m,p-Xylene	BRL	U	μg/l	2.0						
o-Xylene	BRL	U	μg/l	1.0						
Tetrahydrofuran	BRL	U	μg/l	10.0						
Ethyl ether	BRL	U	μg/l	1.0						
Tert-amyl methyl ether	BRL	U	μg/l	1.0						
Ethyl tert-butyl ether	BRL	U	μg/l	1.0						
Di-isopropyl ether	BRL	U	μg/l	1.0						
Tert-Butanol / butyl alcohol	BRL	U	μg/l	10.0						
1,4-Dioxane	BRL	U	μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL	U	μg/l	5.0						
Ethanol	BRL	U	μg/l	400						
Surrogate: 4-Bromofluorobenzene	49.2		μg/l		50.0		98	70-130		
Surrogate: Toluene-d8	50.9		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	55.4 59.0		μg/l		50.0		111 116	70-130		
Surrogate: Dibromofluoromethane	58.0		μg/l		50.0		116	70-130		
LCS (9121910-BS1)										
Prepared & Analyzed: 28-Dec-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	28.5	QM9	μg/l		20.0		143	70-130		
Acetone	19.3		μg/l		20.0		96	60.2-138		
Acrylonitrile	21.3		μg/l		20.0		107	70-130		
Benzene	18.4		μg/l		20.0		92	70-130		
Bromobenzene	22.1		μg/l		20.0		110	70-130		
Bromochloromethane	25.4		μg/l		20.0		127	70-130		
Bromodichloromethane	21.8		μg/l		20.0		109	70-130		
Bromoform	25.3		µg/l		20.0		127	70-130		
Bromomethane	22.9		μg/l		20.0		115	56.4-147		
2-Butanone (MEK)	25.0		μg/l		20.0		125	70-142		
n-Butylbenzene	20.0		μg/l		20.0		100	70-130		
sec-Butylbenzene	23.0		μg/l		20.0		115	70-130		
tert-Butylbenzene	24.1		μg/l		20.0		121	70-130		
Carbon disulfide	21.4		μg/l		20.0		107	70-130		
Carbon tetrachloride	24.4		μg/l		20.0		122	70-130		
Chlorobenzene	24.0		μg/l		20.0		120	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9121910 - SW846 5030 Water MS										
LCS (9121910-BS1)										
Prepared & Analyzed: 28-Dec-09										
Chloroethane	21.4		μg/l		20.0		107	67.2-130		
Chloroform	24.8		μg/l		20.0		124	70-130		
Chloromethane	19.1		μg/l		20.0		95	70-130		
2-Chlorotoluene	22.0		μg/l		20.0		110	70-130		
4-Chlorotoluene	22.7		μg/l		20.0		113	70-130		
1,2-Dibromo-3-chloropropane	20.6		μg/l		20.0		103	70-130		
Dibromochloromethane	22.8		μg/l		20.0		114	68.9-130		
1,2-Dibromoethane (EDB)	21.0		μg/l		20.0		105	70-130		
Dibromomethane	19.3		μg/l		20.0		97	70-130		
1,2-Dichlorobenzene	20.5		μg/l		20.0		102	70-130		
1,3-Dichlorobenzene	22.6		μg/l		20.0		113	70-130		
1,4-Dichlorobenzene	23.0		μg/l		20.0		115	70-130		
Dichlorodifluoromethane (Freon12)	21.6		μg/l		20.0		108	54.2-135		
1,1-Dichloroethane	23.2		μg/l		20.0		116	70-130		
1,2-Dichloroethane	24.1		μg/l		20.0		120	70-130		
1,1-Dichloroethene	24.4				20.0		122	70-130		
cis-1,2-Dichloroethene	25.3		µg/l		20.0		127	70-130		
	23.1		µg/l		20.0		115	70-130		
trans-1,2-Dichloroethene			µg/l				100			
1,2-Dichloropropane	20.0		µg/l		20.0			70-130		
1,3-Dichloropropane	21.8		μg/l		20.0		109	70-130		
2,2-Dichloropropane	20.8		μg/l		20.0		104	70-130		
1,1-Dichloropropene	19.2		μg/l		20.0		96	70-130		
cis-1,3-Dichloropropene	19.5		μg/l		20.0		98	70-130		
trans-1,3-Dichloropropene	22.0		μg/l "		20.0		110	70-130		
Ethylbenzene	20.5		μg/l "		20.0		103	70-130		
Hexachlorobutadiene	23.4		μg/l 		20.0		117	70-133		
2-Hexanone (MBK)	17.8		μg/l		20.0		89	70-130		
Isopropylbenzene	18.4		μg/l		20.0		92	70-130		
4-Isopropyltoluene	20.5		μg/l		20.0		103	70-130		
Methyl tert-butyl ether	24.1		μg/l		20.0		121	70-130		
4-Methyl-2-pentanone (MIBK)	17.9		μg/l		20.0		89	69.1-130		
Methylene chloride	23.5		μg/l		20.0		117	70-130		
Naphthalene	22.1		μg/l		20.0		111	70-130		
n-Propylbenzene	21.2		μg/l		20.0		106	70-130		
Styrene	22.2		μg/l		20.0		111	70-130		
1,1,1,2-Tetrachloroethane	22.7		μg/l		20.0		113	70-130		
1,1,2,2-Tetrachloroethane	19.4		μg/l		20.0		97	70-130		
Tetrachloroethene	20.9		μg/l		20.0		105	70-130		
Toluene	18.5		μg/l		20.0		92	70-130		
1,2,3-Trichlorobenzene	23.2		μg/l		20.0		116	70-130		
1,2,4-Trichlorobenzene	20.0		μg/l		20.0		100	70-130		
1,3,5-Trichlorobenzene	20.5		μg/l		20.0		103	70-130		
1,1,1-Trichloroethane	22.0		μg/l		20.0		110	70-130		
1,1,2-Trichloroethane	19.2		μg/l		20.0		96	70-130		
Trichloroethene	23.0		μg/l		20.0		115	70-130		
Trichlorofluoromethane (Freon 11)	27.3		μg/l		20.0		137	69.8-161		
1,2,3-Trichloropropane	20.7		μg/l		20.0		104	70-130		
1,2,4-Trimethylbenzene	23.8		μg/l		20.0		119	70-130		
1,3,5-Trimethylbenzene	22.9		μg/l		20.0		114	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9121910 - SW846 5030 Water MS	resuit	- 145	0.1110	ILDE	20,01	resuit	, 31420	2.11116		Zimit
LCS (9121910-BS1)										
Prepared & Analyzed: 28-Dec-09										
Vinyl chloride	20.6		μg/l 		20.0		103	70-130		
m,p-Xylene	43.8		μg/l		40.0		109	70-130		
o-Xylene	22.7		μg/l 		20.0		114	70-130		
Tetrahydrofuran	17.4		µg/l		20.0		87	70-130		
Ethyl ether	22.9		μg/l 		20.0		114	70-130		
Tert-amyl methyl ether	19.9		μg/l 		20.0		99	70-130		
Ethyl tert-butyl ether	19.5		μg/l "		20.0		98	70-130		
Di-isopropyl ether	17.4		μg/l 		20.0		87	70-130		
Tert-Butanol / butyl alcohol	263	QM9	μg/l 		200		131	70-130		
1,4-Dioxane	216		μg/l 		200		108	55.2-158		
trans-1,4-Dichloro-2-butene	21.9		μg/l "		20.0		109	70-130		
Ethanol	407		µg/l		400		102	70-130		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	53.8 50.6		μg/l μg/l		50.0 50.0		108 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	50.0 52.1		μg/l μg/l		50.0		101	70-130 70-130		
Surrogate: Dibromofluoromethane	54.8		μg/l		50.0		110	70-130		
_CS Dup (9121910-BSD1)										
Prepared & Analyzed: 28-Dec-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	25.4		μg/l		20.0		127	70-130	11	25
Acetone	20.2		μg/l		20.0		101	60.2-138	5	50
Acrylonitrile	21.6		μg/l		20.0		108	70-130	1	25
Benzene	17.4		μg/l		20.0		87	70-130	5	25
Bromobenzene	20.2		μg/l		20.0		101	70-130	9	25
Bromochloromethane	26.0		μg/l		20.0		130	70-130	2	25
Bromodichloromethane	20.8		μg/l		20.0		104	70-130	5	25
Bromoform	23.8		μg/l		20.0		119	70-130	6	25
Bromomethane	21.7		μg/l		20.0		109	56.4-147	5	50
2-Butanone (MEK)	22.9		μg/l		20.0		114	70-142	9	50
n-Butylbenzene	18.3		μg/l		20.0		92	70-130	9	25
sec-Butylbenzene	21.1		μg/l		20.0		105	70-130	9	25
tert-Butylbenzene	21.7		μg/l		20.0		108	70-130	11	25
Carbon disulfide	19.0		μg/l		20.0		95	70-130	12	25
Carbon tetrachloride	21.4		μg/l		20.0		107	70-130	13	25
Chlorobenzene	22.5		μg/l		20.0		112	70-130	6	25
Chloroethane	19.7		μg/l		20.0		99	67.2-130	8	50
Chloroform	23.4		μg/l		20.0		117	70-130	6	25
Chloromethane	17.6		μg/l		20.0		88	70-130	8	25
2-Chlorotoluene	20.2		μg/l		20.0		101	70-130	8	25
4-Chlorotoluene	20.6		μg/l		20.0		103	70-130	10	25
1,2-Dibromo-3-chloropropane	20.0		μg/l		20.0		100	70-130	3	25
Dibromochloromethane	21.2		μg/l		20.0		106	68.9-130	7	50
1,2-Dibromoethane (EDB)	20.0		μg/l		20.0		100	70-130	5	25
Dibromomethane	18.7		μg/l		20.0		94	70-130	3	25
1,2-Dichlorobenzene	19.1		μg/l		20.0		95	70-130	7	25
1,3-Dichlorobenzene	20.4		μg/l		20.0		102	70-130	10	25
1,4-Dichlorobenzene	21.3		μg/l		20.0		106	70-130	8	25
Dichlorodifluoromethane (Freon12)	19.5		μg/l		20.0		98	54.2-135	10	50
1,1-Dichloroethane	21.6		μg/l		20.0		108	70-130	7	25
1,2-Dichloroethane	23.8		μg/l		20.0		119	70-130	1	25
1,1-Dichloroethene	22.3		μg/l		20.0		112	70-130	9	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9121910 - SW846 5030 Water MS										
.CS Dup (9121910-BSD1)										
Prepared & Analyzed: 28-Dec-09										
cis-1,2-Dichloroethene	23.5		μg/l		20.0		118	70-130	7	25
trans-1,2-Dichloroethene	20.9		μg/l		20.0		105	70-130	10	25
1,2-Dichloropropane	19.3		μg/l		20.0		97	70-130	3	25
1,3-Dichloropropane	21.1		μg/l		20.0		105	70-130	3	25
2,2-Dichloropropane	18.8		μg/l		20.0		94	70-130	10	25
1,1-Dichloropropene	17.6		μg/l		20.0		88	70-130	9	25
cis-1,3-Dichloropropene	18.8		μg/l		20.0		94	70-130	4	25
trans-1,3-Dichloropropene	21.2		μg/l		20.0		106	70-130	4	25
Ethylbenzene	18.8		μg/l		20.0		94	70-130	9	25
Hexachlorobutadiene	20.6		μg/l		20.0		103	70-133	13	50
2-Hexanone (MBK)	17.9		μg/l		20.0		89	70-130	0.2	25
Isopropylbenzene	17.1		μg/l		20.0		86	70-130	7	25
4-Isopropyltoluene	18.8		μg/l		20.0		94	70-130	9	25
Methyl tert-butyl ether	23.2		μg/l		20.0		116	70-130	4	25
4-Methyl-2-pentanone (MIBK)	19.1		μg/l		20.0		96	69.1-130	7	50
Methylene chloride	22.4		μg/l		20.0		112	70-130	5	25
Naphthalene	21.0		μg/l		20.0		105	70-130	5	25
n-Propylbenzene	19.1		μg/l		20.0		96	70-130	10	25
Styrene	20.7		μg/l		20.0		103	70-130	7	25
1,1,1,2-Tetrachloroethane	21.0		μg/l		20.0		105	70-130	8	25
1,1,2,2-Tetrachloroethane	18.6		μg/l		20.0		93	70-130	4	25
Tetrachloroethene	19.0		μg/l		20.0		95	70-130	10	25
Toluene	17.1		μg/l		20.0		85	70-130	8	25
1,2,3-Trichlorobenzene	21.6		μg/l		20.0		108	70-130	7	25
1,2,4-Trichlorobenzene	18.4		μg/l		20.0		92	70-130	8	25
1,3,5-Trichlorobenzene	18.6		μg/l		20.0		93	70-130	10	25
1,1,1-Trichloroethane	20.3		μg/l		20.0		102	70-130	8	25
1,1,2-Trichloroethane	18.5		μg/l		20.0		93	70-130	4	25
Trichloroethene	21.7		μg/l		20.0		108	70-130	6	25
Trichlorofluoromethane (Freon 11)	25.0		μg/l		20.0		125	69.8-161	9	50
1,2,3-Trichloropropane	20.4		μg/l		20.0		102	70-130	1	25
1,2,4-Trimethylbenzene	21.3		μg/l		20.0		107	70-130	11	25
1,3,5-Trimethylbenzene	20.9		μg/l		20.0		104	70-130	9	25
Vinyl chloride	19.2		μg/l		20.0		96	70-130	7	25
m,p-Xylene	40.2		μg/l		40.0		101	70-130	8	25
o-Xylene	21.1		μg/l		20.0		106	70-130	7	25
Tetrahydrofuran	18.6		μg/l		20.0		93	70-130	6	25
Ethyl ether	21.2		μg/l		20.0		106	70-130	7	50
Tert-amyl methyl ether	20.6		μg/l		20.0		103	70-130	3	25
Ethyl tert-butyl ether	19.4		μg/l		20.0		97	70-130	0.5	25
Di-isopropyl ether	16.7		μg/l μg/l		20.0		84	70-130	4	25
Tert-Butanol / butyl alcohol	243				20.0		121	70-130	8	25
1,4-Dioxane	2 4 3 196		μg/l ug/l		200		98	55.2-158	o 10	25 25
trans-1,4-Dichloro-2-butene	21.0		μg/l ug/l		20.0		105	70-130	4	25
Ethanol	391		µg/l		400		98	70-130 70-130	4	30
Surrogate: 4-Bromofluorobenzene	52.5		µg/l		50.0		105	70-130	-	30
Surrogate: 4-bromonuorobenzene Surrogate: Toluene-d8	52.5 50.4		µg/l µg/l		50.0 50.0		105 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	53.4		μg/l		50.0		107	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9121910 - SW846 5030 Water MS										
Matrix Spike (9121910-MS1) Sou	rce: SB0576	8-06								
Prepared & Analyzed: 28-Dec-09										
1,1,2-Trichlorotrifluoroethane (Freon 113)	31.9	QM7	μg/l		20.0	BRL	160	70-130		
Acetone	14.3		μg/l		20.0	BRL	71	70-130		
Acrylonitrile	15.7		μg/l		20.0	BRL	78	70-130		
Benzene	18.0		μg/l		20.0	0.6	87	70-130		
Bromobenzene	22.8		μg/l		20.0	BRL	114	70-130		
Bromochloromethane	22.7		μg/l		20.0	BRL	113	70-130		
Bromodichloromethane	18.9		μg/l		20.0	BRL	94	70-130		
Bromoform	21.7		μg/l		20.0	BRL	109	70-130		
Bromomethane	19.3		μg/l		20.0	BRL	96	70-130		
2-Butanone (MEK)	15.8		μg/l		20.0	BRL	79	70-130		
n-Butylbenzene	26.3	QM7	μg/l		20.0	BRL	132	70-130		
sec-Butylbenzene	27.9	QM7	μg/l		20.0	BRL	140	70-130		
tert-Butylbenzene	27.7	QM7	μg/l		20.0	BRL	139	70-130		
Carbon disulfide	18.0		μg/l		20.0	BRL	90	70-130		
Carbon tetrachloride	23.3		μg/l		20.0	BRL	117	70-130		
Chlorobenzene	26.9		μg/l		20.0	2.1	124	70-130		
Chloroethane	20.0		μg/l		20.0	BRL	100	70-130		
Chloroform	22.1		μg/l		20.0	BRL	111	70-130		
Chloromethane	14.5		μg/l		20.0	BRL	72	70-130		
2-Chlorotoluene	24.7		μg/l		20.0	BRL	124	70-130		
4-Chlorotoluene	25.0		μg/l		20.0	BRL	125	70-130		
1,2-Dibromo-3-chloropropane	18.8		μg/l		20.0	BRL	94	70-130		
Dibromochloromethane	19.5		μg/l		20.0	BRL	98	70-130		
1,2-Dibromoethane (EDB)	18.3		μg/l		20.0	BRL	91	70-130		
Dibromomethane	16.4		μg/l		20.0	BRL	82	70-130		
1,2-Dichlorobenzene	23.1		μg/l		20.0	0.7	112	70-130		
1,3-Dichlorobenzene	27.8		μg/l		20.0	2.0	129	70-130		
1,4-Dichlorobenzene	47.1		μg/l		20.0	24.0	116	70-130		
Dichlorodifluoromethane (Freon12)	16.6		μg/l		20.0	BRL	83	70-130		
1,1-Dichloroethane	20.9		μg/l		20.0	BRL	104	70-130		
1,2-Dichloroethane	24.9		μg/l		20.0	BRL	125	70-130		
1,1-Dichloroethene	23.0		μg/l		20.0	BRL	115	70-130		
cis-1,2-Dichloroethene	23.1		μg/l		20.0	BRL	116	70-130		
trans-1,2-Dichloroethene	22.4		μg/l		20.0	BRL	112	70-130		
1,2-Dichloropropane	18.9		μg/l		20.0	BRL	95	70-130		
1,3-Dichloropropane	19.7		μg/l		20.0	BRL	98	70-130		
2,2-Dichloropropane	21.1		μg/l		20.0	BRL	106	70-130		
1,1-Dichloropropene	20.1		μg/l		20.0	BRL	101	70-130		
cis-1,3-Dichloropropene	17.9		μg/l		20.0	BRL	89	70-130		
trans-1,3-Dichloropropene	19.6		μg/l		20.0	BRL	98	70-130		
Ethylbenzene	22.1		μg/l		20.0	BRL	111	70-130		
Hexachlorobutadiene	33.2	QM7	μg/l		20.0	BRL	166	70-130		
2-Hexanone (MBK)	16.0		μg/l		20.0	BRL	80	70-130		
Isopropylbenzene	20.8		μg/l		20.0	BRL	104	70-130		
4-Isopropyltoluene	25.6		μg/l		20.0	BRL	128	70-130		
Methyl tert-butyl ether	20.4		μg/l		20.0	BRL	102	70-130		
4-Methyl-2-pentanone (MIBK)	17.0		μg/l		20.0	BRL	85	70-130		
Methylene chloride	18.3		μg/l		20.0	BRL	91	70-130		
Naphthalene	26.8	QM7	μg/l		20.0	0.2	133	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• **		Tiug	Omis	KDL	Level	Result	70ICLC	Limits	IG D	Limit
Batch 9121910 - SW846 5030 Water M										
Matrix Spike (9121910-MS1)	Source: SB0576	8-06								
Prepared & Analyzed: 28-Dec-09			_							
n-Propylbenzene	24.6		μg/l		20.0	BRL	123	70-130		
Styrene	22.7		μg/l		20.0	BRL	114	70-130		
1,1,1,2-Tetrachloroethane	22.3		μg/l		20.0	BRL	112	70-130		
1,1,2,2-Tetrachloroethane	18.1		μg/l		20.0	BRL	91	70-130		
Tetrachloroethene	23.9		μg/l		20.0	BRL	119	70-130		
Toluene	18.4		μg/l		20.0	0.2	91	70-130		
1,2,3-Trichlorobenzene	29.8	QM7	μg/l		20.0	BRL	149	70-130		
1,2,4-Trichlorobenzene	27.4	QM7	μg/l		20.0	0.6	134	70-130		
1,3,5-Trichlorobenzene	26.3	QM7	μg/l		20.0	BRL	132	70-130		
1,1,1-Trichloroethane	21.2		μg/l		20.0	BRL	106	70-130		
1,1,2-Trichloroethane	17.3		μg/l		20.0	BRL	87	70-130		
Trichloroethene	22.9		μg/l		20.0	BRL	114	70-130		
Trichlorofluoromethane (Freon 11)	27.4	QM7	μg/l		20.0	BRL	137	70-130		
1,2,3-Trichloropropane	19.6		μg/l		20.0	BRL	98	70-130		
1,2,4-Trimethylbenzene	26.2	QM7	μg/l		20.0	BRL	131	70-130		
1,3,5-Trimethylbenzene	26.2	QM7	μg/l		20.0	BRL	131	70-130		
Vinyl chloride	17.4		μg/l		20.0	BRL	87	70-130		
m,p-Xylene	47.6		μg/l		40.0	BRL	119	70-130		
o-Xylene	24.4		μg/l		20.0	BRL	122	70-130		
Tetrahydrofuran	16.8		μg/l		20.0	BRL	84	70-130		
Ethyl ether	19.7		μg/l		20.0	BRL	98	70-130		
Tert-amyl methyl ether	18.2		μg/l		20.0	BRL	91	70-130		
Ethyl tert-butyl ether	17.0		μg/l		20.0	BRL	85	70-130		
Di-isopropyl ether	14.8		μg/l		20.0	BRL	74	70-130		
Tert-Butanol / butyl alcohol	187		μg/l		200	BRL	93	70-130		
1,4-Dioxane	134	QM7	μg/l		200	BRL	67	70-130		
trans-1,4-Dichloro-2-butene	19.8		μg/l		20.0	BRL	99	70-130		
Ethanol	342		μg/l		400	BRL	86	70-130		
Gurrogate: 4-Bromofluorobenzene	52.7		μg/l		50.0		105	70-130		
Surrogate: 7 Diomondolopenzeno	50.3		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	65.0		μg/l		50.0		130	70-130		
Surrogate: Dibromofluoromethane	52.3		μg/l		50.0		105	70-130		
Matrix Spike Dup (9121910-MSD1)	Source: SB0576	8-06								
Prepared & Analyzed: 28-Dec-09										
1,1,2-Trichlorotrifluoroethane (Freon 113	30.9	QM7	μg/l		20.0	BRL	154	70-130	3	30
Acetone	16.1		μg/l		20.0	BRL	80	70-130	12	30
Acrylonitrile	17.0		μg/l		20.0	BRL	85	70-130	8	30
Benzene	17.9		μg/l		20.0	0.6	86	70-130	0.6	30
Bromobenzene	22.9		μg/l		20.0	BRL	114	70-130	0.3	30
Didiliobelizerie			μg/l		20.0	BRL	110	70-130	3	30
	22.0				20.0	BRL	93	70-130	2	30
Bromochloromethane	22.0 18.6		μg/l		20.0	DIVL	• •			
Bromochloromethane Bromodichloromethane			μg/l μg/l		20.0	BRL	107	70-130	2	30
Bromochloromethane Bromodichloromethane Bromoform	18.6							70-130 70-130	2 7	30 30
Bromochloromethane Bromodichloromethane Bromoform Bromomethane	18.6 21.4		μg/l		20.0	BRL	107			
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	18.6 21.4 18.1	QM7	μg/l μg/l μg/l		20.0 20.0	BRL BRL BRL	107 90	70-130	7	30
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	18.6 21.4 18.1 16.0	QM7 QM7	hā\I hā\I hā\I		20.0 20.0 20.0	BRL BRL BRL BRL	107 90 80 135	70-130 70-130	7 1 3	30 30
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	18.6 21.4 18.1 16.0 27.1 28.6		µg/l µg/l µg/l µg/l		20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL	107 90 80 135 143	70-130 70-130 70-130 70-130	7 1 3 2	30 30 30 30
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	18.6 21.4 18.1 16.0 27.1 28.6 28.2	QM7	hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL	107 90 80 135 143	70-130 70-130 70-130 70-130 70-130	7 1 3 2 2	30 30 30 30 30
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	18.6 21.4 18.1 16.0 27.1 28.6	QM7	µg/l µg/l µg/l µg/l		20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL	107 90 80 135 143	70-130 70-130 70-130 70-130	7 1 3 2	30 30 30 30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9121910 - SW846 5030 Water	· MS									
Matrix Spike Dup (9121910-MSD1)	Source: SB0576	3-06								
Prepared & Analyzed: 28-Dec-09										
Chloroethane	19.3		μg/l		20.0	BRL	97	70-130	3	30
Chloroform	22.1		μg/l		20.0	BRL	111	70-130	0.05	30
Chloromethane	14.5		μg/l		20.0	BRL	73	70-130	0.3	30
2-Chlorotoluene	24.5		μg/l		20.0	BRL	122	70-130	0.9	30
4-Chlorotoluene	25.8		μg/l		20.0	BRL	129	70-130	3	30
1,2-Dibromo-3-chloropropane	19.5		μg/l		20.0	BRL	97	70-130	4	30
Dibromochloromethane	19.5		μg/l		20.0	BRL	98	70-130	0	30
1,2-Dibromoethane (EDB)	18.6		μg/l		20.0	BRL	93	70-130	2	30
Dibromomethane	16.8		μg/l		20.0	BRL	84	70-130	3	30
1,2-Dichlorobenzene	23.1		μg/l		20.0	0.7	112	70-130	0.4	30
1,3-Dichlorobenzene	27.8		μg/l		20.0	2.0	129	70-130	0.2	30
1,4-Dichlorobenzene	46.6		μg/l		20.0	24.0	113	70-130	2	30
Dichlorodifluoromethane (Freon12)	16.6		μg/l		20.0	BRL	83	70-130	0.4	30
1,1-Dichloroethane	21.0		μg/l		20.0	BRL	105	70-130	0.4	30
1,2-Dichloroethane	27.4	QM7	μg/l		20.0	BRL	137	70-130	10	30
1,1-Dichloroethene	22.9		μg/l		20.0	BRL	114	70-130	0.5	30
cis-1,2-Dichloroethene	23.2		μg/l		20.0	BRL	116	70-130	0.4	30
trans-1,2-Dichloroethene	22.2		μg/l		20.0	BRL	111	70-130	1	30
1,2-Dichloropropane	18.1		μg/l		20.0	BRL	91	70-130	4	30
1,3-Dichloropropane	20.0		μg/l		20.0	BRL	100	70-130	2	30
2,2-Dichloropropane	21.4		μg/l		20.0	BRL	107	70-130	2	30
1,1-Dichloropropene	20.8		μg/l		20.0	BRL	104	70-130	3	30
cis-1,3-Dichloropropene	18.4		μg/l		20.0	BRL	92	70-130	3	30
trans-1,3-Dichloropropene	19.8		μg/l		20.0	BRL	99	70-130	1	30
Ethylbenzene	22.6		μg/l		20.0	BRL	113	70-130	2	30
Hexachlorobutadiene	33.7	QM7	μg/l		20.0	BRL	168	70-130	2	30
2-Hexanone (MBK)	16.5		μg/l		20.0	BRL	82	70-130	3	30
Isopropylbenzene	21.0		μg/l		20.0	BRL	105	70-130	0.7	30
4-Isopropyltoluene	25.7		μg/l		20.0	BRL	128	70-130	0.5	30
Methyl tert-butyl ether	20.5		μg/l		20.0	BRL	102	70-130	0.3	30
4-Methyl-2-pentanone (MIBK)	17.1		μg/l		20.0	BRL	86	70-130	0.7	30
Methylene chloride	20.9		μg/l		20.0	BRL	104	70-130	13	30
Naphthalene	27.3	QM7	μg/l		20.0	0.2	135	70-130	2	30
n-Propylbenzene	25.5		μg/l		20.0	BRL	128	70-130	4	30
Styrene	23.0		μg/l		20.0	BRL	115	70-130	1	30
1,1,1,2-Tetrachloroethane	22.0		μg/l		20.0	BRL	110	70-130	1	30
1,1,2,2-Tetrachloroethane	18.3		μg/l		20.0	BRL	91	70-130	8.0	30
Tetrachloroethene	23.4		μg/l		20.0	BRL	117	70-130	2	30
Toluene	18.5		μg/l		20.0	0.2	92	70-130	0.5	30
1,2,3-Trichlorobenzene	30.4	QM7	μg/l		20.0	BRL	152	70-130	2	30
1,2,4-Trichlorobenzene	28.2	QM7	μg/l		20.0	0.6	138	70-130	3	30
1,3,5-Trichlorobenzene	26.8	QM7	μg/l		20.0	BRL	134	70-130	2	30
1,1,1-Trichloroethane	21.4		μg/l		20.0	BRL	107	70-130	0.9	30
1,1,2-Trichloroethane	17.1		μg/l		20.0	BRL	86	70-130	1	30
Trichloroethene	23.9		μg/l		20.0	BRL	119	70-130	4	30
Trichlorofluoromethane (Freon 11)	27.0	QM7	μg/l		20.0	BRL	135	70-130	2	30
1,2,3-Trichloropropane	19.6		μg/l		20.0	BRL	98	70-130	0.3	30
1,2,4-Trimethylbenzene	26.8	QM7	μg/l		20.0	BRL	134	70-130	2	30
1,3,5-Trimethylbenzene	26.3	QM7	μg/l		20.0	BRL	132	70-130	0.6	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 9121910 - SW846 5030 Water	· MS									
Matrix Spike Dup (9121910-MSD1)	Source: SB05768	3-06								
Prepared & Analyzed: 28-Dec-09										
Vinyl chloride	17.4		μg/l		20.0	BRL	87	70-130	0.2	30
m,p-Xylene	48.5		μg/l		40.0	BRL	121	70-130	2	30
o-Xylene	24.3		μg/l		20.0	BRL	122	70-130	0.2	30
Tetrahydrofuran	18.3		μg/l		20.0	BRL	91	70-130	9	30
Ethyl ether	20.2		μg/l		20.0	BRL	101	70-130	3	30
Tert-amyl methyl ether	18.1		μg/l		20.0	BRL	91	70-130	0.6	30
Ethyl tert-butyl ether	17.2		μg/l		20.0	BRL	86	70-130	1	30
Di-isopropyl ether	15.2		μg/l		20.0	BRL	76	70-130	3	30
Tert-Butanol / butyl alcohol	194		μg/l		200	BRL	97	70-130	4	30
1,4-Dioxane	137	QM7	μg/l		200	BRL	68	70-130	2	30
trans-1,4-Dichloro-2-butene	20.2		μg/l		20.0	BRL	101	70-130	2	30
Ethanol	336		μg/l		400	BRL	84	70-130	2	30
Surrogate: 4-Bromofluorobenzene	53.0		μg/l		50.0		106	70-130		
Surrogate: Toluene-d8	50.0		μg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	64.6		μg/l		50.0		129	70-130		
Surrogate: Dibromofluoromethane	52.0		μg/l		50.0		104	70-130		

Semivolatile Organic Compounds by GC - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 9121552 - SW846 3510C										
Blank (9121552-BLK1)										
Prepared & Analyzed: 21-Dec-09										
Aroclor-1016	BRL	U	μg/l	0.200						
Aroclor-1016 [2C]	BRL	U	μg/l	0.200						
Aroclor-1221	BRL	U	μg/l	0.200						
Aroclor-1221 [2C]	BRL	U	μg/l	0.200						
Aroclor-1232	BRL	U	μg/l	0.200						
Aroclor-1232 [2C]	BRL	U	μg/l	0.200						
Aroclor-1242	BRL	U	μg/l	0.200						
Aroclor-1242 [2C]	BRL	U	μg/l	0.200						
Aroclor-1248	BRL	U	μg/l	0.200						
Aroclor-1248 [2C]	BRL	U	μg/l	0.200						
Aroclor-1254	BRL	U	μg/l	0.200						
Aroclor-1254 [2C]	BRL	U	μg/l	0.200						
Aroclor-1260	BRL	U	μg/l	0.200						
Aroclor-1260 [2C]	BRL	U	μg/l	0.200						
Aroclor-1262	BRL	U	μg/l	0.200						
Aroclor-1262 [2C]	BRL	U		0.200						
Aroclor-1268	BRL	U	µg/l	0.200						
	BRL	U	µg/l							
Aroclor-1268 [2C]			µg/l	0.200	0.200		108	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	0.215 0.200		μg/l μg/l		0.200 0.200		100	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.167		μg/l		0.200		84	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.222		μg/l		0.200		111	30-150		
LCS (9121552-BS1) Prepared & Analyzed: 21-Dec-09										
Aroclor-1016	2.47		μg/l	0.200	2.50		99	50-140		
Aroclor-1016 [2C]	2.47		μg/l	0.200	2.50		99	50-140		
Aroclor-1260	2.31			0.200	2.50		92	50-140		
	2.61		µg/l	0.200	2.50		105	50-140		
Aroclor-1260 [2C] Surrogate: 4.4-DB-Octafluorobiphenyl (Sr)			µg/l	0.200	0.200					
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2	0.210 0.189		μg/l μg/l		0.200		105 94	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.170		μg/l		0.200		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.230		μg/l		0.200		115	30-150		
LCS Dup (9121552-BSD1)										
Prepared & Analyzed: 21-Dec-09										
Aroclor-1016	2.58		μg/l	0.200	2.50		103	50-140	4	30
Aroclor-1016 [2C]	2.55		μg/l	0.200	2.50		102	50-140	3	30
Aroclor-1260	2.40		μg/l	0.200	2.50		96	50-140	4	30
Aroclor-1260 [2C]	2.62		μg/l	0.200	2.50		105	50-140	0.4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.214		μg/l		0.200		107	30-150	***	
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2	0.195		μg/l		0.200		97	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.179		μg/l		0.200		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.236		μg/l		0.200		118	30-150		
Matrix Spike (9121552-MS1) Source Prepared & Analyzed: 21-Dec-09	ce: SB0576	8-06								
Aroclor-1016	4.50		ua/l	0.417	5.21	BRL	86	40-135		
			µg/l							
Aroclor 1360	4.56		μg/l	0.417	5.21	BRL	88	40-135		
Aroclor 1260 I2Cl	4.35		µg/l	0.417	5.21	BRL	83	40-135		
Aroclor-1260 [2C]	5.03		µg/l	0.417	5.21	BRL	97	40-135 30-150		
	^ ^==							20 150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	0.377 0.340		μg/l μg/l		0.417 0.417		91 81	30-150 30-150		

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC	•	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9121552 - SW846 3510C										
Matrix Spike (9121552-MS1) Sour	ce: SB0576	8-06								
Prepared & Analyzed: 21-Dec-09										
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.415		μg/l		0.417		99	30-150		
Matrix Spike Dup (9121552-MSD1) Sour	ce: SB0576	B-06								
Prepared & Analyzed: 21-Dec-09										
Aroclor-1016	4.87		μg/l	0.426	5.32	BRL	91	40-135	6	15
Aroclor-1016 [2C]	4.91		μg/l	0.426	5.32	BRL	92	40-135	5	15
Aroclor-1260	4.76		μg/l	0.426	5.32	BRL	90	40-135	7	20
Aroclor-1260 [2C]	5.33		μg/l	0.426	5.32	BRL	100	40-135	4	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.402		μg/l		0.426		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [:	0.364		μg/l		0.426		86	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.300		μg/l		0.426		71	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.400		μg/l		0.426		94	30-150		

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

U Analyte included in the analysis, but not detected

BDL Below Detection Limit - Analyte NOT DETECTED at or above the minimum detection limit

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Rebecca Merz

CHAIN OF CUSTODY RECORD

Page _ l ___ of ____

Special Handling:

Standard TAT - 7 to 10 business days
 Rush TAT - Date Needed: _____

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- Samples disposed of after 60 days unless otherwise instructed.

5		URTHOUTH DINE SUTTE OF				me						-			7100: aspett	
lephone #:	Donald Moor	e	P.O. No.				RQ	N: _						,	14, O Bl.ve	Queens State: NY
	32O ₃ 2=HCl 3=H ₂ 4 9=		5=NaOH				7=	CH ₃ C)H	2	_	ist pr	eservat	ive co	le below:	QA/QC Reporting Notes: (check as needed)
	g Water GW=Groun Surface Water SO						Co	ntain	ers:		_	-	Ana	lyses:	3 7 5	☐ Provide MA DEP MCP CAM Report
	X2= G=Grab C=C	X3			, xi	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic		0660 D	7.6				□ Provide CT DPH RCP Report QA/QC Reporting Level □ Standard □ No QC Other NYSDEC C47 B
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	1 **	Jo #	Jo#	# of	Ó	o s	٤.				State specific reporting standards:
6801	TRIP BLANK			G	X []	2	12	-		X	-					One VOA received Broke
0.5	DUPE	12/15/09		G	Gw	3	į.			Ϋ́		X				
0.3	mw-601	12/15/09	1020	G	Gw	-	ı			18	7	(2 VOAs received Brown
04	EQUID BLANK	12/15/09	1105	G	XIZ		X			X		6		,		ane VOA, one Aube, acceive
05	MW -603	12/15/09	1305	G	Gev	3	+			X	1	X		1		One Amber for 603 U
06	MW-602	12/15/09	1415	G	GW	38	39			X	X	(1		one Amber for 603 U perform ms/msD. on additional simple previoled
	3 5 1 1 7	573			2 7		B					5	7		1 3 3	One Vo A are Anberlo
	3 6 14		i ĝis			1 1	텧					2	· L			602 acceived p
	专集层加工	3 2	. B. W. L.			- 1		i i					1			
		13	- B # E E E			1 6	š	100	98				1 2			7 E 8
Relin	iquished by:	Rec	eived by:	\$ 5.1. 	2.3	Date:	4		Time:	Т	emp°	3				
1816	rand	01	1	>	121	47/	09	10	30	3.	1		→ E-ma	111 10		

Report Date: 28-Dec-09 15:46

7	Final Report
	Re-Issued Report
_	Revised Report

Laboratory Report

Stantec Consulting Services 5 Dartmouth Drive, Suite 101 Auburn, NH 03032 Attn: Don Moore

Project: Maspeth - Queens, NY

Project #: 191710024

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSB05923-01MW-603Ground Water18-Dec-09 12:1518-Dec-09 15:55

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 5 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The samples were received 3.8 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt.
An infrared thermometer with a tolerance of \pm 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Sample Identification MW-603 SB05923-01

Client Project # 191710024

<u>Matrix</u> Ground Water Collection Date/Time 18-Dec-09 12:15

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 80	<u>82</u>										
Prepared by method SW846 3510C											
12674-11-2 Aroclor-1016	BDL	U	μg/l	0.230	0.103	1	SW846 8082	22-Dec-09	22-Dec-09	9121635	Χ
11104-28-2 Aroclor-1221	BDL	U	μg/l	0.230	0.109	1	"	"	"	"	Χ
11141-16-5 Aroclor-1232	BDL	U	μg/l	0.230	0.0853	1	"	"	"	"	Χ
53469-21-9 Aroclor-1242	BDL	U	μg/l	0.230	0.120	1	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	μg/l	0.230	0.0948	1	"	"	"	"	Χ
11097-69-1 Aroclor-1254	BDL	U	μg/l	0.230	0.160	1	"	"	"	"	Χ
11096-82-5 Aroclor-1260	0.120	J	μg/l	0.230	0.0852	1	"	"	"	"	Χ
37324-23-5 Aroclor-1262	BDL	U	μg/l	0.230	0.0765	1	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/l	0.230	0.0574	1	u	"	"	"	Х
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	63		30-1	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2	C] 61		30-1	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	35		30-1	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	32		30-1	50 %			"	"	"	"	

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 9121635 - SW846 3510C										
Blank (9121635-BLK1)										
Prepared & Analyzed: 22-Dec-09										
Aroclor-1016	BRL	U	μg/l	0.200						
Aroclor-1016 [2C]	BRL	U	μg/l	0.200						
Aroclor-1221	BRL	U	μg/l	0.200						
Aroclor-1221 [2C]	BRL	U	μg/l	0.200						
Aroclor-1232	BRL	U	μg/l	0.200						
Aroclor-1232 [2C]	BRL	U	μg/l	0.200						
Aroclor-1242	BRL	U	μg/l	0.200						
Aroclor-1242 [2C]	BRL	U	μg/l	0.200						
Aroclor-1248	BRL	U	μg/l	0.200						
Aroclor-1248 [2C]	BRL	U	μg/l	0.200						
Aroclor-1254	BRL	U	μg/l	0.200						
Aroclor-1254 [2C]	BRL	U	μg/l	0.200						
Aroclor-1260	BRL	U	μg/l	0.200						
Aroclor-1260 [2C]	BRL	U	μg/l	0.200						
Aroclor-1262	BRL	U	μg/l	0.200						
Aroclor-1262 [2C]	BRL	U	μg/l	0.200						
Aroclor-1268	BRL	U	μg/l	0.200						
Aroclor-1268 [2C]	BRL	U	μg/l	0.200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.162		μg/l		0.200		81	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [0.145		μg/l		0.200		72	30-150		
Surrogate: Decachlorobiphenyl (Sr) Surrogate: Decachlorobiphenyl (Sr) [2C]	0.173 0.132		μg/l μg/l		0.200 0.200		86 66	30-150 30-150		
	0.132		рул		0.200		00	30-730		
.CS (9121635-BS1)										
Prepared & Analyzed: 22-Dec-09										
Aroclor-1016	1.69		μg/l	0.200	2.50		67	50-140		
Aroclor-1016 [2C]	1.65		μg/l	0.200	2.50		66	50-140		
Aroclor-1260	1.78		μg/l	0.200	2.50		71	50-140		
Aroclor-1260 [2C]	1.72		μg/l	0.200	2.50		69	50-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.136		μg/l		0.200		68 64	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [: Surrogate: Decachlorobiphenyl (Sr)	0.127 0.154		μg/l μg/l		0.200 0.200		64 77	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.121		μg/l		0.200		60	30-150		
CS Dup (9121635-BSD1)										
Prepared & Analyzed: 22-Dec-09										
Aroclor-1016	1.84		μg/l	0.200	2.50		73	50-140	9	30
Aroclor-1016 [2C]	1.91		μg/l	0.200	2.50		77	50-140	15	30
Aroclor-1260	1.93		μg/l	0.200	2.50		77	50-140	8	30
Aroclor-1260 [2C]	1.90		μg/l	0.200	2.50		76	50-140	10	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.151		μg/l		0.200		76	30-150	-	
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2	0.143		μg/l		0.200		72	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.176		μg/l		0.200		88	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.133		μg/l		0.200		66	30-150		

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected

BDL Below Detection Limit - Analyte NOT DETECTED at or above the minimum detection limit

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Kim Wisk

CHAIN OF CUSTODY RECORD

Page ____ of ___

SB 05923

Special Handling:
Standard TAT - 7 to 10 business days
Rush TAT - Date Needed:

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- Samples disposed of after 60 days unless

	HANIBAL TECHNOLOGY		22	И.					5.					other	wise ii	istructed.
5 DAR	STANTEC TIMOUTH DRIVE 'N, NH 0303	Suite101	Invoice	То:	51	m	٤							117 10 SPETI		
	F. A F. S.		1.8		3 1 1		- <u>2</u> 7				Lo	cation:	MA	DETTO	1. 0	QUEENS State: NY
Telephone #		3	0.15		1		<u> </u>	ă	9							
Project Mgr.	Donald Moo	re	P.O. No	4			RQ	N:_	r pi	-	Sai	npler(s):	D	Dine	- /	Stantac
	S2O ₃ 2=HCI 3=H O ₄ 9=		5=NaOH	6=Asc	orbic /	Acid	7=0	CH ₃ C	H	1	Lis	preserv	ative co	de below	T	QA/QC Reporting Notes: (check as needed)
	ng Water GW=Grou			4-11		e digin	Cor	ntain	ers:	3 3		A	nalyses:	84.		☐ Provide MA DEP MCP CAM Repo
	/= Surface Water SC X2=				15-4	Vials	Glass	Glass	about w			adib\ana	IST TENT	stantaine stantaine		□ Provide CT DPH RCP Report QA/QC Reporting Level □ Standard □ No QC
	G=Grab C=	Composite			3.1	AC	upei	ear	astic	Q	Š					Scher NYSDEC CATE
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# of V	# of VOA Vials # of Amber Glass # of Clear Glass # of Plastic		O	3					State specific reporting standards	
15923-61	MW-603	12/18/09	1215	6-	GW			l	98	X						
							7		3.1		100	18			1 2. 1 2	
	BALL TE			9 14.0	2	-	ž					1 1 2	Ž.		1	
						8 9	9			3	13		3 3			
			1 E & Y		3.3	8 3		£.	9 :		1 1 1 1 1	1 2 2	<u>. j</u>		3 3	
			1883		4 5	5 6	19				18	2 2	8 8 8 8		1 2	
	T F # 2 0 5 #			9 5 8	74	E 3	4.	: 30	67		123	2 8	3 8			
	1354255	3 33 34 34		5 ävå			100		7 3	i je		1 3 2	B.W.	1 1 2 1	2	T S S S S S S S S S S S S S S S S S S S
Rej	inquished by:	Rece	rived by:			Date:			Time:	Te	emp°C	□ ED	D Forn	at	18	新瓦斯撒斯尼斯 山苏尔
181	Jh.	M			12	118	169		55	5 3	.0	□ E-n	nail to			· · · · · · · · · · · · · · · · · · ·
					E S				. <u>3.695</u> 1977 - 1			□ Ambier	t Drest	Refrigerat	ed DF	ridae temp

Site: Date:			MASPE	7/1					Field Perso	onnel:	كيال	3					i de la companya de l
Date:			12-3	-/ 0					weather:	·	500		⁷ 5			Tribusy and Andrews of the Proposed September 1995 and 1	
Monitor W		:	mw-3	V)		Well Depth						Screened/0	Open Interva	1:		Control Control State Control Control Control	esemply and a second
Well Perm	it #:				:	Well Diam		2"	11 .*	14000			ke (feet belo				
	9	ING	pH	1	1	Depth to we cific activity	<u>ļ</u>	Pump Insta dox ntial	Diss	0,33	Т	Make/ Mo	del of Pump	AMERICAN PROPERTY OF THE PERSONS ASSESSED.		Depth	west-ingress-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze-freeze
	PURGING	SAMPLING	(pH	units)	(umho	os/cm)	(п	v)	(m	ygen ng/l)		ru)		erature entigrade)	Pumping Rate	to Water	And the second s
TIME	₹	SA	READING	·	READING		READING		READING		READING	 	READING	CHANGE	(ml/min)	(feet below TOC)	
1050			a50	NA	13997	NA	=93,4	NA	123	NA	60.4	NA	10,00 8-16	NA	30	16,88	510m
1300			6.51		1365		-827		0.34		너 뭐;		10.18		30	17,23	Pas.
1310			6.51		1379		_87.8		0.27		31.1		10.42		30	17.34	
1320			6.52		1375		-93.7		0.21		1861		10.39		30	17.55	
1330			6.52		1374		-94,2		0.71		17.9		10.39		30	17.60	
1340			6.52		1370		-95.6		0.19		17.6		10.55		30	17.65	SUN
13																	
																	,
								and the second s									·

Comments	:	<u>. </u>				(Q)	1[350		<u> </u>		\bigcap	//				
			•) AW	pul	(4)	` * * *		<u></u>	Sheer	- 0v	Your	ے کا ہ	\cup			

* Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet	a de la companya de l	of	

Site: 🔥		. H.							Field Perso	nnel: A. C	مأنسد					
Date: 2/3	110								Weather:	Floods	3,05		-			***************************************
								100 to						1	Antibian and an included security grant and	
		m	w_302	•		Well Depth							pen Interva			
Well Perm	t#:					Well Diam	eter: 2.		11.41	200 Na co 1	······································		te (feet belo del of Pump			ş
							ater Before			olved		iviake/ ivio	ici oi Lamb	· ULD I	الماط ع	Depth
	9	12			Spe		1	dox	i		Turk	oidity	Temp	erature	Pumping	to
	N N	<u> </u>	pН		Condu (umbo	ectivity	1	ential		/gen g/l)	1	ΓU)	1 -	entigrade)	Rate	Water
777.477	PURGING	SAMPLING	(pH t READING		READING	CHANGE	READING	(mv) (mg/l) (NTU) (degrees centigrade) Rate DING CHANGE READING CHANGE READING CHANGE (ml/min)						(feet below TOC)		
TIME	-	S		NA	2030	NA NA	-133	NA		NA	33.7	NA		NA	1.0	16.17
15:50	×		6.09		20,00		1-123		0.11		>>,,		11.71		100	10.11
10:55	×		6.cq	0	2030	٥	-134	-1	5:13	0.02	26.2	_7,5	11.57	0.16	100	16.21
11:00	X		6.09	6	2530	٥	_134	0	0.03	01،5 ـ	29.7	-5.5	12.09	0.22	/oc	16.27
11:05	Х		6.09	C	2030	C	-134	0	3.61		16.8	-3.9	12.31	.2.02	/60	76.28
11:10	×		V .09	6	2030	9	- 134	0	6.60	-0,61	13.7	-3.1	11.12	-0.29	100	16.32
11:15	×		6-09	C C	2023	-10	-135	- 1	8.60	0	12.7	-1.0	11.59	c . 63	100	16.36
11:50	x		6.10	0.01	2000		-136	N	0,60	U	9.2	3.5	11-24	6.15	100	16.70
11:25	×		6.11	5.01	1480	-20	-136	c	9.60	O	6.7	-2,5	11.77	٥	100	16.47
																ž
						Control Contro										
Comment		5t= 51	1 6-	Dies!	0: 20 water		ample t			peteoles	m odio				adov Dotant	<u>ann an Talen, yn gan jakk âr nedy yn yn gyr gall âr âr de am ar yn y gyn y gall âr âr âr am ar yn y gall âr â</u>
				· .)			24/4/20					<u></u>				

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet _____ of ____

Site:		M	13 PETH 2-3-						Field Perso	nnel:	JJV)			No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	Militaria de la companio de la comp
Date:			1-3-	10		semboudair o'sicus comme			Weather:	and the second second second		Swow	కేళ్ళ			
											·					
Monitor W		:	MM	-303		Well Deptl							pen Interva			
Well Perm	it #:		······································			Well Diam		2"		11.10	,		ke (feet belo			
			T			Annual Contract of the Contrac	ater Before	National Property and Publishers of the Party of the Part		16.65	<u> </u>	Make/ Mo	del of Pump	: 		despense and the property of the second state of the second secon
	0	SAMPLING		•		cific	1	dox	1	olved						Depth
	PURGING	PLI	pH		}	activity	t .	ential		ygen	1	oidity		erature	Pumping	to
TD (F	l Š	AM	(pH READING		READING	os/cm)	READING	av)	READING	g/l)		ΓU)		entigrade)	Rate	Water
TIME	1-	S	READING	NA	READING	NA NA	READING	NA	READING	NA	READING		READING		(ml/min)	(feet below TOC)
0740			6.71	INA	1236	INA :	152,6	INA	1063	NA .	TURBIO	NA	11.74	NA	80	17.13
5745			6.69		1236		125,0		1.62				11,59			17.20
0750			6.69		1220		81.7		1.55		بر		12.10			17.45
0755			669		1215		Lalerb		1,41		:ma _{magar}		12.36		80	17.44
0900	-		6,70		1218		65,1		1.31				12.51		೮ ೦	17,51
0605			6.70		1217		64,8		1.35		معمدر		1252		80	17,52
0610			6.70		1213		61.7		1.32		-		12.49		80	17.53
Comments	:		l			<u> </u>	<u> </u>		<u> </u>		<u> </u>					
EXECUTATION CONTRACTOR OF THE				JAMI),	Le	(g)		0815	7					•		WANTED TO THE PARTY OF THE PART
L 7	**********		na barra atal						-	-					- and the state of	

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

															311cct	01
Site:			BYETL						Field Perso	nnel:	سال					
Date:		2-	1-10	ر					Weather:	######################################	54	3D°		**************************************		
Monitor W	/ ₀ 11 #		MW-	704		Well Depth				·		C 1/C	Y-4	1.		
Well Perm			INW	207		Well Diam							Open Interva ke (feet belo			
WCII I CIIII	11 77 -						ater Before	Pump Insta	illation:	15,48			del of Pump			
		0		***************************************	Spe	The state of the s	Red			olved			1			Depth
	8	Z	рH	[Condu		Pote		1	/gen	Turb	idity	Temp	erature	Pumping	to
	PURGING	SAMPLING	(pH i	units)	(umho	•	(m		(m		(N)	•	, .	entigrade)	Rate	Water
TIME	PU	SA	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	(ml/min)	(feet below TOC)
1620			6,54	NA	1573	NA	159,9	NA	4.12	NA	TUS 11/10.	, NA	12,03	NA	Le D	14.25 14.30 14.35 14.39 16.39
1625			6,55		1579		159,6		3.67		V.511.	M	12.00			14.30
1630		<u></u>	6.55		1577		159.3		3.44				12.24			14.35
1035			6.57	-	1564		1583		2,94				12.13			14,38
1640			6.5%		1500		156,0		2,50				11.67			16.39
1645			€15t		1545		159.5		2.83		- Commence of the last of the		11.43		40	10:40
1650			6.63		1471		147.6		231		_		1/015			16.41
1655			6.65		1440		H314		2,04				11,22			16.41
1700			6.45		1440		胸1.5		2.0 i	·	Garageoisen		11.25			16.41
							*									
						,										
Comments	:		É.		0	- Common	60									Madda Michigan yang yang kanang papa papagan kanang pang at sanan kanan kanan kanan kanan kanan kanan kanan ka

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet	of	real control
CHOCK	. 01	E.

