Former Maspeth Substation

QUEENS, NEW YORK

Final Engineering Report

NYSDEC VCP Number: V-00326

Prepared for:

Consolidated Edison Company of New York, Inc. Long Island City, New York

> Prepared by: Stantec Consulting Services Inc. Fort Collins, Colorado

APRIL 2011

VOLUME 1 OF 1

Final Engineering Report: April 2011

CERTIFICATIONS

I, Craig R. Gendron, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the remedial program for the former Maspeth Substation Site (NYSDEC VCP No. V-00326).

I certify that the Site description presented in this FER is identical to the Site descriptions presented in the Remedial Action Work Plan for the former Maspeth Substation Site and related amendments.

I certify that the Remedial Action Work Plan dated November 10, 2004 and Stipulations in a letter dated January 31, 2005 and approved by the NYSDEC were implemented and that all requirements in those documents have been substantively complied with.

I certify that the remedial activities were observed by qualified environmental professionals under my supervision and that the remediation requirements set forth in the Remedial Action Work Plan and any other relevant provisions of ECL 27-1419 have been achieved. Please note that the concrete slab removal/disposal task was overseen by a New York State Professional Engineer from Con Edison.

A Site Management Plan has been submitted by the Applicant for the continual and proper maintenance of all remaining monitoring wells, and that such plan has been approved by NYSDEC.

I certify that all export of contaminated soil, fill, water or other material from the property was performed in accordance with the Remedial Action Work Plan, and were taken to facilities licensed to accept this material in full compliance with all Federal, State and local laws.

I certify that all import of soils from off-site, including source approval and sampling, has been performed in a manner that is consistent with the methodology defined in the Remedial Action Work Plan.

I certify that all invasive work during the remediation and all invasive development work were conducted in accordance with dust and odor suppression methodology and soil screening methodology defined in the Remedial Action Work Plan. I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Note: include PE stamp

It is a violation of Article 130 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 130, New York State Education Law.

FINAL ENGINEERING REPORT

FORMER MASPETH SUBSTATION

TABLE OF CONTENTS

Section No. Title	Page No.
CERTIFICATIONS	i
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF APPENDICES	X
LIST OF ACRONYMS	xi
1.0 BACKGROUND	1
1.1 SITE LOCATION AND DESCRIPTION	1
1.2 CONTEMPLATED REDEVELOPMENT PLAN	1
1.3 DESCRIPTION OF SURROUNDING PROPERTY	2
1.3.1. Sensitive Receptors	2
2.0 DESCRIPTION OF REMEDIAL INVESTIGATION FINDINGS	3
2.1 SUMMARY REMEDIAL INVESTIGATIONS PERFORMED	4
2.1.1. Borings and Wells	5
2.1.2 Samples Collected	5
2.1.2.1 Soil Samples	5
2.1.2.2 Groundwater Samples	6
2.1.2.3 Free-Phase Product	7
2.1.3 Chemical Testing Performed	7
2.1.4 Ground Penetrating Radar Survey	7
2.1.5 2002 Pumping Tests	8
2.1.6 Pressure Pulse Technology Pilot Test	9
2.1.7 Summary of Remedial Investigation Findings	9
2.2 SITE HISTORY	

Section No. Title	Page No.
2.2.1 Past Uses and Ownership	10
2.2.2 Site Description	11
2.3 GEOLOGICAL CONDITIONS	11
2.3.1 Regional Topography	11
2.3.2 Site-Specific Geology	11
2.3.3 Hydrologic Conditions	12
2.4 CONTAMINATION CONDITIONS	13
2.4.1 Conceptual Model of Site Contamination	13
2.4.2 Description of Areas of Concern	
2.4.3 Identification of Standards, Criteria and Guidance (SGCs)	14
2.4.4 Soil/Fill Contamination	16
2.4.4.1 Description of Soil/Fill Contamination	16
2.4.4.2 Comparison of Soil/Fill with SCGs	16
2.4.5 On-site and Off-site Groundwater Contamination	17
2.4.5.1 Description of Groundwater Contamination	17
2.4.5.2 Comparison of Groundwater with SCGs	18
2.4.6 On-site and Off-site Soil Vapor Contamination	
2.4.6.1 Description of On-site and Off-site Soil Vapor Contamination	
2.4.6.2 Comparison of Soil Vapor with SCGs	18
2.5 ENVIRONMENTAL AND PUBLIC HEALTH ASSESSMENTS	
2.5.1 Qualitative Human Health Exposure Assessment	
2.5.2 Fish & Wildlife Remedial Impact Analysis	20
2.6 INTERIM REMEDIAL ACTION	20
2.7 REMEDIAL ACTION OBJECTIVES	21
2.7.1 Groundwater RAOs	22
2.7.2 Soil RAOs	22
2.7.3 Surface Water RAOs	22
2.7.4 Sediment RAOs	22
3.0 DESCRIPTION OF APPROVED REMEDIAL ACTION PLAN	23
3.1 SUMMARY OF PROPOSED REMEDIAL ACTION	27

Section N	No. Title	Page No.
4.0 DESC	CRIPTION OF REMEDIAL ACTIONS PERFORMED	30
4.1 GOVI	ERNING DOCUMENTS	
4.1.1	Site-Specific Health & Safety Plan (HASP)	30
4.1.2	Quality Assurance Project Plan (QAPP)	31
4.1.3	Construction Quality Assurance Plan (CQAP)	31
4.1.4	Soil/Materials Management Plan (SoMP)	32
4.1.5	Storm-Water Pollution Prevention Plan (SWPPP)	32
4.1.6	Community Air Monitoring Plan (CAMP)	32
4.1.7	Contractors Site Operations Plan (SOP)	33
4.1.8	Community Participation Plan	33
4.2 REMI	EDIAL PROGRAM ELEMENTS	
4.2.1	Involved Parties	34
4.2.2	Site Preparation	35
4.2.3	General Site Controls	36
4.2.4	Nuisance Controls	37
4.2.5	CAMP Results	37
4.2.6	Reporting	39
4.3 CONT	FAMINATED MATERIALS REMOVED	40
4.3.1	Concrete Removed	42
4.	.3.1.1 Concrete Disposal Details	43
4.	.3.1.2 On-site Reuse	43
4.3.2	Non-Hazardous Soils Removed	43
4.	.3.2.1 Non-Hazardous Soil Disposal Details	45
4.	.3.2.2 On-site Reuse	45
4.3.3	Hazardous Soils Removed Main Excavation	45
4.	.3.3.1 Hazardous Soil Disposal Details	46
4.	.3.3.2 On-site Reuse	47
4.3.4	Hazardous Soils Removed Over-Drill Excavation	47
4.	.3.4.1 Hazardous Soil Disposal Details	48
4.	.3.4.2 On-site Reuse	48

Section No.	Title	Page No.
4.3.5 So	ils Removed From Shallow Areas	48
4.3.5	.1 Soils From Shallow Areas Disposal Details	48
4.3.5	.2 On-site Reuse	
4.3.6 So	ils Removed From Beneath Concrete Fence Footer	
4.3.6	.1 Soils From Beneath Concrete Fence Footer Disposal Details	50
4.3.6	.2 On-site Reuse	51
4.3.7 Wa	ater Removed From Site	51
4.3.7	.1 Fluids Disposal Details	51
4.3.7	.2 On-site Reuse	51
4.4 REMEDI	AL PERFORMANCE (END-POINT SAMPLE RESULTS)	
4.5 BACKFII	LL	55
4.6 RESIDUA	AL CONTAMINATION REMAINING ON-SITE	56
4.7 ENGINE	ERING CONTROL SYSTEMS	
4.7.1 Co	mposite Cover System	57
4.8 INSTITU	TIONAL CONTROLS	57
4.9 DEVIAT	ONS FROM THE REMEDIAL ACTION WORK PLAN	
4.10 SITE M.	ANAGEMENT PLAN	60
4.11 TWO Y	EAR QUARTERLY GROUNDWATER MONITORING	60
4.11.1 W	/ork Performed	61
4.11.2	Free-Phase Product	62
4.11.3	Well Gauging	63
4.11.4	Groundwater Quality	63
4.11.	4.1 PCBs in Groundwater	64
4.11.	4.2 VOCs in Groundwater	65
4.11.	4.3 SVOCs in Groundwater	66
4.11.	4.4 TPH in Groundwater	67
4.12 OFF-SI	TE REMEDIAL INVESTIGATION	68
4.12.1	Work Performed	68
4.12.2	Soil Quality	70
4.12.3	Groundwater Quality	70

Section No.	Title Page No.
4.12.4	Nature and Extent of Contamination
4.12.5	Recommendations

LIST OF TABLES

- 1-1 Well Construction Details
- 1-2 RI Soil Sample Results: PCBs
- 1-3 RI Soil Sample Results: VOCs
- 1-4 RI Soil Sample Results: SVOCs
- 1-5 RI Soil Sample Results: TAL Metals
- 1-6 RI Water Quality Sample Results: PCBs
- 1-7 RI Water Quality Sample Results: VOCs
- 1-8 RI Water Quality Sample Results: SVOCs
- 1-9 RI Water Quality Sample Results: TAL Metals
- 1-10 RI Free-Product Laboratory Analyses
- 1-11 RI Product and Groundwater Level Measurements
- 4-1 Summary of Total Quantities of Materials Removed
- 4-1A Quantities of Concrete and C&D Material Removed
- 4-2 Quantities of Non-hazardous Soils Removed
- 4-3 Soil Sample Summary: PCBs & TPH
- 4-4 Soil Sample Summary: VOCs
- 4-5 Soil Sample Summary: SVOCs
- 4-6 Quantities of Hazardous Soils Removed: Initial Excavation
- 4-7 Quantities of Hazardous Soils Removed: Over-Drill Excavation
- 4-8 Quantities of Hazardous Soils Removed: Beneath Concrete Footer
- 4-9 End-Point Soil Sample Summary: South Sidewall PCBs and TPH
- 4-10 End-Point Soil Sample Summary: South Sidewall VOCs
- 4-11 End-Point Soil Sample Summary: South Sidewall SVOCs
- 4-12 End-Point Soil Sample Summary: East Sidewall PCBs and TPH
- 4-13 End-Point Soil Sample Summary: East Sidewall VOCs
- 4-14 End-Point Soil Sample Summary: East Sidewall SVOCs
- 4-15 End-Point Soil Sample Summary: North Sidewall PCBs and TPH
- 4-16 End-Point Soil Sample Summary: North Sidewall VOCs
- 4-17 End-Point Soil Sample Summary: North Sidewall SVOCs
- 4-18 End-Point Soil Sample Summary: West Sidewall PCBs and TPH
- 4-19 End-Point Soil Sample Summary: Bottom PCBs and TPH
- 4-20 End-Point Soil Sample Summary: Bottom VOCs
- 4-21 End-Point Soil Sample Summary: Bottom SVOCs
- 4-22 End-Point Soil Sample Summary: Over-Drill Excavations Bottom PCBs and TPH
- 4-23 End-Point Soil Sample Summary: Shallow Bottom Excavations PCBs and TPH
- 4-24 End-Point Soil Sample Summary: Shallow Bottom Excavations VOCs
- 4-25 End-Point Soil Sample Summary: Shallow Bottom Excavations SVOCs
- 4-26 End-Point Soil Sample Summary: Beneath Concrete Footer PCBs and TPH
- 4-27 End-Point Soil Sample Summary: Beneath Concrete Footer VOCs
- 4-28 End-Point Soil Sample Summary: Beneath Concrete Footer SVOCs
- 4-29 Quantities of Item 4 Backfill Placed
- 4-30 Residual Contamination Remaining On-site: PCBs and TPH

LIST OF TABLES (CONT'D)

- 4-31 Residual Contamination Remaining On-site: SVOCS
- 4-32 Post-Excavation Well Gauging Data
- 4-33 Post-Excavation Water Quality Sampling Results: PCBs
- 4-34 Post-Excavation Water Quality Sampling Results: VOCs
- 4-35 Post-Excavation Water Quality Sampling Results: SVOCs
- 4-36 Post-Excavation Water Quality Sampling Results: TPH

LIST OF FIGURES

- 1. Site Location Plan
- 2. Conditions Plan
- 3. Former Site Plan
- 4. Geologic Cross Section A-A'
- 5. Groundwater Flow Map April 3, 2001
- 5A Groundwater Flow Map July 28, 2008
- 5B Groundwater Flow Map November 5, 2008
- 6. Free Product Isopach Map April 25, 2000
- 7. Spider Map of Total PCBs in Soils Exceeding SCGs (Before the Rem. Action)
- 8. Spider Map of VOCs in Soils Exceeding SCGs (Before the Rem. Action)
- 9. Spider Map of SVOCs in Soils Exceeding SCGs (Before the Rem. Action)
- 10. Spider Map of Total PCBs in Groundwater Exceeding SCGs (Before the Rem. Action)
- 11. Spider Map of VOCs in Groundwater Exceeding SCGs (Before the Rem. Action)
- 12. Spider Map of SVOCs in Groundwater Exceeding SCGs (Before the Rem. Action)
- 13. Site Preparation
- 13A Excavation Areas
- 13B Excavation Cut and Fill Diagram
- 14. South Wall End-Point Sample Locations
- 15. East Wall End-Point Sample Locations
- 16. North Wall End-Point Sample Locations
- 17. West Wall End-Point Sample Locations
- 18. Bottom End-Point Sample Locations
- 19. Over-Drill Phase End-Point Sample Locations
- 20. Shallow Bottom End-Point Sample Locations
- 21. Beneath Concrete Footer End-Point Sample Locations
- 22. Residual Soil Contamination Remaining On-site
- 23. Groundwater Flow Map April 27, 2010

LIST OF APPENDICES

- Appendix A Digital Copy of The Entire FER and Entire Project Record (CD)
- Appendix B Digital Copy of the Approved RAWP (CD)
- Appendix C NYSDEC Agency Approvals (CD)
- Appendix D Weekly Reports (CD)
- Appendix E Project Photo Log

Appendix F Soil /Waste Characterization Documentation (CD)

- Waste Hauler Permits
- Disposal Facility Approval and Approval Letters
- Facility Permits
- Tabulated Load Summaries
- Waste Manifests
- Liquid Disposal Manifests

Appendix G DUSRs for All Endpoint Samples (CD)

- Appendix H Imported Materials Documentation
- Appendix I Analytical Profile of Item No. 4 Backfill Material
- Appendix J Site Management Plan (SMP)
- Appendix K Resume of Site Safety Coordinator

TABLE OF CONTENTS (CONT'D)

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
bgs	below ground surface
BLS	Below Land Surface
C&D	Concrete & Debris
CAMP	Community Air Monitoring Plan
CLSM	Controlled Low Strength Material
СРР	Community Participation Plan
CQAP	Construction Quality Assurance Plan
cy	cubic yards
DER	Division of Environmental Remediation
DRO	Diesel Range Organics
DUSR	Data Usability Summary Report
EA	Environmental Easement

Acronym	Definition
ECI	Environmental Compensation Law
ECL	Environmental Conservation Law
ECS	Engineering Control Systems
ECs/ICs	Engineering and Institutional Controls
EHASP	Environmental Health & Safety Plan
ENB	Environmental Notice Bulletin
EPA	Environmental Protection Agency
FER	Final Engineering Report
GA	New York Class GA Fresh Groundwater
GC	Gas Chromatograph
gpd/foot	gallons per day per foot
gpm	gallons per minute
GPR	Ground Penetrating Radar
GWQS	NYSDEC Groundwater Quality Standards
HASP	Health & Safety Plan
HDPE	High Density Polyethylene
HEPA	High Efficiency Particulate Air
IRMs	Interim Remedial Measures
MSDS	Material Safety Data Sheet

Acronym	Definition
MW	Monitoring Well
NYCRR	New York Codes of Rules and Regulations
NYCDEP	New York City Department of Environmental Protection
NVSDEC	New York State Department of Environmental Conservation
NYSDOU	New York State Department of Health
	Operation and Maintenance Plan
DGD	Occupational Safety and Health Administration
PCBs	Polychlorinated biphenyls
PDR	Personal DataRAM
PID	Photoionization Detector
POTW	Publicly Owned Treatment Works
ppb	parts per billion
ppm	parts per million
РРТ	Pressure Pulse Technology
QA/QCP	Quality Assurance/Quality Control Plan
QAPP	Quality Assurance Project Plan
QHHEA	Qualitative Human Health Exposure Assessment
RA	Remedial Action

Acronym	Definition
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCZ	Residual Contamination Zone
RI	Remedial Investigation
RSCO	TAGM Recommended Soil Cleanup Objectives
SB	Soil Boring
SCG	Standards, Criteria and Guidance
SCO	Soil Cleanup Objective
SEQRA	New York State Environmental Quality Review Act
SMP	Site Management Plan
SOP	Site Operations Plan
SSB	Soil Sample Bottom
STEL	Short Term Exposure Limit
SVOCs	Semi Volatile Organic Compounds
SW	Sidewall
SWPPP	Storm Water Pollution Prevention Plan
TAGM	NYSDEC Technical and Administrative Guidance Memorandum #4046
TOGS	Technical & Operational Guidance Series

Acronym	Definition
TPH	Total Petroleum Hydrocarbons
USCS	Unified Soil Classification System
UST	Underground Storage Tank
VCA	Voluntary Cleanup Agreement
VCPG	Voluntary Cleanup Program Guide
VEFR	Vacuum Enhanced Fluid Recovery
VOCs	Volatile Organic Compounds
WQ	Water Quality

FINAL ENGINEERING REPORT

1.0 BACKGROUND

Consolidated Edison Company of New York (Con Edison) entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) in February 2000, to investigate and remediate a property located at 57-77 Rust Street in the Maspeth section of Queens County, New York. The Site is approximately 0.5 acres in size and includes a one-story industrial building located in the southern portion of the property and a former transformer yard in the northern portion. The former transformer yard is the area constituting the remedial activities discussed throughout this FER. An Unrestricted Use is proposed for the property. The intended use for the property will be a newly constructed brick building to be used as a warehouse for storing fabrics and a gravel parking lot area. Refer to the VCA for additional details. A digital copy of this FER with all project documents approved under the VCA is included in Appendix A.

1.1 SITE LOCATION AND DESCRIPTION

The Site is located in the Maspeth section of Queens County, New York and is identified as Block & Lot 02676-001 on the Maspeth Tax Map 41403. A map (see Figure 1) shows the Site location. The Site is approximately 0.5-acre area bounded by 13 attached row houses along 57th Drive to the north, 58th Avenue to the south, 58th Street to the east, and Rust Street to the west (see Figure 2). The location of the Site is shown on Figure 1. A Metes and Bounds survey will be conducted and presented under separate cover.

1.2 CONTEMPLATED REDEVELOPMENT PLAN

The Remedial Action performed under the Remedial Action Work Plan (RAWP) has made the Site protective of human health and the environment to standards consistent with the contemplated end use. The proposed redevelopment plan and end use is Unrestricted Use. A digital copy of the RAWP is included in Appendix B.

The former Maspeth Substation Site is not currently owned by Con Edison. It is privately held by M&A Linens. The current Owner has expressed the desire to expand

his existing facility, which abuts the former transformer yard to the south. The expansion onto the former Maspeth Substation transformer yard will consist of a two-story warehouse-type structure which will cover $\approx 60\%$ of the former transformer yard. A basement is currently proposed to 16 feet below grade.

1.3 DESCRIPTION OF SURROUNDING PROPERTY

The former Maspeth Substation Site is located in a mixed residential and commercial/industrial section of Maspeth. To the south of the Site is 58th Avenue;; to the east, 58th Street; to the west, Rust Street; and to the north, attached row-houses, which are separated from the property by a chain link fence. Further north is 57th Drive.

Across 58th Street to the east is a mix of single and multifamily residential homes. South of 58th Avenue, the land use is miscellaneous industrial/manufacturing, including a scaffolding business and an auto body shop. Rust Street, located west of the Site, is a major vehicular thoroughfare. Further west of Rust Street are railroad tracks.

The interpreted direction of groundwater flow is generally east to west across the Site. Groundwater in the vicinity of the Site is not used as a drinking water supply and/or for human consumption. The closest receptor, Maspeth Creek, is greater than 3,200 feet west of the Site.

1.3.1. Sensitive Receptors

A Qualitative Human Health Exposure Assessment (QHHEA) was completed in accordance with Voluntary Cleanup Program Guide (VCPG Appendix C; May 2002). For the QHHEA evaluation, the potential receptors (people who may come in contact with contaminated media) were determined to include construction and utility personnel working in subsurface soils, and on- and off-site residents who may be exposed to dust from subsurface soils during such excavation related activities. However, based on remediation efforts conducted by Con Edison in 1996 much of the soil that would be encountered would be clean backfill.

2.0 DESCRIPTION OF REMEDIAL INVESTIGATION FINDINGS

The Site was investigated and partially remediated by Con Edison in 1996. Although that work was not conducted under this VCA, numerous references to this work will be found throughout this text. However, details of those activities are not included in this FER.

The majority of the engineering work completed during the investigation and remediation of the Site was performed by the Jacques Whitford Company, Inc (Jacques Whitford) and the Jacques Whitford Engineering Group. Jacques Whitford was subsequently acquired by Stantec Consulting Services Inc. (Stantec) in January 2009. In general, this report refers to Jacques Whitford for pre-acquisition work at the Site and Stantec was used for post-acquisition work. However, either reference is equivalent in this report.

The Site was investigated by Jacques Whitford, under the aforementioned VCA, in accordance with the scopes of work presented in the following Work Plans:

- Draft Site Investigation Work Plan for the Former Consolidated Edison Company of N.Y., Inc. (Con Edison), Maspeth Substation, Queens, NY, (Jacques Whitford, October 1997);
- Scope of Work, Expanded Investigation at the Former Maspeth Substation, (Jacques Whitford, April 2000); and
- Product Recovery Workplan for the Former Consolidated Edison Company of NY, Inc., Maspeth Substation, Queens, NY, (Jacques Whitford, April 2001).

The investigations were conducted between 1996 and February 2003. The following Reports documenting Remedial Investigation activities were submitted to the NYSDEC:

 Results of Monitoring Well Installation and Groundwater Sampling, Maspeth Substation, Queens, New York, (Jacques Whitford, March 1997).

- Interim Report for the Consolidated Edison Company of N.Y., Inc., Maspeth Substation, Queens, NY, (Jacques Whitford, June 1999).
- Interim Product Recovery Activities for the Former Consolidated Edison Company of N.Y., Inc. Maspeth Substation, Queens, NY, (Jacques Whitford, May 2000).
- Supplemental Remedial Investigation Report for the Former Consolidated Edison Company of NY, Inc., Maspeth Substation, Queens, NY, Volumes 1 and 2, (Jacques Whitford, May 2002).
- Jacques Whitford, Pumping Test Investigation Report for the Former Consolidated Edison Company of NY, Inc., Maspeth Substation, Queens, NY, December 2002.
- Results of Vacuum Enhanced Fluid Recovery Activities, former Con Edison Maspeth Substation, (Jacques Whitford, February 2003).
- Qualitative Human Health Exposure Assessment for the Former Maspeth Substation, Queens, New York, (Jacques Whitford, February 2003).
- Pre-Characterization Pre-Sampling Report for the Consolidated Edison Company of New York, Inc. Former Maspeth Substation, Maspeth, New York, (Jacques Whitford, September 2004).

Digital copies of these documents are included in Appendix A on a CD. A Significant Threat Determination Notice is not applicable for this Site. Below is a summary of Remedial Investigation findings.

2.1 SUMMARY REMEDIAL INVESTIGATIONS PERFORMED

The investigation activities conducted at the Site were focused on the delineation of PCBs and the resulting remediation, which was completed at the Site, was also driven by PCBs and not VOCs, SVOCs, or Metals.

2.1.1. Borings and Wells

In 1996, 1999, and 2000/2001, Jacques Whitford oversaw the advancement of thirty-nine soil borings and the installation of sixteen monitoring wells at the Site. The locations of the soil borings (identified as SB-1 through SB-23) and monitoring wells (identified as MW-101 through MW-403) installed during this time period are shown on Figure 3. These soil borings were advanced to a depth ranging from 15 to 25 ft bgs and groundwater was encountered in these soil borings between 10 and 15 ft bgs. The monitoring wells were advanced to a depth that ranged from 24 to 32 ft bgs. These monitoring wells were screened to a bottom depth that ranged between 18 and 26 ft bgs. Monitoring well construction details are presented in Table 1-1. In 2004, six additional soil borings (SB-24 to SB-29) were advanced at the request of the NYSDEC to fill in data gaps on-site associated with the "load and go" excavation approach. In addition, several of the original SB-1 through SB-23 soil boring locations were re-drilled for the sole purpose of collecting additional soil samples for chemical analyses from various depths not previously sampled. Three of the monitoring wells (MW-103, MW-201, and MW-203) were originally constructed as 2-inch diameter monitoring wells and were subsequently re-drilled and re-constructed as larger diameter monitoring wells: MW-103A in 2001 as a 4-inch diameter well and MW-201A and MW-203A in 2003 as 6-inch diameter wells. The re-drilled monitoring wells were advanced to depths of 24 and 25 ft bgs. These replacement monitoring wells are identified on Figure 3 as MW-103A, MW-201A, and MW-203A. Monitoring well construction details are presented in Table 1-1.

2.1.2 Samples Collected

2.1.2.1 Soil Samples

Analytical soil data generated during the investigations from 1996 to 2001 are presented in Tables 1-2 to 1-5. All soil data are compared to the NYSDEC Technical and Administrative Guidance Memorandum ("TAGM") #4046 Recommended Soil Cleanup Objectives (RSCO), referred to herein as TAGM RSCOs. At that time, the RSCOs for polychlorinated biphenyls (PCBs) for the Site were 1.0 ppm at the surface (0-2 ft bgs) and 10 ppm at depths greater than 2 ft bgs. The soil data indicated that elevated concentrations of PCBs (specifically PCB Aroclor-1260), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals were present in the subsurface soils located beneath the former concrete pads shown on Figures 2 and 3. Table 1-2 presents the analytical results for PCBs detected in the subsurface soils. The only soil samples exceeding 1 ppm for PCBs in surface soils were from four isolated areas (SB-1, SB-3, SB-6, and SB-7, see Figure 3). The only soil sample exceeding the TAGM RSCO in subsurface soils (10 ppm) was from soil boring SB-4 at a depth of 14 to 16 ft below ground surface (ft bgs), which had a reported PCB concentration of 10.2 ppm (see Table 1-2).

Table 1-3 presents the analytical results for VOCs detected in soils. Only two compounds (acetone and methylene chloride) were detected at concentrations above their respective TAGM RSCO. Both compounds are common laboratory contaminants. No other VOC contaminant of concern was detected above their respective TAGM RSCO.

Table 1-4 presents the analytical results for SVOCs detected in soils. A total of four SVOCs (benzo(a) pyrene, benzo(a) anthracene, chrysene, and dibenz(a,h) anthracene) were detected at concentrations that exceeded their respective TAGM RSCO.

For the majority of samples, the metals for which concentrations were reported above their respective TAGM RSCO included beryllium, cadmium, calcium, chromium, iron, magnesium, manganese, and zinc. Arsenic was also reported above its respective RSCO at two locations (see Table 1-5).

2.1.2.2 Groundwater Samples

A summary of groundwater analytical data associated with samples collected during the RI is presented in Tables 1-6 through 1-9. Analytical results for PCBs (see Table 1-6) indicated concentrations at levels below the NYSDEC Technical and Operational Guidance Series (TOGS) Groundwater Standard of 0.1 ppb for all wells with the exception of PCB Arochlor 1260, which was detected sporadically. Analytical results for VOCs (see Table 1-7) indicated concentrations at levels below laboratory detection limits or below TOGS Groundwater Standards, with the exception of benzene and chloroform, which were detected at three off-site monitoring well locations (MW-303, MW-304, and MW-306) and 1,4-dichlorobenzene, which was detected at one on-site monitoring well location (MW-103A) (see Figure 3). No SVOCs were detected at levels exceeding TOGS Groundwater Standards (see Table 1-8). Analytical results for TAL Metals indicated concentrations of metals at levels below laboratory detection limits or below TOGS Groundwater Standards, with the exception of aluminum, iron, manganese, and sodium (see Table 1-9) at both on-site and off-site monitoring well locations.

2.1.2.3 Free-Phase Product

Free-phase product was not observed in the soil samples collected during splitspoon sampling. Samples of free-phase product were however collected from four wells (MW-103, MW-201, MW-203, and MW-302) in which measurable quantities of freephase product were detected during the remedial investigations. The product samples were analyzed for PCBs and Gas Chromatograph (GC) Fingerprint. The results are presented in Table 1-10. PCB Aroclor-1260 was reported in April 1999 at concentrations of 328 ppm in MW-103, 1.1 ppm in MW-201, and 163 ppm in MW-203; and in November 2000, at 214 ppm in MW-302. The GC Fingerprint case narrative for freephase product samples collected from MW-103, MW-201, and MW-203 stated that the samples contained organic compounds in the Diesel Range Organic (DRO) range, but was not similar to any of the target standards. The free-phase product samples were subsequently reanalyzed and compared to specific dielectric fluids commonly used by Con Edison. The free-phase product was reportedly identified as "Suntrans" dielectric fluid. A sample of product collected from MW-302 in November 2000 was also analyzed and compared to specific dielectric fluids commonly used by Con Edison. The free-phase product collected from MW-302 was identified as Sun #4 Cable Oil.

2.1.3 Chemical Testing Performed

During the course of investigations, soil and groundwater samples were analyzed for PCBs via Method 8081/8082, VOCs via Method 8260/8260B, SVOCs via Method 8270/8270B, and Metals (2000/2001 only) via Method 6000/7000. Both soil and groundwater samples were collected using accepted protocols and analyzed by a New York certified laboratory.

2.1.4 Ground Penetrating Radar Survey

Ground Penetrating Radar (GPR) was used to detect and/or delineate any utilities that may be present. The GPR survey performed was conducted on March 1 and 2, 1999, by a Jacques Whitford Geophysicist, equipped with a Sensors and Software Pulse EKKO IVTM GPR unit. Results were presented in the report entitled Interim Report for the Former Consolidated Edison Company of New York, Inc. Maspeth Substation, Queens, NY, June 1999.

The GPR survey focused on three areas: Area 1) the area surrounding the previously-installed well MW-103; Area 2) the areas of the Site covered with concrete

7

pads, which were the foundations for transformers (see Figure 3); and Area 3) previously excavated areas of the Site.

Based upon GRP results, there were no underground utilities near the proposed soil boring locations.

2.1.5 2002 Pumping Tests

Jacques Whitford conducted pumping tests on three on-site wells (MW-201, MW-202, and MW-103A) in September 2002 to evaluate the Site's hydraulic characteristics, potential yield, and radius of influence for a potential groundwater/product pump and treat remediation system. Variable rate or "step tests" were conducted on MW-201, MW-202 and MW-103A (see Figure 3) on September 18 and 19, 2002. The variable rate tests conducted on MW-201 and MW-202 (2-inch diameter wells) showed that the wells could not sustain relatively low pumping rates (i.e., 0.1 to 0.2 gallons per minute (gpm)).

The variable rate test conducted on MW-103A (a 4-inch diameter well) was determined to be more responsive at pumping rates of 0.1 gpm, 0.2 gpm, and 0.3 gpm over three 100-minute intervals. A constant rate pumping test was subsequently conducted on MW-103A for 24 hours from September 23 to 24, 2002 at a rate of 0.25 gpm. The hydraulic results indicated that, at this pumping rate, a cone of influence around MW-103A also extended in a primarily southeast to northwest across the Site. After 24 hours of pumping, field observations indicated that free-phase product had been drawn toward the pumping well and was detected in the discharge water as a sheen or thin layer of product.

The pumping test data indicated that MW-103A could sustain a continuous pumping rate of 0.25 gpm. Transmissivities of the aquifer material underlying the Site were determined to range from 100 to 500 gallons per day (gpd)/foot. Although the subsurface geology has relatively low transmissive characteristics, hydraulic control was demonstrated over a portion of the Site where residual free-phase product was observed. Measured drawdowns after 24 hours of pumping were observed in various Site wells that had measurable levels of free-phase product. The pumping test results indicated depression of the water table, thus drawing product towards the pumping well at minimal pumping rates. The pumping test data showed that measured product thicknesses decreased in the surrounding monitoring wells and increased at MW-103A (the pumping well). The results of the pumping tests suggest that a groundwater capture remedial alternative is a viable means of groundwater remediation at the Site. Groundwater samples were collected from MW-103A at the end of the step test and constant rate test. PCB Aroclor-1260 was detected at concentrations above the TOGS Groundwater Standard (0.1 ppb) at 1.5 ppb and 0.38 ppb following the step test and constant rate test, respectively (see Table 1-6). VOCs were detected at levels below laboratory detection limits or below TOGS Groundwater Standards with the exception of the compound 1,4, dichlorobenzene, which was detected at concentrations above the TOGS Groundwater Standard (5 ppb) at 12.5 ppb and 12.7 ppb following the step test and constant rate test, respectively (see Table 1-7). The SVOC analytical results were similar to the VOC results, in that 1,4-dichlorobenzene was the only parameter detected at a concentration above its respective TOGS Groundwater Standard (see Table 1-8). Total Petroleum Hydrocarbon (TPH) results from the groundwater samples collected following the constant rate test at MW-103A contained concentrations of petroleum base transformer oil at 10.6 ppm and total hydrocarbons also at 10.6 ppm.

2.1.6 Pressure Pulse Technology Pilot Test

A Pressure Pulse Technology (PPT) pilot test was considered as a means to enhance free-phase product recovery in lieu of installation of traditional groundwater pump-and-treat. The PPT test was conducted at the Site in 2004. Prior to the start of the test, two existing 2-inch-diameter monitoring wells (MW-201 and MW-203) were converted to 6-inch-diameter recovery wells (MW-201A and MW-203A) (see Figure 3). A 6-inch-diameter injection well (IW-1) was also installed for the actual injection or pulsing below the water table. The pilot test consisted of one week of "water flood", during which potable water was pumped into the injection well at a constant rate. Inflow was adjusted to maintain a constant head in the well, while preventing product from being forced out of the well. Water levels were measured at nearby monitoring wells.

The second stage of the pilot test consisted of actual pulsing water into the injection well. However, due to an inefficient grout seal, water was observed to migrate along the outside of the well up to the ground surface preventing effective testing and analysis of the PPT. This method was abandoned.

2.1.7 Summary of Remedial Investigation Findings

Subsurface soils and groundwater samples were collected during several phases of investigation work between 1996 and 2002 and analyzed for PCBs, VOCs, SVOCs, and metals. The analytical results indicated that limited exceedences of regulatory standards

9

existed for soils (TAGM RSCOs) and groundwater (TOGS groundwater standards). The analytical data further indicated that the main contaminant of concern at the Site was PCBs at varying concentrations in soil as well as free-phase product (at depth) on the groundwater surface. Free-phase product had been measured in monitoring wells between 1996 and 2002, located primarily within the Site's boundaries, ranging in thickness from a sheen (MW-201/201A and MW-203/203A) to over three feet (MW-103A, MW-201/201A, and MW-203). The seasonal fluctuation of the water table further suggested the product had likely created a smear zone at depths of about 12 to 18 ft below ground surface (ft bgs).

Based on the analytical results, Jacques Whitford determined that the subsurface impacts at the Site were associated with residual PCB-containing free-phase product located at the water table (approximately 12 to 18 ft bgs). From the data generated, the free-phase product appeared to be limited in extent and primarily contained on-site.

2.2 SITE HISTORY

2.2.1 Past Uses and Ownership

The Site was operated as an active electrical substation between 1925 and 1985 by Con Edison and its predecessor, the New York and Queens Electric Light & Power Company. The Site was inactive between 1985 and 1996.

In 1996, limited Site remediation activities were conducted by Con Edison during which PCB-contaminated soils that contained greater than 10 parts per million (ppm) PCBs were excavated to depths ranging from 1 to 8 ft bgs and disposed off-site in accordance with federal, state and local regulations. The 10 ppm site cleanup objective was consistent with the most stringent levels specified in the United States Environmental Protection Agency's (USEPA) PCB spill cleanup policy. Following excavation activities, confirmatory samples were collected from the bottom of the excavations. All confirmatory samples met the 10 ppm PCB cleanup objective. Due to the subsequent change in the PCB cleanup criteria since 1996 for surficial soils (< 2 feet), some soils exceeding the current-day standard for PCBs were left behind. Excavated areas were subsequently backfilled with clean fill.

In June 1996, Con Edison sold the Site to LDC Realty Holdings, L.L.C. ("Encore"). In December 1997, RAW Realty & Equipment Company (RAW) acquired

the Site from Encore. RAW conducted tire-recapping operations at the Site until 1999, when RAW sold the Site to M&A Linens. The Site is presently owned and occupied by M & A Linens, a wholesale fabric supplier.

2.2.2 Site Description

Figure 1 shows the general location of the property. The structures located on the property include a one-story brick building to the south and the Site, which is a fenced and gated outdoor empty lot, a former transformer yard to the north. The brick building formerly housed electric equipment and the battery and control rooms associated with the one-story former electric substation. M&A Linens, the present Owner of the property, now uses the building as a fabric storage warehouse. The empty former transformer yard was comprised of concrete pads and bluestone-covered areas. When the property was operated as an electric distribution substation, the Site area served as an outdoor transformer and buss work yard. The former substation's step-down transformers were located on the concrete slabs identified on Figure 2. This equipment has since been dismantled and removed from the Site. Spare electric equipment was likely stored in the area designated "Concrete Storage Area" on Figure 2.

2.3 GEOLOGICAL CONDITIONS

2.3.1 Regional Topography

Regional topography slopes downward from the Site to Maspeth Creek located approximately 0.6 miles to the west. The Site has an elevation of approximately 28 feet above mean sea level (MSL). The Creek surface is at approximately sea level (0 MSL).

2.3.2 Site-Specific Geology

Work performed to delineate geological/hydrogeological conditions beneath the Site during the RI included the following:

- Installation of soil borings SB-1 through SB-29 and monitoring wells MW-101 through MW-403 (locations as shown on Figure 3);
- Periodic measurement of water levels and depths to product; and
- Performance of a pumping test to evaluate the Site's hydraulic characteristics, potential yield, and radius of influence for a potential groundwater/product pump and treat system.

The lithology at the Site consists of a layer of fill over silty sand. The origin of this sand is interpreted to be ablation till deposited during the last period of glacial retreat. The overburden materials encountered on-site consisted primarily of poorly graded brownish silty fine sand. The silty sand was described as silty fine to medium sand, trace gravel, medium dense dark brown, grayish brown, orange-brown or reddish brown in boring logs completed in 2001. This soil was classified SW-SM according to the USCS soil classification system. The soils encountered below the Site's former transformer yard area had no stratification or homogeneity. As discussed in Section 2.0 above, excavation of PCB-contaminated soils were initially removed to depths of 8 ft bgs from beneath the Site's former transformer yard area in 1996.

Around the perimeter of the facility, at locations MW-301 to MW-306, and MW-401 and MW-402 (see Figure 3), sand and gravel fill was encountered overlying well graded sand that exhibited some stratification, indicative of native soils. In addition, a layer of cobbles was encountered at several off-site locations including MW-302 (21 ft bgs to 23 ft bgs), MW-305 (13 ft bgs to 18 ft bgs), and MW-306 (18 ft bgs to 20 ft bgs). Subsequent excavation during the remedial excavation work revealed boulders of up to 8 feet in diameter in the subsurface. Cobbles were generally sub-rounded indicating an ablation till instead of basal till origin. A cobble layer was reported at 21 to 23 ft bgs in MW-302.

As noted above, fill was used at the Site during construction of subsurface structures and as backfill material following excavation activities in 1996. Backfill material was used when subsurface structures were constructed on-site. These structures consisted of foundation walls of six transformer vaults (see Figure 2), concrete pad near the west side of the Site, cable vault near the northeast corner of the Site, and cables that traversed the subsurface at various locations. The depth for placement of the fill material varied from the ground surface to approximately 8 ft bgs.

A geologic cross-section is shown in Figure 4. Soil boring logs are provided in Appendix A.

2.3.3 Hydrologic Conditions

The water table at the Site also slopes to the west. From 1996 through 2003, groundwater levels have been observed to fluctuate from approximately 12 to 18 ft bgs in the MW-100 and MW-200 series monitoring wells throughout the Site. Groundwater levels in the MW-400 series monitoring wells located on 58th Street ranged from

approximately 10 to 14 ft bgs. There is a significant difference in water levels between the monitoring wells located in the street/on the 58th Street sidewalk and those monitoring wells located approximately 30 feet away in the eastern portion of the Site.

Groundwater flow maps, developed from data measured on April 3, 2001 (see Figure 5), July 28, 2008 (see Figure 5A), and November 5, 2008 (see Figure 5B) illustrate the seasonal variations and the water table variations over time. These flow maps depict the groundwater flow direction as being from east to west across the Site.

2.4 CONTAMINATION CONDITIONS

This section describes Areas of Concern (AOCs) at the Site based on past land usage and observed distributions of contamination.

2.4.1 Conceptual Model of Site Contamination

During operation of the former substation minor leaks and spills of dielectric oil, including PCBs, apparently occurred from unknown sources on-site. The presence of free-phase product containing various concentrations of PCBs on the water table underlying the Site was confirmed and delineated during the RI activities. Free-phase product existed at the Site primarily beneath the vacant former transformer yard area. Product thickness measurements are presented in Table 1-11. The free-phase product thickness, corrected for factors such as viscosity, effective porosity, and adhesive forces, are also shown on Table 1-11 in addition to the corrected depth to water.

Data from the RI indicated that the extent of free-phase product was centered in two locations beneath the Site. Levels of product were consistently measured on-site in MW-103/103A, MW-202, and MW-203/203A. Off-site wells (MW-301 and MW-302) in close proximity to MW-203/203A also contained free-phase product. A separate area of PCB free-phase product was centered on monitoring well location MW-201/MW-201A. Figure 6 depicts an example of the distribution of corrected free-phase product on the water table on April 25, 2005.

The soil and groundwater analytical data (see Section 2.1.2) indicated that limited exceedences of regulatory standards existed for soil and groundwater samples collected at the Site.

2.4.2 Description of Areas of Concern

The results of the RI indicated that free-phase product, containing PCBs, was the primary issue of environmental concern at this Site. As mentioned above, the water table was encountered at approximately 15 ft bgs at on-site locations. However, seasonal fluctuation of the water table ranging from 12 to 18 ft bgs potentially created a smear zone over this interval in the subsurface soils.

2.4.3 Identification of Standards, Criteria and Guidance (SGCs)

The Remedial Action Work Plan presented a remedial approach to achieve the following Remedial Action Objectives (RAOs):

- To remediate the Site to a contaminant level that is protective of public health and the environment;
- To remove documented free-phase product to the extent practical, during the construction period;
- To remove PCB contaminated soils to the required limit (1.0-ppm PCBs in surface soils, 10-ppm PCBs in subsurface soils);
- To effect the remediation of the Site groundwater to acceptable levels through the remediation of contaminant source soils and free-phase product; and
- To control the potential migration of free-phase product.

Following approval of the RAWP by the NYSDEC and before remediation activities began, Con Edison in discussions with the current property owner (M&A Linens) revised the cleanup level for the Site. The revised cleanup level was for all soils on-site to meet the unrestricted use PCB level of < 1 ppm.

To achieve these RAOs, each media of concern (soil, groundwater, and product) was evaluated separately against the appropriate NYSDEC cleanup standard or guidance in place at the time the RAWP was developed and accepted.

<u>Soil.</u> Soil analytical data generated from Site investigations indicated minimal exceedences of regulatory standards at this Site. Based on these results and on discussions with the NYSDEC, the EPA PCB Spill Cleanup residential/unrestricted access area cleanup policy for PCBs in subsurface soil (40 CFR Part 761) and the current TAGM RSCOs for PCBs, VOCs and SVOCs in soils were used to evaluate remediation end-points for soils beneath the Site. In addition, TPH (analyzed by EPA)

Method 8100 – Modified) was used as a guide during the remedial actions by delineating the extent of transformer oil, or related free-phase product, in the subsurface.

- <u>Groundwater</u>. Although exceedences of standards for PCBs, VOCs, SVOCs, and metals were detected at the Site, the NYSDEC determined that only PCBs, VOCs, and SVOCs were considered of concern at the Site. Based on the extensive soil excavation completed at the Site, it is anticipated that the groundwater quality will improve upon implementation of the RAWP. Ongoing monitoring quality sampling and analyses on a quarterly basis will be used to evaluate the groundwater quality underneath the Site. The TOGS Groundwater Standards were used to evaluate the quality of the groundwater beneath the Site.
- <u>Free-Phase Product.</u> There are no promulgated free-phase product cleanup standards in New York State. Therefore, Con Edison utilized Division of Environmental Remediation Spill Response Guidance Policy – Spill Guidance Manual Section 1.6-Technical Field Guidance Corrective Action to evaluate remediation of residual freephase product beneath the Site. The primary objectives of a product-recovery operation are to recover as much product, to the extent practical, to complete the recovery operation over a short duration, and to control the potential migration of product onto, or from, the Site. The presence and/or absence of separate free-phase product will be evaluated based on post-remediation gauging activities. The gauging of remaining monitoring wells, both on- and off-site will be performed monthly for the first six months and then quarterly for two years.

The former Maspeth Substation Site is not currently owned by Con Edison. M&A Linens, the current Owner intends to expand their existing facility (one-story brick building) further to the north by redeveloping the vacant former transformer yard area. M&A Linens indicated to Con Edison that they prefer the Site be remediated to the Unrestricted Use Standard (< 1 ppm PCBs), even though the Site is currently zoned as commercial property. Con Edison anticipates that the Site will continue to be used for commercial purposes.

It is Con Edison's goal to remediate the Site soils to the applicable PCB, VOC, and SVOC RSCOs for Unrestricted Use under their respective TAGM RSCO. Con Edison also anticipates that following excavation of impacted soils and free-phase product (source area), the Site will no longer impact local groundwater quality.

2.4.4 Soil/Fill Contamination

As described in Section 2.1.2.1 above, the soil analytical data derived from the various remedial investigations indicated that limited exceedences of regulatory standards existed in on-site soils.

2.4.4.1 Description of Soil/Fill Contamination

As illustrated on Figure 3, twenty-nine soil borings were advanced and sixteen monitoring wells were constructed at this Site. Soil samples were collected from these borings and wells during drilling activities and submitted for laboratory analyses for PCBs, VOCs, SVOCs, and Metals.

Results for PCBs are presented in Table 1-2. Samples exceeding the NYSDEC RSCO for PCBs (1.0 ppm) were reported at various locations across the Site. Shallow soils (from 0 to 2 ft bgs) contained PCBs detected above the TAGM RSCO of 1.0 ppm at SB-1, SB-3, SB-6, SB-7, SB-10, and SB-28. Samples collected from depths greater than 2 ft bgs that contained PCBs at concentrations greater than 1.0 ppm were detected at SB-1, SB-2, SB-4, SB-5, SB-8 and MW-301. These locations, with the exception of SB-28 are generally located in the eastern portion of the vacant former transformer yard area. Reported concentrations ranged from below laboratory detection limits to 10.2 ppm.

Results for VOCs are presented in Table 1-3. As described above, the only VOC reported above its respective TAGM RSCO was methylene chloride at a depth of 13 to 15 ft bgs in SB-12 at a concentration of 1.8 ppm. Methylene chloride is a common laboratory contaminant.

Results for SVOCs are presented in Table 1-4. Four individual SVOC parameters were detected at levels exceeding their respective TAGM RSCOs. Benzo (a) pyrene at SB-10, SB-14, SB-23, MW-305, and MW-306; Benzo (a) anthracene at SB-23 and MW-306; Chrysene at MW-306; and Dibenzo (a,h) anthracene at SB-23. Detected concentrations ranged from below laboratory detection limits to 2.2 ppm.

2.4.4.2 Comparison of Soil/Fill with SCGs

As described in Section 2.4.3, the EPA PCB Spill Cleanup residential/unrestricted access area cleanup policy for PCBs in subsurface soil (40 CFR Part 761) was used as the Standard/Criteria/Guidance (SCG) for comparing the analytical soil data. The current

TAGM RSCO for PCBs, VOCs, and SVOCs in soils were used as the SCGs for comparing those parameters to the detected soil analytical data. Based on discussions with the NYSDEC and the Site Owner, Con Edison presented an RSCO of less than 1.0 ppm of Total PCBs in soils as the remedial objective.

Tables 1-2 to 1-4 show the exceedences of PCBs, VOCs, and SVOCs, respectively, from the described SCGs and RSCOs for all soil/fill encountered at the Site. Figure 7 is a spider map that shows the sampling location and summarizes the exceedences of Total PCBs from its TAGM RSCO. Figure 8 is a spider map that shows the sampling location and summarizes the exceedences of VOCs from their respective SCGs. Figure 9 is a spider map that shows the sampling location and summarizes the exceedences of SVOCs from their respective described SCGs.

2.4.5 On-site and Off-site Groundwater Contamination

2.4.5.1 Description of Groundwater Contamination

Groundwater samples collected from the on- and off-site monitoring wells were analyzed for PCBs, VOCs, SVOCs, and Metals.

The PCB analytical data for groundwater are presented in Table 1-6. Groundwater samples exceeding the TOGS Groundwater Standard of 0.1 ppb were reported at MW-101 (0.179 ppb), MW-103A (1.5 and 0.38 ppb), and at MW-301 (0.85 ppb). Detected PCB concentrations ranged from below laboratory detection limits to the 1.5 ppb.

The VOC analytical data for groundwater are presented in Table 1-7. Three VOC parameters were detected at levels exceeding their respective TOGS Groundwater Standards. Chloroform was detected at MW-306 (at 7.80 ppb), which exceeded its TOGS Groundwater Standard of 7 ppb. Benzene was detected at MW-303 (0.73 ppb) and MW-304 (1.80 and 0.73 ppb), which exceeded the TOGS Groundwater Standard 0.7 ppb. Finally, 1,4 dichlorobenzene was reported at MW-103A (12.5 and 12.7 ppb) at levels that exceeded its TOGS Groundwater Standard of 5 ppb.

The SVOC analytical data for groundwater are presented in Table 1-8. One SVOC parameter (1,4 dichlorobenzene) was detected at a level that exceeded its TOGS Groundwater Standard of 5 ppb at MW-103A (6.90 and 6.60 ppb).

2.4.5.2 Comparison of Groundwater with SCGs

As discussed in Section 2.4.3 above, groundwater analytical data were compared to TOGS Groundwater Standards. Tables 1-6 to 1-9 indicate exceedences to TOGS Groundwater Standards in monitor wells sampled prior to the approval of the remedy by NYSDEC. The analytical data indicate concentrations of PCBs and low concentrations of VOCs and SVOCs at levels that exceed TOGS Groundwater Standards.

Figure 10 is a spider map that shows the groundwater sampling locations and summarizes the groundwater exceedences of PCBs prior to implementation of the remedy. Figure 11 is a spider map that shows the groundwater sampling locations and summarizes the groundwater exceedences of VOCs prior to implementation of the remedy. Figure 12 is a spider map that shows the groundwater sampling locations and summarizes the groundwater exceedences of SVOCs prior to implementation of the remedy.

The analytical data summarized in Tables1-6 to 1-9 and illustrated on Figures 10 through 12 show that concentrations of these contaminants were detected in the groundwater collected from wells located in the general vicinity of the observed free-phase product.

2.4.6 On-site and Off-site Soil Vapor Contamination

2.4.6.1 Description of On-site and Off-site Soil Vapor Contamination

A soil vapor investigation was not conducted at this Site.

2.4.6.2 Comparison of Soil Vapor with SCGs

A soil vapor investigation was not conducted at this Site.

2.5 ENVIRONMENTAL AND PUBLIC HEALTH ASSESSMENTS

2.5.1 Qualitative Human Health Exposure Assessment

In accordance with the NYSDEC VCP requirements, Jacques Whitford completed a Qualitative Human Health Exposure Assessment (QHHEA) on the Site in 2003. The purpose of the QHHEA was to assess the potential for individuals to be exposed to contaminants originating from the Site. The qualitative assessment evaluated exposure pathways based on the existing subsurface conditions at the time (2003), impacts from the proposed remedial program, and the proposed expansion of the existing building into the vacant former transformer yard area.

Based on investigations at the Site, the source of contamination is the residual PCB-containing free-phase product located at the water table (approximately 12 to 18 ft bgs) underlying the vacant former transformer yard area. It was also determined that migration of the PCB containing free-phase product from the source to areas where individuals may come into contact (exposed) was limited based on depth. The primary exposure pathway from these impacts would likely be during intrusive activities associated with the remedial action.

Potential exposures to Site contaminants, which may occur from ingestion, inhalation, and/or dermal contact of impacted soil and/or groundwater, were limited to intrusive work (e.g., trenching activities associated with utility installation, subsurface remedial work, or building construction). In 2003, the property was covered with bluestone, concrete slab/pads (vacant former transformer yard area), and the existing onestory building footprint, thereby limiting exposure to impacted soil and groundwater. The potential receptors were determined to include construction and utility personnel who may come into contact with the impacted media and on-site workers and local residents who may be exposed to dust from soil excavation activities.

The potential for ingestion, inhalation, or dermal contact with impacted groundwater was determined to be minimal as described below. Non-volatile contaminants (e.g., PCBs, SVOCs, metals) in groundwater do not pose an inhalation hazard since they do not become appreciably airborne unless the water enters the air as a mist. The potential for exposure to impacted groundwater was determined to be minimal since the depth to the water table is approximately 12 to 18 ft bgs. Groundwater was also considered a minimal risk since the constituents of concern are generally non-volatile. Groundwater in the vicinity of the Site is also not used as a water supply source. Contact with groundwater may occur during excavation activities, monitoring, and/or dewatering

19
activities undertaken by remediation specialists who operate under health and safety requirements as outlined by the Occupational Safety and Health Administration (OSHA).

2.5.2 Fish & Wildlife Remedial Impact Analysis

A Fish and Wildlife Remedial Impact Analysis was not performed because Site conditions and surrounding natural resources did not warrant such an analysis. The Site, an approximately 0.5 acre lot with a one-story industrial building located in the southern portion and a gravel-surfaced urban lot in the northern portion, is not located near surface water or sensitive natural resources.

2.6 INTERIM REMEDIAL ACTION

Jacques Whitford, at the request of Con Edison, conducted three Interim Remedial Actions (IRMs) at the Site between 1999 and 2003. These IRMs included:

- Passive and active groundwater and product recovery;
- Product-only recovery; and
- Vacuum Enhanced Fluid Recovery.

These three IRMs are discussed below.

<u>Passive and Active Recovery</u> - From October 1999 to April 2001, Jacques Whitford, at the request of Con Edison, conducted passive and active product recovery activities at the Site. Product was removed from those monitoring wells, which contained measurable free-phase product, using a combination of oil absorbent socks, skimmers, and hand bailing during regular weekly monitoring events. Over this time period, Jacques Whitford estimates that a total of 25 gallons of product (with some entrained water) was removed from the monitoring wells. Although these activities were successful in removing product from the subsurface, it was determined that a more active remedial alternative should be developed and implemented.

<u>Product-Only Recovery</u> - In April 2001, Con Edison initiated the removal of separate phase product through the use of a product-only recovery system. This product-only recovery system was initially installed in monitoring well MW-201 and then installed in MW-203. Because of limited product recovery in these 2-inch diameter wells, the system was installed in MW-103A, which was a 4-inch diameter monitoring well, from June 2001 to September 2002. The system was programmed to turn on and

remove separate phase product that had migrated into the well at a scheduled period of time each day. Approximately 37 gallons of separate phase product was recovered between June 2001 and September 2002.

<u>Vacuum Enhanced Fluid Recovery (VEFR)</u> - Con Edison initiated VEFR activities at the Site commencing in September 2002. The purpose of the VEFR activities was to initiate a more aggressive removal of separate phase product from the subsurface.

The VEFR activities were conducted at two-week intervals between September 12, 2002 and January 27, 2003. Monitoring wells MW-103A, MW-201, MW-202, and MW-203 were utilized. The field data collected (product and water level data, volume removed, etc) indicated that approximately 180 to 300 gallons of product/water were removed from each of the four on-site wells between September 2002 and January 2003. Due to emulsification of the fluids removed from the wells, it was difficult to accurately determine or measure the actual volume of product removed from each well. However, the data collected from monitoring well MW-201 indicated a decreasing trend in measured product thickness levels over time as a result of the VEFR events. The data suggested that the free-phase product located on the water table in the vicinity of MW-201 was limited in extent and was responding favorably to aggressive pumping (VEFR).

The data collected from monitoring wells MW-103A, MW-202, and MW-203 suggested that, although relatively large volumes of product/water were removed from each well, the separate phase product thickness in these wells remained relatively constant. Recovery efforts, using passive and active recovery, VEFR, and skimming methods, had limited success. Therefore, the remaining volume of free-phase product on the water table was proposed to be removed through excavation efforts.

2.7 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigations, the following Remedial Action Objectives (RAOs) have been identified for this Site.

2.7.1 Groundwater RAOs

Groundwater RAOs presented in the RAWP were:

- Remediate the Site to a contaminant level that is protective of public health and the environment.
- Remove documented free-phase product to the extent practical, during the construction period.
- Site groundwater would tend toward acceptable end-point levels through the remediation (excavation) of free-phase product.
- Control the potential migration of free-phase product.

2.7.2 Soil RAOs

Soil RAOs presented in the RAWP were:

- Remediate the Site to a contaminant level that is protective of public health and the environment; and
- Remove PCB contaminated soils to the required limit (1.0 ppm Total PCBs).

2.7.3 Surface Water RAOs

Because of the lack of surface water, at or near, the Site, surface water RAOs were not generated.

2.7.4 Sediment RAOs

Because of the lack of surface water, at or near, the Site, sediment RAOs were not generated.

3.0 DESCRIPTION OF APPROVED REMEDIAL ACTION PLAN

The Site was remediated in accordance with the scope of work presented in the NYSDEC-approved Remedial Action Work Plan (RAWP) dated November 2004. Additional tasks were performed to the RAWP with prior NYSDEC approval and are documented in the Work Plans provided in Appendix A of this FER. Modifications to the RAWP are noted in Section 4.9.

The RAWP was prepared in response to, and in accordance with, the requirements set forth in the VCA that Con Edison entered into with the NYSDEC in February 2000. The RAWP was prepared in general accordance with Section 7 of the guidance established in the VCPG, NYSDEC Draft, May 2002.

Due to the relatively small size of the excavation area and its proximity of the one-story facility building (south), abutting row houses (north), Rust Street (west), and the 58th Street sidewalk (east), excavating the on-site soils and removing the free-phase product was determined to be practical and could be implemented efficiently. Dewatering was planned during the deeper portion of the excavation activities (near and/or below the water table). To maintain the integrity of the adjacent one-story building, sidewalk, and residential row house properties, and to assure the safety of construction workers, the sidewalls of the excavation were to be braced or supported with sheet piling. Installation of a sheet piling system would, however, prevent the excavation of any small pockets of free-phase product that may remain off-site beneath the sidewalk on 58th Street. Therefore, if post-excavation soil sampling along the eastern portion of the Site indicated constituents of concern exceeding the TAGM RSCOs, Con Edison proposed to investigate and remediate, as necessary, this area under a separate action.

The factors considered during the analysis of the remedial action presented in the RAWP included:

Protection of human health and the environment; The proposed remedial excavation would provide protection of the public health and safety by removing the impacted soils and free-phase product located beneath the Site. Clean backfill would be placed in the excavated area extending from below the water table up to ground surface to remove the potential for direct contact to on-

site workers. Removal of the soil and free-phase product would eliminate the continued degradation of groundwater at the Site.

- Compliance with standards, criteria, and guidelines (SCGs); The proposed remedial excavation meets the requirements of NYSDEC Technical Guidance for Site Investigation and Remediation (DER-10) in that impacted soils and free-phase product located in the saturated zone would be excavated and properly disposed of off-site. Excavation would also remove soils impacted by PCBs, VOCs, and SVOCs to the applicable standards. Due to the ubiquitous nature of metals exceedences in soil (due to the urban nature of the area) at the Site, this remedy would not meet metals standards in soil. However, metals are not considered a contaminant of concern at the Site. This alternative would also meet the stated RAO and guidance for free-phase product recovery (to recover product to the extent practical, to control the migration of product, and to complete the recovery operation in as short a time period as possible).
- Short-term effectiveness and impacts; The potential short-term adverse impacts and risks of the proposed remedy upon the community, the construction workers, and the environment were evaluated and determined to occur only during the actual excavation activities. These short-term effects would likely be associated with migration of dust containing Site contaminants. A Community Air Monitoring Program (CAMP) was included in the NYSDEC- approved RAWP and consisted of upwind and downwind monitoring locations, action levels, and abatement measures to be implemented during the RA.
- Long-term effectiveness and permanence; The excavation alternative was determined to achieve long-term effectiveness by removing impacted soils and properly disposing them off-site. On-site free-phase product would also be removed and properly disposed off-site. The excavation would be backfilled with clean structural fill, which will result in no long-term on-site exposures. As mentioned above, there was the potential for small pockets of free-phase product to remain underneath the 58th Street sidewalk and would be not be addressed using this remedy. If post-excavation sampling performed along the eastern perimeter of the Site indicated remaining constituents of concern under the 58th Street sidewalk area, Con Edison would investigate and, as necessary, address this area under a separate action.

- Reduction of toxicity, mobility, or volume of contaminated material; This alternative had the ability to reduce potentially contaminated soils through excavation and off-site disposal. The mobility and volume of free-phase product would also be reduced through excavation and off-site disposal. Considering that product migration, based on an extended monitoring period, had been determined to be limited to the vacant former transformer yard area, this remedy would remove the bulk of the documented free-phase product and would aid in preventing further migration.
- Implementability; Due to the proximity of buildings and roads to the proposed • excavation area, installation of a sheeting/shoring system will be required and implemented with standard construction equipment. The soil excavation would also be completed using standard construction equipment. The RI indicated that the excavated soils would likely be characterized as non-hazardous for disposal purposes. This presumption was confirmed during a Pre-characterization Study completed in August to September 2004. Therefore a "load and go" scenario could be implemented at the Site. The trucks would be lined and covered with plastic sheeting to prevent impacted material from leaving the vehicles. Dewatering activities were also feasible to lower the water table prior to excavation activities. The resultant dewatering fluids would be pumped through an on-site treatment train prior to disposal, or transported to Con Edison's Astoria facility for treatment and disposal. A post-excavation groundwater monitoring plan was proposed in a manner consistent with the NYSDEC Voluntary Cleanup Program.
- Cost effectiveness; Con Edison determined that the proposed remedial action would achieve the stated RSCOs in a cost efficient manner.
- Community acceptance; Prior to approval of the RAWP, the NYSDEC issued a
 notice of the availability of the RAWP for review and comment in the
 Environmental Notice Bulletin (ENB) for the required 30-day public comment
 period. Con Edison also notified the pertinent municipal authorities that the
 RAWP was available for review. Con Edison and NYSDEC developed a fact
 sheet for adjacent and/or nearby property owners. The fact sheet described the
 Site, as well as provided items such as a summary of the purpose and goals of
 the remediation, start and end dates of the public comment period, where to

review the project documents, how to submit comments, the project schedule and milestones, and listed sources of additional information.

• Land use; The former Maspeth Substation Site is not currently owned by Con Edison. The current Owner, M&A Linens, plans on re-developing the Site by expanding the facility building into the vacant former transformer yard area. The current Owner indicated to Con Edison that they prefer the Site be remediated to the Unrestricted Use Standard, even though the Site is currently zoned as commercial property. Con Edison anticipates that the Site will be used for commercial purposes.

The following SCGs were in place at the time the RAWP was approved and were used to conduct remedial actions at the Site:

- 6 NYCRR Part 375-6 Soil Cleanup Objectives; The Soil Cleanup Objective (SCO) for PCBs from Part 376 is 0.1 ppm. This SCO does not apply. The applicable RSCO as per discussions with the NYSDEC and NYSDOH is <1.0 ppm for all soils regardless of depth.
- NYSDEC Ambient Water Quality Standards and Guidance Values TOGS 1.1.1; The analytical groundwater data generated will be compared against these groundwater standards.
- NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation - December 2002 (or later version if available); The proposed remedial excavation was developed and implemented to meet the requirements of NYSDEC Technical Guidance for Site Investigation and Remediation (DER-10) through excavation and off-site disposal of impacted soil and free-phase product. To document the effectiveness of the soil removal/excavation, postexcavation soil samples are to be collected in approximate 25 linear-foot increments along the sidewalls of the excavation and from the bottom of the excavation at intervals of one sample per 250 square feet (approximate) of bottom excavation.

- New York State Department of Health (NYSDOH) Generic Community Air Monitoring Program: A Community Air Monitoring Program (CAMP) was prepared in accordance with Appendix D of the VCPG and implemented at this Site during remedial excavation activities.
- NYS Waste Transporter Permits 6 NYCRR Part 364; All waste materials removed from this Site were transported and disposed under appropriate manifest documentation.

3.1 SUMMARY OF PROPOSED REMEDIAL ACTION

Below is a description of the proposed Remedial Actions required by the NYSDEC-approved Remedial Action Work Plan.

- The RAWP proposed removing Site soils to below the PCB RSCO of <1.0 ppm at a depth of 0 to 2 ft bgs and 10.0 ppm at a depth > 2 ft bgs. Following discussions between Con Edison and the property Owner (M&A Linens), the RSCO was modified for all soils regardless of depth to be cleaned up to < 1.0 ppm for total PCBs. Data depicting locations of Site soils exceeding this RSCO is presented in Table 1-2.
- 2. Con Edison's proposed Remedial Action was developed to remove all soils on-site with total PCBs at or above 1.0 ppm. Therefore, there were no plans for installation of a composite cover.
- 3. Con Edison's proposed Remedial Action was developed to remove all soils on-site with total PCBs at or above 1.0 ppm. Therefore, there were no plans for an Environmental Easement and/or Institutional Controls.
- 4. Con Edison's proposed Remedial Action was developed to remove all soils on-site with total PCBs at or above 1.0 ppm. Post-remediation groundwater monitoring and subsequent reporting was planned for this Site. A Work Plan for the Installation, Gauging, and Water Quality Testing of Post-Closure Monitoring Wells was submitted to NYSDEC in February 2008 for their

review and comment. Subsequent comments received from NYSDEC were incorporated into a final Work Plan. Included in the final Work Plan is a Site Management Plan (SMP), in the form of a Groundwater Monitoring Plan, which described the measures for evaluating the performance and effectiveness of the remedial activities in reducing or mitigating groundwater contamination at the Site. This SMP is included herein as Appendix J. Post-Closure Monitoring of the existing monitoring well network was conducted from 2008 to 2010. The results of those field activities are included and discussed in Section 4.11. Additional off-site monitoring was requested by the NYSDEC in a letter dated August 23, 2010 (see Appendix C). Results of these sampling events will be reported quarterly and annually until approval to discontinue is received from the NYSDEC.

- 5. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work; During the proposed remedial activities, evidence of contamination, primarily visual observations followed by analytical testing, were proposed to aid in determining the extent of the excavation. The sampling protocol included collecting sidewall and bottom (floor) soil samples for laboratory analysis of PCBs (with an expedited turn-around time in some cases).
- 6. Collection and chemical analysis of end-point samples to evaluate the performance of the remedy with respect to attainment of the stated RSCO for total PCBs (< 1.0 ppm). Throughout the remedial excavation activities, soil samples were collected from the sidewalls and the bottom (floor) of the excavation and submitted for laboratory analysis in accordance with the approved RAWP. The analytical data generated was compared to the SCGs and RSCOs. Sidewall soil samples were collected as discrete grab samples in roughly 25 linear-foot increments along the excavation face at depth intervals of 0 to 2 feet, 2 to 6 feet, 6 to 10 feet, 10 to 14 feet, and 14 to18 feet bgs. End point bottom samples were also collected and tested. All soil samples were</p>

analyzed for total PCBs. A majority of soil samples collected were also analyzed for TPH. At approximately 20 percent of the soil sampling locations, soil samples were also analyzed for VOCs and SVOCs in accordance with the NYSDEC-approved RAWP.

- 7. Appropriate off-site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal; All waste materials (hazardous and non-hazardous soils and fluids) removed from the Site were transported and disposed off-site under appropriate manifest documentation at approved facilities.
- 8. Import of materials to be used for backfill and cover in compliance with: (1) chemical limits and other specifications included in all Federal, State and local rules and regulations for handling and transport of material; All final backfill material (Item 4) was tested for both chemical and physical properties prior to being delivered to the Site. The Item 4 backfill material was from a Tilcon facility located in Nyack, New York.
- 9. All responsibilities associated with the Remedial Action, including permitting requirements and pretreatment requirements, addressed in accordance with all applicable Federal, State and local rules and regulations. All permits (local, State and Federal) were obtained by Con Edison and/or Con Edison's remediation contractor(s) prior to initiating any on-site work.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in general accordance with the NYSDEC-approved RAWP for the former Maspeth Substation Site, dated November 10, 2004. The approved RAWP is included on CD in Appendix B. Deviations from the RAWP are noted below.

4.1 GOVERNING DOCUMENTS

Governing documents included a Site-specific Health and Safety Plan, a Quality Assurance Project Plan, a Construction Quality Assurance Plan, a Storm-Water Pollution Prevention Plan, a Community Air Monitoring Program, a Contractors Site Operating Plan, and a Community Participation Plan. These are described below.

4.1.1 Site-Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in compliance with governmental requirements, including Site and worker safety requirements mandated by OSHA. A Health and Safety Plan (HASP) was prepared by each remediation contractor and implemented for all remedial and invasive work performed at the Site. The Site Safety Coordinator was Mr. Tom O'Connell of Con Edison. Mr. O'Connell's resume is included in Appendix K.

Jacques Whitford prepared a Site-specific Environmental Health and Safety Plan in accordance with Con Edison, NYSDEC, and OSHA protocols. The EHASP is included as Appendix B of the RAWP. The EHASP specifically addressed key safety issues at the Site including contact with, and inhalation of, Site contaminants; physical risks due to excavation equipment, traffic, and the depth of the proposed excavation; and potential risks to the public through dust or vapors. The EHASP also included Sitespecific emergency contacts and a route to the hospital.

4.1.2 Quality Assurance Project Plan (QAPP)

A Site-specific Quality Assurance/Quality Control Plan (QA/QCP), consistent with Appendix B of the VCPG was developed and was included as Appendix E of the RAWP.

This document outlined sampling and analytical methods for end-point sampling. During the execution of the remedial activities, soil samples collected were transported to an approved, NYSDOH certified laboratory for chemical analysis. The QA/QCP described the quality assurance activities associated with the oversight of the excavation contractor and environmental monitoring of the workspace and surrounding areas during excavation. The QA/QCP also described the protocols for collecting excavation sidewalls and bottom samples, the sampling of dewatering fluids, and the calibration and operation of the field instruments required for these activities. The QA/QCP also provided detailed descriptions of the various field tasks to be undertaken under the RAWP.

4.1.3 Construction Quality Assurance Plan (CQAP)

The Construction Quality Assurance Plan (CQAP) proposed by the remediation contractor(s) managed performance of the Remedial Action tasks through designed and documented QA/QC methodologies applied in the field and in the laboratory. The CQAP, included in the remediation contractor's Site Operations Plan, provided a detailed description of the observation and testing activities that were used to monitor construction quality and confirm that remedy construction was in conformance with the remediation objectives and specifications. These Plans contained the following elements:

- Responsibilities and authorities of the organizations and key personnel involved in the design and construction of the remedy.
- The observations and tests that were used to monitor construction and the frequency of performance of such activities.

- The sampling activities, sample size, sample locations, frequency of testing, acceptance and rejection criteria, and plans for implementing corrective measures as addressed in the plans and specifications.
- Requirements for project coordination meetings between the Applicant and its representatives, the Construction Manager, Excavation Contractor, remedial or environmental subcontractors, and other involved parties.
- Description of the reporting requirements for quality assurance activities including such items as daily summary reports, schedule of data submissions, inspection data sheets, problem identification and corrective measures reports, evaluation reports, acceptance reports, and final documentation.
- Description of the final documentation retention provisions.

4.1.4 Soil/Materials Management Plan (SoMP)

This document, included in the remediation contractor's Site Operations Plan, provided detailed plans for managing all soils/materials that were disturbed at the Site, including excavation, handling, storage, transport and disposal. It also included all of the controls that were applied to these efforts to assure effective, nuisance free performance in compliance with all applicable Federal, State and local laws and regulations.

4.1.5 Storm-Water Pollution Prevention Plan (SWPPP)

This document, included in the remediation contractor's Site Operations Plan, addressed requirements of New York State Storm-Water Management Regulations including physical methods to control and/or divert surface water flows and to limit the potential for erosion and migration of Site soils, via wind or water.

4.1.6 Community Air Monitoring Plan (CAMP)

A Site-specific CAMP, consistent with Appendix D of the VCPG was developed and was included as Appendix E of the RAWP.

The purpose of the CAMP was to provide an additional margin of safety to residents and/or businesses located in the vicinity of the Site with respect to dust and

volatile compounds that could be generated during remedial work activities. The compounds of concern at the Site were soils impacted with dielectric fluids containing PCBs and, to a limited extent, VOCs. The CAMP described air monitoring protocols, off-site neighborhood monitoring, action levels, and mitigative measures to be implemented if action levels were triggered at the perimeter of the Site.

4.1.7 Contractors Site Operations Plan (SOP)

The Remedial Engineer (Jacques Whitford Engineering Group) reviewed plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor document submittals) and confirmed that they were in general compliance with the RAWP. The Remedial Engineer ensured that all documents submitted for this remedial project after the RAWP was approved, including contractor and subcontractor document submittals, were in compliance with the RAWP. All appropriate remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.8 Community Participation Plan

Following approval of this RAWP in 2005, the NYSDEC issued a notice of the availability of the RAWP for review and comment in the Environmental Notice Bulletin (ENB) for the required 30-day public comment period. Con Edison notified the pertinent municipal authorities that the RAWP was available for review. Con Edison and NYSDEC developed a Fact Sheet and mailed it to adjacent and/or nearby property owners. The Fact Sheet described the Site, as well as provided items such as a summary of the purpose and goals of the remediation, start and end dates of the public comment period, where to review the project documents, how to submit comments, the project schedule and milestones, and list sources of additional information. Throughout the remedial activities, Con Edison consistently communicated with residents and other interested parties as to the status and proposed schedule of the project. A certification of mailing was sent by Con Edison to the NYSDEC Project Manager following the distribution of the Fact Sheets and notices that included: (1) certification that the Fact Sheets were mailed; (2) the date they were mailed; (3) a copy of the Fact Sheet; (4) a list of recipients (contact list); and (5) a statement that the repositories was inspected and that it contained all of the applicable project documents.

According to Con Edison, no changes were made to the approved Fact Sheets authorized for release by NYSDEC without written consent of the NYSDEC. According to the NYSDEC, the department did not receive any comments from the public.

Document repositories have been established at the following locations for the duration of the project and contain all applicable project documents:

NYSDEC Region 2 Office 1 Hunters Point Plaza 47-40 21st Street Long Island City, NY 11101 718 482-4973

> Queens Public Library 6970 Grand Avenue Flushing, NY 11378 718 639-5228

Community Board #5 61-23 Myrtle Avenue Glendale, NY 11385 718 366-1834

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Involved Parties

The remedial program was implemented at the Site by two remediation contractors selected and managed by Con Edison. From March 2005 to January 2007, Coastal Environmental Group (Coastal) performed the remediation activities at the Site. Coastal supplied laborers and equipment. Coastal was assisted by Blue Water Engineering (provided union dock builders, and equipment operators) and Skanska/Underpinning for geotechnical support associated with excavation activities. Skanska/Underpinning installed the "H-pile" and lagging system (to depths of 40 ft bgs) for structural support prior to soil excavation.

From February 2007 to May 2008, Sevenson Environmental Services (Sevenson) performed as the lead contractor at the Site for the overdrilling phase of this project. Sevenson provided laborers and equipment. Sevenson was assisted by Skanska/Underpinning who provided labor and equipment for trench box and caisson

advancement to remove "hot spots" encountered during the main excavation. Other contractors at the Site included Aquifer Drilling and Testing (drilling services), KSS Surveying, American Standard (soil compaction testing), and Goldberg Zoino Associates (GZA) for vibration monitoring.

The Remedial Engineer for this work included Mr. Craig R. Gendron of Jacques Whitford Engineering Group, Inc. Mr. Gendron is a registered Professional Engineer licensed by the State of New York (NY PE 074002-1) and had primary responsibility for implementation of the remedial program for the Site.

4.2.2 Site Preparation

Prior to initiating any work, a pre-construction meeting was held with Con Edison, NYSDEC, and the remedial contractors. On April 1, 2005 Con Edison met with Coastal and Jacques Whitford representatives to discuss the scope of work and schedule for the project. On February 13, 2007, Con Edison and representatives of Jacques Whitford participated in a conference call with Sevenson representatives to discuss the remedial scope of work and schedule associated with implementation of Sevenson's remedial activities.

A complete list of agency approvals required by the RAWP is included in Appendix C. This list includes a citation of the law, statute or code to be complied with the originating agency, and a contact name and phone number in that agency.

Prior to commencing the remedial activities, Coastal and its subcontractors mobilized their equipment (Bauer BG 22H drill rig, Caterpillar 320C Excavator, and Caterpillar IT28F Payloader) to the Site during June 2005. An eight-foot tall privacy fence screen was erected around the existing chain link fencing encompassing the perimeter of the Site and an office trailer was set up in the northwestern portion of the Site along the fence. Within the Site boundaries a decontamination pad was constructed near the Rust Street access gate and temporary bathroom facilities were delivered and positioned in the southwest portion of the Site. Erosion control/silt fencing was not necessary since erosion was not an issue at the Site.

As described in more detail in Section 4.3.1, initial remedial activities consisted of excavating and removing the existing concrete pads. Once the concrete pads were removed, the Site was prepared for soil excavation activities. The office trailer originally located on-site was moved onto 58th Street and a 3,000 and 10,000 gallon water storage

tank (for potential dewatering activities) were staged in the southwest corner of the Site. Figure13 illustrates these excavation-related appurtenances.

A NYSDEC project sign was erected at the project entrance and in place during all phases of the Remedial Action.

4.2.3 General Site Controls

Prior to excavation of on-site soils, an excavation support structure consisting of drilled "H-piles" and lagging was constructed around the limits of the excavation (see Figure 13). A Bauer BG 22H drill rig was used to drill 30-inch diameter borings into which 40-foot long steel "H-piles" were positioned and cemented in place. A total of 54 "H-piles" were installed in 6-foot intervals in this manner from June 22 to August 10, 2005. The lagging, which consisted of six foot long wooden timbers, was positioned between the "H-piles" for structural support during excavation activities. As the excavation proceeded with depth, additional or new lagging was added beneath the existing lagging. The portion of the existing one-story building facing the excavation was also underpinned for support. A coordinate system, used to describe subsequent soil sampling locations, was then established at the Site, with the 0,0 point being the southeast corner of the lagging (see Figure 13).

During the remedial work, soils were then excavated and loaded directly into lined dump trucks to avoid any stockpiling of soils on-site. Once filled, a tarp was placed over the exposed soil in the truck and tied down. The dump trucks were washed down in the decontamination area prior to leaving the Site to minimize the amount of soil and/or mud on the tires from being tracked onto Rust Street. Both Rust Street and the sidewalk were continuously evaluated and any mud or dirt observed was swept up.

During the excavation activities, several large boulders were encountered that were too large to be trucked off-site. These boulders were moved around the excavation via excavator to allow for continued soils excavation. Upon completion of the excavation activities and end-point samples confirmed the excavation limits had achieved the RSCOs, the over-size boulders were placed into the southeastern corner of the excavation at a depth of approximately 12 to 16 ft bgs.

As mentioned previously, erosion was not an issue at this Site and therefore, erosion control/silt fencing was not employed.

The Site was secured by locking the access gates along 58th Street and Rust Street at the end of each day. Because of on-site vandalism in April 2007, a security company was employed by Sevenson during non-working hours.

CAMP and soil sampling activities conducted by Jacques Whitford personnel were documented in bound field logbooks.

As described in the text and presented on various tables and figures throughout this FER, soil samples were collected and identified using an alphanumeric system that consists of the letters MA- for Site identification (i.e. Maspeth), followed by sample type (i.e. SW for Side Wall, SSB for Soil Sample Bottom), location using an X-Y grid format, and depth, if appropriate. The X-Y coordinate system (see Figure 13) was established with the 0,0 coordinate as the southeast corner of the H-pile and lagging system, the X direction going east to west, and the Y direction going south to north.

4.2.4 Nuisance Controls

Throughout the remedial work, nuisance controls were employed by the remedial contractors. Work hours were generally limited to 7:00 AM to 3:00 PM Monday through Friday to minimize noise. For portions of July and August 2005, extended hours (from 7:00 AM to 7:00 PM Monday through Friday and from 7:00 to 3:00 PM Saturday) were granted to increase productivity. Trucks that were lined up along Rust Street prior to entering the Site were not allowed to idle thereby limiting exhaust fumes and noise. Trucks exiting the Site were washed at the decontamination pad to limit the tracking of dirt and mud onto Rust Street. Rust Street was inspected daily and any dirt or debris observed was removed. During deep excavation activities, Kiln dust was used as a drying agent to absorb any water that may have collected. During drier periods, soils were wetted down with potable water to limit the migration of dust off-site. Refuse/trash were properly stored in containers on-site and properly disposed as solid waste. Personal protective equipment (i.e. tyvex suits, gloves, etc.) that was used was properly stored on-site until transported off-site for disposal.

4.2.5 CAMP Results

The purpose of the CAMP was to monitor air quality for both safety and nuisance levels of dust and volatile organic compounds that may have been generated during the remedial activities. The compounds of concern at the Site were soils impacted with dielectric fluids containing PCBs and, to a limited extent, VOCs. The CAMP, appended to the NYSDEC-approved RAWP, described air monitoring techniques, off-site neighborhood monitoring, action levels, and mitigative measurers to be implemented if action levels were triggered at the perimeter of the Site. The community air monitoring equipment consisted of two MiniRAE 2000 photoionization detectors (PIDs) and three Thermo Scientific Personal DataRAMs (PDR). Prior to use each day, the PIDs were calibrated with standard 100-ppm isobutylene gas in a calibration bag. The PDRs were zeroed with filtered air in standard plastic calibration bags.

One PID meter and one PDR were positioned on the north fence between the Site and the abutting residential row house properties. A second PID meter was used to record the background or upwind VOC levels prior to beginning each day's work and then placed at the downwind perimeter of the work areas for real-time recording throughout the day. Two additional dust monitors were placed along the western portion of the work area or Rust Street fence area and along the eastern portion of the work area or 58th Street fence area to perform continuous monitoring. The upwind or background CAMP station was determined each day based on the prevailing wind direction.

The Jacques Whitford on-site Environmental Technician read the displays of the PIDs and PDRs at 15-minute intervals and recorded readings in the field logbook. Both instantaneous readings and time-weighted averages of dust data were recorded. The action level for Short Term Exposure Limit (STEL) exceedences was 100 μ g/m³ (0.100 mg/m³) above background at the downwind location for a 15-minute period.

Exceedences of the STEL action level required implementation of dust suppression mitigative measures such as wetting down the soil.

The CAMP data was also recorded in real time and stored electronically in the PIDs and PDRs memory. The downloaded data were evaluated, tabulated, and submitted to Con Edison on a weekly basis. Any STEL exceedences were identified and correlated to Site activities and subsequent mitigation, if required.

Throughout the remedial action activities, exceedences of the STEL action level were documented. However, the majority of the action level exceedences were nonremediation related activities. Typical identified causes were:

- Climatic conditions (high humidity, rain, cold temperatures, etc.);
- Dust raised on Rust Street by rush hour traffic;

- Dust raised by street sweeping;
- Dust raised by dumping loads of Kiln Dust for dewatering the excavation purposes; and
- Exhaust fumes from various diesel engines.

On minor occasions, a STEL exceedence correlated to actual soil removal activities on-site. When this occurred, mitigative measures such as wetting down the soils were employed.

Odor and vapor monitoring was also conducted by the Jacques Whitford environmental technician who traversed the perimeter of the Site on a regular basis. If an odor was noted, an attempt was made to determine the source and relationship to the ongoing remediation activities. Because of the non-volatile nature of the on-site contamination (PCBs), odors noted were typically from off-site sources, such as from painting operations at a nearby auto body shop.

4.2.6 Reporting

Reports summarizing the CAMP results (and basis for any STEL exceedences) and any soil sample collection and/or analytical data generated were submitted to Con Edison on a weekly basis. These weekly reports are provided on CD in Appendix D.

Photographs were also taken throughout the remedial activities to document the various phases. A digital photograph log depicting the various phases of the remediation, as required by the RAWP, is included in Appendix E.

4.3 CONTAMINATED MATERIALS REMOVED

The following remediation chronology summarizes the various phases of the remedial activities conducted at this Site and significant observations made during remediation:

Date	Remedial Activity and/or Observations Made
3/31/05 to 6/21/05:	Demolition and removal of concrete slabs and asbestos- containing expansion joints.
6/22/05 to 8/10/05:	H-pile drilling and lagging installation.
8/10/05:	Remedial soil excavation activities begin.
8/17/05:	Begin post-excavation sidewall soil sample collection.
10/21/05:	Elevated levels of PCBs detected in soils along the north sidewall.
11/8/05:	Elevated levels of PCBs detected in soils at the bottom of the excavation in the northern area.
11/18/05 to 12/2/05:	Geoprobe [®] soil sampling conducted along the northern fence line to delineate PCBs abutting the residential row house properties.
12/2/05 to 12/23/05:	Geoprobe [®] soil sampling conducted within the center of the main excavation to delineate PCBs.
3/11/06 to 3/24/06:	Geoprobe [®] soil sampling conducted within the center of the main excavation to delineate PCBs.
5/5/06 to 7/31/06:	Deep soil excavation performed within trench boxes.
7/12/06 to 7/26/06:	Geoprobe [®] soil sampling conducted within the northern area of the main excavation to delineate PCBs.

Date	Remedial Activity and/or Observations Made
6/06 to 11/06:	Work Plan and Technical Specifications developed for the proposed caisson over drilling excavation within the northern area of the main excavation to address deep PCB impacts in four areas on-site.
11/13/06:	Seismic monitors installed to record data during backfill activities.
11/15/06 to 11/17/06:	Liner installation performed to a depth of 18 ft bgs on the east and north excavation walls.
11/20/06 to 1/5/07:	Backfilling (Item 4) of the main excavation conducted and horizontal steel structural braces across the excavation are removed.
1/5/07:	Shallow impacted soils are excavated on the west side of the Site.
3/1/07 to 4/20/07:	Caisson over drilling performed within the northern portion of the main excavation.
11/6/07 to 12/6/07:	Excavation of soils conducted from under portions of the concrete fence footer located along the northern property boundary.
1/1/08 to 1/4/08:	Geoprobe [®] soil sampling conducted to determine extent of "hot spots" remaining under the concrete fence footer.
6/18/08 to7/3/08:	Excavation of final soil "hot spots" conducted from under the concrete fence footer.
7/08:	Install post-excavation on-site monitoring wells and collect first round (baseline) of groundwater samples for chemical analyses.
7/08 to 4/10:	Quarterly groundwater gauging and sampling of on-site and off-site monitoring wells.

Date	Remedial Activity and/or Observations Made
11/16/09 to 11/24/09:	Install off-site monitoring wells on 58 th Street for off-site delineation of impacts beneath western sidewalk.
12/09 to 2/10:	Groundwater sampling of off-site monitoring wells for off- site Sidewalk Investigation.

Figure 13A is a map depicting the excavation areas associated with on-site soil removal at the Site through July 2008.

4.3.1 Concrete Removed

In order to expose and excavate impacted soils at the Site, concrete pads, including a minor portion of the northern fence line footer, were removed. As shown on Figure 2, these included six concrete pads that housed the former substation's step-down transformers and one large concrete slab that housed spare electric equipment. Concrete removal was undertaken by Coastal from March 31 to June 21, 2005, under Con Edison oversight.

During the initial stages of concrete removal, it was discovered that the slabs and expansion joint material were much thicker than originally anticipated. Analytical results from a sample of the expansion joint material (collected in August 2004 as part of the "Pre-Characterization Study" (Appendix E of the RAWP)) detected PCB Arochlor-1260 at a concentration of 4.83 ppm and in addition, this material tested positive for asbestos. The expansion joint material was considered non-friable Asbestos Containing Material (ACM). Due to the larger than expected thickness of the concrete slabs and the presence of ACM expansion joint material, Con Edison worked with the New York City Department of Environmental Protection to develop a plan to conduct the removal work in modified tents with non-high efficiency particulate air (HEPA) equipment. Samples of the expansion joint material collected during the 2005 removal were subsequently reported as Non-Detect for asbestos. All concrete slabs and structures were successfully

removed from this Site from March 31 to June 21, 2005 with oversight being performed by Con Edison.

Because the purpose of removing the concrete slabs and structures was to expose and excavate the underlying soils, the thickness of the concrete slabs was not recorded by location. However, the slabs encountered were 18 -inches in thickness with footers as deep as 48 inches thick.

4.3.1.1 Concrete Disposal Details

Removal of the concrete structures was performed between March 31 and June 21, 2005. An additional load of concrete was removed from the Site on July 6, 2005. All work was conducted under the supervision of Con Edison. Manifests and bills of lading are included in Appendix F.

Table 4-1 shows the total quantities of concrete and related C&D material removed from the on-site concrete slabs and their disposal locations. A total of approximately 719 tons and 343 tons of concrete and related C&D material, respectively, were removed from the Site. Table 4-1A presents the specifics of the concrete and C&D material disposal.

4.3.1.2 On-site Reuse

There was no concrete reused on Site.

4.3.2 Non-Hazardous Soils Removed

Following removal of the concrete structures, Skanska/Underpinning mobilized to the Site to install the geotechnical support structure (H-piles and lagging) prior to excavation activities (see Figure 13). This was conducted from June 22 to August 10, 2005. To aid in the installation of the H-piles and lagging structure, the top several feet of soils were excavated around the perimeter of the proposed excavation. Prior to installation of the H-piles a 30-inch diameter steel casing was advanced to approximately 40 ft below original grade. While the casing was advanced, the rig augered out the soils within the casing and deposited the material in an on-site roll-off. Upon reaching the final depth, the H-piles were grouted within the casings. The casing was then pulled from the ground prior to the grout curing.

Once the H-piles and lagging support structure was installed along the perimeter of the main excavation area (see Figure 13 and 13A), soils from the interior of the support structure were excavated and direct loaded into lined trucks for transportation and disposal off-site. Based on the data derived from the Pre-Characterization Study (see Appendix E of the RAWP), soils from the interval 0 to 15 ft below grade were transported off-site as non-hazardous. The non-hazardous soil disposal quantities are presented in Tables 4-1 and 4-2. During the excavation activities, soil samples were routinely collected from the bottom of the excavation (below approximately 18 ft bgs) and analyzed for PCBs to evaluate whether the vertical extent of excavation had been achieved. As described in more detail in Section 4.9 below, elevated levels of PCBs were detected at the bottom of the excavation at a depth of approximately 18 ft bgs. Based on this occurrence, Con Edison requested that a Geoprobe[®] rig be used to collect additional soil samples throughout the Site in November and December 2005 and again in March and July 2006. The analytical data generated was used to evaluate the horizontal and vertical extent of "hot-spots" encountered. Table 4-3 summarizes the soil samples collected for PCB and TPH analyses at the Site. Table 4-4 and 4-5 summarizes the soil samples collected for VOC and SVOC analyses, respectively, at the Site. Please note that the data in Tables 4-3, 4-4, and 4-5 are presented chronologically by sample date.

During the remedial activities associated with the main excavation, approximately 8,520 tons of non-hazardous soils were transported and disposed off-site. Table 4-1 shows the total quantities of non-hazardous soils removed from within the main excavation and transported off-site for disposal following the installation of the H-pile and lagging system.

As mentioned above, the Site soils within the main excavation (see Figure 13A and 13B) were excavated to a depth of 15 ft bgs and were transported off-site as non-hazardous. Soils from below 15 ft bgs were excavated and transported off-site for disposal as hazardous soils. Therefore, no cut and fill contour maps were made available

for the non-hazardous soils. However, Figure 13B illustrates the total extent of excavation activities conducted at the Site.

4.3.2.1 Non-Hazardous Soil Disposal Details

Con Edison's contractors submitted soil profiles of material from the Maspeth Substation Site to pre-approved Con Edison disposal facilities before excavation activities began.

The removal of non-hazardous soils from within the perimeter of the main excavation was undertaken from July 2005 to January 2007.

Manifests and bills of lading are included in Appendix F.

Table 4-1 shows the total quantities of non-hazardous soil removed from the Site and the disposal locations. A total of approximately 8,520 tons of non-hazardous soils were removed from the Site. Table 4-2 presents the specifics of the non-hazardous soils disposed from the main excavation area.

4.3.2.2 On-site Reuse

No soils were reused on-site. However, during the remedial excavation work within the main excavation area, several large boulders were encountered. These boulders were too large to remove from the excavation and place into trucks for transport and disposal off-site. Therefore these boulders were moved around the excavation and placed in the southeastern corner of the excavation at depths of 12 to 16 ft bgs. The area surrounding the boulders was then backfilled.

4.3.3 Hazardous Soils Removed Main Excavation

Based on the results of the remedial investigation and Pre-Characterization study, material excavated from below 15 to 18 ft bgs was characterized as hazardous waste. The soil analytical data generated during the remedial excavation activities and presented in Table 4-3 were compared to a PCB RSCO of 1.0 ppm to further aid in determining the extent of excavation required. Based on the analytical data presented in Table 4-3, the vertical extent of the excavation ranged from 8 to 30 ft bgs (see Figure 13B). Excavation proceeded to these depths noted above. In some areas, excavation was required to extend to depths of 30 ft bgs. For these areas, trench boxes were used to segment these areas or "hot-spots" and remove the impacted soils. The final depths of the excavations within the trench boxes were 30 ft bgs with the exception of trench boxes 8 and 9, which were excavated to 22 ft bgs. The trench box locations are illustrated on Figure 13A.

Figure 13B is a cut and fill diagram depicting the final contours of the main excavation. As illustrated on Figure 13B, the majority of the Site was excavated to 18 ft bgs. In the southeast corner of the main excavation and adjacent to the existing building, the bottom of the excavation was sloped downward to the north and northwest from 8 to 18 ft bgs. This soil "wedge" was left in-place for building stability. End-point soil samples were collected as illustrated on Figures 14 through 18. The analytical data, with the exception of the east wall (Figure 15) indicated that the total PCB concentrations were < 1.0 ppm.

Along the northern portion of the main excavation on-site, some "hot-spots" were also identified when the PCB RSCO was exceeded. However, it was determined that to continue, the excavation to a greater depth was not a viable option due to limitations of the original support system (i.e. the H-pile and lagging system would have to be redesigned and re-constructed to account for removing soils to depths of 30 ft bgs). Therefore, it was approved by the NYSDEC to remove the PCB-impacted soils from these discrete deeper locations by over drilling methods. This methodology is discussed in Section 4.3.4 below.

4.3.3.1 Hazardous Soil Disposal Details

Con Edison's contractors submitted soil profiles of material from the Maspeth Substation Site to pre-approved Con Edison disposal facilities before excavation activities associated with the hazardous waste began. The removal of hazardous soils from the main excavation was undertaken from November 2005 to August 2006. Manifests and bills of lading are included in Appendix F.

Table 4-1 shows the total quantities of hazardous soil removed from the Site and the disposal location (Model City, NY). A total of 2,450 tons of hazardous soils were

removed from the Site during this time frame. Table 4-6 presents the specifics of the hazardous soils disposed from the main excavation area

4.3.3.2 On-site Reuse

There were no soils reused on-site. However, during the remedial excavation work within the main excavation area, several large boulders were encountered. These boulders were too large to remove from the excavation and place into trucks. Therefore, these boulders were moved around the excavation as necessary and placed in the southeastern corner of the excavation at depth of 12 to16 ft bgs prior to backfilling.

4.3.4 Hazardous Soils Removed Over-Drill Excavation

As mentioned previously, elevated levels (>10 ppm) of PCBs were detected in soils in discrete areas in the northern portion of the main excavation. To further evaluate the horizontal and vertical extent of contamination of these discrete areas, Geoprobe[®] soil samples were collected for chemical analysis in July 2006. The PCB analytical data for these samples, presented in Table 4-3, were compared to the RSCO for PCBs (1.0 ppm) to determine the extent of excavation needed in these discrete areas. Jacques Whitford submitted a Final Over-Drilling Work Plan, dated November 17, 2006, to the NYSDEC to remove these soils via cased over-drilling technique. The NYSDEC approved the Work Plan on May 23, 2006.

The over-drill technique was selected because this process could remove the impacted soils safely, cost-effectively in a geotechnically sound fashion, and could be implemented below vibration action levels within close proximity to the row houses. The overdrilling method conducted by Skanska from March to April 2007, consisted of spinning 30-inch diameter steel casings to depths of 30 ft bgs. The casings were advanced with a Baur 20H drill rig. The soils within the casings were then removed via augering and the spoils placed into lined trucks for transport and off-site disposal. The casings were backfilled with low strength concrete. A total of 64 casings were advanced in an overlapping pattern to remove the impacted soils from four discrete areas within the main excavation (see Figure 13A).

4.3.4.1 Hazardous Soil Disposal Details

Con Edison's contractors submitted soil profiles of material from the Maspeth Substation Site to pre-approved Con Edison disposal facilities before excavation activities began.

Manifests and bills of lading are included in Appendix F.

Table 4-1 shows the total quantities of hazardous soil removed from the Site during the over-drill excavation phase (March to April 2007). A total of 975 tons of hazardous soils were removed from the Site during this time frame and properly disposed of in Model City, NY. Table 4-7 presents the specifics of the hazardous soils disposed from the over-drill excavation area.

4.3.4.2 On-site Reuse

No soils were reused on-site.

4.3.5 Soils Removed From Shallow Areas

As described previously, the Site was investigated and partially remediated by others in 1996 under Con Edison supervision/oversight. This remedial work was conducted to a cleanup goal of 10 ppm for total PCBs below 2 ft bgs. Additional soil testing, conducted by others in 1996, detected levels of PCBs greater than the 1.0 ppm RSCO that remained in the shallow on-site soils. These shallow soil areas are depicted on Figure 13A.

As shown on Figure 13A, these areas were located in the western portion of the Site. During the main excavation activities, this western area on-site was used for equipment staging, decontamination, and for access to the main excavation. After the main excavation area had been backfilled and after a majority of the staged equipment had been demobilized from the Site, these shallow areas were excavated on January 5, 2007. These areas were excavated to depths of 2.0 to 3.0 ft below original grade.

4.3.5.1 Soils From Shallow Areas Disposal Details

Con Edison's contractors submitted soil profiles of material from the Maspeth Substation Site to pre-approved Con Edison disposal facilities before excavation activities began. The soils removed from the shallow areas were undertaken on January 5, 2007.

Manifests and bills of lading are included in Appendix F.

Table 4-1 shows the total quantities of non-hazardous soil removed from the Site from these shallow areas (January 2007) and the disposal locations. A total of 83 tons of non-hazardous soils were removed from the Site. Table 4-2 presents the specifics of the non-hazardous soils disposed from the shallow areas

4.3.5.2 On-site Reuse

No soils from the shallow excavations were reused on-site.

4.3.6 Soils Removed From Beneath Concrete Fence Footer

As described above, elevated levels of PCBs were reported in soils in discrete areas along the northern property fence line (beneath the concrete fence footer) in October 2005. Con Edison conducted Geoprobe[®] soil sampling adjacent to the Site side of the fence line along the M&A property in November and December 2005. The analytical results, presented in Table 4-3, were then compared to the RSCO for PCBs (1.0 ppm) to delineate the extent of PCBs in soils located beneath the concrete footer. The analytical data indicated areas of soils with PCBs concentrations > 1.0 ppm directly underneath the concrete fence footer. Jacques Whitford prepared and submitted a Remedial Excavation Work Plan For Residential Yards and Fence Line Soil Contamination, dated July 30, 2007, to remove these soils via excavation methods. The analytical data associated with soils collected north of the fence line is provided in the FER for Backyard Remediation to be forwarded to the NYSDEC under separate cover.

A map showing the locations of these impacted areas are shown on Figure 21.

Initial remedial excavation activities along the northern boundary of the Site were undertaken in October through December 2007. Impacted soils at depth from under the concrete footer were removed via a slide rail trench box excavation technique. However, analyses of post-excavation confirmatory soil samples collected at depth under the concrete footer from behind residences located at 57-42 and 57-44 57th Drive indicated total PCBs at concentrations greater than 1 ppm (see Table 4-3). In December 2007, additional smaller excavations were conducted under the concrete footer. Additional post-excavation soil samples from these smaller excavations also indicated concentrations of PCBs at levels greater than the RSCO of 1.0 ppm.

Con Edison determined not to continue with excavation activities without fully understanding the vertical and lateral extent of PCB soil impacts remaining in this area. In addition, an engineering design was not in place to support the various adjacent structures if subsequent remedial excavation work was to be performed. Between January 2 to 4, 2008, additional soil samples were collected for chemical analyses from underneath the concrete footer with a Geoprobe[®] rig drilling at various angles to achieve the target depth and with a hand driven Geoprobe[®] sampling unit. The analytical results, presented in Table 4-3, were compared to the RSCO for PCBs (1.0 ppm) to delineate the final extent of PCB impacts in soils beneath the concrete footer. Jacques Whitford at Con Edison's request developed and submitted a Remedial Excavation Work Plan – Addendum For Residential Yards and Fence Line Soil Contamination, dated June 6, 2008 to remove these soils via cased over-drilling technique.

The final remedial work, conducted from June 18 to July 3, 2008, entailed spinning 24-inch diameter steel casings to depths of 12 to 13 ft bgs. The soils within the casings were then augered out and placed into lined trucks for transport and off-site disposal. A total of 13 casings in an overlapping pattern were used to remove the impacted soils from beneath the concrete footer.

4.3.6.1 Soils From Beneath Concrete Fence Footer Disposal Details

Con Edison's contractors submitted soil profiles of material from the Maspeth Substation Site to pre-approved Con Edison disposal facilities before excavation activities began. The removal of soils from beneath the concrete fence footer was undertaken between October to December 2007 and between June and July 2008.

Manifests and bills of lading are included in Appendix F.

Table 4-1 shows the total quantities of hazardous soils removed from the Site and the disposal location (Model City, NY). A total of 176 tons of hazardous soils were

removed from the Site during this time frame. Table 4-8 presents the specifics of the hazardous soils disposed from beneath the concrete footer area.

4.3.6.2 On-site Reuse

No soils were reused on-site.

4.3.7 Water Removed From Site

During the main excavation work, groundwater was encountered and dewatering activities were implemented. Sump pumps, set in the area of excavation to be dewatered, initially pumped water to a 3,000-gallon frac-tank located on-site for temporary storage. Since there were suspended solids (soil) in the fluid, the 3,000-gallon tank was used primarily as a settling tank. Once the solids had settled to the bottom, the fluids were then pumped into a second 10,000-gallon frac-tank located on-site. Due to the use of kiln dust as a drying agent, the water had elevated pH levels >10, which is above disposal facility limits. Consequently, it was required to reduce the pH of the water within the 10,000-gallon frac-tank by adding muriatic acid and recirculating the water until a stable pH was measured at a level acceptable to the disposal facility. Once the pH was stabilized, the water was pumped into a 21,000 gallon frac-tank located on Rust Street.

The water within the 21,000 gallon frac-tank was then periodically removed via a Con Edison tanker truck for transport and off-site disposal at Con Edison's Astoria facility.

4.3.7.1 Fluids Disposal Details

Con Edison made arrangements with Mr. Bob Cuillo at the Con Edison Astoria facility for the proper treatment and disposal of this water.

4.3.7.2 On-site Reuse

No fluids were reused on-site.

4.4 REMEDIAL PERFORMANCE (END-POINT SAMPLE RESULTS)

As described above, soil samples were collected throughout the remedial activities and analyzed for PCBs and other selected parameters to aid in the progression of the overall excavation and serve as End-Point samples. Tables containing the remedial performance sampling conducted under this remedy are shown in Tables 4-3, 4-4, and 4-5.

Post-excavation End-Point soil samples were collected throughout the remedial activities as described above. Grab samples were collected in approximate 25 linear-foot increments along the sidewalls of the main excavation area and every two to four feet of depth (i.e. 0 to 2 feet, 2 to 6 feet, 10 to 14 feet, and 14 to 18 ft below ground surface). . The sidewall End-Point samples were collected either by physically cutting a hole in the wooden lagging and then reaching through to grab a soil sample of the undisturbed soils or by grabbing a soil sample from under the wooden lagging as it was lowered as the excavation progressed vertically.

Post-excavation End-Point samples were also collected from the bottom of the excavation. Grab samples were collected from each approximate 250 square foot of excavation bottom throughout the main excavation. As described in Section 4.3 above, different methods of excavation within the main excavation were employed to remediate the discrete "hot-spots" encountered throughout the excavation. These different methods included utilizing trench boxes and over-drilling techniques. Bottom end-point samples were collected from the trench boxes as grabs from the excavator bucket; End-Point samples from the over-drill excavations were collected using a Geoprobe[®] tri-pod set up over specific casings to advance a split-spoon sampler and collect a soil sample from the bottom of the casings.

A total of 98 End-Point samples from the main excavation area (13 from the south sidewall, 10 from the east sidewall, 21 from the north sidewall, 11 from the west sidewall, and 43 from the bottom) were analyzed for PCBs and compared to the RSCO of

1.0 ppm to determine clean closure. A total of 20 percent of these End-Point samples were also analyzed for TPH, VOCs, and SVOCs.

All laboratory reports were subsequently submitted for third-party data validation, per the RAWP. Data Usability Summary Reports (DUSRs) were prepared for the analytical data packages generated during the remedial activities. Copies of the DUSRs are included in Appendix G. The analytical data were consistently described as "usable" by the data validator.

End-Point soil sample results for PCBs from soil samples collected from the south sidewall are presented in Table 4-9 and on Figure 14. As shown, there were no exceedences of the RSCO for PCBs (1.0 ppm). End-Point sample results for VOCs and SVOCs collected from the south sidewall are presented in Tables 4-10 and 4-11, respectively. As shown in Tables 4-10 and 4-11, there were no exceedences of the SCGs for VOCs and SVOCs.

End-Point soil sample results for PCBs from soil samples collected from the east sidewall are presented in Table 4-12 and on Figure 15. As shown, there were three locations with detected concentrations that exceed the RSCO for PCBs (1.0 ppm). These three locations are approximately two feet behind the lagging at the approximate property boundary along the 58th Street sidewalk. Based on these results, NYSDEC required Con Edison to investigate and, as necessary, address this area under a separate action. This resulted in a subsequent study of soil and groundwater beneath the 58th Street sidewalk. This is discussed in more detail in Section 4.12. End-Point sample results for VOCs and SVOCs collected from the east sidewall are presented in Tables 4-13 and 4-14, respectively. As shown in Tables 4-13 and 4-14, there were no exceedences of the SCGs for VOCs and SVOCs.

End-Point soil sample results for PCBs from soil samples collected from the north sidewall are presented in Table 4-15 and on Figure 16. As described above, initial samples from the north sidewall had detected concentrations of PCBs > 1.0 ppm. The soils from these areas were subsequently delineated and removed as described in Section 4.3.6 above. Figure 21, discussed below, illustrates the End-Points based on soil samples collected beneath the concrete footer. The north sidewall End-Point results, as shown in

Table 4-15 and on Figure 16, depict no exceedences of the RSCO for PCBs (1.0 ppm). End-Point sample results for VOCs and SVOCs collected from the north sidewall are presented in Tables 4-16 and 4-17, respectively. As shown in Tables 4-16 and 4-17, there were no exceedences of the SCGs for VOCs and SVOCs.

End-Point soil sample results for PCBs collected from the west sidewall are presented in Table 4-18 and on Figure 17. There were no exceedences of the RSCO for PCBs (1.0 ppm). There were no End-Point samples collected from the west sidewall for VOC and SVOC analyses.

End-Point soil sample results for PCBs collected from the bottom of the main excavation (including trench boxes) are presented in Table 4-19 and on Figure 18. There were no exceedences of the RSCO for PCBs (1.0 ppm). End-Point sample results for VOCs and SVOCs collected from the bottom of the main excavation are presented in Tables 4-20 and 4-21, respectively. There were no exceedences of the SCGs for VOCs. There were minor exceedences of the SCGs for SVOCs in one bottom sample (MA-SSB-107, 55 (13)).

End-Point soil sample results for PCBs collected from the over-drill casings are presented in Table 4-22 and on Figure 19. There were no exceedences of the RSCO for PCBs (1.0 ppm). There were no End-Point samples collected from the over-drill casings for VOC and SVOC analyses.

End-Point soil sample results for PCBs collected from three shallow soil areas are presented in Table 4-23 and on Figure 20. There were no exceedences of the RSCO for PCBs (1.0 ppm). End-Point sample results for VOCs and SVOCs collected from the bottom of the shallow excavation are presented in Tables 4-24 and 4-25, respectively. , There were no exceedences of the SCGs for VOCs. There were minor exceedences of the SCGs for SVOCs in three shallow bottom samples (MA-SSB-135, 4.3 (2.5), MA-SSB-138, 17.25 (2.5), and MW-SSB-148, 37.25 (3)).

End-Point soil sample results for PCBs collected from beneath the concrete fence footer are presented in Table 4-26 and on Figure 21. There were no exceedences of the RSCO for PCBs (1.0 ppm). End-Point sample results for VOCs and SVOCs collected

from beneath the concrete fence footer are presented in Tables 4-27 and 4-28, respectively. There were no exceedences of the SCGs for VOCs. There were minor exceedences of the SCGs for SVOCs in one soil sample (MA-SS-51, 64 (5)).

4.5 BACKFILL

Following the completion of each phase of remedial excavation activities at the Site, clean backfill was placed and compacted in accordance with the RAWP. Prior to placing backfill within the main excavation area, a high density polyethylene (HDPE) liner or curtain was installed along the eastern and northern sidewalls from 6 ft bgs to approximately 18 ft bgs. The purpose of this liner was to act as a barrier for free-phase product (potentially existing beneath the 58th Street sidewalk) from migrating onto the Site. This HDPE liner was installed from November 15 to 17, 2006 by Coastal. Following this installation, clean backfill was placed within the main excavation by Coastal.

Throughout the main excavation area, the shallow soil areas, and the lower and deeper portions beneath the concrete footer were backfilled with "Item 4", transported to the Site from a Tilcon facility in Nyack, NY. Item 4 can be described as a manufactured silty sand and gravel. The quantities of Item 4 used for backfill are shown in Table 4-29. A total of approximately 7,800 tons of Item 4 were used as backfill at the Site (see Appendix H). Data summarizing chemical analytical results for backfill are included in Appendix I. The areas backfilled with Item 4 are within the main excavation area and shallow soil areas as depicted on Figure 13A.

Backfill material used in conjunction with the over-drill casing excavations was Controlled Low Strength Material (CLSM) that was poured into each over-drill casing from the bottom to the top of each casing. A total of approximately 502 cubic yards (CY) (101,500 gallons) of CLSM was used as backfill material in this portion of the Site. The areas backfilled with CLSM are within the over-drilled casing area within the main excavation as depicted on Figure 13A and in discreet locations beneath the concrete fence footer.
CLSM was also used in the over-drill casings associated with the work conducted in the final stage of remediation under the concrete fence footer along the northern Site boundary. CLSM was poured into each casing, from the bottoms of each casing to six ft below original grade. The top six ft was backfilled with Item 4.

4.6 RESIDUAL CONTAMINATION REMAINING ON-SITE

As described above, End-Point samples collected from the Site indicate clean closure for PCBs with one exception. End-point samples collected from the East sidewall (see Table 4-12 and Figure 15) indicate pockets of soils that contain PCBs at concentrations greater than the RSCO of 1.0 ppm. However, these pockets or "hot-spots" are at the property line under the 58th Street Sidewalk. Based on these results, NYSDEC requested Con Edison to investigate and, as necessary, address this area under a separate action. This is further discussed in Section 4.12. Therefore, there are no soil samples remaining on-site that exceed the RSCO for PCBs (<1.0 ppm).

Some SVOCs exceeding their associated RSCOs were identified at five locations. A total of four (benzo(a) anthracene, benzo(a) pyrene, chrysene, and dibenzo(a,h) anthracene) compounds were identified above their associated RSCOs.

Tables 30 and 31 and Figure 22 summarize the analytical results of soil remaining at the Site after completion of Remedial Action that exceed the RSCOs for PCBs and SVOCs established for this Site.

As shown on Table 30 three samples have total PCBs which were detected above the RSCO of 1.0 ppm. However, these samples were located approximately two ft behind the East sidewall lagging at the approximate property boundary under the 58th Street Sidewalk. Based on these results, NYSDEC requested Con Edison to investigate and, as necessary, address this area under a separate action. This is further discussed in Section 4.12.

Therefore, since significant residual contaminated soil does not exist beneath the Site after completion of the Remedial Action, Institutional and Engineering Controls and a Site Management Plan related to soils and soil vapor are not required to protect human

health and the environment. As noted in Section 3.1. (paragraph 4), groundwater contamination was addressed through an SMP that required a two-year groundwater monitoring plan, which was executed between 2008 and 2010. The results of the monitoring plan are presented in Section 4.11. Based in part on these results, additional sampling of off-site wells

4.7 ENGINEERING CONTROL SYSTEMS

As noted above, engineering controls were not used at this Site.

4.7.1 Composite Cover System

As noted above, a composite cover system was not used at this Site.

4.8 INSTITUTIONAL CONTROLS

As noted above, institutional controls were not used at this Site.

4.9 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

As discussed in Section 4.3 above, several deviations from the RAWP were documented during the remediation activities. The original requirement in the RAWP was to excavate soils and residual free-product to a depth of 18 ft bgs primarily within a defined area of the vacant former transformer yard area. This defined area is shown on Figure 13A and is noted as the main excavation area. In addition, three shallow soil areas (identified as A, B, and C on Figure 13A) were also recommended for excavation. However, in October 2005, soil samples collected from the north sidewall had detected levels of PCBs greater than the RSCO of 1.0 ppm. Con Edison therefore directed excavation behind the lagging by hand to the east, west, and north of the north sidewall exceedences. End-point samples were obtained from the east and west sidewalls and from the bottom of this hand excavation area at concentrations less than the PCB RSCO of <1.0 ppm. Samples collected from the north sidewall of this hand excavation area (directly underneath the concrete fence footer at the property line) had PCBs at reported concentrations greater than 1.0 ppm. Based on these analytical results, Con Edison

conducted a series of Geoprobe[®] soil borings along the south (or Site) side of the fence line in November and December 2005. The purpose of these Geoprobe[®] sampling events was to delineate the horizontal and vertical extent of PCB impacted soils beneath the concrete fence footer.

Con Edison developed a Remedial Excavation Work Plan in July 2007 to address this area. The remedial activities, undertaken from October to December 2007, included removing surficial soils from beneath the concrete fence footer. Additional samples collected under the concrete fence footer continued to show PCBs at levels greater than 1.0 ppm at two discrete areas. Because it was difficult to excavate under the concrete footer, Con Edison developed a Remedial Excavation Work Plan-Addendum to address this area. The final remedial activities, conducted from June to July 2008, included physically removing the concrete footer to expose the underlying soils. These soils were subsequently removed, with End-Point sampling showing less than 1.0 ppm of PCBs, by using a cased over-drilling technique in which 24-inch diameter steel casings were drilled to depths of 12 to 13 ft below ground surface. The soils within the casings were removed and placed in lined roll-off containers for proper transport and off-site disposal. The casings were backfilled with low strength concrete. A total of ten casings were used in an overlapping pattern to remove the impacted soils from beneath the concrete footer.

A second deviation was created due to elevated levels of PCBs reported in bottom samples collected within the main excavation in November 2005. Due to this observation, Con Edison employed a Geoprobe[®] rig to obtain soil samples to depths of 30 ft bgs throughout the main excavation area. This Geoprobe[®] sampling effort was conducted in December 2005 and March 2006 to efficiently and cost effectively delineate the horizontal and vertical extent of these "hot spots" of elevated PCB contaminated soils within the main excavation. Based on the results, Con Edison directed the removal of these pockets using trench boxes. A total of eleven trench boxes (see Figure 13A) were used to segment these "hot spots" and allow for these soils to be excavated to 30 ft bgs. Post-excavation End-point bottom samples indicated clean closure of soils at these depths.

A third deviation was created due to elevated levels of PCBs reported in bottom samples collected in the northeastern portion of the main excavation in November 2005. Due to this observation, Con Edison employed a Geoprobe[®] rig to collect soil samples to depths of 30 ft bgs throughout this northern portion of the main excavation area. This Geoprobe[®] soil sampling was conducted in July 2006 to efficiently and cost-effectively delineate the horizontal and vertical extent of these "hot spots" of elevated PCB-contaminated soils in this area of the main excavation. The analytical data from the Geoprobe[®] sampling indicated that soils to a depth of 30 ft bgs would need to be excavated.

The geotechnical bracing system (H-pile and lagging) was designed and constructed for the original excavation of soil to a depth of 18 ft bgs as presented in the RAWP. Since this system was deemed to be inefficient to brace an excavation to 30 ft bgs, Con Edison directed Jacques Whitford to prepare a Work Plan and engineering specifications to remove these "hot spots" of impacted soils using an over-drill excavation technique. The remedial activities were conducted from March to April 2007 and entailed advancing 30-inch diameter steel casings to depths of 30 ft below original grade. The soils within the casings were then removed and placed into lined roll-off containers for transport and off-site disposal. The casings were backfilled with low strength concrete. A total of 64 casings (or cans) in an overlapping pattern were used to remove the impacted soils from four discrete areas within this area (see Figure 13A). Prior to removing the casings, End-Point samples were collected from the bottom of a representative number of steel casings (6). The analytical results associated with these samples are shown on Table 4-22 and on Figure 19 and indicate clean closure in this area of the Site.

A fourth deviation was created due to elevated levels of PCBs detected in sidewall samples collected from the east sidewall. Con Edison therefore directed excavation behind the lagging by hand to the north, south, and east of the east sidewall exceedences. End-point sample results were obtained from the north and south sidewalls of this hand excavation area at concentrations less than the PCB RSCO of <1.0 ppm. Samples collected from the east sidewall of this hand excavation area (basically

underneath the 58th Street sidewalk at the property line) contained PCBs at reported concentrations greater than 1.0 ppm (see Figure 15). Based on these analytical results, NYSDEC requested Con Edison to investigate and, as necessary, address this area under a separate action. This is further discussed in Section 4.12.

4.10 SITE MANAGEMENT PLAN

Because the remedial action at this Site removed soils equal to or greater than 1.0 ppm of total PCBs, a Site Management Plan (SMP), in the form of a Groundwater Management Plan (GMP), was developed and is presented in Appendix J. The plan was executed between July 2008 and April 2010. The implementation of this GMP is further discussed in Section 4.11.

4.11 TWO YEAR QUARTERLY GROUNDWATER MONITORING

Following successful completion of the on-site remedial activities, including the backfill operations discussed in Section 4.5, four post-excavation monitoring wells were drilled and constructed in July 2008 on-site. The wells, identified as MW-501 through MW-504, were installed, developed, and subsequently sampled in accordance with Jacques Whitford's Work Plan, dated October 8, 2008. A copy of this Work Plan is presented in Appendix A.

As discussed further in Section 4.12 below, three additional wells were installed in November 2009 along the 58th Street sidewalk adjacent to the Site to investigate soil and groundwater contamination in this off-site area. These wells, identified as MW-601 through MW-603, were installed, developed, and subsequently sampled in accordance with Stantec's Off-Site Investigation Work Plan for the 58th Street Sidewalk, dated May 21, 2009. A copy of this Work Plan is presented in Appendix A. Following their installation, these three off-site 600-series monitoring wells were incorporated into the overall quarterly groundwater sampling program.

4.11.1 Work Performed

Monitoring well gauging and water quality samples were collected from both onand off-site monitoring wells on a quarterly basis (eight quarters or two years), via lowflow purge and sample technique, from July 28, 2008 to April 27, 2010. Quarterly monitoring reports were subsequently submitted to the NYSDEC.

During each event, a round of water level measurements was collected immediately upon arrival at the Site. Water levels were measured in each of the fifteen monitoring wells (see Figure 4-23), which are located on-site (MW-501, MW-502, MW-503, and MW-504) and off-site (MW-301, MW-302, MW-303, MW-304, MW-305, MW-306, MW-401, MW-402, MW-601, MW-602, and MW-603) locations. The water level in each monitoring well was measured with a decontaminated Solinst[®] oil/water interface probe. The measurement data (depths to water and product, if present) from each monitoring event are presented in Table 4-32. Upon return to the office, the elevation of the groundwater in each monitoring well was used to generate a groundwater flow map with assumed groundwater flow direction. Several of these maps are included in this FER as Figures 5A, 5B, and 23. The maps were included as part of the Quarterly monitoring reports submitted to the NYSDEC.

Once water level measurements were completed as noted above, Stantec field personnel purged and collected a groundwater sample from each of the fifteen wells using low-flow groundwater sampling techniques. The groundwater in each monitoring well was purged via the low-flow method until field parameters stabilized, indicating that groundwater entering through the monitoring well screen was from the formation and not stagnant water from inside the monitoring well. The field parameters collected included flow rate, temperature, specific conductivity, pH, oxidation reduction potential, dissolved oxygen, and turbidity and were documented on Low Flow Sampling Data Sheets. The purged groundwater was containerized in DOT approved steel drums. The drums of purged groundwater were properly labeled as non-hazardous and transported by Con Edison personnel off-site for appropriate disposal.

Once the field parameters stabilized, a groundwater sample was collected from each location and placed into clean, pre-preserved sample containers. A duplicate sample was collected during each groundwater sampling event. Groundwater samples were packed in coolers with ice following collection to maintain the temperature of the samples at 4°C and submitted to Spectrum Analytical, Inc. (Spectrum) if Agawam, MA, a NYS certified laboratory under standard chain-of-custody procedures.

Spectrum analyzed the groundwater samples for polychlorinated biphenyls (PCBs) by United States Environmental Protection Agency (USEPA) Method 8082, volatile organic compounds (VOCs) by USEPA Method 8260B, semi-volatile organic compounds (SVOCs) by USEPA Method 8270C, and total petroleum hydrocarbon (TPH) by USEPA Method 8100 Modified.

The following discussion and referenced figures and tables will present in summary format the results of the two year post-excavation groundwater monitoring period. The data presented and discussed herein had been previously included in the quarterly monitoring reports submitted to the NYSDEC.

4.11.2 Free-Phase Product

Product was detected in monitoring well MW-301 on July 21, 2008 at a thickness of 0.05 feet (approximately one-half inch). A skimmer was placed in MW-301 and was still in-place during the scheduled groundwater sampling/gauging event on July 28, 2008. No product was reported on the water table in monitoring well MW-301 during that event. The skimmer was removed and its contents were properly disposed on July 28, 2008. Since then, product has not been measured in this monitoring well.

During the February 2010 gauging event, free-phase product was detected in MW-602 at a thickness of 0.02 feet (approximately one-quarter inch). The product was analyzed for PCB content and the sample contained 18,600 ug/kg (ppb) of PCB Arochlor 1260. An absorbent sock was inserted in the monitoring well at the completion of the February 2010 groundwater sampling event. This sock was not removed prior to the April 2010 sampling event, perhaps biasing the April 2010 observation of no product.

4.11.3 Well Gauging

Water levels have been monitored quarterly since the completion of the on-site remediation activities in July 2008. Figure 23 illustrates the April 2010 Site groundwater elevations at each monitoring well and the assumed groundwater flow direction. As shown, groundwater flow at the Site primarily flows from MW-402 toward MW-503 and likely continues toward the northeast, toward Maspeth Creek.

Table 4-32 lists the historical groundwater levels and product thicknesses, if present, during the two-year post-remediation groundwater monitoring. As the table shows, there is some seasonal variability in water level in each monitoring well. Also there is a difference in groundwater elevations between the up-gradient monitoring wells (MW-401 and MW-402), the wells located on the 58th Street sidewalk, and the down gradient (on-site) wells, which are all less than 100 feet apart. MW-402 is the furthest up-gradient monitoring well and has exhibited groundwater elevations much higher than the on-site wells throughout its monitoring history. The water table gradient between MW-402 and the on-site wells is approximately 0.115 feet per foot.

4.11.4 Groundwater Quality

Reported analytical groundwater results for the analyzed constituents from the two years of quarterly groundwater sampling are presented in Tables 4-33 through 4-36 for each of the fifteen monitoring wells. These results were compared to NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards and guidance values and are discussed below.

The groundwater quality within the remediated area (on-site) has exhibited minor impacts over the two-year post-excavation monitoring period as measured in the 500series monitoring wells. PCBs were detected in the groundwater at MW-501 on four occasions during this two-year period at concentrations exceeding its TOGS groundwater standard. VOCs were detected in groundwater at MW-501 (1,4-dichlorobenzene) and MW-503 (chloroform) exceeding their respective TOGS groundwater standards. Numerous SVOCs were detected at all of the on-site monitoring wells during the first groundwater sampling episode (July 2008) but only one SVOC (bis(2-

ethylhexyl)phthalate) continued to appear in the on-site groundwater at two monitoring wells (MW-502 and MW-504) at levels exceeding its respective TOGS groundwater standard.

The groundwater impacts to off-site wells were generally consistent with the onsite impacts, but at higher frequency and levels. PCBs were detected above the TOGS groundwater standard on multiple occasions in the five monitoring wells located beneath the 58th Street sidewalk just east of the remediated area. Two VOCs (chloroform and 1,4dichlorobenzene) were detected above their respective TOGS groundwater standards at four off-site monitoring wells. Two SVOCs (bis(2-ethylhexyl)phthalate and 1,4dichlorobenzene) were detected above their respective TOGS groundwater standard at three monitoring wells (July 2008 episode exempted).

The following sections discuss the two-year post-excavation monitoring in more detail.

4.11.4.1 PCBs in Groundwater

Table 4-33 presents the concentrations of PCBs in groundwater over the two years of post-excavation groundwater monitoring (July 2008 to April 2010). PCBs have not been detected in the groundwater from samples collected from on-site monitoring wells MW-502, MW-503, and MW-504 or from off-site monitoring wells MW-303, MW-304, MW-305, MW-306, and MW-401. The PCB concentrations in groundwater have been relatively consistent over the past two years in one on-site well (MW-501) and five off-site wells (MW-301, MW-302, MW-601, MW-602, and MW-603). The highest reported value of PCBs in groundwater was 8.03 ug/L at MW-301 in July 2009. Other elevated PCB values detected in groundwater include 3.87 ug/L at MW-302 (October 2009) and 4.34 ug/L at MW-402 (January 2009). The PCB concentration in MW-402 was the only detection of PCBs in the groundwater sampled from this monitoring well and is considered by Stantec to be a sampling or analytical error.

PCB concentrations have varied from monitoring well to monitoring well and over time without any pattern. MW-501 is the only on-site monitoring well where PCBs

have been detected in groundwater. PCBs were detected in six of the eight groundwater samples collected from this monitoring well during the two-year post-excavation period. Measured concentrations ranged from 0.0667 ug/L in May 2009 to 0.203 ug/L in July 2009. Since July 2009, the concentrations of PCBs in the groundwater collected from MW-501 have been decreasing; the concentration of PCBs in groundwater in April 2010 was below the TOGS standard of 0.09 ug/L.

4.11.4.2 VOCs in Groundwater

Table 4-34 presents the concentrations of VOCs in groundwater over the two years of post-excavation monitoring (July 2008 to April 2010). During the two years of post-excavation quarterly groundwater monitoring at the Site, sixteen separate VOCs have been detected in groundwater from samples collected from the fifteen monitoring wells. Of those sixteen compounds, only two VOCs (1,4-dichlorobenzene and chloroform) were detected at levels exceeding their respective TOGS groundwater standards and guidance values.

1,4-Dichlorobenzene was detected in one on-site well (MW-501) and four off-site wells (MW-302, MW-601, MW-602, and MW-603) at concentrations that exceeded its TOGS groundwater standard of 3 ug/L. As with the PCB concentrations in groundwater, there does not appear to be a clear trend in the concentrations of this compound in groundwater. The possible exception is MW-501, where the concentrations have been declining for the past seven groundwater sampling events; MW-601, where the concentrations have been declining (2 events) since its initial groundwater sampling event in December 2009; and MW-603, where the concentrations have been declining (2 events) since its initial groundwater sampling event in December 2009. In addition, there appears to be some degree of seasonality in the 1,4-dichlorobenzene concentrations in MW-302.

PCBs have not been detected in the groundwater from samples collected from onsite monitoring wells MW-502, MW-503, and MW-504

Chloroform has not been detected above its TOGS groundwater standard of 7 ug/L in three on-site monitoring wells or ten off-site monitoring wells. Chloroform has only been detected above its TOGs groundwater standard in one on-site monitoring well (MW-503) and one off-site monitoring well (MW-306). Chloroform was detected in the groundwater collected from monitoring well MW-503 only once at 10.7 ug/L in January 2009. This was the only detection of chloroform in this monitoring well over the two-year post-excavation monitoring period. Chloroform was also detected in the groundwater at MW-306, located in the sidewalk along Rust Street, primarily side-gradient to the Site, at levels ranging from 1.0 to 17.2 ug/L. The detection of chloroform in groundwater. Stantec field personnel reported that due to a leaking hydrant, a significant amount of chlorinated water may have been introduced into the subsurface during the use of the hydrant (located near MW-306) during the remediation activities. This historic and possible continuing leakage may be the cause of these elevated levels of chloroform in this monitoring well.

4.11.4.3 SVOCs in Groundwater

Table 4-35 presents the concentrations of SVOCs in groundwater over the two years of post-excavation monitoring (July 2008 to April 2010). During the two-year period, seven SVOCs have been detected at concentrations in excess of their respective TOGS groundwater standard. Five of the SVOCs reported to exceed the TOGS groundwater standards (benzo(a)anthracene, benzo(b)flouranthene, benzo(k)flouranthene, chrysene, and ideno(1,2,3-cd)pyrene) were only detected in three on-site monitoring wells (MW-501, MW-502, and MS-503) during the first groundwater sampling event only (in July 2008) and have not been detected in any other monitoring wells during the following seven groundwater sampling events. Based on this lack of confirmation, these analytes are not discussed further. The remaining two SVOCs (1,4-dichlorobenzene and bis(2-ethylhexyl)phthalate) were detected in the groundwater at several monitoring wells over several sampling events.

Because of its characteristics, 1,4-Dichlorobenzene appears on both the VOC list for USEPA Method 8260B as well as the SVOC list for USEPA Method 8270C. As an SVOC, 1,4-dichlorobenzene was reported above its TOGS standard of 3 ug/L at only two off-site monitoring wells (MW-302 and MW-602). At MW-302, 1,4-dichlorobenzene was detected at concentrations that exceeded its TOGS groundwater standard during six events over the past two-year period at levels ranging from 3.20 to 9.45 ug/L. There does not appear to be a trend up or down in the concentration of 1,4-dichlorobenzene in this monitoring well but there does appear to be seasonality with lower values occurring during high groundwater elevation in the spring. MW-602 reported the highest concentrations of 1,4-dichlorobenzene (14.1 and 16.3 ug/L), however; with only two samples (SVOCs were not analyzed at the 600-series wells in December 2009) for this analyte, no trend could be determined.

Bis(2-ethylhexyl)phthalate was detected in two on-site monitoring wells (MW-502 and MW-504) and three off-site monitoring wells (MW-301, MW-302, and MW-304). In four monitoring wells (MW-301, MW-304, MW-502, and MW-504), bis(2ethylhexyl)phthalate was detected at a concentration exceeding its TOGS groundwater standard of 5 ug/L in only one groundwater sampling event over the two-year monitoring period. The most occurrences and exceedences of bis(2-ethylhexyl)phthalate were reported at off-site well MW-302, at levels ranging from 6.70 to 53.5 ug/L. Although no trend up or down could be ascertained from the analytical data, the concentrations appeared to exhibit a seasonality in the same manner as the 1,4-dichlorobenzene – significantly lower values during periods of higher groundwater elevations.

4.11.4.4 TPH in Groundwater

Table 4-36 presents the concentrations of TPH in groundwater over the two years of post-excavation monitoring (July 2008 to April 2010). As noted previously in this report, the NYSDEC has not set a TOGS groundwater standard for the concentration of TPH. The concentrations of TPH at the Site over the past two years, as monitored in the fifteen monitoring wells, have ranged from zero to 60 mg/L. The TPH concentrations, as observed at the various monitoring wells, can be broken into three groups:

- Ten monitoring wells (numerically) from MW-303 to MW-504 have little or no TPH impact. The TPH concentrations in groundwater collected from these monitoring wells ranged from zero to 5.8 mg/L.
- The three 600-series monitoring wells show minor TPH impacts with concentrations ranging from 5.3 to 16.6 mg/L.
- The only monitoring wells with moderate impact are monitoring wells MW-301 and MW-302 where the TPH concentration ranged from 3.4 to 60.1 mg/L (MW-301) and from 11.2 to 45.4 mg/L (MW-302).

4.12 OFF-SITE REMEDIAL INVESTIGATION

As discussed previously, end-point soil samples, located approximately two feet behind the East sidewall lagging at the approximate Site property boundary under the 58th Street Sidewalk, were collected during the on-site remedial activities. These off-site soil samples had total PCBs which were detected above the RSCO of 1.0 ppm. Based on these results, Stantec conducted a remedial investigation of the 58th Street Sidewalk area. The work was conducted in accordance with Stantec's Off-Site Investigation Work Plan for the 58th Street Sidewalk, dated May 21, 2009. A copy of this work plan is presented in Appendix A. Results of this investigation were subsequently submitted to NYSDEC in Stantec's report Remedial Investigation Report, 58th Street Sidewalk, Maspeth, Queens, NY, dated April 2010. A copy of the RIR is also presented in Appendix A. A brief summary of the work performed and results are presented below.

4.12.1 Work Performed

Three soil borings were drilled between November 18 and 23, 2009 at locations along the 58th Street sidewalk. The locations of the new monitoring wells are shown on Figure 4-23. The drilling locations were hand-excavated to seven feet bgs and selected soil horizons were sampled. A drill rig was mobilized to the Site and soil samples were collected continuously from 7 ft bgs to refusal depths at two foot intervals using split-spoon samplers and characterized for lithlogy, grain size, color, moisture content, and

evidence of impacts by Stantec personnel. The two-foot split-spoon samples were then composited and submitted to Spectrum Analytical, Inc. (Spectrum) for analysis of PCBs via USEPA Method 8082 and TPH via USEPA Method 8100.

Following advancement of the soil borings, monitoring wells, identified as MW-601 to MW-603, were then constructed; one in each soil boring. The monitoring wells were constructed such that the well screen, which ranged from 10 to 15 feet in length, straddled the observed water table. The water table was encountered in the three boreholes during drilling activities at depths ranging from 16 to 18 ft bgs.

Following installation, the monitoring wells were developed utilizing low-flow development techniques. Throughout the development process, parameters including pH, oxidation-reduction potential (ORP), specific conductivity (SC), temperature, dissolved oxygen (DO), and turbidity parameters were recorded. Although measurable free product was not observed in the newly-installed monitoring wells, a sheen was observed on the purge water associated with monitoring well MW-601. The purge water was temporarily stored within the former Substation parking lot area in 30-gallon drums, properly labeled, and transported by Con Edison personnel for appropriate off-site disposal.

The monitoring wells were gauged and water quality samples subsequently collected in December 2009 and February 2010. During the December 2009 event, groundwater samples were only collected from MW-601, MW-602, and MW-603. During the February 2010 event, groundwater samples were collected from these three monitoring wells along with all other on-site and off-site monitoring wells as part of the February 2010 post-excavation quarterly groundwater sampling event.

Groundwater samples were collected via low-flow purge and sample technique. Purge water was contained in DOT-approved steel drums, properly labeled as nonhazardous and transported by Con Edison personnel off-site for appropriate disposal. The groundwater samples were packed in coolers with ice to maintain the temperature of the samples at 4°C and submitted to Spectrum Analytical, Inc. (Spectrum) if Agawam, MA, a NYS certified laboratory under standard chain-of-custody procedures.

Spectrum analyzed the December 2009 groundwater samples for polychlorinated biphenyls (PCBs) by United States Environmental Protection Agency (USEPA) Method 8082 and volatile organic compounds (VOCs) by USEPA Method 8260B. The February 2010 samples were analyzed by Spectrum for PCBs (8082), VOCs (8260B), semi-volatile organic compounds (SVOCs) by USEPA Method 8270C, and total petroleum hydrocarbon (TPH) by USEPA Method 8100 Modified.

4.12.2 Soil Quality

Reported analytical soil results for samples collected from soil borings MW-601 through MW-603 were compared to NYSDEC RSCOs. No PCBs were detected above laboratory reporting limits in the samples collected from soil boring MW-601 or from depths greater than 16 feet bgs in soil boring MW-602. PCBs were detected above laboratory reporting limits in samples collected from zero to 16 feet in MW-602 at levels ranging from 0.111 to 0.181 ppm and in each of the soil samples collected from soil boring MW-603 at levels ranging from 0.043 to 0.1396 ppm.

No soil samples collected from the 600-series monitoring wells contained PCB concentrations reported at levels that exceeded the subsurface soil RSCO of 10 ppm.

4.12.3 Groundwater Quality

Reported analytical groundwater results for the analyzed constituents at the offsite monitoring wells were compared to NYSDEC TOGS groundwater standards and guidance values.

PCBs were reported at levels above the TOGS PCB standard/guidance value of $0.09 \ \mu$ g/L (or ppb) during both the December 2009 and February 2010 groundwater sampling events. In December 2009, PCBs were reported at 0.751 ppb in MW-601, and 0.120 J ppb in MW-603. In February 2010, PCBs were reported at levels ranging from 0.128 J to 8.03 ppb in MW-301, from 0.138 J to 3.87 ppb in MW-302, from 0.751 to 0.975 ppb in MW-601, at 0.655 ppb in MW-602, and from 0.0967 J to 0.120 J in MW-603.

Similar to other groundwater sampling events, only one VOC (1,4dichlorobenzene) was detected at a concentration exceeding its groundwater standard (3 μ g/L) in monitoring wells MW-302, MW-602, and MW-603. This VOC was reported at concentrations ranging from 5.5 to 16.2 ppb in MW-302, at 3.8 ppb in MW-601 (December 2009 only), from 24.0 to 26.1 ppb in MW-602, and from 4.4 to 5.3 ppb in MW-603 in December 2009 and February 2010, respectively.