Site:	M	S 3	276	191710	1024				Field Perso	nnel: 🖒 ,						
Date: 2_	1	0						·	Weather:	<u>sunny</u>	· · · · · · · · · · · · · · · ·	3 <u>0°</u>	·			
Monitor W	/ell#	· 1	w-30			Well Depth	1:					Screened/C	pen Interva	al:	MINISTER AND AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN COLU	
Well Perm						Well Diam								w TOC): \		
		: W. C		aning principal describe high all alternative Delicators		A CONTRACTOR OF THE PARTY OF TH	ater Before			<u> 52. </u>	_	Make/ Mod	del of Pump	: Q E (2"1.75"	blioder ping
	0	8			, -	eific	1	dox	Diss		T .		π		D	Depth
	Ž	PLI	pF		,	activity	1	ential av)		/gen g/l)	1	oidity TU)		erature centigrade)	Pumping Rate	to Water
TIME	PURGING	SAMPLING	(pH READING	units)	READING	os/cm)	READING		READING		READING		READING		(ml/min)	(feet below TOC)
TIME 14:25	×	S	7.51	NA	Ago N		185	NA	6.26	NA	40.0	NA	10.71	NA	ა°≎	17.25
14:35	×		7.45	-0.0k	464	-10	186	1	5.76	.0.30	37.2	-52,8	10.83	0.14	\$TC	17.34
14:45														12.37		
14:55	_s ike ^o		7.45	 0,∪ {	480	3	156	٥	5.52	-5.19	51.3	-17.	ςυ	17.70		
15:05	×		7.57	يات. ن	477	3	lar	0	5.37	-6.15	39.3	-12.0	9.52	-6.36	52	17-39
15110			7.55	0.4	475	1 .	183	2.	5.35	_ 0. ¢Z	35.7	ما, ت ۔	4.50	-6.32	\$140	e7,39
15:15			7.53	. 6 . 572	474	4	163	ō	5.21	5.17	35 .0	-6:7	9.63	0.13	5">	\7.39
													A CONTRACTOR OF THE CONTRACTOR			·
										·						
Comments			- 12 0			- 12 4	` ` ` ` .		ont Vac		Le.	- 6-17:	16 15 20	>		
		3	rcs sva	, c	2		*.1		∀υξ		Se	sole el	ا به الحد	0 0407	der Detect	

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet ______ of ____

Site:		\mathcal{D}	195/61/	2	<u></u>				Field Perso	nnel:	220			de de sintente de la seconomica de la companya della companya de la companya della companya dell		
Date:	was a second	orania de la compania del compania del compania de la compania del la compania de la compania de la compania de la compania del la compania de la compania del la compania	4-1	1+10					Weather:		Sur	3/ "				
Monitor W	/ ₂ 11 #		Mw-	2010		Well Deptl			raini ambati di Missione di Amaganan		or or and the	Como de	Open Interva	1.		
Well Perm		·	/ / / W -	<i>JUG</i>	· · · · · · · · · · · · · · · · · · ·	Well Diam		7 /					ke (feet belo		 	
							Vater Before	Pump Insta	allation:	10.41			del of Pump			
	5	Ŋ			}	cific	l .	dox	1	olved						Depth
	Potential pH Conductivity Potential (pH units) (umhos/cm) (mv)								1	/gen		oidity	1 -	erature	Pumping	to
TIME	PURGING	SAMPLING	READING		READING		READING	ICHANGE	READING	g/l) Change	READING	(U)	READING	centigrade)	Rate (ml/min)	Water (feet below TOC)
11.712		92		NA	i carbavo	NA	The state of the s	NA	ICEADING	NA	ICADINO	NA	READING	NA	(IIII/IIIII)	(leet below TOC)
	<u> </u>					<u> </u>										
1430		-	6.71		1283		209,1		4.94		50,1		11.91		45	14.85
1435			6.72		1275		202,7		4.92		43.3		12.01			14,55
1440			Q173		1276		195.5	·	4.73		30.1		12,02			16,88
1445			6,93		1275		192.4		4.93		3336		11.94			14.90
1450			ù.73		1272		149.6		4.96		33.2		11.76		45	14,80
1450 1455			6,74		1270		191.7		4.96		33.0		BUZ			16,11
																· · · · · · · · · · · · · · · · · · ·
					A designation of the second of											
Separate Sep																
					PAUL CONTRACTOR CONTRA											
Comments	:	•	i ga tika kamining pi (10.0 kali kaminin manuka	9	and Ud	D	1	5/10			I	J	<u> </u>	7	U	AND THE RESIDENCE AND THE PROPERTY OF THE PROP
¥ Y. 1: -4-		4 .			2 conscouti		an and an	<i>7</i> 0 °	XI. : / 20/	£						

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet t of

ج Site:	2/31	15					and the same of th		Field Perso							
Date: 😘	Ma	لعجد	14 1917	10034		maratusaps op obloossiya is ber			Weather:	<u>clasidy</u>	3000	omital indistry and analysis years				
Monitor V	Vell#	: N	W-501			Well Deptl			min'i Carl II and a 17 Million and a language of			Screened/0	Open Interva	al:		**************************************
Well Perm	nit#:					Well Diam							ke (feet belo			
надара Антан ин институт от Disco				***************************************	o _f	Anna management of the second	Vater Before	- manufacture and a second and a second	to be to the first of the party	8 <u>.5 l</u>		Make/ Mo	del of Pump): QED 1.	15" bladd	<u> Lagrage</u>
	5	S S		7	, .	cific	1	dox	1	olved	Total		Т		Domina	Depth
	l S	PLI	pl (=11	t units)		os/cm)	1	ential nv)		ygen g/l)		oidity TU)	, -	centigrade)	Pumping Rate	to Water _‱ ९
TIME	PURGING	SAMPLING	READING		READING		READING		READING		READING		READING		(ml/min)	(feet below TOS
7:55	×	93	7.71	NA	299	NA	221	NA	6.68	NA	13.2	NA	7.92	NA	าร	19.39
g°.50	X		7.77	ರ ಕ	949	٥	220	٠)	6.74	0,06	16.7	- 2.8	12.54	0.72	35	\$ 9.40
g: 25	Х		7.30	6.03	999	0	218	- 1.	6.72	-0.02	8.9	_1.3	11.77	0.63	35	10.41
8:10	×		7.81	6,6	999	0	215	-3	6.19	0.07	7.1	-1.8	11.71	0.24	85	19.43
2,12	X		7.53	0,62	344	٥	214	-1	6.71	.0 , &\$	7.2	S-1	11.78	0.07	5.5	
47.20	X		7.53	0	999	0	211	- 3	6.73	0.02	6.5	20.1	11.55	0.02	4 5	19.45
									<i>P</i> .	-						
	-															
	1															
Comments	ا الإو 3:	أبد	N-19i-1	7:35	1	I	1	sample collect	fine	S: 25	L	<u> </u>		1		Address and the second control of the second

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet	. Anna	of	
المحادد	4	Ož	

Site: Ma	اء مد					· · · · · · · · · · · · · · · · · · ·			Field Perso	nnel: A.	Bline				- Annual Continues of the continues of t	DANGER OF BELLEVILLE AND AND AND AND AND ADDRESS OF THE PERSON OF THE PE
Date: 2	131	10					- Company work of the state		Weather:	حفيعاع	11.021	باندات	30°€			
· • • • • • • • • • • • • • • • • • • •		Windson and			N	/										
		: 1/	W-502			Well Depth							Open Interva			
Well Perm	it #:					Well Diam	eter: 4"					Pump Inta	ke (feet belo	w TOC):		
	7						ater Before				_	Make/ Mo	del of Pump	: ७३७ ।	75" blade	1/2/2
	0	SAMPLING	_	_	1 -	cific	ł	dox	i .	olved						Depth
	PURGING	<u> </u>	pŀ		ł	ectivity	1	ential		ygen		oidity	1 *	erature	Pumping	to g
	¥	ş		units)		os/cm)		ıv)		g/l)		TU)		centigrade)	Rate	to Water
TIME	<u> </u>	S/	READING		READING		READING		READING	}	READING	CHANGE	READING	CHANGE	(ml/min)	(feet below TOG)
13:15	X		7.65	NA	997	NA	99	NA	0.59	NA	y 3.7	NA	13.37	NA	160	27 19.75
15:20	*		7.07	್ರಾಯಿ	949	7.	55	- 14	۵.5١	-0.CL	34.6	-9.3	13.90	0,03	100	10.77
15.25	×		7.08	0.51	199	6	yo	- 5	6.45	- 0.56	29.3	-5.3	13.77	- 6.11	100	19.79
15'.30	×		7.08	0	૧૧૧	0	77	- 3	<i>ت</i> .۲۶	0	22.9	_ 6.4	14.21	0.42	106	19.51
15:35	×		7.0%	0	999	E C	\ 7	-10	0.39	ے ی و کی	23.1	0.5	14.05	o.i7	1 60	19.31
15:40	×		7.05	٥	995	-4	७।	<u> - ل</u>	0.31	-0.0%	25.7	2.0	13.73	-0.32	160	19.31
15:45	×		7.67	~0.el	979	-16	50	·- S	5.23	-0.66	27.2	1.5	13.65	~0.05	100	19.81
15'. 50	X		7.07	υ .	974	a 5	S S	-1	0, 21	_ 0.62	24.9	- 2 , 3	14. 50	0.32	100	19.81
15:55	X		7.07	Ü	न इप	-20	50	-5	0.14	- 6.67	25.7	o.4	14.04	5.eH	100	19.81
10:00	×		7.07	۵	454	6	43	-2	6.11	-6.03	7.75	1. 4	13.55	- 0.19	100	19.81
16:05	×		7.00	-5.51	946	૬	48	9	0.69	-0.02	24.7	2.4	13.99	0.14	100	14.37
•	×		7.05	-6.51	744	- 2	40	- 2	0.05	-0.61	24.2	-0.5	14.12	5.13	100	ં લ. જું
Comments	· X	ļ ,	7.05 ("Ĵi-5	15:00	930	- 3	4,5	1	ভ.ভী	-0.61	24.0	-0-2	14.36	<u>0.24</u>	160	19.81
			,		2		sample.	line 16:	15	sample e	lear, pet	coleur a	dor			

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet of____

STANTEC CONSULTING SERVICES LOW FLOW SAMPLING DATA SHEET

Comments:

begin purging 13:15

			191710	024					Field Perso	onnel: 🛕 🛊	Sline					
Date: 2/1	-116	<u> </u>							Weather:	بدأدروان	جفنفج	30°F				
Monitor W	ell#	: M	W-503			Well Depti	h: 2C		***************************************			Screened/C	Open Interva	31.	an and the second state of	Ситема и при при при при при при при при при п
Well Perm	it #:		7 7 7			Well Diam		···		**************************************			ke (feet belo			
Threat the same of		***				Depth to V	Vater Before	Pump Insta	ıllation: 🌠	. 22'		Make/ Mo	del of Pump	: QED 1.	75" bladda	· · · · · · · · · · · · · · · · · ·
	(5)	Ş			Spe	cific	Re	dox	Diss	olved						Depth
	Ž	MPLING	рŀ		1	activity	Pote	ential	Ox	ygen	Turl	oidity	Temp	erature	Pumping	to
	PURGING	(mv) (mv) (mv) (mv) (mv) (mv) (mv) (mv)								g/l)		TU)		centigrade)	Rate	Water
TIME	<u>a</u>	Š	READING	1	READING		READING	·	READING	 	READING	CHANGE	READING	CHANGE	(ml/min)	(feet below TOC)
13:30	Х		7.14	NA	1,190	NA	154	NA	1.60	NA	33.9	NA	14.19	NA	200	19.24
13:35	×		7.15	0.61	1,140	0	151	÷ 3	1.57	-0.63	30.9	- 3.0	14.52	0 33	200	19.24
13:40	×		7.16	b.5N	1,210	20	147	- 4	1.52	-0.65	22.0	•3. q	14.60	0.0%	200	17.24
13:45	×		7.16	c	1,210	0	144	- 3	1.48	-0.04	18.9	- 3.1	14.71	Osil	Soc	19.24
13:50	×		7.17	٥. ٥١	1,210	Đ	142	-2	1.33	-0.15	18.1	-6.7	34.71	٥	200	19.24
13.55	X		7.17	٥	17210	Ð .	141	-1	1.30	-0.53	18.2	٥.١	14.69	-5.62	*****	19.24
14:00	×		7.14	5.61	1 210	ರಿ			1.28	-0.02	١٦.٦	0.5	17.69	6	7	10 74

Sample time 14:05 Sample clear, no salor * Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Site: Mo	500	. } &		-				Oliver, pripa garanty (A. Marata California)	Field Perso	nnel: A .	81		**************************************	taran and an angles		
Date: 2	2	ف									. li h! w	<u> </u>	۰۶			
	-y-1-0.0	-			2379 W.					*	3	`				
		: M	w-504			Well Depth							Open Interva			
Well Perm	it #:					Well Diam		·					ke (feet belo			
	· · · · · · · · · · · · · · · · · · ·			Marin Carlo Brown Marin			Vater Before		CONTRACTOR OF THE PARTY OF THE	The second residence of the se	_	Make/ Mo	del of Pump	* •		
	0	8		T		cific	1	dox	I	olved			_			Depth
	15		pH (=II.		į.	uctivity	1	ential	1	ygen	1	oidity		erature	Pumping	to 4
TIME	PURGING	SAMPLING	(pri READING	units)	READING	os/cm)	READING	IV)	READING	g/l)		IU)		entigrade)	Rate	Water (feet below TOC)
	+=	S	READING	NA	READING	NA	READING	NA	READING	NA	READING	NA	READING	CHANGE NA	(ml/min)	3 Mil
11:45	×		7.62		900		135		3.24	747	13.2	NA.	12.34	NA.	60	4.70
11:50	K		7.98	6.36	900	٥	125	- 10	3.61	- 5, 23	12.7	-0.5	13:35	5.71	60	
11.55	55 x 8.09 0.11 900 0 121								2,98	-0.03	11.7	-1.0	12.76	-७ द्	60	14.72 14.75
12:00								~ 5"	2.89	-0.09	11.9	೦ ೭	12.86	0 - 10	Lo	i 9.76
12:05			8.18	0.0G	700	0	. s Ca		5.89		11.4		12.89			
											NAME OF THE OWNER					
	ļ		***************************************													
many, to the day	ļ		-		<u> </u>											
·····																
			:													
Comments	.:	gia	7 9:55	@ SO ML	lain . WL	at tap of	ms 11, \$8.	ခဲ့ဇ		•	time			*	As consequences and a second	A Marie Marie Marie Construction of the State of the Stat

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet _____of__

Site:	entropos os mesennis	11	MSPETI	<u> </u>					Field Perso	nnel:	ا زر	لبر				Committee of the Commit
Date:			12-3-	10					Weather:		Ck	ndy	3000	?		
		AND DESCRIPTIONS										(NAMES OF THE PROPERTY OF THE P
Monitor W			mw.	-401		Well Deptl	1:					Screened/0	Open Interva	l:		
Well Perm	it #:			•		Well Diam		2					ke (feet belo			
						The second second second second	/ater Before	CHAPTER TO SERVICE STATE OF THE PARTY OF THE		10.20	0	Make/ Mo	del of Pump			
		Ş			Spe	cific	Re	dox	Diss	olved						Depth
	PURGING	SAMPLING	pН	I		ictivity	ł .	ntial		ygen		oidity	,	erature	Pumping	to
	RG	Σ		units)		os/cm)		ıv)	(m	g/l)		TU)		centigrade)	Rate	Water
TIME			READING		READING		READING		READING		READING		READING		(ml/min)	(feet below TOC)
1105			6.49	NA	1214	NA ·	138,2	NA	3.82	NA	74.3	NA	12.06	NA	120	10,30
[//0	0 650 1216 138.4							3.53		69.6		12.05		120	10,30	
1115	5 6.49 1221 138.4							3.86		71.3		11.93		120	10.30	
1120	6,42 1250 139.7							4,00		50,0		11.73		120	103	
1125			6.40		1251		140:1		4,02		48.7		11.71		120	10.3
												A COLUMN TO THE				
													A DESCRIPTION OF A STANDARD OF			
					G. C.											
										·						
													-	and the state of t		
Comments			re here etch		2 Jangu	ů.	<u>() · · </u>	p _{ene} erzine Aspirito	135	ž					Manus provinces assessment concession and con-	

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet	<u> </u>	of	

Site:	7	MA	506 M						Field Perso	nnel:	ÍL)				
Date:		1	-3 -14	2	and the second s		(<u>(())) </u>	·	Weather:					***************************************		
Monitor W Well Perm			mw-	- 402		Well Depth Well Diam		Z / Pump Insta		3,74		Pump Intal	pen Interva ke (feet belo del of Pump	w TOC):		
TIME 0925	PURGING	SAMPLING	pH (pH) READING	units)	Condi	cific activity os/cm)	Re Pote	dox ential nv)	Diss Oxy	olved /gen g/l)		oidity TU)	Temp	erature entigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TOC)
0936	-		6.52		932		126,6		8,04		106.7		12.11		200	9,80
0935			6.51		933		133.5		છ. ૯૨		42.1		13.72		200	9,80
6946			6251		933		134.6		8,04		34.2		13,25		200	9.80
0945			6.53		933		136.7		8.10		Q.7		13.04		200	9.80
୦୩50			652		897		138,5		8.12		409		12.90		200	9,80
0955			6053		899		139,1		8013		3.9		12.59		200	9.80
1000			6.54		900		144,0		8107		4.0		12.70		200	9.80
Comments					James		<u>ම ූූ</u>	1010								

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet	1	of	
Sheet	- 1	of	

Site: M.	> 0 2	مسايل	191710	024					Field Perso	nnel: ຊ . 🕻	30.10					
	2/3								Weather:	nether	clouda	م فع دست	30° F			
											***************************************	- Andrews	La Comment		occurrence (confirmation of the confirmation o	
Monitor W	'ell#	: 30	w - 601			Well Deptl	n:		<u> </u>			Screened/C	pen Interva	ıl:		TRANSPORT OF ENGlish and an extension of the english of the englis
Well Perm		····(a				Well Diam						Pump Intal	ce (feet belo	w TOC):		
						Depth to V	Vater Before	Pump Insta	allation: \5	5 . 8 3;		Make/ Mod	del of Pump	:		
		Ö		THE PARTY OF THE P		cific		dox		olved		·				Depth
İ	N N		pF	I	Condi	ıctivity	Pote	ential	Oxy	ygen	Turl	oidity	Temp	erature	Pumping	to
	1 2	MP	Ha)	units)	(umhe	os/cm)	(n	av)	(m	g/l)	(N	TU)	(degrees	centigrade)	Rate	Water
TIME	PURGING	SAMPLING	READING		READING	CHANGE	READING		READING		READING	CHANGE	READING		(ml/min)	(feet below TOC)
	NA NA NA									NA		NA		NA	<u> </u>	**************************************
16:15									4.01		450		9.02		5	15.79
10:50			6-47	C	1110	30	112	خ ر	4.00	8.05	らして	# 8 %	7.54	1,15	5	16.01
16:25			6.45	6.51	1150	10	113	ì	4.11	6. OS	153	196	694	0.90	5	16.02
10.30			6.47	-0-41	1123	ũ	122	٩	W.13	0.62	755	- 3	5.41	-1.13	ľV	16.03
10:35			6.45	·0.47	1110	- 10	130	5	3.45	-0. 53	655	_/3°	5.57	0-06	10	16.05
16.40			6.45	÷	10423	~ 30.	131	Š	3.19	-0.26	500	- 39	b.00	5.13	io	16.04
10 45			V.45	e	1070	10	133	2	3.02	20.17	300	-66	J.00	ن ن	10	16.07
																,
											 					78/10/10/10/10/10/10/10/10/10/10/10/10/10/
	-															T
	ļ															
Comments	: 6	د ر د ه	· 6-171-	15:2	5		1	ş	solymos.	Ejme	10:50			•	one of the transmission of the second	
			-	<i>J</i>												
¥ 7 1° .			1	777 7 7	2	**			TY. +/ 20/	£		The second secon				

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet ____

Site:	W.	- /	243						Field Perso	nnel:						
Date:	FT 27	, 10		-		***************************************			Weather:		Market and the second s		· · · · · · · · · · · · · · · · · · ·		ay di alay kinin a ay a maganisir a saga	
Monitor \	Vell#:		سعسلم لما ١٧	3 602 1	/13	Well Deptl	h:		***************************************	2012 194-y (####################################		Screened/C	pen Interva	1.		
Well Pern			11000	2 		Well Diam							ce (feet belo			
			·		·	Depth to V	Vater Before	Pump Insta	allation: 认	15 16.1	.1	Make/ Mod	del of Pump			
		Q			Spe	cific.	Re	dox	Disso	olved				A STATE OF THE STA		Depth
	ž		pF			ctivity	1	ntial	Oxy			oidity		erature	Pumping	to
	PURGING	SAMPLING		units)		os/cm)		iv)	(m			TU)		entigrade)	Rate	Water
TIME	15	SA	READING		READING		READING		READING		READING		READING		(ml/min)	(feet below TOC)
				NA		NA		NA		NA		NA		NA		
	1									······································	<u> </u>					
				diversity of the second												
	-															
	-															
	1			,												
										····						
																
					The state of the s											
	-				l											
	-						 			······································						
										4						
	+															
				ļ	ļ	,										
					Live and the second sec					-						
Comment					<u> </u>		L <u>h</u>	T								
Johnneth	٥.		F:	ee ge	toule		\\\							•		
				1			\ \frac{1}{2} \fra									

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet ___

Site:		MI	KRETI	И					Field Perso	nnel:			WWW.ManhoodecadadCaraigeouta		alle a contrare de la contrare de contrare	
Date:		P 11		-10					Weather:							
******************************	anima a sentra a 1946		and the same of the same of	AND PROPERTY OF THE PARTY OF THE PARTY.				North or a manifestation of the Annual Confession of the Annual Confess	Leannean Marie Company		(1 Mary 1 Marily 11 (11 (11 (11 (11 (11 (11 (11		**************************************		THE RESERVE OF THE PARTY OF THE	***************************************
Monitor W	ell#:	•	MW-	602		Well Deptl						Screened/C	pen Interva	1:	of the State of the Assessment	
Well Perm	it #:					Well Diam		4.				Pump Intal	ce (feet belo	w TOC):		
						Depth to W	ater Before	Pump Insta	llation:			Make/ Mod	iel of Pump	:		
		Ş			, -	cific	Red	dox	Disso	olved						Depth
	ž	5	рH		Condu	ctivity	Pote	ntial	Oxy		Turb		Temp	erature	Pumping	to
	PURGING	SAMPLING	(pH ı		(umho		(m		(m		(N)			entigrade)	Rate	Water
TIME	<u>F</u>	SA	READING		READING		READING		READING		READING		READING	CHANGE	(ml/min)	(feet below TOC)
1535			6,69	NA	1035	NA	-59.5	NA	0.68	NA	145	NA	11:22	NA	40	16.50
1580			6.46		1043		-54.5		0.42		120		11.59		40	16.70
1555			6.67		1050	e.	-51.4		0,47		1110		10:41		40	16.73
1620			6.65		1045		-44,8		0,47		109.7		9,00		40	16,80
1/025			0,05		1046		-44.6		0.46		110		9,54		40	16.81
1630			6.65		1046		- 44,0		0,45		107.1		9,46		40	10.83
												,				ee/commonweal
								- 11				A. 1773 - 1744 - 1744 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 184				
												*	-			
Comments				SAN	nul	<u> </u>	16	35		5 hr.	~ 0~	Ru	PRINTERPLANE.	70	l	

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Sheet	1	of_	

	5023	ıL_	1917/60	L4					Field Perso	nnel: A.	Bli.					
Date:	i	213	110								JAN. T	350¢ ha	لرزي الم			***************************************
M it 377	- 11 //	0.2			·	777 17 75				***************************************		,	***************************************			
Monitor W Well Permi	ell #:	\ _N	W-ACT	603		Well Depth		* · · · · · · · · · · · · · · · · · · ·					pen Interva			
well refill	ι#.		· · · · · · · · · · · · · · · · · · ·			Well Diam	Vater Before	Dumm In ata	llotion. fo	, 1:A			ce (feet belo			
		(5)	***************************************	PROGRAMMENT AND A STREET	S 200	cific	A STATE OF THE PARTY OF THE PAR	dox	-	્યુવ olved	1	Make/ Mod	del of Pump	:		
	9	SAMPLING	рF	ī		ctivity		ential			T1	. : . : :	σ.		, .	Depth
	G	(PL		units)	(umh	•	1	av)		ygen g/l)		oidity TU)		erature	Pumping	to
TIME	PURGING	AN I	READING		READING		READING		READING		READING		READING	entigrade)	Rate (ml/min)	Water
TIVIL		- J			 	NA	IKEADING	NA	1	NA	READING	NA	1	NA NA	(ml/min)	(feet below TOC)
13:10	X		6.52	• • • • • • • • • • • • • • • • • • • •	2220		-52		0.00	NA.	337.0	NA	11.13	NA	20	16.10
13:-10#	χ		6-53	0.01	2210	-10	-55	~ 3	0-30	C	137.0	-20 ₀	11.47	0-79	75	16.53
13:45	¥		6.52	-0.01	2 7 00	-10	-55	Ð.	0.00	Ũ	131.0	·• &	11.93	-0.07	60	16.64
13:50	×		6.83	0:01	2200	0	-54	sa da	0.00	ಲ	115.0	-10	11.55	_ 0.35	60	16-69
13055	X		6.52	-0.ci	2210	10	-54	O	0.60	0	112.0	~ 3	11.57	-0.01	60	16.74
141.00	X		L.53	0-9Å	2200	-10	-53	è	0.00	6	32.9	-29.1	41.65	∂.c∜	60	16.79
14:05			└-5 }	0	2190	-10	-52	ŝ	0.00	0	L \$.9	-14.0	11.54	-6.11	و ی	16.81
							/			· · · · · · · · · · · · · · · · · · ·						
						,										
Comments:	5 Å	- of	purgica	/2: 3 <i>5</i>					Sample	time 14	10					
	d a	mpt	n Flow	· - through	cell or	الما ل	to rafil		slight s							

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

Report Date: 18-Feb-10 14:53

Final Report Re-Issued Report Revised Report

Laboratory Report

Stantec Consulting Services 5 Dartmouth Drive, Suite 101 Auburn, NH 03032

Attn: Don Moore

Project: Maspeth - Maspeth, NY Project #: 191710024/200

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB07608-01	MW-304	Ground Water	01-Feb-10 17:00	04-Feb-10 17:20
SB07608-02	MW-305	Ground Water	01-Feb-10 15:20	04-Feb-10 17:20
SB07608-03	MW-306	Ground Water	01-Feb-10 15:00	04-Feb-10 17:20
SB07608-04	MW-504	Ground Water	02-Feb-10 12:05	04-Feb-10 17:20
SB07608-05	MW-503	Ground Water	02-Feb-10 14:05	04-Feb-10 17:20
SB07608-06	MW-502	Ground Water	02-Feb-10 16:15	04-Feb-10 17:20
SB07608-07	MW-303	Ground Water	03-Feb-10 08:15	04-Feb-10 17:20
SB07608-08	MW-501	Ground Water	03-Feb-10 08:25	04-Feb-10 17:20
SB07608-09	FB	Ground Water	03-Feb-10 09:10	04-Feb-10 17:20
SB07608-10	MW-402	Ground Water	03-Feb-10 10:10	04-Feb-10 17:20
SB07608-11	MW-302	Ground Water	03-Feb-10 11:30	04-Feb-10 17:20
SB07608-12	MW-602	Ground Water	03-Feb-10 16:35	04-Feb-10 17:20
SB07608-13	Dupe	Ground Water	03-Feb-10 08:25	04-Feb-10 17:20
SB07608-14	MW-603	Ground Water	03-Feb-10 14:10	04-Feb-10 17:20
SB07608-15	MW-301	Ground Water	03-Feb-10 13:50	04-Feb-10 17:20
SB07608-16	MW-601	Ground Water	03-Feb-10 16:50	04-Feb-10 17:20
SB07608-17	MW-401	Ground Water	03-Feb-10 11:35	04-Feb-10 17:20
SB07608-18	Oil	Oil	03-Feb-10 15:30	04-Feb-10 17:20
SB07608-19	Trip	Aqueous	03-Feb-10 00:00	04-Feb-10 17:20

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 127 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 5.0 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 4.6 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

+SW846 8100Mod.

Samples:

p.1051			
SB07608-06	MW-502	 	
Transformer Oil			
Dielectric Fluid			
SB07608-07	MW-303		
Transformer Oil			
Dielectric Fluid			
SB07608-11	MW-302		
Transformer oil			
Dielectric Fluid			
SB07608-12	MW-602		
Transformer oil			
Dielectric Fluid			
SB07608-14	MW-603		
Transformer Oil			
Dielectric Fluid			
SB07608-15	MW-301	 	
Transformer Oil			
Dielectric Fluid			
SB07608-16	MW-601		
Transformer Oil			
Dielectric Fluid			

SW846 8082

SW846 8082

Samples:

SB07608-18 Oil

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

Decachlorobiphenyl (Sr) [2C]

SW846 8260B

Laboratory Control Samples:

1003590 BS/BSD

1,1,1-Trichloroethane percent recoveries 129/136 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
1,1,2-Trichlorotrifluoroethane (Freon 113) percent recoveries 134/143 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
1,2,3-Trichloropropane percent recoveries 126/131 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
Bromodichloromethane percent recoveries 138/145 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
Bromoform percent recoveries 133/144 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
Carbon tetrachloride percent recoveries 151/163 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
Dichlorodifluoromethane (Freon12) percent recoveries 125/134 (63.1-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306
Naphthalene percent recoveries 130/136 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias: MW-304 MW-305 MW-306

Laboratory Control Samples:

1	ſ	1	13	6	71	R	2	/P	S	D

1003671 BS/BSD
1,1,2-Trichlorotrifluoroethane (Freon 113) percent recoveries 136/145 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:
Dupe
FB
MW-301
MW-302
MW-303
MW-401
MW-402
MW-501
MW-502
MW-503
MW-504
MW-601
MW-602
MW-603
1,2-Dibromo-3-chloropropane percent recoveries 69/71 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:
Dupe
FB
MW-301
MW-302
MW-303
MW-401
MW-402
MW-501
MW-502
MW-503
MW-504
MW-601
MW-602
MW-603
Vinyl chloride percent recoveries 126/148 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:
Dupe
FB
MW-301
MW-302
MW-303
MW-401
MW-402
MW-501
MW-502
MW-503
MW-504
MW-601
MW-602
MW-603

Laboratory Control Samples:

1003770 BS/BSD

1,1-Dichloroethane percent recoveries 144/139 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Trip

Methyl tert-butyl ether percent recoveries 146/145 (70-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Trip

Spikes:

1003671-MS1 Source: SB07608-13

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

- 1,1,1-Trichloroethane
- 1,1-Dichloroethene
- 1,1-Dichloropropene
- 1,2,3-Trichloropropane
- 1,2-Dichloroethane
- 2,2-Dichloropropane
- 2-Chlorotoluene

Carbon tetrachloride

Chloroform

cis-1,2-Dichloroethene

Hexachlorobutadiene

n-Butylbenzene

sec-Butylbenzene

Trichlorofluoromethane (Freon 11)

Vinyl chloride

1003671-MSD1 Source: SB07608-13

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

- 1,1,1-Trichloroethane
- 1,1-Dichloroethene
- 1,1-Dichloropropene
- 1,2,3-Trichloropropane
- 1,2-Dichloroethane
- 2,2-Dichloropropane
- 2-Chlorotoluene

Carbon tetrachloride

Chloroform

cis-1,2-Dichloroethene

Hexachlorobutadiene

n-Butylbenzene

sec-Butylbenzene

Trichlorofluoromethane (Freon 11)

Samples:

S001203-CCV1

Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria

1,2-Dibromo-3-chloropropane (34.6%)

2,2-Dichloropropane (-39.4%)

Carbon tetrachloride (37.2%)

Naphthalene (35.5%)

This affected the following samples:

MW-304

MW-305

MW-306

S001294-CCV1

Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria

Naphthalene (-39.6%)

This affected the following samples:

Trip

SB07608-02 *MW-305*

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

1,2-Dichloroethane-d4

SW846 8270C

SW846 8270C

Laboratory Control Samples:

1003221 BS/BSD

4-Nitrophenol percent recoveries 24/27 (40-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

Dupe
FB
MW-301
MW-302
MW-303
MW-304
MW-305
MW-306
MW-401
MW-402
MW-501
MW-502
MW-503
MW-504
MW-601
MW-602

MW-603

Phenol percent recoveries 39/39 (40-130) are outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

Dupe FΒ MW-301 MW-302 MW-303 MW-304 MW-305 MW-306 MW-401 MW-402 MW-501 MW-502 MW-503 MW-504 MW-601 MW-602 MW-603

1003221 BSD

Benzidine RPD 130% (20%) is outside individual acceptance criteria, but within overall method allowances.

SW846 8270C

Samples:

S001237-CCV1

Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria

```
2,4-Dinitrophenol (36.5%)
Benzidine (-76.3%)
```

This affected the following samples:

Dupe

FB

MW-302

W -302

MW-303

MW-304

MW-305

MW-306

MW-402

MW-501

MW-502

MW-503

MW-504

MW-602

MW-603

S001238-CCV1

Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria

```
2,4-Dinitrophenol (31.7%)
```

Benzidine (-67.5%)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

2,4,6-Tribromophenol

This affected the following samples:

MW-301

MW-401

MW-601

SB07608-11 *MW-302*

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

2,4,6-Tribromophenol

SB07608-15 MW-301

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

2,4,6-Tribromophenol

SB07608-16 MW-601

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

2,4,6-Tribromophenol

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 17:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	0	12-Feb-10	1003590	Х
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Χ
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"		"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 17:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	12-Feb-1 0	12-Feb-10	1003590	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
	11)			,,	4.0				"			.,
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l 	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"		X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
75-01-4	Vinyl chloride	BDL	U	μg/l "	1.0	0.9	1	"				X
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"				Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	100			30 %			"	"	"	"	
2037-26-5	Toluene-d8	95		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	108			30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	104		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	AS										
	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.56	0.133	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.56	0.167	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.56	0.422	1	II .	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.56	0.167	1	II .	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.56	0.211	1	u u	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.56	0.144	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.56	0.622	1	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.56	0.356	1	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.56	0.189	1	п	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.56	0.733	1	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.56	0.156	1	u u	"	"	"	Х
		BDL		-	5.56	0.222	1		"			Х

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 17:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GC	MS				_				_		
Semivola	atile Organic Compounds by S	W846 82700	<u>2</u>									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.56	0.100	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.56	0.100	1		0	"		Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.56	0.111	1			"	"	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.56	0.0778	1			"	"	X
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.56	0.100	1	"	"	"	"	X
117-81-7	Bis(2-ethylhexyl)phthalate	1.79	J	μg/l	5.56	1.06	1	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.56	0.256	1	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.56	0.633	1	"	"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	5.56	0.200	1	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.56	0.200	1	"	"	"	"	Χ
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.56	0.533	1	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.56	0.0778	1	"	"	"	"	Χ
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Χ
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.56	0.0667	1	"	"	"	"	Χ
218-01-9	Chrysene	BDL	U	μg/l	5.56	0.0778	1	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.56	0.0889	1	"	"	"	"	Χ
132-64-9	Dibenzofuran	BDL	U	μg/l	5.56	0.0667	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.56	0.178	1	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.56	0.233	1	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.56	0.244	1	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.56	0.400	1	"	"	"	"	Χ
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.56	0.144	1	"	"	"	"	Χ
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.56	0.178	1	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.56	0.156	1	"	"	"	"	Χ
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.56	0.256	1	"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.56	0.144	1	"	"	"	"	Χ
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.56	0.133	1	"	"	"	"	Χ
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.56	0.344	1	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.56	0.233	1	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.56	0.133	1	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.56	0.267	1	"	"	"	"	Χ
206-44-0	Fluoranthene	BDL	U	μg/l	5.56	0.133	1	"	"	"	"	Χ
86-73-7	Fluorene	BDL	U	μg/l	5.56	0.133	1	"	"	"	"	Χ
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.56	0.411	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.56	0.622	1	"	"	"	"	Χ
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.56	0.411	1	"	"	"	"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	5.56	0.567	1	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.56	0.256	1	"	"	"	"	Х
78-59-1	Isophorone	BDL	U	μg/l	5.56	0.333	1	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.56	0.122	1	"	"	"	"	Χ
95-48-7	2-Methylphenol	BDL	U	μg/l	5.56	0.233	1	"	"	"	"	Χ
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	11.1	0.267	1	"	"	"	"	Х
106-44-5	Nanhthalana	BDI		uc/l	5 56	0.211	1	"		"		~
91-20-3	Naphthalene	BDL	U	µg/l	5.56 5.56	0.211	1	"		"		X
38-74-4	2-Nitroaniline	BDL	U	µg/l	5.56 5.56	0.0667	1	,,				X
99-09-2	3-Nitroaniline	BDL	U	µg/l	5.56	0.189	1	"				X
100-01-6	4-Nitroaniline	BDL	U	µg/l	22.2	0.211	1	"				X
98-95-3	Nitrobenzene	BDL	U	μg/l	5.56	0.200 0.256	1 1					X X
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.56							

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 17:00

CAS No. A	nalyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile	Organic Compounds by GCM	18										
Semivolatile	e Organic Compounds by SV	V846 8270C										
Prepared by	y method SW846 3510C											
62-75-9 N	-Nitrosodimethylamine	BDL	U	μg/l	5.56	0.122	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
621-64-7 N	-Nitrosodi-n-propylamine	BDL	U	μg/l	5.56	0.667	1	"	"	"	"	Χ
36-30-6 N	-Nitrosodiphenylamine	BDL	U	μg/l	5.56	0.211	1	"	"	"	"	Χ
37-86-5 P	entachlorophenol	BDL	U	μg/l	22.2	0.356	1	"	"	"	"	Χ
5-01-8 PI	henanthrene	BDL	U	μg/l	5.56	0.256	1	"	"	"	"	Χ
08-95-2 PI	henol	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Χ
29-00-0 P	yrene	BDL	U	μg/l	5.56	0.389	1	"	"	"	"	Х
10-86-1 P	yridine	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Х
20-82-1 1,	,2,4-Trichlorobenzene	BDL	U	μg/l	5.56	0.0778	1	"	"	"	"	Х
0-12-0 1-	-Methylnaphthalene	BDL	U	μg/l	5.56	0.122	1	"	"	"	"	
95-95-4 2,	,4,5-Trichlorophenol	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Χ
88-06-2 2,	,4,6-Trichlorophenol	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	X
32-68-8 P	entachloronitrobenzene	BDL	U	μg/l	5.56	2.78	1	"	"	"	"	
95-94-3 1,	,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.56	2.78	1	"	"	"	"	Х
Surrogate red	coveries:											
321-60-8 2-	-Fluorobiphenyl	75		30-1	30 %			"	"	"	"	
867-12-4 2-	-Fluorophenol	54		15-1	10 %			"	"	"	"	
165-60-0 N	litrobenzene-d5	79		30-1	30 %			"	"	"	"	
165-62-2 P	henol-d5	27		15-1	10 %			"	"	"	"	
718-51-0 Te	erphenyl-dl4	41		30-1	30 %			"	"	"	"	
18-79-6 2,	,4,6-Tribromophenol	101		15-1	10 %			"	"	"	"	
Semivolatile	Organic Compounds by GC											
Polychlorina	ated Biphenyls by SW846 80	<u>82</u>										
Prepared by	y method SW846 3510C											
12674-11-2 A	roclor-1016	BDL	U	μg/l	0.233	0.104	1	SW846 8082	05-Feb-1 0	09-Feb-10	1003154	Х
11104-28-2 Aı	roclor-1221	BDL	U	μg/l	0.233	0.110	1	n	"	"	"	Χ
11141-16-5 Aı	roclor-1232	BDL	U	μg/l	0.233	0.0863	1	"	"	"	"	Χ
3469-21-9 A	roclor-1242	BDL	U	μg/l	0.233	0.121	1	"	"	"	"	Χ
12672-29-6 A	roclor-1248	BDL	U	μg/l	0.233	0.0959	1	n	"	"	"	Х
11097-69-1 A	roclor-1254	BDL	U	μg/l	0.233	0.162	1	n	"	"	"	Х
11096-82-5 Aı	roclor-1260	BDL	U	μg/l	0.233	0.125	1	n n	"	"	"	Х
37324-23-5 Aı	roclor-1262	BDL	U	μg/l	0.233	0.0774	1	n	"	"	"	Χ
11100-14-4 Aı	roclor-1268	BDL	U	μg/l	0.233	0.0581	1	"	"	"	"	Χ
Surrogate red	coveries:											
10386-84-2 4,	,4-DB-Octafluorobiphenyl (Sr)	84		30-1	50 %			"	"	"	"	
	,4-DB-Octafluorobiphenyl (Sr) PC]	88		30-1	50 %			u	"	"	"	
	ecachlorobiphenyl (Sr)	48		30-1	50 %			"	"	"	"	
	ecachlorobiphenyl (Sr) [2C]	56		30-1	50 %			"	"	"	"	
	Petroleum Hydrocarbons											
TPH 8100 b	· ·											
	y method SW846 3510C											
3006-61-9 G	-	BDL	U	mg/l	0.2	0.1	1	+SW846		09-Feb-10	1003122	
8476-30-2 Fi	uel Oil #2	BDL	U	mg/l	0.2	0.1	1	8100Mod. "	0	"	"	
68476-30-2 Ft 68476-31-3 Ft		BDL	U	mg/l	0.2	0.02	1	II .		"		
		BDL	U	mg/l	0.2	0.02	1	"	"	,,		
88553-00-4 Ft		BDL	U	mg/l	0.2	0.2	1	"				
M0980000 M				_				"	"	"		
3032-32-4 Li	igroin	BDL	U	mg/l	0.2	0.05	1		**	**		

 Sample Identification
 Client Project #

 MW-304
 191710024/200

Matrix Ground Water Collection Date/Time 01-Feb-10 17:00

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.05	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/l	0.2	0.05	1	"	"	"	"	
Unidentified	1.1		mg/l	0.2	0.05	1	"	"	"	"	
Other Oil	Calculated	d as	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	1.1		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	71		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds											
olatile (Organic Compounds											
repared	d by method SW846 5030 Water	er MS										
'6-13-1	1,1,2-Trichlorotrifluoroethane	BDL	U	μg/l	1.0	1.0	1	SW846 8260B		12-Feb-10	1003590	Х
7-64-1	(Freon 113) Acetone	BDL	U	μg/l	10.0	4.6	1		0	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1		"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	X
7-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1		"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1		"	"	"	Χ
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
1-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1		"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1		"	"	"	Χ
11-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
	(Freon12)											
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
7-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
6-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	X
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	X
0061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	>
0061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
0-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	X
1-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	X
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	II .	"	"	"	>
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	II .	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	X
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	l by method SW846 5030 Water	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	12-Feb-1 0	12-Feb-10	1003590	X
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	II .	"	"	"	Χ
06 40 4	11)	BDL	U	ua/l	1.0	0.9	1			"	"	Х
96-18-4	1,2,3-Trichloropropane	BDL	U	µg/l	1.0	0.9	1			"	"	X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	µg/l	1.0	0.4	1				"	X
108-67-8 75-01-4	1,3,5-Trimethylbenzene	BDL	U	µg/l	1.0	0.9	1				"	X
	Vinyl chloride m,p-Xylene	BDL	U	μg/l μg/l	2.0	1.0	1	"			"	X
								,,	,,	,,	"	
95-47-6	o-Xylene	BDL	U	μg/l "	1.0	0.5	1					Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l 	1.0	0.6	1		"	"		.,
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l 	1.0	0.6	1	"	"	"	"	X
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1		"	"	"	X
08-20-3	Di-isopropyl ether	BDL	U	μg/l 	1.0	0.6	1		"	"		X
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l 	10.0	9.6	1		"	"	"	X
123-91-1	1,4-Dioxane	BDL	U	μg/l 	20.0	20.0	1		"	"	"	X
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	X
64-17-5 ————	Ethanol	BDL	U	μg/l	400	37.7	1					X
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98			30 %			"	"	"	"	
2037-26-5	Toluene-d8	96		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	133	SGC		30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	126		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	1S										
Semivola	tile Organic Compounds by SV	V846 8270C	<u>}</u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.32	0.128	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	X
208-96-8	Acenaphthylene	BDL	U	μg/l	5.32	0.160	1	II .	"	"	"	Χ
62-53-3	Aniline	BDL	U	μg/l	5.32	0.404	1	"	"	"	"	Х
20-12-7	Anthracene	BDL	U	μg/l	5.32	0.160	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.32	0.202	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.32	0.138	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.32	0.596	1	"	"	"	"	Х
6-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.32	0.340	1	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.32	0.181	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.32	0.702	1	n n	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.32	0.149	1	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.32	0.213	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:20

CAB 110.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GC	MS										
-	atile Organic Compounds by S	W846 82700	<u> </u>									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.32	0.0957	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
100 51 6	Panzul alaahal	BDL	U	ua/l	5.32	0.0957	1		0			Х
100-51-6	Benzyl alcohol	BDL	U	µg/l	5.32	0.106	1		,,	,,	"	X
111-91-1 111-44-4	Bis(2-chloroethoxy)methane	BDL	U	µg/l	5.32	0.100	1		,,	,,	"	X
108-60-1	Bis(2-chloroethyl)ether	BDL	U	µg/l	5.32	0.0743	1		,,	,,	"	X
117-81-7	Bis(2-chloroisopropyl)ether	BDL	U	μg/l μg/l	5.32	1.01	1					X
101-55-3	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	5.32	0.245	1					X
85-68-7	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.32	0.606	1					X
86-74-8	Butyl benzyl phthalate Carbazole	BDL	U	μg/l	5.32	0.191	1					X
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.32	0.191	1			"		X
106-47-8	• •	BDL	U	μg/l	5.32	0.511	1					X
91-58-7	4-Chloroaniline	BDL	U		5.32	0.0745	1		,,	,,	"	X
95-57-8	2-Chloronaphthalene	BDL	U	µg/l	5.32	0.106	1		,,	,,	"	X
95-57-6 7005-72-3	2-Chlorophenol	BDL	U	μg/l μg/l	5.32	0.0638	1		,,	,,	"	X
218-01-9	4-Chlorophenyl phenyl ether	BDL	U		5.32	0.0036	1		,,	,,	"	X
53-70-3	Chrysene	BDL	U	μg/l	5.32	0.0745	1		"	"		X
	Dibenzo (a,h) anthracene	BDL	U	µg/l	5.32	0.0638	1		,,	,,	"	X
132-64-9	Dibenzofuran	BDL	U	µg/l	5.32	0.170	1		"	"		^
95-50-1	1,2-Dichlorobenzene			µg/l		0.170	1		"	"		
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.32							
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.32	0.234	1			"		V
91-94-1	3,3´-Dichlorobenzidine	BDL	U	μg/l	5.32	0.383	1			"		X
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.32	0.138	1			"		X
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.32	0.170	1					X
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.32	0.149	1			"		X
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.32	0.245	1					X
84-74-2	Di-n-butyl phthalate	BDL	U 	μg/l	5.32	0.138	1					X
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.32	0.128	1					X
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.32	0.330	1					X
121-14-2	2,4-Dinitrotoluene	BDL	U 	μg/l	5.32	0.223	1					X
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.32	0.128	1					X
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.32	0.255	1					X
206-44-0	Fluoranthene	BDL	U	μg/l	5.32	0.128	1					X
86-73-7	Fluorene	BDL	U	μg/l	5.32	0.128	1	"				X
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.32	0.394	1	"	"	"	"	X
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.32	0.596	1	"	"	"		X
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.32	0.394	1	"	"	"		X
67-72-1	Hexachloroethane	BDL	U	μg/l	5.32	0.543	1	"	"	"	"	X
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.32	0.245	1	"		"		X
78-59-1	Isophorone	BDL	U	μg/l	5.32	0.319	1	"	"	"	"	X
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1			"		X
95-48-7	2-Methylphenol	BDL	U	μg/l	5.32	0.223	1			"	"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	BDL BDL	U	µg/l	10.6 5.32	0.255	1 1	"	"	"	"	X X
91-20-3	Naphthalene			μg/l				"				
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.32	0.0638	1		"	"		X
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.32	0.181	1		"	"	"	X
100-01-6	4-Nitroaniline	BDL	U	μg/l	21.3	0.202	1		"	"	"	X
	Nitrobenzene	BDL	U	μg/l	5.32	0.191	1	"	"	"		Χ
98-95-3 88-75-5	2-Nitrophenol	BDL	U	μg/l	5.32	0.245	1		"	"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:20

	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GCM	1 S										
Semivola	ntile Organic Compounds by SV	V846 82700	<u>2</u>									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.32	0.117	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.32	0.638	1	"	0	"	"	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.32	0.202	1	"	"	"	"	X
87-86-5	Pentachlorophenol	BDL	U	μg/l	21.3	0.340	1	"	"	"	"	Х
85-01-8	Phenanthrene	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
129-00-0	Pyrene	BDL	U	μg/l	5.32	0.372	1	"	"	"	"	Χ
110-86-1	Pyridine	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.32	2.66	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.32	2.66	1	"	"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	69		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	50		15-1	10 %			"	"	"	"	
4165-60-0	Nitrobenzene-d5	72		30-1	30 %			"	"	"	"	
4165-62-2	Phenol-d5	24		15-1	10 %			"	"	"	"	
1718-51-0	Terphenyl-dl4	64		30-1	30 %			"	"	"	"	
118-79-6	2,4,6-Tribromophenol	90		15-1	10 %			"	"	"	"	
				70 7	10 /0							
Semivolat	tile Organic Compounds by GC			70 7	70 70							
Polychlor	rinated Biphenyls by SW846 80	<u>82</u>		70 7	70 70							
Polychlor				70 7	70 70							
Polychlor Prepared	rinated Biphenyls by SW846 80	82 BDL	U	μ g /l	0.215	0.0964	1	SW846 8082		09-Feb-10	1003154	x
Polychlor Prepared 12674-11-2	rinated Biphenyls by SW846 80 I by method SW846 3510C		U			0.0964	1	SW846 8082	05-Feb-1 0 "	09-Feb-10 "	1003154	x x
Polychlor Prepared 12674-11-2 11104-28-2	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016	BDL		µg/l	0.215				0			
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221	BDL BDL	U	µg/l	0.215 0.215	0.102	1	п	0	"	"	Х
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232	BDL BDL BDL	U U	µg/I µg/I	0.215 0.215 0.215	0.102 0.0798	1 1	"	0	"	"	X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	BDL BDL BDL BDL	U U U	hā\l hā\l hā\l	0.215 0.215 0.215 0.215	0.102 0.0798 0.112	1 1 1	"	0	" "	"	x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	BDL BDL BDL BDL BDL	U U U	hā\l hā\l hā\l hā\l	0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887	1 1 1	"	0	" "	" " "	X X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	BDL BDL BDL BDL BDL	U U U U	ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150	1 1 1	"	0	" "	" " "	X X X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL BDL	U U U U	ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115	1 1 1 1 1	"	0	" "	" " "	x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	rinated Biphenyls by SW846 80 Il by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	ha\l ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	rinated Biphenyls by SW846 80 Il by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries:	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4.4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	rinated Biphenyls by SW846 80 Il by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4.4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] oble Petroleum Hydrocarbons	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 810	rinated Biphenyls by SW846 80 It by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4.4-DB-Octafluorobiphenyl (Sr) 12.4-4-DB-Octafluorobiphenyl (Sr) 12.5-1262 Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1268 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1			" " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 810	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1268 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	" " " " " " " " " " " " " " "	0 " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 810 Prepared 8006-61-9	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1268 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1			" " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractals TPH 8100 Prepared 8006-61-9	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4.4-DB-Octafluorobiphenyl (Sr) 12C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) 12C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	" " " " " " " " " " " " " " "	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1268 Aroclor-1268 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Colle Petroleum Hydrocarbons O by GC If by method SW846 3510C Gasoline Fuel Oil #2	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	" " " " " " " " +SW846 8100Mod. "	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractals TPH 8100 Prepared 8006-61-9 68476-30-2 68476-31-3 68553-00-4	rinated Biphenyls by SW846 80 If by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1268 recoveries: 2. 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.22 0.2 0.2 0.2 0.2	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1 1	" " " " " " " " +SW846 8100Mod. "	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	1003122	x x x x x x

Sample Identification MW-305 SB07608-02

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:20

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846	05-Feb-1	09-Feb-10	1003122	
							8100Mod.	0			
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
Unidentified	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
Other Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbon	s BDL	U	mg/l	0.2	0.02	1	11	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	67		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds											
olatile (Organic Compounds											
repared	d by method SW846 5030 Water	er MS										
'6-13-1	1,1,2-Trichlorotrifluoroethane	BDL	U	μg/l	1.0	1.0	1	SW846 8260B		12-Feb-10	1003590	Х
7-64-1	(Freon 113) Acetone	BDL	U	μg/l	10.0	4.6	1		0	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
3-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
7-66-3	Chloroform	13.7		μg/l	1.0	0.8	1	"	"	"	"	Х
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1		"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
1-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1		"	"	"	Χ
11-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
	(Freon12)											
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
7-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
6-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	X
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
0061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	>
0061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
0-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	X
1-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	X
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	II .	"	"	"	X
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	X
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	n n	"	"	"	Х
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"		"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	12-Feb-1 0	12-Feb-10	1003590	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
	11)			,,	4.0				"			.,
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l "	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1					X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1					X
75-01-4	Vinyl chloride	BDL	U	μg/l "	1.0	0.9	1	"				X
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"				Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"		X
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	102			30 %			"	"	"	"	
	Toluene-d8	82			30 %			"	"	"	"	
	1,2-Dichloroethane-d4	93			30 %			"	"	"	"	
	Dibromofluoromethane	89		70-1	30 %			"	"	"	"	
	tile Organic Compounds by GCM											
	atile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.43	0.130	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.43	0.163	1	"	"	"	"	Χ
62-53-3	Aniline	BDL	U	μg/l	5.43	0.413	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.43	0.163	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.43	0.207	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.43	0.141	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.43	0.609	1	II .	II .	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.43	0.348	1	H	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.43	0.185	1	H	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.43	0.717	1	II .	II .	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.43	0.152	1	H	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.43	0.217	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Semivola	tile Organic Compounds by GC	CMS										
	atile Organic Compounds by S	SW846 82700	<u> </u>									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.43	0.0978	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
100 51 6	Panzul alaahal	BDL	U	ua/l	5.43	0.0978	1		0		"	Х
100-51-6	Benzyl alcohol	BDL	U	µg/l	5.43	0.109	1		,,	"	"	X
111-91-1	Bis(2-chloroethoxy)methane	BDL		µg/l		0.109	1	"	"	"	"	X
111-44-4	Bis(2-chloroethyl)ether		U	µg/l	5.43			"	"	"	"	
108-60-1	Bis(2-chloroisopropyl)ether	BDL BDL	U U	µg/l	5.43 5.43	0.0978 1.03	1 1	"	"	"	"	X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	µg/l	5.43	0.250	1	"	"	"	"	X
101-55-3	4-Bromophenyl phenyl ether			µg/l			1	"	"	"	"	
85-68-7	Butyl benzyl phthalate	BDL	U	µg/l	5.43	0.620		"	"	"	"	X
86-74-8	Carbazole	BDL BDL	U	µg/l	5.43	0.196	1 1	"	"	"	"	X
59-50-7	4-Chloro-3-methylphenol		U	µg/l	5.43	0.196		,,				
106-47-8	4-Chloroaniline	BDL	U	µg/l	5.43	0.522	1	,,				X
91-58-7	2-Chloronaphthalene	BDL	U	µg/l	5.43 5.43	0.0761	1	11	"	"	"	X
95-57-8	2-Chlorophenol	BDL BDL	U	µg/l	5.43 5.43	0.109 0.0652	1 1	11	"		"	X X
7005-72-3	4-Chlorophenyl phenyl ether		U	μg/l	5.43			,,				X
218-01-9	Chrysene	BDL	U	μg/l	5.43	0.0761	1	,,				
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.43	0.0870	1	"				X X
132-64-9	Dibenzofuran	BDL	U	μg/l	5.43	0.0652	1	,,				^
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.43	0.174	1	"				
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.43	0.228	1					
106-46-7	1,4-Dichlorobenzene	BDL	U 	μg/l	5.43	0.239	1					
91-94-1	3,3'-Dichlorobenzidine	BDL	U 	μg/l	5.43	0.391	1					X
120-83-2	2,4-Dichlorophenol	BDL	U 	μg/l	5.43	0.141	1					X
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.43	0.174	1					X
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.43	0.152	1		"			X
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.43	0.250	1					X
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.43	0.141	1					X
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l 	5.43	0.130	1					X
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l 	5.43	0.337	1		"	"	"	X
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l 	5.43	0.228	1		"	"		X
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.43	0.130	1					X
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l 	5.43	0.261	1					X
206-44-0	Fluoranthene	BDL	U	μg/l	5.43	0.130	1					X
86-73-7	Fluorene	BDL	U	μg/l	5.43	0.130	1		"	"		Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.43	0.402	1	"			"	Х
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.43	0.609	1	"	"	"		X
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.43	0.402	1				"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	5.43	0.554	1	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.43	0.250	1	"	"	"		X
78-59-1	Isophorone	BDL	U	μg/l	5.43	0.326	1	"	"	"		X
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.43	0.120	1	"	"	"		X
95-48-7	2-Methylphenol	BDL	U	μg/l	5.43	0.228	1	"	"	"	"	Х
108-39-4, 106-44-5	3 & 4-Methylphenol	BDL	U	μg/l	10.9	0.261	1	"	"	"	"	X
91-20-3	Naphthalene	BDL	U	μg/l	5.43	0.207	1		"	"		X
38-74-4	2-Nitroaniline	BDL	U	μg/l	5.43	0.0652		"				X
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.43	0.185	1		"	"		X
100-01-6	4-Nitroaniline	BDL	U	μg/l	21.7	0.207	1	"	"	"	"	Χ
98-95-3	Nitrobenzene	BDL	U	μg/l	5.43	0.196	1	"	"	"	"	Х
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.43	0.250	1	"	"	"	"	X X
100-02-7	4-Nitrophenol	BDL	U	μg/l	21.7	0.283	1	u	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 01-Feb-10 15:00

	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	AS .										
Semivola	tile Organic Compounds by SV	V846 82700	2									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.43	0.120	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.43	0.652	1	"	0	"	"	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.43	0.207	1			"		X
87-86-5	Pentachlorophenol	BDL	U	μg/l	21.7	0.348	1	"	"	"	"	X
85-01-8	Phenanthrene	BDL	U	μg/l	5.43	0.250	1	"	"	"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.43	0.109	1		"	"	"	Х
129-00-0	Pyrene	BDL	U	μg/l	5.43	0.380	1	"	"	"	"	Х
110-86-1	Pyridine	BDL	U	μg/l	5.43	0.109	1	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.43	0.0761	1	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.43	0.120	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.43	0.109	1	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.43	0.109	1	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.43	2.72	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.43	2.72	1		"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	67		30-1	30 %				"	"	"	
367-12-4	2-Fluorophenol	48			10 %				"	"	"	
4165-60-0	Nitrobenzene-d5	71			30 %				"	"	"	
4165-62-2	Phenol-d5	24		15-1	10 %				"	"	"	
1718-51-0	Terphenyl-dl4	62		30-1	30 %			"	"	"	"	
118-79-6	2,4,6-Tribromophenol	87		15 1	10 %			"		"		
110100		0,		13-1	10 /0							
	tile Organic Compounds by GC	0,		13-1	10 /6							
Semivola				13-1	10 78							
Semivolati Polychlor	rinated Biphenyls by SW846 80			10-1	10 %							
Semivolar Polychlor Prepared	rinated Biphenyls by SW846 80 I by method SW846 3510C		U		0.215	0.0964	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	X
Semivolati Polychlor Prepared 12674-11-2	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016	0 <u>82</u> BDL		μg/l	0.215				0			
Semivolati Polychlor Prepared 12674-11-2	rinated Biphenyls by SW846 80 I by method SW846 3510C	082 BDL BDL	U	μg/l μg/l	0.215 0.215	0.102	1	n	0	"	"	Х
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232	BDL BDL BDL	U U	μg/l μg/l	0.215 0.215 0.215	0.102 0.0798	1 1	"	0	"	"	X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	BDL BDL BDL BDL BDL	U U U	hā\I hā\I hā\I	0.215 0.215 0.215 0.215	0.102 0.0798 0.112	1 1 1	n	0	" "	"	x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	BDL BDL BDL BDL BDL BDL BDL	U U U	hā\I hā\I hā\I hā\I	0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887	1 1 1	"	0	" "	" " "	X X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	hâ\I hâ\I hâ\I hâ\I	0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150	1 1 1	"	0	" "	"	X X X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115	1 1 1 1 1	"	0	" "	" " "	x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115	1 1 1 1 1	"	0	" "	" " "	x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hā\l hā\l hā\l hā\l hā\l hā\l	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	rinated Biphenyls by SW846 80 Il by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	rinated Biphenyls by SW846 80 Il by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 12C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1			" " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 12C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	•		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	" " " " " " " " " " " " " "	0 " " " " " "	" " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Gasoline	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	" " " " " " " " " " " " " "	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Colle Petroleum Hydrocarbons D by GC I by method SW846 3510C Gasoline Fuel Oil #2	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3 68553-00-4	rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Colle Petroleum Hydrocarbons O by GC I by method SW846 3510C Gasoline Fuel Oil #2 Fuel Oil #4	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	1003122	x x x x x x

Sample IdentificationClient Project #MatrixMW-306191710024/200Ground Water

Collection Date/Time 01-Feb-10 15:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractal	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3510C											
J00100000	Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846	05-Feb-1	09-Feb-10	1003122	
								8100Mod.	0			
	Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Dielectric Fluid	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
	Unidentified	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
	Other Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Total Petroleum Hydrocarbons	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	64		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 12:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	0	16-Feb-10	1003671	X
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1		"	"	"	Χ
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
74-87-3	Chloromethane	1.1	J	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Χ
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"		"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 12:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1		"	"	"	Х
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1		"	"	"	Х
	11)							_	_	_	_	
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1		"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1		"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
179601-23- I	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98			30 %			"	"	"	"	
2037-26-5	Toluene-d8	86		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	106		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	MS										
Semivola	atile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.32	0.128	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	X
208-96-8	Acenaphthylene	BDL	U	μg/l	5.32	0.160	1	"	"	"	"	Χ
62-53-3	Aniline	BDL	U	μg/l	5.32	0.404	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.32	0.160	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.32	0.202	1	H	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.32	0.138	1	II .	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.32	0.596	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.32	0.340	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.32	0.181	1	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.32	0.702	1	u u	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.32	0.149	1	u u	"	"	"	Х
	·- · ·			-	5.32	0.213						Х

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 12:05

Semivolatil Prepared b 65-85-0 E 100-51-6 E 111-91-1 E 111-44-4 E 108-60-1 E 117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 995-50-1 1 541-73-1 1	le Organic Compounds by GC: ile Organic Compounds by S' by method SW846 3510C Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether Chrysene		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hā\I hā\I hā\I hā\I hā\I hā\I	5.32 5.32 5.32 5.32 5.32 5.32 5.32	0.0957 0.0957 0.106 0.0745 0.0957 1.01	1 1 1 1	SW846 8270C " "	08-Feb-1 0 "	11-Feb-10 " "	1003221	× × ×
Prepared b 65-85-0 E 100-51-6 E 111-91-1 E 111-44-4 E 108-60-1 E 117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	by method SW846 3510C Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0 0 0 0 0 0 0 0 0	hā\I hā\I hā\I hā\I hā\I	5.32 5.32 5.32 5.32 5.32	0.0957 0.106 0.0745 0.0957	1 1 1		0	"	"	Х
65-85-0 E 110-51-6 E 111-91-1 E 111-44-4 E 1108-60-1 E 1117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 C 132-64-9 C 95-50-1 1 541-73-1 1	Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U	hā\I hā\I hā\I hā\I hā\I	5.32 5.32 5.32 5.32 5.32	0.0957 0.106 0.0745 0.0957	1 1 1		0	"	"	Х
100-51-6 E 111-91-1 E 111-44-4 E 1108-60-1 E 117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 C 132-64-9 C 95-50-1 1 541-73-1 1	Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U	hā\I hā\I hā\I hā\I hā\I	5.32 5.32 5.32 5.32 5.32	0.0957 0.106 0.0745 0.0957	1 1 1		0	"	"	Х
111-91-1 E 111-44-4 E 108-60-1 E 117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 C 132-64-9 C 95-50-1 1 541-73-1 1	Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/I µg/I µg/I µg/I µg/I	5.32 5.32 5.32 5.32	0.106 0.0745 0.0957	1 1	n n	"	"		
111-91-1 E 111-44-4 E 108-60-1 E 117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 C 132-64-9 C 95-50-1 1 541-73-1 1	Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/I µg/I µg/I µg/I µg/I	5.32 5.32 5.32 5.32	0.106 0.0745 0.0957	1 1	"		"		
111-44-4 E 1108-60-1 E 117-81-7 E 1101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 1106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 99-50-1 1 541-73-1 1	Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hg/l hg/l hg/l hg/l	5.32 5.32 5.32	0.0745 0.0957	1	"	"			^
108-60-1 E 117-81-7 E 101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL	U U U U	µg/l µg/l µg/l	5.32 5.32	0.0957						Χ
117-81-7 E 1101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 995-50-1 1 541-73-1 1	Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL BDL	U U U U	μg/l μg/l μg/l	5.32					"		
101-55-3 4 85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL BDL	U U U	μg/l μg/l			1 1	"		"		X X
85-68-7 E 86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	Butyl benzyl phthalate Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL BDL	U U U	μg/l	5.52	0.245	1	"		"		X
86-74-8 C 59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	Carbazole 4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL BDL	U U		5.32	0.606	1	"		"		X
59-50-7 4 106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	4-Chloro-3-methylphenol 4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL BDL	U	μg/i			1	"		"		
106-47-8 4 91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	4-Chloroaniline 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL BDL		ua/l	5.32	0.191	1	"		"		X X
91-58-7 2 95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.32	0.191		"		,,		
95-57-8 2 7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	2-Chlorophenol 4-Chlorophenyl phenyl ether			μg/l	5.32	0.511	1	"		,,		X
7005-72-3 4 218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1	4-Chlorophenyl phenyl ether		U	μg/l	5.32	0.0745	1	"		,,		X
218-01-9 C 53-70-3 E 132-64-9 E 95-50-1 1 541-73-1 1			U	μg/l	5.32	0.106	1	"		"		X X
53-70-3	Chrysene	BDL	U	μg/l	5.32	0.0638	1	"		"		X
132-64-9 E 95-50-1 1 541-73-1 1	-	BDL	U	μg/l	5.32	0.0745	1	,,		"		
95-50-1 1 541-73-1 1	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.32	0.0851	1	"		"		X X
541-73-1 1	Dibenzofuran	BDL	U	μg/l	5.32	0.0638	1	,,		,,		^
	1,2-Dichlorobenzene	BDL	U	μg/l	5.32	0.170	1	,,		,	,	
	1,3-Dichlorobenzene	BDL	U	μg/l	5.32	0.223	1			,		
	1,4-Dichlorobenzene	BDL	U	μg/l	5.32	0.234	1					
	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.32	0.383	1			"		X
	2,4-Dichlorophenol	BDL	U	μg/l	5.32	0.138	1					X
	Diethyl phthalate	BDL	U	μg/l	5.32	0.170	1					X
	Dimethyl phthalate	BDL	U	μg/l	5.32	0.149	1			"		X
	2,4-Dimethylphenol	BDL	U	μg/l "	5.32	0.245	1					X
	Di-n-butyl phthalate	BDL	U	μg/l	5.32	0.138	1			"		X
	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.32	0.128	1			"		X
	2,4-Dinitrophenol	BDL	U	μg/l 	5.32	0.330	1			"	"	Х
	2,4-Dinitrotoluene	BDL	U	μg/l	5.32	0.223	1			"		X
	2,6-Dinitrotoluene	BDL	U	μg/l	5.32	0.128	1					X
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l 	5.32	0.255	1					X
	Fluoranthene	BDL	U	μg/l	5.32	0.128	1					X
	Fluorene	BDL	U	μg/l	5.32	0.128	1			"		Х
	Hexachlorobenzene	BDL	U	μg/l	5.32	0.394	1					Х
	Hexachlorobutadiene	BDL	U	μg/l	5.32	0.596	1	"	"	"		Х
	Hexachlorocyclopentadiene	BDL	U	μg/l	5.32	0.394	1				"	X
	Hexachloroethane	BDL	U	μg/l	5.32	0.543	1	"	"	"		Х
	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.32	0.245	1	"		"		Х
	Isophorone	BDL	U	μg/l	5.32	0.319	1	"		"		X
	2-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1	"		"		X
95-48-7 2	2-Methylphenol	BDL	U	μg/l	5.32	0.223	1	"	"	"	"	Х
106-44-5	3 & 4-Methylphenol	BDL	U 	μg/l	10.6	0.255	1	"	"	"	"	X
	Naphthalene	BDL	U	μg/l	5.32	0.202	1			"		X
	2-Nitroaniline	BDL	U	μg/l	5.32	0.0638	1	"	"	"		X
	3-Nitroaniline	BDL	U	μg/l	5.32	0.181	1			"		X
	4-Nitroaniline	BDL	U	μg/l 	21.3	0.202	1					X
	Nitrobenzene	BDL	U	μg/l 	5.32	0.191	1			"		Х
88-75-5 2	2-Nitrophenol	BDL BDL	U U	μg/l μg/l	5.32	0.245	1	"			"	X

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 12:05

Semivolet	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Schiivolat	tile Organic Compounds by GCM	18										
Semivola	atile Organic Compounds by SV	V846 82700	<u>2</u>									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.32	0.117	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.32	0.638	1	"	0	"	"	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.32	0.202	1			"	"	Х
87-86-5	Pentachlorophenol	BDL	U	μg/l	21.3	0.340	1	"	"	"	"	Х
85-01-8	Phenanthrene	BDL	U	μg/l	5.32	0.245	1			"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.32	0.106	1		"	"	"	Χ
129-00-0	Pyrene	BDL	U	μg/l	5.32	0.372	1		"	"	"	Χ
110-86-1	Pyridine	BDL	U	μg/l	5.32	0.106	1		"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	•	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.32	2.66	1	•	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.32	2.66	1	"	"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	69		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	49		15-1	10 %			"	"	"	"	
4165-60-0	Nitrobenzene-d5	70		30-1	30 %			"	"	"	"	
4165-62-2	Phenol-d5	25			10 %			"	"	"	"	
1718-51-0	Terphenyl-dl4	63			30 %			"	"	"	"	
118-79-6	2,4,6-Tribromophenol	90		15-1	10 %			"	"	"	"	
Semivolat	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	82										
Prepared	by method SW846 3510C											
	A 101C											
12674-11-2	Aroclor-1016	BDL	U	μg/l	0.222	0.0996	1	SW846 8082		09-Feb-10	1003154	Х
	Aroclor-1016	BDL BDL	U U		0.222	0.0996 0.105	1 1	SW846 8082	05-Feb-1 0 "	09-Feb-10	1003154	x x
11104-28-2				μg/l μg/l μg/l					0			
11104-28-2 11141-16-5	Aroclor-1221	BDL	U	μg/l	0.222	0.105	1	n	0	"	"	Х
11104-28-2 11141-16-5 53469-21-9	Aroclor-1221 Aroclor-1232	BDL BDL	U U	μg/l μg/l	0.222 0.222	0.105 0.0824	1 1	"	0	"	"	X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	BDL BDL BDL	U U U	hā\I hā\I hā\I	0.222 0.222 0.222	0.105 0.0824 0.116	1 1 1	"	0	" "	" "	x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	BDL BDL BDL BDL	U U U	μg/l μg/l μg/l μg/l	0.222 0.222 0.222 0.222	0.105 0.0824 0.116 0.0917	1 1 1	"	0	" "	n n n	X X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	BDL BDL BDL BDL BDL	U U U U	hā\I hā\I hā\I	0.222 0.222 0.222 0.222 0.222	0.105 0.0824 0.116 0.0917 0.155	1 1 1	"	0	" "	n n n	X X X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL	U U U U	hā\ hā\ hā\ hā\	0.222 0.222 0.222 0.222 0.222 0.222	0.105 0.0824 0.116 0.0917 0.155 0.119	1 1 1 1 1	"	0	" "	n n n	x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	BDL BDL BDL BDL BDL BDL	U U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.222 0.222 0.222 0.222 0.222 0.222 0.222	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries:	BDL BDL BDL BDL BDL BDL	U U U U U	hā\l hā\l hā\l hā\l hā\l	0.222 0.222 0.222 0.222 0.222 0.222 0.222	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 2.4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1260 Aroclor-1262 Aroclor-1268 Arocl	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab	Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1269 Aroclor-1269 Aroclor-1269 Aroclor-1269 Aroclor-1269 Aroclor-1269 Aroclor-1269 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1260 Aroclor-1262 Aroclor-1268 Arocl	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 Extractab TPH 8100 Prepared	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1248 Aroclor-1242 Aroclor-1242 Aroclor-1248 Aroclor-1242 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1260 Arocl	BDL BDL BDL BDL BDL BDL BDL 82 87 55 61	U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739 0.0555	1 1 1 1 1 1 1			" " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1268 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1248 Aroclor-1242 Aroclor-1242 Aroclor-1248 Aroclor-1242 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1260 Arocl	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739	1 1 1 1 1 1	" " " " " " " " " +SW846	0 " " " " " "	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9	Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Goby GC d by method SW846 3510C Gasoline	BDL BDL BDL BDL BDL BDL BDL 82 87 55 61	U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739 0.0555	1 1 1 1 1 1 1			" " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1248 Aroclor-1242 Aroclor-1242 Aroclor-1248 Aroclor-1242 Aroclor-1248 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1260 Aroclor-1260 Aroclor-1268 Aroclor-1260 Aroclor-1268 Arocl	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739 0.0555	1 1 1 1 1 1 1	" " " " " " " " " +SW846	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8101 Prepared 8006-61-9 68476-30-2 68476-31-3	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1248 Aroclor-1242 Aroclor-1248 Aroclor-1242 Aroclor-1248 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1268 Arocl	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1 30-1	0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739 0.0555	1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9 68476-30-2 68476-31-3 68553-00-4	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1248 Aroclor-1242 Aroclor-1242 Aroclor-1248 Aroclor-1242 Aroclor-1248 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1260 Aroclor-1262 Aroclor-1268 Aroclor-1260 Aroclor-1260 Aroclor-1268 Aroclor-1260 Aroclor-1268 Arocl	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.222 0.222 0.222 0.222 0.222 0.222 0.222 50 % 50 % 50 %	0.105 0.0824 0.116 0.0917 0.155 0.119 0.0739 0.0555	1 1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	1003122	x x x x x x

Sample Identification MW-504 SB07608-04

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 12:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractab	le Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3510C											
J00100000	Aviation Fuel	BDL	U	mg/l	0.2	0.05	1	+SW846	05-Feb-1	09-Feb-10	1003122	
								8100Mod.	0			
	Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Dielectric Fluid	BDL	U	mg/l	0.2	0.05	1	"	"	"	"	
	Unidentified	0.5		mg/l	0.2	0.05	1	"	"	"	"	
	Other Oil	Calculated	d as	mg/l	0.2	0.02	1	"	"	"	"	
	Total Petroleum Hydrocarbons	0.5		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	74		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 14:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	0	16-Feb-10	1003671	Х
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
74-87-3	Chloromethane	1.6	J	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Х
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	3.2		μg/l	1.0	0.8	1	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Χ
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 14:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	l by method SW846 5030 Water	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Χ
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	W .	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Χ
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	96			30 %			"	"	"	"	
2037-26-5	Toluene-d8	87		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			30 %			"	"	"	"	
	Dibromofluoromethane	107		70-1	30 %			"	"	"	"	
	tile Organic Compounds by GCN											
	tile Organic Compounds by SV	<u>V846 8270C</u>	<u> </u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.32	0.128	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.32	0.160	1	u u	"	"	"	Χ
62-53-3	Aniline	BDL	U	μg/l	5.32	0.404	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.32	0.160	1	W .	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.32	0.202	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.32	0.138	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.32	0.596	1	u u	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.32	0.340	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.32	0.181	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.32	0.702	1	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.32	0.149	1	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.32	0.213	1	"	"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 14:05

Semivolatifie Organic Compounds by SWH468 Organic Compounds	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Peapare by method SW846 3510C	Semivola	tile Organic Compounds by GC	CMS										
Benzolic acid BDL U U U U U U U U U			SW846 82700	<u>2</u>									
111-1-11 111-1-1-11 111-1-11 111-1-11 111-1-11 111-1-11 111-1-11 111-1-11 111-1-11 111-1-11 111-1-11 111-1-1-1-	Prepared	d by method SW846 3510C											
Section Sect	65-85-0	Benzoic acid	BDL	U	μg/l	5.32	0.0957	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
111-11-14 BisQ2 chloroethoxy)methane	100 51 6	Ponzyl glochol	RDI	11	ua/l	5 32	0.0957	1			"		Х
1111444 Bis(2-chlorostepty) ether BDL U µg/l 5.32 0.0745 1		•							"	"	"	"	X
18-60-1 Bis(2-chioroisopropy)eher BDL U µg/l 5.32 0.0957 1		•							"	"	"	"	X
117-181-7 Bis(2 ethylhexyl)phihalate		• • •							"	"	"	"	
101-583 4-Bromophenyl phenyl ether BDL U µgf 5.32 0.245 1									"	"		"	X X
Both Buyl benzyl phthalate BDL U µgl 5.32 0.606 1									"	"	"	"	X
September Sept									"	"	"	"	X
September Sept		• • •							"	"	"	"	
1964-7-8 A-Chioroaniline BDL U µg/l 5.32 0.511 1									"	"	"	"	X X
98-58-7 2-Chioronaphthalene BDL U µg/l 5.32 0.0745 1		• •							,,		"		
2-Chlorophenol BDL U μg/l 5.32 0.106 1									,,				X
17057-72-3 4-Chlorophenyl phenyl ether BDL U µg/l 5.32 0.0638 1		•							,,				X
2016-19- Chrysnen BDL U µg/l 5.32 0.0455 1		•											X X
Single S									,,				X
132-64-9 Dipenzo(uran BDL U µg/l 5.32 0.0638 1		•							,,				
Septent Sept									,,				X X
1,2-1)Chilorobenzene BDL U µg/l 5.32 0.170 1									,,				^
1,3-1/Charlorobenzene BDL U U U 1,5-32 0.225 1		,							,,				
1,4-Dichlorobenzeline BDL U µg/l 5.32 0.245 1													
1994 1,000													V
24-Dichtorphenon Solution S													X
Second Delarty pinthalate BDL U µg/l 5.32 0.176 1		•											X
13-11-15 Difficting principates BDL U µg/l 5.32 0.149 1 1 1 1 1 1 1 1 1													X
103-87-9 2,4-Dinenylphenol BDL U µg/l 5.32 0.128 1 " " " " " " " " " " " " " " " " "		• •											X
1-1													X
13-3-3-1 13-0-linitrophenol 13-1 13-1 13-1 13-1 13-1 13-3-3-3-1 13-3-3-3-1 13-3-3-3-1 13-3-3-3-1 13-3-3-3-1 13-3-3-3-1 13-3-3-3-1 13-3-3-3-1 13-		- ·											X
13-12-3-2 2,4-Dinitrotoluene BDL U µg/l 5.32 0.223 1 " " " " " " " " "		* *											X
121-14-2		·											Х
17-84-0 Di-n-octyl phthalate BDL U µg/l 5.32 0.255 1 " " " " " " " " "													X
117-94-0 Di-h-octyl printalate BDL U µg/l 5.32 0.128 1 " " " " " " " " "		2,6-Dinitrotoluene											X
Fluorene BDL U µg/l 5.32 0.128 1 " " " " " " " " "	117-84-0	Di-n-octyl phthalate		U				1					Х
Hexachlorobenzene BDL U µg/l 5.32 0.394 1 " " " " " " " " "								1	"				X
Hexachlorobenzerie BDL U µg/l 5.32 0.596 1 " " " " " " " " "													Х
77-47-4 Hexachlorocyclopentadiene BDL U µg/l 5.32 0.394 1 " " " " " " " " " " " " " " " " " "		Hexachlorobenzene											Х
Hexachlorocyclopentationer BDL U µg/l 5.32 0.543 1 " " " " " " " " "													Х
193-39-5 Indeno (1,2,3-cd) pyrene BDL U µg/l 5.32 0.245 1 " " " " " " " " "	77-47-4	• •											Χ
183-39-5 Inderlo (1,2,3-cd) pyrene BDL U µg/l 5.32 0.319 1 " " " " " " " " "													X
Section Sect		• • • • • •											Х
2-Methylphenol BDL U µg/l 5.32 0.223 1 " " " " " 108-39-4, 3 & 4-Methylphenol BDL U µg/l 10.6 0.255 1 " " " " " " 106-44-5 p1-20-3 Naphthalene BDL U µg/l 5.32 0.202 1 " " " " " 199-09-2 3-Nitroaniline BDL U µg/l 5.32 0.181 1 " " " " 199-09-2 3-Nitroaniline BDL U µg/l 5.32 0.181 1 " " " " " 199-09-2 Nitroaniline BDL U µg/l 5.32 0.181 1 " " " " " 199-09-3 Nitrobenzene BDL U µg/l 5.32 0.191 1 " " " " " 198-95-3 Nitrobenzene BDL U µg/l 5.32 0.191 1 " " " " " " 198-95-3 Nitrobenzene BDL U µg/l 5.32 0.191 1 " " " " " " " " " " " " " " " " "		•											Х
108-39-4, 3 & 4-Methylphenol BDL U µg/l 10.6 0.255 1 " " " " " " " " "		• •											Х
106-34-5 201-20-3 Naphthalene BDL U µg/l 5.32 0.202 1 " " " " " " " " "	95-48-7	2-Methylphenol											Х
Second S	106-44-5												X
99-09-2 3-Nitroaniline BDL U µg/l 5.32 0.181 1 " " " " 100-01-6 4-Nitroaniline BDL U µg/l 21.3 0.202 1 " " " " 108-95-3 Nitrobenzene BDL U µg/l 5.32 0.191 1 " " " " "		•											X
99-09-2 3-Nitroaniline BDL U µg/l 5.32 0.161 1 100-01-6 4-Nitroaniline BDL U µg/l 21.3 0.202 1 " " " " 98-95-3 Nitrobenzene BDL U µg/l 5.32 0.191 1 " " " "													X
28-95-3 Nitrobenzene BDL U μg/l 5.32 0.191 1 " " " "									"				X
98-95-3 Nitropenzene BDL 0 µg/i 5.32 0.191 I		4-Nitroaniline							"				Х
28-75-5 2-Nitrophenol BDI II ua/l 5-32 0-245 1 " " " " "	98-95-3	Nitrobenzene							"				Χ
100-02-7 4-Nitrophenol BDL U µg/l 21.3 0.277 1 " " " "	88-75-5	2-Nitrophenol	BDL	U	μg/l	5.32	0.245	1	"				X X

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 14:05

	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GCM	AS .										
Semivola	tile Organic Compounds by SV	V846 82700	<u>2</u>									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.32	0.117	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.32	0.638	1	"	0	"	"	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.32	0.202	1			"	"	X
87-86-5	Pentachlorophenol	BDL	U	μg/l	21.3	0.340	1	"	"	"	"	X
85-01-8	Phenanthrene	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.32	0.106	1		"	"	"	Х
129-00-0	Pyrene	BDL	U	μg/l	5.32	0.372	1		"	"	"	Х
110-86-1	Pyridine	BDL	U	μg/l	5.32	0.106	1		"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1		"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.32	2.66	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.32	2.66	1		"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	71		30-1	30 %				"	"	"	
367-12-4	2-Fluorophenol	52			10 %				"	"	"	
4165-60-0	Nitrobenzene-d5	74			30 %				"	"	"	
4165-62-2	Phenol-d5	27		15-1	10 %				"	"	"	
1718-51-0	Terphenyl-dl4	65			30 %				"	"	"	
118-79-6	2,4,6-Tribromophenol	97		15-1	10 %				"	"	"	
Semivolat	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	182										
-	inated Biphenyls by SW846 80 by method SW846 3510C	<u> 182</u>										
Prepared	by method SW846 3510C	0 <u>82</u> BDL	U	μg/l	0.225	0.101	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	X
Prepared		BDL		μg/l					0			
Prepared 12674-11-2 11104-28-2	by method SW846 3510C Aroclor-1016 Aroclor-1221	BDL BDL	U	μg/l	0.225	0.106	1	n	0	"		Х
Prepared 12674-11-2 11104-28-2	by method SW846 3510C Aroclor-1016	BDL BDL BDL	U U	μg/l μg/l	0.225 0.225	0.106 0.0834	1 1	"	0	"	"	X X
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	BDL BDL BDL BDL	U U U	µg/l µg/l µg/l	0.225 0.225 0.225	0.106 0.0834 0.117	1 1 1	n	0	" "	"	x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	BDL BDL BDL BDL BDL	U U U	hā\l hā\l hā\l	0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927	1 1 1	"	0	" "	n n n	X X X
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	BDL BDL BDL BDL BDL	U U U U	μg/l μg/l μg/l μg/l μg/l	0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156	1 1 1	"	0	" "	"	X X X X
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL BDL	U U U U	hā\l hā\l hā\l hā\l	0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120	1 1 1 1 1	"	0	" "	n n n	x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL BDL	U U U U	hā\l hā\l hā\l hā\l	0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120	1 1 1 1 1	"	0	" "	n n n	x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hā\l hā\l hā\l hā\l hā\l	0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 12C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab	by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] ole Petroleum Hydrocarbons	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Dele Petroleum Hydrocarbons 0 by GC	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747	1 1 1 1 1 1	•	0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 50 % 50 %	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747 0.0561	1 1 1 1 1 1 1			" " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 0 by GC I by method SW846 3510C Gasoline	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 50 % 50 %	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747 0.0561	1 1 1 1 1 1 1	•	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 50 % 50 %	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747 0.0561	1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " "	" " " " " " " " " " " "		x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Dele Petroleum Hydrocarbons 0 by GC I by method SW846 3510C Gasoline	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 50 % 50 % 50 %	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747 0.0561 0.1 0.1	1 1 1 1 1 1 1 1	" " " " " " " " " +SW846	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	1003122	x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9 68476-30-2 68476-31-3	Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U U U U U U U U	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747 0.0561 0.1 0.1 0.1 0.02 0.2	1 1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** **	0 " " " " " " 05-Feb-1 0	""""""""""""""""""""""""""""""""""""""	1003122	x x x x x x
Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 Extractab TPH 8100 Prepared 8006-61-9 68476-30-2 68476-31-3	Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 50 % 50 % 50 %	0.106 0.0834 0.117 0.0927 0.156 0.120 0.0747 0.0561 0.1 0.1	1 1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " " 05-Feb-1	" " " " " " " " " " " "	1003122	x x x x x x

Sample Identification MW-503 SB07608-05

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 14:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractab	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3510C											
J00100000	Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846	05-Feb-1	09-Feb-10	1003122	
								8100Mod.	0			
	Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Dielectric Fluid	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
	Unidentified	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
	Other Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Total Petroleum Hydrocarbons	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	99		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 16:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds											
olatile (Organic Compounds											
repared	d by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1		"	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
7-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1		"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	X
11-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
06-46-7	1,4-Dichlorobenzene	0.8	J	μg/l	1.0	0.5	1				"	Х
5-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1				"	Х
	(Freon12)							,,				
5-34-3	1,1-Dichloroethane	BDL	U	μg/l "	1.0	0.6	1			"		χ.
)7-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"				X
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"				Х
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l 	1.0	0.9	1					X
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"		Х
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"		X
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
3-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	X
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
0-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Х
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 16:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
	11)			,,	4.0							.,
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l "	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"		"		X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"				X
179601-23- I	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1					Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	97			30 %			"	"	"	"	
2037-26-5	Toluene-d8	86		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109			30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	AS										
Semivola	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.56	0.133	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.56	0.167	1	u	"	"	"	X
62-53-3	Aniline	BDL	U	μg/l	5.56	0.422	1	H	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.56	0.167	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.56	0.211	1	H	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.56	0.144	1	H	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.56	0.622	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.56	0.356	1	II .	"	"	"	Х
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.56	0.189	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.56	0.733	1	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.56	0.156	1	"	"	"	"	X
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.56	0.222	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 16:15

Semivolatile Prepared by 65-85-0 Be 100-51-6 Be 111-91-1 Bis 111-44-4 Bis 108-60-1 Bis 117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 53-70-3 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Organic Compounds by GC of Organic Compounds by Second of the Property of the		0 0 0 0 0 0 0 0 0 0 0 0 0	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	0.100 0.100 0.111 0.0778 0.100 1.06 0.256	1 1 1 1 1	SW846 8270C " " " "	08-Feb-1 0 "	11-Feb-10 " " "	1003221	X X X
Prepared by 65-85-0 Be 100-51-6 Be 111-91-1 Bis 111-44-4 Bis 108-60-1 Bis 117-81-7 Bis 85-68-7 Bu 86-74-8 Ca 859-50-7 4-C 106-47-8 4-C 91-58-7 2-18-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	y method SW846 3510C enzoic acid enzyl alcohol is(2-chloroethoxy)methane is(2-chloroethyl)ether is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate is(2-ethylhexyl)phthalate is Bromophenyl phenyl ether ityl benzyl phthalate arbazole ichloro-3-methylphenol ichloroaniline ichlorophenol ichlorophenol ichlorophenyl phenyl ether ichrysene	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0 0 0 0 0 0 0 0 0 0 0 0 0	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.56 5.56 5.56 5.56 5.56 5.56 5.56	0.100 0.111 0.0778 0.100 1.06	1 1 1		0	" "	" "	X X X
65-85-0 Be 100-51-6 Be 111-91-1 Bis 111-44-4 Bis 111-44-4 Bis 1117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	enzoic acid enzyl alcohol is(2-chloroethoxy)methane is(2-chloroethyl)ether is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate -Bromophenyl phenyl ether utyl benzyl phthalate arbazole -Chloro-3-methylphenol -Chloroaniline -Chlorophenol -Chlorophenol -Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.56 5.56 5.56 5.56 5.56 5.56 5.56	0.100 0.111 0.0778 0.100 1.06	1 1 1		0	" "	" "	X X X
100-51-6 Be 111-91-1 Bis 111-44-4 Bis 108-60-1 Bis 1108-60-1 Bis 1107-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 91-58-7 2-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	enzyl alcohol is(2-chloroethoxy)methane is(2-chloroethyl)ether is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate is(2-e	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.56 5.56 5.56 5.56 5.56 5.56 5.56	0.100 0.111 0.0778 0.100 1.06	1 1 1		0	" "	" "	X X X
111-91-1 Bis 111-44-4 Bis 108-60-1 Bis 117-81-7 Bis 117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	is(2-chloroethoxy)methane is(2-chloroethyl)ether is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate description of the chloroisopropyl)ether is(2-ethylhexyl)phthalate description of the chloroisopropyl)ether is(2-ethylhexyl)phthalate description of the chloroisopropyl description of the chloro	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U	ha\l ha\l ha\l ha\l ha\l	5.56 5.56 5.56 5.56 5.56 5.56	0.111 0.0778 0.100 1.06	1 1 1	" " " " " " " " " " " " " " " " " " " "	" "	"	"	X X
111-91-1 Bis 111-44-4 Bis 108-60-1 Bis 117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 91-58-7 2-C 218-01-9 Ch 53-70-3 Dib 132-64-9 Dib 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	is(2-chloroethoxy)methane is(2-chloroethyl)ether is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate description of the chloroisopropyl)ether is(2-ethylhexyl)phthalate description of the chloroisopropyl)ether is(2-ethylhexyl)phthalate description of the chloroisopropyl description of the chloro	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U	ha\l ha\l ha\l ha\l ha\l	5.56 5.56 5.56 5.56 5.56 5.56	0.111 0.0778 0.100 1.06	1 1 1	" " " " " " " " " " " " " " " " " " " "	"	"	"	X X
111-44-4 Bis 108-60-1 Bis 117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di-534-52-1 4,6 51-28-5 2,4	is(2-chloroethyl)ether is(2-chloroisopropyl)ether is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate Bromophenyl phenyl ether utyl benzyl phthalate arbazole -Chloro-3-methylphenol -Chloroaniline -Chloronaphthalene -Chlorophenol -Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U	hâ\I hâ\I hâ\I hâ\I hâ\I	5.56 5.56 5.56 5.56 5.56	0.0778 0.100 1.06	1 1	"	"	"		Х
108-60-1 Bis 117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 95-57-8 2-C 95-57-8 2-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	is(2-chloroisopropyl)ether is(2-ethylhexyl)phthalate Bromophenyl phenyl ether utyl benzyl phthalate arbazole Chloro-3-methylphenol Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/l µg/l µg/l µg/l µg/l	5.56 5.56 5.56 5.56	0.100 1.06	1	"			u	
117-81-7 Bis 101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 91-58-7 2-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	is(2-ethylhexyl)phthalate Bromophenyl phenyl ether utyl benzyl phthalate arbazole Chloro-3-methylphenol Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l	5.56 5.56 5.56	1.06			"			~
101-55-3 4-E 85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 91-58-7 2-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Bromophenyl phenyl ether utyl benzyl phthalate arbazole Chloro-3-methylphenol Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL BDL	U U U U	µg/l µg/l µg/l	5.56 5.56					"		X X
85-68-7 Bu 86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dib 132-64-9 Dib 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	utyl benzyl phthalate arbazole Chloro-3-methylphenol Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL BDL	U U U U	μg/l μg/l μg/l	5.56	0.230	1	"	"	"		X
86-74-8 Ca 59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dib 132-64-9 Dib 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	arbazole Chloro-3-methylphenol Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL BDL	U U U	μg/l μg/l		0.633	1	"	"	"		X
59-50-7 4-C 106-47-8 4-C 91-58-7 2-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-61-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Chloro-3-methylphenol Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL BDL	U U U	μg/l	5.50	0.200	1	"	"	"		
106-47-8 4-C 91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Chloroaniline Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL BDL	U U		5 5G	0.200	1	"	"	"		X X
91-58-7 2-C 95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Chloronaphthalene Chlorophenol Chlorophenyl phenyl ether hrysene	BDL BDL	U	U(1/1	5.56			"		,,		
95-57-8 2-C 7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Chlorophenol Chlorophenyl phenyl ether hrysene	BDL			5.56	0.533	1			,,		X
7005-72-3 4-C 218-01-9 Ch 53-70-3 Dit 132-64-9 Dit 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	Chlorophenyl phenyl ether hrysene		11	μg/l	5.56 5.56	0.0778	1	"				X
218-01-9 Ch 53-70-3 Dik 132-64-9 Dik 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	hrysene	DUL	U U	μg/l	5.56 5.56	0.111 0.0667	1 1	,,	"			X X
53-70-3 Dik 132-64-9 Dik 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	•	DDI		μg/l					"	"		X
132-64-9 Dik 95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	ibenzo (a,h) anthracene	BDL	U	μg/l	5.56	0.0778	1		"	"		
95-50-1 1,2 541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	9	BDL	U	μg/l	5.56	0.0889	1			"		X X
541-73-1 1,3 106-46-7 1,4 91-94-1 3,3 120-83-2 2,4 84-66-2 Die 131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	ibenzofuran	BDL	U	μg/l	5.56	0.0667	1			,,		^
106-46-7 1,4 201-94-1 3,3 120-83-2 2,4 34-66-2 Die 131-11-3 Dir 105-67-9 2,4 34-74-2 Di- 534-52-1 4,6 51-28-5 2,4	2-Dichlorobenzene	BDL	U	μg/l	5.56	0.178	1			,	,	
3,3 120-83-2 2,4 34-66-2 Die 131-11-3 Dir 105-67-9 2,4 34-74-2 Di- 134-74-2 Di- 134-74-2 2,4 134-74-2 2,4	3-Dichlorobenzene	BDL	U	μg/l	5.56	0.233	1			,		
120-83-2 2,4 34-66-2 Die 131-11-3 Dir 105-67-9 2,4 34-74-2 Di- 534-52-1 4,6 51-28-5 2,4	4-Dichlorobenzene	BDL	U	μg/l	5.56	0.244	1					V
34-66-2 Die 131-11-3 Dir 105-67-9 2,4 34-74-2 Di- 534-52-1 4,6 51-28-5 2,4	3'-Dichlorobenzidine	BDL	U	μg/l	5.56	0.400	1			"		X
131-11-3 Dir 105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	4-Dichlorophenol	BDL	U	μg/l	5.56	0.144	1					X
105-67-9 2,4 84-74-2 Di- 534-52-1 4,6 51-28-5 2,4	iethyl phthalate	BDL	U	μg/l	5.56	0.178	1					X
34-74-2 Di- 534-52-1 4,6 51-28-5 2,4	imethyl phthalate	BDL	U	μg/l	5.56	0.156	1					X
534-52-1 4,6 51-28-5 2,4	4-Dimethylphenol	BDL	U	μg/l "	5.56	0.256	1		"			X
51-28-5 2,4	i-n-butyl phthalate	BDL	U	μg/l 	5.56	0.144	1		"	"		X
,	6-Dinitro-2-methylphenol	BDL	U	μg/l 	5.56	0.133	1		"	"		X
121-14-2 2,4	4-Dinitrophenol	BDL	U	μg/l 	5.56	0.344	1		"	"	"	X
	4-Dinitrotoluene	BDL	U	μg/l 	5.56	0.233	1		"	"		X
	6-Dinitrotoluene	BDL	U	μg/l	5.56	0.133	1					X
117-84-0 Di-	i-n-octyl phthalate	BDL	U	μg/l 	5.56	0.267	1					X
	uoranthene	BDL	U	μg/l	5.56	0.133	1					X
	uorene	BDL	U	μg/l	5.56	0.133	1		"	"		Х
	exachlorobenzene	BDL	U	μg/l	5.56	0.411	1	"				Х
	exachlorobutadiene	BDL	U	μg/l	5.56	0.622	1	"	"	"		Х
	exachlorocyclopentadiene	BDL	U	μg/l	5.56	0.411	1				"	Χ
	exachloroethane	BDL	U	μg/l	5.56	0.567	1	"	"	"	"	Χ
	deno (1,2,3-cd) pyrene	BDL	U	μg/l	5.56	0.256	1	"		"		X
	ophorone	BDL	U	μg/l	5.56	0.333	1			"		Х
	-Methylnaphthalene	BDL	U	μg/l	5.56	0.122	1	"		"		Х
95-48-7 2-N	Methylphenol	BDL	U	μg/l	5.56	0.233	1	"	"	"	"	Х
106-44-5	& 4-Methylphenol	BDL	U	μg/l	11.1	0.267	1	"	"	"	"	X
	aphthalene	BDL	U	μg/l	5.56	0.211	1		"	"		X
	Nitroaniline	BDL	U	μg/l	5.56	0.0667	1		"	"		X
	Nitroaniline	BDL	U	μg/l	5.56	0.189	1			"		X
		BDL	U	μg/l	22.2	0.211	1					X
	Nitroaniline	BDL	U	μg/l	5.56	0.200	1					X
88-75-5 2 -N	itrobenzene	BDL	U	μg/l μg/l	5.56 22.2	0.256 0.289	1 1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 16:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatil	le Organic Compounds by GCM	IS										
Semivolati	le Organic Compounds by SV	/846 8270C										
Prepared b	by method SW846 3510C											
62-75-9 N	N-Nitrosodimethylamine	BDL	U	μg/l	5.56	0.122	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
621-64-7 N	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.56	0.667	1	"	"	"	"	Χ
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.56	0.211	1	"	"	"	"	Х
87-86-5 F	Pentachlorophenol	BDL	U	μg/l	22.2	0.356	1	"	"	"	"	Χ
35-01-8 F	Phenanthrene	BDL	U	μg/l	5.56	0.256	1	"	"	"	"	Х
108-95-2 F	Phenol	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Χ
129-00-0 F	Pyrene	BDL	U	μg/l	5.56	0.389	1	"	"	"	"	Χ
110-86-1 F	Pyridine	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Х
120-82-1 1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.56	0.0778	1	"	"	"	"	Χ
90-12-0 1	1-Methylnaphthalene	BDL	U	μg/l	5.56	0.122	1	"	"	"	"	
95-95-4 2	2,4,5-Trichlorophenol	BDL	U	μg/l	5.56	0.111	1	"	"	"	"	Χ
	2,4,6-Trichlorophenol	BDL	U	μg/l	5.56	0.111	1	n .	"	"	"	Х
	Pentachloronitrobenzene	BDL	U	μg/l	5.56	2.78	1	"	"	"	"	
95-94-3 1	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.56	2.78	1	"	"	"	"	X
Surrogate re	ecoveries:											
321-60-8 2	2-Fluorobiphenyl	71		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	50		15-1	10 %			"	"	"	"	
4165-60-0 l	Nitrobenzene-d5	73		30-1	30 %			"	"	"	"	
1165-62-2 F	Phenol-d5	26		15-1	10 %			"	"	"	"	
1718-51-0	Terphenyl-dl4	63		30-1	30 %			"	"	"	"	
118-79-6 2	2,4,6-Tribromophenol	96		15-1	10 %			"	"	"	"	
Semivolatil	le Organic Compounds by GC											
Polychlorin	nated Biphenyls by SW846 80	82										
-	by method SW846 3510C											
	Aroclor-1016	BDL	U	μg/l	0.227	0.102	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	Х
		DDI			0.007	0.100	4	"	0	,,		V
	Aroclor-1221	BDL	U	μg/l	0.227	0.108	1	"				X
	Aroclor-1232	BDL	U 	μg/l	0.227	0.0843	1					X
	Aroclor-1242	BDL	U	μg/l "	0.227	0.118	1	"				X
	Aroclor-1248	BDL	U	μg/l 	0.227	0.0937	1					Х
	Aroclor-1254	BDL	U	μg/l 	0.227	0.158	1		"	"		Х
	Aroclor-1260	BDL	U	μg/l	0.227	0.122	1			"	"	Х
37324-23-5	Aroclor-1262	BDL	U	μg/l	0.227	0.0756	1	"	"	"	"	Х
11100-14-4	Aroclor-1268	BDL	U	μg/l	0.227	0.0568	1	"	"	"	"	Х
Surrogate re	ecoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	93		30-1	50 %			"	"	"	"	
	4,4-DB-Octafluorobiphenyl (Sr) [2C]	92		30-1	50 %			"	"	"	"	
	Decachlorobiphenyl (Sr)	65		30-1	50 %			"	"	"	"	
2051-24-3 L	Decachlorobiphenyl (Sr) [2C]	75		30-1	50 %			"	"	"	"	
Extractable	e Petroleum Hydrocarbons											
TPH 8100	by GC											
	by method SW846 3510C											
8006-61-9 (BDL	U	mg/l	0.2	0.1	1	+SW846		09-Feb-10	1003122	
68476-30-2 F	Fuel Oil #2	BDL	U	mg/l	0.2	0.2	1	8100Mod. "	0	"		
68476-30-2 F		BDL	U	mg/l	0.2	0.02	1			"		
				_								
68553-00-4 F		BDL	U	mg/l	0.2	0.2	1	"				
M0980000 N	VIOTOR UII	BDL	U	mg/l	0.2	0.2	1	A-	•	•		
0					0.2							