Results of SVOCs were also similar to previous sampling events in that only two SVOCs were reported at concentrations above TOGS groundwater standards/guidance values. Bis(2-ethylhexyl)phthalate was reported above its TOGS groundwater standard of 5 ppb at MW-301 (5.31 J ppb) and at MW-302 (from 6.70 to 53.5 ppb). 1,4-dichlorobenzene was reported above its TOGS groundwater standard of 3 ppb at MW-302 (from 3.20 J to 9.45 ppb) and at MW-602 (16.3 ppb).

4.12.4 Nature and Extent of Contamination

The presence of free-phase product containing various concentrations of PCBs on the water table underlying the 58th Street Sidewalk was confirmed and delineated during the investigation activities described herein. Free-phase product has been observed historically in off-site monitoring wells, primarily in MW-301 and MW-302 (at levels ranging from a sheen to 0.4 feet) and most recently in MW-602 (0.02 feet in February 2010). The subsurface impacts beneath the sidewalk are associated with residual PCB-containing free-phase product located at the water table (approximately 15 to 16 ft bgs). However, the free-phase product appears to be limited in extent and primarily contained beneath the sidewalk.

4.12.5 Recommendations

Based on the off-site remedial investigation findings generated beneath the 58th Street sidewalk and recommendations provided by the NYSDEC in a letter dated August 23, 2010 (see Appendix C), Stantec recommends the following: The off-site monitoring wells should be monitored on a monthly basis for the presence or absence of LNAPL. If LNAPL is present, it shall be removed from the monitoring well(s) and an absorbent sock or skimmer installed in the monitoring well(s).

The off-site monitoring wells should be sampled on a quarterly basis for total and dissolved PCBs, VOCs, and SVOCs. This monitoring plan, including monthly gauging and LNAPL removal and quarterly sampling, was approved by the NYSDEC in a letter dated August 23, 2010 and was commenced in November 2010. The gauging/sampling is currently scheduled to continue through August 2012. However, this program will not be terminated without written approval of the NYSDEC.

TABLES

TABLE 1-1 Well Construction Details Former Maspeth Substation

		Ele	vations							
	Date of	Ground	Top of	Total	Well	Scree	ned Interval	Screened	Interva	l Elevation
Well No.	Installation	Surface	PVC	Depth	Dia.	(ft bls)	(ft bls)	(ft AD)		(ft AD)
		(ft AD)	(ft AD)	(ft bls)	(in)	Bot	Тор	Bot		` Тор´
MW-101	12/5/1996	99.9	99.77	32	2	26	- 6	73.9	-	93.9
MŴ-102	12/5/1996	99.8	99.56	32	2	26	- 6	73.8	-	93.8
MW-103	12/6/1996	99.8	99.49	32	2	18	- 6	81.8	_	93.8
MW-103A	6/6/2001	99.8	99.46	24	4	23.7	- 8.7	76.1	-	91.1
MW-201	3/30/1999	99.9	99.67	24	2	24	- 9	75.9	-	90.9
IMVV-201A	10/16/2003	99.9	99.68	24	6	24	- 9	75.9	-	90.9
MW-202	3/31/1999	99.6	99.24	24	2	24	- 4	75.6		95.6
MW-203	4/2/1999	99.8	99.71	24	2	24	- 4	75.8	-	95.8
MW-203A	10/17/2003	99.8	99.84	24	6	24	- 4	75.8	-	95.8
MVV-301	1/8/2001	99.8	99.50	23	2	23	- 13	76.8	-	86.8
MVV-302	9/14/2000	.99.3	99.15	25	2	24.5	- 9.5	74.8	-	89.8
MVV-303	9/15/2000	99.7	99.52	25	2	25	- 10	74.7	-	89.7
MVV-304	9/18/2000	99.7	98.55	25	2	25	- 10	74.7	-	89.7
MVV-305	9/19/2000	97.3	97.19	25	2	25	- 10	72.3	-	87.3
MVV-306	1/15/2001	97.5	97.30	25	2	25	- 10	72.5	-	87.5
MVV-307	1/11/2001	99.7	99.63	25	2	25	- 12	74.7	· -	87.7
MVV401	1/12/2001	99.4	99.23	25	2	25	- 10	74.4	-	89.4
MW-402	1/12/2001	98.6	98.44	25	2	25	- 10	73.6	-	88.6
MW-403	1/11/2001	99.8	99.68	25	4	24	- 14	75.8	-	85.8
IVV-1	10/22/2003	99.9	99.78	25	6	24	19	75.9	-	80.9

NOTES

AD = Assumed Datum: Paint spot on facility assumed to be an arbitrary 100.00 foot.

ft bls = feet below land surface

in = inches

ft ≈ feet

Table 1-2 RI Soil Sample Results: PCBs Former Maspeth Substation

									S	ample [Depth (f	t below	ground	d surfac	e)								
Location	0-2	1-3	3-5	5-7	6-8	7-9	8-10	9-11	10-12	11-13	12-14	13-14	13-15	14-16	15-17	16-18	17-19	18-20	19-21	20-22	21-23	22-24	23-25
SB-1		8.49*			ND*					0.433					2.68					<u> </u>			
SB-2										1.52					1.9								
SB-3		5.12*	-			1		0.224					0.044										
SB-4		0.137*			0.466*						2.08			10.2	_	-				<u> </u>			
SB-5		·	9.37				0.709*					-					0 442						
SB-6		2.78*	~					0.977							0.072		0.1.12			<u> </u>			
SB-7 (MW-202)		2.69*					0.919*							-	0.0.2	0 456				0.059			
SB-8		ND*			·					0.205					1.37					0.000			
SB-9		ND*				0.513							0.967							<u> </u>			
SB-10		1.7*		0.266								-			0 141							-	
SB-11		ND*				0.171						1	ND								- A		
SB-12	1	0.275*						ND					ND										
SB-13 (MW-201)		ND*	-			ND		ND				†		-	ND					<u> </u>	ND		
SB-14		ND*		0.014		ND														h			
SB-15		ND*		1	0.102*							1		ND*									
SB-16		ND*						0.171				<u> </u>					ND					<u> </u>	
SB-17		ND*			ND				ND														
SB-18		0.0657*			ND				0.096						·					<u> </u>			
SB-19 (MW-203)	1	ND*					0.024							ND								0.352	
SB-20		ND*		0.045												-	ND					0.002	
SB-21 (MW-403)	0.239									0.202		1			0.345								
SB-22		0.0469*								0.024					0.200							-	
SB-23				0.048													ND						
SB-24		ND*				0.118*				<u> </u>				0.373*				•					
SB-25		ND*				0.0899		-						ND*									
SB-26		ND*				ND*								ND*									
SB-27		ND*				ND*						-		ND*									
SB-28		1.72*					0.335*					1		ND*									
SB-29		0.122*				· ·	ND*							ND*									
MW-301		1						0.653							1.35								
MW-302												0.414					0.087						
MW-303						1							ND							-			ND
MW-304				1	<u> </u>			-					ND						ND				
MW-305										ND								ND		<u> </u>			
MW-306				1											0.075								-
MW-401				1	1	ND		ND						<u> </u>									
MW-402								ND				1			ND					<u> </u>			
Notes:	•	•.								.		1	L	L						L .		1	

Values in Bold denote exceedence of NYSDEC TAGM RSCO Recommended Cleanup Objective of 1 ppm for soils

All results reported in ppm; all samples analyzed for PCBs according to Method 8081 or 8082.

* denotes collected during Pre-Characterization Study in August 2004. All other samples collected in 1999 and 2000.

ND denotes not detected above laboratory reporting limit.

RI Soil Sample Results: VOCs Former Maspeth Substation

Sample Loca	tion	SB-1	SB-1	SB-2	SB-2	SB-2A	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5	SB-6	SB-6
Sample Depth (ft bel	ow ground)	11 - 13	15-17	11 - 13	15 - 17	15-17	9 - 11	13 - 15	12-14	14-16	3 - 5	17 - 19	9 - 11	15-17
VOCs (Method 8260)	Regulatory Limit													
Analyte	(ppm)													
acetone	0.2 1	3.56 E	8.96	6.08	15	0.0088	4.86	3.51	0.079		0.274 B	0.0348 B	0.297 E	0.194 B
benzene	0.06 1													0112
bromomethane	NS											0.0023 B		0.0013 B
2-butanone	0.3 1										0.0321		0.0164	
n-Butylbenzene	NS	0.0029	0.0015						0.0033	0.144	0.0142	0.0013	0.0051	
sec-butylbenzene	NS	0.0022	0.0012						0.0031	0.0124	0.0024	0.0019	0.0015	
tert butylbenzene	NS												0.0013	
carbon disulfide	2.7 1										0.0194		0.0017	
chlorobenzene	1.7 1									0.0173	0.0173			
chloromethane	NS													
1,2 dichlorobenzene	7.9 ¹	0.0012							0.0018	0.723	0.0077	0.0026	0.0023	
1,3 dichlorobenzene	1.6 ¹	0.0069	0.0032						0.0045	0.128	0.0323	0.0063	0.0109	0.0015
1,4 dichlorobenzene	8.5 ¹	0.0209	0.0102		0.0019				0.0402	0.862	0.134	0.0658	0.0774	0.0113
p-diethylbenzene	NS		0.0032						0.0052	0.26				
ethylbenzene	5.5 ¹										0.0018			
p-ethyltoluene	NS	0.0071	0.0027						0.0054	0.0308	0.015	0.0066	0.0034	
2-hexanone	NS										0.0241			
Isopropylbenzene	NS								0.00099	0.0061		0.0011		0.0011
4-Isopropyltolune	NS	0.0029	0.0019						0.0031	0.012	0.0603	0.0023	0.0014	
methylene chloride	0.1 1	0.0039 B	0.0037 B	0.0053 B	0.0056 B		0.0136 B	0.0135 B	0.0057		0.0158	0.0079	0.0093	0.0051
4-methyl-2-pentanone	1.0 ¹													
methyl t-butyl ether	NS	0.0029 B	0.0030 B	0.0050 B	0.0067 B		0.0108 B	0.0105 B	2.00 B		0.0033 B	0.0035 B	0.0042 B	0.0028 B
napthalene	NS		0.0012						0.0016		0.0244			
n-propylybenzene	NS	0.0025	0.0014						0.0041	0.0172	0.0087	0.0045	0.0037	
tetrachloroethene	1.4 1			0.0106										
1,2,4,5 tetramethylbenzene	NS								0.0015		0.0088		0.0032	0.0015
toluene	1.5 ¹	0.0065	0.0033		0.0073				0.0047		0.0073	0.0068	0.0074	0.0013
1,2,4 trichlorobenzene	3.4 ¹	0.0126	0.0095	0.0019	0.0045				0.0081	0.0463	0.155	0.0077	0.0026	
1,1,2 trichloroethane	NS										0.0021	0.00097	0.0013	
1,2,4 tri-methyl benzene	NS	0.0059	0.0021						0.0081	0.0482	0.0219	0.0094	0.0068	
1,3,5 tri-methylbenzene	NS	0.0043	0.0014						0.0026	0.0174	0.0098	0.0023	0.0017	
m, p-xylene	1.2 2	0.0039	0.0018		0.0031				0.0027	0.0179	0.0081	0.0042	0.0042	
o-xylene	1.2 ²	0.0023	0.0012						0.0021	0.0153	0.0059	0.0027	0.0023	
Total VOCs	ļ	0.0770	0.0431	0.0125	0.0168		0.0000	0.0000	0.1024	1.3436	0.6284	0.1344	0.1639	0.0218
Average VOCs		0.0	060	0.0	015	I	0.0	00	0.	723	0.	381	0.	093

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; *Recommended Soil Cleanup Objectives* for total xylenes NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank
J: Estimated value below calibrated Method Detection Limit
E: Estimated above calibration limit
Total VOCs do not include values reported as present in blanks.

RI Soil Sample Results: VOCs Former Maspeth Substation

Sample Locat	tion	SB-7/MW-202	SB-7/MW-202	SB-8	SB-8A	SB-8	SB-9	SB-9	SB-10	SB-10	SB-11	SB-11	SB-12	SB-12
Sample Depth (ft bel	ow ground)	16-18	20 - 22	11 - 13	11 - 13	15-17	7-9	13 - 15	5 - 7	15-17	7-9	13-15	9-11	13-15
VOCs (Method 8260)	Regulatory Limit											10 10		15-15
Analyte	(ppm)													
acetone	0.2 1	3.4	0.53	140	0.214	4.4	2.5	3.2	3.2	3.4	1.5	1.5		
benzene	0.06 1													·
bromomethane	NS													
2-butanone	0.3 1													·
n-Butylbenzene	NS													
sec-butylbenzene	NS							0.020						
tert butylbenzene	NS	-									· · · · ·			
carbon disulfide	2.7 1													
chlorobenzene	1.7 1													
chloromethane	NS													
1,2 dichlorobenzene	7.9 ¹													-
1,3 dichlorobenzene	1.61													
1,4 dichlorobenzene	8.5 ¹					0.100		0.066	1					
p-diethylbenzene	NS					-								
ethylbenzene	5.5 ¹													
p-ethyltoluene	NS													
2-hexanone	NS													
Isopropylbenzene	NS										1			
4-Isopropyltolune	NS													
methylene chloride	0.1 1												1	1.8
4-methyl-2-pentanone	1.0 ¹													
methyl t-butyl ether	NS													
napthalene	NS										1		0.019	0.019
n-propylybenzene	NS								-					
tetrachloroethene	1.4 1													
1,2,4,5 tetramethylbenzene	NS													
toluene	1.5 ¹													
1,2,4 trichlorobenzene	3.4 1													
1,1,2 trichloroethane	NS												1	
1,2,4 tri-methyl benzene	NS							0.016			0.020			
1,3,5 tri-methylbenzene	NS													1
m, p-xylene	1.2 ²										1			
o-xylene	1.2 ²													
Total VOCs		0.0000	0.0000	0.000	0.000	0.100	0.000	0.082	0.000	0.000	0.020	0.000	0.019	0.019
Average VOCs		0.0	000		0.050		0.	041	0.	000	0.	010	0.	019

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; *Recommended Soil Cleanup Objectives* for total xylenes NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit E: Estimated above calibration limit Total VOCs do not include values reported as present in blanks.

RI Soil Sample Results: VOCs Former Maspeth Substation

Sample Loca	tion	SB-13/MW-201	SB-13/MW-201	SB-13/MW-201	SB-13	SB-14	SB-14	SB-16	SB-16	SB-17	SB-17	SB-18	SB-18
Sample Depth (ft bel	ow ground)	7-9	9 - 11	15-17	21 - 23	5 - 7	7 - 9	9 - 11	17 - 19	6-8	10-12	6-8	8 - 10
VOCs (Method 8260)	Regulatory Limit												
Analyte	(ppm)			-									
acetone	0.2 1	0.222 B	0.414 B	1.71 E	2.72 E	5.02	8.6	3.41	7.16 E	0.0214 B			0.0182 B
benzene	0.06 1												0.0102.2
bromomethane	NS	0.0116 B	0.0136 B							0.0019 B		0.0015 B	0.0016 B
2-butanone	0.3 1												0.0010 D
n-Butylbenzene	NS									0.0017		0.0013	
sec-butylbenzene	NS												
tert butylbenzene	NS							0.0048		0.0014			
carbon disulfide	2.7 1												
chlorobenzene	1.7 1												
chloromethane	NS	0.0066 B								0.0012 B			
1,2 dichlorobenzene	7.9 ¹												
1,3 dichlorobenzene	1.6 ¹												
1,4 dichlorobenzene	8.5 ¹		0.0087					0.005	0.0174	0.0014	0.0043		
p-diethylbenzene	NS							0.0047					
ethylbenzene	5.5 ¹												
p-ethyltoluene	NS		0.0124	0.009			0.0045	0.0046	0.0095	0.0013	0.0046	0.0011	
2-hexanone	NS												
Isopropylbenzene	NS		. –							0.0014		0.0012	
4-Isopropyltolune	NS		0.0061					0.0075					
methylene chloride	0.1 1	0.0241	0.0321	0.0345	0.0195 B	0.0535 B	0.0123 B	0.169 B		0.0047	0.0027 B	0.0063	0.004
4-methyl-2-pentanone	1.01												
methyl t-butyl ether	NS	0.0053 B	0.0091 B		0.013 B	0.0127 B	.0.0112 B	0.0087 B		0.0027 B	0.0056 B	0.0023 B	0.0044 B
napthalene	NS	0.0072	0.0184				0.0076						
n-propylybenzene	NS		0.0087							0.0016			
tetrachloroethene	1.41												
1,2,4,5 tetramethylbenzene	NS		0.0202							0.0013		0.0029	
toluene	1.51		0.0094	0.0201			0.0059	0.0115	0.0126 B	0.0038	0.0036		
1,2,4 trichlorobenzene	3.4 ¹		0.0058					0.0133	0.0057		0.0026		
1,1,2 trichloroethane	NS												
1,2,4 tri-methyl benzene	NS		0.0207	0.0126			0.0065		0.0107	0.0013	0.0042		
1,3,5 tri-methylbenzene	NS		0.0065								0.002		
m, p-xylene	1.2 2		0.0097	0.012			0.0047	0.051	0.0091	0.0018	0.0068		0.0012
o-xylene	1.2 2		0.0054	0.0053						0.0011	0.0029		
Total VOCs		0.031	0.164	0.094	0.000	0.000	0.029	0.098	0.052	0.020	0.031	0.012	0.005
Average VOCs			0.0)96		0.0	015	0.0	075	0.0	25	0.0	008

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; *Recommended Soil Cleamp Objectives* for total xylenes NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank
J: Estimated value below calibrated Method Detection Limit
E: Estimated above calibration limit
Total VOCs do not include values reported as present in blanks.

RI Soil Sample Results: VOCs Former Maspeth Substation

Sample Loca	tion	SB-19/MW-203	SB-19/MW-203	SB-19/MW-203	SB-20	SB-20	SB-21/MW-403	SB-21/MW-403	SB-21/MW-403	SB-22	SB-22	SB-23	SB-23
Sample Depth (ft bel	ow ground)	8 - 10	14-16	22 - 24	5 - 7	17 - 19	0 - 2	11 - 13	15-17	11 - 13	15 - 17	5-7	17 - 19
VOCs (Method 8260)	Regulatory Limit											, , , , , , , , , , , , , , , , , , ,	1, 12
Analyte	(ppm)												
acetone	0.21	0.457 B	0.210 B	1.81	0.101		0.0311	0.0894	0.0273	0.0543	0.0553	0.1950 B	0.0321
benzene	0.06 1										0.0011		
bromomethane	NS												
2-butanone	0.3 1												
n-Butylbenzene	NS	0.0014		0.0169									
sec-butylbenzene	NS	0.0016		0.0075									
tert butylbenzene	NS												
carbon disulfide	2.7 ¹											0.0078	
chlorobenzene	1.7 1			0.0118									
chloromethane	NS												
1,2 dichlorobenzene	7.9 ¹			0.0196									
1,3 dichlorobenzene	1.6 ¹			0.0373									
1,4 dichlorobenzene	8.5 ¹	0.0055	0.0014	0.48									
p-diethylbenzene	NS			0.0459									
ethylbenzene	5.5 ¹				0.0020						0.0321		
p-ethyltoluene	NS		0.0011										
2-hexanone	NS												
Isopropylbenzene	NS												
4-Isopropyltolune	NS												
methylene chloride	0.1 1	0.0066 B	0.0055 B	0.0301 B	0.0042 B	0.0040 B	0.0053 B		0.0042 B	0.0038 B	0.0052 B		0.0049 B
4-methyl-2-pentanone	1.0 1											0.0069	
methyl t-butyl ether	NS	0.0028 B	0.0043 B	0.0121 B									
napthalene	NS												
n-propylybenzene	NS	0.00099		0.0055									
tetrachloroethene	1.4 ¹												
1,2,4,5 tetramethylbenzene	NS	0.0022		0.0335									
toluene	1.5 ¹	0.00094	0.0013	0.0049	0.0028		0.0015	0.0028	0.0015	0.0011	0.0332	0.0031	0.0044
1,2,4 trichlorobenzene	3.4 ¹	0.0022		0.0243									
1,1,2 trichloroethane	NS												
1,2,4 tri-methyl benzene	NS		0.0015	0.0051									
1,3,5 tri-methylbenzene	NS												
m, p-xylene	1.2 ²		0.0011		0.0072		0.0021	0.0029	0.0017	0.0023	0.137	0.0074	0.0014
o-xylene	1.2 ²			0.0054	0.0034				0.0011	0.0014	0.0569	0.0031	
Total VOCs		0.012	0.006	0.673	0.1164	0.0000	0.0347	0.0951	0.0316	0.0591	0.3156	0.0283	0.0379
Average VOCs			0.346		0.0)58		0.054		0.1	187	0.0)33

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; *Recommended Soil Cleanup Objectives* for total xylenes NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit E: Estimated above calibration limit Total VOCs do not include values reported as present in blanks.

RI Soil Sample Results: VOCs Former Maspeth Substation

Sample Loca	tion	MW-301	MW-301	MW-302	MW-302	MW-303	MW-303	MW-3 04	MW-304	MW-305	MW-305	MW-306	MW-401	MW-401	MW-402	MW-402
Sample Depth (ft bel	ow ground)	9 - 11	15 - 17	13 - 14	17 - 19	13 - 15	23 - 25	13 - 15	19-21	11 - 13	18 - 20	15 - 17	7-9	9 - 11	9 - 11	15-17
VOCs (Method 8260)	Regulatory Limit								1						2 11	13-17
Analyte	(ppm)															
acetone	0.2 1	0.0994	0.0312	0.0404	0.0182											
benzene	0.06 1								0.0196							
bromomethane	NS									1						
2-butanone	0.3 1															
n-Butylbenzene	NS															
sec-butylbenzene	NS										_	·				
tert butylbenzene	NS															
carbon disulfide	2.7 1			0.0015												
chlorobenzene	1.7 1															
chloromethane	NS															
1,2 dichlorobenzene	7.9 ¹		,												······································	
1,3 dichlorobenzene	1.6 ¹															
1,4 dichlorobenzene	8.5 ¹															
p-diethylbenzene	NS								1							
ethylbenzene	5.5 ¹			0.0043												······
p-ethyltoluene	NS															
2-hexanone	NS			-												
Isopropylbenzene	NS							-								
4-Isopropyltolune	NS											1				
methylene chloride	0.1 1	0.0057	0.0056	0.0060												
4-methyl-2-pentanone	1.0 ¹															
methyl t-butyl ether	NS															
napthalene	NS															
n-propylybenzene	NS															
tetrachloroethene	1.4 ¹									0.0031						
1,2,4,5 tetramethylbenzene	NS															
toluene	1.5 ¹								0.0012						0.0014	
1,2,4 trichlorobenzene	3.4 ¹															
1,1,2 trichloroethane	NS												0.0018			
1,2,4 tri-methyl benzene	NS															
1,3,5 tri-methylbenzene	NS															
m, p-xylene	1.2 ²			0.0166									0.0036		0.0107	
o-xylene	1.2 ²		0.0026	0.0107									0.0026		0.0041	
Total VOCs		0.1051	0.0394	0.0898	0.0182	0.0000	0.0000	0.0000	0.0208	0.0031	0.0000	0.0000	0.0080	0.0000	0.0162	0.0000
Average VOCs	I	.0.	072	0.0	054	0.0	000	0.0	010	0.0	002	0.000	0.0	004	0.0	008

Notes:

All results reported in parts per million (ppm) ¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

B: Detected in method blank

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; *Recommended Soil Cleanup Objectives* for total xylenes NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

J: Estimated value below calibrated Method Detection Limit E: Estimated above calibration limit Total VOCs do not include values reported as present in blanks.

RI Soil Sample Results: SVOCs Former Maspeth Substation

Sample Loca	tion	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5	SB-6	SB-6
Sample Depth (ft bel	ow ground)	11 - 13	15 - 17	11 - 13	15 - 17	9 - 11	13 - 15	12 - 14	14 - 16	3 - 5	17 - 19	9 - 11	15 - 17
SVOCs (Method 8270)	Regulatory Limit												
Analyte	(ppm)					1							
Acenapthene	50 ¹												
Anthracene	50 ¹												
Benzo (a) anthracene	0.224 1						0.0574 J						
Benzo(a) pyrene	0.061 1						0.0476 J						
Benzo(b) fluoranthene	1.1 1						0.059 J						· · · · · · · · · · · · · · · · · · ·
Benzo(g,h,i) perylene	50 ¹												
Benzo(k) fluoranthene	1.1 1												
bis(2-Ethylhexyl)phthalate	50 ¹					0.070 B	0.117 B				0.0377 JB	3.73 B	0.257 B
Butylbenzylphthalate	50 ¹												
Chrysene	0.4 1						0.0642 J				· · · · · · · · · · · · · · · · · · ·		
Dibenz(a,h)anthracene	0.014 1												
1,3 dichlorobenzene	NS												
1,4 dichlorobenzene	NS							0.0433	0.544	0.459		0.079	
Diethylphthalate	7.1 ¹												
Dimethyl phthalate	2 ¹										0.038 J		
Di-n-butylphthalate	8.1 ¹												
Di-n-octylphthalate	50 ¹	_											
Fluoranthene	50 ¹						0.144						
Flourene	50 ¹										0.05		
Indeno(1,2,3-cd) pyrene	3.2 ¹												
2-Methyl naphthalene	36.4 1									0.113 J			
3,4 Methylphenol	NS									0.0499 J			
Naphthalene	13 1									0.0629 J			
Phenanthrene	50 ¹						0.0661			2.2			
Pyrene	50 ¹						0.0915						
1,2,4 trichlorobenzene	NS		0.0447 J						0.0389 J	0.746			
Total SVOCs			0.0447			0	0.5298	0.0433	0.6203	3.4831	0.088	0.079	
Average SVOCs		0.0)22	0.0	000	0.2	265	0.3	332	1.7	786	0.0	040

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives;

no individual compound above 50 ppm, total SVOCs <500 ppm.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Soil Sample Results: SVOCs Former Maspeth Substation

Sample Locat	ion	SB-7/MW-202	SB-7/MW-202	SB-8	SB-8	SB-9	SB-9	SB-10	SB-10	SB-11	SB-11	SB-12	SB-12
Sample Depth (ft bel	ow ground)	16 - 18	20 - 22	11 - 13	15 - 17	7-9	13 - 15	5 - 7	15 - 17	7-9	13 - 15	9 - 11	13 - 15
SVOCs (Method 8270)	Regulatory Limit												
Analyte	(ppm)												
Acenapthene	50 ¹												
Anthracene	50 ¹												
Benzo (a) anthracene	0.224 1												
Benzo(a) pyrene	0.061 1							0.0919					
Benzo(b) fluoranthene	1.1 1							0.113					
Benzo(g,h,i) perylene	50 ¹							0.0800 J					
Benzo(k) fluoranthene	1.1 1							0.0449 J					
bis(2-Ethylhexyl)phthalate	50 ¹	0.0487	0.0492	0.0678						0.0947			
Butylbenzylphthalate	50 ¹												
Chrysene	0.4 1									0.0403 J			
Dibenz(a,h)anthracene	0.014 1												
1,3 dichlorobenzene	NS												
1,4 dichlorobenzene	NS				0.216		0.0864						
Diethylphthalate	7.1 1												
Dimethyl phthalate	21												· · · ·
Di-n-butylphthalate	8.1 1												
Di-n-octylphthalate	50 ¹												
Fluoranthene	50 ¹												
Flourene	50 ¹									· ·			
Indeno(1,2,3-cd) pyrene	3.2 ¹							0.0686 J					
2-Methyl naphthalene	36.4 ¹												
3,4 Methylphenol	NS											-	
Naphthalene	13 1												
Phenanthrene	50 ¹												
Pyrene	50 ¹												
1,2,4 trichlorobenzene	NS												
Total SVOCs		0.0487	0.0492	0.068	0.216		0.0864	0.3984		0.135			
Average SVOCs		0.0)49	0.1	142	0.	043	0.1	199	0.0)68	0.0	000

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives;

no individual compound above 50 ppm, total SVOCs <500 ppm.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Soil Sample Results: SVOCs Former Maspeth Substation

Sample Locat	tion	SB-13/MW-201	SB-13/MW-201	SB-14	SB-14	SB-16	SB-16	SB-17	SB-17	SB-18	SB-18	SB-19/MW-203
Sample Depth (ft bel	ow ground)	7-9	9 - 11	5 - 7	7 - 9	9 - 11	17 - 19	6 - 8	10 - 12	6 - 8	8 - 10	8 - 10
SVOCs (Method 8270)	Regulatory Limit											
Analyte	(ppm)											
Acenapthene	50 1											
Anthracene	50 ¹											
Benzo (a) anthracene	0.224 1			0.138								
Benzo(a) pyrene	0.061 1			0.143								
Benzo(b) fluoranthene	1.1 1			0.15								
Benzo(g,h,i) perylene	50 ¹			0.0889								
Benzo(k) fluoranthene	1.1 1			0.0579 J								
bis(2-Ethylhexyl)phthalate	50 ¹	0.0551 J	0.1	0.0776	0.0489 J			0.0619 J	0.0584	0.0548 JB	0.0580 JB	1.12 B
Butylbenzylphthalate	50 ¹											
Chrysene	0.4 1			0.122								
Dibenz(a,h)anthracene	0.014 1											
1,3 dichlorobenzene	NS											
1,4 dichlorobenzene	NS											
Diethylphthalate	7.1 1											
Dimethyl phthalate	21							0.0417 J				
Di-n-butylphthalate	8.1 ¹											
Di-n-octylphthalate	50 ¹											
Fluoranthene	50 ¹			0.410 J								
Flourene	50 ¹											
Indeno(1,2,3-cd) pyrene	3.2 1			0.0796 J								
2-Methyl naphthalene	36.4 ¹											
3,4 Methylphenol	NS											
Naphthalene	13 ¹											
Phenanthrene	50 ¹		0.862 J					· ·				
Pyrene	50 ¹			0.158							-	
1,2,4 trichlorobenzene	NS											
Total SVOCs		0.0551	0.962	1.425	0.0489			0.1036	0.0584	0.0548	0.0580	
Average SVOCs		0.5	509	0.7	737	0.	000	0.0	081	0.0	056	

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives;

no individual compound above 50 ppm, total SVOCs <500 ppm.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Soil Sample Results: SVOCs Former Maspeth Substation

Sample Locat	ion	SB-19/MW-203	SB-19/MW-203	SB-20	SB-20	SB-21/MW-403	SB-21/MW-403	SB-21/MW-403	SB-22	SB-22	SB-23	SB-23
Sample Depth (ft bel	ow ground)	14 - 16	22 - 24	5 - 7	17 - 19	0 - 2	11 - 13	15 - 17	11 - 13	15 - 17	5 - 7	17 - 19
SVOCs (Method 8270)	Regulatory Limit											
Analyte	(ppm)											
Acenapthene	50 ¹										0.157	
Anthracene	50 ¹											
Benzo (a) anthracene	0.224 1						• 0.0131 J				0.283	
Benzo(a) pyrene	0.061 1						0.0119 J				0.233	
Benzo(b) fluoranthene	1.1 1						0.0119 J				0.255	
Benzo(g,h,i) perylene	50 ¹						0.0077 J				0.160	
Benzo(k) fluoranthene	1.1 1						0.0104 J				0.119	
bis(2-Ethylhexyl)phthalate	50 ¹	1.030 B	15 B	0.231 J	0.128 J	0.0479 J	0.0942 J	0.0455 J	0.182 J	0.305 J	0.242 J	0.189 J
Butylbenzylphthalate	50 ¹											
Chrysene	0.4 1						0.0238 J				0.317	
Dibenz(a,h)anthracene	0.014 1										0.048 J	
1,3 dichlorobenzene	NS											
1,4 dichlorobenzene	NS		0.171									
Diethylphthalate	7.1 1				-							
Dimethyl phthalate	21											
Di-n-butylphthalate	8.1 ¹	· · · · ·		0.122 J	0.0756 J				0.0703 J			0.0916 J
Di-n-octylphthalate	50 ¹					0.0468	0.0934 J	0.0202	· · · · · · · · · · · · · · · · · · ·	0.0255 J		
Fluoranthene	50 ¹			0.0756					0.0462 J		0.830	0.0268 J
Flourene	50 ¹			0.129			0.0800	0.0452			0.480	
Indeno(1,2,3-cd) pyrene	3.2 ¹						0.0077 J				0.147	
2-Methyl naphthalene	36.4 1										0.0561 J	
3,4 Methylphenol	NS											
Naphthalene	13 1			0.0230 J				· ·			0.214	
Phenanthrene	50 ¹					0.0471			0.0791	0.731 J	0.959	0.0469 J
Pyrene	50 ¹			0.0394 J					0.0264 J		0.508	
1,2,4 trichlorobenzene	NS											
Total SVOCs			0.171	0.6200	0.2036	0.1418	0.2820	0.1109	0.4040	1.0615	5.0081	0.3543
Average SVOCs		0.057		0.4	12		0.178		0.7	/33	. 2.6	81

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives;

no individual compound above 50 ppm, total SVOCs <500 ppm.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Soil Sample Results: SVOCs Former Maspeth Substation

Sample Locat	tion	MW-301	MW-301	MW-302	MW-302	MW-303	MW-303	MW-304	MW-304	MW-305	MW-305	MW-306
Sample Depth (ft bel	ow ground)	9 - 11	15 - 17	13 - 14	17 - 19	13 - 15	23 - 25	13 - 15	19 - 21	11 - 13	18 - 20	15 - 17
SVOCs (Method 8270)	Regulatory Limit											
Analyte	(ppm)				•							
Acenapthene	50 1									0.0668 J		0.0413 J
Anthracene	50 ¹						0.0151 J			0.124		0.128
Benzo (a) anthracene	0.224 1						0.0299			0.199		0.384
Benzo(a) pyrene	0.061 1						0.0210			0.189		0.349
Benzo(b) fluoranthene	1.1 1						0.0177 J			0.185		0.335
Benzo(g,h,i) perylene	50 ¹						0.0100 J			0.069		
Benzo(k) fluoranthene	1.1 1						0.0218			0.185		0.331
bis(2-Ethylhexyl)phthalate	50 ¹	0.0465 J	0.0232 JB	0.0500 JB	0.0146 JB	0.0247 JB	0.0310 JB	0.0535 JB	0.0706 JB	0.573 B	0.0375 JB	0.604 B
Butylbenzylphthalate	50 ¹									0.0546 J		
Chrysene	0.4 1						0.0317			0.226		0.425
Dibenz(a,h)anthracene	0.014 1											
1,3 dichlorobenzene	NS											
1,4 dichlorobenzene	NS				·							
Diethylphthalate	7.1 1				0.0105 J							
Dimethyl phthalate	21											
Di-n-butylphthalate	8.1 ¹					0.0191 JB	0.0195 JB					
Di-n-octylphthalate	50 ¹	0.0382 J										
Fluoranthene	50 ¹					0.0075 J	0.0819			0.555		0.951
Flourene	50 ¹						0.0096 J			0.0891 J		0.0536 J
Indeno(1,2,3-cd) pyrene	3.2 ¹									0.0401 J		0.105
2-Methyl naphthalene	36.4 ¹			0.0203 J	0.0101 J	0.0285	0.0369		0.0273 J	0.155		0.122
3,4 Methylphenol	NS											
Naphthalene	13 ¹									0.0512 J		
Phenanthrene	50 ¹		0.0975			0.0150 J	0.0734			0.547		0.673
Pyrene	50 ¹					0.0090 J	0.0572			0.421		0.758
1,2,4 trichlorobenzene	NS											
Total SVOCs		0.0847	0.0975	0.0203	0.0206	0.0600	0.4062	0.0000	0.0273	3.1568	0.0000	4.6559
Average SVOCs		0.0)91	0.0	020	0.2	233	0.0)14	1.5	578	4.656

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives;

no individual compound above 50 ppm, total SVOCs <500 ppm.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Soil Sample Results: SVOCs Former Maspeth Substation

Sample Locat	MW-401	MW-401	MW-402	MW-402		
Sample Depth (ft bel	ow ground)	7 - 9	9 - 11	9 - 11	15 - 17	
SVOCs (Method 8270)	Regulatory Limit					
Analyte	(ppm)					
Acenapthene	50 ¹					
Anthracene	50 ¹					
Benzo (a) anthracene	0.224 1	0.0101 J				
Benzo(a) pyrene	0.061 1					
Benzo(b) fluoranthene	1.1 1					
Benzo(g,h,i) perylene	50 ¹					
Benzo(k) fluoranthene	1.1 1					
bis(2-Ethylhexyl)phthalate	50 ¹	0.0489 J	0.0398 J	0.0485 J	0.0478 J	
Butylbenzylphthalate	50 ¹					
Chrysene	0.4 1					
Dibenz(a,h)anthracene	0.014 1					
1,3 dichlorobenzene	NS					
1,4 dichlorobenzene	NS					
Diethylphthalate	7.1 1					
Dimethyl phthalate	2 ¹					
Di-n-butylphthalate	8.1 ¹	0.0257 J	0.0366 J	0.0380 J	0.0303 J	
Di-n-octylphthalate	50 ¹			0.0142 J	0.0460	
Fluoranthene	50 ¹					
Flourene	50 ¹					
Indeno(1,2,3-cd) pyrene	3.2 ¹					
2-Methyl naphthalene	36.4 ¹	0.0156 J				
3,4 Methylphenol	NS					
Naphthalene	13 ¹					
Phenanthrene	50 ¹					
Pyrene	50 ¹					
1,2,4 trichlorobenzene	NS					
Total SVOCs		0.1003	0.0764	0.1007	0.1241	
Average SVOCs		0.	088	0.112		

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives;

no individual compound above 50 ppm, total SVOCs <500 ppm.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Soil Samples Results: TAL Metals Former Maspeth Substation

Sample Lo	ocation	SB-20	SB-20	SB-21/MW-403	SB-21/MW-403	SB-21/MW-403	SB-22	SB-22	SB-23	SB-23
Sample Depth (ft	below ground)	5 - 7	17 - 19	0 - 2	11 - 13	15 - 17	11 - 13	15 - 17	5 - 7	17 - 19
TAL Metals	Regulatory Limit ¹									
(Method 7000)	(ppm)									
Aluminum	SB (33,000)	6,300	4,970	5,180	8,590	3,650	4,290	5,310	9,090	3,760
Antimony	SB	6.00	11.6	6.61	3.78	5.09	5.61	4.17	6.05	4.74
Arsenic	7.5 or SB	2.86	2.07	3.48	3.39	1.48	1.81	2.31	3.20	1.67
Barium	300 or SB	27.1	24.2	28.6	39.2	23.5	28.9	28.3	43.9	26.2
Beryllium	0.16 or SB	0.63	0.67	0.69	0.70	0.58	0.55	0.63	0.57	0.60
Cadmium	1.0 or SB	1.94	3.73	1.77	1.90	1.48	1.83	1.53	2.21	1.70
Calcium	SB (130 - 35,000)	618	989	992	4,220	813	948	1,030	1,750	1,280
Chromium	10 or SB	16.5	12.6	15.3	35.3	11.9	11.0	12.1	23.9	11.3
Cobalt	30 or SB	5.21	5.83	6.41	4.28	5.86	5.07	5.84	8.34	5.71
Copper	25 or SB	11.1	7.26	12.0	29.4	11.8	20.1	8.50	17.3	9.69
Iron	2,000 or SB	14,500	26,900	13,700	16,100	11,500	13,800	11,300	16,700	12,900
Lead	SB (200 - 500)	5.39	16.9	4.55	15.8	3.93	11.6	68.1	12.3	5.25
Magnesium	SB (100 - 5,000)	1,180	1,290	1,210	1,460	1,100	1,030	956	1,460	1,100
Manganese	SB (50 - 50,000)	253	258	203	139	170	148	183	771	214
Mercury	0.1	0.022			0.053				0.15	
Nickel	13 or SB	9.26	10.3	10.7	10.4	9.28	7.87	8.94	11.2	9.09
Potassium	SB (8,500 - 43,000)	820	1,070	1,040	1,300	728	795	1,080	927	785
Selenium	2.0 or SB									
Silver	SB		9.94							
Sodium	SB (6,000 - 8,000)	401	497	294	460	193	332	431	571	361
Thallium	SB									
Vanadium	150 or SB	21.8	19.7	20.2	31.9	15.0	16.4	16.1	38.0	16.0
Zinc	20 or SB	23.9	27.1	28.5	33.6	26.7	21.4	31.1	41.5	23.7
Total Metals		24,204	36,126	22,758	32,479	18,271	21,475	20,478	31,478	20,516

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 4; Recommended Soil Cleanup Objectives

SB: Site Background

Site Background limits or ranges from TAGM HWR-94-4046, Appendix A, Table 4; Recommended Soil Cleanup Objectives

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

J: Estimated value below MDL

RI Soil Samples Results: TAL Metals Former Maspeth Substation

Sample L	ocation	MW-301	MW-301	MW-302	MW-302	MW-303	MW-303	MW-304	MW-304	MW-305
Sample Depth (ft	below ground)	9 - 11	15 - 17	13 - 14	17 - 19	13 - 15	23 - 25	13 - 15	19 - 21	11 - 13
TAL Metals	Regulatory Limit ¹									
(Method 7000)	(ppm)									
Aluminum	SB (33,000)	2,760	2,010	3,500	2,750	3,040	3,500	4,000	4,680	6,410
Antimony	SB	2.95	2.12	4.43	3.53	2.95		33.0	2.34	2.64
Arsenic	7.5 or SB	2.55	1.57	2.14	2.67	2.00	4.28	2.42	3,100	40.1
Barium	300 or SB	18.4	13.9	20.5	27.9	19.1	29.6	24.8	28.5	51.5
Beryllium	0.16 or SB	0.48	0.45	0.46	0.48	0.45	0.42	0.45	0.64	0.53
Cadmium	1.0 or SB	1.11	0.77	1.53	1.25	1.09	1.22	1.12	1.17	1.53
Calcium	SB (130 - 35,000)	1,040	795	704	936	899	7,530	869	2,360	2,110
Chromium	10 or SB	11.8	8.15	9.41	11.2	12.3	14.5	11.6	13.7	14.3
Cobalt	30 or SB	4.88	3.92	3.55	6.06	4.46	3.95	4.80	5.55	5.41
Copper	25 or SB	8,59	11.9	12.2	12.1	12.2	35.6	11.4	12.5	39.7
Iron	2,000 or SB	10,400	6,980	14,100	11,500	10,100	10,400	10,200	11,000	11,400
Lead	SB (200 - 500)	5.19	3.51	4.1	3.77	4.26	39.3	10.6	5.83	75.8
Magnesium	SB (100 - 5,000)	1,080	. 967	886	1,320	1,150	1,600	1,340	1,880	1,620
Manganese	SB (50 - 50,000)	156	64.4	149	131	140	178	205	230	215
Mercury	0.1			0.010	0.011	0.020	0.022	0.032	0.016	0.41
Nickel	13 or SB	7.52	7.96	6.72	9.33	7.73	8.38	14.6	10.9	11.4
Potassium	SB (8,500 - 43,000)	555	457	514	568	599	661	457	698	672
Selenium	2.0 or SB									
Silver	SB									
Sodium	SB (6,000 - 8,000)	422	419	480	479	466	596	149	172	411
Thallium	SB									
Vanadium	150 or SB	13.7	11.9	13.0	17.5	14.7	17.6	15.6	18.1	19.9
Zinc	20 or SB	21.8	20.4	21.0	24.2	21.3	49.8	25.4	28.1	150
Total Metals		16,512	11,779	20,432	17,804	16,497	24,670	17,376	24,247	23,251

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 4; Recommended Soil Cleanup Objectives

SB: Site Background

Site Background limits or ranges from TAGM HWR-94-4046, Appendix A, Table 4; Recommended Soil Cleanup Objectives

Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

J: Estimated value below MDL

RI Soil Samples Results: TAL Metals Former Maspeth Substation

Sample Location		MW-305	MW-306	MW-401	MW-401	MW-402	MW-402
Sample Depth (ft	below ground)	18 - 20	15 - 17	7 - 9	9 - 11	9 - 11	15 - 17
TAL Metals	Regulatory Limit ¹						
(Method 7000)	(ppm)						
Aluminum	SB (33,000)	2,540	3,350	6,390	5,830	5,120	4,510
Antimony	SB	1.53	3.03	7.26	6.88	9.24	8.49
Arsenic	7.5 or SB	1.61	3.35	1.75	1.77	1.17	0.85
Barium	300 or SB	14.3	26.6	24.7	24.5	20.9	19.8
Beryllium	0.16 or SB	0.40	0.56	0.49	0.72	0.46	0.42
Cadmium	1.0 or SB	0.73	1.41	0.99	0.97	1.05	1.20
Calcium	SB (130 - 35,000)	1,480	1,240	748	508	523	1,360
Chromium	10 or SB	13.6	12.3	10.0	12.4	9.95	16.3
Cobalt	30 or SB	4.28	5.63	3.54	3.99	3.93	5.16
Copper	25 or SB	10.2	14.7	7.16	11.4	7.01	11.9
Iron	2,000 or SB	6,320	12,200	10,400	9,930	10,700	13,400
Lead	SB (200 - 500)	3.29	9.51	4.15	3.57	2.75	2.94
Magnesium	SB (100 - 5,000)	1,210	1,100	1,300	1,730	1,590	1,690
Manganese	SB (50 - 50,000)	74.3	218	109	94.5	104	134
Mercury	0.1		0.1	0.014			
Nickel	13 or SB	7.13	10.1	7.46	8.25	8.28	9.35
Potassium	SB (8,500 - 43,000)	575	751	965	953	840	90.6
Selenium	2.0 or SB						
Silver	SB				3.19	0.29	
Sodium	SB (6,000 - 8,000)	85.0 J	261	58.5	349	324	334
Thallium	SB						
Vanadium	150 or SB	19.3	17.1	15.7	15.0	15.6	18.9
Zinc	20 or SB	19.1	32.0	18.1	25.0	22.7	22.9
Total Metals		12,295	19,256	20,072	19,512	19,304	21,637

Notes:

All results reported in parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 4; Recommended Soil Cleanup Objectives

SB: Site Background

Site Background limits or ranges from TAGM HWR-94-4046, Appendix A, Table 4; *Recommended Soil Cleanup Objectives* Blank Space: Indicates not present at its respective MDL.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

J: Estimated value below MDL

RI Water Quality Sample Results: PCBs Former Maspeth Substation

Sample Location Sample Date		MW-101 3/12/1997	MW-101F 3/12/1997	MW-102 3/12/1997	MW-102F 3/12/1997	MW-101 4/26/1999	MW-102 4/26/1999	MW-303 11/2/2000	MW-304 11/2/2000	MW-304 (Dup) 11/2/2000	MW-305 11/2/2000
PCBs (Method 8081&8082) Analyte	Groundwater Quality Stnd										
PCB 1016	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.080	< 0.080	< 0.080	< 0.080
PCB 1221	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.02	< 0.02	< 0.030	< 0.030	< 0.030	< 0.030
PCB 1232	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.11	< 0.11	< 0.11	< 0.11
PCB 1242	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.020	< 0.020	< 0.020	< 0.020
PCB 1248	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.090	< 0.090	< 0.090	< 0.090
PCB 1254	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.040	< 0.040	< 0.040	< 0.040
PCB 1260	0.1	< 0.05	< 0.05	< 0.05	< 0.05	0.179	0.0615	< 0.080	< 0.080	< 0.080	< 0.080

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards.

PCBs = Polychlorinated Biphenyls

The March 1997 samples for MW-101 and MW-102 are total (unfiltered) samples,

Yhe samples MW-101F and MW-102F were filtered in the field with 0.45 micron filter.

Samples collected on 11/2/00 and 4/3/01 are total (unfiltered) samples.

Samples collected on 9/18/02 at end of MW-103A Step Test.

Samples collected on 9/24/02 at end of MW-103A 24-hour Constant Rate Test.

Bold: Indicates compound reported above Cited Regulatory Standards.

Table 1-6 RI Water Quality Sample Results: PCBs

Former Maspeth Substation	

Sample Location		MW-101	MW-102	MW-301	MW-302	MW-303	MW-304	MW-305	MW-306	MW-306 (Dup)	MW-307
Sample Date	,	4/4/2001	4/4/2001	4/4/2001	4/4/2001	4/3/2001	4/3/2001	4/3/2001	4/3/2001	4/3/2001	4/4/2001
PCBs (Method 8081&8082)	Groundwater										
Analyte	Quality Stnd										
PCB 1016	0.1	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080
PCB 1221	0.1	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
PCB 1232	0.1	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11
PCB 1242	0.1	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
PCB 1248	0.1	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090
PCB 1254	0.1	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
PCB 1260	0.1	< 0.080	< 0.080	0.85	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards.

PCBs = Polychlorinated Biphenyls

The March 1997 samples for MW-101 and MW-102 are total (unfiltered) samples,

Yhe samples MW-101F and MW-102F were filtered in the field with 0.45 micron filter.

Samples collected on 11/2/00 and 4/3/01 are total (unfiltered) samples.

Samples collected on 9/18/02 at end of MW-103A Step Test.

Samples collected on 9/24/02 at end of MW-103A 24-hour Constant Rate Test.

Bold: Indicates compound reported above Cited Regulatory Standards.
RI Water Quality Sample Results: PCBs Former Maspeth Substation

Sample Locati	on	MW-401	MW-402	MW-403	MW-103A	MW-103A
Sample Date	4/3/2001	4/3/2001	4/3/2001	9/18/2002	9/24/2002	
PCBs (Method 8081&8082)	Groundwater					
Analyte	Quality Stnd					
PCB 1016	0.1	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080
PCB 1221	0.1	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
PCB 1232	0.1	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11
PCB 1242	0.1	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
PCB 1248	0.1	< 0.090	< 0.090	< 0.090	< 0.090	< 0.090
PCB 1254	0.1	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
PCB 1260	0.1	< 0.080	< 0.080	< 0.080	1.5	0.38

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards. PCBs = Polychlorinated Biphenyls

The March 1997 samples for MW-101 and MW-102 are total (unfiltered) samples,

Yhe samples MW-101F and MW-102F were filtered in the field with 0.45 micron filter.

Samples collected on 11/2/00 and 4/3/01 are total (unfiltered) samples.

Samples collected on 9/18/02 at end of MW-103A Step Test.

Samples collected on 9/24/02 at end of MW-103A 24-hour Constant Rate Test.

Bold: Indicates compound reported above Cited Regulatory Standards.

RI Water Quality Sample Results: VOCs Former Maspeth Substation

Sample Location		MW-303	MW-304	MW-304	MW-306	MW-1024	MW 102 A
Sample E	Date	11/2/2000	11/2/2000	4/3/2001	1/3/2001	9/18/2002	9/24/2002
VOCs (Method 8260B)	GW Quality Stud	11/2/2000	11/2/2000	4/3/2001	4/3/2001	9/18/2002	3/24/2002
Analyte	(ppb)						
acetone	NS		· · · · · ·				
benzene	0.7*	0.73	1.80	0.73			
bromomethane	NS		1.00	0.75		†	
2-butanone	NS						
n-Butylbenzene	5*						
sec-butylbenzene	5*						
tert butylbenzene	5*					1	
carbon disulfide	NS		-				· ·
chlorobenzene	5				-		
chloroform	7				7.80		
chloromethane	NS		· · · · · ·				
1,2 dichlorobenzene	4.7				-		
1,3 dichlorobenzene	5						
1,4 dichlorobenzene	5		·			12.5	12.7
1,1-dichloroethene	NS						
p-diethylbenzene	NS						
ethylbenzene	5*						
p-ethyltoluene	NS						
2-hexanone	NS						
isopropylbenzene	5*						
4-isopropyltoluene	5*						
methylene chloride	5			0.60 B	0.66 B		
methyl t-butyl ether (MTBE)	50*						
naphthalene	10*						
n-propylybenzene	5*						
tetrachloroethene	5						
1,2,4,5 tetramethylbenzene	5						
toluene	5*						
1,2,4 trichlorobenzene	5						
trichloroethene	5						
1,1,2 trichlorotrifluoroethene	5						
1,2,4 trimethyl benzene	5*						
1,3,5 trimethylbenzene	5*		ļ				
m, p-xylene	5*						
o-xylene	5*						
Total VOCs	1	0.00	0.00	0.00	0.00	12.5	12.7

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards.

* Regulated Compounds Specifically Listed in STARS Memo # 1, Appendix B - Table 2.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

-

Bold: Indicates compound reported above Regulatory Standards

Samples collected on 9/18/02 at end of MW-103A Step Test. Samples collected on 9/24/02 at end of MW-103A 24-hour Constant Rate Test. B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

Total VOCs do not include values reported as present in blanks.

Table 1-8 RI Water Quality Sample Results: SVOCs Former Maspeth Substation

Sample Location		MW-101	MW-102	MW-303	MW-304	MW-304 Dupe	MW-305	MW-101	MW-102	MW-301	MW-302	MW-303	MW-304
Sample Date	;	4/26/1999	4/26/1999	11/2/2000	11/2/2000	11/2/2000	11/2/2000	4/4/2001	4/4/2001	4/4/2001	4/4/2001	4/3/2001	4/3/2001
SVOCs (Method 8270B)	GW Quality Stnd											10,2001	4/5/2001
Analyte	(ppb)									-			
Acenapthene	20*												
Anthracene	50*												
Benzo (a) anthracene	0.002*												
Benzo(a) pyrene	0.002*												
Benzo(b) fluoranthene	0.002*												
Benzo(g,h,i) perylene	0.002*												
Benzo(k) fluoranthene	0.002*												
bis(2-Ethylhexyl)phthalate	50	1.70 J	2.40 J	7.10	0.63 J	0.36 J	1.00 J	0.67 JB	0.90 JB	1.90 B	1.60 JB	3.60 B	2.50 B
Butylbenzylphthalate	NS												
4-Chloro-3-methylphenol	NS		_										
2-Chlorophenol	NS												
Chrysene	0.002*												
Dibenz(a,h)anthracene	50*												
1,3 dichlorobenzene	5			•									
1,4 dichlorobenzene	5									0.96 J	0.77 J		
Diethylphthalate	NS	1.70 JB	2.40 JB									0.25 J	0.26 J
Dimethyl phthalate	NS												
Di-n-butylphthalate	50			0.75 J	0.64 J			0.48 J	0.48 J	0.76 J	0.82 J	1.30 JB	0.81 JB
2,4-Dinitrotoluene	NS												
Di-n-octylphthalate	NS							· · ·					
Fluoranthene	50*												· ·
Flourene	50*												
Indeno(1,2,3-cd) pyrene	0.002*												
2-Methyl naphthalene	NS												
3,4 Methylphenol	NS												
Naphthalene	10*									1.20	1.50	1.70	0.31 J
4-Nitrophenol	NS												
N-Nitroso-di-n-prpoylamine	NS												
Pentachlorophenol	1												
Phenanthrene	50*												
Phenol	1												
Pyrene	50*												
1,2,4 trichlorobenzene	5												
Total SVOCs		1.70	2.40	0.75	1.27	0.36	1.00	0.48	0.48	2.92	3.09	1.95	0.57

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards.

6, Section 703.5, Table 2.

* Regulated Compounds Specifically Listed in STARS Memo # 1, Appendix B - Table 2.

NS = No Standard

Blank Space: Indicates not present at its respective method detection limit (MDL).

Bold: Indicates compound reported above Regulatory Standards

B: Detected in method blank J: Estimated value below calibrated Method Detection Limit E: Estimated above calibration limit

Samples collected on 9/18/02 at end of MW-103A Step Test.

Samples collected on 9/24/02 at end of MW-103A 24-hour Constant Rate Test.

Table 1-8 RI Water Quality Sample Results: SVOCs Former Maspeth Substation

Sample Location		MW-305	MW-306	MW-306 Dupe	MW-307	MW-401	MW-402	MW-403	MW-103A	MW-103A
Sample Date		4/3/2001	4/3/2001	4/3/2001	4/4/2001	4/3/2001	4/3/2001	4/3/2001	9/18/2002	9/24/2002
SVOCs (Method 8270B)	GW Quality Stnd									
Analyte	(ppb)									1
Acenapthene	20*			1						
Anthracene	50*									
Benzo (a) anthracene	0.002*									
Benzo(a) pyrene	0.002*									
Benzo(b) fluoranthene	0.002*									-
Benzo(g,h,i) perylene	0.002*									
Benzo(k) fluoranthene	0.002*									
bis(2-Ethylhexyl)phthalate	50	1.40 JB	1.70 JB	1.90 B	1.80 B	1.80 B	2.00 B	4.80 B		
Butylbenzylphthalate	NS	-								
4-Chloro-3-methylphenol	NS									
2-Chlorophenol	NS∙									
Chrysene	0.002*									
Dibenz(a,h)anthracene	50*									
1,3 dichlorobenzene	5									
1,4 dichlorobenzene	5				1.80				6.90	6.60
Diethylphthalate	NS							0.59 J		
Dimethyl phthalate	NS									
Di-n-butylphthalate	50	0.46 JB	0.42 JB	0.80 JB	0.50 J	0.50 JB	0.55 JB	1.60 B		
2,4-Dinitrotoluene	NS									
Di-n-octylphthalate	NS									
Fluoranthene	50*									
Flourene	50*							·		
Indeno(1,2,3-cd) pyrene	0.002*									
2-Methyl naphthalene	NS							0.40 J		
3,4 Methylphenol	NS									
Naphthalene	10*				0.73 J			0.29 J		
4-Nitrophenol	NS									
N-Nitroso-di-n-prpoylamine	NS									
Pentachlorophenol	1									
Phenanthrene	50*							0.38 J		
Phenol	1									
Pyrene	50*									
1,2,4 trichlorobenzene	5									
Total SVOCs					3.03			1.66	8.4	7.7

Notes:

All results reported in parts per billion (ppb)

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards.

6, Section 703.5, Table 2.

* Regulated Compounds Specifically Listed in STARS Memo # 1, Appendix B - Table 2.

NS = No Standard

Blank Space: Indicates not present at its respective method detection limit (MDL).

Bold: Indicates compound reported above Regulatory Standards

Samples collected on 9/18/02 at end of MW-103A Step Test.

Samples collected on 9/24/02 at end of MW-103A 24-hour Constant Rate Test.

B: Detected in method blankJ: Estimated value below calibrated Method Detection LimitE: Estimated above calibration limit

RI Water Quality Results: TAL Metals Former Maspeth Substation

Sample L	ocation	MW-303	MW-304	MW-304 Dupe	MW-305	MW-101	MW-102	MW-301	MW-302	MW-303	MW-304	MW-305
Sample	Date	11/2/2000	11/2/2000	11/2/2000	11/2/2000	4/4/2001	4/4/2001	4/4/2001	4/4/2001	4/3/2001	4/3/2001	4/3/2001
RCRA Metals	GW Quality Stnd											
Analyte	(ppb)											
Aluminum	2,000	8,830								2,780	3,070	
Antimony	NS											
Arsenic	25											
Barium	1,000											
Beryllium	NS											
Cadmium	10											
Calcium	NS											
Chromium	50											
Cobalt	NS											
Copper	200											
Iron	300	22,300	1,990	2,140	770		3,830	8,900	23,000	8,560	22,500	1,270
Lead	25											
Magnesium	NS											
Manganese	300	2,060	2,460	2,410	1,620		310	1,400	2,060	2,200	4,990	
Mercury	2											
Nickel	2,000											
Potassium	NS											
Selenium	10											
Silver	50											
Sodium	20,000	128,000	134,000	132,000	77,600					101,000	178,000	73,100
Thallium	NS											
Vanadium	· NA							_				
Zinc	300									-		

Notes:

All results reported in parts per billion (ppb)

RCRA = Resource Conservation and Recovery Act

Groundwater Quality Standard from: NYSDEC Technical and Operational Giidance Series (TOGS) groundwater standards.

Title 6, Section 703.5, Table 1.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Regulatory Standards.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

RI Water Quality Results: TAL Metals Former Maspeth Substation

Sample L	ocation	MW-306	MW-306 Dupe	MW-307	MW-401	MW-402	MW-403	Matrix Spike	Matrix Spike Dup
Sample	Date	4/3/2001	4/3/2001	4/4/2001	4/3/2001	4/3/2001	4/3/2001	4/3/2001	4/3/2001
RCRA Metals	GW Quality Stnd								
Analyte	(ppb)								
Aluminum	2,000						9,980	13,900	8,010
Antimony	NS								
Arsenic	25							35.0	37
Barium	1,000							2,520	2,530
Beryllium	NS								
Cadmium	10								
Calcium	NS					l			
Chromium	50							270	270
Cobalt	NS			-			-		
Copper	200							370	350
Iron	300						28,600	27,600	15,900
Lead	25							48	39
Magnesium	NS								
Manganese	300			1,550			4,840	5,450	4,770
Mercury	2						-		
Nickel	2,000								
Potassium	NS								
Selenium	10				11	12			
Silver	50							51	
Sodium	20,000	34,000	34,100		101,000	374,000	24,500	23,100	21,400
Thallium	NS								
Vanadium	NA								
Zinc	300							680	660

Notes:

All results reported in parts per billion (ppb)

RCRA = Resource Conservation and Recovery Act

Groundwater Quality Standard from: NYSDEC Technical and Operational Gildance Series (TOGS) groundwater standards.

Title 6, Section 703.5, Table 1.

NS = No Standard

Blank Space: Indicates not present at its respective MDL.

Bold: Indicates compound reported above Regulatory Standards.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit

E: Estimated above calibration limit

Table 1-10 RI Free-Product Laboratory Analyses Former Maspeth Substation

Product Fingerprint

Sample Date	4/1/1999	4/26/1999	4/26/1999	11/2/2000
Sample Location	MW-103	MW-201	MW-203	MW-302
Product Fingerprint				
(Method 310.14 & Mod. 8100)				
Analyte				
Gasoline	ND	ND	ND	ND
Lubricating Oils	ND	ND	ND	ND
Kerosene Jet Fuel	ND	ND	ND	ND
#2 Fuel Oil Diesel	ND	ND	ND	ND
#4 Fuel Oil	ND	ND	ND	ND
#6 Fuel Oil	ND	ND	ND	ND
Dielectric Fluid	ND	ND	ND	ND
THC By Mod. 8100	ND	ND	ND	100%

Sample Date	4/1/1999	4/26/1999	4/26/1999	11/2/2000
Sample Location	MW-103	MW-201	MW-203	MW-302
PCBs (Method 8081&8082)				
Analyte				
PCB 1016	< 0.0064	< 0.003	< 0.003	< 2.20
PCB 1221	< 0.0088	< 0.003	< 0.003	< 0.82
PCB 1232	< 0.0067	< 0.003	< 0.003	< 3.02
PCB 1242	< 0.0058	< 0.003	< 0.003	< 0.55
PCB 1248	< 0.0021	< 0.003	< 0.003	< 2.47
PCB 1254	< 0.0049	< 0.003	< 0.003	< 1.10
PCB 1260	328	1.1	163	214

Dielectric Fluids

Sample Date	11/2/2000
Sample Location	MW-302
Dielectric Fluids]
Analyte	
Chevron 100	ND
Chevron 500	ND
Silicon Base TR	ND
High Vis. Cable	ND
Low Vis. Cable	ND
Sun#2 Base TR.O	ND
Sun#4 Cable Oil	100%
Sun#6 Cable Oil	ND
Sun#8 II Base T	ND
10C Transformer	ND

Notes:

ND = Not Detected

PCBs = polychlorinated Biphenyls

PCB compounds displayed as parts per million (ppm)

					•	Former Ma	speth Substation			
Well	Date.	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(# AD ⁻)	(ff TOPVC)	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	· · · · · · · · · · · · · · · · · · ·
MW-101	5-Dec-96	99 .78	NA	NA	#N/A	NA	NA	NA	NA	2-Inch Diameter Monitoring Well Constructed
	17-Dec-96	99.78	None Detected	18.45	NA	NA	18.45	81.33	NA	
i	12-Mar-97	99.78	None Detected	18.44	NA	NA	18.44	81.34	NA	
	6-Apr-99	99 .78	None Detected	18.26	NA	NA	18.26	81.52	NA	
	26-Apr-99	99.78	None Detected	18.21	NA	NA	18.21	81.57	NA	
	2-Mar-00	99.78	None Detected	21.16	NA	NA	21.16	78.62	NA	
	5-Dec-00	99.78	None Detected	22.03	NA	NA	22.03	77.75	NA	
	3-Apr-01	99.77	None Detected	17.78	NA	NA	17.78	81.99	NA	
	27-Sep-01	99.77	None Detected	18.87	NA	• NA	18.87	80.90	NA	
	9-Oct-01	99.77	None Detected	18.97	NA	NA	18.97	80.80	NA	
	26-Oct-01	99.77	None Detected	19.00	NA	NA	19.00	80.77	NA	
	8-Nov-01	99.77	None Detected	19.11	NA	NA	19.11	80,66	NA	
	20-Nov-01	99.77	None Detected	19.13	NA	NA	19.13	80.64	NA	
	7-Dec-01	99.77	None Detected	19.19	NA	NA	19.19	80.58	. NA	
	21-Dec-01	99.77	None Detected	16.30	NA	NA	16.30	83.47	NA	
	4-Jan-02	99.77	None Detected	19.35	NA	NA	19.35	80.42	NA	
	16-Jan-02	9 9.77	None Detected	19.30	NA	NA	19.30	80.47	NA	
	30-Jan-02	99.77	None Detected	19.30	NA	NA	19.30	80.47	NA	
	14-Feb-02	99.77	None Detected	19.34	NA	NA	19.34	80.43	NA	
	1-Mar-02	99.77	None Detected	19.45	NA	NA	19.45	80.32	NA	
	15-Mar-02	99.77	None Detected	19.40	NA	NA	19.40	80.37	NA	
	27-Mar-02	99.77	None Detected	19.37	NA	NA	19.37	80.40	NA	
	12-Apr-02	99.77	None Detected	19.45	NA	NA	19.45	80.32	NA	
	26-Apr-02	99.77	None Detected	19.60	NA	NA	19.60	80.17	NA	
	10-May-02	99.77	None Detected	19.52	NA	NA	19.52	80.25	NA	
	24-May-02	99.77	None Detected	19.49	NA	NA	19.49	80.28	NA	
	7-Jun-02	. 99.77	None Detected	19.59	NA	NA	19.59	80.18	NA	
	21-Jun-02	99.77	None Detected	19.60	· NA	NA	19.60	80.17	NA	
	3-Jul-02	99.77	None Detected	19.63	NA	NA	19.63	80.14	NA	
	18-Jul-02	99.77	None Detected	19.71	NA	NA	19.71	80.06	NA	
	31-Jul-02	99.77	None Detected	19.13	NA	NA	19.13	80.64	NA	

NA

NA

NA

NA

RI Product and Groundwater Level Measurements Former Maspeth Substation

,

14-Aug-02

28-Aug-02

11-Sep-02

3-Oct-02

99.77

99.77

99.77

99.77

None Detected

None Detected

None Detected

None Detected

18.02

17.84

18.11

19.16

NA

NA

NA

NA

18.02

17.84

18.11

19.16

81.75

81.93

81.66

80.61

NA

NA

NA

NA

RI Product and Groundwater Level Measurements Former Maspeth Substation

Image: Image:<	Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
Image: Provide and the second of t		1 1	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
$ (n + \Omega - V)^{-1}$ $(n + \Omega - V)^{-1}$ <td></td> <td> /</td> <td>Elevation</td> <td>Product /</td> <td>Water</td> <td>Thickness</td> <td>Thickness</td> <td>1</td> <td>Elevation</td> <td>Removed</td> <td></td>		/	Elevation	Product /	Water	Thickness	Thickness	1	Elevation	Removed	
MW-10 IB-06-02 99-77 None Disected 19-96 NA NA NA NA (Gert) 31-06-02 99.77 None Disected 19.02 NA MA 19.02 80.75 NA 14-Nov-02 99.77 None Disected 19.00 NA NA 19.00 80.77 NA 11-De-02 99.77 None Disected 18.90 NA NA 18.90 80.81 NA 11-De-02 99.77 None Disected 18.99 NA NA 18.99 50.77 NA 30-De-02 99.77 None Disected 18.32 NA NA 18.82 80.93 NA 13-Jan-03 99.77 None Disected 20.39 NA NA 18.22 81.05 NA 13-Jan-03 99.77 None Disected 20.31 NA NA 19.37 NA 13-Jan-03 99.77 None Disected 20.39 NA NA 19.79 NA		<u> </u>	(ft AD ')	(ft TOPVC) '	(ft TOPVC) '	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
Index Index Index Index Index Index Index Index Index Index I	MW-101	18-Oct-02	99.77	None Detected	18.96	NA	NA	18.96	80.81	NA NA	
14-Nov-02 99.77 None Detected 19.00 NA NA 19.00 80.77 NA 11-De-02 99.77 None Detected 18.90 NA NA 18.90 80.37 NA 11-De-02 99.77 None Detected 18.90 NA NA 18.90 80.37 NA 30-De-02 99.77 None Detected 18.31 NA NA 18.83 80.94 NA 13-Jan-03 99.77 None Detected 18.22 NA NA 18.83 80.95 NA 13-Jan-03 99.77 None Detected 18.32 NA NA 18.24 80.95 NA 13-Jan-03 99.77 None Detected 20.31 NA NA 18.24 80.93 NA 19-May/03 99.77 None Detected 20.31 NA NA 19.75 80.02 NA 19-May/03 99.77 None Detected 19.71 NA NA 19.79 NA 13-Jan-03 99.77 None Detected 19.71 NA NA 19.79 <td>(cont)</td> <td>31-Oct-02</td> <td>99.77</td> <td>None Detected</td> <td>19.02</td> <td>NA '</td> <td>NA</td> <td>19.02</td> <td>80.75</td> <td>NA</td> <td></td>	(cont)	31-Oct-02	99.77	None Detected	19.02	NA '	NA	19.02	80.75	NA	
27.Nov-02 99.77 None Detected 18.90 NA NA 18.90 80.87 NA 11.Dec/02 99.77 None Detected 18.99 NA NA 18.99 80.78 NA 30.Dec/02 99.77 None Detected 18.82 NA NA 18.83 80.94 NA 13.Jan-03 99.77 None Detected 18.82 NA NA 18.83 80.94 13.Jan-03 99.77 None Detected 18.82 NA NA 18.22 80.95 NA 13.Jan-03 99.77 None Detected 18.34 NA NA 18.12 81.05 NA 19.May-03 99.77 None Detected 20.31 NA NA 19.75 NA 19.Jun/3 99.77 None Detected 19.75 NA NA 19.75 80.02 18.Jul/3 99.77 None Detected 19.75 NA NA 19.79 79.86 18.Jun/3 99.77 None Detected 19.79 NA NA 19.79 NA 18.4ul/3 99.77 None Detected 19.79 NA NA 19.97 Na 19.Au NA NA 19.79 <td> </td> <td>14-Nov-02</td> <td>99.77</td> <td>None Detected</td> <td>19.00</td> <td>NA</td> <td>NA</td> <td>19.00</td> <td>80.77</td> <td>NA</td> <td></td>		14-Nov-02	99.77	None Detected	19.00	NA	NA	19.00	80.77	NA	
11-De-02 99.77 None Detected 18.99 NA NA 18.99 80.78 NA 24-De-02 99.77 None Detected 18.83 NA NA 18.83 80.94 NA 30-De-02 99.77 None Detected 18.82 NA NA 18.82 80.95 NA 13-Jan-03 99.77 None Detected 18.72 NA NA 18.82 80.95 NA 13-Jan-03 99.77 None Detected 18.84 NA NA 18.42 80.93 NA 18-Apr-30 99.77 None Detected 20.31 NA NA 18.48 80.93 NA 19-May03 99.77 None Detected 19.71 NA NA 10.75 80.02 NA 13-Jan-03 99.77 None Detected 19.71 NA NA 19.71 80.06 NA 13-Jan-03 99.77 None Detected 19.71 NA NA 19.79 NA 13-Jan-343 99.77 None Detected 19.71 NA NA 19.79 NA 22-Aug-33 99.77 None Detected 10.98 NA NA 19.79 NA 22-Sep-33<		27-Nov-02	99.77	None Detected	18.90	NA "	NA '	18.90	80.87	NA	
24-De-02 99.77 None Detected 18.83 NA NA 18.83 80.94 NA 30-De-02 99.77 None Detected 18.82 NA NA 18.82 80.95 NA 7.3an-03 99.77 None Detected 18.82 NA NA 18.82 80.95 NA 7.3an-03 99.77 None Detected 18.84 NA NA 18.84 80.93 NA 19-Maj-03 99.77 None Detected 20.31 NA NA 20.31 YA NA 18.40 NA 13-Jan-03 99.77 None Detected 19.75 NA NA 19.75 80.02 NA 13-Jan-03 99.77 None Detected 19.75 NA NA 19.75 80.02 NA 13-Jan-03 99.77 None Detected 19.79 NA NA 19.75 80.02 NA 13-Jan-03 99.77 None Detected 19.79 NA NA 19.75 80.02 NA 13-Jan-04 99.77 None Detected 20.10 <td></td> <td>11-Dec-02</td> <td>99.77</td> <td>None Detected</td> <td>18.99</td> <td>NA</td> <td>NA '</td> <td>18.99</td> <td>80.78</td> <td>NA</td> <td></td>		11-Dec-02	99.77	None Detected	18.99	NA	NA '	18.99	80.78	NA	
30-Dec-02 99-77 None Detected 18.82 NA NA 18.82 80.95 NA 13-Jan-03 99.77 None Detected 18.72 NA NA 18.72 81.05 NA 13-Jan-03 99.77 None Detected 20.39 NA NA 18.4 80.93 NA 18-Apr-03 99.77 None Detected 20.31 NA NA 20.31 79.38 NA 19-May-03 99.77 None Detected 19.75 NA NA 19.75 80.06 NA 20-Jun-03 99.77 None Detected 19.75 NA NA 19.77 80.06 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.79 79.88 NA 19-Step-03 99.77 None Detected 20.19 NA NA 20.20 79.57 NA 21-Oct-03 99.77 None Detected 20.19 NA NA 20.92 79.58 NA 19-Dec-03 99.77 None Detected 20.18 NA NA		24-Dec-02	99.77	None Detected	18.83	NA "	NA	18.83	80.94	NA	
13-Jan-03 99.77 None Detected 18.72 NA NA 18.72 8.05 NA 17-Jan-03 99.77 None Detected 20.39 NA NA 20.39 73.38 NA 19-May-03 99.77 None Detected 20.31 NA NA 20.31 79.38 NA 19-May-03 99.77 None Detected 20.31 NA NA 20.31 79.46 NA 20-Jun-03 99.77 None Detected 19.71 NA NA 19.71 80.06 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.79 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.79 NA 18-Jul-03 99.77 None Detected 20.20 NA NA 20.20 PS.7 NA 19.58 NA NA 20.19 75.8 NA 21.400-43 99.77 None Detected 20.19 NA NA 19.92 79.85 NA 21.400-43 99.77 <t< td=""><td> </td><td>30-Dec-02</td><td>99.77</td><td>None Detected</td><td>18.82</td><td>NA</td><td>NA</td><td>18.82</td><td>80.95</td><td>NA</td><td></td></t<>		30-Dec-02	99.77	None Detected	18.82	NA	NA	18.82	80.95	NA	
27.3m-03 99.77 None Detected 18.84 NA NA 18.44 80.93 NA 18-Apr-03 99.77 None Detected 20.39 NA NA 20.39 79.38 NA 13-May-03 99.77 None Detected 19.75 NA NA 20.39 NA 13-Jun-03 99.77 None Detected 19.75 NA NA 19.75 80.02 NA 13-Jun-03 99.77 None Detected 19.71 NA NA 19.75 80.02 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.79 79.98 NA 19-Sep-03 99.77 None Detected 20.20 NA NA 20.19 79.57 NA 22-Sep-03 99.77 None Detected 20.18 NA NA 20.19 79.58 NA 21-Oct-03 99.77 None Detected 20.99 NA NA 20.18 79.59 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92<		13-Jan-03	99.77	None Detected	18.72	NA P	NA '	18.72	81.05	NA	
18-Apr-03 99.77 None Detected 20.39 NA NA 20.39 79.38 NA 19-Maj-03 99.77 None Detected 20.31 NA NA 20.31 79.38 NA 13-Jun-03 99.77 None Detected 19.75 NA NA 19.75 80.02 NA 20-Jun-03 99.77 None Detected 19.71 NA NA 19.71 80.02 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.79 79.98 NA 19-Sep-03 99.77 None Detected 20.20 NA NA 20.20 79.57 NA 21-Oc-03 99.77 None Detected 20.18 NA NA 20.99 79.58 NA 21-Oc-03 99.77 None Detected 19.92 NA NA 19.92 79.81 NA 19-Dec-03 99.77 None Detected 19.91 NA 19.92 79.85 NA 19-Dec-04 99.77 None Detected 19.91 NA NA 19.9		27-Jan-03	99.77	None Detected	1 18.84	NA ¹	NA '	1 18.84	80.93	NA	
19-Maj-03 99.77 None Detected 20.31 NA NA 20.31 79-46 NA 13-Jun-03 99.77 None Detected 19.75 NA NA 19.75 80.02 NA 20-Jun-03 99.77 None Detected 19.75 NA NA 19.71 80.06 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.71 80.06 NA 18-Jul-03 99.77 None Detected 19.78 NA NA 19.79 79.98 NA 19-Sep-03 99.77 None Detected 20.20 NA NA 20.20 79.57 NA 21-Oc+03 99.77 None Detected 20.19 NA NA 20.19 79.58 NA 19-De-03 99.77 None Detected 20.99 NA NA 19.92 79.85 NA 19-De-03 99.77 None Detected 19.91 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.91 NA NA <td></td> <td>18-Apr-03</td> <td>99.77</td> <td>None Detected</td> <td>20.39</td> <td>NA "</td> <td>NA '</td> <td>20.39</td> <td>79.38</td> <td>NA '</td> <td></td>		18-Apr-03	99.77	None Detected	20.39	NA "	NA '	20.39	79.38	NA '	
13-Jun-03 99.77 None Detected 19.75 NA NA 18.75 80.02 NA 20-Jun-03 99.77 None Detected 19.71 NA NA 19.71 80.06 NA 22-Aug-03 99.77 None Detected 19.79 NA NA 19.79 79.98 NA 12-Sep-03 99.77 None Detected 19.98 NA NA 19.98 79.79 19-Sep-03 99.77 None Detected 20.19 NA NA 20.19 79.57 NA 21-Oct-03 99.77 None Detected 20.18 NA NA 20.18 79.57 NA 12-Oct-03 99.77 None Detected 20.18 NA NA 20.18 79.55 NA 12-Oct-03 99.77 None Detected 20.90 NA NA 20.91 79.55 NA 14-Jan-04 99.77 None Detected 19.92 NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.91 NA NA 19.91 <td< td=""><td>1 1</td><td>19-May-03</td><td>99.77</td><td>None Detected</td><td>20.31</td><td>I NA /</td><td>NA</td><td>20.31</td><td>79.46</td><td>NA</td><td></td></td<>	1 1	19-May-03	99.77	None Detected	20.31	I NA /	NA	20.31	79.46	NA	
20-Jun-03 99.77 None Detected 19.71 NA NA 19.71 80.06 NA 18-Jul-03 99.77 None Detected 19.79 NA NA 19.79 79.98 NA 18-Jul-03 99.77 None Detected 20.20 NA NA 19.98 79.79 NA 19-Sep-03 99.77 None Detected 20.20 NA NA 20.20 79.57 NA 22-Sep-03 99.77 None Detected 20.19 NA NA 20.19 79.58 NA 21-Nov-03 99.77 None Detected 20.19 NA NA 20.18 79.59 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 19-Jan-04 99.77 None Detected 19.92 NA NA 19.91 79.86 NA 19-Jan-04 99.77 None Detected 19.91 NA NA 19.91 79.86 N	4	13-Jun-03	99.77	None Detected	1 19.75	NA	NA '	1 19.75	80.02	NA '	
18-1ul-03 99.77 None Detected 19.79 NA NA 19.79 79.98 NA 19-Sep-03 99.77 None Detected 19.98 NA NA 19.98 79.79 NA 19-Sep-03 99.77 None Detected 20.00 NA NA 20.20 79.57 NA 22-Sep-03 99.77 None Detected 20.19 NA NA 20.19 79.57 NA 21-Oct-03 99.77 None Detected 20.18 NA NA 20.09 79.58 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.96 NA NA 19.92 79.85 NA 20-Feb-04 99.77 None Detected 19.96 NA NA 19.91 79.85 NA 23-Apr-04 99.77 None Detected 19.91 NA NA 19.91 79.85 NA 23-May-04 99.77 None Detected 19.91 NA NA	1 ·	20-Jun-03	99.77	None Detected	1 19.71	I NA I	NA /	1 19.71	80.06	NA '	
22-Aug-03 99.77 None Detected 19.98 NA NA 19.98 79.79 NA 19-Sep-03 99.77 None Detected 20.20 NA NA 20.20 79.57 NA 22-Sep-03 99.77 None Detected 20.19 NA NA 20.19 79.57 NA 21-Oct-03 99.77 None Detected 20.18 NA NA 20.18 NA 19-Dec-03 99.77 None Detected 20.09 NA NA 20.99 79.58 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 NA 14-Jan-04 99.77 None Detected 19.92 NA NA 19.92 NA 20-Feb-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 23-Apr-04 99.77 None Detected 19.91 NA NA 19.92 NA 13-Jun-04 99.77 None	l j	18-Jul-03	99.77	None Detected	19.79	NA I	NA /	1 19.79	79.98	NA	
19-Sep-03 99.77 None Detected 20.20 NA NA 20.20 79.57 NA 22-Sep-03 99.77 None Detected 20.19 NA NA 20.19 79.58 NA 21-Nov-03 99.77 None Detected 20.18 NA NA 20.09 79.58 NA 19-Dec-03 99.77 None Detected 20.09 NA NA 20.09 79.68 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.96 NA NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.92 NA NA 19.92 79.86 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.92 79.86 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.62 80.15 NA 13-Jun-04 99.77 None Detected 19.62 NA NA		22-Aug-03	99.77	None Detected	19.98	NA /	NA	19.98	79.79	NA	1
22-Sep-03 99.77 None Detected 20.19 NA NA 20.19 79.58 NA 21-Oct-03 99.77 None Detected 20.18 NA NA 20.18 79.59 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 20.09 79.68 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 79.55 NA 9-Jan-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 23-Apr-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 19.62 NA NA<		19-Sep-03	99.77	None Detected	20.20	NA /	NA	20.20	79.57	NA	1
21-Oct-33 99.77 None Detected 20.18 NA NA 20.18 79.59 NA 21-Nov-03 99.77 None Detected 20.09 NA NA 20.09 79.68 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 9-Jan-04 99.77 None Detected 19.96 NA NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.92 NA NA 19.91 79.86 NA 20-Feb-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 20-Feb-04 99.77 None Detected 19.92 NA NA 19.91 79.86 NA 25-May-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 13.23 NA NA<		22-Sep-03	99.77	None Detected	20.19	NA /	NA J	20.19	79.58	NA	1
21-Nov-03 99.77 None Detected 20.09 NA NA 20.09 79.68 NA 19-Dec-03 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 9-Jan-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 14-Jan-04 99.77 None Detected 19.91 NA NA 19.96 79.85 NA 20-Feb-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.92 79.86 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.92 79.86 NA 19-Mar-04 99.77 None Detected 19.02 NA NA 19.91 79.86 NA 18-Jun-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 13.23 NA NA<		21-Oct-03	99.77 r	None Detected	20.18	NA I	NA I	20.18	79.59	NA	
MW-102 5-Dec-96 99.77 None Detected 19.92 NA NA 19.92 79.85 NA MW-102 5-Dec-96 99.57 None Detected 19.91 NA NA 19.92 79.85 NA MW-102 2.5-Reb-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA MW-102 0.7 None Detected 19.91 NA NA 19.92 79.85 NA MW-102 0.7 None Detected 19.91 NA NA 19.91 79.86 NA MW-102 0.77 None Detected 19.91 NA NA 19.91 79.86 NA MW-102 5-Dec-96 99.77 None Detected 19.62 NA NA 19.62 80.15 NA MW-102 5-Dec-96 99.57 NA NA NA NA 13.23 86.34 NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 2-6Apr-99 99.57	l j	21-Nov-03	99.77 y	None Detected	20.09	NA	NA I	20.09	79.68	NA I	
9-Jan-04 99.77 None Detected 19.96 NA NA 19.96 79.81 NA 14-Jan-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 20-Feb-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.92 79.85 NA 23-Apr-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 25-May-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 19.41 NA NA 19.41 80.36 NA 17-Dec-96 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 12-Mar-07 99.57 None Detected 15.95 NA NA<		19-Dec-03	99.77 y	None Detected	19.92	NA J	NA J	1 19.92 1	79.85	NA I	1
14-Jan-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 20-Feb-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.92 79.85 NA 23-Apr-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 23-Apr-04 99.77 None Detected 19.01 NA NA 19.91 79.86 NA 25-May-04 99.77 None Detected 19.02 NA NA 19.91 79.86 NA 18-Jun-04 99.77 None Detected 19.62 NA NA 19.41 80.36 NA MW-102 5-Dec-96 99.57 NA NA NA NA NA NA 17-Dec-96 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 12-Mar-97 99.57 None Detected 15.55 NA NA 1		9-Jan-04	99.77 y	None Detected	19.96	NA J	NA I	19.96	79.81	NA I	
20-Feb-04 99.77 None Detected 19.92 NA NA 19.92 79.85 NA 19-Mar-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 23-Apr-04 99.77 None Detected 20.03 NA NA 20.03 79.74 NA 25-May-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 19.41 NA NA 19.41 80.36 NA MW-102 5-Dec-96 99.57 NA NA NA NA 13.23 86.34 NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 12-Mar-97 99.57 None Detected 15.95 NA NA 15.95 83.62 NA 6-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.94 NA 2-Mar-00 99.57 None Detected 19.21 NA <	i p	14-Jan-04	1 99.77 J	None Detected	19.91	NA I	NA	19.91	79.86	NA I	4
H9-Mar-04 99.77 None Detected 19.91 NA NA 19.91 79.86 NA 23-Apr-04 99.77 None Detected 20.03 NA NA NA 20.03 79.74 NA 25-May-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 19.41 NA NA 19.62 80.15 NA MW-102 5-Dec-96 99.57 NA NA NA NA NA NA NA 17-Dec-96 99.57 None Detected 13.23 NA NA 13.23 86.34 NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 83.62 NA 26-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.94 NA 26-Apr-99 99.57 None Detected 19.21 80.36 NA NA 5-Dec-06 99.57 None Detected 15.63 83.94 NA NA		20-reb-04	1 99.77 J	None Detected	19.92	NA	NA	19.92	79.85	NA	
23-Apr-04 99.77 None Detected 20.03 NA NA 20.03 79.74 NA 25-May-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA 18-Jun-04 99.77 None Detected 19.41 NA NA 19.62 80.15 NA MW-102 5-Dec-96 99.57 NA NA NA NA NA NA 17-Dec-96 99.57 None Detected 13.23 NA NA NA NA NA 17-Dec-96 99.57 None Detected 13.23 NA NA 13.23 86.34 NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 6-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.62 NA 2-Mar-00 99.57 None Detected 19.21 NA NA NA NA 5-Dec.00 99.57 None Detected 19.21 NA NA NA NA <td>i I</td> <td>19-Mar-04</td> <td>99.77</td> <td>None Detected</td> <td>19.91</td> <td>NA</td> <td>NA </td> <td>19.91</td> <td>79.86</td> <td>NA </td> <td>4</td>	i I	19-Mar-04	99.77	None Detected	19.91	NA	NA	19.91	79.86	NA	4
MW-102 25-May-04 99.77 None Detected 19.62 NA NA 19.62 80.15 NA MW-102 5-Dec-96 99.57 NA NA NA NA NA NA NA 17-Dec-96 99.57 None Detected 13.23 NA NA NA NA NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 6-Apr-99 99.57 None Detected 15.95 NA NA 15.95 83.62 NA 26-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.94 NA 5-Dec-00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA	i p	25-Apr-04	1 00 77	None Detected	20.03	NA J	NA	20.03	79.74	NA I	
MW-102 5-Dec-96 99.57 NA NA NA NA NA NA NA NA NA MW-102 5-Dec-96 99.57 NA NA NA NA NA NA NA NA NA 17-Dec-96 99.57 None Detected 13.23 NA NA NA 13.23 86.34 NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 26-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.62 NA 2-Mar-00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA 5-Dec-00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA	1	10 Tun-04	00 77	None Detected	19.62	NA	NA I	19.62	80.15	NA J	
MW-1025-Dec-9699.57NANANANANANANANANA17-Dec-9699.57None Detected13.23NANA13.2386.34NA12-Mar-9799.57None Detected15.09NANA15.0984.48NA6-Apr-9999.57None Detected15.95NANA15.9583.62NA26-Apr-9999.57None Detected15.63NANA15.6383.94NA2-Mar-0099.57None Detected19.21NANA19.2180.36NA	i j	10-3001-0-7	, ^{99,11}	None Detected	19.41	NA	NA J	19.41	80.36	NA	
NATURALNANANANANANANANANANA17-Dec-9699.57None Detected13.23NANANA13.2386.34NA12-Mar-9799.57None Detected15.09NANA15.0984.48NA6-Apr-9999.57None Detected15.95NANA15.9583.62NA26-Apr-9999.57None Detected15.63NANA15.6383.94NA2-Mar-0099.57None Detected19.21NANA19.2180.36NA	MW-102	5-Dec-96	99.57	I NA		1 NTA 1	1	· 1	1 · 🕴	i P	
12-Mar-97 99.57 None Detected 15.09 NA NA 13.23 86.34 NA 12-Mar-97 99.57 None Detected 15.09 NA NA 15.09 84.48 NA 6-Apr-99 99.57 None Detected 15.95 NA NA 15.95 83.62 NA 26-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.94 NA 2-Mar-00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA		17-Dec-96	99.57	None Detected	1 12.23			NA ·	NA	NA	2-Inch Diameter Monitoring Well Constructed
6-Apr-99 99.57 None Detected 15.05 NA NA 15.09 84.48 NA 6-Apr-99 99.57 None Detected 15.95 NA NA 15.95 83.62 NA 26-Apr-99 99.57 None Detected 15.63 NA NA 15.63 83.94 NA 2-Mar-00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA		12-Mar-97	99.57	None Detected	15.00			13.23	86.34	NA	
26-Apr-99 99.57 None Detected 15.63 NA NA 15.95 83.62 NA 2-Mar-00 99.57 None Detected 19.21 NA NA 15.63 83.94 NA 5-Dec.00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA		6-Apr-99	99.57	None Detected	15.05			15.09	84.48	NA	
2-Mar-00 99.57 None Detected 19.21 NA NA 19.21 80.36 NA		26-Apr-99	99.57	None Detected	15.63			15.95	83.62	NA	
5-Dec.00 99.57 None Detected 10.21 IVA 19.21 80.30 NA	i 🔰	2-Mar-00	99.57	None Detected	19.21			15.03	83.94	NA	. · ·
	.	5-Dec-00	99.57	None Detected	10 12	NA NA		19.21	80.36	NA	1
NA 19.12 80.45 NA		•		I I I I I I I I I I I I I I I I I I I	13.12		NA	19.12	80.45	NA	I

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
L		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	3-Apr-01	99.56	None Detected	14.48	NA	NA	14.48	85.08	NA	
MW-102	27-Sep-01	99.56	None Detected	15.52	NA	NA	15.52	84.04	NA	
(cont)	9-Oct-01	99.56	None Detected	17.45	NA	NA	17.45	82.11	NA	
	26-Oct-01	99.56	None Detected	17.71	NA	NA	17.71	81.85	NA	
	8-Nov-01	99.56	None Detected	17.97	NA	NA	17.97	81.59	NA	
	20-Nov-01	99.56	None Detected	18.05	NA	NA	18.05	81.51	NA	
	7-Dec-01	.9 9.56	None Detected	18.14	NA	NA	18.14	81.42	NA	
	21-Dec-01	99.56	None Detected	17.51	. NA	NA	17.51	82.05	NA	
	4-Jan-02	99.56	None Detected	18.15	NA	NA	18:15	81.41	NA	
	16-Jan-02	99.56	None Detected	17.78	NA	NA	17.78	81.78	NA	
	30-Jan-02	99.56	None Detected	17.68	NA	NA	17.68	81.88	NA	
	14-Feb-02	99.56	None Detected	17.78	NA	NA	17.78	81.78	NA	
	1-Mar-02	99.56	None Detected	18.37	NA	NA	18.37	81.19	NA	
	15-Mar-02	99.56	None Detected	17.46	NA	NA	17.46	82.10	NA	
· ·	27-Mar-02	99.56	None Detected	13.55	NA	NA	13.55	86.01	NA	· · · · ·
	12-Apr-02	99.56	None Detected	17.74	NA	NA	17.74	81.82	NA	
	26-Apr-02	99.56	None Detected	14.64	NA	NA	14.64	84.92	NA	
	10-May-02	99.56	None Detected	17.08	NA	NA	17.08	82.48	NA	
	24-May-02	99.56	None Detected	16.59	NA	NA	16.59	82.97	NA	
	7-Jun-02	99.56	None Detected	11.15	ŅA	NA	11.15	88.41	NA -	
	21-Jun-02	99.56	None Detected	17.47	NA	NA	17.47	82.09	NA	
· .	3-Jul-02	99.56	None Detected	17.71	NA	NA	17.71	81.85	NA	
	18-Jul-02	99.56	None Detected	18.31	NA	NA	18.31	81.25	NA	
	31-Jul-02	99.56	None Detected	18.31	NA	NA	⁻ 18.31	81.25	NA	
	14-Aug-02	99.56	None Detected	17.21	NA	NA	17.21	82.35	NA	
	28-Aug-02	99.56	None Detected	16.91	NA	NA	16.91	82.65	NA	
	11-Sep-02	99.56	None Detected	15.51	NA	NA	15.51	84.05	NA	
	3-Oct-02	99.56	None Detected	17.63	NA	NA	17.63	81.93	NA	
	18-Oct-02	99.56	None Detected	13.33	NA	NA	13.33	86.23	NA	
	31-Oct-02	99.56	None Detected	17.14	· NA	NA	17.14	82.42	NA	· · · ·
	14-Nov-02	99.56	None Detected	14.22	NA	NA	14.22	85.34	NA	
	27-Nov-02	99.56	None Detected	13.91	NA	NA	13.91	85.65	NA	
	11-Dec-02	99.56	None Detected	16.41	NA	NA	16.41	83.15	NA	
	24-Dec-02	99.56	None Detected	15.84	NA	NA	15.84	83.72	NA	
U (30-Dec-02	99.56	None Detected	14.28	NA	NA	14.28	85.28	NA	

.

τ.

×-1.-/

.

	Former Maspeth Substation											
Well	Date	Measuring Point Elevation (ft AD ²)	Measured Depth To Product (ft TOPVC) ¹	Measured Depth To Water (ft TOPVC) ¹	Measured Product Thickness (feet)	Corrected Product Thickness (feet)	Corrected Depth to Water (ft TOPVC)	Corrected Groundwater Elevation (feet AD ²)	Volume Water/Product Removed (gal)	NOTES		
	13-Jan-03	99.56	None Detected	15.91	NA	NA	15.91	83.65	NA			
MW-102	27-Jan-03	99.56	None Detected	15.87	NA	NA	15.87	83.69	NA			
(cont)	18-Apr-03	99.56	None Detected	15.57	NA	NA	15.57	83.99	NA			
	19-May-03	99.56	None Detected	17.76	NA	NA	17.76	81.80	NA			
	13-Jun-03	99.56	None Detected	9.14	NA	NA	9.14	90.42	NA			
	20-Jun-03	99.56	None Detected	11.80	NA	NA	11.80	87.76	NA			
	18-Jul-03	99.56	None Detected	17.95	NA	NA	17.95	81.61	NA			
	22-Aug-03	99.56	None Detected	17.40	NA	NA	17.40	82.16	NA			
	19-Sep-03	99.56	None Detected	17.82	NA	NA	17.82	81.74	NA			
	22-Sep-03	99.56	None Detected	18.34	NA	NA	18.34	81.22	NA			
	21-Oct-03	99.56	None Detected	16.97	NA	NA	16.97	82.59	NA			
	21-Nov-03	. 99.56	None Detected	13.35	NA	• NA	13.35	86.21	NA			
	19-Dec-03	99.56	None Detected	13.87	NA	NA	13.87	85.69	NA			
	9-Jan-04	99.56	None Detected	16.48	NA	NA	16.48	83.08	NA			
	14-Jan-04	99.56	None Detected	17.27	NA	NA	17.27	82.29	NA			
11	20-Feb-04	99.56	None Detected	17.35	NA	NA	17.35	82.21	NA			
1	19-Mar-04	99.56	None Detected	17.28	NA	NA	17.28	82.28	NA			
	25-Apr-04	99.56	None Detected	16.45	NA	NA	16.45	83.11	NA			
	25-May-04	99.56	None Detected	17.04	NA	NA	17.04	. 82.52	NA			
	18-Jun-04	99.50	None Detected	13.40	NA	NA	13.40	86.16	NA			
MW-103	5-Dec-96	99.49	NA	NA	NA	NA	'NA	NA	NA	2-Inch Diameter Monitoring Well Constructed		
	17-Dec-96	99.49	None Detected	13.29	NA	NA	13.29	86.20	NA	, and the second s		
	12-Mar-97	99.49	15.44	15.60	0.16	0.09	15.46	84.03	NPR	Product Sample Collected		
	6-Apr-99	99.49 [.]	15.72	16.26	0.54	0.32	15.78	83.71	NPR			
	26-Apr-99	99.49	15.40	16.29	0.89	0.53	15.49	84.00	NPR			
	27-Oct-99	99.49	16.43	17.81	1.38	0.81	16.57	82.92	1.0			
	09-Dec-99 3	99.49	17.99	18.05	0.06	0.04	18.00	81.49	0.25	Retained water in well sump		
	06-Jan-00 ³	99.49	18.03	18.04	0.01	0.01	18.03	81.46	0.25	Retained water in well sump		
	11-Feb-00	99.49	Dry@18.05	> 18.05	NA	NA	> 18.05	< 81.44	NA	Product/Water Level below bottom of well		
	2-Mar-00	99.49	Dry @ 18.05	> 18.05	NA	NA	> 18.05	< 81.44	NA	Product/Water Level below bottom of well		
	30-Mar-00	99.49	Dry @ 18.05	> 18.05	NA	NA	> 18.05	< 81.44	NA	Product/Water Level below bottom of well		
	25-Apr-00	99.49	Dry @ 18.05	> 18.05	NA	NA	> 18.05	< 81.44	NA	Product/Water Level below bottom of well		
	5-Dec-00	. 99.49	Dry @ 18.05	> 18.05	NA	NA	> 18.05	< 81.44	NA	Product/Water Level below bottom of well		
1 · 1	3-Apr-01	99.46	. *	16.16	NA	NA	16.16	83.30	NA	Chan a Date		

RI Product and Groundwater Level Measurements

Table 1-11 RI Product Hist.xls

NA

٨.

16.16

83.30

NA

Sheen on Probe

NA

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date ·	Measuring	Measured	Measured	Measured	Corrected	T Corrected	Corrected	1 Volume	1
1 '	['	Point	Depth To	Depth To	Product	Product	Denth to Water	Groundwater	Wolune Water/Droduct	
'	1 '	Elevation	Product	Water	Thickness	Thickness	Depuir to mater	Flevation	Water/Fibruce	NOTES
L'	<u> </u> '	(ft AD ²)	(ft TOPVC) 1	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
MW-103A	6-Jun-01	99.46	NA	NA	NA	NA	I NA	NA NA	NA NA	4-Inch Diameter Replacement Well Constructed
ŗ	20-Jun-01	99.46	14.76	17.11	2.35	1.39	15.01	84.45	1.25	Hand Bailed
MW-103A	28-Jun-01	99.46	14.53	17.90	3.37	1.99	14.88	84.58	7.0	Product Rec Syst set up on 103 A
(cont)	25-Jul-01	99.46	17.50	18.83	1.33	0.78	. 17.64	81.82	NPR	Pump Malfunctioning Removed and Cleaned
i r	2-Aug-01	99.46	17.26	17.36	0.10	0.06	17.27	82.19	1.5	Ructom working property
i r	22-Aug-01	99.46	17.53	17.62	0.09	0.05	17.54	81.92	1.75	System working property
l r	4-Sep-01	99.46	17.62	17.76	0.14	0.08	17.63	81.83	1.5	System working property
j r	27-Sep-01	99.46	17.14	17.45	0.31	0.18	17.17	82.29	1.0	System working property
j "	9-Oct-01	99.46	17.63	18.34	0.71	0.42	17.70	81.76	NPR	Dump module replaced system up and punning
i r	26-Oct-01	99.46	17.75	17.78	0.03	0.02	17.75	81.71	0.2	Svetam working property
I P	8-Nov-01	99.46	17.76	17.79	0.03	0.02	17.76	81.70	2.5	System working property
j r	20-Nov-01	99.46	18.03	18.12	0.09	0.05	18.04	81.42	0.2	System working property
l ^y	7-Dec-01	99.46	18.80	18.90	0.10	0.06	18.81	80.65	1	System working property
j - 1	21-Dec-01	99.46	18.00	18.10	0.10	0.06	18.01	81.45	0.2	System working property
1 1	4-Jan-02	99.46	18.00	18.10	0.10	0.06	18.01	81.45	0.2	System working property
l r	16-Jan-02	99.46	i8.20 '	18.31	0.11	0.06	18.21	81.25	2.0	System working property
d P	30-Jan-02	99.46	18.10	18.22	0.12	0.07	18.11	81.35	0.8	System working property
d P	14-Feb-02	99.46	18.12	18.20	0.08	0.05	18.13	81.33	1.4	System working property
d y	1-Mar-02	99.46	18.10	18.15	0.05	0.03	18.11	81.35	0.6	System working properly
d Y	15-Mar-02	99.46	17.88	17.93	0.05	0.03	17.89	81.57	1.4	System working properly
A Y	27-Mar-02	99.46	17.75	17.94	0.19	0.11	17.77	81.69	0.2	System working properly
A P	12-Apr-02	99.46	17.94	18.01	0.07	0.04	17.95	81.51	1.80	System working properly
d P	26-Apr-02	99.46	17.80	17.85	0.05	0.03	17.81	81.65	1 . '	System working property
d P	10-May-02	99.46	17.82	18.01	0.19	0.11	17.84	81.62	1.80	System working property
A P	24-May-02	99.46	17.29	17.83	0.54	0.32	17.35	82.11	.0.6	Pump off on arrival GFI interint had trinned
A P	7-Jun-02	99.46	17.75	18.48	0.73	0.43	17.83	81.63	1.2	Pump shut down on arrival
d P	21-Jun-02	99.46	17.89	18.73	0.84	0.50	17.98	81.48	1 . '	Pump shut down on arrival
a P	3-Jul-02	99.46	17.71	18.13	0.42	0.25	17.75	81.71	1.6	Sustem working property
i P	18-Jul-02	99.46	18.26	18.67	0.41	0.24	18.30	81.16	2.6	System working property
1 P	31-Jul-02	99.46	18.26	18.42	0.16	0.09	18.28	81.18	1.8	System working property
i P	14-Aug-02	99.46	17.32	17.35	0.03	0.02	17.32	82.14	0.2	System working property
a P	28-Aug-02	99.46	17.16	17.36	0.20	0.12	17.18	82.28	0.6	System working property
, P	11-Sep-02	99.46	16.04	16.14	0.10	0.06	16.05	83.41	NPR '	System removed for VEFR
, P	9/12/2002	99.46	16.04	16.14	0.10	0.06	16.05	83.41	20	VEED Activity
, . I	3-Oct-02	99.46	17.03	1 17.71	0.68	1 0.40	1 17.10	00.76	1 "	VERACIVITY
			•	•	1	1 000 1	1 17:10 1	(82.30 J	d 13 y	VEFR Activity

٠.,

F

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume		
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES	
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed		
		(ft AD ')	(ft TOPVC) '	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)		
	18-Oct-02	99.46	16.76.	17.24	0.48	0.28	16.81	82.65	55	VEFR Activity	
	31-Oct-02	99.46	16.68	17.05	0.37	0.22	16.72	82.74	72	VEFR Activity	
MW-103A	14-Nov-02	99.46	16.86	17.40	0.54	0.32	16.92	82.54	20	VEFR Activity	
(cont)	27-Nov-02	99.46	16.54	17.11	0.57	0.34	16.60	82.86	50	VEFR Activity	
	11-Dec-02	99.46	16.85	17.40	0.55	0.32	16.91	82.55	20	VEFR Activity	
	24-Dec-02	99.46	16.75	17.31	0.56	0.33	16.81	82.65	NPR	VEFR canceled due to storm	
	30-Dec-02	99.46	16.65	17.43	0.78	0.46	16.73	82.73	12	EFR Activity	
	13-Jan-03	99.46	16.45	16.95	0.50	0.30	16.50	82.96	24	VEFR Activity	
	27-Jan-03	99.46	16.99	17.52	0.53	0.31	17.05	82.41	20	VEFR Activity	
	18-Apr-03	99.46	17.57	17.64	0.07	0.04	17.58	81.88	65	VEFR ² Conducted	
	19-May-03	99.46	18.04	18,76	0.72	0.42	18.12	81.34	32	VEFR Conducted	
	13-Jun-03	99.46	16.65	17.85	1.20	0.71	16.78	82.68		No VEFR Conducted, Con Ed Transportation had emergency	
	20-Jun-03	99.46	16.72	18.04	1.32	0.78	16.86	82.60	68 .	VEFR Conducted	
	18-Jul-03	99.46	17.58	18.23	0.65	0.38	17.65	81.81	139	VEFR ² Conducted	
	22-Aug-03	99.46	17.56	18.34	0.78	0.46	17.64	81.82		No VEFR Conducted, Con Ed Transportation had emergency	
	19-Sep-03	99.46	18.06	18.99	0.93	0.55	18.16	81.30		VEFR Postponed to Monday September 22, 2003	
	22-Sep-03	99.46	18.14	19.11	0.97	0.57	18.24	81.22	78	VEFR Conducted	
	21-Oct-03	99.46	18.15	18.73	0.58	0.34	18.21	81.25	14	VEFR ² Conducted.	
	21-Nov-03	99.46	Not Monitored	Not Monitored	NA	NA	NA	NA	NA	Well not monitored, Product-only pump system set up in well.	
	19-Dec-03	99.46	17.65	17.70	0.05	0.03	17.66	81.80	NA	No VEFR conducted, product-only pump system working in well.	
	9-Jan-04	99.46	17.80	18.00	0.20	0.12	17.82	81.64	-	No VEFR conducted, product-ony system set up in well.	
	14-Jan-04	99.46	18.70	. 18.92	0.22	0.13	18.72	80.74	-	No VEFR Conducted. Wells monitored for pre-Flood Test.	
	20-Feb-04	99.46	17.72	18.54	0.82	0.48	17.81	81.65	7.5	VEFR Conducted. Volume estimated from total (30 gals)	
	19-Mar-04	99.46	18.38	18.81	0.43	0.25	18.43	81.03	36	VEFR Conducted. Volume estimated from total (180 gals)	
	23-Apr-04	99.46	17.75	18.40	0.65	0.38	17.82	81.64	25	VEFR Conducted. Volume estimated from total (100 gal).	
	25-May-04	99.46	17.18	18.38	1.20	0.71	17.31	82.15	9	VEFR Conducted. Volume estimated from total (18 gal).	
-	18-Jun-04	99.46	17.49	18.00	0.51	0.30	17.54	81.92	37	VEFR Conducted.	
									1		
MW-201	2-Apr-99	99.68	NA	NA	NA	NA	NA	NA	NA	2-Inch Diameter Monitoring Well Constructed	
	6-Apr-99	99.68	15.88	15.88	sheen	NA	15.88	83.80	NPR		
	26-Apr-99	99.68	15.75	16.33	0.58	0.34	15.81	83.87	NPR	Product Sample Collected	
	27-Oct-99	99.68	16.31	19.61	3.30	1.95	16.66	83.02	1.5	Hand bailed	
	9-Dec-99	99.68	18.08	19.46	1.38	0.81	18.22	81.46	1.0	Hand bailed	
	6-Jan-00	99.68	18.55	19.68	1.13	0.67	18.67	81.01	0.5	Hand bailed	
	21-Jan-00	99.68	18.31	no water to 23.7 ⁵	> 5.4	5.09 +/-	NA	NA	0.4	Skimmer Broken	

RI Product and Groundwater Level Measurements Former Maspeth Substation

Ι.

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume		
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES	
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed		
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)		
	11-Feb-00	99.68	. 18.85	no water to 21.0 ⁴	2.15 +/-	1.84 +/-	NA ·	NA	0.5	Retained water in well sump	
	2-Mar-00	99.68	18.60	19.84	1.24	0.73	18.73	80.95	2.0	Hand bailed	
	30-Mar-00	99.68	18.65	23.73	5.08	3.00	19.18	80.50	1.0	Hand bailed	
MW-201	25-Apr-00	99.68	18.23	no water to 23.7 ⁵	> 5.4	5.09 +/-	NA	NA	1.0	Product To Well Bottom	
(cont)	5-Dec-00	99.68	18.76	19.83	1.07	0.63	18.87	80.81	1.0	Hand bailed	
	3-Apr-01	99.67	16.17	19.45	3.28	1.94	16.51	83.16	NPR		
	7-May-01									Product Rec Syst set up on MW-201	
	17-May-01	99.67	15.48	15.53	0.05	0.03	15.49	84.18	4.0	Product Rec Syst removed to MW-203	
	6-Jun-01	99.67	. 14.77	15.51	0.74	0.44	14.85	84.82	NPR		
	20-Jun-01	99:67	14.66	15.83	1.17	0.69	14.78	84.89	0.5	Hand bailed	
	28-Jun-01	99.67	14.51	15.30	0.79	0.47	14.59	85.08	NPR		
	2-Aug-01	99.67	16.42	18.56	2.14	1.26	16.64	83.03	NPR		
	22-Aug-01	99.67	16.73	19.13	2.40	1.42	16.98	82.69	1.0	Hand bailed	
	4-Sep-01	99.67	16.67	17.22	0.55	0.32	16.73	82.94	NPR		
	27-Sep-01	99.67	16.41	18.91	2.50	1.48	16.67	83.00	. 1.0	Hand bailed	
	9-Oct-01	99.67	16.91 -	18.54	1.63	0.96	17.08	82.59	0.5	Hand bailed	
	26-Oct-01	99.67	17.10	18.34	1.24	0.73	17.23	82.44	0.25	Hand bailed	
	8-Nov-01	99.67	17.54	17.90	0.36	0.21	17.58	82.09	trace	Hand bailed	
	20-Nov-01	99.67	17.59	18.01	0.42	0.25	17.63	82.04	trace	Hand bailed	
	7-Dec-01	99.67	17.70	18.32	0.62	0.37	17.77	81.90	trace	Hand bailed	
	21-Dec-01	99.67	17.79	18.50	0.71	0.42	17.86	81.81	NPR		
	4-Jan-02	99.67	17.81	18.93	1.12	0.66	17.93	81.74	0.25	Hand bailed	
	16-Jan-02	99.67	17.73	18.10	0.37	0.22	17.77	81.90	0.25	Hand bailed	
	30-Jan-02	99.67	17.56	19.18	1.62	0.96	17.73	81.94	0.5	Hand bailed	
	14-Feb-02	99.67	17.63	19.46	1.83	1.08	17.82	81.85	1.0	Hand bailed	
	1-Mar-02	99.67	17.92	19.60	1.68	0.99	18.10	81.57	0.5	Hand bailed	
	15-Mar-02	99.67	17.36	19.49	2.13	1.26	17.58	82.09	0.75	Hand bailed	
	27-Mar-02	99.67	17.01	19.58	2.57	1.52	17.28	82.39	0.75	Hand bailed	
	12-Apr-02	99.67	17.00	19.78	2.78	1.64	17.29	82.38	1.00	Hand bailed	
	26-Apr-02	99.67	17.33	19.61	2.28	1.35	17.57	82.10	1.00	Hand bailed	
	10-May-02	99.67	16.96	19.52	2.56	1.51	17.23	82.44	1.00	Hand bailed	
	24-141ay-02	99.07 00.67	16.92	19.38	2.46	1.45	17.18	82.49	NPR		
	7-Jun-02	99.07 00.67	10.92	19.52	2.60	1.53	17.19	82.48	0.75	Hand bailed	
	21-JUN-02	99.0/ 00.47	17.11	19.33	2.22	1.31	17.34	82.33	0.5	Hand bailed	
u (J-Jul-02	77.0 /	17.06	19.34	2.28	1.35	17.30	82.37	· 1	Hand bailed	

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	18-Jul-02	99.67	17.51	19.11	1.60	0.94	17.68	81.99	1	Hand bailed
	31-Jul-02	99.67	17.64	18.88	1.24	0.73	17.77	81.90	1	Hand bailed
	14-Aug-02	99.67	16.76	18.11	1.35	0.80	16.90	82.77	1	Hand bailed
MW-201	28-Aug-02	99.67	16.56	17.61	1.05	0.62	16.67	83.00	1	Hand bailed
(cont)	11-Sep-02	99.67	15.23	16.60	1.37	0.81	15.37	84.30	NPR	
	9/12/2002	99.67	15.23	16.60	1.37	0.81	15.37	84.30	42	VEFR Activity
	3-Oct-02	99.67	16.56	17.45	0.89	0.53	16.65	83.02	25	VEFR Activity
	18-Oct-02	99.67	16.19	17.21	1.02	0.60	16.30	83.37	40	VEFR Activity
	31-Oct-02	99.67	16.34	17.18	0.84	0.50	16.43	83.24	46	VEFR Activity
	14-Nov-02	99.67	16.50	17.34	0.84	0.50	16.59	83.08	65	VEFR Activity
	27-Nov-02	99.67	16.15	17.13	0.98	0.58	16.25	83.42	22	VEFR Activity
	11-Dec-02	99.67	16.60	17.25	0.65	0.38	16.67	83.00	5	VEFR Activity
	24-Dec-02	99.67	16.49	17.41	0.92	0.54	16.59	83.08	NPR	VEFR canceled due to storm
	30-Dec-02	99.67	16.40	17.68	1.28	0.76	16.53	83.14	20	VEFR Activity
	13-Jan-03	99.67	16.05	17.46	1.41	0.83	16.20	83.47	.6	VEFR Activity
	27-Jan-03	99.67	16.86	17.49	0.63	0.37	16.93	82.74	20	VEFR Activity
	18-Apr-03	99.67	17.05	19.80	2.75	1.62	17.34	82.33	15	VEFR Conducted
	19-May-03	99.67	17.68	19.04	1.36	0.80	17.82	81.85	33	VEFR Conducted
	13-Jun-03	99.67	16.23	16.52	0.29	0.17	16.26	83.41	NA	No VEFR Conducted, Con Ed Transportation had emergency
	20-Jun-03	99.67	16.13	16.13	sheen	sheen	16.13	83.54	5	VEFR Conducted
	18-Jul-03	99.67	17.11	18.24	1.13	0.67	17.23	82.44	46	VEFR Conducted
	22-Aug-03	99.67	16.79	19.31	2.52	1.49	17.05	82.62	NA	No VEFR Conducted, Con Ed Transportation had emergency
	19-Sep-03	99.67	17.46	19.58	2.12	1.25	17.68	81.99	NA	VEFR Postponed to Monday September 22, 2003
	22-Sep-03	99.67	17.59	19.62	2.03	1.20	17.80	81.87	15	VEFR Conducted
MW-201A	16-Oct-03	99.68	NM	NA	NA	NA	NA	NA	NA	6-Inch Diameter Replacement Well Constructed
	21-Oct-03	99.68	None Detected	17.55	NA	NA	17.55	82.13	15	VEFR Conducted.
	21-Nov-03	99.68	None Detected	17.22	NA	NA	17.22	82.46	NA	No VEFR Conducted, no product detected in well.
	19-Dec-03	99.68	None Detected	16.78	NA	NA	16.78	82.90	NA	No VEFR Conducted, no product detected in well.
	9-Jan-04	99.68	None Detected	17.08	NA	NA	17.08	82.60	-	No VEFR conducted, no measurable product.
	14-Jan-04	99.68	None Detected	17.23	NA	NA	17.23	82.45	-	No VEFR Conducted. Wells monitored for pre-Flood Test.
	20-Feb-04	99.68	17.30	17.31	0.01	0.01	17.30	82.38	7.5	VEFR Conducted. Volume estimated from total (30 gals)
	19-1V121-04	99.68	17.71	17.76	0.05	0.03	17.72	81.96	36	VEFR Conducted. Volume estimated from total (180 gals)
	25-Api-04	99.00	None Detected	17.10	0.01	0.01	17.09	82.59	25	VEFR Conducted. Volume estimated from total (100 gal).
	18-Jun-04	99.68	16 90	16.77	NA	NA	10.77	82.91	NA	No VEFR Conducted, no product detected in well.
			10.70	10.90	sneen	sneen	16.13	83.55	15	VEFR Conducted.
r (1	· 1	u i	l	l I					

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		$(ft AD^2)$	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
MW-202	31-Mar-99	99.30	NM	NM	NA	NA	NA	NA	NA	2-Inch Diameter Monitoring Well Constructed
	6-Apr-99	99.30	None Detected	15.74	NA	NA	15.74	83.56	NPR	
	26-Apr-99	99.30	15.71	15.74	0.03	0.02	15.71	83.59	NPR	Product Sample Collected
MW-202	27-Oct-99	99.30	16.20	17.98	1.78	1.05	16.39	82.91	1.0	Hand bailed
(cont)	9-Dec-99	99.30	17.90	20.13	2.23	1.32	18.13	81.17	0.5	Hand bailed
	6-Jan-00	99.30	18.38	19.22	0.84	0.50	18.47	80.83	0.5	Hand bailed
	21-Jan-00	99.30	18.27	19.61	1.34	0.79	18.41	80.89	1.0	Hand bailed
	11-Feb-00	99.30	18.51	20.17	1.66	0.98	18.68	80.62	0.5	Hand bailed
	2-Mar-00	99.30	18.52	19.93	1.41	0.83	18.67	80.63	1.0	Hand bailed
	30-Mar-00	99.30	. 18.60	19.77	1.17	0.69	18.72	80.58	0.5	Hand bailed
	25-Apr-00	99.30	18.44	18.83	0.39	0.23	18.48	80.82	1.0	Hand bailed
	5-Dec-00	99.30	18.67	19.99	1.32	0.78	18.81	80.49	1.0	Hand bailed
	3-Apr-01	99.24	16.55	17.11	0.56	0.33	16.61	82.63	NPR	
	6-Jun-01	99.24	14.68	16.31	1.63	0.96	14.85	84.39	NPR	
	20-Jun-01	99.24	14.66	· 16.00	1.34	0.79	14.80	84.44	0.5	Hand bailed
	28-Jun-01	99.24	14.48	15.71	1.23	0.73	14.61	84.63	NPR	
	2-Aug-01	99.24	16.21	18.22	2.01	1.19	16.42	82.82	NPR	
	22-Aug-01	99.24	16.54	18.23	1.69	1.00	16.72	82.52	0.5	Hand bailed
	4-Sep-01	99.24	16.64	18.42	1.78	1.05	16.83	82.41	NPR	
	27-Sep-01	99.24	16.45	17.27	0.82	0.48	16.54	82.70	0.5	Hand bailed
	9-Oct-01	99.24	16.72	17.77	1.05	0.62	16.83	82.41	0.25	Hand bailed
	26-Oct-01	99.24	17.75	18.20	0.45	0.27	17.80	81.44	0.25	Hand bailed
	8-Nov-01	99.24	17.03	19.04	2.01	1.19	17.24	82.00	trace	Hand bailed
	20-Nov-01	99.24	17.07	19.31	2.24	1.32	17.31	81.93	0.5	Hand bailed
	7-Dec-01	99.24	17.18	19.38	2.20	1.30	17.41	81.83	0.5	Hand bailed
	21-Dec-01	99.24	17.30	19.20	1.90	1.12	17.50	81.74	0.5	Hand bailed
	4-Jan-02	99.24	17.37	19.45	2.08	1.23	17.59	81.65	0.5	Hand bailed
	16-Jan-02	99.24	17.36	19.33	1.97	1.16	17.57	81.67	0.5	Hand bailed
	30-Jan-02	99.24	17.28	19.11	1.83	1.08	17.47	81.77	0.5	Hand bailed
	14-Feb-02	99.24	17.37	19.27	1.90	1.12	17.57	81.67	1.0	Hand bailed
	1-Mar-02	99.24	· 17.55	19.60	2.05	1.21	17.77	81.47	0.5	Hand bailed
	15-Mar-02	99.24	17.23	18.59	1.36	0.80	17.37	81.87	0.5	Hand bailed
	27-Mar-02	99.24	17.00	17.09	0.09	0.05	17.01	82.23	trace	Hand bailed
	12-Apr-02	99.24	17.21	18.51	1.30	0.77	17.35	81.89	0.75	Hand bailed
u l	20-Apr-02	99.24	17.38	17.60	0.22	0.13	17.40	81.84	0.5	Hand hailed

\$~

.

RI Product and Groundwater Level Measurements	
Former Maspeth Substation	

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
1		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
, '		Elevation	Product	Water	Thickness	Thickness	1	Elevation	Removed	
1		(ft AD *)	(ft TOPVC) '	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
[]	10-May-02	99.24	17.05	18.88	1.83	1.08	17.24	82.00	0.5	Hand bailed
	24-May-02	99.24	. 16.78	17.37	0.59	0.35	16.84	82.40	NPR	
1	7-Jun-02	99.24	16.94	17.10	0.16	0.09	. 16.96	82.28	trace	Hand bailed
MW-202	21-Jun-02	99.24	17.11	17.85	0.74	0.44	17.19	82.05	0.1	Hand bailed
(cont)	3-Jul-02	99.24	17.11	18.19	1.08	0.64	17.22	82.02	0.5	Hand bailed
. 1	18-Jui-02	99.24	17.31	18.60	1.29	0.76	17.45	81.79	0.8	Hand bailed
!	31-Jul-02	99.24	17.41	19.23	1.82	1.07	17.60	81.64	1.3	Hand bailed
/	14-Aug-02	99.24	16.58	16.94	0.36	0.21	16.62	82.62	0.8	Hand bailed
	28-Aug-02	99.24	16.36	17.41	1.05	0.62	16.47	82.77	0.8	Hand bailed
ļ ,	11-Sep-02	99.24	15.39	16.04	0.65	0.38	15.46	83.78	NPR	
1 1	9/12/2002	99.24	15.39	16.04	0.65	0.38	15.46	83.78	13	VEFR Activity
1	3-Oct-02	99.24	16.51	17.69	1.18	0.70	16.63	82.61	13	VEFR Activity
1 1	18-Oct-02	99.24	15.99	16.52	0.53	0.31	16.05	83.19	27	VEFR Activity
	31-Oct-02	99.24	16.15	16.81	0.66	0.39	16.22	83.02	33	VEFR Activity
1 1	14-Nov-02	99.24	16.35	17.31 ·	0.96	0.57	16.45	82.79	50	VEFR Activity
1	27-Nov-02	99.24	16.00	16.44	0.44	0.26	16.05	83.19	10	VEFR Activity
į 1	11-Dec-02	99.24	16.29	18.20	1.91	1.13	16.49	82.75	5	VEFR Activity
'	24-Dec-02	99.24	16.21	17.69	1.48	0.87	16.37	82.87	NPR	VEFR canceled due to storm
'	30-Dec-02	99.24	16.17	17.09	0.92	0.54	16.27	82.97	30	VEFR Activity
å <i>'</i>	13-Jan-03	99.24	15.98	16.75	0.77	0.45	16.06	83.18	5 '	VEFR Activity
1 1	27-Jan-03	99.24	16.42	18.20	1.78	1.05	16.61	82.63	10	VEFR Activity
	18-Apr-03	99.24	17.04	17.08	0.04	0.02	17.04	82.20	5	VEFR Conducted
. 1	19-May-03	99.24	17.46	19.39	1.93	1.14	17.66	81.58	26	VEFR Conducted
1 1	13-Jun-03	99.24	16.20	16.61	0.41	0.24	16.24	83.00	NPR	No VEFR Conducted, Con Ed Transportation had emergency
	20-Jun-03	99.24	16.12	16.75	0.63	0.37	16.19	83.05	5	VEFR Conducted
1 1	18-Jul-03	99.24	16.95	18.59	1.64	0.97	17.12	82.12	8	VEFR Conducted
1 '	22-Aug-03	99.24	16.89	17.58	0.69	0.41	16.96	82.28	NPR	No VEFR Conducted, Con Ed Transportation had emergency
l . 1	19-Sep-03	99.24	17.40	19.60	2.20	1.30	17.63	81.61	NPR /	VEFR Postponed to Monday September 22, 2003
1 1	22-Sep-03	99.24	17.51	19.76	2.25	1.33	17.75	81.49	5	VEFR Conducted
1 1	21-Oct-03	99.24	17.48	19.55	2.07	1.22	17.70	81.54	7 1	VEFR Conducted.
	21-Nov-03	99.24	17.21	17.90	0.69	0.41	17.28	81.96	15	VEFR Conducted.
	19-Dec-03	99.24	16.75	17.20	0.45	0.27	16.80	82.44	5	VEFR Conducted.
/	9-Jan-04	99.24	17.15	17.55	0.40	0.24	17.19	82.05	1.5	VEFR Conducted. Volume estimated from total (14 gal).
d j	14-Jan-04	99.24	17.20	17.40	0.20	0.12	17.22	82.02	1 !	No VEFR Conducted. Wells monitored for pre-Flood Test.
i e	20-reb-04	99.24	17.20	18.80	1.60	0.94	17.37	. 81.87	7.5	VEFR Conducted. Volume estimated from total (30 gals)

Table 1-11 RJ Product Hist.xls

.

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
[(ft AD ')	(ft TOPVC)	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	19-Mar-04	99.24	17.65	18.71	1.06	0.63	17.76	81.48	36	VEFR Conducted, Volume estimated from total (180 gals)
	23-Apr-04	99.24	17.10	17.32	0.22	0.13	17.12	82.12	25	VEFR Conducted. Volume estimated from total (100 gal)
	25-May-04	99.24	16.79	17.49	0.70	0.41	16.86	82.38	6	VEFR Conducted. Volume estimated from total (18 gal)
	18-Jun-04	99.24	16.91	17.91	1.00	0.59	17.02	82.22	7	VEFR Conducted.
										•
MW-203	2-Apr-99	99.79	NM	NM	NA	NA	NA	NA	NA	2-Inch Diameter Monitoring Well Constructed
	6-Apr-99	99.79	15.79	16.29	0.50	0.30	15.84	83.95	NPR	
	26-Apr-99	99.79	15.82	17.59	1.77	1.04	16.01	83.78	NPR	Product Sample Collected
	27-Oct-99	99.79	16.15	22.21	6.06	3.58	16.79	83.00	2.0	Hand bailed
	9-Dec-99	99.79	17.79	21.33	3.54	2.09	18.16	81.63	1.5	Hand bailed
	6-Jan-00	99.79	18.33	20.54	2.21	1.30	18.56	81.23	1.5	Hand bailed
	21-Jan-00	99.79	18.39	19.89	1.50	0.89	18.55	81.24	1.0	Hand bailed
	11-Feb-00	99.79	18.70	19.78	1.08	0.64	18.81	80.98	1.0	Hand bailed
	2-Mar-00	99.79	18.77	20.02	1.25	0.74	18.90	80.89	1.0	Hand bailed
	30-Mar-00	99.79	18.65	20.69	2.04	1.20	18.86	80.93	1.0	Hand bailed
	25-Apr-00	99.79	18.52	no water to 23.7 ⁵	> 5.2	4.89 +/-	NA	NA	1.0	Hand bailed
	5-Dec-00	99.79	18.90	21.26	2.36	1.39	19.15	80.64	1.0	Hand bailed
	3-Apr-01	99.71	15.87	20.95	5.08	3.00 [.]	16.40	83.31	NPR	
•	17-May-01	99.71	14.69	21.90	7.21	4.25	15.45	84.26	4.0	Product Rec Syst set up on MW-203
	31-May-01	99.71	14.97	15.59	0.62	0.37	15.04	84.67	4.5	System working property
	6-Jun-01	99.71	NM	NM	NM	NM	NM	NM	NA	Elec. To system vandalized
	20-Jun-01	99.71	17.09	17.89	0.80	0.47	17.17	82.54	NPR	
	28-Jun-01	99.71	14.37	14.43	0.06	0.04	14:38	85.33	NPR	Product Rec Syst removed to MW-103A
	2-Aug-01	99.71	16.31	17.05	0.74	0.44	16.39	83.32	NPR	
	22-Aug-01	99.71	16.59	17.26	0.67	0.40	16.66	83.05	0.5	Hand bailed
	4-Sep-01	99.71	16.92	17.25	0.33	0.19	16.95	82.76	NPR	
	27-Sep-01	99.71	16.16	.17.15	0.99	0.58	16.26	83.45	0.5	Hand hailed
·	9-Oct-01	99.71	16.59	17.21	0.62	0.37	16.66	83.05	0.25	Hand bailed
	26-Oct-01	99.71	16.71	17.26	0.55	0.32	16.77	82.94	0.25	Hand bailed
	8-Nov-01	99.71	17.03	17.22	0.19	0.11	17.05	82.66	trace	Hand bailed
	20-Nov-01	99.71	17.13	17.31	0.18	0.11	17.15	82.56	NPR	
	7-Dec-01	99.71	17.23	17.55	0.32	0.19	17.26	82.45	trace	Hand bailed
	21-Dec-01	99.71	17.30	17.60	0.30	0.18	17.33	82.38	NPR	
	4-Jan-02	99.71	17.30	17.60	0.30	0.18	17.33	82,38	trace	Hand hailed
	16-Jan-02	99.71	17.12	17.38	0.26	0.15	17 15	07.56		
							17.15	02.30	0.1	Hand bailed

.

Table 1-11

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume		
l .	1 1	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES	
	1 1	Elevation	Product	Water	Thickness	Thickness	· ·	Elevation	Removed		
	<u> </u>	(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) 1	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)		
	30-Jan-02	99.71	16.98	17.19	0.21	0.12	17.00	82.71	trace	Hand bailed	
	14-Feb-02 /	99.71	17.02	17.26	0.24	0.14	17.05	82.66	trace	Hand bailed	
	1-Mar-02	99.71	17.20	17.55	0.35	0.21	17.24	82.47	trace	Hand bailed	
	15-Mar-02	99.71	16.55	16.92	0.37	0.22	16.59	83.12	0.25	Hand bailed	
MW-203	27-Mar-02	99.71	15.71	15.89	0.18	0.11	15.73	83.98	trace	Hand bailed	
(cont)	12-Apr-02	99.71	16.39	16.87	0.48	0.28	16.44	83.27	trace	Hand bailed	
,	26-Apr-02	99.71	16.35	16.80	0.45	0.27	16.40	83.31	0.15	Hand bailed	
	10-May-02	99.71	15.98	17.02	1.04	0.61	16.09	83.62	0.25	Hand bailed	
	24-May-02	99.71	15.31	17.05	1,74	1.03	15.49	84.22	NPR		
/	7-Jun-02	99.71	14.25	16.82	2.57	1.52	14.52	85.19	0.75	Hand bailed	
1 1	21-Jun-02	99.71	15.92	17.40	1.48	0.87	16.08	83.63	0.25	Hand bailed	
i '	3-Jul-02 J	99.71	16.03	17.22	1.19	0.70	16.15	83.56	0.5	Hand bailed	
1 '	18-Jul-02	99.71	16.52	16.58	0.06	0.04	16.53	83.18	0.25	Hand bailed	
1 '	31-Jul-02 J	99.71	16.81	17.56	0.75	0.44	16.89	82.82	0.33	Hand bailed	
/	14-Aug-02	99.71	16.13	16.19	0.06	0.04	16.14	83.57	0.25	Hand bailed	
1 '	28-Aug-02	99.71	16.21	17.02	0.81	0.48	16.30	83.41	0.66	Hand bailed	
1 '	11-Sep-02 1	99.71	15.13	16.86	1.73	1.02	15.31	84.40	NPR		
l '	12-Sep-02	99.71	15.13	16.86	1.73	1.02	15.31	84.40	20	VEFR Activity	
i '	3-Oct-02 /	99.71	15.87	17.36	1.49	0.88	16.03	83.68	14	VEFR Activity	
· · /	18-Oct-02	99.71	14.97	17.00	2.03	1.20	15.18	84.53	18	VEFR Activity	
1 '	31-Oct-02	99.71	16.02	17.15	1.13	0.67	16.14	83.57	21	VEFR Activity	
i '	14-Nov-02	99.71	16.68	18.00	1.32	0.78	16.82	82.89	25	VEFR Activity	
l .'	27-Nov-02	99.71	16.39	17.70	1.31	0.77	16.53	83.18	18	VEFR Activity	
l '	11-Dec-02	99.71	16.75	17.40	0.65	0.38	16.82	82.89	15	VEFR Activity	
1 '	24-Dec-02	99.71	16.62	. 18.96	2.34	1.38	16.87	82.84	NPR	VEFR canceled due to storm	
4 !	30-Dec-02	99.71	16.50	18.14	1.64	0.97	16.67	83.04	33	VEFR Activity	
1 '	13-Jan-03	99.71	16.30	17.20	0.90	0.53	16.39	83.32	1 10	VEFR Activity	
l I	27-Jan-03	99.71	17.02	17.80	0.78	0.46	17.10	82.61	10	VEFR Activity	
1 1	18-Apr-03	99.71	17.33	17.35	0.02	0.01	17.33	82.38	1 15	VEFR Conducted	
1 · · /	19-May-03	99.71	18.01	18.78	0.77	0.45	18.09	81.62	9 '	/EFR Conducted	
I	13-Jun-03	99.71	16.25	20.30	4.05	2.39	16.68	83.03	NPR	No VEFR Conducted, Con Ed Transportation had emergency	
	10-1-1-03	99./1	16.38	18.05	1.67	0.99	16.56	83.15	25 /	VEFR Conducted	
I I	27-A110-03	99.71 P	17.4/	1 18.46 1	0.99	0.58	17.57	82.14	1 5 '	VEFR Conducted	
1 ľ	19-Sen-03	00 71	17.25	1 18.03 1	0.80	0.47 /	1 17.31	82.40	NPR /	No VEFR Conducted, Con Ed Transportation had emergency	
	10-000-001	22./1 J	1 17.79 1	18.77	0.98	0.58	17.89	81.82	NPR	VEFR Postponed to Monday September 22, 2003	

117-11	D .				·····		1			
weii	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth 10	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation (A A D ²)	Product	Water	Thickness	Thickness		Elevation	Removed	
	<u>_</u>	(TAD)		(# IOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	22-Sep-03	99.71	17.90	18.82	0.92	0.54	18.00	81.71	2	VEFR Conducted
MW-203A	17-Oct-03	99.84	NA	NA	NA	NA	NA	NA	NA	6-Inch Diameter Replacement Well Constructed
	21-Oct-03	99.84	None Detected	16.48	NA	NA	16.48	83.36	27	VEFR Conducted.
	21-Nov-03	99.84	None Detected	15.41	NA	NA	15.41	84.43	NPR	No VEFR Conducted, no product detected in well.
	19-Dec-03	99.84	14.52	14.52	sheen	NA	14.52	85.32	NPR	No VEFR Conducted, no product detected in well.
MW-203A	9-Jan-04	99.84	15.34	15.34	sheen	NA	15.34	84.50	1.5	VEFR Conducted. Volume estimated from total (14 gal).
(cont)	14-Jan-04	99.84	None Detected	15.69	NA	NA	15.69	84.15	-	No VEFR Conducted. Wells monitored for pre-Flood Test.
	20-Feb-04	99.84	None Detected	17.70	NA	NA	17.70	82.14	-	No VEFR conducted, no measurable product.
	19-Mar-04	99.84	17.61	17.68	0.07	0.04	17.62	82.22	36	VEFR Conducted. Volume estimated from total (180 gals)
	23-Apr-04	99.84	None Detected	15.62	NA	NA ·	15.62	84.22	-	No VEFR conducted, no measurable product.
	25-May-04	99.84	None Detected	15.54	NA	NA	15.54	84.30	-	No VEFR conducted, no measurable product.
	18-Jun-04	99.84	None Detected	15.78	NA	NA	15.78	84.06	-	No VEFR conducted, no measurable product.
MW-301	8-Jan-01	99.50	NM	NM	NA _	NA	NA	NA	NA	Well Constructed
	15-Jan-01	99.50	None Detected	.15.07	NA	NA	15.07	84.43	NA	
	1-Feb-01	99.50	None Detected	13.02	NA	NA	13.02	86.48	NA	
	3-Apr-01	99.50	None Detected	12.08	NA	NA	12.08	87.42	NA	
	27-Sep-01	99.50	None Detected	13.19	NA	NA	13.19	86.31	NA	
	9-Oct-01	99.50	14.90	15.02	0.12	0.07	14.91	84.59	NPR	Presence of oil called in to Mark Warrell
	26-Oct-01	99.50	15.30	15.63	0.33	0.19	15.33	84.17	NPR	Placed Soakease in well
	8-Nov-01	99.50	15.75	15.77	0.02	0.01	15.75	83.75	trace	Replaced Soakease in well
	20-Nov-01	99.50	None Detected	15.86	NA	NA	15.86	83.64	NA	Soakease removed from MW-301
	7-Dec-01	99.50	15.79	16.11	0.32	0.19	15.82	83.68	NPR	
	21-Dec-01	99.50	None Detected	14.87	NA	NA	14.87	84.63	NA	
	4-Jan-02	99.50	15.50	15.68	0.18	0.11	15.52	83.98	trace	Soakease placed in MW-301
	16-Jan-02	99.50	15.15	15.26	0.11	0.06	15.16	84 34	NPR	Re-placed Soakease in well with skimmer
	30-Jan-02	99.50	14.88	15.00	0.12	0.07	14.89	84.61	trace	Hand bailed
	14-Feb-02	99.50	15.27	15.42	0.15	0.09	15.29	84.21	trace	Hand bailed
	1-Mar-02	99.50	16.60	16.86	0.26	0.15	16.63	82.87	NDD	
	15-Mar-02	99.50	14.76	14.88	0.12	0.07	14.77	94 72		
	27-Mar-02	99.50	12.67	12.78	0.11	0.07	12.69	96.07	INFR	Hand bailed
	12-Apr-02	99.50	14.84	15.03	0.19	0.00	14.86	00.02 84.64	trace	
	26-Apr-02	99.50	13.71	13.98	0.27	0.16	13.74	04.04 85.76	trace	Hand bailed
	10-May-02	99.50	14.24	14 60	0.36	0.21	14.78	05.70	trace	
	24-May-02	99.50	13.47	13.71	0.30	0.21	14.20	03.22	trace	riano baneo
• •			1 13.47	15./1	0.24	0.14	13.50	86.00	NPR	

RI Product and Groundwater Level Measurements Former Maspeth Substation

Table 1-11 RI Product Hist.xls

· 1

	1								
Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
	Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
	(ft AD *)	(ft TOPVC) '	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	· ·
7-Jun-02	99.50	12.41	12.59	0.18	0.11	12.43	87.07	trace	Hand bailed
21-Jun-02	99.50	14.56	14.91	0.35	0.21	14.60	84.90	trace	Hand bailed
3-Jul-02	99.50	14.86	15.13	0.27	0.16	. 14.89	84.61	trace	Hand bailed
18-Jul-02	99.50	15.64	15.99	0.35	0.21	15.68	83.82	trace	Hand bailed
31-Jul-02	99.50	15.72	16.14	0.42	0.25	15.76	83.74	0.15	Hand bailed
14-Aug-02	99 .50	15.14	15.25	0.11	0.06	15.15	84.35	0.15	Hand bailed
28-Aug-02	99.50	15.04	15.24	0.20	0.12	15.06	84.44	0.15	Hand bailed
11-Sep-02	99.50	12.87	13.26	0.39	0.23	12.91	86.59	NPR	
9/12/2002	99.50	12.87	13.26	0.39	0.23	12.91	86.59	0.25	Hand hailed
3-Oct-02	99.50	13.26	13.61	0.35	0.21	13.30	86.20	0.25	Hand bailed
18-Oct-02	99.50	11.74	12.55	0.81	0.48	11.83	87.67	0.12	Hand bailed
31-Oct-02	99.50	12.97	13.42	0.45	0.27	13.02	86.48	0.12	Hand bailed
14-Nov-02	99.50	12.45	12.85	0.40	0.24	12.49	87.01	0.13	Hand bailed
27-Nov-02	99.50	Oil on Probe	13.13	NA	NA	13.13	86.37	0.13	Hand hailed
11-Dec-02	99.50	13.95	14.10	0.15	0.09	13.97	85.53	0.13	Hand bailed
24-Dec-02	99.50	13.20	13.42	0.22	0.13	13.22	86.28	NPR	
30-Dec-02	99.50	12.79	13.02	0.23	0.14	12.81	86.69	trace	Hand bailed
13-Jan-03	99.50	13.22	13.40	0.18	0.11	13.24	86.26	trace	Hand bailed
27-Jan-03	99.50	13.41	13.60	0.19	0.11	13.43	86.07	trace	Hand bailed
18-Apr-03	99.50	None Detected	14.41	NA	NA	14.41	85.09	trace	Bailed trace amount
19-May-03	99.50	13.90	13.96	0.06	0.04	13.91	85.59	trace	Bailed 8 ounces +/-
13-Jun-03	99.50	16.43	16.70	0.27	0.16	16.46	83.04	trace	Bailed 8 ounces +/-
20-Jun-03	99.50	14.41	14.50	0.09	0.05	14.42	85.08	trace	Bailed 8 ounces +/-
18-Jul-03	99.50	14.86	15.15	0.29	0.17	14.89	84.61	0.25	Bailed 0.25 gallons
22-Aug-03	99.50	14.17	14.53	0.36	0.21	14.21	85.29	trace	Bailed trace amount
19-Sep-03	99.50	15.35	15.61	0.26	0.15	15.38	84.12	0.5	Bailed 0.5 gallon
22-Sep-03	99.50	15.61	15.61	sheen	NA	15.61	83.89	NPR	-
21-Oct-03	99.50	16.00	16.19	0.19	0.11	16.02	83.48	trace	Bailed trace amount.
21-Nov-03	99.50	None Detected	13.03	NA	NA	13.03	86.47	0.25	Replaced spent Soakease (TM) with new one.