Sample Identification MW-502 SB07608-06

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 02-Feb-10 16:15

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	Calculated	d asZ-2	mg/l	0.2	0.06	1		"	"	"	
Unidentified	1.9		mg/l	0.2	0.06	1		"	"	"	
Other Oil	Calculated	d as	mg/l	0.2	0.02	1		"	"	"	
Total Petroleum Hydrocarbons	1.9		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	77		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds											
olatile (Organic Compounds											
repared	d by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
7-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1		"	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	n	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	n	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	n	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	n	"	"	"	Х
8-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	n	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	n	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
8-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1		"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1		"	"	"	Х
7-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	X
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	X
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
1-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1		"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
11-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
5-34-3	(Freon12)	BDL	U	ua/l	1.0	0.6	1	"				×
	1,1-Dichloroethane	BDL	U	μg/l μg/l	1.0	0.6	1		"	"	"	^ X
)7-06-2 5-35-4	1,2-Dichloroethane	BDL	U		1.0	0.7	1		"	"	"	γ ×
	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.6	1		"	"		X
56-59-2	cis-1,2-Dichloroethene			μg/l		0.0	1		"	"	"	
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0				"	"	"	X
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1 1					X
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7						X
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1 1	"	"		"	X
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1	"		"		X
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4						X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"				X
00-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"				X
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"				X
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1					X
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1					X
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U 	μg/l	10.0	1.1	1					X
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"		X
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	l by method SW846 5030 Wate	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
96-18-4	11) 1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1				"	Х
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"		X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	n n	"	"	"	X
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1				"	X
	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	X
1 95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	n n	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	n	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	n	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	n	"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	n	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	n	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	n	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	n	"	"	"	Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	n .	"	"	u	Х
 Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	86		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	109		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCM	1 S										
	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.81	0.140	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.81	0.174	1	u u	"	"	u	Х
62-53-3	Aniline	BDL	U	μg/l	5.81	0.442	1	"	"	"	"	Χ
20-12-7	Anthracene	BDL	U	μg/l	5.81	0.174	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.81	0.221	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.81	0.151	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.81	0.651	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.81	0.372	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.81	0.198	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.81	0.767	1	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.81	0.163	1	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.81	0.233	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	2									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.81	0.105	1	SW846 8270C		11-Feb-10	1003221	Χ
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.81	0.105	1		0	"		Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.81	0.116	1				"	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.81	0.0814	1	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.81	0.105	1		"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	3.84	J	μg/l	5.81	1.10	1	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.81	0.267	1		"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.81	0.663	1	"	"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	5.81	0.209	1	"	"	"	"	Χ
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.81	0.209	1	"	"	"	"	Χ
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.81	0.558	1	"	"	"	"	Χ
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.81	0.0814	1	"	"	"	u u	Х
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.81	0.116	1	"	"	"	u u	Х
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.81	0.0698	1	•	"	"	"	Х
218-01-9	Chrysene	BDL	U	μg/l	5.81	0.0814	1	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.81	0.0930	1	•	"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	5.81	0.0698	1	•	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.81	0.186	1	•	"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.81	0.244	1	"	"	"	u u	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.81	0.256	1		"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.81	0.419	1	"	"	"	u u	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.81	0.151	1	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.81	0.186	1	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.81	0.163	1	"	"	"	u u	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.81	0.267	1	"	"	"	u u	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.81	0.151	1	"	"	"	u u	Х
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.81	0.140	1	"	"	"	u u	Х
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.81	0.360	1	"	"	"	u u	Х
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.81	0.244	1	•	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.81	0.140	1	•	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.81	0.279	1	"	"	"	u u	Х
206-44-0	Fluoranthene	BDL	U	μg/l	5.81	0.140	1	•	"	"	"	Χ
86-73-7	Fluorene	BDL	U	μg/l	5.81	0.140	1	"	"	"	u u	Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.81	0.430	1	"	"	"	u u	Х
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.81	0.651	1	"	"	"	u u	Х
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.81	0.430	1	"	"	"	"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	5.81	0.593	1	•	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.81	0.267	1	"	"	"	u u	Х
78-59-1	Isophorone	BDL	U	μg/l	5.81	0.349	1	m .	"	"	"	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.81	0.128	1	"	"	"	"	Х
95-48-7	2-Methylphenol	BDL	U	μg/l	5.81	0.244	1	m .	"	"	"	Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	11.6	0.279	1	m .	"	"	"	Х
106-44-5 91-20-3	Naphthalene	BDL	U	μg/l	5.81	0.221	1	"	"	"	"	Х
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.81	0.0698	1	"				Х
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.81	0.198	1	"				Х
100-01-6	4-Nitroaniline	BDL	U	μg/l	23.3	0.221	1	"	"	"	"	Х
98-95-3	Nitrobenzene	BDL	U	μg/l	5.81	0.209	1	"	"	"	"	Х
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.81	0.267	1	"	"	"	"	Х
100-02-7	4-Nitrophenol	BDL	U	μg/l	23.3	0.302	1		"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	AS .										
Semivola	atile Organic Compounds by SV	V846 82700	2									
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.81	0.128	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.81	0.698	1	n .	0	"	"	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.81	0.221	1	"				X
87-86-5	Pentachlorophenol	BDL	U	μg/l	23.3	0.372	1	"	"	"	"	X
85-01-8	Phenanthrene	BDL	U	μg/l	5.81	0.267	1	"	"	"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.81	0.116	1	"	"	"		Х
129-00-0	Pyrene	BDL	U	μg/l	5.81	0.407	1	"	"	"	"	Χ
110-86-1	Pyridine	BDL	U	μg/l	5.81	0.116	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.81	0.0814	1	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.81	0.128	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.81	0.116	1	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.81	0.116	1	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.81	2.91	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.81	2.91	1	"	"	"	"	X
Surrogate	e recoveries:											
321-60-8	2-Fluorobiphenyl	64		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	44			10 %			"	"	"	"	
4165-60-0	Nitrobenzene-d5	65			30 %			"	"	"	"	
4165-62-2	Phenol-d5	24		15-1	10 %			"	"	"	"	
1718-51-0	Terphenyl-dl4	60			30 %			"	"	"	"	
118-79-6	2,4,6-Tribromophenol	85		15 1	10.0/			"				
Semivola Polychlo	tile Organic Compounds by GC rinated Biphenyls by SW846 80			15-1	10 %							
Semivola Polychlo Prepared	tile Organic Compounds by GC		U	μg/l	0.215	0.0964	1	SW846 8082		09-Feb-10	1003154	X
Semivola Polychlo Prepared 12674-11-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016	9 <u>82</u> BDL		µg/l	0.215			SW846 8082		09-Feb-10	1003154	
Semivola Polychlo Prepared 12674-11-2 11104-28-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221	082 BDL BDL	U	µg/l	0.215 0.215	0.102	1		05-Feb-1 0			Х
Semivola <u>Polychlo</u> Prepared 12674-11-2 11104-28-2 11141-16-5	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232	BDL BDL BDL	U U	µg/I µg/I	0.215 0.215 0.215	0.102 0.0798	1 1	п	05-Feb-1 0 "	W.	"	X X
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242	BDL BDL BDL BDL BDL	U U U	hā\l hā\l hā\l	0.215 0.215 0.215 0.215	0.102 0.0798 0.112	1 1 1	"	05-Feb-1 0 "	"	"	x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248	BDL BDL BDL BDL BDL BDL BDL	U U U	hā\l hā\l hā\l hā\l	0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887	1 1 1	"	05-Feb-1 0 "	n n	" "	X X X
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150	1 1 1	"	05-Feb-1 0 "	" "	" " "	X X X X
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 6 Aroclor-1260	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115	1 1 1 1 1	"	05-Feb-1 0 "	" "	" " "	x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11096-82-5 37324-23-5	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	"	05-Feb-1 0 "	" "	" " "	x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115	1 1 1 1 1	0 0 0 0	05-Feb-1 0 "		" " " " " " " " " " " " " " " " " " " "	x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries:	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	ha\l ha\l ha\l ha\l ha\l ha\l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	05-Feb-1 0 "		" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	05-Feb-1 0 "			x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 2 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	05-Feb-1 0 "			x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	05-Feb-1 0 "			x x x x x x
Semivola Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	05-Feb-1 0 "			x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 6 Aroclor-1260 6 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	0 0 0 0	05-Feb-1 0 "			x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715	1 1 1 1 1 1	" " " " " " " " " " " " " " "	05-Feb-1 0 " " " " " " "			x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9	rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1260 6 Aroclor-1268 7 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1		05-Feb-1 0 "			x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 7 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	" " " " " " " " " " " " " " "	05-Feb-1 0""""""""""""""""""""""""""""""""""""		"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.22 0.2 0.2 0.2 0.2	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1 1	" " " " " " " " " +SW846 8100Mod. "	05-Feb-1 0""""""""""""""""""""""""""""""""""""		"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlo Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3 68553-00-4	tile Organic Compounds by GC rinated Biphenyls by SW846 80 d by method SW846 3510C 2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 7 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215	0.102 0.0798 0.112 0.0887 0.150 0.115 0.0715 0.0537	1 1 1 1 1 1 1	" " " " " " " " " +SW846 8100Mod. "	05-Feb-1 0""""""""""""""""""""""""""""""""""""		1003122	x x x x x x

Sample Identification MW-303 SB07608-07

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractal	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3510C											
J00100000	Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846	05-Feb-1	09-Feb-10	1003122	
								8100Mod.	0			
	Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Dielectric Fluid	Calculated	d asZ-2	mg/l	0.2	0.06	1	"	"	"	"	
	Unidentified	1.9		mg/l	0.2	0.06	1	"	"	"	"	
	Other Oil	Calculated	d as	mg/l	0.2	0.02	1	"	"	"	"	
	Total Petroleum Hydrocarbons	1.9		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	79		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1	16-Feb-10	1003671	Х
07.04.4	(Freon 113)	DDI		//	10.0	4.6	4		0			V
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1					X
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1					X
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1					Х
108-86-1	Bromobenzene	BDL BDL	U U	μg/l	1.0	0.5 1.0	1 1		"	"	"	Х
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0 0.5	0.5	1			"		X
75-27-4	Bromodichloromethane			μg/l			1		"	"	"	X
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0						
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1 1			"		X X
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1			"		X
104-51-8	n-Butylbenzene	BDL BDL	U	μg/l	1.0	0.8 0.5	1			"		X
135-98-8	sec-Butylbenzene		U	μg/l	1.0					"		
98-06-6	tert-Butylbenzene	BDL BDL	U U	μg/l	1.0 5.0	0.5 0.9	1 1		"	"	"	X X
75-15-0	Carbon disulfide	BDL		μg/l	1.0	0.8	1					X
56-23-5	Carbon tetrachloride		U U	μg/l			1					
08-90-7	Chlorobenzene	BDL BDL		μg/l	1.0	0.5	1		"	"	"	X
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1 0.8	1					X
7-66-3	Chloroform		U	μg/l	1.0		1					
4-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9						Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1					
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1					~
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1					X
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1					X
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1					X
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1					X
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1					X
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l "	1.0	0.5	1					X
06-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1					X
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1			"		X
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1					X
07-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1					X
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1					X
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	,, H	,			X
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1					X
8-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1					X
42-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	,, H	"	"		X
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1		"			X
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1	"	"	"		X
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	,		X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"		X
00-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"		X
37-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1		"	"		X
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l 	10.0	2.7	1					X
98-82-8	Isopropylbenzene	BDL	U	μg/l 	1.0	0.5	1					X
99-87-6	4-Isopropyltoluene	BDL	U	μg/l 	1.0	0.5	1	"				X
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l 	1.0	0.8	1					X
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"		X
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds				_							
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1		"	"	"	Х
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
179601-23-	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	W .	"	"	u	Х
1 95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
09-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	n .	"	"	"	X
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	97		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	85		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	112		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	108		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCM	1S										
	tile Organic Compounds by SV	V846 8270C	<u>}</u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.88	0.141	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.88	0.176	1	w w	"	"	"	Χ
62-53-3	Aniline	BDL	U	μg/l	5.88	0.447	1	II .	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.88	0.176	1	"	"	"	"	Х
1912-24-9	Atrazine	BDL	U	μg/l	5.88	0.224	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.88	0.153	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.88	0.659	1	W .	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.88	0.376	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.88	0.200	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.88	0.776	1	II .	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.88	0.165	1	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.88	0.235	1	u u		"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	2									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.88	0.106	1	SW846 8270C		11-Feb-10	1003221	Х
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.88	0.106	1	"	0			Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.88	0.118	1		"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.88	0.0824	1	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.88	0.106	1	"	"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	5.88	1.12	1		"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.88	0.271	1		"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.88	0.671	1	"	"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	5.88	0.212	1		"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.88	0.212	1	"	"	"	"	Х
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.88	0.565	1		"	"	"	Х
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.88	0.0824	1		"	"	"	Х
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.88	0.0706	1		"	"	"	Х
218-01-9	Chrysene	BDL	U	μg/l	5.88	0.0824	1		"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.88	0.0941	1		"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	5.88	0.0706	1		"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.88	0.188	1		"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.88	0.247	1		"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.88	0.259	1		"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.88	0.424	1	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.88	0.153	1	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.88	0.188	1	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.88	0.165	1	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.88	0.153	1	•	"	"	"	Χ
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.88	0.141	1	•	"	"	"	Χ
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.88	0.365	1	•	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.88	0.247	1	•	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.88	0.141	1	•	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.88	0.282	1	•	"	"	"	Χ
206-44-0	Fluoranthene	BDL	U	μg/l	5.88	0.141	1		"	"	"	Χ
86-73-7	Fluorene	BDL	U	μg/l	5.88	0.141	1	"	"	"	"	Χ
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.88	0.435	1	•	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.88	0.659	1	"	"	"	"	Χ
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.88	0.435	1	"	"	"	"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	5.88	0.600	1	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Χ
78-59-1	Isophorone	BDL	U	μg/l	5.88	0.353	1	"	"	"	"	Χ
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.88	0.129	1	"	"	"	"	Χ
95-48-7	2-Methylphenol	BDL	U	μg/l	5.88	0.247	1	"	"	"	"	Χ
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	11.8	0.282	1	"	"	"	"	Χ
106-44-5 91-20-3	Nanhthalana	BDL	U	μg/l	5.88	0.224	1	"				Х
88-74-4	Naphthalene 2-Nitroaniline	BDL	U	μg/l μg/l	5.88	0.224	1	"				X
99-09-2	3-Nitroaniline	BDL	U	μg/l μg/l	5.88	0.200	1	"				X
100-01-6	4-Nitroaniline	BDL	U	μg/l	23.5	0.224	1	"				X
98-95-3	Nitrobenzene	BDL	U	μg/l	5.88	0.224	1	"				X
	2-Nitrophenol	BDL	U	μg/l μg/l	5.88	0.212	1	"				X
88-75-5	/ = INTH OUT INTH OUT	DDL	U	μΥ/Ι	5.00	0.271						^

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS NO.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	1 S										
Semivola	tile Organic Compounds by SV	V846 82700	2									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.88	0.129	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.88	0.706	1	"	0	"	"	Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.88	0.224	1					X
87-86-5	Pentachlorophenol	BDL	U	μg/l	23.5	0.376	1		"	"	"	X
85-01-8	Phenanthrene	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.88	0.118	1		"	"	"	Х
129-00-0	Pyrene	BDL	U	μg/l	5.88	0.412	1		"	"	"	Х
110-86-1	Pyridine	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.88	0.0824	1	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.88	0.129	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.88	2.94	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.88	2.94	1		"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	64		30-1	30 %				"	"	"	
367-12-4	2-Fluorophenol	46			10 %				"	"	"	
4165-60-0	Nitrobenzene-d5	66			30 %				"	"	"	
4165-62-2	Phenol-d5	25		15-1	10 %				"	"	"	
1718-51-0	Terphenyl-dl4	62			30 %				"	"	"	
	2,4,6-Tribromophenol	0.7		45.4	10.0/						"	
118-79-6	2,4,0-111b101110p11c1101	87		15-1	10 %							
	tile Organic Compounds by GC	87		15-1	10 %							
Semivola	tile Organic Compounds by GC			15-1	10 %							
Semivolati Polychlor	tile Organic Compounds by GC rinated Biphenyls by SW846 80			15-1	10 %							
Semivolar Polychlor Prepared	tile Organic Compounds by GC inated Biphenyls by SW846 80 I by method SW846 3510C		U		0.225	0.101	1	SW846 8082		09-Feb-10	1003154	X
Semivolati Polychlor Prepared 12674-11-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016	182 BDL		µg/l	0.225				05-Feb-1 0			
Polychlor Prepared 12674-11-2 11104-28-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016	82 BDL BDL	U	µg/l	0.225 0.225	0.106	1	n	05-Feb-1 0 "	W.	"	Х
Polychlor Prepared 12674-11-2 11104-28-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016	BDL BDL BDL BDL	U U	µg/I µg/I	0.225 0.225 0.225	0.106 0.0834	1 1	"	05-Feb-1 0 "	"	"	X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	BDL BDL BDL BDL BDL	U U U	hā\l hā\l hā\l	0.225 0.225 0.225 0.225	0.106 0.0834 0.117	1 1 1	n	05-Feb-1 0 "	n n	" "	x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	BDL BDL BDL BDL BDL BDL BDL	U U U	hā\l hā\l hā\l hā\l	0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927	1 1 1	"	05-Feb-1 0 "	" "	" " "	X X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U	ha\l ha\l ha\l ha\l	0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156	1 1 1 1	"	05-Feb-1 0 "	n n	" "	X X X X
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL 0.100	n n n	ha\l ha\l ha\l ha\l ha\l	0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833	1 1 1 1 1	"	05-Feb-1 0 "	" "	" " "	x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	n n n n	ha\l ha\l ha\l ha\l ha\l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "		" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	BDL BDL BDL BDL BDL BDL 0.100	n n n	ha\l ha\l ha\l ha\l ha\l	0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833	1 1 1 1 1	"	05-Feb-1 0 "	" "	" " "	x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	n n n n	ha\l ha\l ha\l ha\l ha\l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "		" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	n n n n	ha\l ha\l ha\l ha\l ha\l ha\l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "		" " " " " " " " " " " " " " " " " " " "	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL O.100 BDL BDL BDL BDL	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL 0.100 BDL BDL BDL 72	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.205	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL O.100 BDL BDL BDL BDL	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL 0.100 BDL BDL BDL 72	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.205	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL 0.100 BDL BDL BDL 72	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.205	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	•	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL 0.100 BDL BDL BDL 72 86	0 0 0 0	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.205 0.	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747 0.0561	1 1 1 1 1 1 1		05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared	tile Organic Compounds by GC rinated Biphenyls by SW846 80 by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL 0.100 BDL BDL BDL 72	n n n n	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.205	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747	1 1 1 1 1 1	" " " " " " " " " " " " " "	05-Feb-1 0 "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL 0.100 BDL BDL BDL 72 86	0 0 0 0	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1 30-1	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.205 0.	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747 0.0561	1 1 1 1 1 1 1		05-Feb-1 0 " " " " " " "			x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1254 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0 0 0 0	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747 0.0561	1 1 1 1 1 1 1	" " " " " " " " " " " " " "	05-Feb-1 0""""""""""""""""""""""""""""""""""""		"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0 0 0 0 0	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747 0.0561	1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	05-Feb-1 0""""""""""""""""""""""""""""""""""""		"""""""""""""""""""""""""""""""""""""""	x x x x x x
Polychlor Prepared 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3 68553-00-4	tile Organic Compounds by GC rinated Biphenyls by SW846 80 I by method SW846 3510C Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 recoveries: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Colle Petroleum Hydrocarbons Colle by GC I by method SW846 3510C Gasoline Fuel Oil #2 Fuel Oil #4	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	0 0 0 0	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225	0.106 0.0834 0.117 0.0927 0.156 0.0833 0.0747 0.0561	1 1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	05-Feb-1 0""""""""""""""""""""""""""""""""""""		1003122	x x x x x x

Sample Identification MW-501 SB07608-08

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractab	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3510C											
J00100000	Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846	05-Feb-1	09-Feb-10	1003122	
								8100Mod.	0			
	Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Dielectric Fluid	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
	Unidentified	0.6		mg/l	0.2	0.06	1	"	"	"	"	
	Other Oil	Calculated	d as	mg/l	0.2	0.02	1	"	"	"	"	
	Total Petroleum Hydrocarbons	0.6		mg/l	0.2	0.02	1	n n	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	78		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 09:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	0	16-Feb-10	1003671	Х
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1		"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1		"	"	"	Χ
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	m .	"	"	"	Х
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"		"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 09:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
	11)			,,	4.0				"			.,
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l "	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"		X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
75-01-4	Vinyl chloride	BDL	U	μg/l "	1.0	0.9	1	"				X
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1					Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	95			30 %			"	"	"	"	
2037-26-5	Toluene-d8	85		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	113			30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	106		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	AS .										
Semivola	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.75	0.138	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.75	0.172	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.75	0.437	1	II .	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.75	0.172	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.75	0.218	1	u u	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.75	0.149	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.75	0.644	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.75	0.368	1	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.75	0.195	1	п	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.75	0.759	1	u u	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.75	0.161	1	п	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.75	0.230	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 09:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	2									
Prepared	d by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.75	0.103	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
100-51-6	Panzul alaahal	BDL	U	μg/l	5.75	0.103	1		0			Х
111-91-1	Benzyl alcohol Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.75	0.105	1				"	X
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.75	0.0805	1				"	X
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.75	0.103	1				"	X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	5.75	1.09	1	"	"	"	"	X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.75	0.264	1	"	"	"	"	X
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.75	0.655	1	"	"	"	"	X
86-74-8	Carbazole	BDL	U	μg/l	5.75	0.207	1	"	"	"	"	X
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.75	0.207	1	"	"	"	"	X
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.75	0.552	1		"	"	"	X
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.75	0.0805	1	"	"	"	"	X
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.75	0.115	1	"	"	"	"	X
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.75	0.0690	1		"	"	"	X
218-01-9	Chrysene	BDL	U	μg/l	5.75	0.0805	1	"	"	"	"	X
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.75	0.0920	1	"	"	"	"	X
132-64-9	Dibenzofuran	BDL	U	μg/l	5.75	0.0690	1		"	"	"	X
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.75	0.184	1	"	"	"	"	^
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.75	0.241	1	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.75	0.253	1	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.75	0.414	1	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.75	0.149	1	"	"	"	"	X
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.75	0.184	1		"	"	"	X
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.75	0.161	1	"	"	"	"	X
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.75	0.264	1	"				X
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.75	0.149	1		"	"	"	X
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.75	0.138	1		"	"	"	X
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.75	0.356	1		"	"	"	X
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.75	0.241	1		"	"	"	X
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.75	0.138	1		"	"	"	X
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.75	0.276	1		"	"	"	X
206-44-0	Fluoranthene	BDL	U	μg/l	5.75	0.138	1	"	"	"	"	X
86-73-7	Fluorene	BDL	U	μg/l	5.75	0.138	1		"	"	"	X
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.75	0.425	1		"	"	"	X
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.75	0.644	1	"	"	"	"	X
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.75	0.425	1		"	"	"	X
67-72-1	Hexachloroethane	BDL	U	μg/l	5.75	0.586	1	"	"	"	"	X
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.75	0.264	1				"	X
78-59-1	Isophorone	BDL	U	μg/l	5.75	0.345	1	"	"	"		X
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.75	0.126	1	"	"	"	"	X
95-48-7	2-Methylphenol	BDL	U	μg/l	5.75	0.241	1	"	"	"	"	X
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	11.5	0.241	1	"	"	"		X
106-39-4, 106-44-5 91-20-3	Naphthalene	BDL	U	μg/l	5.75	0.218	1	"	"	"	"	X
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.75	0.0690	1	"	"	"	"	Х
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.75	0.195	1	"	"	"	"	X
100-01-6	4-Nitroaniline	BDL	U	μg/l	23.0	0.218	1	"	"	"		X
98-95-3	Nitrobenzene	BDL	U	μg/l	5.75	0.207	1	"	"	"		X
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.75	0.264	1	"				X
-3.50	4-Nitrophenol	BDL	U	μg/l	23.0	0.299	1					X

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 09:10

Section Sect	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Property by method SWA64 35 IOC	Semivolat	tile Organic Compounds by GCM	1S										
National Content Section Secti	Semivola	ntile Organic Compounds by SV	V846 8270C	<u> </u>									
Section Sect	Prepared	by method SW846 3510C											
Mathematical Content Mathematical Content	62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.75	0.126	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
Base 9 N-Nitroscotiphenylamine BDL U μg/l 5.75 0.218 1 1	621-64-7	N-Nitrosodi-n-propylamine	BDL	U	ug/l	5.75	0.690	1	m m		"	"	Х
87-86 Pentachlorophened BDL U µg1 2.30 0.388 1 " " " " " " " " "		• • •								"	"	"	Х
Boll Boll		• •							"	"	"		Х
196.862 Phenol BDL U U U U U U U U U		•							"	"	"	"	Х
Pyreme BDL U µg 5.75 0.415 1 0.115	108-95-2		BDL	U		5.75	0.115	1	"	"	"	"	Х
110.881	129-00-0		BDL	U		5.75	0.402	1	"	"	"	"	Х
	110-86-1	•	BDL	U		5.75	0.115	1	"	"	"	"	Х
September Sept	120-82-1	•	BDL	U		5.75	0.0805	1	"	"	"	"	Х
September Sept	90-12-0		BDL	U		5.75	0.126	1	"	"	"	"	
Second S	95-95-4	•	BDL	U	μg/l	5.75	0.115	1	"	"	"	"	Х
Sealer Pentachloronitrobenzene BDL U µg/l 5.75 2.87 1	88-06-2	•	BDL	U		5.75	0.115	1	"	"	"	"	Х
Survey S	82-68-8	·	BDL	U		5.75	2.87	1	"	"	"	"	
	95-94-3		BDL	U		5.75	2.87	1	"	"	"	"	Х
	Surrogate												
15-110	•		71		30-1	30 %				"	"	"	
### 4165-80-0 Nitrobenzene-d5		· · ·							n	"	"	"	
**************************************		•	73							"	"	"	
18-9-8 2,46-firbinomylenal 93 15-110 %	4165-62-2	Phenol-d5	27		15-1	10 %				"	"	"	
15-110		Terphenyl-dl4	69							"	"	"	
Semirolatile Organic Compounds by GC Polychlorinated Biphenyls by SW846 8082 Prepared by method SW846 3510C			93		15-1	10 %				"	"	"	
Properties Pro	Semivolat	tile Organic Compounds by GC											
Prepared by method SW846 3510C 12674-11-2 Aroclor-1016 BDL U µg/l 0.241 0.108 1 SW846 8082 05-Feb-1 09-Feb-10 1003154 0 11104-28-2 Aroclor-1221 BDL U µg/l 0.241 0.014 1 " " " " " " " " "	Polychlor	rinated Biphenyls by SW846 80	82										
12674-11-2 Aroclor-1016 BDL U µg/l 0.241 0.118 I SW846 8082 0.5-Feb.1 0.9-Feb.1 1003154 0.9-Feb.1 10103154 0.9-Feb.1 0.9-Feb.1 10103154 0.9-Feb.1 0	-												
11104-28-2 Aroclor-1221 BDL U µg/l 0.241 0.114 1 " " " " " " 11141-16-5 Aroclor-1232 BDL U µg/l 0.241 0.0894 1 " " " " " " " " "	•	•	BDL	U	μg/l	0.241	0.108	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	Х
Hild-16-5 Arcclor-1221			DDI			0.044	0.444	4					v
Surrogate recoveries:													X
Sade Part													X
126/22-95- Arcclor-1248													X
11096-82-5 Arcclor-1264 BDL U µg/l 0.241 0.129 1 " " " " " " " " "													X
BDL U								1					X
11100-14-4 Aroclor-1268 BDL U μg/l 0.241 0.0602 1 " " " " " " " " "								1		,		,	X
Surrogate recoveries: 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 79 30-150 % " " " " " " " " " 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 84 30-150 % " " " " " " " " " " " " " 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 84 30-150 % " " " " " " " " " " " " 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 84 30-150 % " " " " " " " " " " " " 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 57 30-150 % " " " " " " " " " " " " 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 57 30-150 % " " " " " " " " " " " " " 10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2C] 70 30-150 % " " " " " " " " " " " " " " " " " "													X
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) 79 30-150 % " " " " " " " " " " " " " " " " " "	11100-14-4	Arocior-1268	BUL	U	μg/i	0.241	0.0602						Х
10386-84-2 4,4-DB-Octaffuorobiphenyl (Sr) 84 30-150 % " " " " " " " " " " " " " " " " " "	_								_	_	_	_	
2C] 2051-24-3 Decachlorobiphenyl (Sr) 57 30-150 %													
2051-24-3 Decachlorobiphenyl (Sr) 27 30-150 %	10386-84-2		84		30-1	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C] 70 30-150 %	2051-24-3		57		30-1	50 %			n	"	"	"	
Extractable Petroleum Hydrocarbons TPH 8100 by GC Prepared by method SW846 3510C 8006-61-9 Gasoline BDL U mg/l 0.2 0.1 1 +SW846 05-Feb-1 09-Feb-10 1003122 8100Mod. 0 " " " " " " 68476-30-2 Fuel Oil #2 BDL U mg/l 0.2 0.02 1 " " " " " " 68476-31-3 Fuel Oil #4 BDL U mg/l 0.2 0.02 1 " " " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " " " " " " " " " " " " "									n n	"	"	"	
TPH 8100 by GC Prepared by method SW846 3510C 8006-61-9 Gasoline BDL U mg/l 0.2 0.1 1 1 +SW846 8100Mod. 0 05-Feb-1 09-Feb-10 1003122 8100Mod. 0 68476-30-2 Fuel Oil #2 Fuel Oil #4 BDL U mg/l 0.2 0.2 1 " " " " " " " " " " " " " " " " " "													
Prepared by method SW846 3510C 8006-61-9 Gasoline BDL U mg/l 0.2 0.1 1 +SW846 05-Feb-1 09-Feb-10 1003122 68476-30-2 Fuel Oil #2 BDL U mg/l 0.2 0.2 1 " " " " " 68476-31-3 Fuel Oil #4 BDL U mg/l 0.2 0.02 1 " " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " " " " " " " " " " " " "													
8006-61-9 Gasoline BDL U mg/l 0.2 0.1 1 +SW846 05-Feb-1 09-Feb-10 1003122 8100Mod. 0 68476-30-2 Fuel Oil #2 BDL U mg/l 0.2 0.2 1 " " " " " 68476-31-3 Fuel Oil #4 BDL U mg/l 0.2 0.02 1 " " " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " " " " " " " " " " " " "		 _											
68476-30-2 Fuel Oil #2 68476-31-3 Fuel Oil #4 BDL U mg/l 0.2 0.2 1 " " " " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " " " " " " " " " " " "		•	BDL	U	mg/l	0.2	0.1	1			09-Feb-10	1003122	
68476-31-3 Fuel Oil #4 BDL U mg/l 0.2 0.02 1 " " " " 68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " " " M0980000 Motor Oil BDL U mg/l 0.2 0.2 1 " " " " " " " 0.2 0.2 1 " " " " " " " " " " " " " " " " " "	68476-30-2	Fuel Oil #2	BDL	U	mg/l	0.2	0.2	1	o i uuivi0a. "		"	"	
68553-00-4 Fuel Oil #6 BDL U mg/l 0.2 0.2 1 " " " " " M0980000 Motor Oil BDL U mg/l 0.2 0.2 1 " " " " " 0.2 0.2 1 " " " " " 1 1 1 1 1 1 1 1 1 1 1 1 1					-				u u	"	"	"	
M0980000 Motor Oil BDL U mg/l 0.2 0.2 1 " " " " 0					-				"	"	"	"	
0					-				"	"	"	"	
8032-32-4 Ligroin BDL U mg/l 0.2 0.06 1 " " " " "	0				_	0.2	0.06		"	"	"	"	

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
Unidentified	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
Other Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	BDL	U	mg/l	0.2	0.02	1	II .	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	103		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
√olatile (Organic Compounds											
Prepared	d by method SW846 5030 Wate	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Χ
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	•	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	•	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	•	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	•	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	•	"	"	"	Χ
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	•	"	"	"	Χ
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	•	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	•	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	H	··	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	•	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	•	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	•	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	•	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	•	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	•	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Χ
37-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	X
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	m .	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	m .	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	m .	"	"	"	Χ
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"		"	Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds											
/olatile C	Organic Compounds											
Prepared	l by method SW846 5030 Wate	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
00-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
27-18-4	Tetrachloroethene	1.0		μg/l	1.0	0.7	1	"	"	"	"	Χ
08-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
08-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	u	Х
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	n n	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
79601-23-	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	II	"	"	"	Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	II	"	"	II.	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	95		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	85		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	108		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCM	1 S										
<u>Semivola</u>	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.32	0.128	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.32	0.160	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.32	0.404	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.32	0.160	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.32	0.202	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.32	0.138	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.32	0.596	1	W .	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.32	0.340	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.32	0.181	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.32	0.702	1	II .	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.32	0.149	1	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.32	0.213	1	"	"	"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	2									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.32	0.0957	1	SW846 8270C		11-Feb-10	1003221	Χ
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.32	0.0957	1		0	"		Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.32	0.106	1				"	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.32	0.0957	1	"	"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	5.32	1.01	1	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.32	0.606	1	"	"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	5.32	0.191	1	"	"	"	"	Χ
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.32	0.191	1	"	"	"	"	Χ
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.32	0.511	1	"	"	"	"	Χ
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Χ
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.32	0.0638	1	"	"	"	"	Х
218-01-9	Chrysene	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.32	0.0851	1	"	"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	5.32	0.0638	1	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.32	0.170	1	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.32	0.223	1	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.32	0.234	1	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.32	0.383	1	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.32	0.138	1	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.32	0.170	1	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.32	0.149	1	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.32	0.138	1	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.32	0.128	1	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.32	0.330	1	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.32	0.223	1	"	"	"	u u	Х
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.32	0.128	1	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.32	0.255	1	"	"	"	u u	Х
206-44-0	Fluoranthene	BDL	U	μg/l	5.32	0.128	1	"	"	"	"	Χ
86-73-7	Fluorene	BDL	U	μg/l	5.32	0.128	1	"	"	"	u u	Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.32	0.394	1	"	"	"	u u	Х
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.32	0.596	1	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.32	0.394	1	"	"	"	"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	5.32	0.543	1	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Х
78-59-1	Isophorone	BDL	U	μg/l	5.32	0.319	1	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1	"	"	"	"	Х
95-48-7	2-Methylphenol	BDL	U	μg/l	5.32	0.223	1	"	"	"	"	Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	10.6	0.255	1	"	"	"	"	Х
106-44-5 91-20-3	Naphthalene	BDL	U	μg/l	5.32	0.202	1	"	"	"	"	Х
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.32	0.0638	1	"	"	"	"	Х
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.32	0.181	1	"	"	"	"	Х
100-01-6	4-Nitroaniline	BDL	U	μg/l	21.3	0.202	1	"	"	"	"	Х
98-95-3	Nitrobenzene	BDL	U	μg/l	5.32	0.191	1	"	"	"	"	Х
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Х
100-02-7	4-Nitrophenol	BDL	U	μg/l	21.3	0.277	1	"	"	"		Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 10:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	18										
Semivola	atile Organic Compounds by SV	V846 8270C										
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.32	0.117	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.32	0.638	1	"	"	"	"	Χ
36-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.32	0.202	1	"	"	"	"	Χ
37-86-5	Pentachlorophenol	BDL	U	μg/l	21.3	0.340	1	"	"	"	"	Χ
5-01-8	Phenanthrene	BDL	U	μg/l	5.32	0.245	1	"	"	"	"	Χ
08-95-2	Phenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
29-00-0	Pyrene	BDL	U	μg/l	5.32	0.372	1	"	"	"	"	Χ
10-86-1	Pyridine	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.32	0.0745	1	"	"	"	"	Χ
0-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.32	0.117	1	"	"	"	"	
5-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	"	"	"	"	Χ
8-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.32	0.106	1	n .	"	"	"	Х
32-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.32	2.66	1	n .	"	"	"	
5-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.32	2.66	1	"	"	"	"	Χ
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	69		30-1	30 %			"	"	"	"	
867-12-4	2-Fluorophenol	47		15-1	10 %			"	"	"	"	
165-60-0	Nitrobenzene-d5	71		30-1	30 %			"	"	"	"	
165-62-2	Phenol-d5	24		15-1	10 %			"	"	"	"	
718-51-0	Terphenyl-dl4	60		30-1	30 %			"	"	"	"	
18-79-6	2,4,6-Tribromophenol	90		15-1	10 %			"	"	"	"	
•	d by method SW846 3510C 2 Aroclor-1016	BDL	U	μg/l	0.208	0.0934	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	Х
1104-28-2	2 Aroclor-1221	BDL	U	μg/l	0.208	0.0986	1	"	0	"	"	Х
	5 Aroclor-1232	BDL	U	μg/l	0.208	0.0773	1	"	"	"	"	Х
	Aroclor-1242	BDL	U	μg/l	0.208	0.108	1	"	"	"	"	Х
	Aroclor-1248	BDL	U	μg/l	0.208	0.0859	1	"	"	"	"	Х
	Aroclor-1254	BDL	U	μg/l	0.208	0.145	1	"	"	"	"	Х
	5 Aroclor-1260	BDL	U	μg/l	0.208	0.112	1	"	"	"		Х
	Aroclor-1262	BDL	U	μg/l	0.208	0.0693	1	"	"	"		Х
	Aroclor-1268	BDL	U	μg/l	0.208	0.0520	1	"	"	"	"	Х
Surrogate	recoveries:											
0386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr)	84		30-1	50 %			II .	"	"	"	
								m .		"	"	
0386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr) [2C]	89		30-1	50 %							
	2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	89 74			50 % 50 %			"	"	"	"	
2051-24-3	[2C]			30-1				" "	"	"	"	
2051-24-3 2051-24-3	[2C] Decachlorobiphenyl (Sr)	74		30-1	50 %			"	"	"		
2051-24-3 2051-24-3 Extractal	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]	74		30-1	50 %				"	"		
051-24-3 051-24-3 Extractal	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons	74		30-1	50 %			"	"	"		
2051-24-3 2051-24-3 Extractal FPH 810 Prepared	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC	74	U	30-1	50 %	0.1	1	" " +SW846 8100Mod.	" 05-Feb-1	" " 09-Feb-10	"	
2051-24-3 2051-24-3 Extractal PH 810 Prepared	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C	74 90	U	30-1 30-1	50 % 50 %	0.1 0.1	1	+SW846 8100Mod.	n	"	"	
2051-24-3 2051-24-3 Extractal FPH 810 Prepared 2006-61-9	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C Gasoline	74 90 BDL		30-1 30-1 mg/l	50 % 50 % 0.2				05-Feb-1 0	"	1003122	
2051-24-3 2051-24-3 Extractal FPH 810 Prepared 3006-61-9 38476-31-3	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C Gasoline 2 Fuel Oil #2	74 90 BDL BDL	U	30-1 30-1 mg/l mg/l	50 % 50 % 0.2 0.2	0.1	1		05-Feb-1 0	"	1003122	
2051-24-3 2051-24-3 2051-24-3 Extractal FPH 810 Prepared 3006-61-9 38476-30-2 58553-00-4	[2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C Gasoline 2 Fuel Oil #2 3 Fuel Oil #4	74 90 BDL BDL BDL	U U	30-1 30-1 mg/l mg/l mg/l	50 % 50 % 0.2 0.2 0.2	0.1 0.02	1 1		05-Feb-1 0	"	1003122	

Sample Identification
MW-402Client Project #
191710024/200Matrix
Ground WaterCollection Date/Time
03-Feb-10 10:10

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.05	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/l	0.2	0.05	1	"	"	"	"	
Unidentified	BDL	U	mg/l	0.2	0.05	1	"	"	"	"	
Other Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	93		40-1	40 %			"	"	"	"	

Received

04-Feb-10

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 11:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds											
	Organic Compounds											
repared	d by method SW846 5030 Wate	er MS										
6-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
7-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	•	"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
3-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
8-90-7	Chlorobenzene	1.4		μg/l	1.0	0.5	1		"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
'-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
11-73-1	1,3-Dichlorobenzene	1.2		μg/l	1.0	0.5	1				"	Х
06-46-7	1,4-Dichlorobenzene	10.6		μg/l	1.0	0.5	1				"	X
5-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1				"	Х
	(Freon12)							,,				
5-34-3	1,1-Dichloroethane	BDL	U	μg/l 	1.0	0.6	1			"		χ.
)7-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"				>
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
6-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"				Х
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1					X
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
3-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	X
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
0-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
'-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
1-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Х
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	X
-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
34-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	X
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	X
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"		"	Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 11:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
	11)				4.0							.,
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l "	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"				X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
75-01-4	Vinyl chloride	BDL	U	μg/l 	1.0	0.9	1	"				X
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"				Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	X
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98			30 %			"	"	"	"	
2037-26-5	Toluene-d8	85		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111			30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	106		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	MS										
Semivola	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.38	0.129	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.38	0.161	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.38	0.409	1	H	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.38	0.161	1	H	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.38	0.204	1	u u	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.38	0.140	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.38	0.602	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.38	0.344	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.38	0.183	1	п	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.38	0.710	1	u u	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.38	0.151	1	п	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.38	0.215	1	"			"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 11:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	<u> </u>									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.38	0.0968	1	SW846 8270C		11-Feb-10	1003221	Χ
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.38	0.0968	1	"	0	"		Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.38	0.108	1	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.38	0.0753	1	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.38	0.0968	1		"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	3.47	J	μg/l	5.38	1.02	1	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.38	0.247	1	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.38	0.613	1	"	"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	5.38	0.194	1	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.38	0.194	1	"	"	"	"	Х
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.38	0.516	1		"	"	"	Х
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.38	0.0753	1		"	"	"	Х
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.38	0.108	1	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.38	0.0645	1		"	"	"	Х
218-01-9	Chrysene	BDL	U	μg/l	5.38	0.0753	1		"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.38	0.0860	1		"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	5.38	0.0645	1		"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.38	0.172	1		"	"	"	
541-73-1	1,3-Dichlorobenzene	0.806	J	μg/l	5.38	0.226	1	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	6.75		μg/l	5.38	0.237	1	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.38	0.387	1	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.38	0.140	1	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.38	0.172	1	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.38	0.151	1	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.38	0.247	1		"	"	"	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.38	0.140	1	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.38	0.129	1	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.38	0.333	1	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.38	0.226	1	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.38	0.129	1	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.38	0.258	1		"	"	"	Х
206-44-0	Fluoranthene	BDL	U	μg/l	5.38	0.129	1	"	"	"	"	Х
86-73-7	Fluorene	BDL	U	μg/l	5.38	0.129	1	"	"	"	"	Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.38	0.398	1	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.38	0.602	1		"	"	"	Х
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.38	0.398	1	"	"	"	"	Х
67-72-1	Hexachloroethane	BDL	U	μg/l	5.38	0.548	1	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.38	0.247	1	"	"	"	"	Х
78-59-1	Isophorone	BDL	U	μg/l	5.38	0.323	1		"	"	"	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.38	0.118	1	"	"	"	"	Х
95-48-7	2-Methylphenol	BDL	U	μg/l	5.38	0.226	1	"				Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	10.8	0.258	1	"	"	"	"	Х
106-44-5 91-20-3	Naphthalene	BDL	U	μg/l	5.38	0.204	1	"			"	Х
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.38	0.0645	1	"	"	"	"	Х
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.38	0.183	1	m .	"	"	"	Х
100-01-6	4-Nitroaniline	BDL	U	μg/l	21.5	0.204	1	m .	"	"	"	Х
98-95-3	Nitrobenzene	BDL	U	μg/l	5.38	0.194	1	"	"	"	"	Х
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.38	0.247	1	m .	"	"	"	Х
100-02-7	4-Nitrophenol	BDL	U	μg/l	21.5	0.280	1	"	"	"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 11:30

	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	1 S										
Semivola	atile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.38	0.118	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.38	0.645	1	"	"	"	"	Х
36-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.38	0.204	1	"	"	"	"	Χ
87-86-5	Pentachlorophenol	BDL	U	μg/l	21.5	0.344	1	"	"	"	"	Χ
85-01-8	Phenanthrene	BDL	U	μg/l	5.38	0.247	1	"	"	"	"	Χ
08-95-2	Phenol	BDL	U	μg/l	5.38	0.108	1	"	"	"	"	Х
29-00-0	Pyrene	BDL	U	μg/l	5.38	0.376	1	"	"	"	"	X
10-86-1	Pyridine	BDL	U	μg/l	5.38	0.108	1	"	"	"	"	Х
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.38	0.0753	1	"	"	"	"	Х
0-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.38	0.118	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.38	0.108	1	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.38	0.108	1	"	"	"	"	Χ
32-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.38	2.69	1	"	"	"	"	
5-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.38	2.69	1	"	"	"	"	Х
Surrogate	e recoveries:											
321-60-8	2-Fluorobiphenyl	71		30-1	30 %			"	"	"	"	
867-12-4	2-Fluorophenol	51		15-1	10 %			"	"	"	"	
165-60-0	Nitrobenzene-d5	73		30-1	30 %			"	"	"	"	
165-62-2	Phenol-d5	26		15-1	10 %			"	"	"	"	
718-51-0	Terphenyl-dl4	43		30-1	30 %			"	"	"	"	
18-79-6	2,4,6-Tribromophenol	114	SGC	15-1	10 %			"	"	"	"	
repared	d by method SW846 3510C											
2674-11-2	2 Aroclor-1016	BDL	U	μg/l	0.230	0.103	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	Х
								SW846 8082	05-Feb-1 0 "	09-Feb-10	1003154	
1104-28-2	2 Aroclor-1221	BDL	U	μg/l	0.230	0.109	1		0			Х
1104-28-2 1141-16-5	2 Aroclor-1221 5 Aroclor-1232	BDL BDL	U U	μg/l μg/l	0.230 0.230	0.109 0.0853	1 1	"	0	n.		X X
1104-28-2 1141-16-5 3469-21-9	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242	BDL BDL BDL	U U U	µg/l µg/l µg/l	0.230 0.230 0.230	0.109 0.0853 0.120	1 1 1	"	0	"	"	X X X
1104-28-2 1141-16-5 3469-21-9 2672-29-6	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248	BDL BDL BDL BDL	U U	µg/l µg/l µg/l	0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948	1 1 1	" "	0	11 11		X X X
1104-28-2 1141-16-5 3469-21-9 2672-29-6 1097-69-1	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254	BDL BDL BDL BDL BDL	U U U	µg/I µg/I µg/I µg/I	0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160	1 1 1	" " " " " " " " " " " " " " " " " " " "	0	11 11	n n n	X X X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260	BDL BDL BDL BDL BDL 0.138	n n n	ha\l ha\l ha\l ha\l	0.230 0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160 0.0852	1 1 1 1 1	" " " " " " " " " " " " " " " " " " " "	0	11 11	n n n	x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254	BDL BDL BDL BDL BDL	U U U	µg/I µg/I µg/I µg/I	0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160	1 1 1 1	" " " " " " " " " " " " " " " " " " " "	0	11 11	n n n	x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262	BDL BDL BDL BDL BDL 0.138 BDL	U U U U	hā\I hā\I hā\I hā\I hā\I	0.230 0.230 0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
11104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268	BDL BDL BDL BDL BDL 0.138 BDL	U U U U	hā\I hā\I hā\I hā\I hā\I hā\I	0.230 0.230 0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x x
1104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4 Surrogate 10386-84-2	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 6 Aroclor-1254 5 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 9 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL 0.138 BDL BDL	U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0	" " " " " " " " " " " " " " " " " " " "		x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4 5urrogate 10386-84-2	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 9 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL 0.138 BDL BDL	U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0			x x x x x x
11104-28-2 11141-16-5 53469-21-5 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 9 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL 0.138 BDL BDL	U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0			x x x x x x
1104-28-2 1141-16-5 3469-21-5 2672-29-6 1097-69-1 1096-82-5 17324-23-5 1100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL 0.138 BDL BDL 79 90	U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0			x x x x x x
1104-28-2 11141-16-5 53469-21-5 2672-29-6 11097-69-1 11096-82-5 67324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 2 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL 0.138 BDL BDL 79 90	U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0			x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4 5 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 9 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 (2C) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL 0.138 BDL BDL 79 90	U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1		0			x x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC	BDL BDL BDL 0.138 BDL BDL 79 90	U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765	1 1 1 1 1 1	" " " " " " " " " " " " " " "	0 " " " " " "			x x x x x
11104-28-2 11141-16-5 13469-21-9 12672-29-6 11097-69-1 11096-82-5 1324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal FPH 810 Prepared	2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 6 Aroclor-1268 7 recoveries: 7 2 4,4-DB-Octafluorobiphenyl (Sr) 7 2 2 4,4-DB-Octafluorobiphenyl (Sr) 7 2 2 (Special Control of the Petroleum Hydrocarbons) 8 DO by GC 8 do by method SW846 3510C	BDL BDL BDL 0.138 BDL BDL 79 90 67 75	O O	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 % 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765 0.0574	1 1 1 1 1 1 1					x x x x x
11104-28-2 11141-16-5 13469-21-5 12672-29-6 11097-69-1 11096-82-5 87324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal FPH 810 Prepared 8006-61-9	2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Collaboration (Sr) Decachlorobiphenyl (Sr)	BDL BDL BDL 0.138 BDL BDL 79 90 67 75	O O O	µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 % 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765 0.0574	1 1 1 1 1 1 1	" " " " " " " " " " " " " " "	0 " " " " " " " 05-Feb-1		"""""""""""""""""""""""""""""""""""""""	x x x x x
11104-28-2 11141-16-5 13469-21-5 12672-29-6 11097-69-1 11096-82-5 137324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-3	2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1248 6 Aroclor-1254 5 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 6 Aroclor-1268 6 Precoveries: 7 2 4,4-DB-Octafluorobiphenyl (Sr) 7 2 4,4-DB-Octafluorobiphenyl (Sr) 7 2 2 (Aroclor-1268 8 Precoveries: 9 4,4-DB-Octafluorobiphenyl (Sr) 9 1 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	BDL BDL BDL 0.138 BDL BDL 79 90 67 75 BDL BDL	U U U U U U U U U U U U U U U U U U U	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 % 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765 0.0574	1 1 1 1 1 1 1	" " " " " " " " " " " " " " "	0 " " " " " " " 05-Feb-1		"""""""""""""""""""""""""""""""""""""""	x x x x x
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Preparec 3006-61-9 58476-30-2 58476-30-2	2 Aroclor-1221 5 Aroclor-1232 6 Aroclor-1242 6 Aroclor-1248 6 Aroclor-1254 6 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Color Petroleum Hydrocarbons Color Decachlorobiphenyl (Sr) Color Sw846 3510C Color Gasoline Color Fuel Oil #2 Color Fuel Oil #4	BDL BDL BDL O.138 BDL BDL 79 90 67 75 BDL BDL BDL BDL	U U U U U U U U U U U U U U U U U U U	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.230 50 % 50 %	0.109 0.0853 0.120 0.0948 0.160 0.0852 0.0765 0.0574 0.1 0.2 0.02	1 1 1 1 1 1 1 1	" " " " " " " " " " " " " " "	0 " " " " " " " 05-Feb-1		1003122	x x x x x