RI Product and Groundwater Level Measurements Former Maspeth Substation

19-Dec-03

9-Jan-04

14-Jan-04

20-Feb-04

19-Mar-04

23-Apr-04

99.50

99.50

99.50

99.50

99.50

99.50

13.00

14.15

None Detected

14.56

None Detected

13.75

13.00

14.15

14.25

14.57

12.76

13.75

sheen

sheen

NA

0.01

NA

sheen

NA

NA

NA

0.01

NA

NA

Well

MW-301 (cont)

13.00

14.15

14.25

14.56

12.76

13.75

86.50

85.35

85.25

84.94

86.74

85.75

0.25

0.25

NA

NA

NA

trace

Replaced spent Soakease (TM) with new one.

Replaced Soakease

bailed trace amount

Inspected/returned soakease

Inspected/returned soakease

RI Product and Groundwater Level Measurements	
Former Maspeth Substation	

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness	1	Elevation	Removed	
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	25-May-04	99.50	None Detected	14.16	NA	· NA	14.16	85.34	NA	
	18-Jun-04	99.50	14.75	14.76	0.01	0.01	14.75	84.75	trace	bailed trace amount
MW-302	14-Sep-00	99.22	NM	NM	NA	NA	NA	NA	NA	Well Constructed
	5-Dec-00	99.22	13.56	13.70	0.14	0.08	13.57	85.65	NPR	
	3-Apr-01	99.15	None Detected	8.82	NA	NA	8.82	90.33	NA	
MW-302	20-Jun-01	99.15	None Detected	9.62	NA	NA	9.62	89.53	NA	
(cont)	22-Aug-01	99. 15	13.09	13.12	0.03	0.02	13.09	86.06	NPR	· · · · · · · · · · · · · · · · · · ·
	4-Sep-01	99.15	13.41	13.44	0.03	0.02	13.41	85.74	NPR	
	27-Sep-01	99.15	10.1	10.11	0.01	0.01	10.10	89.05	NPR	
	9-Oct-01	99 .15	None Detected	12.71	NA	NA	12.71	86.44	NA	
	26-Oct-01	99.15	None Detected	13.46	NA	NA	13.46	85.69	NA	•
	8-Nov-01	99 .15	14.28	14.30	0.02	• 0.01	14.28	84.87	NPR	
	20-Nov-01	99.15	14.03	14.04	0.01	0.01	14.03	85.12	NPR	
	7-Dec-01	99.15	14.16	14.21	0.05	0.03	14.17	84.98	NPR	
	21-Dec-01	99.15	None Detected	12.75	NA	NA	12.75	86.40	NA	
	4-Jan-02	99.15	13.64	13.66	0.02	0.01	13.64	85.51	NPR	
	16-Jan-02	99.15	13.29	13.30	0.01	0.01	13.29	85.86	trace	0.01 ft of product in skimmer
	30-Jan-02	99.15	13.03	13.04	0.01	0.01	13.03	86.12	trace	0.01 ft of product in skimmer
	14-Feb-02	99.15	None Detected	13.54	NA	NA	13.54	85.61	NA	0.01 ft of product in skimmer
	1-Mar-02	99.15	14.20	14.25	0.05	0.03	14.21	84.94	NPR	
	15-Mar-02	99.15	12.89	12.91	0.02	0.01	12.89	86.26	trace	0.2 ft product in skimmer
	27-Mar-02	99.15	7.06	7.07	0.01	0.01	7.06	92.09	trace	0.01 ft product in skimmer
	12-Apr-02	99.15	None Detected	13.04	NA	NA	13.04	86.11	NA	
	26-Apr-02	99.15	None Detected	9.20	NA	NA	9.20	89.95	NA	
· · ·	10-May-02	99.15	12.44	12.44	0.00	0.00	12.44	86.71	trace	0.01 ft product in skimmer
	24-May-02	99.15	None Detected	11.25	NA	NA	11.25	87.90	NA	
	7-Jun-02	99.15	5.97	5.97	0.00	0.00	5.97	93.18	NPR	Well seal damaged/replaced
	21-Jun-02	99.15	None Detected	12.41	NA	NA	12.41	86.74	NA	
	3-Jul-02	99.15	None Detected	12.93	NA	NA	12.93	86.22	NA	
	18-Jul-02	99.15	None Detected	13.93	NA	NA	13.93	85.22	NA	
	31-Jul-02	99.15	None Detected	13.82	NA	NA	13.82	85.33	NA	
	14-Aug-02	99.15	None Detected	13.58	NA	NA	13.58	85.57	NA	
	28-Aug-02	99.15	None Detected	13.32	NA	NA	13.32	85.83	NA	
1 1	11-Sep-02	99.15	None Detected	11.26	NA	NA	11.26	87.89	NA	

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	3-Oct-02	99.15	None Detected	11.31	NA	NA	11.31	87.84	NA	
	18-Oct-02	99.15	None Detected	7.84	NA	NA	7.84	91.31	NA	
	31-Oct-02	99.15	None Detected	10.73	NA	NA	10.73	88.42	NA	
	14-Nov-02	99. 15	None Detected	8.12	NA	NA	8.12	91.03	NA	
	27-Nov-02	99.15	None Detected	10.04	NA	NA	10.04	89.11	NA	
	11-Dec-02	99.15	None Detected	12.00	NA	NA	12.00	87.15	NA	
MW-302	24-Dec-02	99.15	None Detected	10.39	NA	NA	10.39	88.76	NA	
(cont)	30-Dec-02	99.15	None Detected	9.51	NA	NA	9.51	89.64	NA	
	13-Jan-03	99.15	None Detected	11.14	NA	NA	11.14	88.01	NA	
	27-Jan-03	99.15	None Detected	12.92	NA	NA	12.92	86.23	NA ·	
	18-Apr-03	99.15	None Detected	10.43	NA	NA	10.43	88.72	NA	
	19-May-03	99.15	None Detected	13.41	NA	NA	13.4,1	85.74	NA	
	13-Jun-03	99.15	None Detected	6.20	NA	NA	6.20	92.95	NA	
	20-Jun-03	99.15	None Detected	8.15	NA -	NA	8.15	91.00	NA	. "
	18-Jul-03	99.15	13.28	13.29	0.01	. 0.01	13.28	85.87	trace	Bailed trace amount
	22-Aug-03	99.15	None Detected	12.61	NA	NA	12.61	86.54	NA	
	19-Sep-03	99.15	14.44	14.47	0.03	0.02	14.44	84.71	trace	Bailed trace amount
	22-Sep-03	99.15	13.54	13.54	sheen	NA	13.54	85.61	NPR	
	21-Oct-03	99.15	None Detected	12.41	NA	NA	12.41	86.74	NA	
	21-Nov-03	99.15	None Detected	6.96	NA	NA	6.96	92.19	NA	
	19-Dec-03	99.15	None Detected	8.31	NA	NA	8.31	90.84	NA.	
	9-Jan-04	99.15	None Detected	11.46	NA	NA	11.46	87.69	NA	
	14-Jan-04	99.15	None Detected	12.45	NA	NA	12.45	86.70	NA	
	20-reb-04	99.15	None Detected	12.91	NA	NA	12.91	86.24	NA	
	19-Mar-04	99.15	None Detected	9.24	NA	NA	9.24	89.91	NA	
	25-Apr-04	99.15	None Detected	11.54	NA	NA	11.54	87.61	NA	
	23-iviay-04	99.15	None Detected	12.02	NA	NA	12.02	87.13	NA	
	10-JUII-04	99.15	INONE Detected	11.30	NA	NA	11.30	87.85	NA	
MW-303	15-Sep-00	99.52	NM	NM	NA	NA	NA	NA	NA	Well Constructed
	5-Dec-00	99.52	None Detected	17.39	NA	NA	17 39	82.13	NA	
	3-Apr-01	99.52	None Detected	15.46	NA	NA	15.46	84.06	NA	
4	27-Sep-01	99.52	None Detected	15.18	NA	NA	15.40	84 34	NA	
	9-Oct-01	99.52	None Detected	15.66	NA	NA	15.66	83.86	NA	
	26-Oct-01	99.52	None Detected	15.74	NA	NA	15.00	00.00		
1 1	8 May 61	00.50		13.14		INA	15./4	83.78	NA I	

RI Product and Groundwater Level Measurements Former Masneth Substation

Table 1-11 RI Product Hist.xls

99.52

None Detected

16.05

NA

8-Nov-01

 $\sim -\infty$

~

16.05

83.47

NA

NA

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD *)	(ft TOPVC)	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	20-Nov-01	99.52	None Detected	16.03	NA	NA	16.03	83.49	NA	
	7-Dec-01	99.52	None Detected	16.19	NA	NA	16.19	83.33	NA	
	21-Dec-01	99.52	None Detected	16.15	NA	NA	16.15	83.37	NA	
	4-Jan-02	99.52	None Detected	16.32	NA ·	NA	16.32	83.20	NA	
	16-Jan-02	99.52	None Detected	. 16.26	NA	NA	16.26	83.26	NA	
	30-Jan-02	99.52	None Detected	16.13	NA	NA	16.13	83.39	NA	
MW-303	14-Feb-02	99.52	None Detected	16.31	NA	NA	16.31	83.21	NA	
(cont)	1-Mar-02	99.52	None Detected	16.50	NA	NA	16.50	83.02	NA	
	15-Mar-02	99.52	None Detected	16.03	NA	NA	16.03	83.49	NA	
	27-Mar-02	99.52	None Detected	15.12	NA	NA	15.12	84.40	NA	
	12-Apr-02	99.52	None Detected	15.96	NA	NA	15.96	83.56	NA	
	26-Apr-02	99.52	None Detected	15.84	NA	NA	15.84	83.68	NA	
	10-May-02	99.52	None Detected	15.66	NA	NA	15.66	83.86	NA	
	24-May-02	99.52	None Detected	15.29	NA NA	NA	15.29	84.23	NA	
	7-Jun-02	99.52	None Detected	15.38	NA	NA	15.38	84.14	NA	
	21-Jun-02	99.52	None Detected	15.62	NA	NA	15.62	83.90	NA	
	3-Jul-02	99.52	None Detected	15.57	NA	NA	15.57	83.95	NA	
	18-Jul-02	99.52	None Detected	15.92	NA	NA	15.92	83.60	NA	
	31-Jul-02	99.52	None Detected	16.10	NA	NA	16.10	83.42	NA	
	14-Aug-02	99.52	None Detected	15.41	NA	NA	15.41	84.11	NA	
	28-Aug-02	99.52	None Detected	15.29	NA	NA	15.29	84.23	. NA	
	11-Sep-02	99.52	None Detected	14.14	NA	NA	14.14	85.38	NA	
	3-Oct-02	99.52	None Detected	15.12	NA	NA	15.12	84.40	NA	
	18-Oct-02	99.52	None Detected	14.55	NA	NA	14.55	84.97	NA	
	31-Oct-02	99.52	None Detected	14.79	NA	NA	14.79	84.73	NA	
	14-Nov-02	99.52	None Detected	14.79	NA	NA	14.79	84.73	NA	
	27-Nov-02	99.52	None Detected	14.70	NA	NA	14.70	84.82	NA	
	11-Dec-02	99.52	None Detected	15.05	NA	NA	15.05	84.47	NA	
	24-Dec-02	99.52	None Detected	14.78	NA .	NA	14.78	84.74	NA	
· ·	30-Dec-02	99.52	None Detected	14.66	NA	NA	14.66	84.86	NA	
	13-Jan-03	99.52	None Detected	14.60	NA	NA	14.60	84.92	NA	
	27-Jan-03	99.52	None Detected	15.19	NA	NA	15.19	84.33	NA	
	18-Apr-03	99.52	None Detected	15.02	NA	NA	15.02	84.50	NA	
	19-May-03	99.5Z	None Detected	15.76	NA	NA	15.76	83.76	NA	
1 1	5-JUN-03	99.52	None Detected	14.50	NA	NA	14.50	85.02	NA	

í

RI Product and Groundwater Level Measurements Former Maspeth Substation

	Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
			Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
			Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
			(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
		20-Jun-03	99.52	None Detected	14.17	NA	NA	14.17	85.35	NA	
		18-Jul-03	99.52	None Detected	15.34	NA	NA	15.34	84.18	NA	
		22-Aug-03	99.52	None Detected	15.27	NA	NA ·	15.27	84.25	NA	
	· · ·	19-Sep-03	99.52	None Detected	15.82	NA	NA	15.82	83.70	NA	
		22-Sep-03	99.52	None Detected	15.98	NA	NA	15.98	83.54	NA	
		21-Oct-03	99.52	None Detected	15.80	NA	NA	15.80	83.72	NA	
		21-Nov-03	99.52	None Detected	15.33	NA	NA	15.33	84.19	NA	
	MW-303	19-Dec-03	99.52	None Detected	14.90	NA	NA	14.90	84.62	NA	
. 1	(cont)	9-Jan-04	99.52	None Detected	15.43	NA	NA	15.43	84.09	NA	
		14-Jan-04	99.52	None Detected	15.62	NA	NA	15.62	83.90	NA	
		20-Feb-04	99.52	None Detected	15.58	NA	NA	15.58	83.94	NA	
		19-Mar-04	99.52	None Detected	15.23	NA	NA	15.23	84.29	NA	
		23-Apr-04	99.52	None Detected	15.15	NA	NA	15.15	84.37	NA	
		25-May-04	99.52	None Detected	14.97	NA	NA	14.97	84.55	NA	
		18-Jun-04	99.52	None Detected	15.11	NA	NA	15.11	84.41	NA	
	MW-304	18-Sep-00	98.62	NM	NM	NA	NA	NA	· NA	NA	Well Constructed
		5-Dec-00	98.62	None Detected	17.36	· NA	NA	17.36	81.26	NA	
		3-Apr-01	98.55	None Detected	15.08	NA	NA	15.08	83.47	NA	
		27-Sep-01	98.55	None Detected	15.39	NA	NA	15.39	83.16	NA	
		9-Oct-01	98.55	None Detected	15.67	NA	' NA	15.67	82.88	NA	
		26-Oct-01	98.55	None Detected	16.65	NA	NA	16.65	81.90	NA	
		8-Nov-01	98.55	None Detected	15.84	NA	NA	15.84	82.71	NA	
		20-Nov-01	98.55	None Detected	15.84	NA	NA	15.84	82.71	NA	
		7-Dec-01	98.55	None Detected	15.85	NA	NA	15.85	82.70	NA	
		21-Dec-01	98.55	None Detected	16.00	NA	NA	16.00	82.55	NA	
		4-Jan-02	98.55	None Detected	16.10	NA	NA	16.10	82.45	NA	
		16-Jan-02	98.55	None Detected	16.07	NA	NA	16.07	82.48	NA	
		30-Jan-02	98.55	None Detected	15.90	NA	NA	15.90	82.65	NA	
		14-Feb-02	98.55	None Detected	16.04	NA	NA	16.04	82.51	NA	
		1-Mar-02	98.55	None Detected	16.20	NA	· NA	16.20	82.35	NA	
		15-Mar-02	98.55	None Detected	15.84	NA .	NA	15.84	82.71	NA	
		27-Mar-02	98.55	None Detected	15.61	NA	NA	15.61	82.94	NA	
		12-Apr-02	98.55	None Detected	15.81	NA	NA	15.81	82.74	NA	
l		26-Арг-02	98.55	None Detected	15.80	NA	NA	15.80	82.75	NA	

N,

RI Product and Groundwater Level Measurements Former Maspeth Substation

wen	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	· · · · · · · · · · · · · · · · · · ·
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness	-	Elevation	Removed	
		(ft AD ²)	(ft TOPVC) '	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	10-May-02	98.55	None Detected	15.56	NA	NA	15.56	82.99	NA	
	24-May-02	98.55	None Detected	15.28	NA	NA	15.28	83.27	NA	
	7-Jun-02	98.55	None Detected	15.55	NA	• NA	15.55	83.00	NA	
	21-Jun-02	98.55	None Detected	15.57	NA	NA	15.57	82.98	NA	·
	3-Jul-02	98.55	None Detected	15.51	NA	NA	15.51	83.04	NA	·
	18-Jul-02	98.55	None Detected	15.73	NA	NA	15.73	82.82	NA	
	31-Jul-02	98.55	None Detected	15.85	NA	NA	15.85	82.70	NA	
MW-304	14-Aug-02	98.55	None Detected	15.46	NA	NA	15.46	83.09	NA	
(cont)	28-Aug-02	98.55	None Detected	15.11	NA	NA	15.11	83.44	NA	
	11-Sep-02	98.55	None Detected	14.05	NA	NA	14.05	84.50	NA	
	-3-Oct-02	98.55	None Detected	14.99	NA	NA	14.99	83.56	NA	
Ì	18-Oct-02	98.55	None Detected	14.81	NA	NA	14.81	83.74	NA	
	31-Oct-02	98.55	None Detected	14.73	NA	NA	14.73	83.82	NA	
	14-Nov-02	98.55	None Detected	14.86	NA	NA	14.86	83.69	NA	
	27-Nov-02	98.55	None Detected	14.72	NA	NA	14.72	83.83	NA	
	11-Dec-02	98.55	None Detected	14.90	NA	NA	14.90	83.65	NA	
1	24-Dec-02	98.55	None Detected	14.78	NA	NA	14.78	83.77	NA	
1	30-Dec-02	98.55	None Detected	14.74	NA	NA	14.74	83.81	NA	
	13-Jan-03	98.55	None Detected	14.60	NA	NA	14.60	83.95	NA	
	27-Jan-03	98.55	None Detected	14.89	NA	NA	14.89	83.66	NA	
	18-Apr-03	98.55	None Detected	15.37	NA	NA	15.37	83.18	NA	
	19-May-03	98.55	None Detected	15.61	NA	NA	15.61	82.94	NA	
	13-Jun-03	98.55	None Detected	14.74	NA	NA	14.74	83.81	NA	
	20-Jun-03	98.55	None Detected	14.28	NA	NA	14.28	84.27	NA	
	18-Jul-03	98.55	None Detected	15.02	NA	NA	15.02	83.53	NA	
	22-Aug-03	98.55	None Detected	15.03	NA	NA	15.03	83.52	NA	
1	19-Sep-03	98.55	None Detected	15.39	NA	NA	15.39	83.16	NA	
·	22-Sep-03	98.55	None Detected	15.56	NA	NA	15.56	82.99	NA	
	21-Oct-03	98.55	None Detected	15.45	NA	NA	15.45	83.10	NA	
5	21-Nov-03	98.55	None Detected	15.39	NA	NA	15.39	83.16	NA	
	19-Dec-03	98.55	None Detected	15.02	NA	NA	15.02	83.53	NA	
· .	9-Jan-04	. 98.55	None Detected	15.22	NA	NA	15.22	83.33	NA ⁺	
	20-Feb-04	98.55	None Detected	15.29	NA	NA	15.29	83.26	NA	
	19-Mar-04	98.55	None Detected	15.28	NA	NA	15.28	83.27	NA	
41		<i>70.00</i>	None Detected	15.04	NA	NA	15.04	83.51	NA	

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(rail)	
	23-Apr-04	98.55	None Detected	15.14	NA	NA	15:14	83.41		
	25-May-04	98.55	None Detected	14.85	NA	NA	14.85	83 70	NA	
	18-Jun-04	98.55	None Detected	14.85	NA	NA	14.85	83.70	NA	
							1 100	05.70	114	
MW-305	19-Sep-00	97.23	NM	NM	NA	NA	NA	NA	NA	Well Constructed
	5-Dec-00	97.23	None Detected	17.02	NA	NA	17.02	80.21	NA	
	3-Apr-01	97.19	None Detected	13.99	NA	NA	13.99	83.20	NA	
	27-Sep-01	97.19	None Detected	14.58	NA	NA	14.58	82.61	NA	
MW-305	9-Oct-01	97.19	None Detected	15.10	NA	NA	15.10	82.09	NA	
(cont)	26-Oct-01	97.19	None Detected	15.12	NA	NA	15.12	82.07	NA	
	8-Nov-01	97.19	None Detected	15.42	NA	NA	15.42	81.77	NA	
	20-Nov-01	97.19	None Detected	15.35	NA	NA	15.35	81.84	NA	
•	7-Dec-01	97.19	None Detected	15.00	NA	NA	15.00	82.19	NA	
	21-Dec-01	97.19	None Detected	14.92	NA	NA	14.92	82.27	NA	
	4-Jan-02	97.19	None Detected	15.65	NA	NA	15.65	81.54	NA	
	16-Jan-02	97.19	None Detected	15.29	NA	NA	15.29	81.90	NA	
	30-Jan-02	97.19	None Detected	15.47	NA	NA	15.47	81.72	NA	
	14-Feb-02	97.19	None Detected	15.44	NA	NA	15.44	81.75	· NA	
	1-Mar-02	97.19	None Detected	15.50	NA	NA	15.50	81.69	NA	
	15-Mar-02	97.19	None Detected	13.96	NA	NA	13.96	83.23	NA	
	27-Mar-02	97.19	None Detected	- 9.24	NA	NA	9.24	87.95	NA.	
	12-Apr-02	97.19	None Detected	14.81	NA	NA	14.81	82.38	NA	
	26-Apr-02	97.19	None Detected	9.20	NA	NA	9.20	87.99	NA	ALC: NOT
	10-May-02	97.19	None Detected	10.07	NA	NA	10.07	87.12	NA	
	24-May-02	97.19	None Detected	14.86	NA	NA	14.86	82.33	NA	
	7-Jun-02	97.19	None Detected	8.95	NA	NA	8.95	88.24	NA	
	21-Jun-02	97.19	None Detected	15.24	NA	NA	15.24	81.95	NA	
	3-Jul-02	97.19	None Detected	15.46	NA	NA	15.46	81.73	NA	
	18-Jul-02	97.19	None Detected	15.68	NA	NA	15.68	81.51	NA	
	31-Jul-02	97.19	None Detected	15.79	NA	NA	15.79	81.40	NA	
	14-Aug-02	97.19	None Detected	15.08	NA	NA	15.08	82.11	NA	
	28-Aug-02	97.19	None Detected	14.73	NA	NA	14.73	82.46	NA	· ·
	3-Oct=02	97.19	None Detected	14.98	NA	NA	14.98	82.21	NA	
	18-00+-02	77.17 07.10	None Detected	15.12	NA	NA	15.12	82.07	NA	
li li	10-001-02	77.19	None Detected	12.56	NA	NA	12.56	84.63	NA	

.

····	1 -		1	· 7						
Well	Date	Measuring	Measured	Measured	Measured	Corrected	Соггестеd	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
ļ		(ft AD *)	(ft TOPVC) '	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	31-Oct-02	97.19	None Detected	12.88	NA	NA	12.88	84.31	NA	
	14-Nov-02	97.19	None Detected	12.30	NA	NA	12.30	84.89	NA	
	27-Nov-02	97.19	None Detected	13.26	NA	NA	13.26	83.93	NA	
	11-Dec-02	97.19	None Detected	12.70	NA	NA	12.70	84.49	NA	
	24-Dec-02	97.19	None Detected	14.41	NA	NA	14.41	82.78	NA	
	30-Dec-02	97.19	None Detected	10.66	NA	NA	10.66	86.53	NA	
1	13-Jan-03	97.19	None Detected	14.34	NA	NA	14.34	82.85	NA	
	27-Jan-03	97.19	None Detected	14.85	NA	NA	14.85	82.34	NA	
MW-305	18-Apr-03	97.19	None Detected	14.01	NA	NA	14.01	83.18	NA	
(cont)	19-May-03	97.19	None Detected	15.94	NA	NA	15.94	81.25	NA	
	13-Jun-03	97.19	None Detected	9.59	NA	NA	9.59	87.60	NA	
1	20-Jun-03	97.19	None Detected	8.40	NA	NA	8.40	88.79	NA	
	18-Jul-03	97.19	None Detected	15.45	NA	NA	15.45	<u>8</u> 1.74	NA	
1	22-Aug-03	97.19	None Detected	15.45	NA	NA	15.45	81.74	NA	
	19-Sep-03	97.19	None Detected	15.77	NA	NA	15.77	81.42	NA	
	22-Sep-03	97.19	None Detected	15.91	NA	NA	15,91	81.28	NA	
	21-Oct-03	97.19	None Detected	15.97	NA	NA	15.97	81.22	NA	
	21-INOV-03	97.19	None Detected	12.82	NA	NA	12.82	84.37	NA	· ·
	19-Dec-03	97.19	None Detected	13.15	NA	NA	13.15	84.04	NA	
	9-Jan-04	97.19	None Detected	15.22	NA	NA	15.22	81.97	NA	
· ·	14-Jan-04	97.19	None Detected	15.67	NA	NA	15.67	81.52	NA	
	20-Feb-04	97.19	None Detected	17.44	NA	NA	17.44	79.75	NA	
	19-Mar-04	97.19	None Detected	15.61	NA	NA	15.61	81.58	NA	
	25-Apr-04	97.19	None Detected	15.66	NA	NA	15.66	81.53	NA	
	18 Jun 04	97.19	None Detected	15.27	NA	NA	. 15.27	81.92	NA	
	10-5001-04	97.19	None Detected	15.37	NA	NA	15.37	81.82	NA	
MW-306	15-Jan 01	97.20					•			
10100-500	15-Jap-01	97.30	INIMI Norro Dotocto d	NM	NA	NA	NA	NA	NA	Well Constructed
	15-Jan-01	97.30	None Detected	18.71	NA	NA	18.71 [.]	78.59	NA	
	2. Apr. 01	97.30	None Detected	18.14	NA	NA	18.14	79.16	NA	
1	27-Sep.01	97.30	None Detected	15.33	NA	NA	· 15.33	81.97	NA	
	0-0-t-01	97.30	None Detected	16.18	NA	NA	16.18	81.12	NA	
	26-Oct-01	97.50	None Detected	16.34	NA	NA	16.34	80.96	NA	
	8-Nov-01	97.30	None Detected	16.37	NA	NA	16.37	80.93	NA	
	20-Nov-01	07 10	None Detected	16.52	NA	NA	16.52	80.78	NA	
		97.50	None Detected	16.54	NA	NA	16.54	80.76	NA	

RI Product and Groundwater Level Measurements Former Maspeth Substation

Table 1-11 RI Product Hist.xls

`

RI Product and Groundwater Level Measurement	s
Former Maspeth Substation	

Well	Date 1	Measuring	Measured /	Measured	Measured '	Corrected	Corrected	Corrected	Volume	
,	1 1	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
,	1 1	Elevation	Product	Water	Thickness	Thickness	1	Elevation	Removed	
	<u> </u>	(ft AD ²)	(ft TOPVC)	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	7-Dec-01	97.30	16.65	16.66	0.01	0.01	16.65	80.65	I NA	1
ľ	21-Dec-01	97.30	None Detected	1 17.95 '	NA "	NA	17.95	79.35	NA	
ŗ	4-Jan-02	97.30	None Detected	1 16.85	NA "	NA (16.85	80.45	NA	
ŗ	16-Jan-02	97.30	None Detected	1 16.81	NA "	NA	16.81	80.49	NA	
ŗ	30-Jan-02	97.30	None Detected	1 11.81	NA P	NA	11.81	85.49	NA	
ŗ	14-Feb-02	97.30	None Detected	1 16.81	NA "	NA	16.81	80.49	NA	
r	1-Mar-02	97.30	None Detected	16.50	NA "	NA '	16.50	80.80	NA	
· J	15-Mar-02	97.30	None Detected	16.88	NA "	NA '	16.88	80.42	NA '	
MW-306	27-Mar-02	97.30	None Detected	16.81	NA "	NA '	16.81	80.49	NA '	
(cont)	12-Apr-02	97.30	None Detected	1 16.86	NA .	NA '	16.86	80.44	NA	
, P	26-Apr-02	97.30	None Detected	17.03	NA "	NA '	17.03	80.27	NA '	
, r	10-May-02	97.30	None Detected	16.88	NA	NA '	16.88	80:42 ^r	NA '	
, P	24-May-02	97.30	None Detected	16.77	NA "	NA '	16.77	80.53	NA '	
i Y	7-Jun-02	97.30	None Detected	1 16.96	NA "	NA '	16.96	80.34	NA '	
i P	21-Jun-02	97.30	None Detected	1 16.92	NA "	I NA '	16.92	80.38	NA '	
i P	3-Jul-02	97.30	None Detected	16.95	NA /	NA '	16.95	80.35	NA '	
d P	18-Jul-02	97.30	None Detected	1 17.08	NA /	NA '	17.08	80.22	NA '	
i P	31-Jul-02	97.30	None Detected	1 16.66	NA "	NA '	16.66	80.64 "	NA	
i r	14-Aug-02	97.30	None Detected	1 15.58	NA "	NA '	15.58	81.72	NA '	
A P	28-Aug-02	97.30	None Detected	1 15.38	NA "	NA '	15.38	81.92	NA '	
i P	11-Sep-02	97.30	None Detected	15.24	NA /	NA '	15.24	82.06	NA '	
i	3-Oct-02	97.30	None Detected	1 15.31	NA /	NA '	15.31	81.99	NA '	
i P	18-Oct-02	97.30	None Detected	1 16.25	NA P	NA '	16.25	81.05	I NA "	1
i P	31-Oct-02	97.30	None Detected	1 16.16	NA /	NA '	1 16.16	81.14	NA "	1
i P	14-Nov-02	97.30	None Detected	1 16.35	NA /	NA '	16.35	80.95	NA "	1
i P	27-Nov-02	97.30	None Detected	1 16.17 1	NA /	NA '	16.17	81.13	I NA "	1
i P	11-Dec-02	97.30	None Detected	1 16.33	NA P	A NA '	16.33	80.97	NA P	(
, P	24-Dec-02	97.30	None Detected	1 16.15 1	NA /	I NA '	16.15	81.15	I NA P	1
, P	30-Dec-02	97.30	None Detected	1 16.09	NA /	NA '	16.09	81.21	I NA "	
, P	13-Jan-03	97.30	None Detected	1 15.89 1	NA /	NA I	15.89	81.41 /	I NA "	
, P	27-Jan-03	97.30	None Detected	1 16.16 1	NA /	NA '	16.16	81.14	I NA F	4
, P	18-Apr-03	97.30	None Detected	17.53	NA /	NA /	1 17.53	[79.77 /	I NA "	1
, P	19-May-us	97.30	None Detected	1 16.63 1	I NA P	I NA /	16.63	80.67	NA P	1
, P	13-Jun-03	97.30 p	None Detected	1 16.91 1	(NA J	I NA /	1 16.91	(80.39 <i>V</i>	f NA "	4
· N	20-Jun-03	97.30	None Detected	16.73	I NA	1 NA I	1 16.73	80.57	A NA	4

	Former Maspeth Substation												
Well	Date	Measuring Point Elevation (ft AD ²)	Measured Depth To Product (ft TOPVC) ¹	Measured Depth To Water (ft TOPVC) ¹	Measured Product Thickness (feet)	Corrected Product Thickness (feet)	Corrected Depth to Water (ft TOPVC)	Corrected Groundwater Elevation (feet AD ²)	Volume Water/Product Removed (gal)	NOTES			
	18-Jul-03	97.30	None Detected	16.92	NA	NA	16.92	80.38	NA				
	22-Aug-03	97.30	None Detected	17.02	NA	NA	17.02	80.28	NA				
	19-Sep-03	97.30	None Detected	17.41	NA	NA	17.41	79.89	NA				
	22-Sep-03	97.30	None Detected	17.42	NA	NA	17.42	79.88	NA				
	21-Oct-03	97.30	None Detected	17.46	NA	NA	17.46	79.84	NA				
	21-Nov-03	97.30	None Detected	17.40	NA	NA	17.40	79.90	NA				
	19-Dec-03	97.30	None Detected	17.11	NA	NA	17.11	80.19	NA				
	9-Jan-04	97.30	None Detected	17.13	NA	NA	17.13	80.17	NA				
	14-Jan-04	97.30	None Detected	17.12	NA	NA	17.12	80.18	NA				
MW-306	20-Feb-04	97.30	None Detected	15.70	NA	NA	15.70	81.60	NA	· · ·			
(cont)	19-Mar-04	97.30	None Detected	16.97	NA	NA	16.97	80.33	' NA				
	23-Apr-04	97.30	None Detected	17.17	NA	' NA	17.17 .	80.13	NA				
	25-May-04	97.30	None Detected	16.70	NA	NA	16.70	80.60	NA				
	18-Jun-04	97.30	None Detected	16.56	NA	NA	16.56	80.74	NA				
MW-307	11-Jon 01	00.62			<u></u> .								
1111-507	15-Tan-01	99.03	None Detroited	NM 10.74	NA	NA	NA	NA	NA	Well Constructed			
	1.Fab.01	99.03	None Detected	18.74	NA	NA	18.74	80.89	NA				
	2 Apr 01	99.03	None Detected	18.43	NA	NA	18.43	81.20	NA				
. .	22 Aug 01	99.03	None Detected	16.35	NA	NA	16.35	83.28	NA				
	22-Aug-01	99.63	17.17	17.25	0.08	0.05	17.18	82.45	NPR				
	4-Sep-01	99.63	17.31	17.37	0.06	0.04	17.32	82.31	NPR				
	27-Sep-01	99.63	None Detected	17.09	NA	NA	17.09	82.54	NA	Sheen on Probe			
	9-Oct-01	99.63	17.32	17.34	0.02	0.01	17.32	82.31	NPR				
	26-Oct-01	99.63	None Detected	17.38	NA	NA	17.38	82.25	NA				
	8-Nov-01	99.63	None Detected	17.38	NA	NA	17.38	82.25	NA				
	20-Nov-01	99.63	17.72	17.73	0.01	0.01	17.72	81.91	NPR				
	7-Dec-01	99.63	17.80	17.81	0.01	0.01	17.80	81.83	NPR				
	21-Dec-01	99.63	Not Measured	Not Measured									
	4-Jan-02	99.63	None Detected	17.94	NA	NA	17.94	81.69	NA	No product detected			
	16-Jan-02	99.63	None Detected	18.22	NA	NA	18.22	81.41	NA	0.01 ft of product in skimmer			
	30-Jan-02	99.63	None Detected	18.06	NA	NA	18.06	81.57	NA	0.02 ft of product in skimmer			
	14-Feb-02	99.63	None Detected	17.76	NA	NA	17.76	81.87	NA	No product detected in skimmer			
	1-Mar-02	99.63	None Detected	18.40	NA	NA	18.40	81.23	NA				
	15-Mar-02	99.63	None Detected	17.45	NA	NA	17.45	82.18	NA	No product detected in skimmer			
I . 1	27-Mar-02	99.63	None Detected	17.59	NA	NA	17.59	87.04	NA	No modulo deserve d'a d'			

RI Product and Groundwater Level Measurements

Table 1-11 RI Product Hist.xls

17.59

82.04

NA

No product detected in skimmer

	Former Maspeth Substation													
Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Соггестес	Volume					
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES				
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed					
		(ft AD ')	(ft TOPVC)	(ft TOPVC)	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)					
	12-Apr-02	99.63	None Detected	17.92	NA	NA	17.92	81.71	NA					
	26-Apr-02	99.63	None Detected	17.60	NA	NA	17.60	82.03	NA					
	10-May-02	99.63	None Detected	17.72	Sheen	NA	17.72	81.91	NA					
	24-May-02	99.63	None Detected	17.12	NA	NA	17.12	82.51	NA	·				
	7-Jun-02	99.63	None Detected	17.67	NA	NA	17.67	81.96	NA					
	21-Jun-02	99.63	None Detected	17.74	NA	NA	17.74	81.89	NA					
	3-Jul-02	99.63	None Detected	17.58	NA	NA	17.58	82.05	· NA					
	18-Jul-02	99.63	None Detected	17.94	NA	NA	17.94	81.69	NA					
	31-Jul-02	99.63	None Detected	18.03	NA	NA	18.03	81.60	NA					
MW-307	14-Aug-02	99.63	None Detected	17.03	NA	NA	17.03	82.60	NA					
(cont)	28-Aug-02	99.63	None Detected	16.85	NA	NA	16.85	82.78	NA					
	11-Sep-02	99.63	None Detected	15.87	NA	NA	15.87	83.76	NA					
· ·	3-Oct-02	99.63	None Detected	17.19	NA	NA	17.19	82.44	NA	· · · ·				
	18-Oct-02	99.63	None Detected	16.57	NA	NA	16.57	83.06	NA					
	31-Oct-02	99.63	None Detected	16.38	NA	NA	16.38	83.25	NA					
	14-Nov-02	99.63	None Detected	16.72	ŅA	NA	16.72	82.91	NA					
	27-Nov-02	99.63	None Detected	16.44	NA	NA	16.44	83.19	NA					
	11-Dec-02	99.63	16.50	16.51	0.01	0.01	16.50	83.13	trace	Hand bailed				
	24-Dec-02	99.63	16.49	16.51	0.02	0.01	16.49	83.14	NPR					
	30-Dec-02	99.63	16.55	16.59	0.04	0.02	16.55	83.08	trace	Hand bailed				
	13-Jan-03	99.63	16.05	16.12	0.07	0.04	16.06	83.57	trace	Hand bailed				
	27-Jan-03	99.63	16.63	16.73	0.10	0.06	16.64	82.99	trace	Hand bailed				
	18-Apr-03	99.63	17.27	17.37	0.10	0.06	17.28	82.35	trace	Bailed 8 ounces +/-				
	19-May-03	99.63	17.75	18.02	0.27	0.16	17.78	81.85	trace	Bailed 8 ounces +/-				
	13-Jun-03	99.63	None Detected	16.62	NA	NA	16.62	83.01						
	20-Jun-03	99.63	16.42	16.50	0.08	0.05	16.43	83.20	0.50	Bailed 0.5 gallon +/-				
	18-Jul-03	99.63	18.38	18.69	0.31	0.18	18.41	81.22	0.25	Bailed 0.25 gallons				
	22-Aug-03	99.63	17.34	17.52	0.18	0.11	17.36	82.27	trace	Bailed trace amount				
	19-Sep-03	99.63	17.99	18.25	0.26	0.15	18.02	81.61	0.5	Used perstaltic pump to pump 0.5 gallon				
	22-Sep-03	99.63	18.00	18.26	0.26	0.15	18.03	81.60	0.03	Bailed 4 oz				
	21-Oct-03	99.63	17.93	18.00	0.07	0.04	17.94	81.69	trace	Bailed trace amount.				
	21-Nov-03	99.63	None Detected	17.79	NA	NA	17.79	81.84	0.25	Replaced spent Soakease (TM) with new one.				

RI Product and Groundwater Level Measurements Former Maspeth Substation

Table 1-11 RI Product Hist.xls

19-Dec-03

9-Jan-04

14-Jan-04

99.63

99.63

99.63

None Detected

None Detected

None Detected

17.40

17.37

17.46

82.23

82.26

82.17

trace

NA

NA

Soakease inspected and placed back in well.

NA

NA

NA

NA

NA

NA

17.40

17.37

17.46

Table 1-11

Former Maspeth Substation Well Date Measuring Measured Measured Measured Corrected Corrected Corrected Volume Point Depth To Depth To Product Product Depth to Water Groundwater Water/Product NOTES Elevation Product Water Thickness Thickness Elevation Removed $(ft AD^2)$ (ft TOPVC) (ft TOPVC) 1 (feet AD²) (feet) (feet) (ft TOPVC) (gal) 20-Feb-04 99.63 None Detected 17.10 NA NA 17.10 82.53 NA 19-Mar-04 99.63 None Detected 17.48 NA NA 17.48 82.15 NA 23-Apr-04 00 63 17 77 17 20 A A1

RI Product and Groundwater Level Measurements

	23-Apr-04	33.03	17.57	17.38	0.01	0.01	17.37	82.26	trace	bailed trace amount
	25-May-04	99.63	17.05	17.08	0.03	0.02	17.05	82.58	trace	bailed trace amount
	18-Jun-04	99.63	17.26	17.26	sheen	sheen	17.26	82.37	trace	bailed trace amount
MW-401	12-Jan-01	99.23	NM	NM	NA	NA	NA	NA	NA	Well Constructed
	15-Jan-01	99.23	None Detected	10.69	NA	NA	10.69	88.54	NA	
	3-Apr-01	99.23	None Detected	9.74	NA	NA	9.74	89.49	NA	
	27-Sep-01	99.23	None Detected	10.30	NA	NA	10.30	88.93	NA	
MW-401	9-Oct-01	99.23	None Detected	10.51	NA	NA	- 10.51	88.72	NA	
(cont)	26-Oct-01	99.23	None Detected	10.78	NA	NA	10.78	88.45	NA	
	8-Nov-01	99.23	None Detected	10.99	NA	NA	10.99	88.24	NA	
	20-Nov-01	99.23	None Detected	11.17	NA	NA	11.17	88.06	NA	
	7-Dec-01	99.23	None Detected	11.28	NA	NA	11.28	87.95	NA	
	21-Dec-01	99.23	None Detected	11.20	NA	NA	11.20	88.03	NA	
	4-Jan-02	99.23	None Detected	11.32	NA	NA	11.32	87.91	NA	
	16-Jan-02	99.23	None Detected	11.32	NA	NA	11.32	87.91	NA	
	30-Jan-02	99.23	None Detected	11.21	NA	NA	11.21	88.02	NA	
	14-Feb-02	99.23	None Detected	11.35	NA	NA	11.35	87.88	NA	
1	1-Mar-02	99.23	None Detected	11.40	NA	NA	11.40	87.83	NA	
	15-Mar-02	99.23	None Detected	11.13	NA	NA	11.13	88.10	NA	
	27-Mar-02	99.23	None Detected	10.69	NA	NA	10.69	88.54	NA	
	12-Apr-02	99.23	None Detected	10.71	NA	NA	10.71	88.52	NA	
	26-Apr-02	99.23	None Detected	10.88	• NA	NA	10.88	88.35	NA	
	10-May-02	99.23	None Detected	10.47	NA	NA	10.47	88.76	NA	
	24-May-02	99.23	None Detected	10.37	NA	NA	10.37	88.86	NA	
	7-Jun-02	99.23	None Detected	10.25	NA	NA	10.25	88.98	NA	
1	21-Jun-02	99.23	None Detected	10.37	NA	NA	10.37	88.86	NA	
	3-Jul-02	99.23	None Detected	10.49	NA	NA	10.49	88.74	NA	
	18-Jul-02	99.23	None Detected	10.68	NA	'NA	10.68	88.55	NA	
	31-Jul-02	99.23	None Detected	10.73	NA	NA	10.73	88.50	NA	
	14-Aug-02	99.23	None Detected	10.96	NA	NA	10.96	88.27	NA	
	28-Aug-02	99.23	None Detected	11.02	NA	NA	11.02	88.21	NA	1
A .	11-Sep-02	99.23	None Detected	10.11	NA	NA	10.11	89.12	NA -	
					- 4	• •		1 07.12		

RI Product and Groundwater Level Measurements Former Maspeth Substation

weil	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
1	1 1	Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
; i	1 1	Elevation	Product	Water	Thickness	Thickness	1	Elevation	Removed	
	<u> </u>	(ft AD ')	(ft TOPVC)	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
, I	3-Oct-02	99.23	None Detected	10.16	NA	NA	10.16	89.07	NA	
. 1	18-Oct-02	99.23	None Detected	9.84	NA	NA	9.84	89.39	NA	
. 1	31-Oct-02	99.23	None Detected	9.99	NA	NA	9.99	89.24	NA	
, j	14-Nov-02	99.23	None Detected	10.02	NA	NA '	10.02	89.21	NA	
. 1	27-Nov-02	99.23	None Detected	10.05	NA	NA	10.05	89.18	NA	
. 1	11-Dec-02	99.23	None Detected	10.15	NA	NA	10.15	89.08	NA	
1	24-Dec-02	99.23	None Detected	10.00	NA	NA '	10.00	89.23	NA	
- I	30-Dec-02	99.23	None Detected	9.91	NA	NA	9.91	89.32	NA	
ļ	13-Jan-03	99.23	None Detected	10.01	NA	NA	10.01	89.22	NA	
ľ	27-Jan-03	99.23	None Detected	10.30	NA	NA	10.30	88.93	NA	
MW-401	18-Apr-03	99.23	None Detected	9.97	NA	NA	9.97	89.26	NA	
(cont)	19-May-03	99.23	None Detected	11.13	NA	NA	11.13	88.10	NA	
, P	13-Jun-03	99.23	None Detected	9.92	NA	NA '	9.92	89.31	NA	
, ľ	20-Jun-03	99.23	None Detected	9.75	NA	NA I	9.75	89.48	NA	
. I	18-Jul-03	99.23	None Detected	10.20	NA	NA	10.20	89.03	NA	
/	22-Aug-03	99.23	None Detected	10.22	NA	NA	10.22	89.01	NA	
ľ	19-Sep-03	99.23	None Detected	10.50	NA	NA	10.50	88.73	NA	
, ľ	22-Sep-03	99.23	None Detected	10.51	NA	NA	10.51	88.72	NA	
ľ	21-Oct-03	99.23	Not Monitored	10.20	NA	. NA	10.20	89.03	NA	
ľ	21-Nov-03	99.23	None Detected	10.18	NA	NA	10.18	89.05	NA	
. /	19-Dec-03	99.23	None Detected	9.97	NA	NA	9.97	89.26	NA	
· · · · /	9-Jan-04	99.23	10.22	10.22	sheen	NA	10.22	89.01	NA	
1	14-Jan-04	99.23 J	None Detected	10.17	NA	NA	10.17	89.06	NA	
ļ	20-Feb-04	99.23	None Detected	10.27	NA	NA	10.27	88.96	NA	· ·
· · · · · · · · · · · · · · · · · · ·	19-Mar-04	99.23	None Detected	10.32	NA	NA	10.32	88.91	NA	
1	23-Apr-04	99.23	None Detected	10.09	NA	NA	10.09	89.14	NA	
	25-iviay-04	99.23	None Detected	10.18	NA	NA	10.18	89.05	NA	
•	18-Jun-04	99.23	None Detected	10.70	NA	NA	10.70	88.53	NA	
MW-402	12-Jan-01	98.44		, inc	1 I	1 1	1	1		
	15-Jan-01	98.44	None Detected		NA	NA	NA	NA	NA	Well Constructed
ļ	9-Feb-01	98.44	None Detected	10.12		NA	10.12	88.32	NA	
ŀ	3-Apr-01	98.44	None Detected	9.//	NA	NA	9.77	88.67	NA	
]	27-Sep-01	98.44	None Detected	9.28	NA	NA	9.28	89.16	NA	
·	9-Oct-01	98.44	None Detected	9.85	NA	NA	9.85	88.59	NA	
н	1-000 01 1	70. 	None Detected	10.02	NA	NA	10.02	88.42	NA	

.

Ň

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		$(ft AD^2)$	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	26-Oct-01	98.44	None Detected	10.24	NA	NA	10.24	88.20	NA	
	8-Nov-01	98.44	None Detected	10.42	NA	NA	10.42	88.02	NA	
	20-Nov-01	98.44	None Detected	10.55	NA	NA	10.55	87.89	' NA	
	7-Dec-01	98.44	None Detected	10.70	NA	NA	10.70	87.74	NA	
	21-Dec-01	98.44	None Detected	11.05	NA	NA	11.05	87.39	NA	
	4-Jan-02	98.44	None Detected	10.80	NA	NA	10.80	87.64	NA	
	16-Jan-02	98.44	None Detected	10.73	NA	NA	10.73	87.71	NA	
	30-Jan-02	98,44	None Detected	10.69	NA	NA	10.69	87.75	NA	
	14-Feb-02	98.44	None Detected	10.78	NA	NA	10.78	87.66	NA	
	1-Mar-02	98.44	None Detected	10.70	NA	NA	10.70	87.74	NA	
	15-Mar-02	98.44	None Detected	10.59	NA	NA	10.59	87.85	NA	
MW-402	27-Mar-02	98.44	None Detected	10.24	NA	NA	10.24	88.20	NA	
(cont)	12-Apr-02	98.44	None Detected	10.23	NA	NA	10.23	88.21	NA	
	26-Apr-02	98.44	None Detected	10.35	NA	NA	10.35	88.09	NA	
	10-May-02	98.44	None Detected	10.01	NA	NA	10.01	88.43	NA	
	24-May-02	98.44	None Detected	9.93	NA	NA	9.93	88.51	NA	
	7-Jun-02	98.44	None Detected	10.00	NA	· NA	10.00	88.44	NA	
	21-Jun-02	98.44	None Detected	9.92	NA	NA	9.92	88.52	NA	
	3-Jul-02	98.44	None Detected	10.06	NA	NA	10.06	88.38	NA	
	18-Jul-02	98.44	None Detected	10.21	NA	NA	10.21	88.23	NA	
	31-Jul-02	98.44	None Detected	10.24	NA	NA	10.24	88.20	NA	
	14-Aug-02	98.44	None Detected	10.45	NA	NA	10.45	87.99	NA	
	28-Aug-02	98.44	None Detected	10.47	NA	NA	10.47	87.97	NA	
	11-Sep-02	98.44	None Detected	9.72	NA	NA	.9.72	88.72	NA	
	3-Oct-02	98.44	None Detected	9.71	NA	NA	9.71	88.73	NA	
	18-Oct-02	98.44	None Detected	9.37	NA	NA	9.37	89.07	NA	
	31-Oct-02	98.44	None Detected	9.52	NA	NA	9.52	88.92	NA	
	14-Nov-02	98.44	None Detected	9.61	NA	NA	9.61	88.83	NA	
	27-Nov-02	98.44	None Detected	9.57	NA	NA	.9.57	88.87	NA	
	11-Dec-02	98.44	None Detected	9.73	NA	NA	9.73	88.71	NA	
	24-Dec-02	98.44	None Detected	9.53	NA	NA	9.53	88.91	NA	
	30-Dec-02	98.44	None Detected	9.46	NA	NA	9.46	88.98	NA	
	13-Jan-03	98.44	None Detected	9.55	NA	NA	9.55	88.89	NA	
	27-Jan-03	98.44	None Detected	9.81	NA	NA	9.81	88.63	NA	
	18-Apr-03	98.44	None Detected	9.49	NA	NA	9.49	88.95	NA	

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	•
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
·	19-May-03	98.44	None Detected	10.98	NA	NA	10.98	87.46	NA	
	13-Jun-03	98.44	None Detected	9.38	NA	NA ·	9.38	89.06	NA	
	20-Jun-03	98.44	None Detected	9.24	NA	NA	9.24	89.20	NA	
	18-Jul-03	98.44	None Detected	9.69	NA	NA	9.69	88.75	NA	
	22-Aug-03	98.44	None Detected	9.71	NA	NA	9.71	88.73	NA	
	19-Sep-03	98.44	None Detected	9.97	NA	NA	9.97	88.47	NA	
	22-Sep-03	98.44	None Detected	10.00	NA	. NA *	10.00	88.44	NA	· · · · · · · · · · · · · · · · · · ·
	21-Oct-03	98.44	Not Monitored	9.69	NA	' NA	9.69	88.75	NA	
	21-Nov-03	98.44	None Detected	9.78	NA	· NA	9.78	88.66	NA	
	19-Dec-03	98.44	None Detected	9.48	NA	NA	9.48	88.96	NA ·	
	9-Jan-04	98.44	None Detected	9.69	NA	' NA	9.69	88.75	NA	
	14-Jan-04	98.44	Not Monitored	9.65	NA	NA	9.65	88.79	NA	
MW-402	20-Feb-04	98.44	None Detected	9.78	NA	NA	9.78	88.66	NA	
(cont)	19-Mar-04	98.44	None Detected	10.01	NA	NA	10.01	88.43	NA	
	23-Apr-04	98.44	None Detected	9.58	NA.	NA	9.58	88.86	NA	
	25-May-04	98.44	None Detected	9.67	NA	NA	9.67	88.77	NA	
. .	18-Jun-04	98.44	None Detected	9.77	NA	NA	9.77	88.67	NA	
MW-403	11-Jan-01	99.68	NM	NM	NA	NA	NA	NA	NA	Well Constructed
	15-Jan-01	99.68	None Detected	19.06	NA	NA	19.06	80.62	NA	
	1-Feb-01	99.68	None Detected	18.87	NA	NA	18.87	80.81	. NA	
	3-Apr-01	99.68	None Detected	16.70	NA	NA	16.70	82.98	NA	
	6-Jun-01	99.68	None Detected	14.98.1	NA	NA	14.98	84.70	NA	
	20-Jun-01	99.68	None Detected	14.95	NA	NA	14.95	84.73	NA	
	28-Jun-01	99.68	None Detected	14.95	NA	NA	14.95	84.73	NA	
	2-Aug-01	99.68	None Detected	16.96	NA	NA	16.96	82.72	NA	
	22-Aug-01	99.68	None Detected	17.22	NA	NA	17.22	82.46	NA	
	4-Sep-01	99.68	None Detected	17.29	NA	NA	17.29	82.39	NA	
	27-Sep-01	99.68	None Detected	17.05	NA	NA	17.05	82.63	NA	
	9-Oct-01	99.68	None Detected	17.39	NA	NA	17.39	82.29	NA	
	26-Oct-01	99.68	17.44	17.45	NA	NA	17.45	82.23	NA	Placed Soakease in well
	8-Nov-01	99.68	None Detected	17.75	NA	NA	17.75	81.93	NA	
	20-Nov-01	99.68	None Detected	17.66	NA	NA	17.66	82.02	NA	
	-7-Dec-01	99.68	17.88	17.89	NA	NA	17.89	81.79	NA	
	21-Dec-01	99.68	None Detected	18.00	NA	NA	18.00	81.68	NA	

Date Measuring Corrected Measured Measured Corrected Corrected Volume ٦r Measured

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC)	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	
	4-Jan-02	99.68	None Detected	18.02	NA	NA	18.02	81.66	NA	
	16-Jan-02	99.68	None Detected	17.96	NA	NA	17.96	81.72	NA	
	30-Jan-02	99.68	None Detected	17.84	NA	NA	17.84	81.84	NA	
	14-Feb-02	99.68	None Detected	17.89	NA	. NA	17.89	81.79	NA	
	1-Mar-02	99.68	None Detected	18.10	NÁ	NA	18.10	81.58	NA	
	15-Mar-02	99.68	None Detected	17.62	NA	NA	17.62	82.06	NA	
	27-Mar-02	99.68	None Detected	16.99	NA	NA	16.99	82.69	NA	
	12-Apr-02	99.68	None Detected	17.59	NA	NA	17.59	82.09	NA	
	26-Apr-02	99.68	None Detected	17.60	NA	NA	17.60	82.08	NA	
	10-May-02	99.68	None Detected	17.29	NA	NA	17.29	82.39	NA	
	24-May-02	99.68	None Detected	16.95	NA	NA	16.95	82.73	NA	
	7-Jun-02	99.68	None Detected	16.86	NA	NA	16.86	82.82	NA	
MW-403	21-Jun-02	99.68	17.42	17.43	NA	NA	17.43	82.25	NA	
(cont)	3-Jul-02	99.68	None Detected	17.44	NA	NA	17.44	82.24	NA	
	18-Jul-02	99.68	None Detected	17.75	NA	NA	17.75	81.93	NA	
	31-Jul-02	99.68	None Detected	17.77	NA	NA	17.77	81.91	NA	
	14-Aug-02	99.68	None Detected	16.69	NA	NA	16.69	82.99	NA	
	28-Aug-02	99.68	None Detected	16.79	NA	NA	16.79	82.89	NA	
	11-Sep-02	99.68	None Detected	15.53	NA	NA	15.53	84.15	NA	
	3-Oct-02	99.68	None Detected	16.95	NA	NA	16.95	82.73	NA	
	18-Oct-02	99.68	None Detected	16.35	NA	NA	16.35	83.33	NA	
	31-Oct-02	99.68	None Detected	16.50	NA	NA	16.50	83.18	NA	
	14-Nov-02	99.68	None Detected	16.88	NA	NA	16.88	82.80	NA	
	27-Nov-02	99.68	None Detected	15.55	NA	NA	15.55	84.13	NA	
	11-Dec-02	99.68	None Detected	17.08	NA	NA	17.08	82.60	NA	
	24-Dec-02	99.68	None Detected	16.82	NA	NA	16.82	82.86	NA	
	30-Dec-02	99.68	NM	NM	NA	NA	NM	#N/A	NA	
	13-Jan-03	99.68	None Detected	16.54	NA	NA	16.54	83.14	NA	
	27-Jan-03	99.68	None Detected	17.04	NA	NA	17.04	82.64	NA	
	18-Apr-03	99.68	None Detected	17.75	NA	NA	17.75	81.93	NA	
	19-May-03	99.68	None Detected	18.14	NA	NA	18.14	81.54	NA	
	18-Apr-03	99.68	None Detected	17.75	NA	NA	17.75	81.93	NA -	
	19-May-03	99.68	None Detected	18.14	NA	NA	18.14	81.54	NA	
	13-Jun-03	99.68	None Detected	13.90	NA	NA	13.90	85.78	NA	
	20-Jun-03	99.68	None Detected	17.61	NA	NA	17.61	82.07	NA	ł
Table 1-11

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		$(ft AD^2)$	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft.TOPVC)	(feet AD ²)	(gal)	· · · ·
	18-Jul-03	99.68	None Detected	17.64	NA	NA	17.64	82.04	NA	
	22-Aug-03	99.68	None Detected	17.55	NA	· NA	17.55	82.13	NA	
	19-Sep-03	99.68	Not Monitored	Not Monitored	NA	NA	Not Monitored	#VALUE!	NA	Not monitored, well head under water.
	22-Sep-03	99.68	18.23	18.26	NA	NA	18.26	81.42	NA	
	21-Oct-03	99.68	None Detected	. 18.12	NA	NA	18.12	81.56	NA	
	21-Nov-03	99.68	None Detected	16.61	NA	NA .	16.61	83.07	NA	
	19-Dec-03	99.68	16.67	16.82	NA	NA	16.82	82.86	5	VEFR Conducted.
	9-Jan-04	99.68	17.35	17.81	0.46	0.27	17.40	82.28	1.5	VEFR Conducted. Volume estimated from total (14 gal).
· ·	14-Jan-04	99.68	17.47	17.61	0.14	0.08	17.48	82.20	-	No VEFR Conducted. Wells monitored for pre-Flood Test.
	20-Feb-04	99.68	17.61	18.35	0.74	0.44	17.69	81.99	7.5	VEFR Conducted. Volume estimated from total (30 gals)
	19-Mar-04	99.68	17.54	18.07	0.53	0.31	17.60	82.08	36	VEFR Conducted. Volume estimated from total (180 gals)
	23-Apr-04	99.68	17.17	17.20	0.03	0.02	17.17	82.51	25	VEFR Conducted. Volume estimated from total (100 gal).
MW-403	25-May-04	99.68	16.93	17.01	0.08	0.05	16.94	82.74	6	VEFR Conducted. Volume estimated from total (18 gal).
(cont)	18-Jun-04	99.68	17.15	17.33	0.18	0.11	17.17	82.51	9.	VEFR Conducted.
.			214							
1W-1	22-Oct-03	99.78	NA	NA	NA	NA	NA	NA	NA	6-Inch Diameter Injection Well Installed
	21-Nov-03	99.78	None Detected	17.90	NA	NA	17.90	81.88	NA	
	19-Dec-03	99.78	None Detected	17.53	NA	NA	. 17.53	82.25	NA	
	9-Jan-04	99.78	None Detected	17.90	NA	NA	17.90	81.88	9.5	VEFR Conducted (for additional well development)
	14-Jan-04	99.78	None Detected	17.75	NA	NA	17.75	82.03	NA	
	20-Feb-04	99.78	None Detected	16.85	NA	NA	16.85	82.93	NA	
1 · ·	19-Mar-04	99.78	None Detected	4.89	NA	NA	4.89	94.89	NA	
	23-Apr-04	.99.78	None Detected	10.37	NA	NA	10.37	89.41	NA	
	25-May-04	99.78	None Detected	10.57	NA	NA	10.57	89.21	NA	
	18-Jun-04	99.78	None Detected	4.19	NA	NA	4.19	95.59	NA	
L	1		IL	,	I		I	I		

ESTIMATED VOLUME OF PRODUCT REMOVED THROUGH JUNE 2004 = 2196

Table 1-11

Table 1-11

RI Product and Groundwater Level Measurements Former Maspeth Substation

Well	Date	Measuring	Measured	Measured	Measured	Corrected	Corrected	Corrected	Volume	
		Point	Depth To	Depth To	Product	Product	Depth to Water	Groundwater	Water/Product	NOTES
		Elevation	Product	Water	Thickness	Thickness		Elevation	Removed	
		(ft AD ²)	(ft TOPVC) ¹	(ft TOPVC) ¹	(feet)	(feet)	(ft TOPVC)	(feet AD ²)	(gal)	

Not Applicable NA =

NM =

Corrected Product Thickness = (Measured Product Thickness) x (Actual/measured thickness)

Corrected Depth to Water = Measured Depth to Product + [(Product Thickness) * (1 - Specific Gravity)]

Actual/measured thickness = 0.59 (see Table 2)

NPR = No Product Recovered

* -== Indicates a sheen but no measurable product

Product detected but not measured, no interface probe

¹ Top of PVC riser pipe	Specific Gravity	:	
² Assumed Datum: Paint spot on facilty assumed to be 100.00 feet		Gasoline .	0.72 to 0.76 60° F
³ May represent water level in sump of well screen, not groundwater elevation		Diesel	0.80
⁴ Broken skimmer at bottom of well, removed and replaced this monitoring episode		No. 2 diesel	0.78 to 0.82 60° F
⁵ Product encountered to bottom of well	·	Motor oil	0.84
	Field Tests Indicat	ed Specific Gravi	ty of Product = 0.89 to 0.90

Table 1-11 RJ Product Hist.xls

Table 4-1 Summary of Total Quantities of Materials Removed Former Maspeth Substation

(Tons)	
719	Rason Asphalt, North Lawrence, NY
343	Rason Asphalt, North Lawrence, NY
8526	Casie Protank, Vineland, NJ
2450	CWM Chemical Services, Model City, NY
975	CWM Chemical Services, Model City, NY
83	Casie Protank, Vineland, NJ
176	CWM Chemical Services, Model City, NY
	(Tons) 719 343 8526 2450 975 83 176

¹ See Table 4-1A for specifics on disposal

² See Table 4-2 for specifics on disposal

³ See Table 4-6 for specifics on disposal

⁴ See Table 4-7 for specifics on disposal

⁵ See Table 4-8 for specifics on disposal

Date off			Converted	Total Tons
Site	Ticket #	Pounds	to Tons	Per Month
6/8/2005	123555	48280	24.14	
6/8/2005	123554	61080	30.54	
6/8/2005	123564	50800	25.4	
6/9/2005	123575	67260	33.63	
6/9/2005	123589	72180	36.09	
6/9/2005	123584	74740	37.37	
6/9/2005	123570	70240	35.12	
6/15/2005	123719	75320	37.66	
6/15/2005	123728	63060	31.53	
6/15/2005	123738	69540	34.77	
6/15/2005	123782	82780	41.39	
6/15/2005	123743	69740	34.87	
6/15/2005	123722	79100	39.55	
6/15/2005	123732	67100	33.55	
6/16/2005	123755	65060	32.53	
6/16/2005	123767	64060	32.03	
6/16/2005	123783	82780	41.39	
6/16/2005	123772	81180	40.59	
6/16/2005	123756	62800	31.40	
6/21/2005	123952	89160	44.58	698.13
7/6/2005	124463	42160	21.08	21.08

Table 4-1AQuantities of Concrete and C&D Material RemovedFormer Maspeth Substation

C&D

Date off			Converted	Total Tons
Site	Ticket #	Pounds	to Tons	Per Month
6/20/2005	123850	90920	45.46	
6/20/2005	123873	81120	40.56	
6/20/2006	123841	83340	41.67	
6/20/2005	123871	86040	43.02	
6/20/2005	123863	93660	46.83	
6/20/2005	123870	85740	42.87	
6/20/2005	123855	87800	43.90	
6/20/2005	123883	77580	38.79	343.1

All Concrete and C&D Material disposed at Rason Asphalt North Lawrence, NY.

Site Manifest # Pounds to Tons Per Month 7/11/2005 183783 67340 33.67	Date off	Non-Haz		Converted	Total Tons
7/11/2005 183783 67340 33.67 7/11/2005 183784 61840 30.92 7/11/2005 183785 67580 33.79 7/11/2005 183787 66100 33.05 7/15/2005 184457 63240 31.62 7/15/2005 184438 60260 30.13 7/15/2005 184443 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184442 62360 31.18 7/22/2005 184443 69860 34.93 7/25/2005 184445 62980 31.49 7/25/2005 184445 62980 31.49 7/25/2005 184453 64380 32.19 8/4/2005 184453 64380 32.19 8/4/2005 184451 6220 31.11 8/5/2005 184451 6220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184451 6220 31.11 8/5/2005 184452 57580 28.79	Site	Manifest #	Pounds	to Tons	Per Month
7/11/2005 183784 61840 30.92 7/11/2005 183785 67580 33.79 7/11/2005 184457 66100 33.05 7/15/2005 184457 63240 31.62 7/15/2005 184439 62460 31.23 7/21/2005 184440 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184441 6020 31.18 7/22/2005 184441 61320 30.66 7/25/2005 184445 62980 31.49 7/25/2005 184445 62980 31.49 7/25/2005 184456 64900 32.45 479.27	7/11/2005	183783	67340	33.67	
7/11/2005 183785 67580 33.79 7/11/2005 183787 66100 33.05 7/15/2005 184437 63240 31.62 7/15/2005 184439 62460 31.23 7/15/2005 184439 62460 31.23 7/21/2005 184441 60080 30.04 7/22/2005 184441 60260 34.93 7/25/2005 184442 62360 31.49 7/25/2005 184445 62980 31.49 7/25/2005 184445 62980 31.49 7/25/2005 184456 64900 32.45 479.27	7/11/2005	183784	61840	30.92	
7/11/2005 183787 66100 33.05 7/15/2005 184457 63240 31.62 7/15/2005 184439 60260 30.13 7/15/2005 184439 62460 31.23 7/21/2005 184440 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184442 62360 31.18 7/22/2005 184443 69860 34.93 7/25/2005 184445 62980 31.49 7/25/2005 184446 61460 30.73 7/25/2005 184453 64380 32.19 8/4/2005 184453 64380 32.19 8/4/2005 184454 61660 30.83 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184452 57580 28.79 8/5/2005 184452 57580 28.79 8/11/2005 186933 64520<	7/11/2005	183785	67580	33.79	
7/15/2005 184457 63240 31.62 7/15/2005 184438 60260 30.13 7/15/2005 184439 62460 31.23 7/21/2005 184440 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184441 60260 31.18 7/22/2005 184443 69860 34.93 7/25/2005 184445 62980 31.49 7/25/2005 184445 62980 31.49 7/25/2005 184456 64900 32.45 479.27	7/11/2005	183787	66100	33.05	
7/15/2005 184438 60260 30.13 7/15/2005 184439 62460 31.23 7/21/2005 184440 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184442 62360 31.18 7/25/2005 184442 62380 31.49 7/25/2005 184445 62980 31.49 7/25/2005 184446 61460 30.73 7/25/2005 184456 64900 32.45 479.27	7/15/2005	184457	63240	31.62	
7/15/2005 184439 62460 31.23 7/21/2005 184440 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184442 62360 31.18 7/22/2005 184443 69860 34.93 7/25/2005 184444 61320 30.66 7/25/2005 184446 61460 30.73 7/25/2005 184456 64900 32.45 479.27 7/25/2005 184456 64900 32.45 479.27 8/4/2005 184456 64400 32.23 85/2005 184451 62220 31.11 8/5/2005 184450 64460 32.23 85/2005 184452 57580 28.79 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184452 57580 28.79 8/5/2005 186933 64520 32.26 8/11/2005 186933 64520 32.46 8/11/2005 </td <td>7/15/2005</td> <td>184438</td> <td>60260</td> <td>30.13</td> <td></td>	7/15/2005	184438	60260	30.13	
7/21/2005 184440 66760 33.38 7/21/2005 184441 60080 30.04 7/22/2005 184442 62360 31.18 7/25/2005 184443 69860 34.93 7/25/2005 184444 61320 30.66 7/25/2005 184446 61460 30.73 7/25/2005 184456 64900 32.45 479.27	7/15/2005	184439	62460	31.23	
7/21/2005 184441 60080 30.04 7/22/2005 184442 62360 31.18 7/25/2005 184443 69860 34.93 7/25/2005 184444 61320 30.66 7/25/2005 184445 62980 31.49 7/25/2005 184446 61460 30.73 7/25/2005 184456 64900 32.45 479.27 8/4/2005 184453 64380 32.19 30.66 8/4/2005 184454 61660 30.83 30.52 8/5/2005 184451 62220 31.11 30.52 8/5/2005 184451 62220 31.11 30.52 8/5/2005 184452 57580 28.79 32.23 8/5/2005 184453 64200 32.12 32.46 8/11/2005 186931 59880 29.94 32.12 8/11/2005 186935 60980 30.49 32.46 8/11/2005 186936 64740 32.37 </td <td>7/21/2005</td> <td>184440</td> <td>66760</td> <td>33.38</td> <td></td>	7/21/2005	184440	66760	33.38	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/21/2005	184441	60080	30.04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/22/2005	184442	62360	31.18	
7/25/2005 184444 61320 30.66 7/25/2005 184445 62980 31.49 7/25/2005 184446 61460 30.73 7/25/2005 184456 64900 32.45 479.27 8/4/2005 184453 64380 32.19 8/3/2005 8/4/2005 184454 61660 30.83 8/5/2005 184451 62220 31.11 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 141/2005 186933 64520 32.26 8/11/2005 186933 64520 32.26 8/11/2005 186935 60980 30.49 8/11/2005 186937 66260 33.13 8/11/2005 186937 66260 33.13 8/11/2005 186941 59820 29.91 8/11/2005 186941 59820 29.91 <td>7/22/2005</td> <td>184443</td> <td>69860</td> <td>34.93</td> <td></td>	7/22/2005	184443	69860	34.93	
7/25/2005 184445 62980 31.49 7/25/2005 184446 61460 30.73 7/25/2005 184456 64900 32.45 479.27 8/4/2005 184453 64380 32.19 8/4/2005 8/4/2005 184454 61660 30.83 8/5/2005 184455 59720 29.86 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184452 57580 28.79 8/5/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186936 64740 32.37 8/11/2005 186941 59820 29.91 8/11/2005	7/25/2005	184444	61320	30.66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/25/2005	184445	62980	31.49	
7/25/2005 184456 64900 32.45 479.27 8/4/2005 184453 64380 32.19 8/4/2005 8/4/2005 184454 61660 30.83 8/5/2005 184450 64460 32.23 8/5/2005 184450 64460 32.23 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184452 59760 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186935 60980 30.49 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186941 59820 29.91 8/11/2005 186944 62520 31.26 8/12/2005 186945	7/25/2005	184446	61460	30.73	
8/4/2005 184453 64380 32.19 8/4/2005 184454 61660 30.83 8/5/2005 184455 59720 29.86 8/5/2005 184450 64460 32.23 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 </td <td>7/25/2005</td> <td>184456</td> <td>64900</td> <td>32.45</td> <td>479.27</td>	7/25/2005	184456	64900	32.45	479.27
8/4/2005 184453 64380 32.19 8/4/2005 184454 61660 30.83 8/5/2005 184455 59720 29.86 8/5/2005 184450 64460 32.23 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184452 57580 29.4 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/11/2005 186944 62520 <td></td> <td></td> <td></td> <td></td> <td></td>					
8/4/2005 184454 61660 30.83 8/5/2005 184455 59720 29.86 8/5/2005 184450 64460 32.23 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186938 58180 29.09 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520<	8/4/2005	184453	64380	32.19	
8/5/2005 184455 59720 29.86 8/5/2005 184450 64460 32.23 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520	8/4/2005	184454	61660	30.83	
8/5/2005 184450 64460 32.23 8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/12/2005 186945 61980 30.99 8/12/2005 186945 6198	8/5/2005	184455	59720	29.86	
8/5/2005 184451 62220 31.11 8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/11/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186947 60700 30.35 8/12/2005 186946 624	8/5/2005	184450	64460	32.23	
8/5/2005 184452 57580 28.79 8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/11/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186947 60700 30.35 8/12/2005 186948 59	8/5/2005	184451	62220	31.11	
8/5/2005 184449 59360 29.68 8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186933 64520 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/11/2005 186943 59220 29.61 8/12/2005 186945 61980 30.99 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 6	8/5/2005	184452	57580	28.79	
8/11/2005 186931 59880 29.94 8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/11/2005 186943 59220 29.61 8/12/2005 186945 61980 30.99 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186947	8/5/2005	184449	59360	29.68	
8/11/2005 186932 64240 32.12 8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186943 59220 29.61 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949	8/11/2005	186931	59880	29.94	
8/11/2005 186933 64520 32.26 8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/11/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186949 62560 31.28 8/12/2005 186904	8/11/2005	186932	64240	32.12	
8/11/2005 186934 64920 32.46 8/11/2005 186935 60980 30.49 8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.	8/11/2005	186933	64520	32.26	
8/11/20051869356098030.498/11/20051869366474032.378/11/20051869376626033.138/11/20051869385818029.098/11/20051869396000030.008/11/20051869406682033.418/11/20051869415982029.918/11/20051869425894029.478/11/20051869435922029.618/12/20051869446252031.268/12/20051869456198030.998/12/20051869466204031.028/12/20051869476070030.358/12/20051869496256031.288/12/20051869496256031.288/12/20051869406188030.948/12/20051869046220031.108/12/20051869046220031.108/12/20051869056638033.198/12/20051869065900029.50	8/11/2005	186934	64920	32.46	
8/11/2005 186936 64740 32.37 8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186940 62200 31.10 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.	8/11/2005	186935	60980	30.49	
8/11/2005 186937 66260 33.13 8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186936	64740	32.37	
8/11/2005 186938 58180 29.09 8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186937	66260	33.13	
8/11/2005 186939 60000 30.00 8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186938	58180	29.09	
8/11/2005 186940 66820 33.41 8/11/2005 186941 59820 29.91 8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186939	60000	30.00	
8/11/20051869415982029.918/11/20051869425894029.478/11/20051869435922029.618/12/20051869446252031.268/12/20051869456198030.998/12/20051869466204031.028/12/20051869476070030.358/12/20051869485974029.878/12/20051869496256031.288/12/20051869496256031.108/12/20051869046220031.108/12/20051869046220031.108/12/20051869056638033.198/12/20051869065900029.50	8/11/2005	186940	66820	33.41	
8/11/2005 186942 58940 29.47 8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186941	59820	29.91	
8/11/2005 186943 59220 29.61 8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186942	58940	29.47	
8/12/2005 186944 62520 31.26 8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/11/2005	186943	59220	29.61	
8/12/2005 186945 61980 30.99 8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/12/2005	186944	62520	31.26	
8/12/2005 186946 62040 31.02 8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/12/2005	186945	61980	30.99	
8/12/2005 186947 60700 30.35 8/12/2005 186948 59740 29.87 8/12/2005 186949 62560 31.28 8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/12/2005	186946	62040	31.02	
8/12/20051869485974029.878/12/20051869496256031.288/12/20051869506188030.948/12/20051869046220031.108/12/20051869056638033.198/12/20051869065900029.50	8/12/2005	186947	60700	30.35	
8/12/20051869496256031.288/12/20051869506188030.948/12/20051869046220031.108/12/20051869056638033.198/12/20051869065900029.50	8/12/2005	186948	59740	29.87	
8/12/2005 186950 61880 30.94 8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/12/2005	186949	62560	31.28	
8/12/2005 186904 62200 31.10 8/12/2005 186905 66380 33.19 8/12/2005 186906 59000 29.50	8/12/2005	186950	61880	30.94	
8/12/20051869056638033.198/12/20051869065900029.50	8/12/2005	186904	62200	31.10	
8/12/2005 186906 59000 29.50	8/12/2005	186905	66380	33.19	
	8/12/2005	186906	59000	29.50	
8/12/2005 186907 65500 32.75	8/12/2005	186907	65500	32.75	
8/12/2005 186908 60220 30.11	8/12/2005	186908	60220	30.11	
8/12/2005 186909 53280 26.64	8/12/2005	186909	53280	26.64	
8/12/2005 186910 55040 27.52	8/12/2005	186910	55040	27.52	

Date off	Non-Haz		Converted	Total Tons
Site	Manifest #	Pounds	to Tons	Per Month
8/12/2005	186911	60880	30.44	
8/12/2005	186912	64340	32.17	
8/12/2005	186913	56780	28.39	
8/15/2005	186914	61560	30.78	
8/15/2005	186915	60660	30.33	
8/15/2005	186916	64500	32.25	
8/15/2005	186917	59480	29.74	
8/15/2005	186918	55800	27.90	
8/15/2005	186919	60720	30.36	
8/15/2005	186920	62640	31.32	
8/15/2005	186921	61300	30.65	
8/15/2005	186922	54240	27.12	
8/15/2005	186923	56300	28.15	
8/15/2005	186924	64300	32.15	
8/17/2005	186925	61600	30.80	
8/17/2005	186926	53980	26.99	
8/17/2005	186927	63580	31 79	
8/17/2005	186928	71220	35.61	
8/17/2005	186929	70620	35 31	
8/17/2005	186930	58020	29.01	
8/17/2005	184447	68460	34.23	
8/17/2005	184448	55280	27.64	
8/17/2005	166752	66560	33.28	
8/17/2005	166753	67740	33.87	
8/17/2005	166754	66580	33.07	
8/17/2005	188236	60820	30.41	
8/17/2005	188237	70000	35.45	
8/17/2005	188238	53000	26.50	
8/18/2005	188230	60120	20.30	
8/18/2005	188240	57020	28.06	
8/18/2005	1882/1	55540	20.90	
8/18/2005	1882/2	56700	28.35	
8/10/2005	1882/2	56220	20.33	
8/19/2005	188244	60280	20.11	
8/19/2005	188245	62340	31.17	
8/19/2005	188246	62640	31.17	
8/10/2005	1880/7	61200	30.60	
8/19/2003	1882/12	65520	30.00	
8/19/2003	188240	60060	30 / 2	
8/10/2005	188250	50740	20.40	
8/10/2005	188251	60220	29.07	
8/10/2005	188252	61020	30.11	
0/19/2000 9/20/2005	100202	62060	21.02	
0/20/2003	100200	62200	21.03	
0/20/2003	100204	57020	31.14 20.06	
0/20/2003	100200	67700	20.90	
0/20/2003	100200	62740	33.09 24.07	
0/20/2005	100207	47040	31.0/ 22.07	
0/20/2005	100200	47940 62020	23.97	
0/20/2003	100209	55190	31.01 27.50	
0/20/2000	100200	00100	21.09	

Date off	Non-Haz		Converted	Total Tons
Site	Manifest #	Pounds	to Tons	Per Month
8/20/2005	188261	57560	28.78	
8/22/2005	188262	57400	28.70	
8/22/2005	188263	53620	26.81	
8/22/2005	188264	58900	29.45	
8/22/2005	188265	55280	27.64	
8/22/2005	188266	56820	28.41	
8/30/2005	188267	64880	32.44	
8/30/2005	188268	61080	30.54	
8/30/2005	188269	62000	31.00	
8/31/2005	188270	60140	30.07	
8/31/2005	188271	60480	30.24	
8/31/2005	188272	62340	31.17	2926.32
		02010	•••••	
9/1/2005	188273	62240	31.12	
9/1/2005	188274	59480	29.74	
9/2/2005	188275	67100	33.55	
9/2/2005	188276	68100	34.05	
9/2/2005	188277	61360	30.68	
9/6/2005	188278	69920	34.96	
9/6/2005	188279	61320	30.66	
9/7/2005	188280	60440	30.22	
9/7/2005	188281	62640	31.32	
9/7/2005	188282	59160	29.58	
9/8/2005	188283	64160	32.08	
9/8/2005	188284	60840	30.42	
9/8/2005	188285	62460	31.23	
9/9/2005	188445	62900	31 45	
9/9/2005	188446	67160	33.58	
9/9/2005	188447	67980	33.99	
9/12/2005	188448	62740	31.37	
9/12/2005	188449	70480	35.24	
9/12/2005	188450	67320	33.66	
9/12/2005	188451	62800	31 40	640.30
0,12,2000		02000	00	0.000
10/24/2005	188452	49660	24.83	
10/24/2005	188453	45180	22.59	
10/24/2005	188454	53720	26.86	
10/24/2005	188455	58840	29.42	
10/24/2005	188456	51080	25.54	
10/24/2005	188457	56780	28.39	
10/31/2005	188458	64800	32.40	
10/31/2005	188459	56180	28.09	
10/31/2005	188460	62760	31.38	
10/31/2005	188461	71900	35.95	
10/31/2005	188462	57340	28.67	
10/31/2005	188463	60820	30.41	
10/31/2005	188464	60260	30.13	
10/31/2005	188465	75240	37.62	
10/31/2005	188466	67140	33.57	
10/31/2005	188467	67880	33.94	

Date off	Non-Haz		Converted	Total Tons
Site	Manifest #	Pounds	to Tons	Per Month
10/31/2005	188468	68380	34.19	
10/31/2005	188469	70960	35.48	
10/31/2005	188470	73300	36.65	
10/31/2005	188471	71000	35.50	
10/31/2005	188472	59340	29.67	
10/31/2005	188473	59580	29.79	
10/31/2005	188474	61940	30.97	
10/31/2005	188476	59820	29.91	
10/31/2005	188501	65620	32.81	
10/31/2005	188502	63580	31.79	806.55
11/1/2005	188477	64720	32.36	
11/1/2005	188478	67340	33.67	
11/1/2005	188479	64640	32.32	
11/1/2005	188480	62920	31.46	
11/1/2005	188481	63680	31.84	
11/1/2005	188482	71520	35 76	<u> </u>
11/2/2005	188483	62620	31 31	
11/2/2005	188/8/	57300	28.65	
11/2/2005	188/85	63980	20.00	
11/2/2005	188486	55720	27.86	
11/2/2005	188487	53/80	27.00	
11/2/2005	100407	60700	20.74	
11/2/2005	100400	64400	30.33	
11/2/2005	199400	61620	20.91	
11/2/2005	100490	50000	30.01	
11/2/2005	100491	59900	29.90	
11/3/2005	100492	65740	32.73	
11/3/2005	100493	61260	32.07	
11/3/2005	100494	61300	30.00	
11/3/2005	188495	64700 51760	32.30	
11/3/2005	188496	51760	25.88	
11/3/2005	100497	64940	32.47	
11/3/2005	188498	64800	32.40	
11/3/2005	100499	61400	30.92	
11/3/2005	100500	61400	30.70	
11/3/2005	100504	02440	31.22	
11/3/2005	188504	57040	28.36	
11/3/2005	188505	57340	28.67	
11/3/2005	188506	60520	30.26	
11/3/2005	188507	63160	31.58	
11/4/2005	188508	69280	34.64	
11/4/2005	188509	72660	36.33	
11/4/2005	188510	64780	32.39	
11/4/2005	188511	69660	34.83	
11/4/2005	188512	46820	23.41	
11/4/2005	188513	52800	26.40	
11/4/2005	188514	64220	32.11	
11/4/2005	188515	37080	18.54	
11/4/2005	188516	56760	28.38	
11/4/2005	188517	63060	31.53	

Date off	Non-Haz		Converted	Total Tons
Site	Manifest #	Pounds	to Tons	Per Month
11/4/2005	188518	59200	29.60	
11/7/2005	188519	70100	35.05	
11/7/2005	188520	64000	32.00	
11/7/2005	188521	64120	32.06	
11/7/2005	188522	61600	30.80	
11/7/2005	188523	53800	26.90	
11/7/2005	188524	59700	29.85	
11/8/2005	188525	64240	32.12	
11/8/2005	188526	58400	29.20	
11/8/2005	188527	61880	30.94	
11/8/2005	188528	59140	29.57	
11/8/2005	188529	62200	31.10	
11/8/2005	188530	56420	28.21	
11/9/2005	188531	58640	29.32	
11/9/2005	188532	62180	31.09	
11/9/2005	188533	66820	33.41	
11/9/2005	188534	60960	30.48	
11/9/2005	188535	57780	28.89	
11/9/2005	188536	58200	29.10	
11/10/2005	188537	65640	32.82	
11/10/2005	188538	58600	29.30	
11/10/2005	188539	65320	32.66	
11/10/2005	188540	59900	29.95	
11/10/2005	188541	54780	27.39	
11/10/2005	188542	57620	28.81	
11/10/2005	188543	60240	30.12	
11/10/2005	188544	51840	25.92	
11/11/2005	196818	50140	25.07	
11/11/2005	196819	44620	22.31	
11/11/2005	196820	39740	19.87	
11/11/2005	196821	62080	31.04	
11/11/2005	196822	60980	30.49	
11/11/2005	196823	66400	33.20	
11/11/2005	196824	63120	31.56	
11/11/2005	196825	62940	31.47	
11/11/2005	196826	65820	32.91	
11/11/2005	196827	52700	26.35	
11/11/2005	196828	57320	28.66	
11/11/2005	196829	59060	29.53	2356.04
6/28/2006	196830	61720	30.86	
6/28/2006	196831	62260	31.13	
6/28/2006	196832	61840	30.92	
6/28/2006	196833	62300	31.15	
6/28/2006	196834	60220	30.11	
6/28/2006	196835	62540	31.27	
6/28/2006	196836	62980	31.49	
6/28/2006	196837	57140	28.57	
6/28/2006	196838	59600	29.80	275.30

Date off	Non-Haz		Converted	Total Tons
Site	Manifest #	Pounds	to Tons	Per Month
7/10/2006	196797	50680	25.34	
7/10/2006	196798	63180	31.59	
7/10/2006	196799	54720	27.36	
7/10/2006	196800	65420	32.71	
7/11/2006	196801	67020	33.51	
7/11/2006	196802	65580	32.79	
7/11/2006	196803	64560	32.28	
7/11/2006	196804	63460	31.73	
7/11/2006	196805	59180	29.59	
7/11/2006	196806	68120	34.06	
7/11/2006	196807	56280	28.14	
7/11/2006	196808	57720	28.86	
7/11/2006	196809	60180	30.09	
7/11/2006	196810	60800	30.40	428.45
10/27/2006	217678	47180	23.59	
10/27/2006	217680	49340	24.67	
10/27/2006	217683	47680	23.84	
10/27/2006	217685	49480	24.74	
10/27/2006	217686	56720	28.36	
10/31/2006	217860	59900	29.95	
10/31/2006	217861	56520	28.26	
10/31/2006	217862	61440	30.72	
10/31/2006	217863	56100	28.05	
10/31/2006	217865	44000	22.00	
10/31/2006	217866	54040	27.02	291.20
11/8/2006	217681	57640	28.82	
11/8/2006	217679	55280	27.64	
11/8/2006	217867	49440	24.72	
11/8/2006	217868	54080	27.04	
11/8/2006	217869	55160	27.58	
11/8/2006	208856	46160	23.08	
11/10/2006	218112	47320	23.66	
11/10/2006	218113	53980	26.99	
11/10/2006	218114	54700	27.35	
11/10/2006	218115	55020	27.51	
11/10/2006	218116	48980	24.49	
11/10/2006	218117	68180	34.09	322.97

TOTAL (7/05 to 11/06) 8526.4

1/5/2007	188213	63380	31.69	
1/5/2007	150844	56180	28.09	
1/8/2007	150845	46180	23.09	82.87

Sample Location	Sample Date	Sample Type	Purpose	Depth	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
				(feet bls)	(ppm)	, maly too		(ppm)	(ppm)
MA-SW-0,25 (4-6)	8/17/2005	Grab	End-Pt: E. SW	5	1.0	PCBs, TPH	0508465	18	4,170
MA-SW-0,25 (6-10)	8/17/2005	Grab	End-Pt: E. SW	9	6.7	PCBs, TPH, VOCs, SVOCs	0508465	0.53	6,860
MA-SW-0,25 (6-10) MS	8/17/2005	Grab	Matrix Spike	9	6.7	PCBs, TPH, VOCs, SVOCs	0508465	0.83	19,020
MA-SW-0,25 (6-10) MSD	8/17/2005	Grab	Matrix Spike Dup	. 9	6.7	PCBs, TPH, VOCs, SVOCs	0508465	0.84	11,780
MA-SW-0,25 (6-10) Dupe	8/17/2005	Grab	Field Dup	9	6.7	PCBs, TPH, VOCs, SVOCs	0508465	0.71	7,680
MA-SW-0.40 (0-2)	8/17/2005	Grab	End-Pt: E_SW	2	0.1		0508465	0.45	1.570
MA-SW-0.40 (2-6)	8/17/2005	Grab	End-Pt F SW	5	0.1	PCBs TPH	0508465	2.96	1,070
MA-SW-0,40 (6-10)	8/17/2005	Grab	End-Pt: E. SW	8	6.1	PCBs, TPH	0508465	0.20	852
MA SW 0 57 (0 2)	8/18/200E	Creh		4.5					
MA-SW-0,57 (0-2)	8/18/2005	Grab	End-Pt: E. SW	1.5	2.1	PCBs, TPH	0508465	0.82	710
MA-SW-0,57 (2-6)	0/17/2005	Grab	End-Pt: E. SVV	4	0.0	PCBs, TPH	0508465	< 0.0067	< 40.3
MA-SVV-0,57 (6-10)	8/17/2005	Grab	End-Pt: E. SVV	9	1.3	PCBs, TPH	0508465	< 0.0069	< 42.1
MA-SW-19,60 (0-2)	8/18/2005	Grab	End-Pt: N. SW	2	0.9	PCBs, TPH	0508522	18.8	783
MA-SW-19,60 (2-6)	8/18/2005	Grab	End-Pt: N. SW	5	2.3	PCBs TPH	0508522	< 0.0078	11.5
MA-SW-19,60 (6-10)	8/18/2005	Grab	End-Pt: N. SW	9	2.3	PCBs, TPH	0508522	< 0.0071	< 43.4
MA SW(37 60 (0.2)	9/10/200E	Creh	End Dt NLOW				050000	0.055	
MA SIA(27 60 (2.6)	8/19/2005	Grap	End-Pt: N. SVV	1,5	1.3	PCBs, TPH	0508522	0.039	110
MA-SW-37,60 (2-6)	8/19/2005	Grab	End-Pt: N. SVV	5	1./	PCBs, TPH	0508522	0.40	133
MA-SVV-37,60 (6-10)	8/19/2005	Grab	End-Pt: N. SW	8	2.2	PCBs, TPH	0508522	0.33	24,500
MA-SW-62,60 (0-2)	8/22/2005	Grab	End-Pt: N. SW	2	0.1	PCBs. TPH	0508522	0.30	4.670
MA-SW-62,60 (2-6)	8/22/2005	Grab	End-Pt: N. SW	5	0.5	PCBs TPH	0508522	121	925
MA-SW-62,60 (6-10)	8/22/2005	Grab	End-Pt: N. SW	9	0.9	PCBs, TPH	0508522	< 0.0072	3.23
MA CINI 00 00 (0 0)	0/00/0005	0							
MA-SW-00,00 (0-2)	8/23/2005	Grab	End-Pt: N. SW	2	1.0	PCBs, TPH	0508624	0.087	174
MA-SVV-66,60 (2-6)	8/23/2005	Grap	End-Pt: N. SVV	4	0.8	PCBs, TPH	0508624	0.82	134
MA-SVV-86,60 (6-10)	8/23/2005	Grab	End-Pt: N. SW	8	0.4	PCBs, TPH	0508624	0.31	< 43.4
MA-SW-108,60 (0-2)	8/24/2005	Grab	End-Pt: N. SW	2	0.0	PCBs TPH	0508624	134	503
MA-SW-108,60 (2-6)	8/24/2005	Grab	End-Pt: N. SW	4	0.0	PCBs TPH	0508624	< 0.0078	352
MA-SW-108,60 (6-10)	8/24/2005	Grab	End-Pt: N. SW	9	0.4	PCBs, TPH	0508624	< 0.0073	< 44.5
MA CIN 442 57 (0.0)	0/04/0005	Orah							
MA-SVV-112,57 (0-2)	8/24/2005	Grab	End-Pt: W. SW	2	1.8	PCBs, TPH	0508624	0.45	979
MA-SVV-112,57 (2-6)	8/24/2005	Grab	End-Pt: W. SW	4	0.5	PCBs, TPH	0508624	0.021	326 J
MA-SVV-112,57 (6-10)	8/24/2005	Grab	End-Pt: W. SW	8	0.0	PCBs, TPH	0508624	< 0.0070	3.60 J
MA-SW-14,0 (6-10)	8/29/2005	Grab	End-Pt: S. SW	9	3.1	PCBs, TPH, VOCs, SVOCs	0508718	0.17	9.940
MA-SW-45,0 (6-10)	8/29/2005	Grab	End-Pt: S. SW	9	2.2	PCBs, TPH, VOCs, SVOCs	0508718	0.18	5,910
MA-SW-45,0 (6-10) Dupe	8/29/2005	Grab	Field Dup	9.	2.2	PCBs, TPH, VOCs, SVOCs	0508718	0.19	9,010
MA-SW-45,0 (6-10) MS	8/29/2005	Grab	Matrix Spike	9	2.2	PCBs, TPH, VOCs, SVOCs	0508718	0.46	9,190
MA-SW-45,0 (6-10) MSD	8/29/2005	Grab	Matrix Spike Dup	9	2.2	PCBs, TPH, VOCs, SVOCs	0508718	0.47	6,460
MA-SW-63,0 (6-10)	8/30/2005	Grab	End-Pt: S. SW	9	3.5	PCBs, TPH, VOCs, SVOCs	0509044	0.029	4,010
MA SIA/ 91 0 (6 10)	8/04/0005	Cart	End D' O O'				0.50555		
1W/A-3VV-01,0 (0-10)	8/31/2005	Grap	End-Pt: 5. SVV	9	4.1	PUBS, IPH, VOCS, SVOCS	0509044	0.037	5,500
MA-SW-109,0 (6-10)	9/6/2005	Grab	End-Pt: S. SW	9	0.0	PCBs, TPH, VOCs, SVOCs	0509135	< 0.0070	< 42.8
	0/0/0005								
WIA-SVV-118,6 (U-2)	9/6/2005	Grab	side wall	2	0.2	PCBs, TPH	0509135	10.5	240
MA-SSB-15,55 (18)	9/15/2005	Grab	TP: No. Main Exc.	18	NA	PCBs. TPH	0509287	< 0.0070	257
MA-SSB-15,55 (22)	9/15/2005	Grab	TP: No. Main Exc.	22	I NA	PCBs, TPH	0509287	< 0.0070	94.1
MA-SSB-15,55 (25)	9/15/2005	Grab	TP: No. Main Exc.	25	NA	PCBs, TPH	0509287	0.022	41.4
MA COD 20 55 (40)	0// 5 2005								
IMIA-358-30,55 (18)	9/15/2005	Grab	TP: No. Main Exc.	18	NA	PCBs, TPH	0509287	< 0.0070	86.1

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bis)	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SSB-30,55 (22)	9/15/2005	Grab	TP: No. Main Exc.	22	NA	PCBs TPH	0509383	(ppiii)	(ppm) 160
MA-SSB-30,55 (26)	9/15/2005	Grab	TP: No. Main Exc.	26	NA		0509303	< 0.024	160
						1003,1111	0009303	< 0.0009	92.9
MA-SW-40,0 (12)	9/19/2005	Grab	End-Pt: S. SW	12	NA	PCBe TPH	0509444	0.027	1.060
	····						0303444	0.027	1,000
MA-SW-77,0 (13)	9/20/2005	Grab	End-Pt: S. SW	13	NA	PCBe TPH	0509444	0.020	6 260
				10		1003,1111	0303444	0.029	0,200
MA-SW-95,0 (13)	9/20/2005	Grab	End-Pt: S. SW	13	NA	DCBe TDU	0500444	< 0.007E	
MA-SW-95,0 (18)	9/21/2005	Grab	End-Pt: S_SW	18			0509444	< 0.0075	352
							0509444	< 0.0075	< 40.0
MA-SSB-6.6 (10)	9/21/2005	Grah	TP: SE Comer	10	NA	DCPo TPU	050000	0.00	
				10		FCBS, IFH	0509393	2.09	15,600
MA-SSB-6.12 (12)	9/21/2005	Grah	TP: SE Comer	12	NA	DCBo TDU	0500202	0.00	
MA-SSB-6.12 (18)	9/21/2005	Grab	TP: SE Comer	12		PCBs, IPH	0509393	3.38	20,900
MA-SSB-6.12 (22)	9/21/2005	Grab	TP: SE Comer	22		PCBs, IPH	0509393	< 0.0069	156
	0/21/2000					PCBS, IPH	0509393	0.33	1,/10
MA-SSB-18 18 (20)	9/21/2005	Grah	TP: SE Comor		NIA	DOD- TOU	0500000	0.075	
MA-SSB-18 18 (25)	9/21/2005	Grab	TP: SE Comor	20	NA	PCBS, IPH	0509393	0.075	938
		Giab		25	NA	PCBS, IPH	0509393	0.08	368
MA-SSB-30 12 (10)	0/21/2005	Grah	TD: SE Comor	10	NIA	DOD. TOU			
MA-SSB-30 12 (14)	0/21/2005	Grab	TP: SE Comer	10	NA NA	PCBs, TPH	0509393	0.25	4,440
MA-00D-00,12 (14)	9/21/2003	Giab	TP: SE Comer	14	NA	PCBs, IPH	0509393	1.00	10,500
MA-SSB-30 18 (18)	0/21/2005	Grah	TD: SE Comor	40	N				
MA-SSB-30,18 (18)	9/21/2005	Grab	TP: SE Corner	18	NA	PCBs, TPH	0509393	0.36	1,470
MA SSB 30,18 (24)	9/21/2005	Giab	TP: SE Corner	24	NA	PCBs, IPH	0509393	0.085	2,150
MA-33B-30, 18 (24) Dupe	9/21/2005	Grap	TP: SE Comer	24	NA	PCBs, TPH	0509393	0.041	1,050
MA SSP 1 4 (15)	0/00/0005	01	TD OF O						
MA-SSB-1,4 (15)	9/28/2005	Grab	TP: SE Comer	15	NA	PCBs, TPH	0509542	0.64	8,520
MA SSB-13,4 (15)	9/28/2005	Grab	TP: SE Comer	15	NA	PCBs, TPH	0509542	0.043	445
MA-55B-22,4 (18)	9/28/2005	Grab	TP: SE Comer	18	NA	PCBs, TPH	0509542	0.18	2,820
MA COD 2 0 (19)	0/00/0005		TD OF 0						
MA-55B-3,9 (18)	9/28/2005	Grab	TP: SE Comer		NA	PCBs, TPH	0509542	0.0094	586
144 000 40 0 (10)	0.000.000								
MA-SSB-18,9 (18)	9/28/2005	Grab	TP: SE Corner	18	NA	PCBs, TPH	0509542	< 0.0070	89.5
Field Equipment Blank	9/28/2005			NA	NA	PCBs, TPH	0509542	< 0.000080	< 0.035
	0.00.000						•		
MA-5W-48,0 (17)	9/30/2005	Grab	End-Pt: S. SW	17	NA	PCBs, TPH, VOCs, SVOCs	0510030	0.072	4,940
	10/0/0005								
MA-SW-68,0 (16)	10/3/2005	Grab	End-Pt: S. SW	16	NA	PCBs, TPH, VOCs, SVOCs	0510149	0.010	1,450
MA-SW-68,0 (16) Dupe	10/3/2005	Grab	Field Dup	16	NA	PCBs, TPH, VOCs, SVOCs	0510149	0.012	2,490
MA-SW-86,0 (17)	10/3/2005	Grab	End-Pt: S. SW	17	NA	PCBs, TPH, VOCs, SVOCs	0510149	< 0.0070	< 43.5
MA-SW-86,0 (17) MS	10/3/2005	Grab	QA/QC	17	NA	PCBs, TPH, VOCs, SVOCs	0510149	0.25	576
MA-SW-86,0 (17) MSD	10/3/2005	Grab	QA/QC	17	NA	PCBs, TPH, VOCs, SVOCs	0510149	0.32	646
MA-SVV-110,0 (17)	10/3/2005	Grab	End-Pt: S. SW	17	NA	PCBs, TPH,	0510149	< 0.0070	< 42.9
MVV-301	10/11/2005	Mon Well	Free Product	na	NA	PCBs, TPH,	0510217	229	1,000,000
MA-SSB-102.65(3)	10/14/2005	Grab	End-Pt	3	NA	PCBs, TPH	0510320	0.14	65.4
MA-SW-17,63(3.2)	10/18/2005	Grab	End-Pt	3.2	NA	PCBs, TPH	0510320	0.52	1,960
MA-SSB-17,63(4)	10/18/2005	Grab	End-Pt	4	NA	PCBs, TPH	0510320	0.015	< 43.9
MA-SW-62,63 (5)	10/21/2005	Grab	Hot Spot End -Pt	5	NA	PCBs, TPH, VOCs, SVOCs	0510452	486	457
MA-SW-62,63 (5) Dupe	10/21/2005	Grab	Field Dup	5	NA	PCBs, TPH, VOCs, SVOCs	0510452	514	438
MA-SW-62,63 (5) MS	10/21/2005	Grab	Matrix Spike	5	NA	PCBs TPH VOCs SVOCs	0510452	580	1 270
MA-SW-62,63 (5) MSD	10/21/2005	Grab	Matrix Spike Dup	5	NA	PCBs TPH VOCs SVOCs	0510452	574	1,370
			······································		<u> </u>	1 555, 11 11, 7003, 07003		P 1 P	1,200

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH
MA-SW-65,62 (5)	10/21/2005	Grab	Hot Spot End -Pt	5	NA	PCBs, TPH	0510452	1.18	146
MA-SW-55,62 (5)	10/21/2005	Grab	Hot Spot End -Pt	5	NA	PCBs, TPH	0510452	164	480
MA-SW-0,24 (7)	10/28/2005	Grab	End-Pt: E. SW	7	0.8	PCBs, TPH	0511021	1.04	7 310
									1,010
MA-SW-0,26 (7)	10/28/2005	Grab	End-Pt: E. SW	7	1.1	PCBs, TPH	0511021	0.8	8.310
									-1
MA-SW-0,23 (13)	10/31/2005	Grab	End-Pt: E. SW	13	4.9	PCBs, TPH	0511021	0.62	4.940
MA-SW-0,23 (16)	11/1/2005	Grab	End-Pt: E. SW	16	4.9	PCBs, TPH	0511021	1.44	14.400
								•	
MA-SW-0,37 (17)	11/1/2005	Grab	End-Pt: E. SW	17	6.5	PCBs, TPH	0511021	1.63	10,800
MA-SW-0,38 (12)	10/31/2005	Grab	End-Pt: E. SW	12	2.1	PCBs, TPH	0511021	0.56	4,660
MA-SW-0,57 (12)	11/1/2005	Grab	End-Pt: E. SW	12	1.9	PCBs, TPH, VOCs, SVOCs	0511021	0.015	< 44.6
MA-SVV-0,15(17)	11/3/2005	Grab	End-Pt: E. SW	17	4.3	PCBs, TPH	0511140	0.20	1,350
MA-5VV-0,9(13)	11/3/2005	Grab	End-Pt: E. SW	13	5.5	PCBs, TPH	0511140	0.33	3,140
MA SSP 12 20(19)	11/4/2005	Orah							
MA-55D-12,29(10)	11/4/2005	Grab	End-Pt: Bottom	18	2.2	PCBs, TPH, VOCs, SVOCs	0511140	0.26	1,330
MA-SSB-20,43(10)	11/4/2005	Grab	End-Pt: Bottom	18	3.7	PCBs, TPH	0511140	0.80	2,540
MA-00B-00,7(10)	11/4/2003	Giab	End-Pt: Bottom	18	2.4	PCBs, IPH	0511140	0.22	1,750
MA-SW-12 55 (13)	11/8/2005	Grah	End Pt: N Wedge	. 12	11		0544040	0.00	4 700
MA-SW-12,50 (16)	11/8/2005	Grab	End-Pt: N Wedge	16	1.1		0511210	0.30	1,760
MA-SSB-12.35 (18)	11/8/2005	Grab	End-Pt: Bottom	18	1.0		0511210	147	5,700
MA-SSB-12,15 (18)	11/8/2005	Grab	End-Pt: Bottom	18	11	PCBs TPH	0511210	0.47	0,230
					t	1 003, 11 11	0011210	0.47	2,900
MA-SW-37,55 (13)	11/8/2005	Grab	End-Pt: N Wedge	13	2.2	PCBs, TPH	0511210	2390	4 170
MA-SW-37,50 (16)	11/8/2005	Grab	End-Pt: N Wedge	16	1.5	PCBs. TPH	0511210	0.27	5,010
MA-SSB-37,45 (18)	11/8/2005	Grab	End-Pt: Bottom	18	1.6	PCBs, TPH	0511210	2090	2 520
MA-SSB-37,25 (18)	11/8/2005	Grab	End-Pt: Bottom	18	1.2	PCBs, TPH	0511210	0.16	1.050
MA-SSB-37,15 (18)	11/8/2005	Grab	End-Pt: Bottom	18	1.1	PCBs, TPH, VOCs, SVOCs	0511210	0,18	2.110
MA-SSB-12,45 (18)	11/8/2005	Grab	End-Pt: Bottom	18	1.5	PCBs, TPH, VOCs, SVOCs	0511210	2.11	8,860
MA-SVV-8,7 (13)	11/8/2005	Grab	End-Pt: SE Wedge	13	1.9	PCBs, TPH, VOCs, SVOCs	0511210	0.13	450
MA-SVV-8,7 (13) Dupe	11/8/2005	Grab	Field Dup	13	NA	PCBs, TPH, VOCs, SVOCs	0511210	0.10	997
MA-SW-8,7 (13) MS	11/8/2005	Grap	Matrix Spike	13	NA	PCBs, TPH, VOCs, SVOCs	0511210	0.40	1,040
WA-SW-0,7 (13) WSD	11/8/2005	Grap	Matrix Spike Dup	13	NA	PCBs, TPH, VOCs, SVOCs	0511210	0.39	566
MA-SW-67 62 (5)	11/11/2005	Grah	End Dt: N Hot Spot W/ SW	5	0.7	DCD- TDU	0544070	0.00	0.000
MA-SW-67 64 (5)	11/11/2005	Grab	End-Pt: N. Hot Spot, W. SW	5	0.7	PCBS, TPH	0511278	0.68	2,230
MA-SW-67.64 (9)	11/11/2005	Grab	End-Pt: N. Hot Spot, N. SW		1.1		0511278	762	9,090
MA-SW-51 62 (5)	11/11/2005	Grab	End-Pt: N Hot Spot, N. SW	5	0.0		0511278	0.40	21.7
MA-SW-51.64 (5)	11/11/2005	Grab	End-Pt: N Hot Spot, N SW	5	0.9		0511278	0.13	63.3
MA-SW-51.64 (9)	11/11/2005	Grab	End-Pt: N Hot Spot, N. SW	9	13	PCBs TPH	0511278	0.2	51.5
MA-SW-62,64 (6)	11/11/2005	Grab	End-Pt: N. Hot Spot. N. SW	6	12	PCBs TPH	0511278	334	43.1
MA-SW-62,64 (9)	11/11/2005	Grab	End-Pt: N. Hot Spot, N. SW	9	1.0	PCBs TPH VOCs SVOCs	0511278	0.26	10.1
							- COTIE/O	0.20	10.1
MA-SSB-106,22 (18)	11/15/2005	Grab	End-Pt: Bottom	18	3.1	PCBs. TPH	0511364	1440	1 870
MA-SSB-77,48 (18)	11/15/2005	Grab	End-Pt: Bottom	18	2.3	PCBs, TPH	0511364	2100	2.270
GP-57-26 (2)	11/18/2005	Geoprobe	No. Fence Line behind 57-26	2	NA	PCBs	0511411	0.62	NA
GP-57-26 (6)	11/18/2005	Geoprobe	No. Fence Line behind 57-26	6	NA	PCBs	0511411	0.073	NA
GP-57-26 (10)	11/18/2005	Geoprobe	No. Fence Line behind 57-26	10	NA	PCBs	0511411	0.96	NA
GP-57-26 (14)	11/18/2005	Geoprobe	No. Fence Line behind 57-26	14	NA	PCBs	0511411	0.08	NA
GP-37-26 (18)	11/18/2005	Geoprobe	No. Fence Line behind 57-26	18	NA	PCBs	0511411	0.033	NA
								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

.

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab CÓC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
CD 57 39 (2)		0							
GP-57-28 (2)	11/18/2005	Geoprobe	No. Fence Line behind 57-28	2	NA	PCBs	0511411	0.02	NA
GP-57-20 (0)	11/18/2005	Geoprope	No. Fence Line benind 57-28	6	NA	PCBs	0511411	0.043	NA
GP-37-26 (10)	11/10/2005	Geoprobe	No. Fence Line behind 57-28	10	NA	PCBs	0511411	0.63	NA
CD 57 29 (19)	11/16/2005	Geoprobe	No. Fence Line behind 57-28	14	NA	PCBs	0511411	0.038	NA
GP-57-26 (16)	11/10/2005	Geoprope	No. Fence Line benind 57-28	18	NA NA	PCBs	0511411	0.12	NA
GP-57-30 (2)	11/18/2005	Geoprobe	No. Force Line behind 57 30	<u> </u>	NIA	DOD-	054444		
GP-57-30 (6)	11/18/2005	Geoprobe	No. Fence Line behind 57-30	2		PCBs	0511411	0.11	NA
GP-57-30 (10)	11/18/2005	Geoprobe	No. Fence Line behind 57-30	10		PCBs	0511411	0.45	NA
GP-57-30 (14)	11/18/2005	Geoprobe	No. Fence Line behind 57-30	14		PCBs	0511411	1.63	NA
GP-57-30 (18	11/18/2005	Geoprobe	No. Fence Line behind 57-30	14	NA NA	PCBs	0511411	0.00	NA NA
	11110.2000	Goopiono	He Helle Elle Belmid 61-66			FODS	0311411	0.09	INA
GP-57-32 (2)	11/18/2005	Geoprobe	No. Fence Line behind 57-32	2	NA	PCBs	0511411	0.039	NA
GP-57-32 (6)	11/18/2005	Geoprobe	No. Fence Line behind 57-32		NA	PCBs	0511411	0.039	
GP-57-32 (10)	11/18/2005	Geoprobe	No. Fence Line behind 57-32	10	NA	PCBs	0511411	< 0.02	NA NA
GP-57-32 (14)	11/18/2005	Geoprobe	No. Fence Line behind 57-32	14	NA	PCBs	0511437	< 0.0072	NA
GP-57-32 (18)	11/18/2005	Geoprobe	No. Fence Line behind 57-32	18	NA	PCBs	0511437	< 0.0070	NA
								0.0010	
GP-57-34 (2)	11/18/2005	Geoprobe	No. Fence Line behind 57-34	2	NA	PCBs	0511437	0.18	NA
GP-57-34 (6)	11/18/2005	Geoprobe	No. Fence Line behind 57-34	6	NA	PCBs	0511437	0.015	NA
GP-57-34 (10)	11/18/2005	Geoprobe	No. Fence Line behind 57-34	10	NA	PCBs	0511437	< 0.0072	NA
GP-57-34 (14)	11/18/2005	Geoprobe	No. Fence Line behind 57-34	14	NA	PCBs	0511437	0.02	NA
GP-57-34 (18)	11/18/2005	Geoprobe	No. Fence Line behind 57-34	18	NA	PCBs	0511437	0.015	NA
MA-SSB-46,48(20)	11/23/2005	Grab		20	NA	PCBs	0511510	779	NA
MA-SSB-46,51(22)	11/23/2005	Grab		22	NA	PCBs	0511510	450	NA
MA-SW-4,63.5(10)	11/23/2005	Grab	End-Pt: N. Wall behind lagging	10	NA	PCBs	0511510	< 0.0072	NA
MA-SW-15,63.5(10)	11/23/2005	Grab	End-Pt: N. Wall behind lagging	10	NA	PCBs	0511510	< 0.0073	NĂ
								•	
MA-SW-4,64 (2)	11/28/2005	Grab	End-Pt: N. Wall behind lagging	2	NA	PCBs	0511532	2.3	NA
MA-SW-4,62.5 (6)	11/28/2005	Grab	End-Pt: N. Wall behind lagging	6	NA	PCBs	0511532	< 0.0081	NA
MA-SW-4,64 (18)	11/29/2005	Geoprobe	Exploration - Delineation	18	NA	PCBs	0511532	0.029	NA
MA-SW-15,63.5 (14)	11/28/2005	Grab	End-Pt: N. Wall behind lagging	14	NA	PCBs	0511532	< 0.0071	NA
MA-SVV-15,64 (18)	11/29/2005	Geoprobe	Exploration - Delineation	18	NA NA	PCBs	0511532	0.04	NA
	44/00/0005								
MA-SVV-18,63.5 (2)	11/29/2005	Grab	End-Pt: N. Wall behind lagging	2	NA	PCBs	0511532	0.071	NA
MA-SVV-18,62.5 (6)	11/29/2005	Grab	End-Pt: N. Wall behind lagging	6	NA	PCBs	0511532	4.29	NA
MA SIN 22 64 (2)	44/00/0005	0	End Dial Market Land						
NAA SIA(22 62 5 (6)	11/29/2005	Grap	End-Pt: N. Wall behind lagging	2	NA NA	PCBs	0511532	18	NA NA
WA-5VV-55,65.5 (6)	11/29/2005	Grap	End-Pt: N. Wall benind lagging	6	NA	PCBs	0511532	< 0.0069	NA
MA-S\M/33.64 (18)	11/20/2005	Cooprobo	Evaluration Delineation	40	NIA	DOD-	0544500		
Field Equip Plank	11/29/2005	Geoprope	Exploration - Delineation	18	NA NA	PCBs	0511568	< 0.0072	NA
	11/29/2005		QAVQC	na	NA	PCBs	0511568	<0.000080	NA
MA-SW/109.63.5.(2)	11/30/2005	Grah	Exploration Dolingation behind 57.26		NIA	DCDa	0514500	0.00	
104-377-109,03.3 (2)	11/30/2005	Giab	Exploration-Delineation bening 57-36	2	NA NA	PCBs	0511568	2.83	NA
MA-SW-81 63 (2)	11/30/2005	Grah	Exploration Delineation behind 57.40	2	NA	DCPa	0512022	0.007	
	11/30/2003	Giau	Exploration-Demieation bening 57-40	<u> </u>	1NA	PUBS	0512032	0.067	NA
MA-SW-96 63 5 (2)	11/30/2005	Grah	Exploration-Delineation behind 57 39	- 2		PCPs	0512022	0.000	NIA
MA-SW-96 62 (6)	11/30/2005	Grah	Exploration-Delineation behind 57-38	<u> </u>		PUBS PCBs	0512032	0.099	NA NA
MA-SW-96 62 (10)	12/1/2005	Geoprohe	Exploration-Delineation behind 57-38	10		PCBs	0512032	< 0.0075	
MA-SW-96 62 (14)	12/1/2005	Geoprobo	Exploration Delineation behind 57-38	10		PUBS	0512032	< 0.00/2	
	12/1/2003	Geopione	LAPIOLAGOII-Denneauon bening 57-38	14		PUBS	0512032	< 0.0069	NA
MA-SW-109 63 (6)	11/30/2005	Vibratory GP	Exploration Dolingation babied 57.00	6		DOD	0510075		
	11/30/2005		Exploration-Delineation bening 57-36	6	L NA	PCBs	0512032	< 0.0078	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SW-109,62 (10)	12/1/2005	Vibratory GP	Exploration-Delineation behind 57-36	10	NA	PCBs	0512032	< 0.0076	NA
			· · · · · · · · · · · · · · · · · · ·		•				
MA-SSB-125,22 (18)	11/30/2005	Geoprobe	Exploration - Delineation	18	NA	PCBs	0512032	< 0.0071	NA
MA-SSB-125,22 (22)	11/30/2005	Geoprobe	Exploration - Delineation	22	NA	PCBs	0512032	0.19	NA
MA-SSB-125,22 (26)	11/30/2005	Geoprobe	Exploration - Delineation	26	NA NA	PCBs	0512032	< 0.0074	NA
MA-SW-33.62 (10)	12/2/2005			10	NA	PCBs	0512096	< 0.0075	NA
						1003	0012000	< 0.0075	
MA-SW-51,64 (18)	12/2/2005	Geoprobe	Exploration - Delineation	18	NA	PCBs	0512096	< 0.0069	NA
MA-SW-62 64 (18)	12/2/2005	Geonrohe	Exploration - Delineation	18	NA	DCP.	0512006	0.00	
	12/2/2000		Exploration Domication			FODS		0.20	NA
MA-SW-81,63 (6)	12/1/2005	Vibratory GP	Exploration-Delineation behind 57-40	6	NA	PCBs	0512096	0.4	NA
MA-SW-81,63 (10)	12/2/2005	Vibratory GP	Exploration-Delineation behind 57-40	10	NA	PCBs	0512096	0.069	NA
MA-SW-81,63 (14)	12/2/2005	Vibratory GP	Exploration-Delineation behind 57-40	14	NA	PCBs	0512096	< 0.0070	NA
	40/4/0005								
MA-SVV-96,62 (18)	12/1/2005	Geoprope	Exploration-Delineation bening 57-38	18	NA	PCBs	0512096	< 0.0070	NA
MA-SW-109,62 (14)	12/1/2005	Geoprobe	Exploration-Delineation behind 57-36	14	NA	PCBs	0512096	0.14	NA
MA-SW-109,62 (18)	12/1/2005	Geoprobe	Exploration-Delineation behind 57-36	18	NA	PCBs	0512096	< 0.0070	NA
07.00 (01)	10/0007								
37,30 (OII)	12/2/2005		Free Product, bottom of excavation	18	NA	PCBs, TPH	0512096	65.0	100
MA-SW-33.62 (14)	12/2/2005	Vibratory GP	N Wall Exploration - Delineation	14	NA	PCBs	0512118	< 0.0074	ΝΔ
				••		1 000	0012110	0.0014	
MA-SW-51,65 (14)	12/2/2005	Vibratory GP	N Wall Exploration - Delineation	14	NA	PCBs	0512118	< 0.0073	NA
ALA 014/00 05 (14)	10/0/0005								
MA-SVV-62,65 (14)	12/2/2005	Vibratory GP	N Wall Exploration - Delineation	14	NA NA	PCBs	0512118	0.074	NA
MA-SW-81.63 (18)	12/2/2005	Geoprobe	Exploration-Delineation behind 57-40	18	NA	PCBs	0512118	0.073	ΝΔ
MA-SW-81,63 (21)	12/2/2005	Geoprobe	Exploration-Delineation behind 57-40	21	NA	PCBs	0512118	< 0.0071	NA
								£	
MA-SSB-60,40 (20)	12/2/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0512118	0.2	NA
MA-SSB-60,40 (22)	12/2/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512118	< 0.0069	NA
MA-SSB-60,40 (26)	12/2/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512118	< 0.0070	NA
MA-SSB-90.40 (18)	12/2/2005	Geoprobe	End-Pt: Bottom	18	NA	PCBs	0512118	< 0.0071	NA
		Coopieze				1003	0012110	0.0071	
MA-SSB-40,40 (20)	12/6/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0512146	0.024	NA
MA-SSB-40,40 (22)	12/6/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512146	0.19	NA
MA-SSB-40,40 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512146	0.055	NA
MA-SSB-40,40 (29)	12/6/2005	Geoprobe	Trench Box Delineation	29	NA	PCBs	0512146	0.099	NA
MA-SSB-42 30 (20)	12/6/2005	Geoprobe	Trench Box Delineation	20	NA	DCPa	0510146	40.0	NA.
MA-SSB-42 30 (22)	12/6/2005	Geoprobe	Trench Box Delineation	20	NA NA	PCBs	0512146	19.0	
MA-SSB-42,30 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512146	841	NA NA
MA-SSB-12,35 (20)	12/6/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0512146	3.3	NA
MA COD 42 45 (20)	10/0/0005	Occurrente	Treast David Dallas attac			202			
IVIA-330-12,43 (20)	12/0/2005	Geoprope	I rench Box Delineation	20	NA NA	PCBs	0512146	302	NA
MA-SSB-105,18 (22)	12/6/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512147	0.16	NA
MA-SSB-105,18 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512147	0.81	NA
MA-SSB-52,18 (19)	12/6/2005	Geoprobe	Trench Box Delineation	19	NA	PCBs	0512148	0.16	NA
MA-SSB-52 18 (26)	12/0/2005	Geoprobe	Trench Box Delineation	22	NA NA	PCBs	0512148	2720	NA
		Geoplone	HERCH BOX Delineation	20		PCBS	0512148	183	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH
MA-SSB-60,30 (20)	12/6/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0512148	0.54	NA
MA-SSB-60,30 (22)	12/6/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512148	553	NA
MA-SSB-60,30 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512148	907	NA
MA-SSB-92.34 (18)	12/6/2005	Geoprobe	Trench Box Delineation	18	NA	DCPo	0512149	0.52	
MA-SSB-92.34 (22)	12/6/2005	Geoprobe	Trench Box Delineation	22	NA NA	PCBs	0512140	0.52	
MA-SSB-92.34 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26		PCBs	0512140	0.22	NA
						F CDS	0512148	. 0.22	NA
MA-SSB-105,18 (18)	12/6/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	0512148	0.19	NA
MA-SSB-100,28 (18)	12/6/2005	Geoprobe	Trench Box Delineation	18	NA	PCBe	0512175	0.14	NIA
MA-SSB-100,28 (22)	12/6/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512175	0.14	NA NA
MA-SSB-100,28 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512175	36.8	
							0012110	00.0	
MA-SSB-80,18 (18)	12/6/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	0512175	0.16	NA
MA-SSB-80,18 (22)	12/6/2005	Geoprobe	Trench Box Delineation	22	ŇĂ	PCBs	0512175	0.071	NA
MA-SSB-80,18 (26)	12/6/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512175	0.062	NA
MA-SSB-79 30 (18)	12/6/2005	Cooproho	Trongh Boy Deligentian	10			0510177		
MA-568-79,30 (10)	12/6/2005	Geoprobe	Trench Box Delineation	18	NA NA	PCBs	0512175	< 0.0060	NA
MA-SSB-79 30 (26)	12/6/2005	Geoprobe	Trench Box Delineation	22	NA NA	PCBs	0512175	0.039	NA
	12/0/2000	Geoplobe	Thenen Box Delineation	20	INA .	FUDS	0512175	0.050	NA
MA-SSB-101,24 (22)	12/8/2005	Geoprobe	Trench Box Delineation	22	NÄ	PCBS	0512207	0.24	NA
				· .					
MA-SSB-37,45 (22)	12/8/2005	Geoprobe	Trench Box Delineation	22	NA	PCBS	0512207	0.27	NA
MA-SSB-37,45 (26)	12/8/2005	Geoprobe	Trench Box Delineation	26	NA	PCBS	0512207	0.12	NA
MA-SSB-30 44 (22)	12/8/2005	Geoprobe	Trench Box Dolingation	22	NIA	DODO	0540007		
N// OCB-00,44 (22)	12/0/2003	Geoprobe				PCB5	0512207	0.20	NA
MA-SSB-28,43 (26)	12/8/2005	Geoprobe	Trench Box Delineation	26	NA	PCBS	0512207	0.073	NA
	_			-					
MA-SSB-25,27 (22)	12/8/2005	Geoprobe	Trench Box Delineation	22	NA	PCBS	0512207	0.45	NA
MA-SSB-25,26 (26)	12/8/2005	Geoprobe	Trench Box Delineation	26	NA	PCBS	0512207	0.052	NA
MA-SSB-42.55 (22)	12/8/2005	Geoprobe	Trench Box Delineation	22	ΝA	PCBS	0512207	0.020	NA
MA-SSB-42.55 (26)	12/8/2005	Geoprobe	Trench Box Delineation	26	NA	PCBS	0512207	0.029	
			Hondi Box Boinioution			1 000	0312207	0.028	INA
MA-SSB-50,43 (22)	12/8/2005	Geoprobe	Trench Box Delineation	22	NĂ	PCBS, TPH	0512238	0.11	< 43.5
MA-SSB-50,43 (26)	12/8/2005	Geoprobe	Trench Box Delineation	26	NA	PCBS, TPH	0512238	3.20	55.4
MA COD 52 54 (40)	40/0/0005	0							
MA-SSB-52,54 (16)	12/8/2005	Geoprobe	Trench Box Delineation	18	NA	PCBS, TPH	0512238	0.046	< 42.6
MA-SSB-52,54 (22)	12/8/2005	Geoprobe	Trench Box Delineation	22	NA NA	PCBS, TPH	0512238	0.17	< 42.6
MA-SSB-52 54 (30)	12/8/2005	Geoprobe	Trench Box Delineation	20	NA NA		0512238	2.40	113
	12/0/2000		Trendit Box Delineation			FUDS, IFN	0512236	0.043 Y	< 42.0
MA-SSB-42,30 (30)	12/14/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	0512332	< 0.0069	NA
MA-SSB-42,30 (34)	12/14/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	0512332	< 0.0070	NA
MA-SSB-42,30 (38)	12/14/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	0512332	0.062	NA
MA-55B-60,32 (30)	12/14/2005	Geoprobe	I rench Box Delineation	30	NA	PCBs	0512332	< 0.0069	NA
MA-SSB 60 32 (29)	12/14/2005	Geoprope	Trench Box Delineation	34	NA NA	PCBs	0512332	< 0.0061	NA
100-000-00,02 (00)	12/14/2005	Geoprone		38	NA	PCBs	0512332	0.072	NA
MA-SW-16,62 (10)	12/14/2005	Grab	End-Pt: No. Wall	10	NA	PCBs	0512332	0.012 V	NA
MA-SW-16,62 (10) Dupe	12/14/2005	Grab	Duplicate	10	NA	PCBs	0512332	< 0.0062	NA
MA-SW-16,62 (10) MS	12/14/2005	Grab	QA/QC	10	NA	PCBs	0512332	0.042	NA
MA-SW-16,62 (10) MSD	12/14/2005	Grab	QA/QC	10	NA	PCBs	0512332	0.051	NA
L									
	· .								L

•

.