Sample Identification MW-302 SB07608-11

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 11:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractab	ole Petroleum Hydrocarbons											
TPH 810	0 by GC											
Prepared	by method SW846 3510C											
J00100000	Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846	05-Feb-1	09-Feb-10	1003122	
								8100Mod.	0			
	Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
	Dielectric Fluid	Calculate	d asZ-2	mg/l	0.2	0.06	1	"	"	"	"	
	Unidentified	11.2		mg/l	0.2	0.06	1	"	"	"	"	
	Other Oil	Calculate	d as	mg/l	0.2	0.02	1	"	"	"	"	
	Total Petroleum Hydrocarbons	11.2		mg/l	0.2	0.02	1	II .	"	"	"	
Surrogate	recoveries:											
3386-33-2	1-Chlorooctadecane	93		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 16:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	0	16-Feb-10	1003671	Χ
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	2.6		μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	•	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	0.7	J	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	2.3		μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	26.1		μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	H .	"	"	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	II .	"	"	"	Х
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1		"	"	"	Χ
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	m .	"	"	"	Х
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"		"	"	Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 16:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds				_							
Volatile C	Organic Compounds											
Prepared	l by method SW846 5030 Wate	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	X
96-18-4	11) 1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	n n	"	"		Х
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1					X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	n n	"	"		X
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	n n	"	"		Х
	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Х
1 95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"			Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	n n	"	"		
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	n	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	n	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	n	"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	n	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	n	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	n	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	n n	"	"		Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
 Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	96		70-1	30 %			n	"	"	"	
2037-26-5	Toluene-d8	86		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCM	1S										
Semivola	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.88	0.141	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Χ
208-96-8	Acenaphthylene	BDL	U	μg/l	5.88	0.176	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.88	0.447	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.88	0.176	1	"	"	"	"	X
1912-24-9	Atrazine	BDL	U	μg/l	5.88	0.224	1	II .	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.88	0.153	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.88	0.659	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.88	0.376	1	u u	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.88	0.200	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.88	0.776	1	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.88	0.165	1	"	"	"	"	X
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.88	0.235	1	"	"	"	"	X

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 16:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	2									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.88	0.106	1	SW846 8270C		11-Feb-10	1003221	Χ
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.88	0.106	1	"	0	"		Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.88	0.0824	1	"	"	"	"	Х
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.88	0.106	1	"	"	"	"	Х
117-81-7	Bis(2-ethylhexyl)phthalate	1.74	J	μg/l	5.88	1.12	1	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.88	0.671	1	"	"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	5.88	0.212	1	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.88	0.212	1	"	"	"	"	Х
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.88	0.565	1	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.88	0.0824	1	"	"	"	"	Х
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.88	0.0706	1	"	"	"	"	Х
218-01-9	Chrysene	BDL	U	μg/l	5.88	0.0824	1	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.88	0.0941	1	"	"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	5.88	0.0706	1	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.88	0.188	1	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	1.59	J	μg/l	5.88	0.247	1	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	16.3		μg/l	5.88	0.259	1	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.88	0.424	1	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.88	0.153	1	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.88	0.188	1	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.88	0.165	1	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.88	0.153	1	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.88	0.141	1	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.88	0.365	1	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.88	0.247	1	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.88	0.141	1	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.88	0.282	1	"	"	"	"	Х
206-44-0	Fluoranthene	BDL	U	μg/l	5.88	0.141	1	"	"	"	"	Х
86-73-7	Fluorene	BDL	U	μg/l	5.88	0.141	1	"	"	"	"	Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.88	0.435	1	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.88	0.659	1	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.88	0.435	1	"	"	"	"	Х
67-72-1	Hexachloroethane	BDL	U	μg/l	5.88	0.600	1	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
78-59-1	Isophorone	BDL	U	μg/l	5.88	0.353	1	"				Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.88	0.129	1	"		"		Х
95-48-7	2-Methylphenol	BDL	U	μg/l	5.88	0.247	1	"				Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	11.8	0.282	1	"	"	"	"	X
106-44-5 91-20-3	Naphthalene	BDL	U	μg/l	5.88	0.224	1	n .		"	"	X
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.88	0.0706	1	"	"	"	"	Х
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.88	0.200	1	"	"	"	"	Х
100-01-6	4-Nitroaniline	BDL	U	μg/l	23.5	0.224	1	"	"	"	"	Х
98-95-3	Nitrobenzene	BDL	U	μg/l	5.88	0.212	1	"	"	"	"	Х
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
100-02-7	4-Nitrophenol	BDL	U	μg/l	23.5	0.306	1	"				Х

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 16:35

Semivola	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
	atile Organic Compounds by GCM	1S										
Semivola	atile Organic Compounds by SV	V846 82700	<u> </u>									
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.88	0.129	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.88	0.706	1	"	0	"		Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.88	0.224	1	"			"	X
87-86-5	Pentachlorophenol	BDL	U	μg/l	23.5	0.376	1	"	"	"		Х
85-01-8	Phenanthrene	BDL	U	μg/l	5.88	0.271	1	"	"	"	"	Х
108-95-2	Phenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
129-00-0	Pyrene	BDL	U	μg/l	5.88	0.412	1	"	"	"	"	Х
110-86-1	Pyridine	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.88	0.0824	1	"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.88	0.129	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.88	0.118	1	"	"	"	"	Х
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.88	2.94	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.88	2.94	1	"	"	"	"	X
Surrogate	e recoveries:											
321-60-8	2-Fluorobiphenyl	70		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	53		15-1	10 %			"	"	"	"	
4165-60-0	Nitrobenzene-d5	74		30-1	30 %			"	"	"	"	
4165-62-2	Phenol-d5	28		15-1	10 %			"	"	"	"	
1718-51-0	Terphenyl-dl4	50		30-1	30 %			"	"	"	"	
118-79-6	2,4,6-Tribromophenol	110		15-1	10 %			"	"	"	"	
Semivola	ntile Organic Compounds by GC											
Polychlo	orinated Biphenyls by SW846 80	82										
Prepared	d by method SW846 3510C											
12674-11-2	2 Aroclor-1016	BDL	U	μg/l	0.211	0.0943	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	Χ
11104 28 5	2 Aroclor-1221	BDL	U	μg/l	0.211	0.0997	1	"	0			Х
	5 Aroclor-1232	BDL	U	μg/l	0.211	0.0781	1	"		"	"	X
	9 Aroclor-1242	BDL	U	μg/l	0.211	0.110	1	"				X
	6 Aroclor-1248	BDL	U	μg/l	0.211	0.0868	1	"				X
	1 Aroclor-1254	BDL	U	μg/l	0.211					,,		
11001-00-1		0.655	Ü		0.211	N 146		"	"	"	"	
	5 A100101-1200			ua/l	0.211	0.146	1	" "		"	"	Х
11096-82-5	5 Araclar-1262		Ш	μg/l μα/l	0.211	0.0780	1	" "	" "	" "	"	X X
11096-82-5 37324-23-5	5 Aroclor-1262	BDL	U	μg/l	0.211	0.0780 0.0700	1	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "		X X X
11096-82-5 37324-23-5 11100-14-4	4 Aroclor-1268		U U			0.0780	1		"	"	"	X X
11096-82-5 37324-23-5 11100-14-4 Surrogate	4 Aroclor-1268 e recoveries:	BDL BDL		µg/l µg/l	0.211 0.211	0.0780 0.0700	1		"	"	"	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL 83		μg/l μg/l 30-1	0.211 0.211 50 %	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL		μg/l μg/l 30-1	0.211 0.211	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL 83		μg/l μg/l 30-1 30-1	0.211 0.211 50 %	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL 83 88		μg/l μg/l 30-1 30-1	0.211 0.211 50 % 50 %	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL 83 88 59		μg/l μg/l 30-1 30-1	0.211 0.211 50 % 50 %	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]	BDL BDL 83 88 59		μg/l μg/l 30-1 30-1	0.211 0.211 50 % 50 %	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons	BDL BDL 83 88 59		μg/l μg/l 30-1 30-1	0.211 0.211 50 % 50 %	0.0780 0.0700	1		"	"	" "	X X X
11096-82-5 37324-23-5 11100-14-4 	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC	BDL BDL 83 88 59		μg/l μg/l 30-1 30-1	0.211 0.211 50 % 50 %	0.0780 0.0700	1	" " " +SW846	" " " " " " 05-Feb-1	"		X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C	83 88 59 68	U	μg/l μg/l 30-1 30-1 30-1	0.211 0.211 50 % 50 % 50 %	0.0780 0.0700 0.0526	1 1 1					X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 Extractal TPH 810 Prepared 8006-61-9	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C Gasoline	83 88 59 68	U	μg/l μg/l 30-1 30-1 30-1 mg/l	0.211 0.211 50 % 50 % 50 % 50 %	0.0780 0.0700 0.0526	1 1 1	" " " +SW846	" " " " " 05-Feb-1		"""""""""""""""""""""""""""""""""""""""	X X X
11096-82-5 37324-23-5 11100-14-4 <i>Surrogate</i> 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C Gasoline 2 Fuel Oil #2	83 88 59 68 BDL BDL	U U U	μg/l μg/l 30-1 30-1 30-1 mg/l mg/l	0.211 0.211 50 % 50 % 50 % 0.2 0.2	0.0780 0.0700 0.0526 0.1	1 1 1 1	" " " +SW846 8100Mod.	" " " " " 05-Feb-1		"""""""""""""""""""""""""""""""""""""""	X X X
11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Prepared 8006-61-9 68476-30-2 68476-31-3 68553-00-4	4 Aroclor-1268 e recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC d by method SW846 3510C Gasoline 2 Fuel Oil #2 3 Fuel Oil #4	83 88 59 68 BDL BDL BDL	U U U	μg/l μg/l 30-1 30-1 30-1 mg/l mg/l	0.211 0.211 50 % 50 % 50 % 0.2 0.2 0.2	0.0780 0.0700 0.0526 0.1 0.1 0.02	1 1 1 1 1	" " " +SW846 8100Mod.	" " " " " 05-Feb-1		1003122	X X X

Sample Identification MW-602 SB07608-12

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 16:35

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	Calculate	d asZ-2	mg/l	0.2	0.06	1	"	"	"	"	
Unidentified	7.8		mg/l	0.2	0.06	1	"	"	"	"	
Other Oil	Calculate	d as	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	7.8		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	81		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

Volatile C	Organic Compounds Organic Compounds I by method SW846 5030 Wate											
Prepared 76-13-1 67-64-1												
76-13-1 37-64-1	I by method SW846 5030 Water											
67-64-1		er MS										
	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Χ
107-13-1	Acetone	BDL	U	μg/l	10.0	4.6	1		"	"	"	Х
	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Х
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1		"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1		"	"	"	Х
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1	u	"	"	u u	X
75-34-3	(Freon12) 1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"		"		Х
107-06-2		BDL	U	μg/l	1.0	0.6	1	"		"		X
75-35-4	1,2-Dichloroethane 1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1					X
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1					X
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1		,,	,	"	X
78-87-5	,	BDL	U	μg/l	1.0	0.5	1					X
76-67-5 142-28-9	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.7	1		,,	,,	"	X
	1,3-Dichloropropane	BDL	U		1.0	0.6	1	"	"	"	"	X
594-20-7 563-58-6	2,2-Dichloropropane	BDL	U	μg/l μg/l	1.0	0.8	1		,,	,,	"	X
	1,1-Dichloropropene	BDL	U		0.5	0.4	1		,,	,,	"	X
	cis-1,3-Dichloropropene	BDL		μg/l	0.5	0.4	1			"	"	X
	trans-1,3-Dichloropropene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	X
100-41-4	Ethylbenzene	BDL		μg/l	0.5	0.5	1		,,	,,	"	X
37-68-3 501 79 6	Hexachlorobutadiene	BDL	U	μg/l	10.0	2.7	1	n n	,,			X
	2-Hexanone (MBK)		U	μg/l				11	"	"		
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"			X
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1					X
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"		X
75-09-2 91-20-3	Methylene chloride Naphthalene	BDL BDL	U U	μg/l μg/l	5.0 1.0	0.6 1.0	1 1	"	"	"	"	X X

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	r MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
00-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
27-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
37-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
06 40 4	11)	BDI	U	ua/l	1.0	0.0	1				"	V
96-18-4	1,2,3-Trichloropropane	BDL		μg/l	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL BDL	U U	μg/l	1.0 1.0	0.4 0.5	1				"	X X
108-67-8	1,3,5-Trimethylbenzene			µg/l		0.9	1				"	X
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0		1					
1	m,p-Xylene	BDL	U	μg/l	2.0	1.0						Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
37-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	X
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	94			30 %			"	"	"	"	
2037-26-5	Toluene-d8	87		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			30 %			"	"	"	"	
	Dibromofluoromethane	108		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	1S										
Semivola	tile Organic Compounds by SV	V846 8270C	<u>}</u>									
Prepared	by method SW846 3510C											
33-32-9	Acenaphthene	BDL	U	μg/l	5.81	0.140	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.81	0.174	1	"	"	"	"	Χ
62-53-3	Aniline	BDL	U	μg/l	5.81	0.442	1	"	"	"	"	Χ
20-12-7	Anthracene	BDL	U	μg/l	5.81	0.174	1	W .	"	"	"	Χ
912-24-9	Atrazine	BDL	U	μg/l	5.81	0.221	1	"	"	"	"	
03-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.81	0.151	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.81	0.651	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.81	0.372	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.81	0.198	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.81	0.767	1	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.81	0.163	1	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.81	0.233	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	<u>2</u>									
Prepared	d by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.81	0.105	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
100 51 0	Danned alaskal	BDL		ua/l	E 01	0.105	1	"	0	"		~
100-51-6	Benzyl alcohol		U	μg/l	5.81		1	"				X
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.81	0.116	1	"				X
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.81	0.0814	1	"				X
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.81	0.105	1			"		X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	5.81	1.10	1			"		X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.81	0.267	1			"		X
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.81	0.663	1			"		X
86-74-8	Carbazole	BDL	U	μg/l	5.81	0.209	1	"		"		X
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.81	0.209	1			"		X
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.81	0.558	1			"		X
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	5.81	0.0814	1					X
95-57-8	2-Chlorophenol	BDL	U	μg/l	5.81	0.116	1			"		X
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.81	0.0698	1					X
218-01-9	Chrysene	BDL	U	μg/l	5.81	0.0814	1					X
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.81	0.0930	1			"		X
132-64-9	Dibenzofuran	BDL	U	μg/l	5.81	0.0698	1			"		Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.81	0.186	1					
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.81	0.244	1			"		
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.81	0.256	1					V
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.81	0.419	1			"		X
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.81	0.151	1					X
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.81	0.186	1					X
131-11-3	Dimethyl phthalate	BDL	U	μg/l	5.81	0.163	1					X
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	5.81	0.267	1					X
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.81	0.151	1					X
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.81	0.140	1					X
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	5.81	0.360	1					X
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.81	0.244	1					X
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.81	0.140	1					X
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	5.81	0.279	1					X
206-44-0	Fluoranthene	BDL	U 	μg/l	5.81	0.140	1					X
86-73-7	Fluorene	BDL	U 	μg/l	5.81	0.140	1					X
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.81	0.430	1					X
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.81	0.651	1					X
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.81	0.430	1					X
67-72-1	Hexachloroethane	BDL	U	μg/l	5.81	0.593	1					X
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.81	0.267	1	"		"	"	X
78-59-1	Isophorone	BDL	U	μg/l	5.81	0.349	1	"		"		X
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.81	0.128	1	"		"	"	X
95-48-7	2-Methylphenol	BDL	U	μg/l	5.81	0.244	1	"		"	"	X
108-39-4, 106-44-5	3 & 4-Methylphenol	BDL	U	μg/l	11.6	0.279	1	"	"	"	"	X
91-20-3	Naphthalene	BDL	U 	μg/l	5.81	0.221	1					X
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.81	0.0698	1			"		X
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.81	0.198	1		"	"	"	X
100-01-6	4-Nitroaniline	BDL	U	μg/l	23.3	0.221	1	"	"	"	"	Χ
98-95-3	Nitrobenzene	BDL	U	μg/l	5.81	0.209	1	"	"	"	"	Х
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.81	0.267	1	"	"	"	"	Χ
100-02-7	4-Nitrophenol	BDL	U	μg/l	23.3	0.302	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 08:25

	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	18										
Semivola	atile Organic Compounds by SV	V846 82700	<u> </u>									
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.81	0.128	1	SW846 8270C	08-Feb-1	11-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.81	0.698	1		0			Х
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.81	0.030	1			"	"	X
87-86-5	Pentachlorophenol	BDL	U	μg/l	23.3	0.372	1					X
85-01-8	Phenanthrene	BDL	U	μg/l	5.81	0.267	1			"		Х
108-95-2	Phenol	BDL	U	μg/l	5.81	0.116	1		"	"	"	Х
129-00-0	Pyrene	BDL	U	μg/l	5.81	0.407	1		"	"	"	Х
110-86-1	Pyridine	BDL	U	μg/l	5.81	0.116	1		"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.81	0.0814	1		"	"	"	Х
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.81	0.128	1		"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.81	0.116	1		"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.81	0.116	1		"	"	"	Х
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.81	2.91	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.81	2.91	1				"	Х
	e recoveries:											
321-60-8	2-Fluorobiphenyl	75		30-1	30 %					"	"	
367-12-4	2-Fluorophenol	58			10 %					"	"	
4165-60-0		82			30 %							
1165-62-2		31			10 %					"	"	
1718-51-0		68			30 %							
118-79-6	2,4,6-Tribromophenol	103			10 %				"	"	"	
	d by method SW846 3510C 2 Aroclor-1016	BDL	U	μg/l	0.250	0.112	1	SW846 8082	05-Feb-1	09-Feb-10	1003154	X
12674-11-2	2 Aroclor-1016								0			
12674-11-2 11104-28-2	2 Aroclor-1016 2 Aroclor-1221	BDL	U	μg/l	0.250	0.118	1	SW846 8082		09-Feb-10 "	1003154	Х
12674-11-2 11104-28-2 11141-16-5	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232	BDL BDL	U U	μg/l μg/l	0.250 0.250	0.118 0.0927	1 1	n	0	W.	"	X X
12674-11-2 11104-28-2 11141-16-5 53469-21-9	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242	BDL BDL BDL	U U U	µg/l µg/l µg/l	0.250 0.250 0.250	0.118 0.0927 0.130	1 1 1	"	0	"	"	X X X
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248	BDL BDL BDL BDL	U U U	hā\l hā\l hā\l	0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103	1 1 1	"	0 "	n n	"	X X X
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254	BDL BDL BDL BDL BDL	U U U U	hg/l hg/l hg/l	0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174	1 1 1 1	"	0	" "	" "	x x x x
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260	BDL BDL BDL BDL BDL BDL	U U U U	hā\l hā\l hā\l hā\l	0.250 0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174 0.0926	1 1 1 1 1	"	0	" "	" "	x x x x x
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262	BDL BDL BDL BDL BDL BDL	U U U U U	ha\l ha\l ha\l ha\l ha\l	0.250 0.250 0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	"	0	" "	" "	x x x x x x
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268	BDL BDL BDL BDL BDL BDL	U U U U	hā\l hā\l hā\l hā\l	0.250 0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174 0.0926	1 1 1 1 1	•	0		" " " " " " " " " " " " " " " " " " " "	x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 111100-14-4 	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 e recoveries:	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	hā\l hā\l hā\l hā\l hā\l	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0		" " " " " " " " " " " " " " " " " " " "	x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0		" " " " " " " " " " " " " " " " " " " "	x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 111100-14-4 Surrogate 10386-84-2	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1242 6 Aroclor-1254 5 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0			x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1242 6 Aroclor-1254 5 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0		" " " " " " " " " " " " " " " " " " " "	x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 2 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C]	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0			x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0			x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 37324-23-5 11100-14-4 5Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1242 6 Aroclor-1254 5 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0			x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Preparec	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1242 5 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Deby GC d by method SW846 3510C	BDL BDL BDL BDL BDL BDL BDL 56 66	U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 % 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832 0.0624	1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "	x x x x x x
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Preparec	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1242 6 Aroclor-1254 5 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] ble Petroleum Hydrocarbons 00 by GC	BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832	1 1 1 1 1 1	•	0 " " " " " " " 05-Feb-1		"""""""""""""""""""""""""""""""""""""""	x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 37324-23-5 11100-14-4	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1242 5 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Deby GC d by method SW846 3510C	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 % 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832 0.0624	1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " "		" " " " " " " " " " " " " " " " " " " "	x x x x x x
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Preparec 8006-61-9	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) Color Betroleum Hydrocarbons Color By GC Decachlorobiphenyl (SW846 3510C) Gasoline	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 % 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832 0.0624	1 1 1 1 1 1 1	" " " " " " " " " " " " " "	0 " " " " " " " 05-Feb-1		1003122	x x x x x x
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Preparec 3006-61-9 68476-30-2 58476-30-2	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 3 Aroclor-1248 6 Aroclor-1254 5 Aroclor-1254 6 Aroclor-1260 6 Aroclor-1262 4 Aroclor-1268 6 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr)	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U U U U U U U U	µg/I µg/I µg/I µg/I µg/I µg/I µg/I 30-1 30-1 30-1 mg/I	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832 0.0624 0.1 0.1 0.1 0.02 0.2	1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " 05-Feb-1 0		1003122	x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate 10386-84-2 2051-24-3 2051-24-3 Extractal TPH 810 Preparec 8006-61-9 68476-30-2 68476-31-3 685553-00-4	2 Aroclor-1016 2 Aroclor-1221 5 Aroclor-1232 9 Aroclor-1242 6 Aroclor-1248 1 Aroclor-1254 5 Aroclor-1260 5 Aroclor-1262 4 Aroclor-1268 8 recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) [2C] Detachlorobiphenyl (Sr) Coby GC d by method SW846 3510C Gasoline 2 Fuel Oil #2	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	U U U U U U U U U U U U U U U U U U U	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 50 % 50 %	0.118 0.0927 0.130 0.103 0.174 0.0926 0.0832 0.0624 0.1 0.1	1 1 1 1 1 1 1 1	** ** ** ** ** ** ** ** ** ** ** ** **	0 " " " " " " " 05-Feb-1		1003122	x x x x x x

Sample IdentificationClient Project #
191710024/200Matrix
Ground WaterCollection Date/Time
03-Feb-10 08:25Received
04-Feb-10

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.05	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/l	0.2	0.05	1	"	"	"	"	
Unidentified	0.9		mg/l	0.2	0.05	1	"	"	"	"	
Other Oil	Calculate	d as	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	0.9		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	87		40-1	40 %			"	"	"		

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 14:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds											
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Χ
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1		"	"	"	Х
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Х
67-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1		"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1		"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	4.4		μg/l	1.0	0.5	1	"	"	"	"	Х
75-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	X
75-34-3	(Freon12) 1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1			"		Х
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"				X
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1					X
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1			"		X
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1					X
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1		"	"	"	X
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1		"	"	"	X
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1			"		X
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	0.8	1			"		X
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1			"		X
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1					X
10001-02-0	·	BDL	U	μg/l	1.0	0.5	1					X
87-68-3	Ethylbenzene Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1					X
57-00-3 591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"			X
98-82-8		BDL	U	μg/l	1.0	0.5	1	"	"			×
	Isopropylbenzene	BDL	U		1.0	0.5	1	"	,,			X
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.8	1	,				X
1634-04-4	Methyl tert-butyl ether			μg/l			1	"	"	"		
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL BDL	U	μg/l μg/l	10.0 5.0	1.1 0.6	1	"				X X
75-09-2	Methylene chloride											

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 14:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	u u	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1		"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1		"	"	"	Х
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	w w	"	"	"	Х
1 95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1		"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1		"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1		"	"	"	Х
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Х
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1		"	"	"	Х
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1		"	"	"	Х
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	n .	"	"	u	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	96		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	87		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCM	AS .										
Semivola	atile Organic Compounds by SV	V846 8270C	<u>)</u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.75	0.138	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.75	0.172	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.75	0.437	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.75	0.172	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.75	0.218	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.75	0.149	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.75	0.644	1	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.75	0.368	1	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.75	0.195	1	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.75	0.759	1	II .	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.75	0.161	1	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	5.75	0.230	1	"	"	"	"	Χ

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 14:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 82700	2									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.75	0.103	1	SW846 8270C		11-Feb-10	1003221	Χ
100-51-6	Benzyl alcohol	BDL	U	μg/l	5.75	0.103	1	"	0		"	Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	5.75	0.105	1	"			"	X
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	5.75	0.0805	1		"	"	"	X
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	5.75	0.103	1		"	"	"	X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	5.75	1.09	1		"	"	"	X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	5.75	0.264	1		"	"	"	X
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	5.75	0.655	1		"	"	"	X
86-74-8	Carbazole	BDL	U	μg/l	5.75	0.207	1	"		"	"	X
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	5.75	0.207	1		"	"	"	X
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.75	0.552	1	"		"	"	X
91-58-7		BDL	U	μg/l	5.75	0.0805	1					X
95-57-8	2-Chloronaphthalene	BDL	U	μg/l	5.75	0.115	1					X
7005-72-3	2-Chlorophenol	BDL	U	μg/l	5.75	0.0690	1	"				X
218-01-9	4-Chlorophenyl phenyl ether	BDL	U	μg/l	5.75	0.0805	1					X
53-70-3	Chrysene	BDL	U	μg/l	5.75	0.0920	1					X
132-64-9	Dibenzo (a,h) anthracene Dibenzofuran	BDL	U	μg/l	5.75	0.0690	1	"		"	"	X
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.75	0.184	1					^
541-73-1		BDL	U	μg/l	5.75	0.104	1					
106-46-7	1,3-Dichlorobenzene	2.60	J		5.75	0.253	1		,,	,		
91-94-1	1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	BDL	U	μg/l μg/l	5.75	0.233	1					Х
120-83-2		BDL	U	μg/l	5.75	0.149	1					X
84-66-2	2,4-Dichlorophenol	BDL	U	μg/l	5.75	0.143	1					X
131-11-3	Diethyl phthalate	BDL	U		5.75	0.161	1		,,	,		X
105-67-9	Dimethyl phthalate	BDL	U	μg/l μg/l	5.75	0.101	1					X
84-74-2	2,4-Dimethylphenol	BDL	U	μg/l	5.75	0.149	1					X
534-52-1	Di-n-butyl phthalate	BDL	U	μg/l	5.75	0.138	1		,,	,		X
51-28-5	4,6-Dinitro-2-methylphenol	BDL	U		5.75	0.156	1		,,	,,	"	X
	2,4-Dinitrophenol	BDL	U	μg/l	5.75	0.330	1		,,	,,	"	X
121-14-2 606-20-2	2,4-Dinitrotoluene	BDL		μg/l	5.75	0.138	1		"	"		X
117-84-0	2,6-Dinitrotoluene	BDL	U	μg/l	5.75	0.136	1		"	"		X
	Di-n-octyl phthalate	BDL	U	μg/l μg/l	5.75	0.276	1		,,	,,	"	X
206-44-0	Fluoranthene	BDL	U		5.75	0.138	1		,,	,,	"	X
86-73-7 118-74-1	Fluorene	BDL	U	μg/l μg/l	5.75	0.136	1		"	"		X
87-68-3	Hexachlorobenzene	BDL	U	μg/l	5.75	0.423	1		,,	,,	"	X
	Hexachlorobutadiene	BDL	U	μg/l	5.75	0.425	1		,,	,		X
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.75	0.425	1		"	"		X
67-72-1 193-39-5	Hexachloroethane	BDL	U	μg/l	5.75	0.264	1		,,	,,	"	X
78-59-1	Indeno (1,2,3-cd) pyrene	BDL	U		5.75	0.204	1		"	"		X
	Isophorone	BDL	U	μg/l μg/l	5.75	0.345	1		,,	,,	"	X
91-57-6	2-Methylnaphthalene	BDL			5.75	0.120	1		,,	,,	"	X
95-48-7	2-Methylphenol	BDL	U	μg/l	11.5	0.241	1	"				X
108-39-4, 106-44-5 91-20-3	3 & 4-Methylphenol Naphthalene	BDL	U	µg/l µg/l	5.75	0.218	1	"	"	"	"	×
88-74-4	2-Nitroaniline	BDL	U	μg/l	5.75	0.0690	1	m m	"	"	"	X
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.75	0.195	1		"	"		X
100-01-6	4-Nitroaniline	BDL	U	μg/l	23.0	0.193	1	"				X
98-95-3		BDL	U	μg/l	5.75	0.210	1	"				X
50-50-5	Nitrobenzene 2-Nitrophenol	BDL	U	μg/l	5.75	0.264	1	"				X
88-75-5												

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 14:10

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GCM	IS										
Semivola	tile Organic Compounds by SV	/846 8270C	<u>.</u>									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.75	0.126	1	SW846 8270C	08-Feb-1 0	11-Feb-10	1003221	Х
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.75	0.690	1	"	"	"	"	Χ
36-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.75	0.218	1	"	"	"	"	Χ
37-86-5	Pentachlorophenol	BDL	U	μg/l	23.0	0.368	1	"	"	"	"	Χ
35-01-8	Phenanthrene	BDL	U	μg/l	5.75	0.264	1	"	"	"	"	Χ
08-95-2	Phenol	BDL	U	μg/l	5.75	0.115	1	"	"	"	"	Χ
29-00-0	Pyrene	BDL	U	μg/l	5.75	0.402	1	"	"	"	"	Χ
10-86-1	Pyridine	BDL	U	μg/l	5.75	0.115	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.75	0.0805	1	"	"	"	"	Χ
0-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.75	0.126	1	"	"	"	"	
5-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.75	0.115	1	"	"	"	"	Χ
8-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.75	0.115	1	"	"	"	"	Χ
2-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.75	2.87	1	"	"	"	"	
5-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.75	2.87	1	"	"	"	"	Х
urrogate	recoveries:											
21-60-8	2-Fluorobiphenyl	74		30-1	30 %			II .	"	"	"	
67-12-4	2-Fluorophenol	55		15-1	10 %			"	"	"	"	
165-60-0	Nitrobenzene-d5	77		30-1	30 %			"	"	"	"	
165-62-2	Phenol-d5	28		15-1	10 %			"	"	"	"	
718-51-0	Terphenyl-dl4	57		30-1	30 %			"	"	"	"	
18-79-6	2,4,6-Tribromophenol	108		15-1	10 %			"	"	"	"	
Semivolat	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	<u>82</u>										
Prepared	by method SW846 3510C											
2674-11-2	Aroclor-1016	BDL	U	μg/l	0.217	0.0974	1	SW846 8082		09-Feb-10	1003154	Χ
1104-28-2	Aroclor-1221	BDL	U	μg/l	0.217	0.103	1	"	0	"	"	Х
	Aroclor-1232	BDL	U	μg/l	0.217	0.0806	1		"	"	"	Х
	Aroclor-1242	BDL	U	μg/l	0.217	0.113	1	n	"	"	"	Х
	Aroclor-1248	BDL	U	μg/l	0.217	0.0897	1	n	"	"	"	Х
	Aroclor-1254	BDL	U	μg/l	0.217	0.151	1	n n	"	"	"	Х
	Aroclor-1260	0.0967	J	μg/l	0.217	0.0806	1	n	"	"	"	Х
	Aroclor-1262	BDL	U	μg/l	0.217	0.0723	1		"	"		Х
	Aroclor-1268	BDL	U	μg/l	0.217	0.0543	1		"			Х
				P3**								
_	recoveries: 2 4,4-DB-Octafluorobiphenyl (Sr)	91		20 1	50 %				"	"	"	
	4,4-DB-Octafluorobiphenyl (Sr)	92			50 % 50 %			"	"	"		
	[2C]							,,	,,	,,	"	
	Decachlorobiphenyl (Sr)	70 74			50 %						"	
	Decachlorobiphenyl (Sr) [2C]	74		30-7	50 %							
	ole Petroleum Hydrocarbons											
	0 by GC											
	by method SW846 3510C											
8006-61-9	Gasoline	BDL	U	mg/l	0.2	0.1	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
8476-30-2	Fuel Oil #2	BDL	U	mg/l	0.2	0.1	1	"	"	"	"	
8476-31-3	Fuel Oil #4	BDL	U	mg/l	0.2	0.02	1	W .	"	"	"	
8553-00-4	Fuel Oil #6	BDL	U	mg/l	0.2	0.2	1	II .	"	"	"	
M0980000	Motor Oil	BDL	U	mg/l	0.2	0.2	1	II .	"	"	"	
)		BDL	U	ma/l	0.2	0.05	1		,,	"	"	
3032-32-4	LIYIUIII	DDL	U	mg/l	0.2	0.05	1					

Sample Identification MW-603 SB07608-14

Client Project # 191710024/200

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 14:10

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.05	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	Calculated	d asZ-2	mg/l	0.2	0.05	1	"	"	"	"	
Unidentified	5.3		mg/l	0.2	0.05	1		"	"	"	
Other Oil	Calculated	d as	mg/l	0.2	0.02	1		"	"	"	
Total Petroleum Hydrocarbons	5.3		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	88		40-1	40 %			"	"	"	"	

<u>Matrix</u> Ground Water Collection Date/Time 03-Feb-10 13:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile (Organic Compounds											
olatile (Organic Compounds											
repared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
7-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Х
07-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
1-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
08-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
4-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
5-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Х
04-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Х
35-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
3-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Х
6-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
08-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	Х
5-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1		"	"	"	Χ
7-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1		"	"	"	Х
-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1		"	"	"	Х
5-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
06-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
6-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1		"	"	"	Х
24-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Х
06-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1		"	"	"	Х
-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Х
11-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1				"	Х
06-46-7	1,4-Dichlorobenzene	1.9	_	μg/l	1.0	0.5	1				"	>
5-71-8	Dichlorodifluoromethane	BDL	U	μg/l	2.0	0.9	1				"	Х
	(Freon12)							,,				
5-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1					X
07-06-2	1,2-Dichloroethane	BDL	U	μg/l "	1.0	0.6	1					>
5-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"				X
56-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1				"	X
56-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"		"		X
3-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1					>
12-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1					>
94-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1					>
63-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1					>
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"		>
	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"		X
00-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
7-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Х
3-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
9-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
08-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
5-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Х
1-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Х

Matrix Ground Water Collection Date/Time 03-Feb-10 13:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds											
olatile C	Organic Compounds											
repared	by method SW846 5030 Water	er MS										
03-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
00-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
30-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
9-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	>
27-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	>
08-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	>
7-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
08-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
1-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
9-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
9-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	>
6-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	>
5-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	>
08-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
5-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	×
5-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
09-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
0-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
94-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
37-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	>
08-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	>
5-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	>
23-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Х
10-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	>
4-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	>
60-00-4	recoveries: 4-Bromofluorobenzene	98		70-1	30 %			"				
	Toluene-d8	86			30 %							
	1,2-Dichloroethane-d4	109			30 %							
	Dibromofluoromethane	109			30 %						"	
	tile Organic Compounds by GCN			70-1	30 /6							
	tile Organic Compounds by SV	V846 8270C	R05									
	by method SW846 3510C						_					
3-32-9	Acenaphthene	BDL	U	μg/l	27.8	0.667	5	SW846 8270C	0	12-Feb-10	1003221	>
08-96-8	Acenaphthylene	BDL	U	μg/l	27.8	0.833	5	"	"	"	"	>
2-53-3	Aniline	BDL	U	μg/l	27.8	2.11	5	"	"	"	"	>
20-12-7	Anthracene	BDL	U	μg/l	27.8	0.833	5	"	"	"	")
912-24-9	Atrazine	BDL	U	μg/l	27.8	1.06	5	"	"	"	"	
03-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	27.8	0.722	5	"	"	"	"	
2-87-5	Benzidine	BDL	U	μg/l	27.8	3.11	5	"	"	"	"	>
6-55-3	Benzo (a) anthracene	BDL	U	μg/l	27.8	1.78	5	"	"	"	"	>
0-32-8	Benzo (a) pyrene	BDL	U	μg/l	27.8	0.944	5	"	"	"	"	>
05-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	27.8	3.67	5	"	"	"	"	>
91-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	27.8	0.778	5	"	"	"	"	>
				-								

Matrix Ground Water Collection Date/Time 03-Feb-10 13:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S'	W846 8270C	R05									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	27.8	0.500	5	SW846 8270C	08-Feb-1	12-Feb-10	1003221	Х
100-51-6	Benzyl alcohol	BDL	U	μg/l	27.8	0.500	5		0		"	Х
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	27.8	0.556	5		"	"		X
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	27.8	0.389	5		"	"	"	X
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	27.8	0.500	5				"	X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	27.8	5.28	5	"	"	"	"	X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	27.8	1.28	5		"	"	"	Х
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	27.8	3.17	5		"	"	"	Х
86-74-8	Carbazole	BDL	U	μg/l	27.8	1.00	5		"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	27.8	1.00	5		"	"	"	Х
106-47-8	4-Chloroaniline	BDL	U	μg/l	27.8	2.67	5	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	27.8	0.389	5	"	"	"	"	Х
95-57-8	2-Chlorophenol	BDL	U	μg/l	27.8	0.556	5	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	27.8	0.333	5		"	"	"	Х
218-01-9	Chrysene	BDL	U	μg/l	27.8	0.389	5	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	27.8	0.444	5	"	"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	27.8	0.333	5		"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	27.8	0.889	5		"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	27.8	1.17	5	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	27.8	1.22	5	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	27.8	2.00	5	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	27.8	0.722	5	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	27.8	0.889	5	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	27.8	0.778	5	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	27.8	1.28	5	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	27.8	0.722	5		"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	27.8	0.667	5		"	"	"	Х
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	27.8	1.72	5		"	"	"	Х
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	27.8	1.17	5	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	27.8	0.667	5	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	27.8	1.33	5		"	"	"	Х
206-44-0	Fluoranthene	BDL	U	μg/l	27.8	0.667	5	"	"	"	"	Χ
86-73-7	Fluorene	BDL	U	μg/l	27.8	0.667	5	•	"	"	"	Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	27.8	2.06	5	•	"	"	"	Х
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	27.8	3.11	5	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	27.8	2.06	5	•	"	"	"	Х
67-72-1	Hexachloroethane	BDL	U	μg/l	27.8	2.83	5	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	27.8	1.28	5		"	"	"	Х
78-59-1	Isophorone	BDL	U	μg/l	27.8	1.67	5	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	27.8	0.611	5	"	"	"	"	Х
95-48-7	2-Methylphenol	BDL	U	μg/l	27.8	1.17	5	"	"	"	"	Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	55.6	1.33	5	m .	"	"	"	Х
106-44-5	• •	וחם			07.0	4.00	_	"	"		"	
91-20-3	Naphthalene	BDL	U	μg/l	27.8	1.06	5	"			"	X
88-74-4	2-Nitroaniline	BDL	U	μg/l	27.8	0.333	5	"				X
99-09-2	3-Nitroaniline	BDL	U	μg/l	27.8	0.944	5					X
100-01-6	4-Nitroaniline	BDL	U	μg/l	111	1.06	5		"		"	X
98-95-3	Nitrobenzene	BDL	U	μg/l	27.8	1.00	5 5	"				X
88-75-5	2-Nitrophenol	BDL	U	μg/l	27.8	1.28			"	"	"	X

Matrix Ground Water Collection Date/Time 03-Feb-10 13:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GCM	IS										
Semivola	atile Organic Compounds by SV	/846 8270C	R05									
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	27.8	0.611	5	SW846 8270C	08-Feb-1 0	12-Feb-10	1003221	Χ
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	27.8	3.33	5	"	"	"	"	Χ
86-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	27.8	1.06	5	"	"	"	"	Χ
87-86-5	Pentachlorophenol	BDL	U	μg/l	111	1.78	5	"	"	"	"	Χ
85-01-8	Phenanthrene	BDL	U	μg/l	27.8	1.28	5	"	"	"	"	Χ
108-95-2	Phenol	BDL	U	μg/l	27.8	0.556	5	"	"	"	"	Х
129-00-0	Pyrene	BDL	U	μg/l	27.8	1.94	5	"	"	"	"	Х
110-86-1	Pyridine	BDL	U	μg/l	27.8	0.556	5	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	27.8	0.389	5	"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	BDL	U	μg/l	27.8	0.611	5	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	27.8	0.556	5	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	27.8	0.556	5	II .	"	"	"	Χ
82-68-8	Pentachloronitrobenzene	BDL	U	μg/l	27.8	13.9	5	II .	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	27.8	13.9	5	"	"	"	"	Х
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	97		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	57		15-1	10 %			"	"	"	"	
4165-60-0	Nitrobenzene-d5	84		30-1	30 %			"	"	"	"	
4165-62-2	Phenol-d5	29			10 %			"	"	"	"	
1718-51-0	Terphenyl-dl4	82		30-1	30 %			"	"	"	"	
118-79-6	2,4,6-Tribromophenol	126	SGC	15-1	10 %			"	"	"	"	
Semivola	tile Organic Compounds by GC											
<u>Polychlor</u>	rinated Biphenyls by SW846 80	<u>82</u>										
Prepared	by method SW846 3510C											
12674-11-2	2 Aroclor-1016	BDL	U	μg/l	0.222	0.0996	1	SW846 8082	05-Feb-1 0	09-Feb-10	1003154	Х
11104-28-2	Aroclor-1221	BDL	U	μg/l	0.222	0.105	1	"	"	"	"	Χ
11141-16-5	Aroclor-1232	BDL	U	μg/l	0.222	0.0824	1	"	"	"	"	Х
53469-21-9	Aroclor-1242	BDL	U	μg/l	0.222	0.116	1	"	"	"	"	Χ
12672-29-6	Aroclor-1248	BDL	U	μg/l	0.222	0.0917	1	"	"	"	"	Χ
11097-69-1	Aroclor-1254	BDL	U	μg/l	0.222	0.155	1	"	"	"	"	Χ
11096-82-5	Aroclor-1260	1.44		μg/l	0.222	0.0823	1	"	"	"	"	Х
37324-23-5	Aroclor-1262	BDL	U	μg/l	0.222	0.0739	1	"	"	"	"	Х
11100-14-4	Aroclor-1268	BDL	U	μg/l	0.222	0.0555	1	"	"	"	"	Х
_	recoveries:	04		20.1	50 º/			"	"	"		
	2 4,4-DB-Octafluorobiphenyl (Sr) 2 4,4-DB-Octafluorobiphenyl (Sr)	94 101			50 % 50 %			"	"	"	"	
2054 24 2	[2C] Decachlorobiphenyl (Sr)	97		20.4	50 %						"	
		87 92			50 % 50 %			11				
	Decachlorobiphenyl (Sr) [2C]	34		30-1	JU /0							
	ble Petroleum Hydrocarbons											
TPH 810	=											
•	d by method SW846 3510C Gasoline	BDL	U	mg/l	0.2	0.1	1	+SW846	05-Feb-1	09-Feb-10	1003122	
00470 00 0	D. F I. O'I. #10	DDI		m c /l	0.0	0.4	4	8100Mod.	0			
	Fuel Oil #2	BDL	U	mg/l	0.2	0.1	1	"				
	Fuel Oil #4	BDL	U	mg/l	0.2	0.02	1	"				
	Fuel Oil #6	BDL	U	mg/l	0.2	0.2	1	"				
M0980000 0	Motor Oil	BDL	U	mg/l	0.2	0.2	1	"			•	
								"				

Sample Identification MW-301 SB07608-15

Client Project # 191710024/200

Matrix Ground Water Collection Date/Time 03-Feb-10 13:50

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.05	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	Calculate	d asZ-2	mg/l	0.2	0.05	1	"	"	"	"	
Unidentified	15.3		mg/l	0.2	0.05	1	"	"	"	"	
Other Oil	Calculate	d as	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	15.3		mg/l	0.2	0.02	1	"	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	85		40-1	40 %			"	"	"	"	

Matrix Ground Water Collection Date/Time 03-Feb-10 16:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	16-Feb-1	16-Feb-10	1003671	Х
67-64-1	(Freon 113)	BDL	U	μg/l	10.0	4.6	1		0	,,		Х
	Acetone	BDL	U	μg/l	0.5	0.5	1			,,		X
107-13-1 71-43-2	Acrylonitrile	BDL	U	μg/l	1.0	0.5	1			,,		X
108-86-1	Benzene Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"		,		^
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1		"	"	"	Х
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1		"	"	"	X
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1		"	"	"	X
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"			"	X
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"			"	X
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	0.8	1	"			"	X
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
98-06-6	•	BDL	U	μg/l	1.0	0.5	1	"			"	X
75-15-0	tert-Butylbenzene Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"			"	X
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	0.8	1	"			"	X
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"		,		X
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"			"	X
67-66-3	Chloroform	BDL	U	μg/l	1.0	0.8	1	"			"	X
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"			"	X
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"		,		^
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"		,		
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"			"	Х
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"			"	X
106-93-4		BDL	U	μg/l	0.5	0.5	1	"		,		X
74-95-3	1,2-Dibromoethane (EDB) Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"			"	X
95-50-1		BDL	U	μg/l	1.0	0.4	1	"		,		X
541-73-1	1,2-Dichlorobenzene	BDL	U		1.0	0.4	1		,,	"	"	X
	1,3-Dichlorobenzene	2.8	U	µg/l	1.0	0.5	1		,,	"	"	X
106-46-7	1,4-Dichlorobenzene	BDL	U	µg/l	2.0	0.9	1		,,	"	"	X
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	'					^
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	X
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
37-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Χ
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Χ
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ

Matrix Ground Water Collection Date/Time 03-Feb-10 16:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Χ
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1		"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1		"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1		"	"	"	Χ
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1		"	"	"	Х
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Х
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	u	"	"	"	Х
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	•	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	•	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1		"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1		"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1		"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	•	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Χ
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	98		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	85		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	112		70-1	30 %			•	"	"	"	
1868-53-7	Dibromofluoromethane	107		70-1	30 %			•	"	"	"	
	tile Organic Compounds by GCN											
	atile Organic Compounds by SV	V846 8270C	R05									
	I by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	26.0	0.625	5	SW846 8270C	0	12-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	26.0	0.781	5	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	26.0	1.98	5	"	"	"	"	Х
120-12-7	Anthracene	BDL	U	μg/l	26.0	0.781	5	"	"	"	"	Х
1912-24-9	Atrazine	BDL	U	μg/l	26.0	0.990	5	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	26.0	0.677	5	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	26.0	2.92	5	•	"	"	"	Х
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	26.0	1.67	5	•	"	"	"	Х
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	26.0	0.885	5	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	26.0	3.44	5	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	26.0	0.729	5	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	BDL	U	μg/l	26.0	1.04	5	"			"	Х

Matrix Ground Water Collection Date/Time 03-Feb-10 16:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivola	tile Organic Compounds by GC	MS										
Semivola	atile Organic Compounds by S	W846 8270C	R05									
Prepared	by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	26.0	0.469	5	SW846 8270C	08-Feb-1	12-Feb-10	1003221	Х
		DD!			00.0	0.400	-	"	0		"	v
100-51-6	Benzyl alcohol	BDL	U	μg/l	26.0	0.469	5					X
111-91-1	Bis(2-chloroethoxy)methane	BDL	U	μg/l	26.0	0.521	5	"				X
111-44-4	Bis(2-chloroethyl)ether	BDL	U	μg/l	26.0	0.365	5					X
108-60-1	Bis(2-chloroisopropyl)ether	BDL	U	μg/l	26.0	0.469	5			"		X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	μg/l	26.0	4.95	5					X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	μg/l	26.0	1.20	5					X
85-68-7	Butyl benzyl phthalate	BDL	U	μg/l	26.0	2.97	5					X
86-74-8	Carbazole	BDL	U	μg/l	26.0	0.938	5			"		X
59-50-7	4-Chloro-3-methylphenol	BDL	U	μg/l	26.0	0.938	5					X
106-47-8	4-Chloroaniline	BDL	U	μg/l 	26.0	2.50	5		"	"	"	X
91-58-7	2-Chloronaphthalene	BDL	U	μg/l	26.0	0.365	5		"	"		X
95-57-8	2-Chlorophenol	BDL	U	μg/l 	26.0	0.521	5		"	"		X
7005-72-3	4-Chlorophenyl phenyl ether	BDL	U	μg/l	26.0	0.312	5					X
218-01-9	Chrysene	BDL	U	μg/l	26.0	0.365	5	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	26.0	0.417	5	"	"	"	"	Х
132-64-9	Dibenzofuran	BDL	U	μg/l	26.0	0.312	5	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	26.0	0.833	5	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	26.0	1.09	5	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	26.0	1.15	5	"	"	"	"	
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	26.0	1.88	5	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	26.0	0.677	5	"	"	"	"	Х
84-66-2	Diethyl phthalate	BDL	U	μg/l	26.0	0.833	5	"	"	"	"	Х
131-11-3	Dimethyl phthalate	BDL	U	μg/l	26.0	0.729	5	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l	26.0	1.20	5	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	26.0	0.677	5	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	26.0	0.625	5	"	"	"	"	Χ
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l	26.0	1.61	5	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	26.0	1.09	5	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	26.0	0.625	5	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l	26.0	1.25	5	"	"	"	"	Χ
206-44-0	Fluoranthene	BDL	U	μg/l	26.0	0.625	5	"	"	"	"	Χ
86-73-7	Fluorene	BDL	U	μg/l	26.0	0.625	5	"	"	"	"	Χ
118-74-1	Hexachlorobenzene	BDL	U	μg/l	26.0	1.93	5	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	26.0	2.92	5	"	"	"	"	Χ
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	26.0	1.93	5	"	"	"	"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	26.0	2.66	5	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	26.0	1.20	5	"	"	"	"	Х
78-59-1	Isophorone	BDL	U	μg/l	26.0	1.56	5	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	26.0	0.573	5	"	"	"	"	Х
95-48-7	2-Methylphenol	BDL	U	μg/l	26.0	1.09	5	"	"	"	"	Х
108-39-4,	3 & 4-Methylphenol	BDL	U	μg/l	52.1	1.25	5	"	"	"	"	Χ
106-44-5	Nonhtholon -	BDI		110/	26.0	0.000	E	11	"			~
91-20-3	Naphthalene	BDL	U	μg/l	26.0	0.990	5					X
88-74-4	2-Nitroaniline	BDL	U	μg/l	26.0	0.312	5	"				X
99-09-2	3-Nitroaniline	BDL	U	μg/l	26.0	0.885	5		"	"	"	X
100-01-6	4-Nitroaniline	BDL	U	μg/l	104	0.990	5	,,,	"	"	"	X
98-95-3	Nitrobenzene	BDL	U	μg/l	26.0	0.938	5	"	"	"	"	X
88-75-5	2-Nitrophenol	BDL	U	μg/l 	26.0	1.20	5					X
100-02-7	4-Nitrophenol	BDL	U	μg/l	104	1.35	5	"	"	"	"	Χ