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bis)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SW-19,63 (10)	12/14/2005	Grab	End-Pt: No. Wall	10	NA	PCBs	0512332	0.047	
				1				0.011	
MA-SW-22,62 (10)	12/14/2005	Grab	End-Pt: No. Wall	10	NA	PCBs	0512332	0.043	NA
MA-SSB-52,18 (30)	12/14/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	0512332	< 0.0061	NA
MA-SSB-52,18 (34)	12/14/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	0512332	< 0.0059	NA
MA-SSB-52,18 (38)	12/14/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	0512332	< 0.0058	NA
MA-SSB-12,45 (22)	12/15/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512375	0.71	NA
MA-SSB-12,45 (26)	12/15/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512375	1.31	NA
MA-SSB-12,45 (30)	12/15/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	0512375	0.013	NA
MA-SSB-12,45 (30) MS	12/15/2005	Geoprobe	QA/QC	30	NA	PCBs	0512375	0.36	NA
MA-SSB-12,45 (30) MSD	12/15/2005	Geoprobe	QA/QC	30	NA	PCBs	0512375	0.33	NA
MA-SSB-12,45 (34)	12/15/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	0512375	0.019 Y	NA
MA-SSB-12,45 (38)	12/15/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	0512375	0.059	NA
MA CCD 27 55 (40)	40/45/0005								
MA-SSB-37,55 (18)	12/15/2005	Geoprobe	I rench Box Delineation	18	NA	PCBs	0512375	0.13	NA
MA-55B-57,55 (22)	12/15/2005	Geoprobe	Trench Box Delineation	22	NA NA	PCBs	0512375	0.67	NA
MA-55B-57,55 (20)	12/15/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512375	0.057 Y	NA
MA-SSB-37,55 (30)	12/15/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	0512375	0.049 Y	NA
MA-SSB-37,55 (38)	12/15/2005	Geoprobe	Trench Box Delineation	34		PCBs	0512375	0.076	NA
(MA-00D-07,00 (00)	12/15/2005	Geopione	Trench Box Delineation		NA NA	PCBs	0512375	0.062	NA
MA-SSB-12 35 (22)	12/15/2005	Geotrope	Tranch Box Dolinaction	22	N10	- BOD-	0540075		
MA-SSB-12 35 (26)	12/15/2005	Geoprobe	Trench Box Delineation	22	I INA	PCBS	0512375	0.043	NA
MA-SSB-12,35 (30)	12/15/2005	Geoprobe	Trench Box Delineation	20		PCBS	0512375	0.55	NA NA
MA-SSB-12 35 (34)	12/15/2005	Geoprobe	Trench Box Delineation	34		PCBs	0512375	0.017 Y	NA
MA-SSB-12 35 (38)	12/15/2005	Geoprobe	Trench Box Delineation	38		PCBs	0512375	0.088	NA NA
(00)	12/10/2000	Geoprope	Henci Box Beimeauon			FCBS	0512375	0.015 Y	NA ·
MA-SSB-100.28 (28)	12/16/2005	Geoprobe	Trench Box Delineation		ΝΔ	PCBs	0512275	0.013 V	NIA
			Hendi Box Bointodaon			F CB3	0512575	0.012 1	
MA-SSB-106,22 (22)	12/16/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512375	0.018	NA
MA-SSB-106,22 (25)	12/16/2005	Geoprobe	Trench Box Delineation	25	NA	PCBs	0512375	0.010 1 0.051 V	NA NA
		······						0.001 1	
MA-SSB-113,24 (18)	12/16/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	0512375	0.020 Y	NA
MA-SSB-113,24 (22)	12/16/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	0512375	0.015 Y	NA
MA-SSB-113,24 (26)	12/16/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	0512375	0.14	NA
MA-SSB-113,24 (29)	12/16/2005	Geoprobe	Trench Box Delineation	29	NA	PCBs	0512375	0.013 Y	NA
							-		
MA-SSB-77,48 (22)	12/21/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512467	0.051 Y	NA
MA-SSB-77,48 (26)	12/21/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	512467	< 0.0071	NA
MA-SSB-77,48 (30)	12/21/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512467	< 0.0063	NA
MA-SSB-77,48 (34)	12/21/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	512467	0.011 Y	NA
MA-SSB-77,48 (38)	12/21/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512467	0.10	NA
								· · · · · ·	
MA-SSB-78, 56 (18)	12/21/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	512467	0.0089 Y	NA
MA-SSB-78, 56 (22)	12/21/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512467	0.20	NA
MA-SSB-78, 56 (26)	12/21/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	512467	0.049 Y	NA
MA-SSB-78, 56 (30)	12/21/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512467	0.021 Y	NA
MA-SSB-78, 56 (34)	12/21/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	512467	0.0089 Y	NA
MA-SSB-18, 56 (38)	12/21/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512467	0.039 Y	NA
MA SSD 67 49 (40)	40/04/2005						_		
WA-338-07, 18 (18)	12/21/2005	Geoprobe	I rench Box Delineation	18	NA	PCBs	512467	0.24	NA
MA-SSB-07, 18 (22)	12/21/2005	Geoprobe	I rench Box Delineation	22	NA	PCBs	512467	< 0.0070	NA
WA-558-07, 18 (20)	12/21/2005	Geoprobe	I rench Box Delineation	26	NA	PCBs	512467	< 0.0070	NA
IVIA-33B-07, 18 (30)	12/21/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512467	< 0.0070	NA
MA SSD 67 19 (24)	10/04/0057								
WIA-000-07, 10 (04)	12/21/2005	Geoprobe	I rench Box Delineation	34	NA	PCBs	512468	< 0.0061	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SSB-67, 18 (38)	12/21/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512468	0.0080 Y	NA NA
								1	
MA-SSB-58, 9 (18)	12/21/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	512468	0.13	NA
MA-SSB-58, 9 (22)	12/21/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512468	< 0.0061	NA
MA-SSB-58, 9 (26)	12/21/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	512468	0.014 Y	NA
MA-SSB-58, 9 (30)	12/21/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512468	0.010 Y	NA
MA-SSB-58, 9 (34)	12/21/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	512468	0.016 Y	NA
MA-SSB-58, 9 (38)	12/21/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512468	0.012 Y	NA
MA-SSB-94,10 (18)	12/22/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	512468	< 0.0061	NA
MA-SSB-94,10 (22)	12/22/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512468	0.020 Y	NA
MA-SSB-94,10 (26)	12/22/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	512468	0.10	NA
MA-SSB-94,10 (30)	12/22/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512468	0.011 Y	NA
MA-SSB-94,10 (34)	12/22/2005	Geoprobe	I rench Box Delineation	34	NA	PCBs	512468	0.0072 Y	NA
MA-55B-94,10 (38)	12/22/2005	Geoprobe	I rench Box Delineation	38	NA	PCBs	512468	0.024 Y	NA
MA CCD 51 30 (22)	40/00/0005	0	Translation De la cal						
MA-55B-51, 39 (22)	12/22/2005	Geoprope	I rench Box Delineation	22	NA	PCBs	512468	0.060	NA
MA-33B-31, 39 (26)	12/22/2005	Geoprope	I rench Box Delineation	26	NA	PCBs	512468	0.035 Y	NA
MA-SSB-51 39 (30)	12/22/2005	Gooproho	Tropph Boy Delingetion	20		D			
MA-SSB-51, 39 (34)	12/22/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512485	0.011	NA
MA-SSB-51 39 (38)	12/22/2005	Geoprobe	Trench Box Delineation	20	NA NA	PCBs	512485	< 0.0069	NA
Mir (00B-01, 00 (00)	12/22/2003	Geoprope	Trench Box Delineation	30	<u>NA</u>	PCBs	512485	<u>0.045</u> Y	NA NA
MA-SSB-5 45 (22)	12/22/2005	Geoprobe	Trench Box Delineation	22	NIA.	DCD-	540405	0.040	
MA-SSB-5, 45 (26)	12/22/2005	Geoprobe	Trench Box Delineation	22	NA NA	PCBs	512485	0.040 Y	NA NA
MA-SSB-5, 45 (30)	12/22/2005	Geoprobe	Trench Box Delineation	30	NA NA	PCBs	512400	0.016 1	NA NA
MA-SSB-5, 45 (34)	12/22/2005	Geoprobe	Trench Box Delineation	34	NA NA	PCBs	512400	0.24	
MA-SSB-5, 45 (38)	12/22/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512403	0.24	
						1.005	012400	0.044 1	
MA-SSB-78, 40 (18)	12/22/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	512485	0.014 Y	ΝΔ
MA-SSB-78, 40 (22)	12/22/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512485	0.014	
								0.014	
MA-SSB-78, 40 (26)	12/22/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	512482	0.11	NA
MA-SSB-78, 40 (30)	12/22/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512482	0.18	NA
MA-SSB-78, 40 (34)	12/22/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	512482	0.077	NA
MA-SSB-78, 40 (38)	12/22/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512482	0.13	NA
-									
MA-SSB-100, 50 (18)	12/23/2005	Geoprobe	End-Pt. Bottom	18	NA	PCBs	512482	< 0.0061	NA
MA-SSB-100, 50 (22)	12/23/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512482	< 0.0061	NĂ
MA-SSB-100, 50 (26)	12/23/2005	Geoprobe	Trench Box Delineation	26	NA	PCBs	512482	0.14	NA
MA-SSB-100, 50 (30)	12/23/2005	Geoprobe	Trench Box Delineation	30	· NA	PCBs	512482	0.018 Y	NA
MA-SSB-100, 50 (34)	12/23/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	512482	0.0089 Y	NA
MA-SSB-100, 50 (38)	12/23/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512482	0.016 Y	NA
NA 005 00 55 (10)				-					
MA-SSB-62, 55 (18)	12/23/2005	Geoprobe	End-Pt. Bottom	18	NA	PCBs	512490	0.028 Y	NA
MA-SSB-62, 55 (22)	12/23/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512490	0.16	NA
MA-55B-62, 55 (26)	12/23/2005	Geoprope	I rench Box Delineation	26	NA	PCBs	512490	0.014 Y	NA NA
MA-SSB-62, 55 (30)	12/23/2005	Geoprobe	Irench Box Delineation	30	NA	PCBs	512490	0.014 Y	NA NA
MA-SSB-62, 55 (34)	12/23/2005	Geoprobe	Irench Box Delineation	34	NA	PCBs	512490	0.0097 Y	NA NA
11/1-330-02, 33 (38)	12/23/2005	Geoprope	rench Box Delineation	38	NA	PCBs	512490	0.0089 Y	NA NA
MA SSR 51 30 (18)	12/22/2005	Cooproho	Tranch Day Dalia activ		+			1:	
MA SSP 51 20 (18)	12/23/2005	Geoprope	I rench Box Delineation	18	NA NA	PCBs	512490	0.27	NA
MA-SSB-51, 39 (10) MSD	12/23/2005	Geoprope	Matrix Spike	18	NA	PCBs	512490	0.85	NA
MA-SSB-51, 39 (18) Dung	12/23/2005	Geoprobe	Field Dura	18	NA	PCBs	512490	1.15	NA
100 Dupe	12/23/2005	Geoprope		18	NA	PCBS	512490	0.27	NA NA
MA-SSR-5 45 (18)	12/22/2005		Truck D. D. F. K						
MA-SSB-5 45 (18) Dund	12/23/2005	Geoprope	Field C	18	NA NA	PCBs	512491	1.31	NA
(10) Dupe	12/23/2005	Geoprope	Field Dup	18	NA	PCBs	512491	1.09	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SSB-5, 45 (18) MS	12/23/2005	Geoprobe	Matrix Spike	18	NA	PCBs	512491	1.51	NA NA
MA-SSB-5, 45 (18) MSD	12/23/2005	Geoprobe	Matrix Spike Dup	18	NA	PCBs	512491	156	NA
Field Equipment Blank	12/23/2005	Geoprobe	QA/QC	18	NA	PCBs	512491	< 0.000080	NA
MA SSP 60 45 (19)	12/22/2005	Cooresto	Treach De De lles elle						
MA-55B-09, 45 (10)	12/23/2005	Geoprobe	Trench Box Delineation	18	NA	PCBs	512491	0.18	NA
MA-SSB-09, 45 (22)	12/23/2005	Geoprobe	Trench Box Delineation	22	NA	PCBs	512491	0.041 Y	NA
MA-SSB-69, 45 (26)	12/23/2005	Geoprobe	I rench Box Delineation	26	NA	PCBs	512491	0.13	NA
MA-SSB-69, 45 (30)	12/23/2005	Geoprobe	Trench Box Delineation	30	NA	PCBs	512491	0.12	NA
MA-SSB-69, 45 (34)	12/23/2005	Geoprobe	Trench Box Delineation	34	NA	PCBs	512491	0.014 Y	NA
MA-SSB-69, 45 (38)	12/23/2005	Geoprobe	Trench Box Delineation	38	NA	PCBs	512491	0.0085 Y	NA
MA-SW- 2,24 (7)	1/12/2006	Grab	End-Pt: E Wall	7	NA	PCBs, TPH, VOCs, SVOCs	0601223	7.14	4,600
MA-SW- ⁻ 2 40 (5)	1/24/2006	Grah	End Bt: E Wall	5		DOD-	0001170	0.005	
MA-S\\/-2 38 (17)	1/24/2000	Crab		3	NA NA	PCBs	0601479	0.095	NA
MA SM(22,00 (17)	1/20/2008	Grab		1/	NA	PCBs, IPH, VOCs, SVOCs	0601479	2,10	10,800
MA-3V-2,38 (17) Dupe	1/26/2006	Grab	Field Dup	1/	NA	PCBs	0601479	2.03	NA
MA-SVV- 2,38 (17) MS	1/26/2006	Grab	Matrix Spike	17	NA	PCBs, TPH	0601479	2.57	12,800
MA-SW- 2,38 (17) MSD	1/26/2006	Grab	Matrix Spike Dup	17	NA	PCBs, TPH	0601479	2.56	13,400
Field Equipment Blank	1/26/2006	Grab	QA/QC	na	NA	PCBs, TPH, VOCs, SVOCs	0601479	< 0.00032	< 0.14
MA-SW- ⁻ 2,23 (16)	1/27/2006	Grab	End-Pt: E Wall	16	NA	PCBS	0601505	1.43	NA
							0001000		
MA-SB-56,43 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0071	NA
MA-SB-38,30 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0072	NA
MA-SB-16,35 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0071	NA
MA-SB-12,40 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0072	NA
MA-SB-42,50 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0071	NA
MA-SB-12,32 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0071	NA
MA-SB-10,45 (30)	3/11/2006	Geoprobe	Trench Box Delineation	30	NA	PCBS	0603230	< 0.0072	NĀ
MA-SB-54.14 (30	3/17/2006	Geoprobe	Trench Box Delineation	30	NA	DCB:	0603365	< 0.0070	NIA
MA-SB-48,18 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30	NA NA	PCB:	0603305	< 0.0070	
MA-SB-42 21 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30			0603305	< 0.0073	
MA-SB-36 40 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30		PCBs	0603365	< 0.0071	NA
MA-SB-55 54 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30		PCBS	0603365	< 0.0070	NA
MA-SB-42 45 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30	NA NA	PCBS	0603365	< 0.0071	NA
MA-SB-65 38 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30	NA NA	PCBS	0603365	< 0.0070	NA
MA-SB-70 34 (30)	3/17/2006	Geoprobe	Trench Box Delineation	30	NA NA	PCBs	0603365	< 0.0069	NA
MA-SB-84 47 (22)	3/17/2006	Geoprobe	Trench Box Delineation	30	NA NA	PCBs	0603365	< 0.0071	NA
MA SP 64 19 (20)	2/17/2000	Geoprobe	Trench Dev Delineation	22	NA NA	PCBs	0603365	< 0.0070	NA
MA SP 110 25 (26)	3/17/2000	Geoprobe	Trench Dev Delineation	30	NA	PCBs	0603365	< 0.0070	NA
MA-3B-110,23 (20)	3/16/2006	Geoprobe	Trench Box Delineation	26	NA	PCBs	0603365	< 0.0069	NA
MA-SB-138,18 (5)	3/18/2006	Geoprobe	Exploration - Delineation	5	NA	PCBs	0603365	< 0.0074	NΔ
MA-SB-138,18 (10)	3/18/2006	Geoprobe	Exploration - Delineation	10	NA	PCBs	0603365	< 0.0069	NA
MA-SB-138,18 (15)	3/18/2006	Geoprobe	Exploration - Delineation	15	NA	PCBs	0603365	< 0.0070	NA
MA-SB-138,18 (20)	3/18/2006	Geoprobe	Exploration - Delineation	20	NA	PCBs	0603365	< 0.0070	NA NA
MA-SB-138,18 (25)	3/18/2006	Geoprobe	Exploration - Delineation	25	NA NA	PCBs	0603365	< 0.0068	
MA-SB-138,18 (29)	3/18/2006	Geoprobe	Exploration - Delineation	29	NA	PCBs	0603365	< 0.0000	
						1 003	0000000	\$ 0.0072	<u>NA</u>
MA-SB-115,45 (5)	3/24/2005	Geoprobe	Trench Box Delineation	5	NA	PCBs	0603509	0.22	NA
MA-SB-115,45 (10)	3/24/2005	Geoprobe	Trench Box Delineation	10	NA	PCBs	0603509	< 0.0076	NA
MA-SB-115,45 (15)	3/24/2005	Geoprobe	Trench Box Delineation	15	NA	PCBs	0603509	< 0.0070	NA
MA-SB-115,45 (20)	3/24/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0603509	< 0.0068	NA
MA-SB-115,45 (25)	3/24/2005	Geoprobe	Trench Box Delineation	25	NA	PCBe	0603500	< 0.0070	NIA
MA-SB-115,45 (30)	3/24/2005	Geoprobe	Trench Box Delineation	30	NA	PCRs	0603500		
						1 003	0000000	~ 0.0000	INA
MA-SB-115,35 (10)	3/24/2005	Geoprobe	Trench Box Delineation	10	NA	PCBs	0603509	< 0.0075	NA

7

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SB-115,35 (15)	3/24/2005	Geoprobe	Trench Box Delineation	15	NA	PCBs	0603509	0.27	NA
MA-SB-115,35 (20)	3/24/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0603509	< 0.0069	NA NA
MA-SB-115,35 (25)	3/24/2005	Geoprobe	Trench Box Delineation	25	NA	PCBs	0603509	< 0.0072	NA
MA-SB-115,35 (29)	3/24/2005	Geoprobe	Trench Box Delineation	29	NA	PCBs	0603509	< 0.0070	NA
MA-SB-115,20 (10)	3/24/2005	Geoprobe	Trench Box Delineation	10	NA	PCBs	0603509	< 0.0070	NA
MA-SB-115,20 (15)	3/24/2005	Geoprobe	Trench Box Delineation	15	NA	PCBs	0603509	< 0.0069	NA
				-					
MA-SB-115,10 (10)	3/24/2005	Geoprobe	Trench Box Delineation	10	NA	PCBs	0603509	< 0.0066	NA
MA-SB-115,10 (15)	3/24/2005	Geoprobe	Trench Box Delineation	15	NA	PCBs	0603509	< 0.0070	NA
MA-SB-115,7 (20)	3/24/2005	Geoprobe	Trench Box Delineation	20	NA	PCBs	0603509	0.35	NA
MA-SB-115,7 (25)	3/24/2005	Geoprobe	Trench Box Delineation	25	NA	PCBs	0603509	< 0.0071	NA
MA-SB-115,7 (28)	3/24/2005	Geoprobe	Trench Box Delineation	28	NA	PCBs	0603509	< 0.0075	NA
MA-SB-118,23 (20)	3/24/2005	Geoprobe	Exploration - Delineation	20	NA	PCBs	0603509	< 0.0070	NA
MA-SB-118,23 (25)	3/24/2005	Geoprobe	Exploration - Delineation	25	NA	PCBs	0603509	< 0.0073	NA
Well A	3/1/2006	Low Flow GW	Characterization	na	NA	NYSDEP Sewer Suite	SA 41513	< 0.000025	NA
Well B	3/1/2006	Low Flow GW	Characterization	na	NA	NYSDEP Sewer Suite	SA 41513	< 0.000025	NA
Trip Blank	3/1/2006			na	NA	VOCs	SA 41513		
MA-SSB-13,30 (30)	5/5/2006	Track Hoe Grab	Trench Box 2 Bottom Sample	30	NA	PCBs	SA 44497	< 0.0316	NA
MA-SSB-40,35 (30)	5/17/2006	Track Hoe Grab	Trench Box 3 Bottom Sample	30	NA	PCBs, TPH, VOCs, SVOCs	SA 45232	< 0.0356	< 35.1
Frac Tank Sludge	5/14/2006	Grab	Characterization	na	NA	PCBs	SA 45446	1.35	NA
Frac Tank Sludge	6/6/2006	Grab	Characterization	na	NA	PCBs .	SA 46025	< 0.0358	NA
Frac Tank Liquid	6/6/2006	Grab	Characterization	na	NA	PCBs	SA 46025	< 0.000025	NĂ
MA-SSB-52,18 (30)	6/9/2006	Geoprobe	Trench Box 6 Bottom Sample	30	NA	PCBs, TPH, VOCs, SVOCs	SA 46237	< 0.0379	< 35.1
MA-SSB-52,18 (30) MS	6/9/2006	Geoprobe	Matrix Spike	30	NA	PCBs, TPH, VOCs, SVOCs	SA 46237	131.5	< 40.0
MA-SSB-52,18 (30) MSD	6/9/2006	Geoprobe	Matrix Spike Dup	30	NA NA	PCBs, TPH, VOCs, SVOCs	SA 46237	142.6	< 40.0
MA DOD 00 00 (00)	0/45/0000								
MA-SSB-66,29 (30)	6/15/2006	Geoprobe	Trench Box / Bottom Sample		NA NA	PCBs	SA 46594	< 0.0303	< 31.8
MA CCD 97 40 (1)	0/04/0000	0	0-11 011-01						
MA-SSB-87,10(1)	6/21/2006	Grab	Soil Pile Characterization	na	NA	PCBs	SA 46818	0.302	NA
MA-SSB-91,22 (1)	6/21/2006	Grab	Soli Pile Characterization	na	NA	PCBs	SA 46818	0.285	NA
MA-SSB-100,22 (1)	6/21/2006	Grab	Soll Pile Characterization	na	NA NA	PCBs	SA 46818	0.449	NA
MA-SSB-109,18 (1)	6/21/2006	Grab	Soll Pile Characterization	na	NA NA	PCBs	SA 46818	0.495	NA
MA-33B-103,11(1)	0/21/2000	Grab	Soli Pile Characterization	na	NA	PCBs	SA 46818	0.321	NA
MA SSP 77 40 (22)	6/22/2006	Trock Lies Crob	Treach Day 9 Dattage Canada						
MA-00D-11,40 (22)	0/22/2000	Hack noe Glab	Trench Box 8 Bollom Sample	44	NA NA	PCBs	SA 46881	< 0.0303	<u>NA</u>
MA-SSB 33.5 (16)	6/22/2006	Grah	Soil Dilo Characterization		NIA NIA	DOD-		0.000	
MA-SSB-28 12 (16)	6/22/2000	Grab	Soll File Characterization	na	NA NA	PUBS	SA 46881	0.303	NA
MA-SSB-28 73 (16)	6/22/2000	Grab	Soil File Characterization	na	NA NA	PCBs	SA 46881	0.276	NA NA
MA SSB-20,73 (10)	6/22/2006	Giab	Soll Pile Characterization	na	NA	PCBs	SA 46881	0.123	NA NA
MA-SSB-30,30 (10)	6/22/2006	Giab	Soll Pile Characterization	na	NA NA	PCBs	SA 46881	0.233	NA NA
MA-SSB-49,29 (10)	6/22/2006	Grab	Soll Pile Characterization	na	NA NA	PCBs	SA 46881	0.193	NA
MA-33B-30,10 (10)	0/22/2000	Giab	Soll Pile Characterization	na	NA	PCBs	SA 46881	0.324	NA
MA SSP 85 50 (6)	6/22/2006	Croh	Soil Dilo Characterization		NIA		0.0.10004	· .	
111/-330-03,30 (0)	0/22/2000	Grap	Soil Pile Unaracterization	na	NA NA	PCBs	SA 46881	0.840	NA
MA-SSB-108 5 20 (25 0)	7/11/2006	Geographa	Tropol Box 10 Dolingstig	25.0	614		0.00	1	
100.3,20 (23.8)	//11/2006	Geoprope	Hench Box TO Delineation	25.6	NA	PCBs	SA 47721	< 0.0314	NA
MA-SSR 108 32 (23.6)	7/11/2000	Caapraha	Tranch Day 10 Dalias (1	<u> </u>				
100,52 (23.0)	//11/2006	Geoprope	Trench Box 10 Delineation	23.6	NA	PCBs	SA 47721	< 0.0305	NA
MA SSP 08 22 (22 C)	7/64/00000		T		L				
11/1-330-90,23 (22.0)	//11/2006	Geoprobe	I rench Box 10 Delineation	22.6	NA	PCBs	SA 47721	< 0.0323	NA

.

,

· · ·

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bis)	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
				(111)	(PP)			(ppin)	
MA-SW-13.4,44.4 (22)	7/12/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 47890	< 0.0312	NA
MA-SW-13.4,44.4 (26)	7/12/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 47890	< 0.0304	NA
MA-SW-14,45.5 (29)	7/12/2006	Geoprobe	Proposed Secant Box Delineation	29	NA	PCBs	SA 47890	< 0.0355	NA
MA-SIMA 8 45 4 (22)	7/12/2006	Cooproho	Dranaged Casent Day Dalias ation						
MA-SW-9.0,45.4 (22)	7/12/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 47890	< 0.0319	NA
MA-SW-9.8 45 4 (30)	7/12/2006	Geoprobe	Proposed Secant Box Delineation	20	NA NA	PCBs	SA 47890	< 0.0335	NA
MA-SW-9.8.45.4 (30) Dupe	7/12/2006	Geoprobe		30	NA NA	PCBs	SA 47890	< 0.0309	<u>NA</u>
					<u></u>	FCBS	SA 47690	< 0.0321	NA
MA-SSB-11.4,42 (30)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	30		PCBs	SA 47890	< 0.0304	NA
MA-SW-36,42.5 (22)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 47890	< 0.0308	NA
MA-SW-36,42.5 (26)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 47890	< 0.0337	NA
MA-SSB-36,42.5 (30)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 47890	< 0.0338	NA
MA 014 00 7 45 0 (00)	7/10/0000								
MA-SVV-39.7,45.8 (22)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 47890	0.277	NA
MA-SVV-39.7,45.8 (26)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 47890	0.0637	NA
MA-SSB-39.7,45.8 (30)	7/13/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs, TPH, VOCs, SVOCs	SA 47890	< 0.0312	NA
MA-55B-39.7,45.8 (30) MS	7/13/2006	Geoprope	Proposed Secant Box Delineation	30	NA NA	PCBs, TPH, VOCs, SVOCs	SA 47890	0.2057	< 40.0
MA-33B-39.7,45.8 (30) MSD	1/13/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs, 1PH, VOCs, SVOCs	SA 47890	0.222	< 40.0
MA-SW-35 46 4 (22)	7/13/2006	Geoprohe	Proposed Secant Box Delineation	22	NA	DCPa	EA 47900		
<u> </u>			Tioposed Oceant Dox Delineation			FCBS	SA 47090	< 0.0306	NA
MA-SW-47.5,45 (22)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48030	< 0.0324	NA
MA-SW-47.5,45 (26)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48030	< 0.0324	NA
MA-SSB-47.5,45 (30)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 48030	< 0.0305	NA
					· · · ·				
MA-SW-50,40 (22)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48030	< 0.0328	NA
MA-SW-50,40 (26)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48030	< 0.0307	NA
MA-SSB-50,40 (30)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 48030	< 0.0301	NA
MA-SW-53,43.5 (22)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48030	< 0.0312	NA
MA-SW-53,43.5 (26)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48030	< 0.0313	NA
MA-SW-53,43.5 (29.4)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	29.4	NA	PCBs	SA 48030	< 0.0299	NA
MA CIAL 20 52 (22)									
MA-SW-39,52 (22)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48030	< 0.0329	NA
MA-SVV-39,52 (20)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	26	NA NA	PCBs	SA 48030	< 0.0322	NA
MA-3W-39,52 (28)	1/14/2006	Geoprope	Proposed Secant Box Delineation	28		PCBs	SA 48030	< 0.0360	NA NA
MA-SW-33 52 (22)	7/14/2006	Geoprohe	Proposed Secont Box Delineation		NA	DCPa	CA 49020	10.0207	
MA-SW-33 52 (26)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	22		PCBs	SA 46030	< 0.0287	NA NA
MA-SSB-33.52 (30)	7/14/2006	Geoprobe	Proposed Secant Box Delineation	30	NA NA	PCBs	SA 48030	< 0.0318	NA .
			Toposed Secant Dox Denneadon	0		FOBS	3A 46030	< 0.0297	
MA-SW-33,48 (22)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48264	< 0.0311	ΝΔ
MA-SW-33,49 (26)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48264	< 0.0297	NA NA
MA-SSB-33,49 (30)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs TPH VOCs SVOCs	SA 48264	< 0.0207	< 40.0
					1				10.0
MA-SW-39,47.5 (22)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48264	0.414	NA
MA-SW-39,47.5 (26)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48264	0.0449	NA
MA-SSB-39,47.5 (30)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 48264	< 0.0317	NA
MA-SW-101,16.8 (27.3)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	27.3	NA	PCBs	SA 48264	< 0.0323	NA
MA-SW-108,29.3 (26)	7/20/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48264	< 0.0310	NA
MA-SW-108,29.3 (26) Dupe	7/20/2006	Geoprobe	QA/QC	26	NA	PCBs	SA 48264	< 0.0302	NA
IVIA-5VV-35.5,55 (22)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48451	< 0.0288	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bis)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
MA-SW-35.5,55 (26)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48451	< 0.0305	NA
MA-SSB-35.5,55 (30)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 48451	< 0.0311	NA
MA-SW-37,57 (22)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48451	< 0.0309	NA
MA-SW-37,57 (26)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48451	< 0.0364	NA
MA-SSB-37,57 (30)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 48451	< 0.0291	NA
				<u> </u>		1 003	0/10101	0.0231	
MA-SW-39.5.55 (22)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	22	NΔ	PCBs	SA 48451	< 0.0288	NA NA
MA-SW-39.5.55 (26)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 40451	< 0.0200	· INA
MA-SW-39 5 55 (26) Dupe	7/21/2006	Geoprobe		26	NA NA	PCBs	SA 40401	< 0.0265	
MA-SSB-39.5.55 (30)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCPs TPH VOCs SVOCs	SA 40451	< 0.0312	
	172112000	Geoplobe	Troposed Decant Dox Demileation			FCBS, IFH, VOCS, SVOCS	5A 40451	< 0.0321	<40.0 J
MA-SW-49 56 (22)	7/21/2006	Geoprohe	Proposed Secant Box Delineation	22	NIA	DCBa	CA ADAEA	10.0001	
MA-SW/49 56 (26)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	22	N/A N/A	PCBS	SA 46451	< 0.0321	NA
MA SSB 49 56 (30)	7/21/2006	Geoprobe	Proposed Secant Box Delineation	20	N/A NIA	PCBS	SA 48451	< 0.0287	NA
111/1-008-40,00 (00)	112112000	Geoprope	Froposed Secant Box Delineation	30	INA	PCBS	SA 48451	< 0.0297	NA NA
MA-SIAL48 5 51 (22)	7/26/2006	Geoproho	Proposed Secant Poy Dolinostica		NIA .	DOD-	04 40000	10.0017	
MA SW 48.5,51 (22)	7/20/2000	Geoprobe	Proposed Secant Box Delineation	22	NA NA	PCBs	SA 48666	< 0.0317	NA
MA-500-46.5,51 (20)	7/20/2000	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 48666	< 0.0312	NA NA
10/-330-40.3,31 (30)	1/20/2006	Geoprope	Proposed Secant Box Delineation	30	NA	PCBs	SA 48666	< 0.0307	NA NA
	7/00/0000	<u></u>							1
MA-SVV-53.5,53 (22)	7/26/2006	Geoprope	Proposed Secant Box Delineation	22	· NA	PCBs	SA 48666	< 0.0279	NA
MA-SVV-53.5,53 (26)	7/26/2006	Geoprope	Proposed Secant Box Delineation	26	NA	PCBs	SA 48666	< 0.0297	NA
MA-SVV-53.5,53 (26) Dupe	7/26/2006	Geoprobe	QA/QC	26	NA	PCBs	SA 48666	< 0.0284	NA
MA-SSB-53.5,53 (30)	7/26/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 48666	< 0.0337	NA
MA-SW-7,45 (22)	7/26/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48666	1.697	NA
MA-SW-5,47 (22)	7/26/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48666	18.76	/ NA
MA-SW-2,45 (22)	7/26/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48666	8.85	NA
MA-SSB-5,45 (22)	7/26/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48666	6.16	NA
MA-SW-5,43 (22)	7/26/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 48666	2.967	NA
MA-SSB-106,22 (30)	7/31/2006	Track Hoe Grab	Trench Box 10 Bottom Sample	30	NA	PCBs, TPH, VOCs, SVOCs	SA 48806	< 0.0356	< 40.0
MA-SSB-106,22 (30) Dupe	7/31/2006	Track Hoe Grab	Field Dup	30	NA	PCBs, TPH, VOCs, SVOCs	SA 48806	< 0.0314	< 40.0
MA-SSB-106,22 (30) MS	7/31/2006	Track Hoe Grab	Matrix Spike	30	NA	PCBs, TPH, VOCs, SVOCs	SA 48806	0.232	< 40.0
MA-SSB-106,22 (30) MSD	7/31/2006	Track Hoe Grab	Matrix Spike Dup	30	• NA	PCBs, TPH, VOCs, SVOCs	SA 48806	0.218	< 40.0
MA-SW-5,50 (22)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCBs	SA 49013	< 0.0297	NA
MA-SW-5,50 (26)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 49013	< 0.0335	NA
MA-SSB-5,50 (30)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	30	NA	PCBs	SA 49013	< 0.0344	NA
MA-SW-5,47 (26)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 49013	< 0.0314	NA
MA-SW-5,47 (26) Dupe	8/3/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 49013	< 0.0306	NA
MA-SSB-5,47 (30)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	30	NA NA	PCBs	SA 49013	< 0.0321	NA NA
		1		t			0.1.0010		1 107
MA-SW-2.45 (22)A	8/3/2006	Geoprobe	Proposed Secant Box Delineation	22	NA	PCRs	SA 49012	0.0882	NA
MA-SW-2 45 (26)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	26	NA NA	PCRs	SA 40013	< 0.0314	
MA-SSB-2 45 (30)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	30	NA NA	PCPs	SA 40013	< 0.0314	
	0/0/2000		Tiposed Decant Dox Denneaton		<u></u>	FOBS	3A 49013	< 0.0320	INA
MA SSR 5 40 (30)	9/3/2006	Geographa	Proposed Secont Poy Delineation	20	NA	DCD-	04 40040	10.0005	
MA-33D-3,40 (30)	0/3/2000	Geoprobe	Proposed Secant Box Delineation	30	INA .	PCBS	SA 49013	< 0.0305	NA NA
MA SIA/ 22 44 (22)	8/2/2006	Coonseto	Dranagad Secont Day Dal's		+		0.0.400/5		+
MA SIM 22 44 (23)	8/3/2000	Geoprobe	Proposed Secant Box Delineation	23	NA NA	PCBs	SA 49013	< 0.0334	NA NA
MA-SVV-33,44 (26)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	26	NA	PCBs	SA 49013	< 0.0329	NA
IVIA-358-33,44 (30)	8/3/2006	Geoprobe	Proposed Secant Box Delineation	30	I NA	PCBs	SA 49013	< 0.0303	NA
		<u> </u>			+				
MA-SVV-119,19 (2)	8/3/2006	Geoprobe	End-Pt: West SW	2	NA	PCBs	SA 49014	0.0921	NA
MA-SVV-117,19 (6)	8/3/2006	Geoprobe	End-Pt: West SW	6	NA	PCBs	SA 49014	0.236	NA
MA-SW-114,19 (10)	8/3/2006	Geoprobe	End-Pt: West SW	10	NA	PCBs	SA 49014	0.0273	NA
MA-SW-113,19 (14)	8/3/2006	Geoprobe	End-Pt: West SW	14	NA	PCBs	SA 49014	0.0434	NA
				· · · · · · · · · · · · · · · · · · ·	••••			0.0101	1

Jansson Bassing Farley Wate Site 2 NA PCBa SA 40614 <10.003	Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
MA-9901120 6 NA PCBs 54.40014 40.0070 NA MA-990115.0110 B32000 Geprote Exp41 Well SW 14 NA PCBs 54.40014 D.070 NA MA-990115.0114 B32000 Geprote Exp41 Well SW 14 NA PCBs 54.40014 D.070 NA MA-990115.0114 BA2000 Geprote Exp41 Well SW 14 NA PCBs 54.40014 D.070 NA MA-990115.0114 BA2000 Grad Each?t Reform 20 NA PCBs 54.4001 NA PCBs 54.4002 D.015 NA MASSB-01.0100 B20200 Grad Each?t Reform 10 NA PCBs 54.4002 D.0128 B44 MASSB-01.0100 B20200 Grad Each?t Reform 10 NA PCBs FA4202 D.0128 B44 D.0128	MA-SW-119.30 (2)	8/3/2006	Geoprobe	End-Pt: West SW	2	NA	PCBs	SA 49014	< 0.0303	NA
MA.SWI-MA.SPI(16) BX2000 Geograde End P. West SV 10 NA PCBs SA40014 0.0179 NA MASWI-1130 (10) Date BX2000 Geograde Geograde GAP TWEISV 14 NA PCBs SA40014 0.038 NA MASWI-1130 (10) Date BX2000 Geograde GAP TWEISV 14 NA PCBs SA40014 0.0376 NA MASSB-15.200 BK2000 Grad End-Pt Beton 20 NA PCBs SA4022 0.0576 NA MASSB-15.1101 BK20006 Grad End-Pt Beton 19 NA PCBs SA4022 0.0576 NA MASSB-15.1101 BK2000 Grad End-Pt Beton 19 NA PCBs SA4022 0.1077 265 MASSB-15.1111 BK2000 Grad End-Pt Beton 18 NA PCBs SA4022 0.1077 265 MASSB-15.1111 BK2000 Grad End-Pt Beton 18 NA PCBs SA40	MA-SW-117.30 (6)	8/3/2006	Geoprobe	End-Pt: West SW	6	NA	PCBs	SA 49014	< 0.0305	NA NA
MA.SWI130(14) BA20206 Geographic Geographic EndPt Wart SW 14 NA PCBs SA 40014 0.170 NA MASVI1130(14)(ppc 992005 Geographic QACC 14 NA PCBs SA 40014 0.356 NA MASSED 52.200 692005 Graph End-Pt Bottom 20 NA PCBs SA 40020 0.0378 NA MASSED 51.2010 692005 Graph End-Pt Bottom 20 NA PCBs SA 40020 0.0378 NA MASSED 51.2010 692006 Graph End-Pt Bottom 10 NA PCBs TA 40025 SA 40020 0.1077 265 MASSED 51.2010 B92006 Grab Find-Pt Bottom 10 NA PCBs SA 40020 0.217 <261	MA-SW-114,30 (10)	8/3/2006	Geoprobe	End-Pt: West SW	10	NA	PCBs	SA 49014	0.0370	NA NA
MA. Sov 11.30. (n) Dape 9.82000 Generative Grad Overal HA PCBs SA 46001 0.500 NA MA.SSB 97.5. 200 982006 Grad End-Pt Bottom 20 NA PCBs SA 46002 0.0165 NA MA.SSB 97.5. 200 982006 Grad End-Pt Bottom 20 NA PCBs SA 46002 0.0076 NA MA.SSB 97.5. 200 Grad End-Pt Bottom 10 NA PCBs SA 46002 0.0076 MA MASSB 97.5. 2010 BA2006 Grad End-Pt Mottom 10 NA PCBs TM 4005. SNO:5. SA 46002 0.217	MA-SW-113,30 (14)	8/3/2006	Geoprobe	End-Pt: West SW	14	NA	PCBs	SA 49014	0 179	NA
Action Description Description <thdescription< th=""> <thdescription< th=""> <thd< td=""><td>MA-SW-113,30 (14) Dupe</td><td>8/3/2006</td><td>Geoprobe</td><td>QA/QC</td><td>14</td><td>NA</td><td>PCBs</td><td>SA 49014</td><td>0.366</td><td>NA NA</td></thd<></thdescription<></thdescription<>	MA-SW-113,30 (14) Dupe	8/3/2006	Geoprobe	QA/QC	14	NA	PCBs	SA 49014	0.366	NA NA
MAX-SSE-03.00 B402006 Grab End-Pt Bottom 20 NA PCBs SA 44002 0.105 NA MAXSSE-015_(20) 9692006 Grab End-Pt Bottom 19 NA PCBs TM 4000 SA 46002 0.1057 NA MAXSSE-015_(10) 8642006 Grab Filed Dup 19 NA PCBs. TPH VOCL SVOCE SA 46002 0.1027 285 MAXSSE-015_(10) 082006 Grab Filed Dup 19 NA PCBs. TPH VOCL SVOCE SA 46002 0.1027 285 MASSE-015_(10) 082006 Grab Filed Pt Bottom 19 NA PCBs. TPH VOCL SVOCE SA 46022 0.212 <281							020	0,140014	0.000	
MASSB 05 (20) 69(2)00 Grad End-PL Bottom 20 NA PCBs S. 44002 0.0775 NA MASSB 010 (18) byo B822006 Grad End-PL Bottom 19 NA PCBs, TPH, VOCS, SVOCS S. 44602 0.1283<	MA-SSB-70,5 (20)	8/8/2006	Grab	End-Pt: Bottom	20	NA	PCBs	SA 49202	0.105	NA
MASSB 010 5 (19) 9982006 Grab EntPt Bottom 19 NA PCBa, TPt, VOCS, SVOCS SA 4802 0.127 256 MASSB 015 (16) Dup 682006 Grab Matrix Spike Dp 19 NA PCBs, FPL, VOCS, SVOCS SA 48022 0.121 <t33< td=""> MASSB 015 (MSD) 682006 Grab Matrix Spike Dp 19 NA PCBs, FPL, VOCS, SVOCS SA 48022 0.212 <t31< td=""> MASSB 015 (MSD) 682006 Grab EntPt-Boatom 13 NA PCBs SA 4022 0.228 NA MASSB 015 (MSD) 682006 Grab EntPt-Boatom 13 NA PCBs SA 4022 0.278 NA MASSB 015 (MSD) 682006 Grab EntPt-Boatom 13 NA PCBs SA 4022 0.12 131 NetA EntPt-Boatom 13 NA PCBs SA 4022 0.012 131 NetA EntPt-Boatom 13 NA PCBs SA 4022 4.0324 4.0324 4.0324</t31<></t33<>	MA-SSB-87,5 (20)	8/8/2006	Grab	End-Pt: Bottom	20	NA	PCBs	SA 49202	0.0378	NA
MASSB 1015 (19) Duge 660206 Cond Triel Dup 19 NA COSt STUCCS SA 42022 C1(27) 285 MASSB 1015 MS0 862006 Grab Mattic Splec Dup 19 NA PCBs, TPV, VCG, SVCG, SA 44202 0.212 <231	MA-SSB-101.5 (19)	8/8/2006	Grab	End-Pt: Bottom	19	ΝΔ	PCB: TPH VOC: SVOC:	SA 40202	0 1262	04.6
MASSB 1015, MS B802005 Grab Mmitry Spike 19 NA POSB, TPH, VOCB, SVOCB SA 49202 0.216 MASSB 1015, MSD B802005 Grab Matter, Spike Dup 19 NA POSB, TPH, VOCB, SVOCB SA 49202 0.212 22.31 MASSB 1015, MSD B802005 Grab End-Pt, Bottom 18 NA POSB, TPH, VOCB, SVOCB SA 49202 0.278 NA MASSB 1015, MSD B802005 Grab End-Pt, Bottom 10 NA POSB, TPH, VOCB, SVOCB SA 49202 0.278 NA MASSB 1015, MSD B802005 Grab End-Pt, Bottom 13 NA POBB, TPH, VOCB, SVOCB SA 49202 0.278 NA MASSB 1015, MSD, MSD, MSD, MSD, MSD, MSD, MSD, MSD	MA-SSB-101 5 (19) Dune	8/8/2006	Grab	Eield Dup	19	NA	PCBs TPH VOCs SVOCs	SA 49202	0.1203	265
MASSB 1015 MSD BR02000 Grab Hattis Spale Dup 19 NA PCBs, TPH, VCCs, SVCCs SA 48222 0.212 -7.28, T MASSB 4928 (15) BR02000 Grab End-Pt; Bottom 18 NA PCBs, TPH, VCCs, SVCCs SA 48222 0.212 -7.28, T MASSB 402 (15) BR02000 Grab End-Pt; Bottom 13 NA PCBs SA 48222 0.212 -7.28, T MASSB 102 (15) BR02000 Grab End-Pt; Bottom 13 NA PCBs SA 48222 0.642 NA MASSB 102 (15) BR02000 Grab End-Pt; Bottom 13 NA PCBs FM 2002 SA 48072 NA NA MASSB 102 (25) 1/52007 Grab End-Pt; Bottom 2.5 0.0 PCBs, TPH, VOCs, SVOC6 SA 68072 < 6.0239	MA-SSB-101.5 MS	8/8/2006	Grah	Matrix Snike	19		PCBs TPH VOCs SVOCs	SA 49202	0.1027	200
Construct Construct <t< td=""><td>MA-SSB-101.5 MSD</td><td>8/8/2006</td><td>Grab</td><td>Matrix Spike Dun</td><td>19</td><td></td><td>PCBs TPH VOCs SVOCs</td><td>SA 49202</td><td>0.219</td><td>< 13.3</td></t<>	MA-SSB-101.5 MSD	8/8/2006	Grab	Matrix Spike Dun	19		PCBs TPH VOCs SVOCs	SA 49202	0.219	< 13.3
MAX-SSB 492 (19) B8/02006 Orato End-FL Bottom 113 NA PCBs SA 45022 0.278 NA MAX-SSB 1074 (13) 88/0206 Grab End-FL Bottom 10 NA PCBs SA 45022 0.042 NA MAX-SSB 1074 (13) 88/0206 Grab End-FL Bottom 10 NA PCBs SA 46022 0.012 131 MAX-SSB 1074 (13) 88/0206 Grab End-FL Bottom 13 NA PCBs, TPH, VCGS, SVOCs SA 65922 0.012 131 MAX-SSB 1054.02.51 1.55207 Grab End-FL Bottom 2.5 0.0 PCBs, TPH, VCGS, SVOCs SA 65922 0.0239 4.324 MASSB 1054.02.51 1.55207 Grab End-FL Bottom 2.5 0.0 PCBs, TPH, VCGS, SVOCs SA 65922 0.0339 4.331 MASSB 1054.12.51 1.52007 Grab End-FL Bottom 2.5 0.0 PCBs, TPH, VCGS, SVOCs SA 65922 0.0330 4.331 MASSB 10.41.43 315207 Grab End-FL Bott		0,0,2000	Giub		10		1003, 111, 1003, 31003	37 43202	0.212	~ 20.1
MASSB 107,41 (13) B08/2006 Grab End-Ft: Bottom 13 NA PCBs SA 48/202 D0.4/2 NA MASSB 107,56 (13) 88/2006 Grab End-Ft: Bottom 10 NA PCBs SA 48/202 0.712 131 MASSB 107,56 (13) 88/2006 Grab End-Ft: Bottom 13 NA PCBs, TPH, VOCS, SVOCS SA 48/202 0.712 131 Item 4 (Backfill) 8/22006 Grab Characterization NA NA Araenic SA 48/202 0.712 131 Item 4 (Backfill) 8/22006 Grab End-Ft: Bottom 25 0.0 PCBs, TPH, VOCS, SVOCE SA 68/22 0.0259 <31.9	MA-SSB-89.26 (18)	8/8/2006	Grab	End-Pt: Bottom	18	NA	PCBs	SA 49202	0.278	ΝΔ
MA-SSB 4155 (10) 0.69a0 Grad End-Ht bottom 10 NA PCBs S A4222 4.0220 NA MA-SSB 4103, MA 98/2000 Grab End-Ht bottom 13 NA PCBs, TPL, VOCs, SVOCS S A4222 0.712 131 Item 4 (Backfill) 8/22/000 Grab End-Ht bottom 13 NA PCBs, TPL, VOCs, SVOCS S A4222 0.712 131 Item 4 (Backfill) 8/22/000 Grab End-Ht bottom 2.5 0.0 PCBs, TPL, VOCs, SVOCS S A4922 < 0.0328	MA-SSB-107.41 (13)	8/8/2006	Grab	End-Pt: Bottom	13	NA	PCBs	SA 49202	0.270	
MA-SB Bit 207,55 (13) Bit 207,55 (13) Bit 207,55 (13) NA PCBs, TPH, VOCs, SVOCs SA.48202 0.712 131 Item 4 (Backfill) Bit 222008 Grab Characterization NA NA Assente SA.48073 NA NA MA-SB 105,254 (2.5) 1/52007 Grab End-Pt: Bottom 2.5 0.0 PCBs, TPH, VOCs, SVOCs SA.6852 < 0.0329	MA-SSB-91.55 (10)	8/8/2006	Grab	End-Pt: Bottom	10	NA NA	PCBs	SA 49202	< 0.042	NA
Inter 4 (Backfill) 6222006 Grab Characterization NA NA NA NA MA-SSB-152.54 (2.5) 1/52007 Grab End-PE Botom 2.5 0.0 PCBs, TPH, VOG, SVOGs SA 66622 < 0.0329	MA-SSB-107,55 (13)	8/8/2006	Grab	End-Pt: Bottom	13	NA	PCBs TPH VOCs SVOCs	SA 49202	0.0200	131
Item 4 (laskill) B222026 Grab Chemedertation NA NA Anenic SA 49673 NA NA MA-SSB 1352,54 (2.5) 1152,07 Grab End-PE bottom 2.5 0.0 PCBs, TPH, VOCs, SVOCs SA 65522 <0.0329								0/140202	0.712	101
massBit massBit <t< td=""><td>Item 4 (Backfill)</td><td>8/22/2006</td><td>Grab</td><td>Characterization</td><td>NA</td><td>NA</td><td>Arsenic</td><td>SA 49973</td><td>NA</td><td>NA</td></t<>	Item 4 (Backfill)	8/22/2006	Grab	Characterization	NA	NA	Arsenic	SA 49973	NA	NA
MA-SSB191224 (2.5) 11/5/2007 Grab End-PE Bottom 2.5 0.0 PCBs, TPH, VOCS, SVOCS SA 56922 <0.0329								0,1100.10		
MA-SSB 193,50 (2.5) 11/5/2007 Grab End-PE Bottom 2.5 0.0 PCBs. TPH, VOCs, SVOCs SA 5822 < 0.0289 < 31.9 MA-SSB 193,50 (2) 11/5/2007 Grab End-PE Bottom 2.5 0.1 PCBs. TPH, VOCs, SVOCs SA 5822 < 0.0320	MA-SSB-152,54 (2.5)	1/5/2007	Grab	End-Pt: Bottom	2.5	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0329	< 32.4
MA-SSB-169.5.9 (2) 1/5/2007 Grab End-Pt: Bottom 2 3.2 PCBs, TPH, VOCS, SVOCS SA 69522 <0.0320	MA-SSB-138,50 (2.5)	1/5/2007	Grab	End-Pt: Bottom	2.5	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0289	< 31.9
MA-SSB-135,43 (2,5) 15/2007 Grab End-Pt Bottom 2.5 0.1 PCBs, TPH, VOCs, SVOCs SA 56522 MA-SSB-149,752 (2,5) 115/2007 Grab End-Pt: Bottom 2.5 0.0 PCBs, TPH, VOCs, SVOCs SA 56522 <0.334	MA-SSB-169.5,59 (2)	1/5/2007	Grab	End-Pt: Bottom	2	3.2	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0320	< 31.4
MA-SSB-138,17,25 (2.5). 11/5/2007 Grab. End-Pt. Bottom 2.5 0.1 PCBs. TPH. VOG. S. VOGS SA 56852 < < < < < < < < < < < < < <	MA-SSB-135,4.3 (2.5)	1/5/2007	Grab	End-Pt: Bottom	2.5	0.1	PCBs, TPH, VOCs, SVOCs	SA 56522	0.155	< 33.3
MA-SSB-146.25 (2.5) 116/2007 Grab End-PE Bottom 2.5 0.0 PCBs, TPH, VOCs, SVOCs SA 68522 0.0199 < 30.3 MA-SSB-146.25 (2.5) Dup 1/5/2007 Grab End-PE Bottom 3 0.0 PCBs, TPH, VOCs, SVOCs SA 68522 0.0310 84.0 MA-SSB-148.37 25 (3) 1/5/2007 Grab End-PE Bottom 3 0.0 PCBs, TPH, VOCs, SVOCs SA 68522 <0.0310	MA-SSB-138,17.25 (2.5)	1/5/2007	Grab	End-Pt: Bottom	2.5	0.1	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0334	< 33.1
MA-SSB-146.25 (2,5) Dupe 1/5/2007 Grab. Field Dup 2.5 0.0 PCBs, TPH, VOCs, SVOCs SA 58622 0.258 16.6 J MA-SSB-146.37.25 (3) 1/5/2007 Grab. End-Pt Bottom 3 0.0 PCBs, TPH, VOCs, SVOCs SA 56622 <0.030	MA-SSB-146.25 (2.5)	1/5/2007	Grab	End-Pt: Bottom	2.5	0.0	PCBs TPH VOCs SVOCs	SA 56522	0.0199	< 30.3
MA-SB1-48,37.25 (a) 1/5/2007 Grab End-Pt Bottom 3 0.0 PCBs, TPH, VOCs, SVOCs SA 56622 < 0.0310 B4.0 MA-SB1-48,47.25 (a) 1/5/2007 Tippod/SS End-Pt Bottom 31-32 NA PCBs SA 56622 < 0.0360	MA-SSB-146.25 (2.5) Dupe	1/5/2007	Grab	Field Dup	2.5	0.0	PCBs TPH VOCs SVOCs	SA 56522	0.258	16.6 .1
MA-SSB-45,44.8 (31-32): CAN 14 3/19/2007 Tripod/SS End-Pt: Bottom 31-32 NA PCBS SA 59578 < 0.0350 NA MA-SSB-10.7,44.8 (31-32): CAN 26 3/19/2007 Tripod/SS End-Pt: Bottom 31-32 NA PCBS SA 59578 < 0.0316	MA-SSB-148,37.25 (3)	1/5/2007	Grab	End-Pt: Bottom	3	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0310	84.0
MA-SSB-13,42,31-23, CAV 14 31 (19/2007) Inpox/SS End-Pt: Bottom 31-32 NA PCBS SA 59978 < 0.0330 NA MA-SSB-10,74.8 (31-32): CAN 26 3/20/2007 Tripox/SS End-Pt: Bottom 30-31 NA PCBS SA 59978 < 0.0380	MA SSD 4 5 44 9 (24 22) CAN 44	0/40/2007	Trined/00	End Dt Datters	01.00	.	DODO	0.000000		
MA-SSB-10.7 /44.8 (37-3): CAN 26 3/19/2007 Tripod/SS Eind-Pt Bottom 31-32 NA PCBS SA 595/8 < 0.0376 NA MA-SSB-51.52.8 (30-31): CAN 56 3/28/2007 Tripod/SS Eind-Pt: Bottom 30-31 NA PCBS SA 59849 < 0.0388	MA-SSB-4.5,44.8 (31-32): CAN 14	3/19/2007	Tripod/SS	End-Pt: Bottom	31-32	NA	PCBS	SA 59578	< 0.0350	NA
MA-SSB-51,52.8 (30-31): CAN 56 3/28/2007 Tripod/SS End-Pt Bottom 30-31 NA PCBS SA 59849 < 0.0328 NA MA-SSB-49,42.2 (30-31): CAN 60 3/28/2007 Tripod/SS End-Pt Bottom 30-31 NA PCBS SA 59849 < 0.0329	IMA-55B-10.7,44.8 (51-52): CAN 20	3/19/2007	i npod/55	End-Pt: Bottom	31-32	NA NA	PCBS	SA 59578	< 0.0316	NA
MA-SSD-1/2.4.2 (30-31): CAN 60 3/26/2007 Tripod/SS End-PE bottom 30-31 NA PCBS SA/38494 < 0.0386 NA MA-SSD-1/2.4.2 (30-31): CAN 60 3/26/2007 Tripod/SS End-PE bottom 30-31 NA PCBS SA/38494 < 0.0386	MA SSP 51 52 8 (30 31): CAN 56	2/28/2007	Tripod/SS	End Dt: Pottom	20.21	NA	DODO	CA 50040	10.0000	
MA-S91-92,4.2. (JOS1): CAN 40 3/26/2017 Tripod/SS End-Pt. Bottom 31-32 NA PCBS SA 5949 < 0.0329 NA MA-SSB-36,7,53.5 (31-32): CAN 40 3/29/2007 Tripod/SS End-Pt: Bottom 31-32 NA PCBS SA 59919 < 0.0392	MA-SSB-51,52.8 (30-31); CAN 50	3/20/2007	Tripod/SS	End-Pt. Boltom	30-31	NA NA	PCBS	SA 59849	< 0.0388	
MA-SB-36.753.5 (31-32): CAN 40 3/29/2007 Tripod/SS End-Pt: Bottom 31-32 NA PCBS SA 59919 < 0.0392 NA MA-SB236.4,46.5 (31-32): CAN 44 3/29/2007 Tripod/SS End-Pt: Bottom 31-32 NA PCBS SA 59919 < 0.0426	MA-33B-49,42.2 (30-31). CAN 60	3/20/2007	Thpou/35		30-31		PUBS	5A 59849	< 0.0329	NA
MA-SSB-36.446.5 (31-32): CAN 44 3/29/2007 Tripod/SS End-Pt: Bottom 31-32 NA PCBS SA 59919 < 0.0426 NA Field Equipment Blank 3/29/2007 Tripod/SS QA/QC na NA PCBS SA 59919 < 0.000222	MA-SSB-36.7,53.5 (31-32): CAN 40	3/29/2007	Tripod/SS	End-Pt: Bottom	31-32	NA	PCBS	SA 59919	< 0.0392	NA
Field Equipment Blank 3/29/2007 Tripod/SS QA/QC na NA PCBS SA 59919 < 0.000222 MA-GP-82,67.5 (0-2) Inches) 5/7/2007 Grab Backyard Characterization 2-inches NA PCBS SA 61721 0.482 NA MA-GP-82,67.5 (2-6) 5/7/2007 Vibratory GP Backyard Characterization 2-6 NA PCBS SA 61721 0.0188 NA MA-GP-82,67 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.462 NA MA-GP-93,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-93,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-147,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2) 5/7/2007	MA-SSB-36.4,46.5 (31-32): CAN 44	3/29/2007	Tripod/SS	End-Pt: Bottom	31-32	NA	PCBS	SA 59919	< 0.0426	NA
MA-GP-62,67.5 (0-2 inches) 5/7/2007 Grab Backyard Characterization 2-inches NA PCBS SA 61721 0.482 NA MA-GP-62,67.5 (2-6) 5/7/2007 Vibratory GP Backyard Characterization 2-6 NA PCBS SA 61721 0.0188 NA MA-GP-71,68 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0188 NA MA-GP-82,67 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-82,67 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-147,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.210 NA MA-GP-131,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.210 NA MA-GP-131,66 (0-	Field Equipment Blank	3/29/2007	Tripod/SS	QA/QC	na	NA	PCBS	SA 59919	< 0.000222	
Important Strature Strature Strature Strature NA PCBS SA 61721 0.462 NA MA-GP-62.07.5 (2-6) 577/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0188 NA MA-GP-82.67 (0-2) 577/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-82.67 (0-2) 577/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-82.67 (0-2) 577/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-82.67 (0-2) 577/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-83.66 (0-2) 577/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-131.66 (0-2) 577/2007	MA GP 62 67 5 (0.2 inches)	5/7/2007	Crah	Backward Characterization	2 inches	NIA	DODO	04 04704	0.400	
IMA-GP-02.0F3 (2-0) 5///2007 Vibratory GP Backyard Characterization 2-5 NA PCBS SA 61/21 0.0188 NA MA-GP-71.88 (0-2) 5///2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0188 NA MA-GP-71.88 (0-2) 5///2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-93.66 (0-2) 5///2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-147.66 (0-2) 5///2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.210 NA MA-GP-131.66 (0-2) 5///2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131.66 (0-2) 5///2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.0321 NA MA-GP-131.66 (1-2)	MA CD 62 67 5 (2.6)	5/7/2007	Giab Vibroton/ CD	Backyard Characterization	2-incries	I NA	PCBS	SA 61721	0.482	NA NA
IMA-GP-106 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0780 NA MA-GP-82,67 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-82,67 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-82,67 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-155,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.210 NA MA-GP-131,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2) 5/8/2007 Geoprobe Backyard Characterization 0-2 NA PCBS SA 61792 0.0326 NA MA-GP-131,66 (10-14)	MA CD 71 69 (0 2)	5/7/2007	Vibratory CP	Backyard Characterization	2-0		PUBS	SA 61721	0.0188	NA
IMA-GP-32,07 (0-2) 57/12007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.478 NA MA-GP-39,66 (0-2) 57/1/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-39,66 (0-2) 57/1/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-155,66 (0-2) 57/1/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-131,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2) 5/7/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2 5/8/2007 Geoprobe Backyard Characterization 0-2 NA PCBS SA 61792 <0.0326	MA CD 92 67 (0.2)	5/7/2007	Vibratory GP	Backyard Characterization	0-2		PCBS	SA 61721	1.040	NA
IMA-GP-35(66 (0-2) 5///2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.122 NA MA-GP-147,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.210 NA MA-GP-147,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2) 5//8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.0571 NA MA-GP-131,66 (-10) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 < 0.0321	MA CD 02 66 (0 2)	5/7/2007	Vibratory GP	Backyard Characterization	0-2		PCBS	SA 61721	0.478	NA NA
MA-GP-147,60 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.210 NA MA-GP-155,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-155,66 (0-2) 5/7/2007 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2 inches) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.0571 NA MA-GP-131,66 (0-2 inches) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 < 0.0326	MA-OF-95,00 (0-2)	5/7/2007	Vibratory GP	Backyard Characterization	0-2		PUBS	SA 61721	0.122	NA
IMA-GP-135,66 (0-2) S// 100/7 Vibratory GP Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2-inches) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61721 0.0558 NA MA-GP-131,66 (0-2-inches) 5/8/2007 Geoprobe Backyard Characterization 0-2 NA PCBS SA 61792 0.0571 NA MA-GP-131,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 < 0.0326	MA-OF-147,00 (0-2)	5/7/2007	Vibratory GP	Backyard Characterization	0-2	NA NA	PCBS	SA 61721	0.210	NA
MA-GP-131,66 (0-2-inches) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.0571 NA MA-GP-131,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 < 0.0326	MA-GP-155,66 (0-2)	5/7/2007		Backyard Characterization	0-2	NA	PCBS	SA 61/21	0.0558	NA
MA-GP-131,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 < 0.0326 NA MA-GP-131,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 < 0.0326	MA-GP-131.66 (0-2-inches)	5/8/2007	Grab	Backvard Characterization	0-2	NA	PCBS	SA 61792	0.0571	NA
MA-GP-131,66 (6-10) 5/8/2007 Geoprobe Backyard Characterization 6-10 NA PCBS SA 61792 < 0.0321 NA MA-GP-131,66 (10-14) 5/8/2007 Geoprobe Backyard Characterization 6-10 NA PCBS SA 61792 < 0.0321	MA-GP-131.66 (2-6)	5/8/2007	Geoprobe	Backyard Characterization	2-6	NA NA	PCBS	SA 61792	< 0.0326	NA
MA-GP-131,66 (10-14) 5/8/2007 Geoprobe Backyard Characterization 10-14 NA PCBS SA 61792 < 0.0321 NA MA-GP-131,66 (10-14) 5/8/2007 Geoprobe Backyard Characterization 10-14 NA PCBS SA 61792 < 0.0297	MA-GP-131.66 (6-10)	5/8/2007	Geoprope	Backyard Characterization	6-10	ΝΔ	PORS	SA 61702	< 0.0320	
MA-GP-116,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 10-14 NA PCBS SA 61792 < 0.0297 NA MA-GP-131,66 (2-6) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.0310 NA MA-GP-116,66 (2-6) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.253 NA	MA-GP-131 66 (10-14)	5/8/2007	Geoprobe	Backyard Characterization	10-14		PCBS	SA 61702	< 0.0321	
MA-GP-116,66 (2-6) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.253 NA MA-GP-116,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 0-2 NA PCBS SA 61792 0.253 NA	MA-GP-131 66 (14-18)	5/8/2007	Geoprobe	Backyard Characterization	14-18	NA NA	PCBS	SA 61702	< 0.0287	NA
MA-GP-116,66 (0-2 inches) 5/8/2007 Grab Backyard Characterization 0-2 NA PCBS SA 61792 0.253 NA MA-GP-116,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 0.0336 NA		0/0/2001		Backyard Characterization	14-10			54 01/92	~ 0.0310	
MA-GP-116,66 (2-6) 5/8/2007 Geoprobe Backyard Characterization 2-6 NA PCBS SA 61792 0.0336 NA	MA-GP-116,66 (0-2 inches)	5/8/2007	Grab	Backyard Characterization	0-2	NA	PCBS	SA 61792	0.253	NA
	MA-GP-116,66 (2-6)	5/8/2007	Geoprobe	Backyard Characterization	2-6	NA	PCBS	SA 61792	0.0336	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	' Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH
MA-GP-116,66 (6-10)	5/8/2007	Geoprobe	Backyard Characterization	6-10	NA	PCBS	SA 61792	< 0.0336	NA NA
MA-GP-116,66 (10-14)	5/8/2007	Geoprobe	Backyard Characterization	10-14	NA	PCBS	SA 61792	< 0.0352	NA
MA-GP-116,66 (14-18)	5/8/2007	Geoprobe	Backyard Characterization	14-18	NA	PCBS	SA 61792	< 0.0296	NA
MA-GP-62,67.5 (6-10)	5/8/2007	Geoprobe	Backyard Characterization	6-10	NA	PCBS	SA 61792	< 0.0318	NA
MA-GP-62,67.5 (10-14)	5/8/2007	Geoprobe	Backyard Characterization	10-14	NA	PCBS	SA 61792	< 0.0304	NA
MA-GP-62,67.5 (14-18)	5/8/2007	Geoprobe	Backyard Characterization	14-18	NA	PCBS	SA 61792	< 0.0318	NA
MA-GP-62,67.5 (18-22)	5/8/2007	Geoprobe	Backyard Characterization	18-22	NA	PCBS	SA 61792	0.950	NA
MA-GP-82.67 (2-6)	5/9/2007	Geoprobe	Backvard Characterization	2-6	NA	PCBS	SA 61870	< 0.0332	NA
MA-GP-82 67 (6-10)	5/9/2007	Geoprobe	Backyard Characterization	6-10	NA NA	PCBS	SA 61870	< 0.0332	
MA-GP-82.67 (10-14)	5/9/2007	Geoprobe	Backyard Characterization	10-14	NA	PCBS	SA 61870	< 0.0331	
						1000	0,101010	- 0.0021	
MA-GP-32,66 (0-2)	5/9/2007	Geoprobe	Backyard Characterization	0-2	NA	PCBS	SA 61870	0.683	NA
MA-GP-32,66 (2-6)	5/9/2007	Geoprobe	Backyard Characterization	2-6	NA	PCBS	SA 61870	< 0.0389	NA
MA-GP-32,66 (6-10)	5/9/2007	Geoprobe	Backyard Characterization	6-10	NA	PCBS	SA 61870	< 0.0378	NA
MA-GP-32,66 (10-14)	5/9/2007	Geoprobe	Backyard Characterization	10-14	NA	PCBS	SA 61870	< 0.0326	NA
MA-GP-32,66 (14-18)	5/9/2007	Geoprobe	Backyard Characterization	14-18	NA	PCBS	SA 61870	< 0.0335	NA
	E /0 /0007								
MA-GP-23,66 (0-2")	5/9/2007	Geoprobe	Backyard Characterization	0-2 inches	NA	PCBS	SA 61870	1.020	NA
MA-GP-23,00 (2-0)	5/9/2007	Geoprobe	Backyard Characterization	2-6	<u>NA</u>	PCBS	SA 61870	< 0.0358	NA
MA-GP-71,66 (2-6)	5/9/2007	Geoprobe	Backyard Characterization	2-6	NA NA	PCBS	SA 61870	< 0.0372	NA
MA-GP-97,66 (2-6)	5/9/2007	Geoprobe	Backyard Characterization	2-6	NA	PCBS	SA 61870	< 0.0362	NA
MA-GP-97,00 (0-10)	5/9/2007	Geoprobe	Backyard Characterization	6-10	NA	PCBS	SA 61870	< 0.0314	<u>NA</u>
MA-GP-155,00 (2-0)	5/9/2007	Geoprope	Backyard Characterization	2-6	NA NA	PCBS	SA 61870	< 0.0344	NA
MA-GP-155,06 (0-10)	5/9/2007	Geoprope	Backyard Characterization	6-10	NA	PCBS	SA 61870	< 0.0305	
MA CD 71 68 (10 14)	5/10/2007	Geographe	Packward Characterization	10.14	NIA	DODO	CA 01000	10.0004	N
MA GD 71 69 (14 19)	5/10/2007	Geoprobe	Backyard Characterization	14 19		PCBS	SA 61922	< 0.0324	NA
MA GP 71 69 (19 22)	5/10/2007	Geoprobe	Backyard Characterization	19.00		PCB5	SA 61922	< 0.0314	NA
MA-GP-71 68 (22-26)	5/10/2007	Geoprobe	Backyard Characterization	22.26			SA 61022	0.138	
MA-GP-71 68 (26-30)	5/10/2007	Geoprobe	Backyard Characterization	26-30			SA 61922	< 0.0306	NA NA
	0/10/2001	Geoprope	Buckyard onarackenzation	20-00		1000	37 01322	0.0510	
MA-GP-62.67.5 (22-26)	5/10/2007	Geoprobe	Backvard Characterization	22-26	NA	PCBS	SA 61922	< 0.0302	NA
MA-GP-62.67.5 (26-30)	5/10/2007	Geoprobe	Backvard Characterization	26-30	NA	PCBS	SA 61922	< 0.0304	NA
MA-GP-32,66 (18-22)	5/10/2007	Geoprobe	Backyard Characterization	18-22	NA	PCBS	SA 61922	< 0.0307	NA
MA-GP-32,66 (14-18)	5/10/2007	Geoprobe	Backyard Characterization	14-18	NA	PCBS	SA 61922	< 0.0311	NA
MA-GP-32,66 (22-26)	5/10/2007	Geoprobe	Backyard Characterization	22-26	NA	PCBS	SA 61922	< 0.0311	NA
MA-GP-32,66 (26-30)	5/10/2007	Geoprobe	Backyard Characterization	26-30	NA	PCBS	SA 61922	0.0154	NA
MA-GP-82,66 (14-18)	5/11/2007	Geoprobe	Backyard Characterization	14-18	NA	PCBS	SA 62202	< 0.0316	NA
MA-GP-82,66 (18-22)	5/11/2007	Geoprobe	Backyard Characterization	18-22	NA	PCBS	SA 62202	< 0.0319	NA
MA-GP-82,66 (22-26)	5/11/2007	Geoprobe	Backyard Characterization	22-26	NA	PCBS	SA 62202	< 0.0308	NA
MA-GP-82,66 (26-30)	5/11/2007	Geoprobe	Backyard Characterization	26-30	NA	PCBS	SA 62202	< 0.0331	NA
NA OD 07 00 (10 14)					·····	2020			
MA-GP-97,66 (10-14)	5/11/2007	Geoprobe	Backyard Characterization	10-14	NA	PCBS	SA 62202	< 0.0318	NA
MA-GP-97,66 (14-18)	5/11/2007	Geoprobe	Backyard Characterization	14-18	<u>NA</u>	PCBS	SA 62202	< 0.0322	NA
MA-GP-97,66 (18-22)	5/11/2007	Geoprobe	Backyard Characterization	18-22	NA	PCBS	SA 62202	< 0.0303	NA
MA-GP-97,66 (22-26)	5/11/2007	Geoprobe	Backyard Characterization	22-26	NA NA	PCBS	SA 62202	< 0.0314	NA
WIA-GP-97,00 (20-30)	5/11/2007	Geoprope	Backyard Unaracterization	26-30	NA	PCBS	SA 62202	< 0.0300	NA
MA-GP-116.66 (18-22)	5/11/2007	Geoprohe	Backvard Characterization	18-22	NA NA	PCBS	SA 62202	< 0.0316	NA
MA-GP-116.66 (18-22) Dune	5/11/2007	Geoprobe	Backvard Characterization	18-22	NA NA	PCRS	SA 62202	< 0.0310	NA
MA-GP-116.66 (22-26)	5/11/2007	Geoprobe	Backyard Characterization	22-26	NA NA	PCRS	SA 62202	< 0.0313	NA
MA-GP-116.66 (26-30)	5/11/2007	Geoprobe	Backyard Characterization	26-30			SA 62202	10.0020	
	0/1/2001		Buokyard Onaracterization	20-30		PUD0	5A 02202	< 0.0319	NA NA
MA-GP-155,66 (10-14)	6/1/2007	Geoprobe	Backyard Characterization	10-14	NA	PCBS	SA 63034	< 0.0313	NA

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bis)	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-GP-155,66 (14-18)	6/1/2007	Geoprobe	Backvard Characterization	14-18	NA	PCBS	SA 63034	(ppiii)	
MA-GP-155,66 (18-22)	6/1/2007	Geoprobe	Backvard Characterization	18-22	NA	PCBS	SA 63034	< 0.0295	
MA-GP-155,66 (22-26)	6/1/2007	Geoprobe	Backvard Characterization	22-26	NA	PCBS	SA 63034	< 0.0291	
MA-GP-155,66 (26-30)	6/1/2007	Geoprobe	Backvard Characterization	26-30	NA	PCBS	SA 63034	< 0.0306	
			Buokyara onaraotonizatori	20-00		F CB3	3A 03034	< 0.0308	NA
MA-GP-131.66 (18-22)	6/1/2007	Geoprobe	Backvard Characterization	18-22	NΔ	PCBS	SA 62024	< 0.0208	
MA-GP-131.66 (18-22) Dupe	6/1/2007	Geoprobe	Backyard Characterization	18-22		PCBS	SA 03034	< 0.0308	NA NA
MA-GP-131.66 (22-26)	6/1/2007	Geoprobe	Backyard Characterization	22-26		PCBS	SA 63034	< 0.0290	
MA-GP-131.66 (26-30)	6/1/2007	Geoprobe	Backyard Characterization	26-30			SA 63034	< 0.0303	NA NA
	0/112001		Dackyard Characterization	20-30		PC85	SA 63034	< 0.0292	NA
MA-GP-147.66 (2-6)	6/1/2007	Geonrohe	Backyard Characterization	22.26	NA	DODO	CA 02024	- 0 0000	
MA-GP-147.66 (6-10)	6/1/2007	Geoprobe	Backyard Characterization	22-20		PCBS	SA 03034	< 0.0309	NA
MA-GP-147.66 (10-14)	6/1/2007	Geoprobe	Backyard Characterization	22-20	NA .	PCBS	SA 63034	< 0.0299	NA NA
MA-GP-147.66 (14-18)	6/1/2007	Geoprobe	Backyard Characterization	22-20	NA NA	PCBS	SA 63034	< 0.0282	NA
	0/1/2001	Сеоргове	Dackyard Characterization	22-20		PCBS	SA 63034	0.0338	NA NA
MA-GP-82 67 (0-2")	6/1/2007	Grah	Backyard Characterization	1.2"				. 170	
MA-GP-71 68 (0-2")	6/1/2007	Grab	Backyard Characterization	1-2	NA NA	PCBS	SA 63034	1.170	
	0/112001		Dackyard Characterization	1-2		PGB5	SA 63034	0.682	NA
MA-GP-66.64 (7.5-8.0)	8/27/2007	Geoprohe	Backvard Characterization	7580	NA	DCPS	EA 67220	< 0.0000	
MA-GP-72.64 (6.0-6.5)	8/27/2007	Geoprobe	Backyard Characterization	60-65		PCBS	SA 67320	< 0.0328	
MA-GP-59.67 (6.0-6.5)	8/27/2007	Geoprobe	Backyard Characterization	60.65		PCBS	SA 07320	< 0.0343	
MA-GP-164.62 (10.0-10.5)	8/27/2007	Geoprobe	Backyard Characterization	10.0-10.5		PCBS	SA 67320	0.592	
MA-GP-155.57 (10.0-10.5)	8/27/2007	Geoprobe	Backyard Characterization	10.0-10.5	NA NA		SA 67320	< 0.0316	
MA-GP-152.64 (10.0-10.5)	8/27/2007	Geoprobe	Backyard Characterization	10.0-10.5	NA	PCBS	SA 67320	< 0.0314	
MA-GP-146.62 (10.0-10.5)	8/27/2007	Geoprobe	Backyard Characterization	10.0-10.5	NA NA	PCBS	SA 67320	< 0.0303	
MA-GP-146.62 (10.0-10.5) Dupe	8/27/2007	Geoprobe	Backyard Characterization	10.0-10.5		PCBS	SA 67320	< 0.0312	NA NA
	0.2172007	00001000	Buckyuru onaracterization	10.0-10.0		FCBS	3A 0/320	< 0.0314	NA NA
MA-SSB-23.70 (0.5)	11/7/2007	Grah	Backvard Confirmatory	0.5	ΝA	BCBS	SA 70711	< 0.0247	NIA
MA-SSB-84.69 (1)	11/7/2007	Grab	Backyard Characterization	0.5	ΝΔ	PCBS	SA 70711	1 200	
MA-SSB-69.71 (3)	11/7/2007	Grab	Backyard Confirmation	0.5		PCBS	SA 70711	0.0255	NA NA
			Buokyura Committatory	0.0		F CB3	38.10711	0.0255 J	INA
MA-SSB-23.68 (1.5)	11/8/2007	Grab	Backvard Confirmatory	15	NA	PCBS	SA 70787	< 0.0410	NA
						1 000	0,(10/0/	0.0410	
MA-SSB-66,64 (7.5)	11/9/2007	Grab	Backvard Confirmatory	7.5	NA	PCBS	SA 70810	< 0.0309	NA
				1			0,(10010	0.0000	
MA-SSB-57-30 (12)	11/13/2007	Track Hoe	End-Pt: Bottom	12	NA	PCBS	SA 70997	< 0.0321	NA
									·····
MA-SSB-67,64 (7.5)	11/14/2007	Grab	Backyard Bottom Confirmatory	7.5	NA	PCBS	SA 71058	0.737	NA
MA-SSB-67,64 (7.5) Dupe	11/14/2007	Grab	Field Dup	7.5	NA	PCBS	SA 71058	0.465	NA
MA-SSB-67,64 (7.5) MS	11/14/2007	Grab	Matrix Spike	7.5	NA	PCBS	SA 71058	0.249	NA
MA-SSB-67,64 (7.5) MSD	11/14/2007	Grab	Matrix Spike Dup	7.5	NA	PCBS	SA 71058	0.437	NA
MA-SW-61,64 (7.5)	11/14/2007	Grab	Backyard Characterization	7.5	NA	PCBS	SA 71058	5.520	NA
MA-SW-68,64 (7.5)	11/14/2007	Grab	Backyard Characterization	7.5	NA	PCBS	SA 71058	263/125	NA
MA-SW-65,67 (7.5)	11/14/2007	Grab	Backyard Sidewall Confirmatory	7.5	NA	PCBS	SA 71058	< 0.0331	NA
MA-SSB-84,69 (3)	11/14/2007	Grab	Backyard Bottom Confirmatory	3	NA	PCBS	SA 71058	< 0.0341	NA
			· · · · · · · · · · · · · · · · · · ·	1			0.111000		
MA-SSB-68,67 (7.5)	11/20/2007	Grab	Backvard Bottom Confirmatory	7.5	NA	PCBS	SA 71357	< 0.0333	NA
MA-SW-74,64 (7.5)	11/26/2007	Grab	Backyard Sidewall Confirmatory	7.5	NA	PCBS	SA 71454	< 0.0346	NA
MA-SW-73,65.5 (7.5)	11/26/2007	Grab	Backyard Sidewall Confirmatory	7.5	NA	PCBS	SA 71454	< 0.0307	NA
MA-SSB-70,64 (8.5)	11/26/2007	Grab	Backyard Bottom Confirmatory	8.5	NA	PCBS	SA 71454	< 0.0325	NA
MA-SW-73,70.5 (8.5)	11/26/2007	Grab	Backyard Sidewall Confirmatory	8.5	NA	PCBS	SA 71454	< 0.0309	NA
				1	1 · · · · · · · · · · · · · · · · · · ·			0.0000	
MA-SSB-61,64 (8.5)	11/27/2007	Grab	Backyard Bottom Confirmatory	8.5	NA	PCBs	SA 71514	0 293	NA
MA-SW-59.5,64.5 (7.5)	11/27/2007	Grab	Backyard Characterization	7.5	NA	PCBs	SA 71514	283/372	NA
MA-SW-55.5,64 (7.5)	11/27/2007	Grab	Backvard Characterization	7.5	NA	PCBe	CA 71514	0.50	
				<u> </u>	11/2	FUD3	- SA / 1514	2.30	NA
MA-SSB-59.5,64.5 (9.2)	12/5/2007	Grab	Backvard Bottom Confirmatory	92	NA	PCBs		0.484	NIA
	········				1 1 1 1 1 1	1003		V.404	H NA