Matrix Ground Water Collection Date/Time 03-Feb-10 16:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolat	tile Organic Compounds by GCM	IS										
Semivola	tile Organic Compounds by SV	/846 8270C	R05									
Prepared	by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	26.0	0.573	5	SW846 8270C	08-Feb-1 0	12-Feb-10	1003221	Х
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	26.0	3.12	5	"	"	"	"	Χ
36-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	26.0	0.990	5	"	"	"	"	Х
37-86-5	Pentachlorophenol	BDL	U	μg/l	104	1.67	5	"	"	"	"	X
35-01-8	Phenanthrene	BDL	U	μg/l	26.0	1.20	5	"	"	"	"	Х
08-95-2	Phenol	BDL	U	μg/l	26.0	0.521	5	"	"	"	"	Χ
29-00-0	Pyrene	BDL	U	μg/l	26.0	1.82	5		"	"	"	Χ
10-86-1	Pyridine	BDL	U	μg/l	26.0	0.521	5	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	26.0	0.365	5	"	"	"	"	Χ
0-12-0	1-Methylnaphthalene	BDL	U	μg/l	26.0	0.573	5	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	26.0	0.521	5	"	"	"	"	Χ
38-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	26.0	0.521	5	II .	"	"	"	Χ
32-68-8	Pentachloronitrobenzene	BDL	U	μg/l	26.0	13.0	5	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	26.0	13.0	5	"	"	"	"	X
Surrogate	recoveries:											
321-60-8	2-Fluorobiphenyl	94		30-1	30 %			"	"	"	"	
367-12-4	2-Fluorophenol	55		15-1	10 %			"	"	"	"	
165-60-0	Nitrobenzene-d5	85		30-1	30 %			"	"	"	"	
165-62-2	Phenol-d5	27		15-1	10 %			"	"	"	"	
718-51-0	Terphenyl-dl4	83		30-1	30 %			"	"	"	"	
18-79-6	2,4,6-Tribromophenol	118	SGC	15-1	10 %			"	"	"	"	
Semivolat	tile Organic Compounds by GC											
Polychlor	rinated Biphenyls by SW846 80	<u>82</u>										
Prepared	by method SW846 3510C											
2674-11-2	Aroclor-1016	BDL	U	μg/l	0.206	0.0924	1	SW846 8082	05-Feb-1 0	09-Feb-10	1003154	Х
1104-28-2	Aroclor-1221	BDL	U	μg/l	0.206	0.0976	1	"	"	"	"	Χ
1141-16-5	Aroclor-1232	BDL	U	μg/l	0.206	0.0765	1	"	"	"	"	Χ
3469-21-9	Aroclor-1242	BDL	U	μg/l	0.206	0.107	1	"	"	"	"	Χ
2672-29-6	Aroclor-1248	BDL	U	μg/l	0.206	0.0850	1		"	"	"	Χ
1097-69-1	Aroclor-1254	BDL	U	μg/l	0.206	0.143	1	"	"	"	"	Χ
1096-82-5	Aroclor-1260	0.975		μg/l	0.206	0.0764	1	"	"	"	"	X
37324-23-5	Aroclor-1262	BDL	U	μg/l	0.206	0.0686	1	"	"	"	"	Х
1100-14-4	Aroclor-1268	BDL	U	μg/l	0.206	0.0515	1	"	"	"	"	X
Surrogate	recoveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	97		30-1	50 %			"	"	"	"	
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100		30-1	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	83		30-1	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	91		30-1	50 %			"	"	"	"	
Extractab	ole Petroleum Hydrocarbons											
ΓΡΗ 810												
	by method SW846 3510C											
	Gasoline	BDL	U	mg/l	0.2	0.1	1	+SW846		09-Feb-10	1003122	
8476-30-2	Fuel Oil #2	BDL	U	mg/l	0.2	0.1	1	8100Mod. "	0	"	"	
	Fuel Oil #4	BDL	U	mg/l	0.2	0.02	1		"	"	"	
	Fuel Oil #6	BDL	U	mg/l	0.2	0.2	1	"				
	Motor Oil	BDL	U	mg/l	0.2	0.2	1	"	"			
3032-32-4		BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
1002-02-4	LIGIUIII	DDL	U	1119/1	0.2	0.00						

Sample Identification MW-601 SB07608-16

Client Project # 191710024/200

Matrix Ground Water Collection Date/Time 03-Feb-10 16:50

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	Calculate	d asZ-2	mg/l	0.2	0.06	1	"	"	"	"	
Unidentified	8.7		mg/l	0.2	0.06	1	"	"	"	"	
Other Oil	Calculate	d as	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	8.7		mg/l	0.2	0.02	1	II .	"	"	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	112		40-1	40 %			"	"	"	"	

Matrix Ground Water Collection Date/Time 03-Feb-10 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BDL	U	μg/l	1.0	1.0	1	SW846 8260B	0	16-Feb-10	1003671	Х
67-64-1	Acetone	BDL	U	μg/l	10.0	4.6	1	"	"	"	"	Χ
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	Χ
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1	"	"	"	"	Χ
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	Χ
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	Χ
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	Χ
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Χ
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	Χ
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
142-28-9	1,3-Dichloropropane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
563-58-6	1,1-Dichloropropene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
10061-01-5	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	Χ
100-41-4	Ethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
591-78-6	2-Hexanone (MBK)	BDL	U	μg/l	10.0	2.7	1	"	"	"	"	Χ
98-82-8	Isopropylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Х
1634-04-4	Methyl tert-butyl ether	BDL	U	μg/l	1.0	0.8	1	"	"	"	"	Х
108-10-1	4-Methyl-2-pentanone (MIBK)	BDL	U	μg/l	10.0	1.1	1	"	"	"	"	Х
75-09-2	Methylene chloride	BDL	U	μg/l	5.0	0.6	1	"	"	"	"	Χ
91-20-3	Naphthalene	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	X

Matrix Ground Water Collection Date/Time 03-Feb-10 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	16-Feb-1 0	16-Feb-10	1003671	Х
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	Χ
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	Χ
127-18-4	Tetrachloroethene	8.0	J	μg/l	1.0	0.7	1	"	"	"	"	Χ
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	Χ
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-69-4	Trichlorofluoromethane (Freon	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	Χ
	11)				4.0				"			.,
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l "	1.0	0.9	1					X
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"		X
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"				X
75-01-4	Vinyl chloride	BDL	U	μg/l 	1.0	0.9	1	"				X
179601-23- 1	m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"				Х
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	Χ
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	Χ
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	Χ
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	Χ
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	Χ
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	Х
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	96			30 %			"	"	"	"	
2037-26-5	Toluene-d8	87		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	106		70-1	30 %			"	"	"	"	
Semivola	tile Organic Compounds by GCN	AS										
Semivola	tile Organic Compounds by SV	V846 8270C	<u> </u>									
Prepared	by method SW846 3510C											
83-32-9	Acenaphthene	BDL	U	μg/l	5.26	0.126	1	SW846 8270C	08-Feb-1 0	12-Feb-10	1003221	Х
208-96-8	Acenaphthylene	BDL	U	μg/l	5.26	0.158	1	"	"	"	"	Х
62-53-3	Aniline	BDL	U	μg/l	5.26	0.400	1	"	"	"	"	Χ
120-12-7	Anthracene	BDL	U	μg/l	5.26	0.158	1	"	"	"	"	Χ
1912-24-9	Atrazine	BDL	U	μg/l	5.26	0.200	1	"	"	"	"	
103-33-3	Azobenzene/Diphenyldiazine	BDL	U	μg/l	5.26	0.137	1	"	"	"	"	
92-87-5	Benzidine	BDL	U	μg/l	5.26	0.589	1	п	"	"	"	Х
56-55-3	Benzo (a) anthracene	BDL	U	μg/l	5.26	0.337	1	п	"	"	"	Х
50-32-8	Benzo (a) pyrene	BDL	U	μg/l	5.26	0.179	1	п	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	BDL	U	μg/l	5.26	0.695	1	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	BDL	U	μg/l	5.26	0.147	1	u u	"	"	"	Х
	·- · · ·	BDL		-	5.26	0.211	1		"			Х

Matrix Ground Water Collection Date/Time 03-Feb-10 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Semivola	tile Organic Compounds by GC	CMS										
	atile Organic Compounds by S	SW846 82700	<u>2</u>									
Prepared	d by method SW846 3510C											
65-85-0	Benzoic acid	BDL	U	μg/l	5.26	0.0947	1	SW846 8270C	08-Feb-1	12-Feb-10	1003221	Χ
100 51 6	Panzyl alachal	BDL	U	ua/l	5.26	0.0947	1		0		"	Х
100-51-6	Benzyl alcohol	BDL	U	µg/l	5.26	0.105	1		,,	"	"	X
111-91-1	Bis(2-chloroethoxy)methane	BDL		µg/l	5.26	0.103	1			"	"	X
111-44-4	Bis(2-chloroethyl)ether		U	µg/l				"	"	"	"	
108-60-1	Bis(2-chloroisopropyl)ether	BDL BDL	U U	µg/l	5.26 5.26	0.0947 1.00	1 1	"	"	"	"	X X
117-81-7	Bis(2-ethylhexyl)phthalate	BDL	U	µg/l	5.26	0.242	1	"	"	"	"	X
101-55-3	4-Bromophenyl phenyl ether	BDL	U	µg/l	5.26	0.600	1	"	"	"	"	X
85-68-7	Butyl benzyl phthalate		U	µg/l			1	"	"	"	"	
86-74-8	Carbazole	BDL BDL		µg/l	5.26	0.189	1	"	"	"	"	X X
59-50-7	4-Chloro-3-methylphenol		U	μg/l	5.26	0.189		,,				
106-47-8	4-Chloroaniline	BDL	U	μg/l	5.26	0.505	1	,,				X
91-58-7	2-Chloronaphthalene	BDL	U	µg/l	5.26 5.26	0.0737	1	11	"	"	"	X
95-57-8	2-Chlorophenol	BDL BDL	U	µg/l	5.26 5.26	0.105 0.0632	1 1	11	"			X
7005-72-3	4-Chlorophenyl phenyl ether		U	μg/l	5.26			,,				X
218-01-9	Chrysene	BDL	U	μg/l	5.26	0.0737	1	,,				
53-70-3	Dibenzo (a,h) anthracene	BDL	U	μg/l	5.26	0.0842	1	"				X
132-64-9	Dibenzofuran	BDL	U	μg/l	5.26	0.0632	1	,,				^
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	5.26	0.168	1	"				
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	5.26	0.221	1					
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	5.26	0.232	1					
91-94-1	3,3'-Dichlorobenzidine	BDL	U	μg/l	5.26	0.379	1					X
120-83-2	2,4-Dichlorophenol	BDL	U	μg/l	5.26	0.137	1					X
84-66-2	Diethyl phthalate	BDL	U	μg/l	5.26	0.168	1					X
131-11-3	Dimethyl phthalate	BDL	U	μg/l "	5.26	0.147	1		"			X
105-67-9	2,4-Dimethylphenol	BDL	U	μg/l "	5.26	0.242	1					X
84-74-2	Di-n-butyl phthalate	BDL	U	μg/l	5.26	0.137	1		"	"		X
534-52-1	4,6-Dinitro-2-methylphenol	BDL	U	μg/l	5.26	0.126	1		"	"		X
51-28-5	2,4-Dinitrophenol	BDL	U	μg/l 	5.26	0.326	1		"	"	"	X
121-14-2	2,4-Dinitrotoluene	BDL	U	μg/l	5.26	0.221	1		"	"		X
606-20-2	2,6-Dinitrotoluene	BDL	U	μg/l	5.26	0.126	1					Х
117-84-0	Di-n-octyl phthalate	BDL	U	μg/l 	5.26	0.253	1					X
206-44-0	Fluoranthene	BDL	U	μg/l	5.26	0.126	1					X
86-73-7	Fluorene	BDL	U	μg/l	5.26	0.126	1		"	"		Х
118-74-1	Hexachlorobenzene	BDL	U	μg/l	5.26	0.389	1	"			"	Х
37-68-3	Hexachlorobutadiene	BDL	U	μg/l	5.26	0.589	1	"	"	"		Х
77-47-4	Hexachlorocyclopentadiene	BDL	U	μg/l	5.26	0.389	1				"	Χ
67-72-1	Hexachloroethane	BDL	U	μg/l	5.26	0.537	1	"	"	"		X
193-39-5	Indeno (1,2,3-cd) pyrene	BDL	U	μg/l	5.26	0.242	1	"	"	"		X
78-59-1	Isophorone	BDL	U	μg/l	5.26	0.316	1		"	"		Х
91-57-6	2-Methylnaphthalene	BDL	U	μg/l	5.26	0.116	1		"	"		X
95-48-7	2-Methylphenol	BDL	U	μg/l	5.26	0.221	1	"	"	"	"	Х
108-39-4, 106-44-5	3 & 4-Methylphenol	BDL	U 	μg/l	10.5	0.253	1	"	"	"	"	X
91-20-3	Naphthalene	BDL	U	μg/l	5.26	0.200	1		"	"		X
88-74-4	2-Nitroaniline	BDL	U	μg/l 	5.26	0.0632		"				X
99-09-2	3-Nitroaniline	BDL	U	μg/l	5.26	0.179	1		"	"		X
100-01-6	4-Nitroaniline	BDL	U	μg/l	21.1	0.200	1	"	"	"	"	Х
98-95-3	Nitrobenzene	BDL	U	μg/l	5.26	0.189	1	"	"	"	"	Χ
88-75-5	2-Nitrophenol	BDL	U	μg/l	5.26	0.242	1	"	"	"	"	X X
100-02-7	4-Nitrophenol	BDL	U	μg/l	21.1	0.274	1	u	"	"	"	

Matrix Ground Water Collection Date/Time 03-Feb-10 11:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Semivola	tile Organic Compounds by GCM	1S										
Semivola	atile Organic Compounds by SV	V846 8270C	<u>.</u>									
Prepared	d by method SW846 3510C											
62-75-9	N-Nitrosodimethylamine	BDL	U	μg/l	5.26	0.116	1	SW846 8270C	08-Feb-1 0	12-Feb-10	1003221	Х
621-64-7	N-Nitrosodi-n-propylamine	BDL	U	μg/l	5.26	0.632	1	"	"	"	"	Х
36-30-6	N-Nitrosodiphenylamine	BDL	U	μg/l	5.26	0.200	1	"	"	"	"	Χ
37-86-5	Pentachlorophenol	BDL	U	μg/l	21.1	0.337	1	"	"	"	"	Χ
35-01-8	Phenanthrene	BDL	U	μg/l	5.26	0.242	1	"	"	"	"	Χ
08-95-2	Phenol	BDL	U	μg/l	5.26	0.105	1	"	"	"	"	Х
29-00-0	Pyrene	BDL	U	μg/l	5.26	0.368	1	"	"	"	"	Χ
10-86-1	Pyridine	BDL	U	μg/l	5.26	0.105	1	"	"	"	"	Χ
20-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	5.26	0.0737	1	"	"	"	"	Χ
0-12-0	1-Methylnaphthalene	BDL	U	μg/l	5.26	0.116	1	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	BDL	U	μg/l	5.26	0.105	1	"	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	BDL	U	μg/l	5.26	0.105	1	"	"	"	"	Х
32-68-8	Pentachloronitrobenzene	BDL	U	μg/l	5.26	2.63	1	"	"	"	"	
95-94-3	1,2,4,5-Tetrachlorobenzene	BDL	U	μg/l	5.26	2.63	1	"	"	"	"	Х
Surrogate	e recoveries:											
321-60-8	2-Fluorobiphenyl	78		30-1	30 %			"	"	"	"	
867-12-4	2-Fluorophenol	51		15-1	10 %			"	"	"	"	
165-60-0	Nitrobenzene-d5	82		30-1	30 %			"	"	"	"	
165-62-2	Phenol-d5	27		15-1	10 %			"	"	"	"	
718-51-0	Terphenyl-dl4	64		30-1	30 %			"	"	"	"	
18-79-6	2,4,6-Tribromophenol	98		15-1	10 %			"	"	"	"	
Semivola	tile Organic Compounds by GC											
Polychlo	rinated Biphenyls by SW846 80	<u>82</u>										
Prepared	d by method SW846 3510C											
12674-11-2	2 Aroclor-1016	BDL	U	μg/l	0.211	0.0943	1	SW846 8082		09-Feb-10	1003154	Χ
11104-28-2	2 Aroclor-1221	BDL	U	μg/l	0.211	0.0997	1	"	0	"	"	Х
	5 Aroclor-1232	BDL	U	μg/l	0.211	0.0781	1	"	"	"	"	Х
	Aroclor-1242	BDL	U	μg/l	0.211	0.110	1	"	"	"		Х
	Aroclor-1248	BDL	U	μg/l	0.211	0.0868	1		"	"	"	Х
	Aroclor-1254	BDL	U	μg/l	0.211	0.146	1		"	"	"	Х
	5 Aroclor-1260	BDL	U	μg/l	0.211	0.113	1		"	"	"	Х
	5 Aroclor-1262	BDL	U	μg/l	0.211	0.0700	1		"	"	"	Х
	Aroclor-1268	BDL	U	μg/l	0.211	0.0526	1	n .	"	"	"	Х
Surrogate	e recoveries:											
_	2 4,4-DB-Octafluorobiphenyl (Sr)	89		30-1	50 %			"	"	"	"	
10386-84-2	2 4,4-DB-Octafluorobiphenyl (Sr)	96		30-1	50 %			n .	"	"	"	
2051-24-3	[2C] Decachlorobiphenyl (Sr)	79		30-1	50 %			"		"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95		30-1	50 %			"	"	"	"	
	ble Petroleum Hydrocarbons											
	00 by GC											
	d by method SW846 3510C											
	Gasoline	BDL	U	mg/l	0.2	0.1	1	+SW846		09-Feb-10	1003122	
	Fuel Oil #2	BDL	U	mg/l	0.2	0.2	1	8100Mod. "	0	"	"	
S8476-30 3	- 1 dGl Oll #2		U	mg/l	0.2	0.02	1		"	"		
	R Fuel Oil #4	RDI			٠.٧	0.02						
8476-31-3	Fuel Oil #4	BDL BDI		_			1	"	"	"		
68476-31-3 68553-00-4	Fuel Oil #6	BDL	U	mg/l	0.2	0.2	1	"	"	"	"	
68476-31-3 68553-00-4	Fuel Oil #6 Motor Oil			_			1 1 1	"	"	"		

Sample Identification MW-401 SB07608-17

Client Project # 191710024/200

Matrix Ground Water Collection Date/Time 03-Feb-10 11:35

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Extractable Petroleum Hydrocarbons											
TPH 8100 by GC											
Prepared by method SW846 3510C											
J00100000 Aviation Fuel	BDL	U	mg/l	0.2	0.06	1	+SW846 8100Mod.	05-Feb-1 0	09-Feb-10	1003122	
Hydraulic Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Dielectric Fluid	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
Unidentified	BDL	U	mg/l	0.2	0.06	1	"	"	"	"	
Other Oil	BDL	U	mg/l	0.2	0.02	1	"	"	"	"	
Total Petroleum Hydrocarbons	BDL	U	mg/l	0.2	0.02	1	"	"	u u	"	
Surrogate recoveries:											
3386-33-2 1-Chlorooctadecane	114		40-1	40 %			"	"	"	"	

Sample Identification
Oil
SB07608-18

Client Project # 191710024/200

Matrix Oil Collection Date/Time 03-Feb-10 15:30

CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Semivolatile Organic Compounds by GC											
Polychlorinated Biphenyls by SW846 80	<u>82</u>										
Prepared by method SW846 3550B/C											
12674-11-2 Aroclor-1016	BDL	U	μg/kg	1970	645	10	SW846 8082	08-Feb-1 0	09-Feb-10	1003218	Χ
11104-28-2 Aroclor-1221	BDL	U	μg/kg	1970	1680	10	"	"	"	"	Χ
11141-16-5 Aroclor-1232	BDL	U	μg/kg	1970	1020	10	"	"	"	"	Χ
53469-21-9 Aroclor-1242	BDL	U	μg/kg	1970	692	10	"	"	"	"	Χ
12672-29-6 Aroclor-1248	BDL	U	µg/kg	1970	939	10	"	"	"	"	Χ
11097-69-1 Aroclor-1254	BDL	U	μg/kg	1970	1100	10	"	"	"	"	Χ
11096-82-5 Aroclor-1260	18,600		μg/kg	1970	551	10	"	"	"	"	Χ
37324-23-5 Aroclor-1262	BDL	U	μg/kg	1970	1130	10	"	"	"	"	Χ
11100-14-4 Aroclor-1268	BDL	U	μg/kg	1970	1100	10	"	"	"	"	Х
Surrogate recoveries:											
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr)	90		30-1	50 %			"	"	"	"	
10386-84-2 4,4-DB-Octafluorobiphenyl (Sr) [2C]	85		30-1	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr)	125		30-1	50 %			"	"	"	"	
2051-24-3 Decachlorobiphenyl (Sr) [2C]	155	S01	30-1	50 %			H .	"	"	"	

Matrix Aqueous Collection Date/Time 03-Feb-10 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds											
Volatile C	Organic Compounds											
Prepared	by method SW846 5030 Water	er MS										
76-13-1	1,1,2-Trichlorotrifluoroethane	BDL	U	μg/l	1.0	1.0	1	SW846 8260B		17-Feb-10	1003770	
67-64-1	(Freon 113) Acetone	BDL	U	μg/l	10.0	4.6	1	"	0	"	"	
107-13-1	Acrylonitrile	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	
71-43-2	Benzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
108-86-1	Bromobenzene	BDL	U	μg/l	1.0	0.5	1		"	"	"	
74-97-5	Bromochloromethane	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	
75-27-4	Bromodichloromethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	
75-25-2	Bromoform	BDL	U	μg/l	1.0	1.0	1	"	"	"	"	
74-83-9	Bromomethane	BDL	U	μg/l	2.0	1.2	1		"	"	"	
78-93-3	2-Butanone (MEK)	BDL	U	μg/l	10.0	4.1	1	"	"	"	"	
104-51-8	n-Butylbenzene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	
135-98-8	sec-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
98-06-6	tert-Butylbenzene	BDL	U	μg/l	1.0	0.5	1	"	II .	"	"	
75-15-0	Carbon disulfide	BDL	U	μg/l	5.0	0.9	1	"	"	"	"	
56-23-5	Carbon tetrachloride	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	
108-90-7	Chlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
75-00-3	Chloroethane	BDL	U	μg/l	2.0	1.1	1	"	"	"	"	
67-66-3	Chloroform	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	
74-87-3	Chloromethane	BDL	U	μg/l	2.0	0.9	1	"	"	"	"	
95-49-8	2-Chlorotoluene	BDL	U	μg/l	1.0	0.7	1		"	"	"	
106-43-4	4-Chlorotoluene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloropropane	BDL	U	μg/l	2.0	1.7	1	"	"	"	"	
124-48-1	Dibromochloromethane	BDL	U	μg/l	0.5	0.4	1	"	"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	
74-95-3	Dibromomethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
95-50-1	1,2-Dichlorobenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	
541-73-1	1,3-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
75-71-8	Dichlorodifluoromethane (Freon12)	BDL	U	μg/l 	2.0	0.9	1		"	"		
75-34-3	1,1-Dichloroethane	BDL	U	μg/l "	1.0	0.6	1	"	"	"		
107-06-2	1,2-Dichloroethane	BDL	U	μg/l	1.0	0.6	1					
75-35-4	1,1-Dichloroethene	BDL	U	μg/l	1.0	0.7	1					
156-59-2	cis-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.6	1	"				
156-60-5	trans-1,2-Dichloroethene	BDL	U	μg/l	1.0	0.9	1	"				
78-87-5	1,2-Dichloropropane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
142-28-9	1,3-Dichloropropane	BDL	U	µg/l	1.0	0.7	1	"		"		
594-20-7	2,2-Dichloropropane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
563-58-6	1,1-Dichloropropene	BDL	U	µg/l	1.0	0.8	1	"				
	cis-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1 1	"	"	"		
10061-02-6	trans-1,3-Dichloropropene	BDL	U	μg/l	0.5	0.4	1	"	"	"		
	Ethylbenzene	BDL BDL	U U	μg/l	1.0 0.5	0.5 0.5	1	,				
87-68-3	Hexachlorobutadiene	BDL	U	μg/l	10.0	0.5 2.7	1	"	"			
591-78-6 98-82-8	2-Hexanone (MBK)	BDL	U	μg/l μg/l	1.0	0.5	1	"				
98-82-8	Isopropyltoluene	BDL	U	μg/l μg/l	1.0	0.5	1	"	,,	,,	"	
99-87-6 1634-04-4	4-Isopropyltoluene	BDL	U	μg/l μg/l	1.0	0.8	1	"				
108-10-1	Methyl 2 pentanene (MIRK)	BDL	U	μg/l μg/l	10.0	1.1	1	"	,,	,,	"	
	4-Methyl-2-pentanone (MIBK) Methylene chloride	BDL	U	μg/l μg/l	5.0	0.6	1	"				
75-09-2		UUL	J	μy/I	5.0	0.0	I					

Matrix Aqueous Collection Date/Time 03-Feb-10 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds											
Volatile (Organic Compounds											
Prepared	d by method SW846 5030 Water	er MS										
103-65-1	n-Propylbenzene	BDL	U	μg/l	1.0	0.5	1	SW846 8260B	17-Feb-1 0	17-Feb-10	1003770	
100-42-5	Styrene	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	
630-20-6	1,1,1,2-Tetrachloroethane	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BDL	U	μg/l	0.5	0.5	1	"	"	"	"	
127-18-4	Tetrachloroethene	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
108-88-3	Toluene	BDL	U	μg/l	1.0	8.0	1	"	"	"	"	
87-61-6	1,2,3-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
120-82-1	1,2,4-Trichlorobenzene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
108-70-3	1,3,5-Trichlorobenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
71-55-6	1,1,1-Trichloroethane	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
79-01-6	Trichloroethene	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
75-69-4	Trichlorofluoromethane (Freon 11)	BDL	U	μg/l	1.0	0.7	1	"	"	"	"	
96-18-4	1,2,3-Trichloropropane	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	BDL	U	μg/l	1.0	0.4	1	"	"	"	"	
108-67-8	1,3,5-Trimethylbenzene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
75-01-4	Vinyl chloride	BDL	U	μg/l	1.0	0.9	1	"	"	"	"	
179601-23 1	- m,p-Xylene	BDL	U	μg/l	2.0	1.0	1	"	"	"	"	
95-47-6	o-Xylene	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
109-99-9	Tetrahydrofuran	BDL	U	μg/l	10.0	2.4	1	"	"	"	"	
60-29-7	Ethyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
994-05-8	Tert-amyl methyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	BDL	U	μg/l	1.0	0.5	1	"	"	"	"	
108-20-3	Di-isopropyl ether	BDL	U	μg/l	1.0	0.6	1	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	BDL	U	μg/l	10.0	9.6	1	"	"	"	"	
123-91-1	1,4-Dioxane	BDL	U	μg/l	20.0	20.0	1	"	"	"	"	
110-57-6	trans-1,4-Dichloro-2-butene	BDL	U	μg/l	5.0	2.8	1	"	"	"	"	
64-17-5	Ethanol	BDL	U	μg/l	400	37.7	1	"	"	"	"	
Surrogate	recoveries:											
460-00-4	4-Bromofluorobenzene	94		70-1	30 %			"	"	"	"	
2037-26-5	Toluene-d8	102		70-1	30 %			"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	106		70-1	30 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	103		70-1	30 %			"	"	"	"	

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003590 - SW846 5030 Water MS										
Blank (1003590-BLK1)										
Prepared & Analyzed: 12-Feb-10										
1,1,2-Trichlorotrifluoroethane (Freon	BRL	U	μg/l	1.0						
113)										
Acetone	BRL	U	μg/l 	4.6						
Acrylonitrile	BRL	U	μg/l "	0.5						
Benzene	BRL	U	μg/l	0.5						
Bromobenzene	BRL	U	μg/l	0.5						
Bromochloromethane Bromodiahloromethane	BRL BRL	U	μg/l	1.0						
Bromodichloromethane			μg/l	0.5						
Bromoform	BRL BRL	U	μg/l	1.0 1.2						
Bromomethane		U	μg/l							
2-Butanone (MEK)	BRL BRL	U	μg/l	4.1						
n-Butylbenzene			μg/l	0.8						
sec-Butylbenzene tert-Butylbenzene	BRL BRL	U	µg/l	0.5 0.5						
Carbon disulfide	BRL	U	μg/l	0.5						
Carbon distillide Carbon tetrachloride	BRL	U	μg/l	0.9						
	BRL	U	μg/l	0.6						
Chlorosthana	BRL	U	μg/l	1.1						
Chloroethane Chloroform	BRL	U	μg/l	0.8						
	BRL	U	μg/l	0.8						
Chloromethane 2-Chlorotoluene	BRL	U	μg/l	0.9						
	BRL	U	μg/l	0.7						
4-Chlorotoluene 1,2-Dibromo-3-chloropropane	BRL	U	µg/l	1.7						
Dibromochloromethane	BRL	U	μg/l	0.4						
1,2-Dibromoethane (EDB)	BRL	U	μg/l μg/l	0.4						
Dibromomethane	BRL	U		0.7						
1,2-Dichlorobenzene	BRL	U	μg/l μg/l	0.7						
1,3-Dichlorobenzene	BRL	U	μg/l	0.5						
1,4-Dichlorobenzene	BRL	U	μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL	U	μg/l	0.9						
1,1-Dichloroethane	BRL	U	μg/l	0.6						
1,2-Dichloroethane	BRL	U	μg/l	0.6						
1,1-Dichloroethene	BRL	U	μg/l	0.7						
cis-1,2-Dichloroethene	BRL	U	μg/l	0.6						
trans-1,2-Dichloroethene	BRL	U	μg/l	0.9						
1,2-Dichloropropane	BRL	U	μg/l	0.5						
1,3-Dichloropropane	BRL	U	μg/l	0.7						
2,2-Dichloropropane	BRL	U	μg/l	0.6						
1,1-Dichloropropene	BRL	U	μg/l	0.8						
cis-1,3-Dichloropropene	BRL	U	μg/l	0.4						
trans-1,3-Dichloropropene	BRL	U	μg/l	0.4						
Ethylbenzene	BRL	U	μg/l	0.5						
Hexachlorobutadiene	BRL	U	μg/l	0.5						
2-Hexanone (MBK)	BRL	U	μg/l	2.7						
Isopropylbenzene	BRL	U	μg/l	0.5						
4-Isopropyltoluene	BRL	U	μg/l	0.5						
Methyl tert-butyl ether	BRL	U	μg/l	0.8						
4-Methyl-2-pentanone (MIBK)	BRL	U	μg/l	1.1						
Methylene chloride	BRL	U	μg/l	0.6						
Naphthalene	BRL	U	μg/l	1.0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003590 - SW846 5030 Water MS										
Blank (1003590-BLK1)										
Prepared & Analyzed: 12-Feb-10										
n-Propylbenzene	BRL	U	μg/l	0.5						
Styrene	BRL	U	μg/l	0.9						
1,1,1,2-Tetrachloroethane	BRL	U	μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL	U	μg/l	0.5						
Tetrachloroethene	BRL	U	μg/l	0.7						
Toluene	BRL	U	μg/l	0.8						
1,2,3-Trichlorobenzene	BRL	U	μg/l	0.6						
1,2,4-Trichlorobenzene	BRL	U	μg/l	0.6						
1,3,5-Trichlorobenzene	BRL	U	μg/l	0.5						
1,1,1-Trichloroethane	BRL	U	μg/l	0.6						
1,1,2-Trichloroethane	BRL	U	μg/l	0.7						
Trichloroethene	BRL	U	μg/l	0.6						
Trichlorofluoromethane (Freon 11)	BRL	U	μg/l	0.7						
1,2,3-Trichloropropane	BRL	U	μg/l	0.9						
1,2,4-Trimethylbenzene	BRL	U	μg/l	0.4						
1,3,5-Trimethylbenzene	BRL	U	μg/l	0.5						
Vinyl chloride	BRL	U	μg/l	0.9						
m,p-Xylene	BRL	U	μg/l	1.0						
o-Xylene	BRL	U	μg/l	0.5						
Tetrahydrofuran	BRL	U	μg/l	2.4						
Ethyl ether	BRL	U	μg/l	0.6						
Tert-amyl methyl ether	BRL	U	μg/l	0.6						
Ethyl tert-butyl ether	BRL	U	μg/l	0.5						
Di-isopropyl ether	BRL	U	μg/l	0.6						
Tert-Butanol / butyl alcohol	BRL	U	μg/l	9.6						
1,4-Dioxane	BRL	U	μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL	U	μg/l	2.8						
Ethanol	BRL	U	μg/l	37.7						
Surrogate: 4-Bromofluorobenzene	30.0		μg/l		30.0		100	70-130		
Surrogate: 1.2 Dichloroethane d4	29.3 32.0		μg/l		30.0 30.0		98 107	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	32.0 30.6		μg/l μg/l		30.0 30.0		107 102	70-130 70-130		
LCS (1003590-BS1)			13							
Prepared & Analyzed: 12-Feb-10										
1,1,2-Trichlorotrifluoroethane (Freon	26.8	QC2	μg/l		20.0		134	70-130		
113) Acetone	16.8		ua/l		20.0		84	53.2-137		
Acrylonitrile	21.7		µg/l		20.0		109	70-130		
Benzene	21.7		µg/l		20.0		109	70-130		
Bromobenzene	22.8		µg/l		20.0		114	70-130		
Bromochloromethane	24.3		µg/l		20.0		122	70-130		
Bromodichloromethane	27.6	QC2	µg/l		20.0		138	70-130		
Bromoform	26.6	QC2	µg/l		20.0		133	70-130 70-130		
Bromomethane	21.5	Q02	µg/l		20.0		108	48.9-147		
	21.5		µg/l		20.0		111	70-139		
2-Butanone (MEK)	21.6		µg/l		20.0		108	70-139 70-130		
n-Butylbenzene	21.6		µg/l		20.0		111	70-130 70-130		
sec-Butylbenzene			µg/l							
tert-Butylbenzene	22.5		µg/l		20.0		112	70-130 70-130		
Carbon tetraphlarida	22.9	000	μg/l		20.0		114	70-130		
Carbon tetrachloride	30.2	QC2	μg/l		20.0		151	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003590 - SW846 5030 Water MS										
LCS (1003590-BS1)										
Prepared & Analyzed: 12-Feb-10										
Chlorobenzene	22.2		μg/l		20.0		111	70-130		
Chloroethane	23.5		μg/l		20.0		118	65.6-130		
Chloroform	23.6		μg/l		20.0		118	70-130		
Chloromethane	22.1		μg/l		20.0		111	70-130		
2-Chlorotoluene	22.7		μg/l		20.0		114	70-130		
4-Chlorotoluene	22.6		μg/l		20.0		113	70-130		
1,2-Dibromo-3-chloropropane	23.2		μg/l		20.0		116	70-130		
Dibromochloromethane	21.2		μg/l		20.0		106	52.9-130		
1,2-Dibromoethane (EDB)	21.0		μg/l		20.0		105	70-130		
Dibromomethane	22.3		μg/l		20.0		111	70-130		
1,2-Dichlorobenzene	23.0		μg/l		20.0		115	70-130		
1,3-Dichlorobenzene	22.6		μg/l		20.0		113	70-130		
1,4-Dichlorobenzene	22.2		μg/l		20.0		111	70-130		
Dichlorodifluoromethane (Freon12)	25.0		μg/l		20.0		125	63.1-130		
1,1-Dichloroethane	23.3		μg/l		20.0		117	70-130		
1,2-Dichloroethane	22.7		μg/l		20.0		114	70-130		
1,1-Dichloroethene	24.2		μg/l		20.0		121	70-130		
cis-1,2-Dichloroethene	24.0		μg/l		20.0		120	70-130		
trans-1,2-Dichloroethene	22.3		μg/l		20.0		112	70-130		
1,2-Dichloropropane	19.6		μg/l		20.0		98	70-130		
1,3-Dichloropropane	22.4		μg/l		20.0		112	70-130		
2,2-Dichloropropane	21.1		μg/l		20.0		105	70-130		
1,1-Dichloropropene	23.8		μg/l		20.0		119	70-130		
cis-1,3-Dichloropropene	20.2		μg/l		20.0		101	70-130		
trans-1,3-Dichloropropene	19.8		μg/l		20.0		99	70-130		
Ethylbenzene	21.9		μg/l		20.0		109	70-130		
Hexachlorobutadiene	23.2		μg/l		20.0		116	70-130		
2-Hexanone (MBK)	22.5		μg/l		20.0		112	70-130		
Isopropylbenzene	19.1		μg/l		20.0		96	70-130		
4-Isopropyltoluene	22.3		μg/l		20.0		111	70-130		
Methyl tert-butyl ether	23.7		μg/l		20.0		118	70-130		
4-Methyl-2-pentanone (MIBK)	20.2		μg/l		20.0		101	61-130		
Methylene chloride	24.3		μg/l		20.0		122	70-130		
Naphthalene	26.0		μg/l		20.0		130	70-130		
n-Propylbenzene	22.1		μg/l		20.0		111	70-130		
Styrene	23.3		μg/l		20.0		117	70-130		
1,1,1,2-Tetrachloroethane	21.5		μg/l		20.0		108	70-130		
1,1,2,2-Tetrachloroethane	22.6		μg/l		20.0		113	70-130		
Tetrachloroethene	22.7		μg/l		20.0		114	70-130		
Toluene	20.2		μg/l		20.0		101	70-130		
1,2,3-Trichlorobenzene	24.1		μg/l		20.0		121	70-130		
1,2,4-Trichlorobenzene	23.0		μg/l		20.0		115	70-130		
1,3,5-Trichlorobenzene	21.9		μg/l		20.0		109	70-130		
1,1,1-Trichloroethane	25.9		μg/l		20.0		129	70-130		
1,1,2-Trichloroethane	24.4		μg/l		20.0		122	70-130		
Trichloroethene	23.5		μg/l		20.0		118	70-130		
Trichlorofluoromethane (Freon 11)	27.1		μg/l		20.0		136	60-172		
1,2,3-Trichloropropane	25.2		μg/l		20.0		126	70-130		
1,2,4-Trimethylbenzene	22.1		μg/l		20.0		110	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 lug	Omts	KDL	Level	resuit	/UKEC	Limits	Id D	Limit
Batch 1003590 - SW846 5030 Water MS										
LCS (1003590-BS1)										
Prepared & Analyzed: 12-Feb-10										
1,3,5-Trimethylbenzene	22.1		μg/l		20.0		111	70-130		
Vinyl chloride	25.1		μg/l		20.0		125	70-130		
m,p-Xylene	44.9		μg/l		40.0		112	70-130		
o-Xylene	22.5		μg/l		20.0		112	70-130		
Tetrahydrofuran	23.5		μg/l		20.0		118	70-130		
Ethyl ether	25.3		μg/l		20.0		127	70-130		
Tert-amyl methyl ether	22.3		μg/l		20.0		112	70-130		
Ethyl tert-butyl ether	22.6		μg/l		20.0		113	70-130		
Di-isopropyl ether	22.3		μg/l		20.0		111	70-130		
Tert-Butanol / butyl alcohol	230		μg/l		200		115	70-130		
1,4-Dioxane	192		μg/l		200		96	54.2-130		
trans-1,4-Dichloro-2-butene	21.3		μg/l		20.0		107	70-130		
Ethanol	456		μg/l		400		114	70-130		
Surrogate: 4-Bromofluorobenzene	30.5		μg/l		30.0		102	70-130		
Surrogate: Toluene-d8	29.2		μg/l		30.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.2 30.8		μg/l μg/l		30.0 30.0		104 103	70-130 70-130		
_	30.0		μg/i		30.0		103	70-130		
CS Dup (1003590-BSD1)										
Prepared & Analyzed: 12-Feb-10	00.7	000			00.0		440	70.400	-	05
1,1,2-Trichlorotrifluoroethane (Freon 113)	28.7	QC2	µg/l		20.0		143	70-130	7	25
Acetone	15.8		μg/l 		20.0		79	53.2-137	6	50
Acrylonitrile -	22.8		μg/l		20.0		114	70-130	5	25
Benzene	22.3		μg/l		20.0		111	70-130	4	25
Bromobenzene	23.2		μg/l		20.0		116	70-130	2	25
Bromochloromethane	24.1		μg/l		20.0		120	70-130	1	25
Bromodichloromethane	29.0	QC2	μg/l		20.0		145	70-130	5	25
Bromoform	28.7	QC2	μg/l		20.0		144	70-130	7	25
Bromomethane	22.4		μg/l		20.0		112	48.9-147	4	50
2-Butanone (MEK)	20.4		μg/l		20.0		102	70-139	9	50
n-Butylbenzene	22.4		μg/l		20.0		112	70-130	4	25
sec-Butylbenzene	22.8		μg/l		20.0		114	70-130	3	25
tert-Butylbenzene	23.2		μg/l		20.0		116	70-130	3	25
Carbon disulfide	24.2		μg/l		20.0		121	70-130	6	25
Carbon tetrachloride	32.7	QC2	μg/l		20.0		163	70-130	8	25
Chlorobenzene	22.5		μg/l		20.0		112	70-130	1	25
Chloroethane	24.2		μg/l		20.0		121	65.6-130	3	50
Chloroform	24.6		μg/l		20.0		123	70-130	4	25
Chloromethane	23.8		μg/l		20.0		119	70-130	7	25
2-Chlorotoluene	23.7		μg/l		20.0		118	70-130	4	25
4-Chlorotoluene	24.0		μg/l		20.0		120	70-130	6	25
1,2-Dibromo-3-chloropropane	25.0		μg/l		20.0		125	70-130	7	25
Dibromochloromethane	22.1		μg/l		20.0		110	52.9-130	4	50
1,2-Dibromoethane (EDB)	22.6		μg/l		20.0		113	70-130	7	25
Dibromomethane	22.7		μg/l		20.0		114	70-130	2	25
1,2-Dichlorobenzene	23.4		μg/l		20.0		117	70-130	2	25
1,3-Dichlorobenzene	23.8		μg/l		20.0		119	70-130	5	25
1,4-Dichlorobenzene	22.0		μg/l		20.0		110	70-130	1	25
Dichlorodifluoromethane (Freon12)	26.7	QM9	μg/l		20.0		134	63.1-130	7	50
1,1-Dichloroethane	23.8		μg/l		20.0		119	70-130	2	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003590 - SW846 5030 Water MS										
LCS Dup (1003590-BSD1)										
Prepared & Analyzed: 12-Feb-10										
1,2-Dichloroethane	23.2		μg/l		20.0		116	70-130	2	25
1,1-Dichloroethene	25.0		μg/l		20.0		125	70-130	3	25
cis-1,2-Dichloroethene	25.7		μg/l		20.0		128	70-130	7	25
trans-1,2-Dichloroethene	23.5		μg/l		20.0		117	70-130	5	25
1,2-Dichloropropane	21.9		μg/l		20.0		110	70-130	11	25
1,3-Dichloropropane	23.1		μg/l		20.0		116	70-130	3	25
2,2-Dichloropropane	24.2		μg/l		20.0		121	70-130	14	25
1,1-Dichloropropene	25.3		μg/l		20.0		126	70-130	6	25
cis-1,3-Dichloropropene	21.2		μg/l		20.0		106	70-130	5	25
trans-1,3-Dichloropropene	20.8		μg/l		20.0		104	70-130	5	25
Ethylbenzene	22.5		μg/l		20.0		112	70-130	3	25
Hexachlorobutadiene	23.7		μg/l		20.0		119	70-130	2	50
2-Hexanone (MBK)	22.9		μg/l		20.0		114	70-130	2	25
Isopropylbenzene	19.8		μg/l		20.0		99	70-130	4	25
4-Isopropyltoluene	23.3		μg/l		20.0		116	70-130	4	25
Methyl tert-butyl ether	24.0		μg/l		20.0		120	70-130	2	25
4-Methyl-2-pentanone (MIBK)	21.1		μg/l		20.0		106	61-130	5	50
Methylene chloride	24.3		μg/l		20.0		122	70-130	0.04	25
Naphthalene	27.3	QM9	μg/l		20.0		136	70-130	5	25
n-Propylbenzene	22.5	QIVIS			20.0		112	70-130	2	25
• •	23.4		µg/l		20.0		117	70-130	0.5	25 25
Styrene			μg/l							25 25
1,1,1,2-Tetrachloroethane	23.0 22.6		µg/l		20.0		115	70-130	7	25 25
1,1,2,2-Tetrachloroethane			μg/l		20.0		113	70-130	0.09	
Tetrachloroethene	23.3		µg/l		20.0		116	70-130	2	25
Toluene	20.8		μg/l		20.0		104	70-130	3	25
1,2,3-Trichlorobenzene	25.2		μg/l "		20.0		126	70-130	4	25
1,2,4-Trichlorobenzene	23.7		μg/l "		20.0		119	70-130	3	25
1,3,5-Trichlorobenzene	22.6		μg/l 		20.0		113	70-130	3	25
1,1,1-Trichloroethane	27.3	QM9	μg/l 		20.0		136	70-130	5	25
1,1,2-Trichloroethane	24.4		μg/l 		20.0		122	70-130	0.2	25
Trichloroethene	24.6		μg/l 		20.0		123	70-130	5	25
Trichlorofluoromethane (Freon 11)	28.9		μg/l		20.0		144	60-172	6	50
1,2,3-Trichloropropane	26.2	QM9	μg/l 		20.0		131	70-130	4	25
1,2,4-Trimethylbenzene	23.1		µg/l		20.0		116	70-130	5	25
1,3,5-Trimethylbenzene	23.2		μg/l		20.0		116	70-130	5	25
Vinyl chloride	25.2		μg/l		20.0		126	70-130	0.4	25
m,p-Xylene	46.7		μg/l		40.0		117	70-130	4	25
o-Xylene	22.7		μg/l		20.0		113	70-130	8.0	25
Tetrahydrofuran	22.8		μg/l		20.0		114	70-130	3	25
Ethyl ether	24.7		μg/l		20.0		124	70-130	2	50
Tert-amyl methyl ether	22.6		μg/l		20.0		113	70-130	1	25
Ethyl tert-butyl ether	23.9		μg/l		20.0		120	70-130	5	25
Di-isopropyl ether	22.8		μg/l		20.0		114	70-130	3	25
Tert-Butanol / butyl alcohol	235		μg/l		200		118	70-130	2	25
1,4-Dioxane	202		μg/l		200		101	54.2-130	5	25
trans-1,4-Dichloro-2-butene	21.0		μg/l		20.0		105	70-130	1	25
Ethanol	469		μg/l		400		117	70-130	3	30
Surrogate: 4-Bromofluorobenzene	29.5		μg/l		30.0		98	70-130		
Surrogate: Toluene-d8	28.8		μg/l		30.0		96 105	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.6		μg/l		30.0		105	70-130		

			** .		Spike	Source	0/===	%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003590 - SW846 5030 Water MS										
LCS Dup (1003590-BSD1) Prepared & Analyzed: 12-Feb-10										
Surrogate: Dibromofluoromethane	31.0		μg/l		30.0		103	70-130		
-	31.0		μул		30.0		703	70-730		
Batch 1003671 - SW846 5030 Water MS										
Blank (1003671-BLK1)										
Prepared & Analyzed: 16-Feb-10										
1,1,2-Trichlorotrifluoroethane (Freon	BRL	U	μg/l	1.0						
113) Acetone	BRL	U	μg/l	4.6						
Acrylonitrile	BRL	U	μg/l	0.5						
Benzene	BRL	U	μg/l	0.5						
Bromobenzene	BRL	U	μg/l	0.5						
Bromochloromethane	BRL	U	μg/l	1.0						
Bromodichloromethane	BRL	U	μg/l	0.5						
Bromoform	BRL	U	μg/l	1.0						
Bromomethane	BRL	U	μg/l	1.2						
2-Butanone (MEK)	BRL	U	μg/l	4.1						
n-Butylbenzene	BRL	U	μg/l	0.8						
sec-Butylbenzene	BRL	U	μg/l	0.5						
tert-Butylbenzene	BRL	U	μg/l	0.5						
Carbon disulfide	BRL	U	μg/l	0.9						
Carbon tetrachloride	BRL	U	μg/l	0.8						
Chlorobenzene	BRL	U	μg/l	0.5						
Chloroethane	BRL	U	μg/l	1.1						
Chloroform	BRL	U	μg/l	0.8						
Chloromethane	BRL	U	μg/l	0.9						
2-Chlorotoluene	BRL	U	μg/l	0.7						
4-Chlorotoluene	BRL	U	μg/l	0.5						
1,2-Dibromo-3-chloropropane	BRL	U	μg/l	1.7						
Dibromochloromethane	BRL	U	μg/l	0.4						
1,2-Dibromoethane (EDB)	BRL	U	μg/l	0.5						
Dibromomethane	BRL	U	μg/l	0.7						
1,2-Dichlorobenzene	BRL	U	μg/l	0.4						
1,3-Dichlorobenzene	BRL	U	μg/l	0.5						
1,4-Dichlorobenzene	BRL	U	μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL	U	μg/l	0.9						
1,1-Dichloroethane	BRL	U	μg/l	0.6						
1,2-Dichloroethane	BRL	U	μg/l	0.6						
1,1-Dichloroethene	BRL	U	μg/l	0.7						
cis-1,2-Dichloroethene	BRL	U	μg/l	0.6						
trans-1,2-Dichloroethene	BRL	U	μg/l	0.9						
1,2-Dichloropropane	BRL	U	μg/l	0.5						
1,3-Dichloropropane	BRL	U	μg/l	0.7						
2,2-Dichloropropane	BRL	U	μg/l	0.6						
1,1-Dichloropropene	BRL	U	μg/l	8.0						
cis-1,3-Dichloropropene	BRL	U	μg/l	0.4						
trans-1,3-Dichloropropene	BRL	U	μg/l	0.4						
Ethylbenzene	BRL	U	μg/l	0.5						
Hexachlorobutadiene	BRL	U	μg/l	0.5						
2-Hexanone (MBK)	BRL	U	μg/l	2.7						
Isopropylbenzene	BRL	U	μg/l	0.5						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• ``	Kesuit	riag	Omis	·KDL	Level	Resuit	/0KEC	Lillits	KFD	Lillit
Batch 1003671 - SW846 5030 Water MS										
Blank (1003671-BLK1)										
Prepared & Analyzed: 16-Feb-10										
4-Isopropyltoluene	BRL	U	μg/l	0.5						
Methyl tert-butyl ether	BRL	U	μg/l	8.0						
4-Methyl-2-pentanone (MIBK)	BRL	U	μg/l	1.1						
Methylene chloride	BRL	U	μg/l	0.6						
Naphthalene	BRL	U	μg/l	1.0						
n-Propylbenzene	BRL	U	μg/l	0.5						
Styrene	BRL	U	μg/l	0.9						
1,1,1,2-Tetrachloroethane	BRL	U	μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL	U	μg/l	0.5						
Tetrachloroethene	BRL	U	μg/l	0.7						
Toluene	BRL	U	μg/l	8.0						
1,2,3-Trichlorobenzene	BRL	U	μg/l	0.6						
1,2,4-Trichlorobenzene	BRL	U	μg/l	0.6						
1,3,5-Trichlorobenzene	BRL	U	μg/l	0.5						
1,1,1-Trichloroethane	BRL	U	μg/l	0.6						
1,1,2-Trichloroethane	BRL	U	μg/l	0.7						
Trichloroethene	BRL	U	μg/l	0.6						
Trichlorofluoromethane (Freon 11)	BRL	U 	μg/l	0.7						
1,2,3-Trichloropropane	BRL	U 	μg/l	0.9						
1,2,4-Trimethylbenzene	BRL	U 	μg/l	0.4						
1,3,5-Trimethylbenzene	BRL	U 	μg/l	0.5						
Vinyl chloride	BRL	U	μg/l	0.9						
m,p-Xylene	BRL	U 	μg/l	1.0						
o-Xylene	BRL	U 	μg/l	0.5						
Tetrahydrofuran	BRL	U 	μg/l	2.4						
Ethyl ether	BRL	U	μg/l	0.6						
Tert-amyl methyl ether	BRL	U	μg/l	0.6						
Ethyl tert-butyl ether	BRL	U	μg/l	0.5						
Di-isopropyl ether	BRL	U	μg/l	0.6						
Tert-Butanol / butyl alcohol	BRL	U 	μg/l	9.6						
1,4-Dioxane	BRL	U	μg/l	20.0						
trans-1,4-Dichloro-2-butene	BRL	U	μg/l	2.8						
Ethanol	BRL	U	μg/l	37.7				70.400		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	29.2 26.1		μg/l μg/l		30.0 30.0		97 87	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	32.0		μg/l		30.0		106	70-130		
Surrogate: Dibromofluoromethane	32.0		μg/l		30.0		107	70-130		
LCS (1003671-BS1)										
Prepared & Analyzed: 16-Feb-10										
1,1,2-Trichlorotrifluoroethane (Freon	27.2	QC2	μg/l		20.0		136	70-130		
113)										
Acetone	17.5		μg/l		20.0		87	53.2-137		
Acrylonitrile	19.4		μg/l		20.0		97	70-130		
Benzene	18.7		μg/l		20.0		93	70-130		
Bromobenzene	19.6		μg/l		20.0		98	70-130		
Bromochloromethane	21.1		μg/l		20.0		106	70-130		
Bromodichloromethane	19.5		μg/l		20.0		98	70-130		
Bromoform	15.6		μg/l		20.0		78	70-130		
Bromomethane	19.9		μg/l		20.0		99	48.9-147		
2-Butanone (MEK)	22.6		μg/l		20.0		113	70-139		

Result	Flao	Units	*RDI	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Result	1 lug	Cints	KDL	Level	Result	70KEC	Limits	МЪ	
20.2		μg/l		20.0		101	70-130		
		μg/l							
		μg/l							
	QM9								
		µg/l							
		μg/l 							
		μg/l "							
		μg/l "							
		μg/l "							
19.5		μg/l		20.0		97	70-130		
	20.9 19.9 14.6 21.2 20.2 19.2 20.9 19.0 21.2 20.7 13.9 15.3 18.9 20.3 19.9 24.1 19.9 21.2 20.6 20.8 18.4 19.1 18.9 21.1 20.8 17.9 14.9 19.1 21.2 14.6 17.0 19.5 20.3 14.6 19.7 16.3 19.5 18.9 19.8 21.0 17.6 17.1 19.9 19.0	20.2 20.9 19.9 14.6 21.2 20.2 19.2 20.9 19.0 21.2 20.7 13.9 QM9 15.3 18.9 20.3 19.9 20.9 19.9 24.1 19.9 24.1 19.9 21.2 20.6 20.8 18.4 19.1 18.9 21.1 20.8 17.9 14.9 19.1 21.2 14.6 17.0 19.5 20.3 14.6 19.7 16.3 19.5 18.9 19.8 21.0 17.6 17.1 19.9 19.0	20.2	20.2 µg/l 20.9 µg/l 19.9 µg/l 14.6 µg/l 21.2 µg/l 20.2 µg/l 19.2 µg/l 20.9 µg/l 19.0 µg/l 21.2 µg/l 20.7 µg/l 13.9 QM9 µg/l 15.3 µg/l 18.9 µg/l 20.3 µg/l 19.9 µg/l 20.9 µg/l 19.9 µg/l 20.6 µg/l 19.9 µg/l 21.2 µg/l 20.6 µg/l 19.1 µg/l 19.1 µg/l 18.9 µg/l 19.1 µg/l 19.1 µg/l 20.8 µg/l 17.9 µg/l 14.9 µg/l 19.1 µg/l 21.1 µg/l 20.8 µg/l 17.9 µg/l 14.9 µg/l 19.1 µg/l 21.1 µg/l 20.8 µg/l 17.9 µg/l 14.6 µg/l 17.0 µg/l 19.5 µg/l 19.5 µg/l 19.5 µg/l 19.5 µg/l 19.7 µg/l 19.8 µg/l 19.7 µg/l 19.8 µg/l 19.9 µg/l 19.1 µg/l 19.1 µg/l 21.1 µg/l 21.2 µg/l 21.1 µg/l	Result Flag Units *RDL Level	Result Flag Units *RDL Level Result 20.2 µg/l 20.0	Result Flag Units *RDL Level Result %REC	Result Flag Units *RDL Level Result *REC Limits 20.2 µg/l 20.0 101 70-130 20.9 µg/l 20.0 104 70-130 19.9 µg/l 20.0 100 70-130 21.2 µg/l 20.0 101 70-130 21.2 µg/l 20.0 106 70-130 21.2 µg/l 20.0 101 70-130 19.2 µg/l 20.0 104 70-130 19.0 µg/l 20.0 96 65-6130 19.0 µg/l 20.0 106 70-130 21.2 µg/l 20.0 108 70-130 21.2 µg/l 20.0 106 70-130 13.9 µg/l 20.0 103 70-130 15.3 µg/l 20.0 94 70-130 15.3 µg/l 20.0 94 70-130 1	Result Flag Units *RDL Level Result %REC Limits RPD 20.2 µg/I 20.0 101 70-130 19-14 70-130 19-14 70-130 19-14 70-130 19-14 70-130 19-14 70-130 19-14 70-130 19-14 19-14 70-130 19-14 19-14 70-130 19-14 19-14 20-14 10-14 70-130 19-14 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14 10-14 70-130 19-14 20-14

	B 1	771	** *:	de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de	Spike	Source	0/755	%REC	nnn	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003671 - SW846 5030 Water MS										
LCS (1003671-BS1)										
Prepared & Analyzed: 16-Feb-10										
1,1,2-Trichloroethane	18.8		μg/l		20.0		94	70-130		
Trichloroethene	19.9		μg/l		20.0		100	70-130		
Trichlorofluoromethane (Freon 11)	25.5		μg/l		20.0		127	60-172		
1,2,3-Trichloropropane	22.3		μg/l		20.0		112	70-130		
1,2,4-Trimethylbenzene	19.1		μg/l		20.0		95	70-130		
1,3,5-Trimethylbenzene	18.9		μg/l		20.0		94	70-130		
Vinyl chloride	25.2		μg/l		20.0		126	70-130		
m,p-Xylene	39.7		μg/l		40.0		99	70-130		
o-Xylene	20.3		μg/l		20.0		102	70-130		
Tetrahydrofuran	18.2		μg/l		20.0		91	70-130		
Ethyl ether	19.3		μg/l		20.0		96	70-130		
Tert-amyl methyl ether	19.0		μg/l		20.0		95	70-130		
Ethyl tert-butyl ether	19.0		μg/l		20.0		95	70-130		
Di-isopropyl ether	18.5		μg/l		20.0		92	70-130		
Tert-Butanol / butyl alcohol	174		μg/l		200		87	70-130		
1,4-Dioxane	176		μg/l		200		88	54.2-130		
trans-1,4-Dichloro-2-butene	17.5		μg/l		20.0		88	70-130		
Ethanol	340		μg/l		400		85	70-130		
Surrogate: 4-Bromofluorobenzene	31.4		μg/l		30.0		105	70-130		
Surrogate: Toluene-d8	27.0		μg/l		30.0		90	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	32.4 33.1		µg/l µg/l		30.0 30.0		108 110	70-130 70-130		
Prepared & Analyzed: 16-Feb-10 1,1,2-Trichlorotrifluoroethane (Freon	29.0	QC2	μg/l		20.0		145	70-130	6	25
113) Acetone	18.6		μg/l		20.0		93	53.2-137	6	50
Acrylonitrile	20.7		μg/l		20.0		103	70-130	6	25
Benzene	19.8		μg/l		20.0		99	70-130	6	25
Bromobenzene	20.0		μg/l		20.0		100	70-130	2	25
Bromochloromethane	22.4		μg/l		20.0		112	70-130	6	25
Bromodichloromethane	21.2		μg/l		20.0		106	70-130	8	25
Bromoform	15.9		μg/l		20.0		80	70-130	2	25
Bromomethane	21.0		μg/l		20.0		105	48.9-147	6	50
2-Butanone (MEK)	20.3		μg/l		20.0		102	70-139	11	50
n-Butylbenzene	21.3		μg/l		20.0		106	70-139	5	25
sec-Butylbenzene	21.8		μg/l		20.0		109	70-130	4	25
tert-Butylbenzene	20.6		μg/l		20.0		103	70-130	3	25
Carbon disulfide	15.5		μg/l		20.0		77	70-130	6	25
Carbon tetrachloride	22.9		μg/l		20.0		114	70-130	8	25
Chlorobenzene	20.7		μg/l		20.0		103	70-130	3	25
Chloroethane	20.0		μg/l		20.0		100	65.6-130	4	50
Chloroform	22.4		μg/l		20.0		112	70-130	7	25
Chloromethane	19.6		μg/l		20.0		98	70-130	4	25
2-Chlorotoluene	21.9		μg/l		20.0		109	70-130	3	25
4-Chlorotoluene	21.0		μg/l		20.0		105	70-130	2	25
1,2-Dibromo-3-chloropropane	14.3		μg/l		20.0		71	70-130	3	25
,							79	52.9-130	3	50
Dibromochloromethane	15.8		uu/i		20.0					
Dibromochloromethane 1,2-Dibromoethane (EDB)	15.8 19.9		µg/l µg/l		20.0 20.0		100	70-130	5	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003671 - SW846 5030 Water MS										
LCS Dup (1003671-BSD1)										
Prepared & Analyzed: 16-Feb-10										
1,2-Dichlorobenzene	20.6		μg/l		20.0		103	70-130	3	25
1,3-Dichlorobenzene	21.3		μg/l		20.0		107	70-130	2	25
1,4-Dichlorobenzene	20.4		μg/l		20.0		102	70-130	3	25
Dichlorodifluoromethane (Freon12)	25.4		μg/l		20.0		127	63.1-130	5	50
1,1-Dichloroethane	21.4		μg/l		20.0		107	70-130	8	25
1,2-Dichloroethane	22.2		μg/l		20.0		111	70-130	5	25
1,1-Dichloroethene	22.1		μg/l		20.0		111	70-130	7	25
cis-1,2-Dichloroethene	22.0		μg/l		20.0		110	70-130	6	25
trans-1,2-Dichloroethene	19.7		μg/l		20.0		99	70-130	7	25
1,2-Dichloropropane	20.0		μg/l		20.0		100	70-130	5	25
1,3-Dichloropropane	19.8		μg/l		20.0		99	70-130	5	25
2,2-Dichloropropane	22.6		μg/l		20.0		113	70-130	6	25
1,1-Dichloropropene	22.3		μg/l		20.0		111	70-130	7	25
cis-1,3-Dichloropropene	18.4		μg/l		20.0		92	70-130	3	25
trans-1,3-Dichloropropene	15.7		μg/l		20.0		78	70-130	5	25
Ethylbenzene	19.8		μg/l		20.0		99	70-130	4	25
Hexachlorobutadiene	21.5		μg/l		20.0		107	70-130	1	50
2-Hexanone (MBK)	15.0		μg/l		20.0		75	70-130	2	25
Isopropylbenzene	17.7		μg/l		20.0		89	70-130	4	25
4-Isopropyltoluene	20.4		μg/l		20.0		102	70-130	4	25
Methyl tert-butyl ether	21.4		μg/l		20.0		107	70-130	5	25
4-Methyl-2-pentanone (MIBK)	15.6		μg/l		20.0		78	61-130	6	50
Methylene chloride	20.9		μg/l		20.0		104	70-130	6	25
Naphthalene	16.5		μg/l		20.0		83	70-130	1	25
n-Propylbenzene	20.4		μg/l		20.0		102	70-130	4	25
Styrene	19.2		μg/l		20.0		96	70-130	2	25
1,1,1,2-Tetrachloroethane	20.8		μg/l		20.0		104	70-130	5	25
1,1,2,2-Tetrachloroethane	21.2		μg/l		20.0		106	70-130	0.9	25
Tetrachloroethene	18.8		μg/l		20.0		94	70-130	7	25
Toluene	18.2		μg/l		20.0		91	70-130	6	25
1,2,3-Trichlorobenzene	20.2		μg/l		20.0		101	70-130	1	25
1,2,4-Trichlorobenzene	18.9		μg/l		20.0		95	70-130	0.7	25
1,3,5-Trichlorobenzene	20.1		μg/l		20.0		100	70-130	3	25
1,1,1-Trichloroethane	22.4		μg/l		20.0		112	70-130	9	25
1,1,2-Trichloroethane	19.4		μg/l		20.0		97	70-130	3	25
Trichloroethene	20.9		μg/l		20.0		105	70-130	5	25
Trichlorofluoromethane (Freon 11)	27.1		μg/l		20.0		136	60-172	6	50
1,2,3-Trichloropropane	22.4		μg/l		20.0		112	70-130	0.2	25
1,2,4-Trimethylbenzene	19.2		μg/l		20.0		96	70-130	0.5	25
1,3,5-Trimethylbenzene	19.8		μg/l		20.0		99	70-130	4	25
Vinyl chloride	29.6	QM9	μg/l		20.0		148	70-130	16	25
m,p-Xylene	40.8		μg/l		40.0		102	70-130	3	25
o-Xylene	20.8		μg/l		20.0		104	70-130	2	25
Tetrahydrofuran	17.9		μg/l		20.0		90	70-130	2	25
Ethyl ether	20.5		μg/l		20.0		102	70-130	6	50
Tert-amyl methyl ether	19.6		μg/l		20.0		98	70-130	3	25
Ethyl tert-butyl ether	20.0		μg/l		20.0		100	70-130	5	25
Di-isopropyl ether	19.5		μg/l		20.0		98	70-130	6	25
Tert-Butanol / butyl alcohol	180		μg/l		200		90	70-130	3	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003671 - SW846 5030 Water M	IS									
LCS Dup (1003671-BSD1)										
Prepared & Analyzed: 16-Feb-10										
1,4-Dioxane	168		μg/l		200		84	54.2-130	4	25
trans-1,4-Dichloro-2-butene	18.2		μg/l		20.0		91	70-130	4	25
Ethanol	358		μg/l		400		90	70-130	5	30
Surrogate: 4-Bromofluorobenzene	30.5		μg/l		30.0		102	70-130		
Surrogate: Toluene-d8	27.4		μg/l		30.0		91 100	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	32.8 33.4		μg/l μg/l		30.0 30.0		109 111	70-130 70-130		
Matrix Spike (1003671-MS1)	Source: SB07608	3-13								
Prepared & Analyzed: 16-Feb-10										
1,1,2-Trichlorotrifluoroethane (Freon 113)	35.6	QC2	μg/l		20.0	BRL	178	70-130		
Acetone	19.8		μg/l		20.0	BRL	99	70-130		
Acrylonitrile	23.8		μg/l		20.0	BRL	119	70-130		
Benzene	24.0		μg/l		20.0	BRL	120	70-130		
Bromobenzene	23.7		μg/l		20.0	BRL	118	70-130		
Bromochloromethane	25.0		μg/l		20.0	BRL	125	70-130		
Bromodichloromethane	22.6		μg/l		20.0	BRL	113	70-130		
Bromoform	16.2		μg/l		20.0	BRL	81	70-130		
Bromomethane	24.5		μg/l		20.0	BRL	122	70-130		
2-Butanone (MEK)	25.2		μg/l		20.0	BRL	126	70-130		
n-Butylbenzene	27.0	QM7	μg/l		20.0	BRL	135	70-130		
sec-Butylbenzene	26.3	QM7	μg/l		20.0	BRL	132	70-130		
tert-Butylbenzene	24.8		μg/l		20.0	BRL	124	70-130		
Carbon disulfide	16.5		μg/l		20.0	BRL	83	70-130		
Carbon tetrachloride	26.9	QM7	μg/l		20.0	BRL	134	70-130		
Chlorobenzene	24.9		μg/l		20.0	BRL	124	70-130		
Chloroethane	23.8		μg/l		20.0	BRL	119	70-130		
Chloroform	26.3	QM7	μg/l		20.0	BRL	132	70-130		
Chloromethane	18.4		μg/l		20.0	BRL	92	70-130		
2-Chlorotoluene	26.6	QM7	μg/l		20.0	BRL	133	70-130		
4-Chlorotoluene	25.4		μg/l		20.0	BRL	127	70-130		
1,2-Dibromo-3-chloropropane	15.6		μg/l		20.0	BRL	78	70-130		
Dibromochloromethane	16.0		μg/l		20.0	BRL	80	70-130		
1,2-Dibromoethane (EDB)	22.1		μg/l		20.0	BRL	110	70-130		
Dibromomethane	25.7		μg/l		20.0	BRL	128	70-130		
1,2-Dichlorobenzene	24.2		μg/l		20.0	BRL	121	70-130		
1,3-Dichlorobenzene	25.4				20.0	BRL	127	70-130		
1,4-Dichlorobenzene	24.5		μg/l		20.0	BRL	123	70-130		
Dichlorodifluoromethane (Freon12)	18.0		μg/l		20.0	BRL	90			
,			μg/l					70-130		
1,1-Dichloroethane	25.3	OM7	μg/l		20.0	BRL	127	70-130		
1,2-Dichloroethane	27.0	QM7	μg/l		20.0	BRL	135	70-130		
1,1-Dichloroethene	26.7	QM7	μg/l		20.0	BRL	134	70-130		
cis-1,2-Dichloroethene	26.7	QM7	µg/l		20.0	BRL	134	70-130		
trans-1,2-Dichloroethene	24.0		µg/l		20.0	BRL	120	70-130		
1,2-Dichloropropane	23.6		μg/l "		20.0	BRL	118	70-130		
1,3-Dichloropropane	22.4		μg/l		20.0	BRL	112	70-130		
2,2-Dichloropropane	28.3	QM7	μg/l		20.0	BRL	141	70-130		
1,1-Dichloropropene	27.4	QM7	μg/l		20.0	BRL	137	70-130		
cis-1,3-Dichloropropene	19.9		μg/l		20.0	BRL	99	70-130		
trans-1,3-Dichloropropene	15.9		μg/l		20.0	BRL	79	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• ,,		Tag	Onits	KDL	Level	Result	70KEC	Lillius	KI D	Lillit
Batch 1003671 - SW846 5030 Water										
Matrix Spike (1003671-MS1)	Source: SB07608	3-13								
Prepared & Analyzed: 16-Feb-10										
Ethylbenzene	23.4		μg/l		20.0	BRL	117	70-130		
Hexachlorobutadiene	27.3	QM7	μg/l		20.0	BRL	137	70-130		
2-Hexanone (MBK)	16.8		μg/l		20.0	BRL	84	70-130		
Isopropylbenzene	21.3		μg/l		20.0	BRL	106	70-130		
4-Isopropyltoluene	24.6		μg/l		20.0	BRL	123	70-130		
Methyl tert-butyl ether	24.7		μg/l		20.0	BRL	124	70-130		
4-Methyl-2-pentanone (MIBK)	16.8		μg/l		20.0	BRL	84	70-130		
Methylene chloride	24.1		μg/l		20.0	BRL	121	70-130		
Naphthalene	19.9		μg/l		20.0	BRL	100	70-130		
n-Propylbenzene	24.7		μg/l		20.0	BRL	123	70-130		
Styrene	22.6		μg/l		20.0	BRL	113	70-130		
1,1,1,2-Tetrachloroethane	22.9		μg/l		20.0	BRL	115	70-130		
1,1,2,2-Tetrachloroethane	25.4		μg/l		20.0	BRL	127	70-130		
Tetrachloroethene	22.2		μg/l		20.0	BRL	111	70-130		
Toluene	21.2		μg/l		20.0	BRL	106	70-130		
1,2,3-Trichlorobenzene	24.5		μg/l		20.0	BRL	123	70-130		
1,2,4-Trichlorobenzene	23.6		μg/l		20.0	BRL	118	70-130		
1,3,5-Trichlorobenzene	24.8		μg/l		20.0	BRL	124	70-130		
1,1,1-Trichloroethane	27.2	QM7	μg/l		20.0	BRL	136	70-130		
1,1,2-Trichloroethane	22.0		μg/l		20.0	BRL	110	70-130		
Trichloroethene	25.2		μg/l		20.0	BRL	126	70-130		
Trichlorofluoromethane (Freon 11)	31.9	QM7	μg/l		20.0	BRL	160	70-130		
1,2,3-Trichloropropane	26.8	QM7	μg/l		20.0	BRL	134	70-130		
1,2,4-Trimethylbenzene	23.2		μg/l		20.0	BRL	116	70-130		
1,3,5-Trimethylbenzene	23.5		μg/l		20.0	BRL	117	70-130		
Vinyl chloride	27.2	QM7	μg/l		20.0	BRL	136	70-130		
m,p-Xylene	49.0	ζ			40.0	BRL	123	70-130		
o-Xylene	24.7		μg/l		20.0	BRL	123	70-130		
Tetrahydrofuran	20.6		µg/l		20.0	BRL	103	70-130		
•	22.4		µg/l		20.0	BRL	112	70-130		
Ethyl ether			μg/l							
Tert-amyl methyl ether	22.3 22.3		µg/l		20.0	BRL	111	70-130 70-130		
Ethyl tert-butyl ether			μg/l		20.0	BRL	112			
Di-isopropyl ether	22.7		μg/l		20.0	BRL	113	70-130		
Tert-Butanol / butyl alcohol	205		μg/l "		200	BRL	103	70-130		
1,4-Dioxane	206		μg/l 		200	BRL	103	70-130		
trans-1,4-Dichloro-2-butene	20.3		μg/l		20.0	BRL	102	70-130		
Ethanol	450		μg/l		400	BRL	113	70-130		
Surrogate: 4-Bromofluorobenzene	31.1		μg/l		30.0		104	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	26.3 35.2		μg/l μg/l		30.0 30.0		88 117	70-130 70-130		
Surrogate: Dibromofluoromethane	33.9		μg/l		30.0		113	70-130		
Matrix Spike Dup (1003671-MSD1)	Source: SB07608	3-13	-							
Prepared & Analyzed: 16-Feb-10										
1,1,2-Trichlorotrifluoroethane (Freon 113)	33.4	QC2	μg/l		20.0	BRL	167	70-130	6	30
Acetone	19.0		μg/l		20.0	BRL	95	70-130	4	30
Acrylonitrile	22.6		μg/l		20.0	BRL	113	70-130	5	30
Benzene	23.8		μg/l		20.0	BRL	119	70-130	1	30
Bromobenzene	23.5		μg/l		20.0	BRL	117	70-130	8.0	30
Bromochloromethane	26.1		μg/l		20.0	BRL	130	70-130	4	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003671 - SW846 5030 Water	MS									
Matrix Spike Dup (1003671-MSD1)	Source: SB07608	8-13								
Prepared & Analyzed: 16-Feb-10										
Bromodichloromethane	23.6		μg/l		20.0	BRL	118	70-130	4	30
Bromoform	16.8		μg/l		20.0	BRL	84	70-130	4	30
Bromomethane	23.6		μg/l		20.0	BRL	118	70-130	4	30
2-Butanone (MEK)	23.3		μg/l		20.0	BRL	116	70-130	8	30
n-Butylbenzene	27.4	QM7	μg/l		20.0	BRL	137	70-130	1	30
sec-Butylbenzene	26.5	QM7	μg/l		20.0	BRL	133	70-130	0.8	30
tert-Butylbenzene	24.7		μg/l		20.0	BRL	124	70-130	0.5	30
Carbon disulfide	17.6		μg/l		20.0	BRL	88	70-130	6	30
Carbon tetrachloride	27.2	QM7	μg/l		20.0	BRL	136	70-130	1	30
Chlorobenzene	24.6		μg/l		20.0	BRL	123	70-130	1	30
Chloroethane	23.3		μg/l		20.0	BRL	116	70-130	2	30
Chloroform	26.3	QM7	μg/l		20.0	BRL	132	70-130	0	30
Chloromethane	18.8		μg/l		20.0	BRL	94	70-130	2	30
2-Chlorotoluene	26.6	QM7	μg/l		20.0	BRL	133	70-130	0.2	30
4-Chlorotoluene	25.5		μg/l		20.0	BRL	128	70-130	0.3	30
1,2-Dibromo-3-chloropropane	16.2		μg/l		20.0	BRL	81	70-130	4	30
Dibromochloromethane	16.7		μg/l		20.0	BRL	84	70-130	5	30
1,2-Dibromoethane (EDB)	21.8		μg/l		20.0	BRL	109	70-130	1	30
Dibromomethane	24.7		μg/l		20.0	BRL	124	70-130	4	30
1,2-Dichlorobenzene	24.2		μg/l		20.0	BRL	121	70-130	0.3	30
1,3-Dichlorobenzene	25.4		μg/l		20.0	BRL	127	70-130	0.04	30
1,4-Dichlorobenzene	24.3		μg/l		20.0	BRL	122	70-130	0.8	30
Dichlorodifluoromethane (Freon12)	17.7		μg/l		20.0	BRL	88	70-130	2	30
1,1-Dichloroethane	25.6		μg/l		20.0	BRL	128	70-130	1	30
1,2-Dichloroethane	26.6	QM7	μg/l		20.0	BRL	133	70-130	2	30
1,1-Dichloroethene	26.2	QM7	μg/l		20.0	BRL	131	70-130	2	30
cis-1,2-Dichloroethene	26.5	QM7	μg/l		20.0	BRL	132	70-130	0.9	30
trans-1,2-Dichloroethene	23.9		μg/l		20.0	BRL	120	70-130	0.3	30
1,2-Dichloropropane	23.2		μg/l		20.0	BRL	116	70-130	1	30
1,3-Dichloropropane	22.4		μg/l		20.0	BRL	112	70-130	0.04	30
2,2-Dichloropropane	27.6	QM7	μg/l		20.0	BRL	138	70-130	2	30
1,1-Dichloropropene	26.9	QM7	μg/l		20.0	BRL	135	70-130	2	30
cis-1,3-Dichloropropene	20.6		μg/l		20.0	BRL	103	70-130	4	30
trans-1,3-Dichloropropene	16.5		μg/l		20.0	BRL	83	70-130	4	30
Ethylbenzene	24.1		μg/l		20.0	BRL	120	70-130	3	30
Hexachlorobutadiene	27.4	QM7	μg/l		20.0	BRL	137	70-130	0.4	30
2-Hexanone (MBK)	17.6		μg/l		20.0	BRL	88	70-130	5	30
Isopropylbenzene	21.3		μg/l		20.0	BRL	107	70-130	0.2	30
4-Isopropyltoluene	25.2		μg/l		20.0	BRL	126	70-130	2	30
Methyl tert-butyl ether	23.9		μg/l		20.0	BRL	119	70-130	4	30
4-Methyl-2-pentanone (MIBK)	16.5		μg/l		20.0	BRL	83	70-130	1	30
Methylene chloride	24.8		μg/l		20.0	BRL	124	70-130	3	30
Naphthalene	19.2		μg/l		20.0	BRL	96	70-130	4	30
n-Propylbenzene	25.0		μg/l		20.0	BRL	125	70-130	1	30
Styrene	23.0		μg/l		20.0	BRL	115	70-130	1	30
1,1,1,2-Tetrachloroethane	23.5		μg/l		20.0	BRL	118	70-130	3	30
1,1,2,2-Tetrachloroethane	24.6		μg/l		20.0	BRL	123	70-130	3	30
Tetrachloroethene	23.2		μg/l		20.0	BRL	116	70-130	4	30
Toluene	21.5		μg/l		20.0	BRL	108	70-130	1	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003671 - SW846 5030 Water	MS				·					
Matrix Spike Dup (1003671-MSD1)	Source: SB07608	8-13								
Prepared & Analyzed: 16-Feb-10										
1,2,3-Trichlorobenzene	23.3		μg/l		20.0	BRL	117	70-130	5	30
1,2,4-Trichlorobenzene	22.8		μg/l		20.0	BRL	114	70-130	3	30
1,3,5-Trichlorobenzene	24.4		μg/l		20.0	BRL	122	70-130	2	30
1,1,1-Trichloroethane	27.1	QM7	μg/l		20.0	BRL	136	70-130	0.2	30
1,1,2-Trichloroethane	22.0		μg/l		20.0	BRL	110	70-130	0.2	30
Trichloroethene	25.7		μg/l		20.0	BRL	128	70-130	2	30
Trichlorofluoromethane (Freon 11)	31.7	QM7	μg/l		20.0	BRL	158	70-130	0.9	30
1,2,3-Trichloropropane	26.1	QM7	μg/l		20.0	BRL	131	70-130	3	30
1,2,4-Trimethylbenzene	23.2		μg/l		20.0	BRL	116	70-130	0.3	30
1,3,5-Trimethylbenzene	24.1		μg/l		20.0	BRL	120	70-130	3	30
Vinyl chloride	22.1		μg/l		20.0	BRL	110	70-130	21	30
m,p-Xylene	48.9		μg/l		40.0	BRL	122	70-130	0.3	30
o-Xylene	25.0		μg/l		20.0	BRL	125	70-130	1	30
Tetrahydrofuran	21.4		μg/l		20.0	BRL	107	70-130	4	30
Ethyl ether	22.7		μg/l		20.0	BRL	114	70-130	2	30
Tert-amyl methyl ether	21.8		μg/l		20.0	BRL	109	70-130	2	30
Ethyl tert-butyl ether	22.0		μg/l		20.0	BRL	110	70-130	1	30
Di-isopropyl ether	22.2		μg/l		20.0	BRL	111	70-130	2	30
Tert-Butanol / butyl alcohol	207		μg/l		200	BRL	104	70-130	0.9	30
1,4-Dioxane	216		μg/l		200	BRL	108	70-130	5	30
trans-1,4-Dichloro-2-butene	20.5		μg/l		20.0	BRL	102	70-130	0.8	30
Ethanol	425		μg/l		400	BRL	106	70-130	6	30
Surrogate: 4-Bromofluorobenzene	30.7		μg/l		30.0		102	70-130		
Surrogate: Toluene-d8	26.3		μg/l		30.0		88	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.4		μg/l		30.0		111	70-130		
Surrogate: Dibromofluoromethane	33.8		μg/l		30.0		113	70-130		
Batch 1003770 - SW846 5030 Water	MS									
Blank (1003770-BLK1) Prepared & Analyzed: 17-Feb-10										
	DDI	U	//	1.0						
1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL	U	μg/l	1.0						
Acetone	BRL	U	μg/l	4.6						
Acrylonitrile	BRL	U	μg/l	0.5						
Benzene	BRL	U	μg/l	0.5						
Bromobenzene	BRL	U	μg/l	0.5						
Bromochloromethane	BRL	U	μg/l	1.0						
Bromodichloromethane	BRL	U	μg/l	0.5						
Bromoform	BRL	U	μg/l	1.0						
Bromomethane	BRL	U	μg/l	1.2						
2-Butanone (MEK)	BRL	U	μg/l	4.1						
n-Butylbenzene	BRL	U	μg/l	0.8						
sec-Butylbenzene	BRL	U	μg/l	0.5						
tert-Butylbenzene	BRL	U	μg/l	0.5						
Carbon disulfide	BRL	U	μg/l	0.9						
Carbon tetrachloride	BRL	U	μg/l	0.8						
Chlorobenzene	BRL	U	μg/l	0.5						
Chloroethane	BRL	U	μg/l	1.1						
Chloroform	BRL	U	μg/l	0.8						
Chloromethane	BRL	U	μg/l	0.9						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
• • • •	Result	Tiug	Omis	KDL	Level	resuit	70ICEC	Limits	IG D	Limit
Batch 1003770 - SW846 5030 Water MS										
Blank (1003770-BLK1)										
Prepared & Analyzed: 17-Feb-10										
4-Chlorotoluene	BRL	U	μg/l	0.5						
1,2-Dibromo-3-chloropropane	BRL	U	μg/l	1.7						
Dibromochloromethane	BRL	U	μg/l	0.4						
1,2-Dibromoethane (EDB)	BRL	U	μg/l	0.5						
Dibromomethane	BRL	U	μg/l	0.7						
1,2-Dichlorobenzene	BRL	U	μg/l	0.4						
1,3-Dichlorobenzene	BRL	U	μg/l	0.5						
1,4-Dichlorobenzene	BRL	U	μg/l	0.5						
Dichlorodifluoromethane (Freon12)	BRL	U	μg/l	0.9						
1,1-Dichloroethane	BRL	U	μg/l	0.6						
1,2-Dichloroethane	BRL	U	μg/l	0.6						
1,1-Dichloroethene	BRL	U	μg/l	0.7						
cis-1,2-Dichloroethene	BRL	U	μg/l	0.6						
trans-1,2-Dichloroethene	BRL	U	μg/l	0.9						
1,2-Dichloropropane	BRL	U	μg/l	0.5						
1,3-Dichloropropane	BRL	U	μg/l	0.7						
2,2-Dichloropropane	BRL	U	μg/l	0.6						
1,1-Dichloropropene	BRL	U	μg/l	8.0						
cis-1,3-Dichloropropene	BRL	U	μg/l	0.4						
trans-1,3-Dichloropropene	BRL	U	μg/l	0.4						
Ethylbenzene	BRL	U	μg/l	0.5						
Hexachlorobutadiene	BRL	U	μg/l	0.5						
2-Hexanone (MBK)	BRL	U	μg/l	2.7						
Isopropylbenzene	BRL	U	μg/l	0.5						
4-Isopropyltoluene	BRL	U	μg/l	0.5						
Methyl tert-butyl ether	BRL	U	μg/l	8.0						
4-Methyl-2-pentanone (MIBK)	BRL	U	μg/l	1.1						
Methylene chloride	BRL	U	μg/l	0.6						
Naphthalene	BRL	U	μg/l	1.0						
n-Propylbenzene	BRL	U	μg/l	0.5						
Styrene	BRL	U	μg/l	0.9						
1,1,1,2-Tetrachloroethane	BRL	U	μg/l	0.5						
1,1,2,2-Tetrachloroethane	BRL	U	μg/l	0.5						
Tetrachloroethene	BRL	U	μg/l	0.7						
Toluene	BRL	U	μg/l	8.0						
1,2,3-Trichlorobenzene	BRL	U	μg/l	0.6						
1,2,4-Trichlorobenzene	BRL	U	μg/l	0.6						
1,3,5-Trichlorobenzene	BRL	U	μg/l	0.5						
1,1,1-Trichloroethane	BRL	U	μg/l	0.6						
1,1,2-Trichloroethane	BRL	U	μg/l	0.7						
Trichloroethene	BRL	U	μg/l	0.6						
Trichlorofluoromethane (Freon 11)	BRL	U	μg/l	0.7						
1,2,3-Trichloropropane	BRL	U	μg/l	0.9						
1,2,4-Trimethylbenzene	BRL	U	μg/l	0.4						
1,3,5-Trimethylbenzene	BRL	U	μg/l	0.5						
Vinyl chloride	BRL	U	μg/l	0.9						
m,p-Xylene	BRL	U	μg/l	1.0						
o-Xylene	BRL	U	μg/l	0.5						
Tetrahydrofuran	BRL	U	μg/l	2.4						

BRL BRL BRL BRL BRL BRL BRL BRL	Flag U U U U U U U	Units μg/l μg/l μg/l μg/l	*RDL 0.6 0.6	Level	Result	%REC	Limits	RPD	Limit
BRL BRL BRL BRL BRL BRL BRL	U U U	μg/l μg/l							
BRL BRL BRL BRL BRL BRL BRL	U U U	μg/l μg/l							
BRL BRL BRL BRL BRL BRL BRL	U U U	μg/l μg/l							
BRL BRL BRL BRL BRL BRL BRL	U U U	μg/l μg/l							
BRL BRL BRL BRL BRL BRL BRL	U U U	μg/l μg/l							
BRL BRL BRL BRL BRL BRL	U U U	μg/l	0.0						
BRL BRL BRL BRL BRL	U U		0.5						
BRL BRL BRL BRL	U	μg/ι	0.6						
BRL BRL BRL			9.6						
BRL BRL	U	μg/l	20.0						
BRL	U	µg/l	2.8						
	U	μg/l μg/l	2.0 37.7						
40.4		μg/l	07.7	50.0		93	70-130		
51.5		μg/l		50.0		103	70-130		
53.3		μg/l		50.0		107	70-130		
51.7		μg/l		50.0		103	70-130		
23.6		μg/l		20.0		118	70-130		
18.2		ua/l		20.0		91	60.2-138		
		µg/l							
19.2		µg/l		20.0		96	70-130		
21.5		µg/l		20.0		108	70-130		
21.4		μg/l "		20.0		107	70-130		
21.7		μg/l 		20.0		109	70-130		
23.3		μg/l 		20.0		116	70-130		
23.4		μg/l		20.0		117	70-130		
21.7		μg/l		20.0		108	56.4-147		
22.4		μg/l		20.0		112	70-142		
21.8		μg/l		20.0		109	70-130		
22.8		μg/l		20.0		114	70-130		
22.4		μg/l		20.0		112	70-130		
20.2		μg/l		20.0		101	70-130		
19.3		μg/l		20.0		96	70-130		
20.7		μg/l		20.0		104	70-130		
19.7		μg/l		20.0		98	67.2-130		
22.5		μg/l		20.0		112	70-130		
19.8		μg/l		20.0		99	70-130		
22.4		μg/l		20.0		112	70-130		
22.5		μg/l		20.0		113	70-130		
20.7		μg/l		20.0		104	70-130		
24.0		μg/l		20.0		120	68.9-130		
21.4		μg/l		20.0		107	70-130		
21.3				20.0		106	70-130		
22.0				20.0		110	70-130		
22.1						110	70-130		
20.5							70-130		
	QC2								
		μg/I		∠∪.∪					
		/1		20.0		00	70 400		
	22.8 22.4 20.2 19.3 20.7 19.7 22.5 19.8 22.4 22.5 20.7 24.0 21.4 21.3 22.0 22.1	22.8 22.4 20.2 9.3 20.7 9.7 22.5 9.8 22.4 22.5 20.7 24.0 21.4 21.3 22.0 22.1 20.5 7.5 88.9 QC2 21.5 20.4	122.8	122.8 μg/l 122.4 μg/l 120.2 μg/l 120.7 μg/l 120.7 μg/l 120.5 μg/l 120.7 μg/l 121.5 μg/l 121.4 μg/l 121.4 μg/l 121.4 μg/l 121.3 μg/l 121.1 μg/l	22.8	22.8	22.8	22.8 μg/l 20.0 114 70-130	22.8 μg/l 20.0 114 70-130

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003770 - SW846 5030 Water MS							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
LCS (1003770-BS1)										
Prepared & Analyzed: 17-Feb-10										
1,3-Dichloropropane	22.4		μg/l		20.0		112	70-130		
2,2-Dichloropropane	17.6		μg/l		20.0		88	70-130		
1,1-Dichloropropene	21.1		μg/l		20.0		106	70-130		
cis-1,3-Dichloropropene	20.4				20.0		100	70-130		
·	19.0		µg/l		20.0		95	70-130		
trans-1,3-Dichloropropene			µg/l		20.0		105	70-130		
Ethylbenzene	21.1		µg/l							
Hexachlorobutadiene	22.2		µg/l		20.0		111	70-133		
2-Hexanone (MBK)	20.7		μg/l "		20.0		104	70-130		
Isopropylbenzene	17.9		μg/l		20.0		90	70-130		
4-Isopropyltoluene	22.4		µg/l		20.0		112	70-130		
Methyl tert-butyl ether	29.2	QC2	μg/l		20.0		146	70-130		
4-Methyl-2-pentanone (MIBK)	20.2		μg/l		20.0		101	69.1-130		
Methylene chloride	19.3		μg/l		20.0		97	70-130		
Naphthalene	17.0		μg/l		20.0		85	70-130		
n-Propylbenzene	21.4		μg/l		20.0		107	70-130		
Styrene	22.2		μg/l		20.0		111	70-130		
1,1,1,2-Tetrachloroethane	20.5		μg/l		20.0		103	70-130		
1,1,2,2-Tetrachloroethane	21.7		μg/l		20.0		108	70-130		
Tetrachloroethene	21.5		μg/l		20.0		108	70-130		
Toluene	21.6		μg/l		20.0		108	70-130		
1,2,3-Trichlorobenzene	20.3		μg/l		20.0		102	70-130		
1,2,4-Trichlorobenzene	19.3		μg/l		20.0		96	70-130		
1,3,5-Trichlorobenzene	21.4		μg/l		20.0		107	70-130		
1,1,1-Trichloroethane	20.0		μg/l		20.0		100	70-130		
1,1,2-Trichloroethane	22.2		μg/l		20.0		111	70-130		
Trichloroethene	22.4		μg/l		20.0		112	70-130		
Trichlorofluoromethane (Freon 11)	20.8		μg/l		20.0		104	69.8-161		
1,2,3-Trichloropropane	23.8		μg/l		20.0		119	70-130		
1,2,4-Trimethylbenzene	21.0				20.0		105	70-130		
1,3,5-Trimethylbenzene	20.7		μg/l μg/l		20.0		103	70-130		
•								70-130		
Vinyl chloride	18.8 43.8		μg/l		20.0 40.0		94			
m,p-Xylene			μg/l				109	70-130		
o-Xylene	22.7		μg/l		20.0		114	70-130		
Tetrahydrofuran	20.0		μg/l 		20.0		100	70-130		
Ethyl ether	20.1		μg/l 		20.0		100	70-130		
Tert-amyl methyl ether	19.5		μg/l		20.0		98	70-130		
Ethyl tert-butyl ether	19.3		μg/l		20.0		96	70-130		
Di-isopropyl ether	20.9		μg/l		20.0		104	70-130		
Tert-Butanol / butyl alcohol	182		μg/l		200		91	70-130		
1,4-Dioxane	213		μg/l		200		107	55.2-158		
trans-1,4-Dichloro-2-butene	17.4		μg/l		20.0		87	70-130		
Ethanol	435		μg/l		400		109	70-130		
Surrogate: 4-Bromofluorobenzene	50.7		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	51.2 51.2		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	51.2 50.9		μg/l μg/l		50.0 50.0		102 102	70-130 70-130		
_	00.3		M3''		00.0		102	, 5 150		
LCS Dup (1003770-BSD1) Prepared & Analyzed: 17-Feb-10										
•	22.6		ug/I		20.0		110	70 120	4	25
1,1,2-Trichlorotrifluoroethane (Freon 113)	22.6		μg/l		∠∪.∪		113	70-130	4	25

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003770 - SW846 5030 Water MS										
LCS Dup (1003770-BSD1)										
Prepared & Analyzed: 17-Feb-10										
Acetone	17.7		μg/l		20.0		88	60.2-138	3	50
Acrylonitrile	19.2		μg/l		20.0		96	70-130	0.05	25
Benzene	21.0		μg/l		20.0		105	70-130	2	25
Bromobenzene	21.0		μg/l		20.0		105	70-130	2	25
Bromochloromethane	21.3		μg/l		20.0		106	70-130	2	25
Bromodichloromethane	23.3		μg/l		20.0		116	70-130	0	25
Bromoform	23.1		μg/l		20.0		115	70-130	1	25
Bromomethane	21.6		μg/l		20.0		108	56.4-147	0.05	50
2-Butanone (MEK)	22.0		μg/l		20.0		110	70-142	2	50
n-Butylbenzene	21.6		μg/l		20.0		108	70-130	1	25
sec-Butylbenzene	22.1		μg/l		20.0		111	70-130	3	25
tert-Butylbenzene	21.9		μg/l		20.0		110	70-130	2	25
Carbon disulfide	19.1		μg/l		20.0		95	70-130	6	25
Carbon tetrachloride	19.2		μg/l		20.0		96	70-130	0.6	25
Chlorobenzene	20.2		μg/l		20.0		101	70-130	2	25
Chloroethane	19.0		μg/l		20.0		95	67.2-130	4	50
Chloroform	21.7		μg/l		20.0		109	70-130	3	25
Chloromethane	18.6		μg/l		20.0		93	70-130	7	25
2-Chlorotoluene	21.6		μg/l		20.0		108	70-130	3	25
4-Chlorotoluene	21.8		μg/l		20.0		109	70-130	3	25
1,2-Dibromo-3-chloropropane	21.1		μg/l		20.0		106	70-130	2	25
Dibromochloromethane	24.0		μg/l		20.0		120	68.9-130	0.04	50
1,2-Dibromoethane (EDB)	21.3		μg/l		20.0		107	70-130	0.4	25
Dibromomethane	21.0		μg/l		20.0		105	70-130	1	25
1,2-Dichlorobenzene	21.8		μg/l		20.0		109	70-130	0.9	25
1,3-Dichlorobenzene	21.7		μg/l		20.0		109	70-130	2	25
1,4-Dichlorobenzene	20.5		μg/l		20.0		102	70-130	0.3	25
Dichlorodifluoromethane (Freon12)	16.9		μg/l		20.0		85	54.2-135	3	50
1,1-Dichloroethane	27.9	QC2	μg/l		20.0		139	70-130	3	25
1,2-Dichloroethane	21.2		μg/l		20.0		106	70-130	1	25
1,1-Dichloroethene	19.5		μg/l		20.0		98	70-130	4	25
cis-1,2-Dichloroethene	22.0		μg/l		20.0		110	70-130	3	25
trans-1,2-Dichloroethene	18.8		μg/l		20.0		94	70-130	3	25
1,2-Dichloropropane	21.1		μg/l		20.0		106	70-130	2	25
1,3-Dichloropropane	21.8		μg/l		20.0		109	70-130	3	25
2,2-Dichloropropane	17.4		μg/l		20.0		87	70-130	1	25
1,1-Dichloropropene	20.8		μg/l		20.0		104	70-130	1	25
cis-1,3-Dichloropropene	20.4		μg/l		20.0		102	70-130	0.2	25
trans-1,3-Dichloropropene	19.0		μg/l		20.0		95	70-130	0.3	25
Ethylbenzene	20.6		μg/l		20.0		103	70-130	2	25
Hexachlorobutadiene	22.3		μg/l		20.0		112	70-133	0.5	50
2-Hexanone (MBK)	21.0		μg/l		20.0		105	70-130	1	25
Isopropylbenzene	17.4		μg/l		20.0		87	70-130	3	25
4-Isopropyltoluene	21.9		μg/l		20.0		109	70-130	2	25
Methyl tert-butyl ether	29.0	QC2	μg/l		20.0		145	70-130	0.5	25
4-Methyl-2-pentanone (MIBK)	20.0		μg/l		20.0		100	69.1-130	0.6	50
Methylene chloride	18.9		μg/l		20.0		94	70-130	2	25
Naphthalene	17.4		μg/l		20.0		87	70-130	2	25
n-Propylbenzene	20.7		μg/l		20.0		104	70-130	3	25

				Spike	Source		%REC		RPD
Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
21.4		μg/l		20.0		107	70-130	4	25
20.1		μg/l		20.0		101	70-130	2	25
21.4		μg/l		20.0		107	70-130	1	25
21.0		μg/l		20.0		105	70-130	3	25
20.8		μg/l		20.0		104	70-130	4	25
20.5		μg/l		20.0		103	70-130	1	25
19.5		μg/l		20.0		97	70-130	1	25
21.3		μg/l		20.0		107	70-130	0.09	25
19.4		μg/l		20.0		97	70-130	3	25
22.2		μg/l		20.0		111	70-130	0.05	25
21.7		μg/l		20.0		108	70-130	3	25
19.9		μg/l		20.0		100	69.8-161	4	50
23.2		μg/l		20.0		116	70-130	2	25
20.2		μg/l		20.0		101	70-130	3	25
20.0		μg/l		20.0		100	70-130	4	25
17.9		μg/l		20.0		90	70-130	5	25
42.6		μg/l		40.0		106	70-130	3	25
22.1		μg/l		20.0		111	70-130	2	25
20.1		μg/l		20.0		100	70-130	0.4	25
19.8		μg/l		20.0		99	70-130	2	50
19.2		μg/l		20.0		96	70-130	1	25
19.5		μg/l		20.0		97	70-130	1	25
20.7		μg/l		20.0		104	70-130	8.0	25
183		μg/l		200		92	70-130	0.6	25
201		μg/l		200		100	55.2-158	6	25
18.0		μg/l		20.0		90	70-130	4	25
401		μg/l		400		100	70-130	8	30
50.6		μg/l		50.0		101	70-130		
51.0		μg/l		50.0		102	70-130		
51.1		μg/l		50.0					
	21.4 20.1 21.4 21.0 20.8 20.5 19.5 21.3 19.4 22.2 21.7 19.9 23.2 20.0 17.9 42.6 22.1 20.1 19.8 19.2 19.5 20.7 183 201 18.0 401 50.6 51.0	21.4 20.1 21.4 21.0 20.8 20.5 19.5 21.3 19.4 22.2 21.7 19.9 23.2 20.2 20.0 17.9 42.6 22.1 20.1 19.8 19.2 19.5 20.7 183 201 18.0 401 50.6 51.0 51.1	21.4	21.4 µg/l 20.1 µg/l 21.4 µg/l 21.0 µg/l 20.8 µg/l 20.5 µg/l 19.5 µg/l 21.3 µg/l 22.2 µg/l 22.2 µg/l 23.2 µg/l 20.0 µg/l 20.0 µg/l 17.9 µg/l 42.6 µg/l 22.1 µg/l 20.1 µg/l 19.8 µg/l 19.2 µg/l 19.5 µg/l 19.5 µg/l 20.7 µg/l 18.3 µg/l 20.1 µg/l 19.5 µg/l 20.7 µg/l 18.0 µg/l 40.1 µg/l 50.6 µg/l 51.0 µg/l 51.1 µg/l	Result Flag Units *RDL Level 21.4 µg/l 20.0 20.1 µg/l 20.0 21.4 µg/l 20.0 21.0 µg/l 20.0 20.8 µg/l 20.0 20.5 µg/l 20.0 29.5 µg/l 20.0 21.3 µg/l 20.0 21.3 µg/l 20.0 21.3 µg/l 20.0 22.1 µg/l 20.0 22.2 µg/l 20.0 23.2 µg/l 20.0 20.2 µg/l 20.0 20.2 µg/l 20.0 20.0 µg/l 20.0 42.6 µg/l 20.0 42.6 µg/l 20.0 19.8 µg/l 20.0 19.5 µg/l 20.0 19.5 µg/l 20.0 19.5 µg/l 20.0 20.7 <t< td=""><td>Result Flag Units *RDL Level Result 21.4 µg/l 20.0</td><td>Result Flag Units *RDL Level Result %REC 21.4 µg/l 20.0 107 20.1 µg/l 20.0 101 21.4 µg/l 20.0 105 20.8 µg/l 20.0 104 20.5 µg/l 20.0 103 19.5 µg/l 20.0 97 21.3 µg/l 20.0 97 21.3 µg/l 20.0 107 19.4 µg/l 20.0 107 19.4 µg/l 20.0 111 21.7 µg/l 20.0 118 19.9 µg/l 20.0 100 23.2 µg/l 20.0 106 20.2 µg/l 20.0 101 20.0 µg/l 20.0 100 17.9 µg/l 20.0 100 17.9 µg/l 20.0 90 42.6 µg/l</td><td>Result Flag Units *RDL Level Result %REC Limits 21.4 µg/l 20.0 107 70-130 20.1 µg/l 20.0 101 70-130 21.4 µg/l 20.0 105 70-130 21.0 µg/l 20.0 104 70-130 20.8 µg/l 20.0 103 70-130 20.5 µg/l 20.0 103 70-130 20.5 µg/l 20.0 97 70-130 21.3 µg/l 20.0 97 70-130 21.3 µg/l 20.0 97 70-130 21.3 µg/l 20.0 97 70-130 22.2 µg/l 20.0 111 70-130 22.2 µg/l 20.0 108 70-130 20.2 µg/l 20.0 116 70-130 20.2 µg/l 20.0 100 69-161 20.2</td><td> Result Flag Units *RDL Level Result %REC Limits RPD </td></t<>	Result Flag Units *RDL Level Result 21.4 µg/l 20.0	Result Flag Units *RDL Level Result %REC 21.4 µg/l 20.0 107 20.1 µg/l 20.0 101 21.4 µg/l 20.0 105 20.8 µg/l 20.0 104 20.5 µg/l 20.0 103 19.5 µg/l 20.0 97 21.3 µg/l 20.0 97 21.3 µg/l 20.0 107 19.4 µg/l 20.0 107 19.4 µg/l 20.0 111 21.7 µg/l 20.0 118 19.9 µg/l 20.0 100 23.2 µg/l 20.0 106 20.2 µg/l 20.0 101 20.0 µg/l 20.0 100 17.9 µg/l 20.0 100 17.9 µg/l 20.0 90 42.6 µg/l	Result Flag Units *RDL Level Result %REC Limits 21.4 µg/l 20.0 107 70-130 20.1 µg/l 20.0 101 70-130 21.4 µg/l 20.0 105 70-130 21.0 µg/l 20.0 104 70-130 20.8 µg/l 20.0 103 70-130 20.5 µg/l 20.0 103 70-130 20.5 µg/l 20.0 97 70-130 21.3 µg/l 20.0 97 70-130 21.3 µg/l 20.0 97 70-130 21.3 µg/l 20.0 97 70-130 22.2 µg/l 20.0 111 70-130 22.2 µg/l 20.0 108 70-130 20.2 µg/l 20.0 116 70-130 20.2 µg/l 20.0 100 69-161 20.2	Result Flag Units *RDL Level Result %REC Limits RPD

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003221 - SW846 3510C										
Blank (1003221-BLK1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Acenaphthene	BRL	U	μg/l	0.120						
Acenaphthylene	BRL	U	μg/l	0.150						
Aniline	BRL	U	μg/l	0.380						
Anthracene	BRL	U	μg/l	0.150						
Atrazine	BRL	U	μg/l	0.190						
Azobenzene/Diphenyldiazine	BRL	U	μg/l	0.130						
Benzidine	BRL	U	μg/l	0.560						
Benzo (a) anthracene	BRL	U	μg/l	0.320						
Benzo (a) pyrene	BRL	U	μg/l	0.170						
Benzo (b) fluoranthene	BRL	U	μg/l	0.660						
Benzo (g,h,i) perylene	BRL	U	μg/l	0.140						
Benzo (k) fluoranthene	BRL	U	μg/l	0.200						
Benzoic acid	BRL	U	μg/l	0.0900						
Benzyl alcohol	BRL	U	μg/l	0.0900						
Bis(2-chloroethoxy)methane	BRL	U	μg/l	0.100						
Bis(2-chloroethyl)ether	BRL	U	μg/l	0.0700						
Bis(2-chloroisopropyl)ether	BRL	U	μg/l	0.0900						
Bis(2-ethylhexyl)phthalate	BRL	U	μg/l	0.950						
4-Bromophenyl phenyl ether	BRL	U	μg/l	0.230						
Butyl benzyl phthalate	BRL	U	μg/l	0.570						
Carbazole	BRL	U	μg/l	0.180						
4-Chloro-3-methylphenol	BRL	U	μg/l	0.180						
4-Chloroaniline	BRL	U	μg/l	0.480						
2-Chloronaphthalene	BRL	U	μg/l	0.0700						
2-Chlorophenol	BRL	U	μg/l	0.100						
4-Chlorophenyl phenyl ether	BRL	U	μg/l	0.0600						
Chrysene	BRL	U	μg/l	0.0700						
Dibenzo (a,h) anthracene	BRL	U	μg/l	0.0800						
Dibenzofuran	BRL	U	μg/l	0.0600						
1,2-Dichlorobenzene	BRL	U	μg/l	0.160						
1,3-Dichlorobenzene	BRL	U	μg/l	0.210						
1,4-Dichlorobenzene	BRL	U	μg/l	0.220						
3,3'-Dichlorobenzidine	BRL	U	μg/l	0.360						
2,4-Dichlorophenol	BRL	U	μg/l	0.130						
Diethyl phthalate	BRL	U	μg/l	0.160						
Dimethyl phthalate	BRL	U	μg/l	0.140						
2,4-Dimethylphenol	BRL	U	μg/l	0.230						
Di-n-butyl phthalate	BRL	U	μg/l	0.130						
4,6-Dinitro-2-methylphenol	BRL	U	μg/l	0.120						
2,4-Dinitrophenol	BRL	U	μg/l	0.310						
2,4-Dinitrotoluene	BRL	U	μg/l	0.210						
2,6-Dinitrotoluene	BRL	U	μg/l	0.120						
Di-n-octyl phthalate	BRL	U	μg/l	0.240						
Fluoranthene	BRL	U	μg/l	0.120						
Fluorene	BRL	U	μg/l	0.120						
Hexachlorobenzene	BRL	U	μg/l	0.370						
Hexachlorobutadiene	BRL	U	μg/l	0.560						
Hexachlorocyclopentadiene	BRL	U	μg/l	0.370						
Hexachloroethane	BRL	U	μg/l	0.510						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003221 - SW846 3510C										
Blank (1003221-BLK1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Indeno (1,2,3-cd) pyrene	BRL	U	μg/l	0.230						
Isophorone	BRL	U	μg/l	0.300						
2-Methylnaphthalene	BRL	U	μg/l	0.110						
2-Methylphenol	BRL	U	μg/l	0.210						
3 & 4-Methylphenol	BRL	U	μg/l	0.240						
Naphthalene	BRL	U	μg/l	0.190						
2-Nitroaniline	BRL	U	μg/l	0.0600						
3-Nitroaniline	BRL	U	μg/l	0.170						
4-Nitroaniline	BRL	U	μg/l	0.190						
Nitrobenzene	BRL	U	μg/l	0.180						
2-Nitrophenol	BRL	U	μg/l	0.230						
4-Nitrophenol	BRL	U	μg/l	0.260						
N-Nitrosodimethylamine	BRL	U	μg/l	0.110						
N-Nitrosodi-n-propylamine	BRL	U	μg/l	0.600						
N-Nitrosodiphenylamine	BRL	U	μg/l	0.190						
Pentachlorophenol	BRL	U	μg/l	0.320						
Phenanthrene	BRL	U	μg/l	0.230						
Phenol	BRL	U	μg/l	0.100						
Pyrene	BRL	U	μg/l	0.350						
Pyridine	BRL	U	μg/l	0.100						
1,2,4-Trichlorobenzene	BRL	U	μg/l	0.0700						
1-Methylnaphthalene	BRL	U	μg/l	0.110						
2,4,5-Trichlorophenol	BRL	U	μg/l	0.100						
2,4,6-Trichlorophenol	BRL	U	μg/l	0.100						
Pentachloronitrobenzene	BRL	U	μg/l	2.50						
1,2,4,5-Tetrachlorobenzene	BRL	U	μg/l	2.50						
Surrogate: 2-Fluorobiphenyl	37.0		μg/l		50.0		74	30-130		
Surrogate: 2-Fluorophenol	25.5		μg/l		50.0		<i>51</i>	15-110		
Surrogate: Nitrobenzene-d5 Surrogate: Phenol-d5	38.8 12.9		μg/l		50.0 50.0		78 26	30-130 15-110		
Surrogate: Frienoi-us Surrogate: Terphenyl-dl4	33.2		μg/l μg/l		50.0 50.0		66	30-130		
Surrogate: 2,4,6-Tribromophenol	46.6		μg/l		50.0		93	15-110		
LCS (1003221-BS1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Acenaphthene	40.1		μg/l	0.120	50.0		80	40-130		
Acenaphthylene	39.3		μg/l	0.150	50.0		79	40-130		
Aniline	36.7		μg/l	0.380	50.0		73	40-130		
Anthracene	38.4		μg/l	0.150	50.0		77	40-130		
Atrazine	60.2		μg/l	0.190	50.0		120	40-130		
Azobenzene/Diphenyldiazine	36.9		μg/l	0.130	50.0		74	40-130		
Benzidine	1.59	J	μg/l	0.560	50.0		3	0-140		
Benzo (a) anthracene	40.3		μg/l	0.320	50.0		81	40-130		
Benzo (a) pyrene	39.8		μg/l	0.170	50.0		80	40-130		
Benzo (b) fluoranthene	38.7		μg/l	0.660	50.0		77	40-130		
Benzo (g,h,i) perylene	41.0		μg/l	0.140	50.0		82	40-130		
Benzo (k) fluoranthene	37.6		μg/l	0.200	50.0		75	40-130		
Benzoic acid	25.5		μg/l	0.0900	50.0		51	17.2-130		
Benzyl alcohol	38.3		μg/l	0.0900	50.0		77	40-130		
Bis(2-chloroethoxy)methane	35.3		μg/l	0.100	50.0		71	40-130		
Bis(2-chloroethyl)ether	37.1		μg/l	0.0700	50.0		74	40-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003221 - SW846 3510C										
LCS (1003221-BS1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Bis(2-chloroisopropyl)ether	32.9		μg/l	0.0900	50.0		66	40-130		
Bis(2-ethylhexyl)phthalate	42.6		μg/l	0.950	50.0		85	40-130		
4-Bromophenyl phenyl ether	43.0		μg/l	0.230	50.0		86	40-130		
Butyl benzyl phthalate	39.4		μg/l	0.570	50.0		79	40-130		
Carbazole	45.4		μg/l	0.180	50.0		91	40-130		
4-Chloro-3-methylphenol	38.1		μg/l	0.180	50.0		76	40-130		
4-Chloroaniline	36.8		μg/l	0.480	50.0		74	40-130		
2-Chloronaphthalene	37.8		μg/l	0.0700	50.0		76	40-130		
2-Chlorophenol	34.5		μg/l	0.100	50.0		69	40-130		
4-Chlorophenyl phenyl ether	39.3		μg/l	0.0600	50.0		79	40-130		
Chrysene	39.8		μg/l	0.0700	50.0		80	40-130		
Dibenzo (a,h) anthracene	43.8		μg/l	0.0800	50.0		88	40-130		
Dibenzofuran	39.3		μg/l	0.0600	50.0		79	40-130		
1,2-Dichlorobenzene	35.4		μg/l	0.160	50.0		71	40-130		
1,3-Dichlorobenzene	34.6		μg/l	0.100	50.0		69	40-130		
1,4-Dichlorobenzene	35.2		μg/l	0.210	50.0		70	40-130		
3,3'-Dichlorobenzidine	39.4		μg/l	0.220	50.0		70 79	40-130		
2,4-Dichlorophenol	35.3			0.300	50.0		7 <i>9</i> 71	40-130		
·	39.5		μg/l	0.160	50.0		71	40-130		
Directly of phthalate			μg/l							
Dimethyl phthalate	37.8 32.5		μg/l	0.140	50.0		76	40-130		
2,4-Dimethylphenol			μg/l	0.230	50.0		65	40-130		
Di-n-butyl phthalate	41.4		μg/l	0.130	50.0		83	40-130		
4,6-Dinitro-2-methylphenol	45.3		μg/l	0.120	50.0		91	40-130		
2,4-Dinitrophenol	44.2		μg/l "	0.310	50.0		88	40-130		
2,4-Dinitrotoluene	46.2		μg/l	0.210	50.0		92	40-130		
2,6-Dinitrotoluene	45.5		μg/l 	0.120	50.0		91	40-130		
Di-n-octyl phthalate	42.8		μg/l 	0.240	50.0		86	40-130		
Fluoranthene	39.5		μg/l	0.120	50.0		79	40-130		
Fluorene	42.7		μg/l	0.120	50.0		85	40-130		
Hexachlorobenzene	39.1		μg/l	0.370	50.0		78	40-130		
Hexachlorobutadiene	32.3		μg/l	0.560	50.0		65	40-130		
Hexachlorocyclopentadiene	45.3		μg/l	0.370	50.0		91	40-130		
Hexachloroethane	35.4		μg/l	0.510	50.0		71	40-130		
Indeno (1,2,3-cd) pyrene	42.5		μg/l	0.230	50.0		85	40-130		
Isophorone	34.2		μg/l	0.300	50.0		68	40-130		
2-Methylnaphthalene	38.2		μg/l	0.110	50.0		76	40-130		
2-Methylphenol	33.9		μg/l	0.210	50.0		68	40-130		
3 & 4-Methylphenol	32.5		μg/l	0.240	50.0		65	40-130		
Naphthalene	36.3		μg/l	0.190	50.0		73	40-130		
2-Nitroaniline	42.7		μg/l	0.0600	50.0		85	40-130		
3-Nitroaniline	39.3		μg/l	0.170	50.0		79	40-130		
4-Nitroaniline	48.5		μg/l	0.190	50.0		97	40-130		
Nitrobenzene	36.4		μg/l	0.180	50.0		73	40-130		
2-Nitrophenol	38.7		μg/l	0.230	50.0		77	40-130		
4-Nitrophenol	12.0	QC2, J	μg/l	0.260	50.0		24	40-130		
N-Nitrosodimethylamine	26.1		μg/l	0.110	50.0		52	40-130		
N-Nitrosodi-n-propylamine	34.6		μg/l	0.600	50.0		69	40-130		
N-Nitrosodiphenylamine	44.7		μg/l	0.190	50.0		89	40-130		
Pentachlorophenol	42.0		μg/l	0.320	50.0		84	40-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003221 - SW846 3510C										
<u>_CS (1003221-BS1)</u>										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10	07.7			0.000	50.0		7.5	10.400		
Phenanthrene	37.7	000	μg/l	0.230	50.0		75	40-130		
Phenol	19.6	QC2	μg/l 	0.100	50.0		39	40-130		
Pyrene	38.1		μg/l 	0.350	50.0		76	40-130		
Pyridine	15.1		μg/l 	0.100	50.0		30	10-140		
1-Methylnaphthalene	37.9		μg/l 	0.110	50.0		76	40-140		
1,2,4-Trichlorobenzene	35.6		μg/l 	0.0700	50.0		71	40-130		
2,4,5-Trichlorophenol	39.1		μg/l 	0.100	50.0		78	40-130		
2,4,6-Trichlorophenol	32.3		μg/l 	0.100	50.0		65	40-130		
Pentachloronitrobenzene	36.9		μg/l	2.50	50.0		74	40-140		
1,2,4,5-Tetrachlorobenzene	37.0		µg/l	2.50	50.0		74	40-140		
Surrogate: 2-Fluorobiphenyl	39.1		μg/l		50.0		78 52	30-130		
Surrogate: 2-Fluorophenol Surrogate: Nitrobenzene-d5	26.4 39.1		μg/l μg/l		50.0 50.0		53 78	15-110 30-130		
Surrogate: Phenol-d5	13.6		μg/l		50.0		27	15-110		
Surrogate: Terphenyl-dl4	37.6		μg/l		50.0		75	30-130		
Surrogate: 2,4,6-Tribromophenol	49.3		μg/l		50.0		99	15-110		
.CS Dup (1003221-BSD1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10 Acenaphthene	42.2		μg/l	0.120	50.0		84	40-130	5	20
Acenaphthylene	41.0		μg/l	0.120	50.0		82	40-130	4	20
Aniline	40.6			0.130	50.0		81	40-130	10	20
Anthracene	40.0		µg/l	0.360	50.0		80	40-130	5	20
			µg/l							
Atrazine	63.2		µg/l	0.190	50.0		126	40-130	5	20
Azobenzene/Diphenyldiazine	39.5	QC2	µg/l	0.130	50.0		79 15	40-130	7	20
Benzidine	7.54	QC2	μg/l	0.560	50.0		15	0-140	130	20
Benzo (a) anthracene	43.6		µg/l	0.320	50.0		87	40-130	8	20
Benzo (a) pyrene	42.5		µg/l	0.170	50.0		85	40-130	7	20
Benzo (b) fluoranthene	43.3		μg/l "	0.660	50.0		87	40-130	11	20
Benzo (g,h,i) perylene	43.6		μg/l "	0.140	50.0		87	40-130	6	20
Benzo (k) fluoranthene	37.3		μg/l 	0.200	50.0		75	40-130	8.0	20
Benzoic acid	25.2		μg/l 	0.0900	50.0		50	17.2-130	0.9	20
Benzyl alcohol	41.0		µg/l	0.0900	50.0		82	40-130	7	20
Bis(2-chloroethoxy)methane	37.7		μg/l	0.100	50.0		75	40-130	6	20
Bis(2-chloroethyl)ether	39.5		μg/l 	0.0700	50.0		79	40-130	6	20
Bis(2-chloroisopropyl)ether	35.8		μg/l	0.0900	50.0		72	40-130	8	20
Bis(2-ethylhexyl)phthalate	46.1		μg/l 	0.950	50.0		92	40-130	8	20
4-Bromophenyl phenyl ether	46.2		μg/l	0.230	50.0		92	40-130	7	20
Butyl benzyl phthalate	42.5		μg/l	0.570	50.0		85	40-130	8	20
Carbazole	47.5		µg/l	0.180	50.0		95	40-130	5	20
4-Chloro-3-methylphenol	40.2		μg/l	0.180	50.0		80	40-130	5	20
4-Chloroaniline	37.5		μg/l	0.480	50.0		75	40-130	2	20
2-Chloronaphthalene	40.7		μg/l	0.0700	50.0		81	40-130	7	20
2-Chlorophenol	37.0		μg/l	0.100	50.0		74	40-130	7	20
4-Chlorophenyl phenyl ether	41.9		μg/l	0.0600	50.0		84	40-130	6	20
Chrysene	42.9		μg/l	0.0700	50.0		86	40-130	8	20
Dibenzo (a,h) anthracene	46.4		μg/l	0.0800	50.0		93	40-130	6	20
Dibenzofuran	41.6		μg/l	0.0600	50.0		83	40-130	6	20
1,2-Dichlorobenzene	38.3		μg/l	0.160	50.0		77	40-130	8	20
1,3-Dichlorobenzene	37.5		μg/l	0.210	50.0		75	40-130	8	20
1,4-Dichlorobenzene	37.9		μg/l	0.220	50.0		76	40-130	7	20

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003221 - SW846 3510C										
_CS Dup (1003221-BSD1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
3,3'-Dichlorobenzidine	42.5		μg/l	0.360	50.0		85	40-130	7	20
2,4-Dichlorophenol	37.5		μg/l	0.130	50.0		75	40-130	6	20
Diethyl phthalate	41.0		μg/l	0.160	50.0		82	40-130	4	20
Dimethyl phthalate	38.8		μg/l	0.140	50.0		78	40-130	3	20
2,4-Dimethylphenol	34.8		μg/l	0.230	50.0		70	40-130	7	20
Di-n-butyl phthalate	44.0		μg/l	0.130	50.0		88	40-130	6	20
4,6-Dinitro-2-methylphenol	47.6		μg/l	0.120	50.0		95	40-130	5	20
2,4-Dinitrophenol	47.5		μg/l	0.310	50.0		95	40-130	7	20
2,4-Dinitrotoluene	48.7		μg/l	0.210	50.0		97	40-130	5	20
2,6-Dinitrotoluene	47.6		μg/l	0.120	50.0		95	40-130	5	20
Di-n-octyl phthalate	45.1		μg/l	0.240	50.0		90	40-130	5	20
Fluoranthene	41.5		μg/l	0.120	50.0		83	40-130	5	20
Fluorene	45.0		μg/l	0.120	50.0		90	40-130	5	20
Hexachlorobenzene	42.0		μg/l	0.370	50.0		84	40-130	7	20
Hexachlorobutadiene	35.5		μg/l	0.560	50.0		71	40-130	10	20
Hexachlorocyclopentadiene	51.2		μg/l	0.370	50.0		102	40-130	12	20
Hexachloroethane	38.9		μg/l	0.510	50.0		78	40-130	9	20
Indeno (1,2,3-cd) pyrene	45.8		μg/l	0.230	50.0		92	40-130	8	20
Isophorone	36.5		μg/l	0.300	50.0		73	40-130	6	20
2-Methylnaphthalene	40.0		μg/l	0.110	50.0		80	40-130	5	20
2-Methylphenol	35.8		μg/l	0.210	50.0		72	40-130	5	20
3 & 4-Methylphenol	33.4		μg/l	0.240	50.0		67	40-130	3	20
Naphthalene	38.6		μg/l	0.190	50.0		77	40-130	6	20
2-Nitroaniline	45.4		μg/l	0.0600	50.0		91	40-130	6	20
3-Nitroaniline	40.1		μg/l	0.170	50.0		80	40-130	2	20
4-Nitroaniline	52.6		μg/l	0.170	50.0		105	40-130	8	20
Nitrobenzene	39.3		μg/l	0.180	50.0		79	40-130	8	20
2-Nitrophenol	41.8		μg/l	0.230	50.0		84	40-130	8	20
4-Nitrophenol	13.6	QC2, J	μg/l	0.260	50.0		27	40-130	13	20
N-Nitrosodimethylamine	27.2	Q02, 0	μg/l	0.200	50.0		54	40-130	4	20
N-Nitrosodi-n-propylamine	37.0		μg/l	0.600	50.0		74	40-130	7	20
N-Nitrosodiphenylamine	47.5		μg/l	0.190	50.0		95	40-130	6	20
Pentachlorophenol	44.6		μg/l	0.320	50.0		89	40-130	6	20
Phenanthrene	40.2		μg/l	0.230	50.0		80	40-130	6	20
Phenol	19.5	QC2	μg/l	0.100	50.0		39	40-130	0.1	20
Pyrene	41.1	QUL	μg/l	0.350	50.0		82	40-130	8	20
Pyridine	18.3			0.100	50.0		37	10-140	19	20
1,2,4-Trichlorobenzene	38.5		μg/l μg/l	0.0700	50.0		77	40-130	8	20
1-Methylnaphthalene	41.1		μg/l μg/l	0.0700	50.0		82	40-130	8	20
• •					50.0					20
2,4,5-Trichlorophenol	40.3		μg/l	0.100			81 67	40-130	3	20
2,4,6-Trichlorophenol	33.5		μg/l	0.100	50.0		67 79	40-130	4	
Pentachloronitrobenzene	38.8		µg/l	2.50	50.0		78 80	40-140	5	20
1,2,4,5-Tetrachlorobenzene	40.2		µg/l	2.50	50.0		80	40-140	9	20
Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorophenol	39.9 26. <i>4</i>		μg/l μg/l		50.0 50.0		80 53	30-130 15-110		
Surrogate: 2-1 tuorophenoi Surrogate: Nitrobenzene-d5	41.5		μg/l		50.0		83	30-130		
Surrogate: Phenol-d5	13.1		μg/l		50.0		26	15-110		
Surrogate: Terphenyl-dl4	39.0		μg/l		50.0		78	30-130		
Surrogate: 2,4,6-Tribromophenol	50.4		μg/l		50.0		101	15-110		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch 1003154 - SW846 3510C										
Blank (1003154-BLK1)										
Prepared: 05-Feb-10 Analyzed: 09-Feb-10										
Aroclor-1016	BRL	U	μg/l	0.0896						
Aroclor-1016 [2C]	BRL	U	μg/l	0.111						
Aroclor-1221	BRL	U	μg/l	0.0947						
Aroclor-1221 [2C]	BRL	U	μg/l	0.0925						
Aroclor-1232	BRL	U	μg/l	0.0742						
Aroclor-1232 [2C]	BRL	U	μg/l	0.0983						
Aroclor-1242	BRL	U	μg/l	0.104						
Aroclor-1242 [2C]	BRL	U	μg/l	0.0963						
Aroclor-1248	BRL	U	μg/l	0.0825						
Aroclor-1248 [2C]	BRL	U	μg/l	0.0635						
Aroclor-1254	BRL	U	μg/l	0.139						
Aroclor-1254 [2C]	BRL	U	μg/l	0.111						
Aroclor-1260	BRL	U	μg/l	0.107						
Aroclor-1260 [2C]	BRL	U	μg/l	0.0741						
Aroclor-1262	BRL	U	μg/l	0.0665						
Aroclor-1262 [2C]	BRL	U	μg/l	0.0558						
Aroclor-1268	BRL	U	μg/l	0.0499						
Aroclor-1268 [2C]	BRL	U	μg/l	0.0535						
Surrogate: 4,4-DB-Octafluorobiphenyl	0.143		μg/l		0.200		72	30-150		
(Sr) Surrogate: 4,4-DB-Octafluorobiphenyl	0.151		μg/l		0.200		76	30-150		
'Sr) [2C] Surrogate: Decachlorobiphenyl (Sr)	0.190		μg/l		0.200		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) 2C]	0.190		μg/l		0.200		112	30-150		
LCS (1003154-BS1)										
Prepared: 05-Feb-10 Analyzed: 09-Feb-10										
Aroclor-1016	1.98		μg/l	0.0896	2.50		79	50-140		
Aroclor-1016 [2C]	1.96		μg/l	0.111	2.50		78	50-140		
Aroclor-1260	1.76		μg/l	0.107	2.50		70	50-140		
Aroclor-1260 [2C]	1.95		μg/l	0.0741	2.50		78	50-140		
Surrogate: 4,4-DB-Octafluorobiphenyl	0.191		μg/l	0.07 11	0.200		96	30-150		
(Sr) Surrogate: 4,4-DB-Octafluorobiphenyl	0.189		μg/l		0.200		94	30-150		
(Sr) [2C]										
Surrogate: Decachlorobiphenyl (Sr)	0.156		μg/l		0.200		78	30-150		
Surrogate: Decachlorobiphenyl (Sr) '2C]	0.181		μg/l		0.200		90	30-150		
LCS Dup (1003154-BSD1)										
Prepared: 05-Feb-10 Analyzed: 09-Feb-10										
Aroclor-1016	2.03		μg/l	0.0896	2.50		81	50-140	3	30
Aroclor-1016 [2C]	1.94		μg/l	0.111	2.50		78	50-140	0.9	30
Aroclor-1260	1.76		μg/l	0.107	2.50		70	50-140	0.06	30
Aroclor-1260 [2C]	2.02		μg/l	0.0741	2.50		81	50-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl	0.192		μg/l		0.200		96	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.187		μg/l		0.200		94	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.161		μg/l		0.200		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.191		μg/l		0.200		96	30-150		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1003218 - SW846 3550B/C										
Blank (1003218-BLK1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Aroclor-1016	BRL	U	μg/kg	131						
Aroclor-1016 [2C]	BRL	U	μg/kg	121						
Aroclor-1221	BRL	U	μg/kg	340						
Aroclor-1221 [2C]	BRL	U	μg/kg	263						
Aroclor-1232	BRL	U	μg/kg	207						
Aroclor-1232 [2C]	BRL	U	μg/kg	106						
Aroclor-1242	BRL	U	μg/kg	140						
Aroclor-1242 [2C]	BRL	U	μg/kg	94.2						
Aroclor-1248	BRL	U	μg/kg	191						
Aroclor-1248 [2C]	BRL	U	μg/kg	134						
Aroclor-1254	BRL	U	μg/kg	223						
Aroclor-1254 [2C]	BRL	U	μg/kg	116						
Aroclor-1260	BRL	U	μg/kg	234						
Aroclor-1260 [2C]	BRL	U	μg/kg	112						
Aroclor-1262	BRL	U	μg/kg	229						
Aroclor-1262 [2C]	BRL	U	μg/kg	136						
Aroclor-1268	BRL	U	μg/kg	222						
Aroclor-1268 [2C]	BRL	U	μg/kg	111						
Surrogate: 4,4-DB-Octafluorobiphenyl	258		µg/kg		400		64	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl Sr) [2C]	276		μg/kg		400		69	30-150		
Surrogate: Decachlorobiphenyl (Sr)	326		μg/kg		400		82	30-150		
Surrogate: Decachlorobiphenyl (Sr) 2C]	422		µg/kg		400		106	30-150		
_CS (1003218-BS1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Aroclor-1016	4480		μg/kg	131	5000		90	50-140		
Aroclor-1016 [2C]	4100		μg/kg	121	5000		82	50-140		
Aroclor-1260	3980		μg/kg	234	5000		80	50-140		
Aroclor-1260 [2C]	4360		μg/kg	112	5000		87	50-140		
Surrogate: 4,4-DB-Octafluorobiphenyl	266		μg/kg		400		66	30-150		
Sr)			100							
Surrogate: 4,4-DB-Octafluorobiphenyl Sr) [2C]	268		μg/kg 		400		67	30-150		
Surrogate: Decachlorobiphenyl (Sr)	358 430		μg/kg		400 400		90 108	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr) 2C]	430		μg/kg		400		100	30-150		
.CS Dup (1003218-BSD1)										
Prepared: 08-Feb-10 Analyzed: 09-Feb-10										
Aroclor-1016	4350		μg/kg	131	5000		87	50-140	3	30
Aroclor-1016 [2C]	4130		μg/kg	121	5000		83	50-140	8.0	30
Aroclor-1260	4090		μg/kg	234	5000		82	50-140	3	30
Aroclor-1260 [2C]	4110		μg/kg	112	5000		82	50-140	6	30
Surrogate: 4,4-DB-Octafluorobiphenyl Sr)	264		μg/kg		400		66	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl 'Sr) [2C]	270		μg/kg 		400		68	30-150		
Surrogate: Decachlorobiphenyl (Sr)	350		μg/kg		400		88	30-150		
Surrogate: Decachlorobiphenyl (Sr)	410		μg/kg		400		103	30-150		

Extractable Petroleum Hydrocarbons - Quality Control

	•	•		•	Spike	Source		%REC	•	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1003122 - SW846 3510C										
Blank (1003122-BLK1)										
Prepared: 05-Feb-10 Analyzed: 09-Feb-10										
Gasoline	BRL	U	mg/l	0.06						
Fuel Oil #2	BRL	U	mg/l	0.06						
Fuel Oil #4	BRL	U	mg/l	0.01						
Fuel Oil #6	BRL	U	mg/l	0.08						
Motor Oil	BRL	U	mg/l	0.1						
Ligroin	BRL	U	mg/l	0.02						
Aviation Fuel	BRL	U	mg/l	0.02						
Hydraulic Oil	BRL	U	mg/l	0.01						
Dielectric Fluid	BRL	U	mg/l	0.02						
Unidentified	BRL	U	mg/l	0.02						
Other Oil	BRL	U	mg/l	0.01						
Total Petroleum Hydrocarbons	BRL	U	mg/l	0.01						
Surrogate: 1-Chlorooctadecane	0.0504		mg/l		0.0500		101	40-140		
LCS (1003122-BS1)										
Prepared: 05-Feb-10 Analyzed: 10-Feb-10										
Fuel Oil #2	10.6		mg/l	0.06	10.0		106	40-140		
Surrogate: 1-Chlorooctadecane	0.0533		mg/l		0.0500		107	40-140		

Notes and Definitions

CAL2	Analyte percent drift/percent difference is greater than 30%, data is accepted due to all CCC analytes passing within the 20% Drift/Difference criteria
J	Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
QC2	Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
QM7	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM9	The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.
R05	Elevated Reporting Limits due to the presence of high levels of non-target analytes.
S01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.
SGC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
U	Analyte included in the analysis, but not detected
Z-2	Transformer Oil
BDL	Below Detection Limit - Analyte NOT DETECTED at or above the minimum detection limit
BRL	Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Relative Percent Difference

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Not Reported

NR

RPD

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. June O'Connor Nicole Leja

CHAIN OF CUSTODY RECORD

Special Handling:

Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed: _

- · All TATs subject to laboratory approval.
- Min. 24-hour notification needed for rushes.
 Samples disposed of after 60 days unless otherwise instructed.

Report T	o: _s\	Dardmouth Drive	· Invoice	To:				- 1	m		Project No.: 191710024 / 200							
	A	burn, NH 030	3.2		Alsa	n	N	1-1	0	3032		Site Name: Maspeth						
	-로			AUBUM NH 03032								Location: Maspeth State: NY						
Telephor			Burghi 1	DO N											SV.			
Project Mgr. 11100rce						No.: 1917/0024 RQN:							Sampler(s): J. Ward, A. Gline					
1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=As 8= NaHSO ₄ 9= 10=						6=Ascorbic Acid 7=CH ₃ OH						List	prese	rvative code below:	QA/QC Reporting Notes: (check as needed)			
		Water GW=Groun					1	Cor	ntaine	ers:				Analyses:	☐ Provide MA DEP MCP CAM Report			
	D=Oil SW= Surface Water SO=Soil SL=Sludge A=Air X1= X2= X3=						Vials	of Amber Glass	Slass		8082	Sloc Mov	81603	8230	☐ Provide CT DPH RCP Report QA/QC Reporting Level ☐ Standard ☐ No QC			
		G=Grab C=C	Composite			×	of VOA	Λmber	of Clear Glass	of Plastic	32	3	28	Svocis	Other			
Lab Id		Sample Id:	Date:	Time:	Type	Matrix	# of	# of/	# of (ijo#	P/R	TPH	Vocs	Sec	State specific reporting standards:			
1608,	Oi.	MW-304	212 2/1/10	17:00	G	GW	3	3	188		X	1	*	X				
CONTRACT GOOD	02	MW- 305	21110	15:20	G	GW	3	3			1	٨	۷.	X				
	B	mw-306	zlilio	15:00	G	Gw	3	3		## H . S	1	4	×	X				
-(mw-504	2/2/10	1205	6	GW	3	3	- 1	2 d S	K	K	X	X				
-(mw-503	2-2-10	1405	6	.bw	3	3	d		4	4	X	X	,			
1-0	06	mw-502	2-2-10	1615	6	60	.3	3		2.1	K	4	X	X	1 THE RESERVE TO THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE THE			
1000	0	mw-303	2-3-10	0815	6	bw	3	3	8		K	<	×	X				
1 (08	mw-501	2-3-10	0825	6	600	3	3	F 3	A 100 PM	Κ	K	×	1				
1	09	FB	2-3-10	0910	6	Gas	3	3	10		X	4	×	*				
1.1	10	mw-402	2-3-10	1010	6	6W	3	3	08	9 9 9	6	<	٨	1				
V/	Relino	quished by:	Rec	eived by:		-	Date:		10	Time:	Tei	np°C		EDD Format				
		Bec /	7.	Dende	W	2%	4/1	0		12:4	-	0	X	E-mail to Dovalo	Moon 2 @ STANTEROCCO			
	/.	T. Birdu	(1)		* (1	21	41	10	1	20	20 4.60							
													□ An	nbient 🗖 leed 🗆 Refrigerat	ed Fridge temp 'C Freezer temp			

CHAIN OF CUSTODY RECORD

Page_ 2_ of _ 2_

0	1007
riol IIon	111:00.00

Special Handling:

XStandard TAT - 7 to 10 business days
☐ Rush TAT - Date Needed:

- · All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

HAN		rageOi													ise instruc		oo days umess			
	De~ Moo		In	voice To:		ST	AN	TE	C			. 1	Project No .: MASPETH 1917/0024/						10024/2	
	STANTES		_ -					-33				. 8	Site Name: MASPET					r 14		
			-										Location: MASPETH State: NY							
Project Mgr.: Don Move P.O.					P.O. No.: RQN:									Sampler(s) JW APB					19.4	
	=HC1 3=H ₂ SO ₄ :NaHSO ₄ 9=				eid			Co	ntain	ers:			,	A	nalyses:			QA Report (check	rting Notes: if needed)	
D=Oil SW=S	Water GW=Grou Surface Water SO: X2=	=Soil SL=Sluc	dge A=Ai	Γ	,	,e	Vials	of Amber Glass	of Clear Glass		4	200	D100 mg	82608	0428		□ Pro	vide CT DEI QA/QC Rej	P MCP CAM Rep P RCP Report porting Level	
	G=Grab C=	Composite			×	rvativ	VO.	mbe	lear	of Plastic	0	۵.	-	30	<u>-3</u>				□ No QC	
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Preservative	# of VOA Vials	√ Jo#	# of C	# of P	Ó	200	TPH	NOCK BY	S		ر پار	te specific re	porting standards CAT B	
608-11	mw-302	2-3-10	1130	6	6W	7-	3	3			×		X	χ.	(
-12	mw-602	2-3-10	1635	6	600	1	3	3			1)	(5	4 ,	ζ					
-13	DUPE	2-3-10	0825	6	64		3	3		<u> </u>	· ×	,	(4	()	(
1-14	mw-603	2-3-10	1410	6	60		3	3		12,1	4			(×						
- 15	mw-301	2-3-10	1350	6	Ьw		3	3	Jak		K	. ×	ς ,	4 3						
1-16	mw-601	2-3-10	1650	6	6w.		3	3			×	,	ζ.	Κ.	X	1			,	
1-17	mw-401	2-3-10	1135	6	6w	V :	3	3			4		٨.	٤ :	4					
1 - 18	oi l	2-3-10	1530	6	٥	-		ì			7									
1 - 19	TRIP	_	_	-	-	2	Ì		9			_	1	X						
J. P It	a base and Dalaba to 6					Reli	nquis	shed I	DV:-		260 2	-		Rec	eived by:			Date:	Time:	
	when available to (NTECOL	on					- Jan	/			:-		Bend	'n	3,	14/10	12:45	
EDD Format				- /		1	Ţ.,	Bi	-	lu		-	1		1		2/4	10/10	1720	
Condition upon i	receipt: 🗌 Iced 🔲	Ambient X°C	5.0					3										1		

Appendix E Data Usability Summary Report

LETTER OF TRANSMITTAL

O

ALPHA GEOSCIENCE

679 Plank Road Clifton Park, NY 12065 (518) 348 -6995 Phone

ALP: GEOSCIE	1100 0000 0000		(518) 348-696		STANTEC CONSULTING
					JAN 2 1 2010
TO:		Moore, P.G.	FROM:	Don Anne'	
	5 Dartmout	onsulting Services, Inc.	DATE.	1/04/0040	5 DARTMOUTH DR., STE 101
	Suite 101	n Drive	DATE:	1/21/2010	AUBURN, NH 03032
	Auburn, NF	1 03032	SUBJECT:	Data Validatio	_
	710000111, 1	1 00002	OUDULUT.	Maspeth Subs	
					วย Soil Samples
					710024 Task 200
WE ARE T	FRANSMITTII	NG	Photograph	ıs	Letter(s)
	OWING ITEN		Maps/Plans		Disk(s)
			Report(s)		X Other: Data Packs
O i-i-ala					
Originals 1	Copies	Spectrum Analytical, Ind		scription of Mat	erials
1	<u> </u>	Spectrum Analytical, Inc			
		i op oot any mary mour, me	s. Data Facks, OD	0 04709	
			The state of the s	Control of the Contro	
					And the second s
·				***************************************	
	These Materi	als are Transmitted:	Utransa and a second second second second second second second second second second second second second second		
	Hese mater	For your use			American I are authorities to
	Declaration of the second of t	For your approval			Approved as submitted
		For your review and cor	nment		Approved as noted X Returned after loaned to us
	***************************************		mon		Returned for revision
					izeramed for revision
Please:		Return original to us			Retain for your files
		_Submit after revision			Other
REMARKS					
INLIVIPATATA O		oon completion of data va	alidation		
	Metuniou up	JOH COMPICTION OF GATA VE	alloation		
ADDITIONA	AL COPIES T	ro.			
70011014	AL OUI ILO I	ΙΟ.		SIGNATURE:	
EXCEPTION AND A CONTRACTOR OF THE PROPERTY OF	HPMT-Manyland and analysis and an analysis analysis and an analysis and an analysis and an analysis and an ana			\bigcap	d Anné
***************************************			MINIMAL POR CONTRACTOR OF THE PROPERTY OF THE	Wones	of from
	HERMAN AND THE PROPERTY OF THE PARTY OF THE		A3300		

Geology

Hydrology

Remediation

Water Supply

January 21, 2010

Mr. Donald Moore, P.G. Stantec Consulting Services, Inc. 5 Dartmouth Drive, Suite 101 Auburn, NH 03032

Re:

Data Validation Report Maspeth Substation November 2009 Soil Samples

Project# 191710024, Task 200

Dear Mr. Moore:

The data usability summary reports and data validation summaries are attached to this letter for the above referenced project. The data for Spectrum Analytical, Inc. SDGs 04535 and 04789 were acceptable, with some minor issues that are identified in the validation summaries. There were no data that were rejected (R) in these data packs.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Stantec Consulting Services, Inc.

Sincerely, Alpha Geoscience

Donald Anne

Donald Anné Senior Chemist

DCA:dca attachments

 $Z:\projects\2006\06621-06640\06630-maspeth\ substaion\2010\mbox{\sc maspeth-}101.ltr.wpd$

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins

PCDF Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance
QC Quality control
RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene
%D Percent difference
%R Percent recovery

%RSD Percent relative standard deviation

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for Spectrum Analytical, Inc., SDG 04535

8 Soil Samples and 1 Field Duplicate Collected November 16-18, 2009

Prepared by: Donald Anné January 21, 2010

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 8 soil samples and 1 field duplicate analyzed for PCBs and TPH.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• The positive and "not detected" PCB and TPH results were flagged as "estimated" (J) in all 8 soil samples and the field duplicate because the samples were extracted beyond NYSDEC ASP holding times, but were extracted within USEPA SW-846 holding times.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of PCB Aroclor Data for Spectrum Analytical, Inc., SDG 04535

8 Soil Samples and 1 Field Duplicate Collected November 16-18, 2009

Prepared by: Donald Anné January 21, 2010

Holding Times: All 9 samples were extracted beyond NYSDEC ASP holding times, but within USEPA SW-846. The positive and "not detected" results for all 9 samples should be considered estimated (J).

Blanks: The analysis of the method blank reported target aroclors as not detected.

- <u>Surrogate Recovery</u>: One of two surrogate recoveries for samples MW-602 (8-12) and Dupe was above QC limits on one column. No action is taken on one surrogate recovery outside QC limits on one column, provided no recovery is below 10%.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for aroclor-1016 and aroclor-1260 were below the allowable maximum and the percent recoveries were within QC limits for MS/MSD sample MW-602 (12-16).
- <u>Laboratory Control Sample</u>: The relative percent differences for aroclor-1016 and aroclor-1260 were below the allowable maximum, and the percent recoveries were within QC limits for LCS/LCSDs 9112136-BS1/BSD1 and 9120009-BS1/BSD1.
- <u>Duplicate</u>: The relative percent difference for the detected arcolor was below the laboratory maximum (40%) for duplicate sample MW-602 (12-16), as required.
- <u>Field Duplicate</u>: The relative percent difference for aroclor-1260 was above allowable maximum (35%) for field duplicate pair MW-602 (8-12)/Dupe (attached table). The detected results for aroclor-1260 should be considered estimated (J) in samples MW-602 (8-12) and Dupe.
- <u>Initial Calibration</u>: The average %RSDs for target aroclors were below the allowable maximum (20%) for primary and confirmation columns, as required.

- <u>Continuing Calibration</u>: The %Ds for target aroclors were below the allowable maximum (15%), as required.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- PCB Identification Summary for Multi-Component Analytes: Checked surrogates were within GC quantitation limits. The %D for dual column quantitation of aroclor-1260 in sample MW-602 (0-7.5) was above the allowable maximum (25%), but was below 70%. The result for aroclor-1260 in sample MW-602 (0-7.5) should be considered estimated (J).

PCBs

Calculations for Field Duplicate Relative Percent Difference (RPD)

SDG No. 04535

	S1= mw-602 (8-12)	S2=	dupe
Analyte	<u>\$1</u>	<u>S2</u>	<u>RPD (%)</u>
aroclor-1016	ND	ND	NC
aroclor-1221	ND	ND	NC
aroclor-1232	ND	ND	NC
aroclor-1242	ND	ND	NC
aroclor-1248	ND	ND	NC
aroclor-1254	ND	ND	NC
aroclor-1260	111	181	48%
aroclor-1262	ND	ND	NC
aroclor-1268	ND	ND	NC

Results are in the units of ug/kg

ND - Not detected.

NC - Not calculated, both results must be above the reporting limit for valid RPDs to be calculated or within quantitation limits (above the low standard).

^{*} RPD above the allowable maximum (35%)

QA/QC Review of Total Petroleum Hydrocarbon (TPH) Data for Spectrum Analytical, Inc., SDG 04535

8 Soil Samples and 1 Field Duplicate Collected November 16-18, 2009

Prepared by: Donald Anné January 21, 2010

Geology

Hydrology

Remediation

Water Supply

Holding Times: All 9 samples were extracted beyond NYSDEC ASP holding times, but within USEPA SW-846. The positive and "not detected" results for all 9 samples should be considered estimated (J).

Blanks: The analysis of the method blank reported target petroleum hydrocarbons as not detected.

<u>Initial Calibration</u>: The correlation coefficients for TPHs were above the allowable minimum (0.995), as required.

Surrogate Recovery: The surrogate recoveries were within QC limits for the soil samples.

<u>Laboratory Control Sample</u>: The percent recoveries for fuel oil #2 were within QC limits for LCSs 9112029-BS1 and 9120023-BS1.

<u>Duplicate</u>: The relative percent difference for TPH was below the laboratory maximum (50%) for duplicate sample MW-602 (12-16), as required.

<u>Field Duplicate</u>: The relative percent difference for TPH was below the allowable maximum (35%) for field duplicate pair MW-602 (8-12)/Dupe (attached table), as required.

Total Petroleum Hydrocarbons by GC

Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 04535

S1=		S2= dupe				
<u>Analyte</u>	<u>S1</u>	<u>\$2</u>	RPD (%)			
gasoline	ND	ND	NC			
fuel oil #2	ND	ND	NC			
fuel oil #4	ND	ND	NC			
fuel oil #6	ND	ND	NC			
motor oil	ND	ND	NC			
ligroin	ND	ND	NC			
aviation fuel	ND	ND	NC			
hydrolic oil	ND	ND	NC			
dielectric fluid	calculated as Z-2	calculated as Z-2				
unidentified	2390	3370	34%			
other oil	ND	ND	NC			
total petroleum hydrocarbons	2390	3370	34%			

Results are in the units of ug/kg

ND - Not detected.

NC - Not calculated, both results must be above the reporting limit for valid RPDs to be calculated or within quantitation limits (above the low standard).

^{*} RPD above the allowable maximum (35%)

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for Spectrum Analytical, Inc., SDG 04789

8 Soil Samples Collected November 20-23, 2009

Prepared by: Donald Anné January 21, 2010

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 8 soil samples analyzed for PCBs and TPH.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• The positive and "not detected" PCB and TPH results were flagged as "estimated" (J) in all 8 soil samples because the samples were extracted beyond NYSDEC ASP holding times, but were extracted within USEPA SW-846 holding times.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of PCB Aroclor Data for Spectrum Analytical, Inc., SDG 04789

8 Soil Samples Collected November 20-23, 2009

Prepared by: Donald Anné January 21, 2010

Holding Times: All 8 samples were extracted beyond NYSDEC ASP holding times, but within USEPA SW-846. The positive and "not detected" results for all samples should be considered estimated (J).

Blanks: The analysis of the method blank reported target aroclors as not detected.

Surrogate Recovery: The surrogate recoveries were within QC limits for the soil samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for aroclor-1016 and aroclor-1260 were below the allowable maximum and the percent recoveries were within QC limits for MS/MSD sample MW-603 (16-18).

<u>Laboratory Control Sample</u>: The relative percent differences for aroclor-1016 and aroclor-1260 were below the allowable maximum, and the percent recoveries were within QC limits for LCS/LCSDs 9120125-BS1/BSD1 and 9120009-BS1/BSD1.

<u>Duplicate</u>: The relative percent difference for the detected arcolors were below the laboratory maximum (40%) for duplicate sample MW-603 (16-18), as required.

<u>Initial Calibration</u>: The average %RSDs for target aroclors were below the allowable maximum (20%) for primary and confirmation columns, as required.

<u>Continuing Calibration</u>: The %Ds for target aroclors were below the allowable maximum (15%), as required.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

PCB Identification Summary for Multi-Component Analytes: Checked surrogates were within GC quantitation limits. The %D for dual column quantitation of aroclor-1254 in sample MW-603 (24-25.2) was above the allowable maximum (25%), but was below 70%. The result for aroclor-1254 in sample MW-603 (24-25.2) should be considered estimated (J).

QA/QC Review of Total Petroleum Hydrocarbon (TPH) Data for Spectrum Analytical, Inc., SDG 04789

8 Soil Samples Collected November 20-23, 2009

Prepared by: Donald Anné January 21, 2010

Geology

Hydrology

Remediation

Water Supply

Holding Times: All 8 samples were extracted beyond NYSDEC ASP holding times, but within USEPA SW-846. The positive and "not detected" results for all 8 samples should be considered estimated (J).

Blanks: The analysis of the method blank reported target petroleum hydrocarbons as not detected.

<u>Initial Calibration</u>: The correlation coefficients for TPHs were above the allowable minimum (0.995), as required.

Surrogate Recovery: The surrogate recoveries were within QC limits for the soil samples.

<u>Laboratory Control Sample</u>: The percent recoveries for fuel oil #2 were within QC limits for LCSs 9120241-BS1 and 9120350-BS1.

<u>Duplicate</u>: The relative percent difference for TPH was below the laboratory maximum (50%) for duplicate sample MW-602 (12-16), as required. (This data is from SDG 04535)

 $Z: \projects \ensuremath{\en$