,

Sample Location	Sample Date	Sample Type	Purpose	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA-SW-59,65.5 (7.5)	12/5/2007	Grab	Backyard Sidewall Confirmatory	7.5	NA	PCBs	SA 71906	0.340	NA
MA-SW-58,65 (7.5)	12/5/2007	Grab	Backyard Characterization	7.5	NA	PCBs	SA 71906	23.7 F	NA
MA-SSB-55.5,64 (9.0)	12/6/2007	Grab	Backyard Characterization	9.0	NA	PCBs	SA 71943	9.64 F	NA
MA-SW-55.5,65 (7.5)	12/6/2007	Grab	Backyard Sidewall Confirmatory	7.5	NA	PCBs	SA 71943	0.0811	NA
MA-SW-54,64 (7.5)	12/6/2007	Grab	Backyard Sidewall Confirmatory	7.5	NA	PCBs	SA 71943	0.142	NA
MA-SSB-55.5,64 (12) *	1/2/2008	Geoprobe	Backyard Bottom Confirmatory	12	NA	PCBS	SA 72884	< 0.0310	NA
MA-SW-55.5,65 (10.5) *	1/2/2008	Geoprobe	Backyard Sidewall Confirmatory	10.5	NA	PCBS	SA 72884	< 0.0327	NA
MA-SW-53.5,64 (10.5) *	1/2/2008	Geoprobe	Backyard Sidewall Confirmatory	10.5	NA	PCBS	SA 72884	< 0.0340	NA
				1					
MA-SSB-58,65 (12) *	1/3/2008	Geoprobe	Backyard Bottom Confirmatory	12	NA	PCBS	SA 72928	< 0.0321	NA
						· · ·			
MA-SSB-58,65.5 (10.5) *	1/4/2008	Geoprobe	Backyard Sidewall Confirmatory	10.5	NA	PCBS	SA 72957	< 0.0309	NA
MA-SSB-58,66 (6)	1/4/2008	Hand Geoprobe	Backyard Characterization	6	NA	PCBS	SA 72957	2.032	NA
MA-SW-53.5,65 (13) *	1/2/2008	Geoprobe	Backyard Sidewall Confirmatory	13	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-55.5,65 (13) *	1/2/2008	Geoprobe	Backyard Bottom Confirmatory	13	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SW-55.5,66 (11) *	1/2/2008	Geoprobe	Backyard Sidewall Confirmatory	11	NA	PCBS	SA 73370	< 0.0321	NA
MA-SW-55.5,66 (14) *	1/2/2008	Geoprobe	Backyard Sidewall Confirmatory	14	NA	PCBS	SA 73370	< 0.0334	NA
MA-SW-55.5,67 (11.5) *	1/2/2008	Geoprobe	Backyard Sidewall Confirmatory	11.5	NA	PCBS	SA 73370	< 0.0332	NA
MA-SSB-55.5,64 (14) *	1/3/2008	Geoprobe	Backyard Bottom Confirmatory	14	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-58,66 (13) *	1/3/2008	Geoprobe	Backyard Bottom Confirmatory	13	NA	PCBS	SA 73370	< 0.0290	NA
MA-SSB-58,67 (14) *	1/3/2008	Geoprobe	Backyard Bottom Confirmatory	14	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-58,65 (14) *	1/4/2008	Geoprobe	Backyard Bottom Confirmatory	14	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-58,66.5 (11) *	1/4/2008	Geoprobe	Backyard Bottom Confirmatory	11	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-59.5,64.5 (12) *	1/4/2008	Geoprobe	Backyard Bottom Confirmatory	12	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-59.5,64.5 (14) *	1/4/2008	Geoprobe	Backyard Bottom Confirmatory	14	NA	PCBS	SA 73370	Extracted but not analyzed	NA
MA-SSB-58,66 (18)	1/4/2008	Geoprobe	Backyard Bottom Confirmatory	18	NA	PCBS	SA 73370	Extracted but not analyzed	NA
								,,	NA
MA-SSB-58,67 (7.5)	4/7/2008	Hand Geoprobe	Backyard Bottom Confirmatory	7.5	NA	PCBS	SA 76891	0.0455	NA
MA-SSB-58,66 (7.5)	4/7/2008	Hand Geoprobe	Backyard Characterization	7.5	NA	PCBS	SA 76891	2.210	NA
			· · · · · · · · · · · · · · · · · · ·			·····			

Notes

.

ppm = parts per million NA = not analyzed PCBs = polychlorinated biphenyls TPH = total petroleum hydrocarbons VOCs = volatile organic compounds SVOCs = semi-volatile organic compounds COC = chain of custody bls = below land surface MS = Matrix Spike MSD = Matrix Spike Duplicate < = less than the method detection limit (MDL). J = Detected above MDL, but below reporting limit (result is an estimated value). Y = Estimated Value E = Estimated Value

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

	Sample Location	MA-SW-0,25 (6-10)	MA-SW-0,25 (6-10)	MA-SW-0,25 (6-10)	MA-SW-0,25 (6-10)	MA-SW-14,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-B (29-31)	MA-SW-45,0 (6-10)	MA-SW-45,0 (6-10)
			MS	MSD	Dupe			Duplicate of	MS	MSD
	Sample Date	8/17/2005	8/17/2005	8/17/2005	8/17/2005	8/29/2005	8/29/2005	8/29/2005	8/29/2005	8/29/2005
	Lab COC	0508465	0508465	0508465	0508465	0508718	0508718	0508718	0508718	0508718
VOCs (Method 8260)	Regulatory Limit									
Analyte	(ppm)									
Acetone	0.2 ¹	0.128	0.142	0.154	0.107	0.0362	r			1
Benzene	0.06 1		0.0930	0.106					0.274	0.306
2-Butanone (MEK)	0.3 ¹									
n-Butylbenzene	NR					0.00351	Y			
tert Butylbenzene	NR					0.00620	r			
sec Butylbenzene	NR									1
Carbon disulfide	2.7 ¹									
Chlorobenzene	1.7 ¹		0.0823	0.0898					0.255	0.286
2-Chloroethylvinylether	NR	< 0.00505 F	λ		< 0.00514	R				
1,2 Dichlorobenzene	7.9 ¹									1
1,3 Dichlorobenzene	1.6 ¹						1			
1,4 Dichlorobenzene	8.5 ¹	0.00257 Y	r 0.00401	0.00357	Y 0.00246	Y 0.00833	Y			
1,2 Dichloroethane	0.1 1									
1,1 Dichloroethene	0.4 1		0.0093	0.104					0.258	0.287
p-Diethylbenzene	NR	0.00214 Y	r 0.00563	Y 0.00500	Y 0.00223	Y 0.00864	Y 0.00532	r	0.0066	Y 0.00724 Y
p-Ethyltoluene	NR	0.00190 Y	ŕ 0.00362	Y 0.00314	Y 0.00183	Y				1
4-Isopropyltolune	NR		0.00228	Y 0.00240	Y					
4-Methyl-2-pentanone (MIBK)	1.0 ¹							1		
Methylene chloride	0.1 1	0.00587 B	Y 0.0062	BY 0.00581	BY 0.00738	BY				
Napthalene	NR	0.0141	0.0103	Y 0.00629	Y				0.00584	Y 0.00643 Y
n-Propylybenzene	NR		0.00213	Y						
1,2,4,5 Tetramethylbenzene	NR	0.00140	J 0.00161	Y	0.00141	J 0.00613	Y .			
Toluene	1.5 ¹		0.0953	0.101	· · · · · · · · · · · · · · · · · · ·				0.248	0.273
1,2,4 Trichlorobenzene	3.4 ¹					0.00673	Y 0.00944	0.00429	0.0130	Y 0.0135 Y
Trichloroethene (TCE)	~ 0.7 ¹		0.0931	0.102					0.261	0.290
1,2,4 Trimethylbenzene	NR	0.00461	Y 0.00819	Y 0.00722	Y 0.00285	Y				· ·
1,3,5 Trimethylbenzene	NR	0.00133	J 0.00257	Y 0.00251	Y 0.00119	Y				
m, p-Xylene	1.2 ²									
o-Xylene	1.2 ²									
Tetrahydrofuran	NR									
Ethyl ether	NR				,					
tert-Amyl methyl ether (TAME)	NR									
Tertiary butyl alcohol (TBA)	NR	< 0.0269 F	२		< 0.0274	R				
1,4-Dioxane	NR									

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

- ² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.
- NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL). R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration.

		MA SW 62 0 (6 10)	MAA SIM/ 81 0 (6 10)	MA SW/ 100 0 /6 10)	MA 614/ 48 0 (17)					
	Sample Location	(0-10)	101/4-300-01,0 (0-10)	WA-3VV-109,0 (0-10)	IWA-3VV-40,0 (17)	MA-SVV-00,0 (10)	MA-SVV-00,0 (10)	MA-SVV-80,0 (17)	MA-SVV-86,0 (17)	MA-SW-86,0 (17)
	Semale Date	8/20/2005	8/21/2005	0/6/2005	0/00/0005	10/0/0005	Dupe		MS	MSD
	Jah COC	0500044	0/31/2005	9/6/2005	9/30/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005
VOCs (Mathed \$250)	Lab COC	0309044	0509044	0509135	0510030	0510149	0510149	0510149	0510149	0510149
Analyte	(opm)									
Analyte	(ppii)								· · · · ·	+
Acetone	0.2	0.01/5 1	1		0.0286 1			· · · · ·		
Benzene	0.06					· · · · ·			0.102	0,105
2-Butanone (MEK)	0.3									-
n-Butylbenzene	NR									
tert Butylbenzene	NR	 				· · · · · · · · · · · · · · · · · · ·				
sec Butylbenzene	NR	+								
Carbon disulfide	2.7									
Chlorobenzene	1.7								0.0974	0.104
2-Chloroethylvinylether	NR Te 1			·						
1,2 Dichlorobenzene	7,9								·	
1,3 Dichlorobenzene	1.6									-
1,4 Dichlorobenzene	8.5									
1,2 Dichloroethane	0.1					+		-		
1,1 Dichloroethene	0.4	-lj					· · ·		0.102	0.104
p-Diethylbenzene	NR									
p-Ethyltoluene	NR				· · · · · · ·			- · · · · · · · · · · · · · · · · · · ·		
4-Isopropyitolune	NR	ļ							1.1	
4-Methyl-2-pentanone (MIBK)	1.0 1									
Methylene chloride	0.1 1		0.00568	Y 0.00319	Y		.]			
Napthalene	NR ·									
n-Propylybenzene	NR									
1,2,4,5 Tetramethylbenzene	NR			-						
Toluene	1.5 1								0.102	0.109
1,2,4 Trichlorobenzene	3.4 ¹									·
Trichloroethene (TCE)	0.71								0.0970	0.101
1,2,4 Trimethylbenzene	NR									
1,3,5 Trimethylbenzene	NR									
m, p-Xylene	1.2 ²									
o-Xylene	1.2 ²									
Tetrahydrofuran	NR	1								
Ethyl ether	NR									
tert-Amyl methyl ether (TAME)	NR									
Tertiary butyl alcohol (TBA)	NR									
1,4-Dioxane	NR									
										1

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1, Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL).

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration.

	danaka			·			1		· · · · · · · · · · · · · · · · · · ·	
	Sample Location	MA-SW-62,63 (5)	MA-SW-62,63 (5)	MA-SW-62,63 (5)	MA-SW-62,63 (5)	MA-SW-0,57 (12)	MA-SSB-12,29 (18)	MA-SSB-37,15 (18)	MA-SSB-12,45 (18)	MA-SW-8,7 (13)
			MS	MSD	Duplicate Sample					
	Sample Date	10/21/2005	10/21/2005	10/21/2005	10/21/2005	11/1/2005	11/4/2005	11/9/2005	11/9/2005	11/9/2005
		0510452	0510452	0510452	0510452	0511021	0511140	0511210	0511210	0511210
VOCs (Method 8260)	Regulatory Limit									
Analyte	(ppm)									
Acetone	0.2 '						0.0417 Y R Y	R		0.0164 Y
Benzene	0.06		0.0542	0.0654						
2-Butanone (MEK)	0.3 '	-							-	
n-Butylbenzene	NR									
tert Butylbenzene	NR	_								
sec Butylbenzene	NR		1						-	
Carbon disulfide	2.7						· ·			
Chlorobenzene	1.7 1		0.0450	0.0546			0.00210	(
2-Chloroethylvinylether	NR								Į	
1,2 Dichlorobenzene	7.9 ¹					_	0.00289	r l		
1,3 Dichlorobenzene	1.6 1						0.00378	r		
1,4 Dichlorobenzene	8.5 ¹						0.0605		0.00181	Y
1,2 Dichloroethane	0.1 ¹									
1,1 Dichloroethene	0.4 1		0.0458	0.0552						
p-Diethylbenzene	NR									
p-Ethyltoluene	NR									
4-Isopropyltolune	NR									
4-Methyl-2-pentanone (MIBK)	1.0 1					_				
Methylene chloride	0.1 ¹	0.00296 B	Y 0.00262	BY 0.00271 I	3Y 0.00278 E	3Y	0.00506	Y 0.00356	Y	0.00437
Napthalene	NR									· · · ·
n-Propylybenzene	NR									1
1,2,4,5 Tetramethylbenzene	NR									
Toluene	1.5 ¹		0.0471	0.0588				0.00203	Y 0.0318	
1,2,4 Trichlorobenzene	3.4 ¹						0.00213	Y		
Trichloroethene (TCE)	0.71		0.0394	0.0477						
1,2,4 Trimethylbenzene	NR						0.00142	Y		
1,3,5 Trimethylbenzene	NR								-	
m, p-Xylene	1.2 ²								0.00308	Y
o-Xylene	1.2 ²			1						
Tetrahydrofuran	NR									
Ethyl ether	NR									1
tert-Amyl methyl ether (TAME)	NR				-				1	
Tertiary butyl alcohol (TBA)	NR						< 0.0254	R		
1,4-Dioxane	NR									

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL). R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration.

	1					÷		 			·····	
	Sample Location	MA-SW-8,7 (13) MS	MA-SW-8,7 (13) MSD	MA-SW-F(8-10) Dupe of MA-SW8.7 (13)	MA-SW-51,64 (5)	MA-SW-62,64 (9)	MA-SW-2,24 (7)	MA-SW-2,38 (17)	MA-SSB-40,35 (30)	MA-SSB-52,18 (30)	MA-SSB-52,18 (30)	MA-SSB-52,18 (30)
	Sample Date	11/9/2005	11/9/2005	11/9/2005	11/11/2005	11/11/2005	1/12/2006	1/26/2006	5/17/2006	6/0/2006	6/0/2006	6(0/2006
	Lab COC	0511210	0511210	0511210	0511278	0511278	0601223	0601479	SA 45232	SA 46237	SA 46237	6/ 46007
VOCs (Method 8260)	Regulatory Limit						0001220	0001410	0/140202	04 40237	0A 40207	5A 40237
Analyte	(ppm)	1										
Acetone	0.2 1	1.						Ť	< 1.430	c 0 149	,	
Benzene	0,06 1	0.0805	0.0873			- · ·			1.400 1		0.0221	0.0202
2-Butanone (MEK)	0.3 ¹								< 0.714	2 < 0.0743	0.0221	0.0202
n-Butylbenzene	NR	-	-					0.0101 Y				
tert Butylbenzene	NR							0.0101				
sec Butylbenzene	NR		1					0.00788 Y				
Carbon disulfide	2.7 1											
Chlorobenzene	1.7 ¹	0.0852	0.0902			• •		0.0103 Y			0.0212	0.0207
2-Chloroethylvinylether	NR				< 0.00516	R < 0.00518	R				0.0210	0.0207
1,2 Dichlorobenzene	7.9 ¹							0.0137 Y				
1,3 Dichlorobenzene	1.6 ¹							0.0372 Y				
1,4 Dichlorobenzene	8.5 ¹							0.354				
1,2 Dichloroethane	0.1 1											
1,1 Dichloroethene	0.4 ¹	0.0823	0.0884		T						0.0205	0.0179
p-Diethylbenzene	NR							0.0117 Y				
p-Ethyltoluene	NR							0,00838 Y			· · · · · · · · · · · · · · · · · · ·	
4-Isopropyltolune	NR											
4-Methyl-2-pentanone (MIBK)	1.0 ¹											
Methylene chloride	0.1 1	0.00621	Y 0.00644	Y 0.00381	Y 0.00385	Y 0.00404	Υ			0.0418	1	
Napthalene	NR											
n-Propylybenzene	NR							0.00820 Y				
1,2,4,5 Tetramethylbenzene	NR							0.0108 Y		-		
Toluene	1.5 ¹	0.0886	0.0928					0.00462 Y	·		0.0194	0.0204
1,2,4 Trichlorobenzene	3.4 ¹											
Trichloroethene (TCE)	0.71	0.0864	0.0926								0.0205	0.0196
1,2,4 Trimethylbenzene	NR							0.653				
1,3,5 Trimethylbenzene	NR											
m, p-Xylene	1.2 ²											
o-Xylene	1.2 ²							0.0049 Y	r			
Tetrahydrofuran	NR											
Ethyl ether	NR	1										
tert-Amyl methyl ether (TAME)	NR									< 0.0074	۹	
Tertiary butyl alcohol (TBA)	NR				< 0.0275	R < 0.0276	R		< 0.714	2		
1,4-Dioxane	NR								< 1.430	R < 0.149	2	

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL). R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

 $Y_{\!:}$ Reported concentration was detected below the lowest calibration standard concentration.

		1					1	u	1	
-	Sample Location	MA-SSB-39.7,45.8 (30)	MA-SSB-39.7,45.8 (30) MS	MA-SSB-39.7,45.8 (30) MSD	MA-SSB-33,49 (30)	MA-SW-39.5,55 (30)	MA-SSB-106,22 (30)	MA-SSB-106,22 (30)	MA-SSB-106,22 (30)	MA-SSB-106,22 (30)
	Sample Date	7/13/2006	7/13/2006	7/13/2006	7/20/2006	7/21/2006	7/31/2006	7/31/2006	7/31/2006	7/31/2006
	Lab COC	SA 47890	SA 47890	SA 47890	SA 48264	SA 48451	SA 48806	SA 48806	SA 48806	SA 48806
VOCs (Method 8260)	Regulatory Limit							6/110000	0/140000	04 40000
Analyte	(ppm)									
Acetone	0.2 1	<13 F	2		< 0.132	R		1		
Benzene	0.06 1		0.0196	0.0194	- 0.102	1			0.0170	0.0154
2-Butanone (MEK)	0.31	< 0.652 F	2	. 0.0101	< 0.0658	R	0.208		0.0110	0.0134
n-Butylbenzene	NR						0.200		-	
tert Butylbenzene	NR									
sec Butylbenzene	NR		1							
Carbon disulfide	2.7 ¹	0.0613	J							
Chlorobenzene	1.7 1		0.0205	0.0204					0.0187	0.0214
2-Chloroethylvinylether	NR									
1,2 Dichlorobenzene	7.9 ¹									
1,3 Dichlorobenzene	1.6 1									
1,4 Dichlorobenzene	8.5 ¹									
1,2 Dichloroethane	0.1 1									
1,1 Dichioroethene	0.4 1		0.0226	0.0238					0.0149	0.0149
p-Diethylbenzene	NR									
p-Ethyltoluene	NR									
4-Isopropyitolune	NR									
4-Methyl-2-pentanone (MIBK)	1.0 ¹									
Methylene chloride	0,1 1	0.0600	J			0.005	J 0.0443 J VOC3, J	0.0195	J	
Napthalene	NR									
n-Propylybenzene	NR									
1,2,4,5 Tetramethylbenzene	NR									
Toluene	1.5 1		0.0176	0.0171					0.0168	0.0184
1,2,4 Trichlorobenzene	3.4 ¹									
Trichloroethene (TCE)	0.7 ¹		0.0199	0.0202					0.0166	0.0177
1,2,4 Trimethylbenzene	NR									
1,3,5 Trimethylbenzene	NR									
m, p-Xylene	1.2 ²			1						
o-Xyiene	1.2 ²									
Tetrahydrofuran	NR	I		1	< 0.0658	R		< 0.0702	R	
Ethyl ether	NR					•	0.137 J			
tert-Amyl methyl ether (TAME)	NR									
Tertiary butyl alcohol (TBA)	NR	< 0.483	R		< 0.0658	R				
1,4-Dioxane	NR	< 1.3	R		< 0.132	R				
			1	1			1	1		

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL).

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration.

and the state of t		1				1		· · · · · · · · · · · · · · · · · · ·	
	Sample Location	MA-SSB-101,5 (19)	MA-SSB-101,5 (19) Dupe	MA-SSB-101,5 (19) MS	MA-SSB-101,5 (19) MSD	MA-SSB-107,55 (13)	MA-SSB-152,54 (2.5)	MA-SSB-138,50 (2.5)	MA-SSB-169.5,59 (2)
	Sample Date	8/8/2006	8/8/2006	8/8/2006	8/8/2006	8/8/2006	1/5/2007	1/5/2007	1/5/2007
	Lab COC	SA 49202	SA 49202	SA 49202	SA 49202	SA 49202	SA 56522	SA 56522	SA 56522
VOCs (Method 8260)	Regulatory Limit						CH COULL	GAUGGEL	
Analyte	(ppm)								
Acetone	0.21	1			1		< 0.137 P	< 0.109	< 0.100 P
Benzene	0.061			0.0163	0.0164		< 0.0068	< 0.100 R	< 0.000 R
2-Butanone (MEK)	0.31	< 0.0982	< 0.0689		0.0104	< 0.0628	< 0.0684	< 0.0542	< 0.000 R
n-Butvibenzene	NR	0.0027	0.0016	1		× 0.0020	~ 0.0004	<u> </u>	<u> </u>
tert Butvibenzene	NR	0.0021	0.0010					1	
sec Butylbenzene	NR								
Carbon disulfide	2.7 1	0.003	0.0012						
Chlorobenzene	1.7 1		0.0012	0.0150	0.0150				
2-Chloroethylvinylether	NR			0.0100	0.0100				
1 2 Dichlorobenzene	7.9 ¹								+
1.3 Dichlorobenzene	161								
1.4 Dichlorobenzene	8.5 ¹								
1.2 Dichloroethane	0.1 ¹		•		-			-	
1.1 Dichloroethene	0.4 ¹			0.0173	0.0167				t
p-Diethylbenzene	NR								
p-Ethyltoluene	· NR								
4-Isopropyttolune	NR								
4-Methyl-2-pentanone (MIBK)	1.0 ¹						< 0.0684 F	< 0.0542 F	< 0.0799 R
Methylene chloride	0.1 ¹	0.0106	0.0061	I		0.0039	0.0134	0.0118	0.0162 J
Napthalene	NR	0.0062	0.0043	J					
n-Propylybenzene	NR						-		
1,2,4,5 Tetramethylbenzene	NR								
Toluene	1.5 ¹			0.0149	0.0152				
1,2,4 Trichlorobenzene	3.4 ¹								1
Trichloroethene (TCE)	0.7 ¹			0.0161	0.0160				
1,2,4 Trimethylbenzene	NR								
1,3,5 Trimethylbenzene	NR					1			
m, p-Xylene	1.2 ²								
o-Xylene	1.2 ²								
Tetrahydrofuran	NR						< 0.0684 F	< 0.0542 F	₹ < 0.0799 R
Ethyl ether	NR								
tert-Amyl methyl ether (TAME)	NR						< 0.0068 F	<pre>< 0.0054 F</pre>	₹ < 0.008 R
Tertiary butyl alcohol (TBA)	NR	< 0.0982 F	< 0.0689	R		< 0.0628 F	< 0.0684 F	< 0.0542 F	۲ < 0.0799 R
1,4-Dioxane	NR	< 0.196	R < 0.138	R		< 0.126 F	R < 0.137 F	< 0.108 F	₹ < 0.160 R

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1, Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

- MSD: Matrix Spike Duplicate
 - Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL). R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration.

	Sample Location	MA-SSB-135.4,4.3 (2.5)	MA-SSB-138,17.25 (2.5)	MA-SSB-146,25 (2.5)	MA-SSB-146,25 (2.5) Dupe	MA-SSB-148,37.25 (3)
	Sample Date	1/5/2007	1/5/2007	1/5/2007	1/5/2007	1/5/2007
	Lab COC	SA 56522	SA 56522	SA 56522	SA 56522	SA 56522
VOCs (Method 8260)	Regulatory Limit					
Analyte	(ppm)					
Acetone	0.2 1	< 0.152	< 0.152 F	R < 0.137 F	< 0.127 F	< 0.153
Benzene	0.06 ¹	< 0.076	R < 0.076 F	R < 0.0069 F	< 0.0064 F	< 0.0077
2-Butanone (MEK)	0.3 ¹	< 0.076	R < 0.076 F	R < 0.0687 F	< 0.0637	< 0.0765
n-Butylbenzene	NR					
tert Butylbenzene	NR					
sec Butylbenzene	NR					
Carbon disulfide	2.7 1					
Chlorobenzene	· 1.7 ¹					
2-Chloroethylvinylether	NR					
1,2 Dichlorobenzene	7.9 ¹					
1,3 Dichlorobenzene	1.6 ¹					
1,4 Dichlorobenzene	8.5 ¹					
1,2 Dichloroethane	0.1 ¹					
1,1 Dichloroethene	0.4 1					
p-Diethylbenzene	NR					
p-Ethyltoluene	NR			1.1		1
4-Isopropyitolune	NR					
4-Methyl-2-pentanone (MIBK)	1.0 ¹	< 0.0766	R < 0.0761 F	R < 0.0687 F	< 0.0637	< 0.0765
Methylene chloride	0.1 ¹	0.0090	J 0.0119 .	J 0.0115	0.0136	J 0.0110
Napthalene	NR					
n-Propylybenzene	NR					
1,2,4,5 Tetramethylbenzene	NR					
Toluene	1.5 ¹					
1,2,4 Trichlorobenzene	3.4 ¹					
Trichloroethene (TCE)	0.71					
1,2,4 Trimethylbenzene	NR					
1,3,5 Trimethylbenzene	NR		·			
m, p-Xylene	1.2 ²					
o-Xylene	1.2 ²					• •
Tetrahydrofuran	NR	< 0.076	R < 0.0761 F	R < 0.0687 F	< 0.0637	R < 0.0765
Ethyl ether	· NR					
tert-Amyl methyl ether (TAME)	NR	< 0.0076	R < 0.0076	R < 0.0069 F	< 0.0064	R < 0.0077
Tertiary butyl alcohol (TBA)	NR	< 0.076	R < 0.0761 F	R < 0.0687 F	< 0.0637	R < 0.0765
1,4-Dioxane	NR	< 0.152	R < 0.152 F	R < 0.137 F	< 0.127	R < 0.153

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

< : Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL). R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration.

	Sample Location	MA-SW-0,25 (6-10)	MA-SW-0,25 (6-10)	MA-SW-0,25 (6-10)	MA-SW-0,25 (6-10)	MA-SW-14,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-63,0 (6-10)
	Canada Data	0/47/0005	M5	MSD	Dupe.			MS	MSD	Dupe	
	Sample Date	8/17/2005	8/1//2005	8/1//2005	8/1//2005	8/29/2005	8/29/2005	8/29/2005	8/29/2005	8/29/2005	8/30/2005
		0508465	0508465	0508465	0508465	0508718	0508718	0508718	0508718	0508718	0509044
Archite	Regulatory Limit									1	
Analyte	(ppm)									L	
Acenapthene	50 '		4.45	4.16				3.99	4.1	· · · · · · · · · · · · · · · · · · ·	
Acenaphthylene	41 '									l	
Anthracene	50 '	0.0396 J	0.0262		0.0487 J	1	0.0415 J	0.0639 Y	0.062 Y	L	
Benzo (a) anthracene	0.224										0.0556 J
Benzo(a) pyrene	0.061		· · · · · ·					· · · · · · · · · · · · · · · · · · ·			0.0514 J
Benzo(b) fluoranthene	<u>1.1 ¹</u>		-								0.0308 J
Benzo(g,h,i) perylene	50 ¹									1	
Benzo(k) fluoranthene	1.1 1										0.0380 J
Bis(2-Ethylhexyl)phthalate	50 ¹		0.0538	0.0506 J	0.065	0.0787	J 0.0682 J		0.172 Y	0.107	0.100 JB
4-Chloro 3 methylphenol	0.240 ¹		8.06	7.65				8.32	8.38		
2-Chlorophenol	0.8 ¹		7.22	6.62				7.84	7.89		1
Chrysene	0.4 ¹										0.0679
Dibenz(a,h)anthracene	0.014 ¹										0.0010
Dibenzofuran	6.2 ¹										
1,4-Dichlorobenzene	NR		4.41	4.07				4 03	4 05	·····	
Di-n-butylphthalate	8.1 ¹		4.72	4.40			1	4.08	4.14		
2.4-Dinitrotoluene	NR		4.69	4 43				3.57	3.74		
Fluoranthene	50 ¹							0.0867	0.0407 1		0.260 V
Flourene	50 ¹	· · · ·					1	0.0001	0.0407 0		0.200 1
Indeno(1,2,3-cd) pyrene	3.2 1						1				
2-Methyl naphthalene	36.4 ¹	0.0259 J		· · · · · · · · · · · · · · · · · · ·							0.0252
3.4-Methylphenol	NR										0.0233 3
Naphthalene	13.0 ¹										
4-Nitrophenol	0.100 1		8.08	7.60	· · ·			6.54	7.5		
N nitroso-di-n-propylamine	NR		4 90	-4.53				4 35	4.26		
Pentachlorophenol	101		8 84	8 51				4.00	4.20		
Phenanthrene	50 ¹	0.422 V	0.209	0.212	0.288	/	0.155	0.522	0.517		0.004
Phenol	0.03 1	0.722 [6.92	6 34	0.200		0.155 1	7.46	7.54		U.391 Y
Pyrene	50 1		4.23	3.87			0.0656	2.52	7.34		+
1 2 4 Trichlorobenzene	ND		4.25	4.40			0.0000 1	3.53	3.5	<u> </u>	U.109 Y
	INIX		4.73	4.40				4.22	4.2/		

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

< : Less than laboratory reporting limit

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

R: Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

	Sample Location	MA-SW-81,0 (6-10)	MA-SW-109,0 (6-10)	MA-SW-48,0 (17)	MA-SW-68,0 (16)	MA-SW-68,0 (16) Dupe	MA-SW-86,0 (17)	MA-SW-86,0 (17) MS	MA-SW-86,0 (17) MSD	MA-SW-62,63 (5)
	Sample Date	8/31/2005	9/6/2005	9/30/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/21/2005
	Lab COC	0509044	0509135	0510030	0510149	0510149	0510149	0510149	0510149	0510452
	Regulatory Limit									
Analyte	(ppm)									
Acenapthene	50 ¹							3.69	3.63	0.0465 J
Acenaphthylene	41 ¹				1					0.0342 J
Anthracene	50 ¹			0.0738 J	J	-				0.148 Y
Benzo (a) anthracene	0.224 ¹									0.315 Y
Benzo(a) pyrene	0.061 ¹									0.277 Y
Benzo(b) fluoranthene	1.1 ¹									0.238 Y
Benzo(g,h,i) perylene	50 ¹									0.161 Y
Benzo(k) fluoranthene	1.1 ¹									0.281 Y
Bis(2-Ethylhexyl)phthalate	50 ¹		0.0487	JB 0.106 BY B	Y 0.0824 J	B 0.0977 JE	3 0.0777 JE	0.0732 JB	0.0682 J	B 0.152 BY
4-Chloro 3 methylphenol	0.240 ¹						· · · · · · · · · · · · · · · · · · ·	7.86	8.07	
2-Chlorophenol	0.8 ¹							7.08	6.86	
Chrysene	0.4 ¹									0.332 Y
Dibenz(a,h)anthracene	0.014 ¹									0.0385 J
Dibenzofuran	6.2 ¹								1	0.0465 J
1,4-Dichlorobenzene	NR							3.47	3.24	0.0373 J
Di-n-butylphthalate	8.1 ¹		0.0257	J		0.112 Y	0.0370 J J	4.25	4.19	
2,4-Dinitrotoluene	NR							3.53	3.52	
Fluoranthene	50 ¹				· .					0.693 Y
Flourene	. 50 ¹	0.230	r							0.0699 Y
Indeno(1,2,3-cd) pyrene	3.2 ¹									0.166 Y
2-Methyl naphthalene	36.4 ¹	0.0473	J							0.027 J
3,4-Methylphenol	NR		· · · · ·							
Naphthalene	13.0 ¹									0.0261 J
4-Nitrophenol	0.100 ¹							8.55	8.56	
N nitroso-di-n-propylamine	NR							3.78	3.66	
Pentachlorophenol	1.0 ¹							10.6	10.6	
Phenanthrene	50 ¹	0.936	Y	0.275 Y	Y					0.663 Y
Phenol	0.03 1						· · ·	7.03	7.05	
Pyrene	· 50 ¹							3.87	3.85	0.582 Y
1,2,4-Trichlorobenzene	NR							3.33	3.22	0.400 Y
	1		1							

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate Blank Space: Indicates not present at its respective MDL

- : Less than laboratory reporting limit

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

R: Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

	Sample Location	MA-SW-62,63 (5)		MA-SW-62,63 (5)		MA-SW-62,63 (5)	MA-SW-0,57 (12)	MA-SSB-12,29 (18)	MA-SSB-37,15 (18)	MA-SSB-12,45 (18)	MA-SW-8.7 (13)	MA-SW-8.7 (13)
	Cumpic Locuson	MS		MSD		Dupe					1. 1. 1.	MS
	Sample Date	10/21/2005		10/21/2005		10/21/2005	11/1/2005	11/4/2005	11/9/2005	11/9/2005	11/9/2005	11/9/2005
	Lab COC	0510452		0510452		0510452	0511021	0511140	0511210	0511210	0511210	0511210
	Regulatory Limit											
Analyte	(ppm)											
Acenapthene	50 ¹	3.92		4.31		0.0336						3.78
Acenaphthylene	41 ¹	0.109 Y	Y	0.0274	J	0.0405						
Anthracene	50 ¹	0.965 Y	Y	0.0721	Y	0.125						0.078 J
Benzo (a) anthracene	0.224 1	1.37 Y	Y	0.176	Ŷ	0.345	,					0.0976 Y
Benzo(a) pyrene	0.061 1	1.2 Y	Y	0.153	Y	0.295						0.0654 Y
Benzo(b) fluoranthene	1.1 ¹	1.03 Y	Y	0.153	Y	0.263	·					0.0529 J
Benzo(g,h,i) perylene	50 ¹	0.645 Y	Y	0.0933	Y	0.156	/					0.0366 J
Benzo(k) fluoranthene	1.1 ¹	0.992 Y	Y	0.142	Y	0.282	·					0.0608 J
Bis(2-Ethylhexyl)phthalate	50 ¹	0.127 BY	ΒY	0.148	BY	0.0821 B	Y	0.0557 J	IB 0.0488	J 0.0421 J	0.0273 J	0.0492 J
4-Chloro 3 methylphenol	0.240 ¹	7.68		9.25								7.25
2-Chlorophenol	0.8 ¹	7.01		8.66								6.43
Chrysene	0.4 ¹	1.52 Y	Y	0.176	Y	0.368	·					0.0901 J
Dibenz(a,h)anthracene	0.014 ¹	0.143 Y	Y			0.0429						
Dibenzofuran	6.2 ¹	0.407 Y	Y			0.0336						
1,4-Dichlorobenzene	NR	3.10		3.91		0.03		0.0762	J 0.0557	J 0.103 Y	0.0227 J	3.04
Di-n-butylphthalate	8.1 ¹	3.73	в	4.37	в							3.98
2,4-Dinitrotoluene	NR	3.35		4.1								3.41
Fluoranthene	50 ¹	3.6		0.318	Y	0.753	/					0.25 Y
Flourene	50 ¹	0.536 Y	Y.	0.032	J	0.060	·					0.0442 J
Indeno(1,2,3-cd) pyrene	3.2 ¹	0.635 Y	Y	0.0924	Y	0.158	1					0.0264 J
2-Methyl naphthalene	36.4 ¹	0.291 Y	Y	0.035	J			_				0.0252 J
3,4-Methylphenol	NR	0.0388 J	J									
Naphthalene	13.0 ¹	0.505 Y	Y									
4-Nitrophenol	0.100 ¹	7.19		8.94								7.21
N nitroso-di-n-propylamine	NR	3.21		4.02								3.0
Pentachlorophenol	1.0 ¹	8.22		10.2								8.35
Phenanthrene	50 ¹	4.3		0.272	Y	0.640	1					0.3 Y
Phenol	0.03 ¹	6.49		7.99								6.20
Pyrene	50 ¹	6.44		4.62		0.632	1					3.61
1,2,4-Trichlorobenzene	NR	4.95		4.15		0.429	/					3.16

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

< : Less than laboratory reporting limit

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

R: Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)
	Sample Location	MA-SW-8,7 (13) MSD	MS-SW-8,7 (13) Dupe	MA-SW-51,64 (5)	MA-SW-62,64 (9)	MA-SW- 2,24 (7)	MA-SW- 2,38 (17)	MA-SSB-40,35 (30)	MA-SSB-52,18 (30)	MA-SSB-52,18 (30)
· · · · · · · · · · · · · · · · · · ·	Sample Date	11/9/2005	11/9/2005	11/11/2005	11/11/2005	1/12/2006	1/26/2006	5/17/2006	6/9/2006	6/9/2006
	Lab COC	0511210	0511210	0511278	0511278	0601223	0601479	SA 45232	SA 46237	5A 46237
	Regulatory Limit							0,110202	0/140201	0/1 40201
Analyte	(ppm)									
Acenapthene	50 ¹	4.28								3 750
Acenaphthylene	41 ¹									0.100
Anthracene	50 ¹	_		0.0546	J					
Benzo (a) anthracene	0.224 ¹			0.225	r					
Benzo(a) pyrene	0.061 ¹			0.199	(-			
Benzo(b) fluoranthene	1.1 1			0.159	Y					
Benzo(g,h,i) perylene	50 ¹			0.0905]					
Benzo(k) fluoranthene	1.1 1			0.179	Y					
Bis(2-Ethylhexyl)phthalate	50 ¹	0.0499 J	0.0396	0.0602	J 0.0294	J 0.0706 JI	B 0.0734 Y			
4-Chloro 3 methylphenol	0.240 ¹	8.17							· · · · · · · · · · · · · · · · · · ·	7.360
2-Chlorophenol	0.8 ¹	7.50								6.560
Chrysene	0.4 ¹			0.263	<u>۲</u>					
Dibenz(a,h)anthracene	0.014 ¹									
Dibenzofuran	6.2 ¹									
1,4-Dichlorobenzene	NR	3.60	0.0714	0.0343	J 0.0313	J	0.375 Y			3 450
Di-n-butylphthalate	8.1 ¹	4.43	0.0491	0.0308	0.0303	J				
2,4-Dinitrotoluene	NR	3.83								3 660
Fluoranthene	50 ¹	0.0315 J		0.475	Y		•			
Flourene	50 ¹			0.0247	J					
Indeno(1,2,3-cd) pyrene	3.2 ¹			0.0934	J					
2-Methyl naphthalene	36.4 ¹					· ·				
3,4-Methylphenol	NR									
Naphthalene	13.0 ¹									
4-Nitrophenol	0.100 ¹	8,33								6.420
N nitroso-di-n-propylamine	NR	3.57								3.720
Pentachlorophenol	1.0 ¹	10.1								8.220
Phenanthrene	50 ¹			0.322	Y		•			
Phenol	0.03 ¹	7.05								6.490
Pyrene	50 ¹	4.19		0.354	Y	,				3,190
1,2,4-Trichlorobenzene	NR	3.57		0.142	Y		0.0894 Y			3.190

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

< : Less than laboratory reporting limit

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

	Sample Location	MA-SSB-52,18 (30)	MA-SSB-39.7,45.8 (30)	MA-SSB-39.7,45.8 (30)	MA-SSB-39.7,45.8 (30)	MA-SSB-33,49 (30)	MA-SW 39.5,55 (30)	MA-SSB-106,22 (30)	MA-SSB-106,22 (30)	MA-SSB-106,22 (30)
	Sample Date	WISD	7/42/0000	MS	MSD				Duplicate	MS
	Jab COC	0/9/2000	7/13/2006	//13/2006	7/13/2006	//20/2006	7/21/2006	7/31/2006	7/31/2006	7/31/2006
	Lab COC	SA 40237	SA 47890	SA 47890	SA 47890	SA 48264	SA 48451	SA 48806	SA 48806	SA 48806
Analida	(nom)				1. A					
Analyte	(ppin)	2,400		0.070						
	50	3.400		2.670	2.700	······································				3.270
Acenaphiliyiene	41			· · · ·						
	0.004.1									
Benzo (a) antinacene	0.224									
Benzo(a) pyrene	0.061									
Benzo(b) fluorantnene	1.1							· · · · · · · · · · · · · · · · · · ·		
Benzo(g,n,i) perviene	50 *			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
Benzo(K) fluoranthene								· · · · · · · · · · · · · · · · · · ·		
Bis(2-Ethylnexyl)phthalate	50									
4-Chloro 3 methylphenol	0.240	7.410		5.760	5.810					5.940
2-Chlorophenol	0.8 1	5.980		5.600	5.490					6.130
Chrysene	0.4 1									
Dibenz(a,h)anthracene	0.014									
Dibenzofuran	6.2 ¹									
1,4-Dichlorobenzene	NR	3.350		2.870	2.810					2.690
Di-n-butylphthalate	8.1 ¹									
2,4-Dinitrotoluene	NR	3.970		2.850	3.100					2.650
Fluoranthene	50 ¹									
Flourene	50 ¹							,		
Indeno(1,2,3-cd) pyrene	3.2 ¹									
2-Methyl naphthalene	36.4 ¹									
3,4-Methylphenol	NR									
Naphthalene	13.0 ¹									
4-Nitrophenol	0.100 ¹	6.790		4.260	4.620					5.450
N nitroso-di-n-propylamine	NR	3.690		3.740	3.810					2 700
Pentachlorophenol	1.0 ¹	8.430		6.140	6,800					5 840
Phenanthrene	50 ¹									
Phenol	0.03 ¹	6.150		5.170	5.130		1	<u> </u>		5 740
Pyrene	50 ¹	3.140		4.050	3,140					3 350
1,2,4-Trichlorobenzene	NR	3.250		2.790	2.720					2 690
								1		2,000

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

< : Less than laboratory reporting limit

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

						F	·····	····	T	
	Sample Location	MA-SSB-106,22 (30)	MA-SSB-101,5 (19)	MA-SSB-101,5 (19)	MA-SSB-101,5 (19)	MA-SSB-101,5 (19)	MA-SSB-107,55 (13)	MA-SSB-152,54 (2.5)	MA-SSB-138,50 (2.5)	MA-SSB-169.5,59 (2)
	0	MSD		Dupe	MS	MSD				·
	Sample Date	//31/2006	8/8/2006	8/8/2006	8/8/2006	8/8/2006	8/8/2006	1/5/2007	1/5/2007	1/5/2007
	Lab COC	SA 48806	SA 49202	SA 56522	SA 56522	SA 56522				
	Regulatory Limit									
Analyte	(ppm)									
Acenapthene	50 1	3.260			3.53	3.56				
Acenaphthylene	41 ¹		····					·		
Anthracene	50 ¹						0.0656 J			
Benzo (a) anthracene	0.224 1		0.0412 J	0.0332 J J			0.134 J			
Benzo(a) pyrene	0.061 1		0.039 J	0.0304 J			0.142 J			
Benzo(b) fluoranthene	1.1 ¹						0.127			
Benzo(g,h,i) perylene	50 ¹						0.0601 J			
Benzo(k) fluoranthene	1.1 ¹		0.0326 J				0.0981 J			
Bis(2-Ethylhexyl)phthalate	50 ¹						1.84			
4-Chloro 3 methylphenol	0.240 1	5.980			6.94	7.24				
2-Chlorophenol	0.8 ¹	5.910			6.54	7.07				
Chrysene	0.4 ¹		0.0486 J	0.0383 J			0.17 J			
Dibenz(a,h)anthracene	0.014 ¹						0.0221 J			
Dibenzofuran	6.2 1						-			
1,4-Dichlorobenzene	NR	2.550			2.91	2.97			···-·	·····
Di-n-butylphthalate	8.1 ¹									
2,4-Dinitrotoluene	NR	2.630			3.1	3.16				
Fluoranthene	50 ¹		0.0652 J	0.0656 J			0.214			
Flourene	50 ¹									
Indeno(1,2,3-cd) pyrene	3.2 ¹						0 0551 J			
2-Methyl naphthalene	36.4 ¹									
3,4-Methylphenol	NR									
Naphthalene	13.0 ¹									
4-Nitrophenol	0.100 ¹	5.390			4.38	5.39				· · · ·
N nitroso-di-n-propylamine	NR	2.670			3.35	3.41				
Pentachlorophenol	1.0 ¹	6.250			0.849	3.42				
Phenanthrene	50 ¹		0.0273 J	0.0359 J			0.091 J			
Phenol	0.03 ¹	5.630			6.53	6.57				
Pyrene	50 ¹	3.260	0.0743 J	0.0644 J	3.31	3.13	0.288		1	
1,2,4-Trichlorobenzene	NR	2.600			2.9	2.95				
							· - · -		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

< : Less than laboratory reporting limit

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

	Sample Location	MA-SSB-135,4.3 (2.5)	MA-SSB-138,17.25 (2.5)	MA-SSB-146,25 (2.5)	MA-SSB-146,25 (2.5) Dupe	MA-SSB-148,37.25 (3)
	Sample Date	1/5/2007	1/5/2007	1/5/2007.	1/5/2007	1/5/2007
	Lab COC	SA 56522	SA 56522	SA 56522	SA 56522	SA 56522
	Regulatory Limit					
Analyte	(ppm)					
Acenapthene	50 ¹		0.0319 J			
Acenaphthylene	41 ¹					
Anthracene	50 ¹	0.0258	J 0.0995 J			0.137 .1
Benzo (a) anthracene	0.224 1	0.0796	J 0.144 J		0.0379 J	0.789
Benzo(a) pyrene	0.061 1	0.0632	J 0.120 J		0.0334 J	0.678
Benzo(b) fluoranthene	1.1 1	0.0646	J 0.115 J		0.0362 J	0.539
Benzo(g,h,i) perylene	50 ¹	0.0351	J 0.0582 J		0.0224 J	0.217 J
Benzo(k) fluoranthene	1.1 1	0.0468	J 0.0780 J		0.0277 J	0.283
Bis(2-Ethylhexyl)phthalate	50 ¹					
4-Chloro 3 methylphenol	0.240 ¹					
2-Chlorophenol	0.8 ¹					
Chrysene	0.4 ¹	0.0763	J 0.137 J		0.0383 J	0,949
Dibenz(a,h)anthracene	0.014 ¹					0.0584 J
Dibenzofuran	6.2 ¹					
1,4-Dichlorobenzene	NR					
Di-n-butylphthalate	8.1 ¹					
2,4-Dinitrotoluene	NR					
Fluoranthene	50 ¹	0.159	J 0.285	0.0364 J	0.0916 J	1.030
Flourene	50 ¹		0.0267 J			
Indeno(1,2,3-cd) pyrene	3.2 ¹	0.0295	J 0.0534 J			0.203 J
2-Methyl naphthalene	36.4 ¹					
3,4-Methylphenol	NR					
Naphthalene	13.0 ¹	and the second second				
4-Nitrophenol	0.100 ¹					
N nitroso-di-n-propylamine	NR					
Pentachlorophenol	1.0 ¹					
Phenanthrene	50 ¹	0.102	J 0.267		0.0643 J	0.481
Phenol	0.03 ¹					
Pyrene	50 ¹	0.142	J 0.236	0.0288 J	0.0676 J	1.640
1,2,4-Trichlorobenzene	NR					

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentratio

< : Less than laboratory reporting limit R: Unusable. No Data deemed unusable as determined by Data Validation Bold : Indicates compound reported above Recommended Soil Cleanup Objective

Table 4-6 Quantities of Hazardous Soils Removed:Initial Excavation Former Maspeth Substation

			Davida	Converted to	Total Tons
Date	Manifest #	Kilograms	Pounas	Tons	per Month
		······································			
11/16/2005	NYH1481112	22050	48620	24.31	
11/21/2005	NYE1606077	24685	54420	27.21	51.52
5/3/2006	NYH1559115	20421	45020	22.51	
5/3/2006	NYH1559124	24912	54920	27.46	
5/3/2006	NYH1559133	23569	51960	25.98	
5/3/2006	NYH1559142	25374	55940	27.97	
5/4/2006	NYH1559151	23188	51120	25.56	
5/4/2006	NYH1559169	23433	51660	25.83	
5/4/2006	NYH1559178	22308	49180	24.59	
5/4/2006	NYH1559187	22916	50520	25.26	
5/4/2006	NYH1559196	25574	56380	28.19	
5/8/2006	NYH1559205	23905	52700	26.35	
5/8/2006	NYH1559214	23179	51100	25.55	
5/8/2006	NYH1559223	24349	53680	26.84	
5/8/2006	NYH1559232	18017	39720	19.86	
5/8/2006	NYH1559241	24005	52920	26.46	
5/9/2006	NYH1559259	20911	46100	23.05	
5/9/2006	NYH1559268	22979	50660	25.33	
5/10/2006	NYH1559277	22163	48860	24.43	
5/10/2006	NYH1559286	22009	48520	24.26	
5/10/2006	NYH1559295	20730	45700	22.85	
5/10/2006	NYH1559304	20584	45380	22.69	
5/10/2006	NYH1559313	18616	41040	20.52	
5/10/2006	NYH1559322	22553	49720	24.86	
5/11/2006	NYH1559331	21283	46920	23.46	
5/11/2006	NYH1559349	23043	50800	25.40	
5/11/2006	NYH1559358	22988	50680	25.34	
5/11/2006	NYH1559367	22607	49840	24.92	
5/11/2006	NYH1559376	24095	53120	26.56	
5/11/2006	NYH1559385	22317	49200	24.60	
5/23/2006	NYH1559394	26282	57940	28.97	
5/23/2006	NYH1559403	24948	55000	27.50	
5/23/2006	NYH1559412	21437	47260	23.63	
5/23/2006	NYH1559421	19859	43780	21.89	
5/23/2006	NYH1559439	21256	46860	23.43	
5/23/2006	NYH1559448	23923	52740	26.37	
5/30/2006	NYH1559475	21083	46480	23.24	
5/30/2006	NYH1559484	21972	48440	24.22	
5/30/2006	NYH15594 *	20503	45200	22.60	
5/30/2006	NYH15594 *	22589	49800	24.90	943.43
	* No manifest for	ound. Data from	spreadsheet.		

Table 4-6 Quantities of Hazardous Soils Removed:Initial Excavation Former Maspeth Substation

				Converted to	Total Tons
Date	Manifest #	Kilograms	Pounds	Tons	per Month
6/1/2006	NYH1559493	23134	51000	25.50	
6/1/2006	NYH1559502	20212	44560	22.28	
6/1/2006	NYH1559511	21455	47300	23.65	
6/1/2006	NYH1559529	22000	48500	24.25	
6/1/2006	NYH1559538	22344	49260	24.63	
6/1/2006	NYH1559547	21256	46860	23.43	
6/13/2006	NYH1541385	22181	48900	24.45	
6/13/2006	NYH1559556	22326	49220	24.61	
6/13/2006	NYH1559565	22952	50600	25.30	
6/13/2006	NYH1559574	28677	63220	31.61	
6/13/2006	NYH1559583	23025	50760	25.38	
6/13/2006	NYH1559592	23034	50780	25.39	
6/15/2006	NYH1540881	23406	51600	25.80	
6/15/2006	NYH1540899	22861	50400	25.20	
6/15/2006	NYH1540908	25229	55620	27.81	
6/15/2006	NYH1540917	20303	44760	22.38	
6/19/2006	NYH1540926	23578	51980	25.99	
6/19/2006	NYH1540935	21111	46540	23.27	
6/19/2006	NYH1540944	19913	43900	21.95	
6/19/2006	NYH1540953	22099	48720	24.36	
6/19/2006	NYH1540962	22444	49480	24.74	
6/23/2006	NYH1540989	24259	53480	26.74	
6/23/2006	NYH1540998	25556	56340	28.17	2.
6/23/2006	NYH1541007	25302	55780	27.89	
6/23/2006	NYH1541016	22898	50480	25.24	
6/23/2006	NYH1541025	25075	55280	27.64	
6/23/2006	NYH1541034	23542	51900	25.95	
6/30/2006	NYH1541088	22744	50140	25.07	
6/30/2006	NYH1541097	22018	48540	24.27	
6/30/2006	NYH1541106	21501	47400	23.70	
6/30/2006	NYH1541115	23016	50740	25.37	
6/30/2006	NYH1541124	21691	47820	23.91	
6/30/2006	NYH1541133	22263	49080	24.54	
6/30/2006	NYH1541142	22798	50260	25.13	855.60
8/3/2006	NYH1541169	23052	50820	25.41	
8/3/2006	NYH1541187	23569	51960	25.98	
8/3/2006	NYH1541178	24630	54300	27.15	
8/4/2006	NYH1541196	23678	52200	26.10	
8/4/2006	NYH1541205	21682	47800	23.90	
8/4/2006	NYH1541214	19487	42960	21.48	
8/4/2006	NYH1541223	19423	42820	21.41	
8/4/2006	NYH1541232	21900	48280	24.14	

Table 4-6
Quantities of Hazardous Soils Removed:Initial Excavation
Former Maspeth Substation

Date	Manifest #	Kilograms Pounds		Converted to	Total Tons
8/4/2006	NYH1541241	24757	54580	27.29	
8/4/2006	NYH1541259	26127	57600	28.80	
8/7/2006	NYH1541268	22880	50440	25.22	
8/7/2006	NYH1541277	22027	48560	24.28	
8/7/2006	NYH1541286	20730	45700	22.85	
8/7/2006	NYH1541295	22235	49020	24.51	
8/7/2006	NYH1541304	22535	49680	24.84	
8/7/2006	NYH1541313	22281	49120	24.56	
8/7/2006	NYH1541322	24358	53700	26.85	
8/7/2006	NYH1541331	23950	52800	26.40	
8/7/2006	NYH1541349	21764	47980	23.99	
8/7/2006	NYH1541358	21628	47680	23.84	
8/7/2006	NYH1541367	23233	51220	25.61	
8/7/2006	NYH1541376	21383	47140	23.57	
8/7/2006	NYH1541061	21691	47820	23.91	
8/8/2006	NYH1557711	25365	55920	27.96	600.05

TOTALs

2450.6

Notes:

All hazardous soils diposed at Model City facility

Table 4-7 Quantities of Hazardous Soils Removed: Over-Drill Excavation Former Maspeth Substation

				Converted to	Total Tons
Date	Manifest #	Kilograms	Pounds	Tons	per Month
3/6/2007	000160454GBF	26009	57220	28.61	
3/8/2007	000160459GBF	21288	46834	23.42	
3/9/2007	000160460GBF	20094	44207	22.10	
3/9/2007	000160461GBF	22208	48858	24.43	
3/13/2007	000160462GBF	22117	48657	24.33	1
3/13/2007	000160463GBF	21981	48358	24.18	
3/14/2007	000160464GBF	21283	46823	23.41	
3/15/2007	000160465GBF	21628	47582	23.79	
3/15/2007	000160466GBF	19840	43648	21.82	
3/16/2007	000160467GBF	19632	43190	21.60	
3/19/2007	000160468GBF	21736	47819	23.91	
3/20/2007	000160469GBF	19133	42093	21.05	
3/21/2007	000160470GBF	23079	50774	25.39	
3/21/2007	000160471GBF	16919	37222	18.61	
3/22/2007	000160472GBF	21682	47700	23.85	
3/22/2007	000160473GBF	22371	49216	24.61	
3/23/2007	000160474GBF	20357	44785	22.39	
3/26/2007	000160475GBF	17544	38597	19.30	
3/26/2007	000160476GBF	22299	49058	24.53	
3/27/2007	000160477GBF	21156	46543	23.27	
3/28/2007	000160478GBF	21918	48220	24.11	
3/29/2007	000160479GBF	20657	45445	22.72	
3/30/2007	000160480GBF	21410	47102	23.55	534.98
4/2/2007	000160481GBF	19877	43729	21.86	
4/2/2007	000160482GBF	22589	49696	24.85	
4/3/2007	000160483GBF	21936	48259	24.13	
4/4/2007	000160484GBF	18089	39796	19.90	
4/4/2007	000160485GBF	21587	47491	23.75	
4/4/2007	000160486GBF	23505	51711	25.86	
4/5/2007	000160487GBF	18516	40735	20.37	
4/5/2007	000160488GBF	21918	48220	24.11	
4/5/2007	000160489GBF	18697	41133	20.57	
4/5/2007	000160490GBF	21401	47082	23.54	
4/6/2007	000160491GBF	20557	45225	22.61	
4/6/2007	000160492GBF	21818	48000	24.00	
4/6/2007	000160493GBF	20829	45824	22.91	
4/10/2007	000160494GBF	15658	34448	17.22	
4/10/2007	000160495GBF	18108	39838	19.92	
4/10/2007	000160496GBF	22689	49916	24.96	
4/11/2007	000160497GBF	23251	51152	25.58	
4/11/2007	000160498GBF	22462	49416	24.71	
4/12/2007	000160499GBF	26227	57699	28.85	439.69

Notes:

TOTALs

974.66

All hazardous soils diposed at Model City facility

Date	Manifest #	Kilograms	Pounds	Converted to	Total Tons
	000554045111/	10574	26462	10.13	permonen
11/12/2007	002551245JJK	16574	36463	18.23	
11/12/2007	002551246JJK	11794	25947	12.97	
11/13/2007	002551247JJK	12147	26723	13.36	
11/13/2007	002551248JJK	9743	21435	10.72	
11/28/2007	002551477JJK	13835	30437	15.22	
11/28/2007	002551478JJK	13381	29438	14.72	
11/29/2007	002551479JJK	13753	30257	15.13	
11/30/2007	002551481JJK	10995	24189	12.09	112.44
12/7/2007	002551482JJK	17690	38918	19.46	
12/10/2007	002551483JJK	17191	37820	18.91	38.37
	· · · · · · · · · · · · · · · · · · ·				
1/14/2008	0011437418FLE *	50	110	0.06	0.06
7/2/2008	003901703JJK	15150	33330	16.67	
7/2/2008	003901704JJK	7738	17024	8.51	25.18

Table 4-8Quantities of Hazardous Soils Removed: Beneath Concrete FooterFormer Maspeth Substation

Notes:

Totals

176.05

All hazardous soils diposed at Model City facility

* Manifest indicates this is a 50K Drum.

Table 4-9
End Point Soil Sample Summary: South Sidewall - PCBs and TPH
Former Maspeth Substation

Sample Location	Sample Date	Depth	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH		
	Campie Date	(feet bls)	(ppm)	Analytes		(ppm)	(ppm)	Comments	
SOUTH WALL									
MA-SW-14,0 (6-10)	8/29/2005	9	3.1	PCBs, TPH, VOCs, SVOCs	0508718	0.17	9,940	PCB 1260. 10C Transformer	
MA-SW-45,0 (6-10)	8/29/2005	9	2.2	PCBs, TPH, VOCs, SVOCs	0508718	0.18	5,910	PCB 1260. 10C Transformer	
MA-SW-40,0 (12)	9/19/2005	12	NA	PCBs, TPH	0509444	0.027	1,060	PCB 1260. 10C Transformer	
MA-SW-48,0 (17)	9/30/2005	17	NA	PCBs, TPH, VOCs, SVOCs	0510030	0.072	4,940	PCB 1260. 10C Transformer	
MA-SW-63,0 (6-10)	8/30/2005	9	3.5	PCBs, TPH, VOCs, SVOCs	0509044	0.029	4,010	PCB 1260. 10C Transformer	
MA-SW-68,0 (16)	10/3/2005	16	NA	PCBs, TPH, VOCs, SVOCs	0510149	0.01	1,450	PCB 1260. 10C Transformer	
MA-SW-81,0 (6-10)	8/31/2005	9	4.1	PCBs, TPH, VOCs, SVOCs	0509044	0.037	5,500	PCB 1260. 10C Transformer	
MA-SW-77,0 (13)	9/20/2005	13	NA	PCBs, TPH	0509444	0.029	6,260	PCB 1260. 10C Transformer	
MA-SW-86,0 (17)	10/3/2005	17	na	PCBs, TPH, VOCs, SVOCs	0510149	< 0.0070	< 42.5	-	
MA-SW-95,0 (13)	9/20/2005	13	NA	PCBs, TPH	0509444	< 0.0075	352	PCB 1260. 10C Transformer	
MA-SW-95,0 (18)	9/21/2005	18	NA	PCBs, TPH	0509444	< 0.0075	< 45.6	-	
MA-SW-109,0 (6-10)	9/6/2005	9	NA	PCBs, TPH, VOCs, SVOCs	0509135	< 0.0070	< 42.8	-	
MA-SW-110,0 (17)	10/3/2005	17	NA	PCBs, TPH,	0510149	< 0.0070	< 42.9	-	
· · · · · · · · · · · · · · · · · · ·		-							
L									

Notes:

Notes:

Grab Samples collected at 25-foot intervals at the following vertical depths : 6-10 ft, 10-14 ft, 14-18 ft. No samples collected from vertical depths of 0-2 ft, or 4-6 ft due to building foundation/footer.

bls = below land surface

COC = Chain Of Custody

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

NA = Not Analyzed

< = Less than laboratoy method detection limits

J = Detected above MDL, but below reporting limt (result is an estimated value)

Y = Estimated value

E = Estimated value

R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

Table 4-10 End Point Soil Sample Summary: South Sidewall VOCs Former Maspeth Substation

	Sample Location	MA-SW-14,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-48,0 (17)	MA-SW-63,0 (6-10)	MA-SW-68,0 (16)	MA-SW-81,0 (6-10)	MA-SW-86,0 (17)	MA-SW-109,0 (6-10)
	Sample Date	8/29/2005	8/29/2005	9/30/2005	8/30/2005	10/3/2005	8/31/2005	10/3/2005	9/6/2005
	Lab COC	0508718	0508718	0510030	0509044	0510149	0509044	0510149	0509135
VOCs (Method 8260)	Regulatory Limit								
Analyte	(ppm)								
Acetone	0.2 ¹	0.0362 Y	/	0.0286	r 0.0175 Y	,			1
Benzene	0.06 ¹								
2-Butanone (MEK)	0.3 1								· · · · · · · · · · · · · · · · · · ·
n-Butylbenzene	NR	0.00351 Y	/						
tert Butylbenzene	NR	0.00620 Y	/						
Carbon disulfide	2.7 ¹	-							
Chlorobenzene	1.7 1								
2-Chloroethylvinylether	NR								•
1,2 Dichlorobenzene	7.9 ¹							· [· · · · · · · · · · · · · · · · · ·	
1,3 Dichlorobenzene	1.6 ¹								
1,4 Dichlorobenzene	8.5 ¹	0.00833	1						
1,2 Dichloroethane	0.1 ¹								
1,1 Dichloroethene	0.4 ¹					· ·			
p-Diethylbenzene	NR	0.00864	0.00532	Y					
p-Ethyltoluene	NR								
4-Isopropyltolune	NR								
4-Methyl-2-pentanone (MIBK)	1.0 ¹								
Methylene chloride	0.1 1						0.00568	v	0.00319 V
Napthalene	NR						0.00000		0.00010 1
n-Propylybenzene	NR								
1,2,4,5 Tetramethylbenzene	NR	0.00613	(
Toluene	1.5 ¹								
1,2,4 Trichlorobenzene	3.4 ¹	0.00673	0.00944	Y					
Trichloroethene (TCE)	0.7 ¹								· · · · · · · · · · · · · · · · · · ·
1,2,4 Trimethylbenzene	NR								
1,3,5 Trimethylbenzene	NR							· · · · · · · · · · · · · · · · · · ·	
m, p-Xylene	1.2 ²							-	
Tetrahydrofuran	NR								
Ethyl ether	NR								
tert-Amyl methyl ether (TAME)	NR								
Tertiary butyl alcohol (TBA)	NR								1
1,4-Dioxane	NR							· ·	1
									1

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

<: Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL)

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration

l able 4-11
End Point Soil Sample Summary: South Sidewall SVOCs
Former Maspeth Substation

	Sample Location	MA-SW-14,0 (6-10)	MA-SW-45,0 (6-10)	MA-SW-48,0 (17)	MA-SW-63,0 (6-10)	MA-SW-68,0 (16)	MA-SW-81,0 (6-10)	MA-SW-86,0 (17)	MA-SW-109,0 (6-10)
	Sample Date	8/29/2005	8/29/2005	9/30/2005	8/30/2005	10/3/2005	8/31/2005	10/3/2005	9/6/2005
	Lab COC	0508718	0508718	0510030	0509044	0510149	0509044	0510149	0509135
	Regulatory Limit								
Analyte	(ppm)								
Acenapthene	50 ¹								
Acenaphthylene	41 ¹								
Anthracene	50 ¹		0.0415 J	0.0738 J	J				
Benzo (a) anthracene	0.224 ¹				0.0556				
Benzo(a) pyrene	0.061 ¹				0.0514	J			
Benzo(b) fluoranthene	1.1 ¹				0.0308	J			
Benzo(g,h,i) perylene	50 ¹								
Benzo(k) fluoranthene	1.1 ¹		÷		0.0380	j			·
Bis(2-Ethylhexyl)phthalate	50 ¹	0.0787 J	0.0682	0.106 BY	BY 0.100 J	B 0.0824 JE	3	0.0777 JE	0.0487 JB
4-Chloro 3 methylphenol	0.240 1								
2-Chlorophenol	0.8 ¹								
Chrysene	0.4 ¹				0.0679	j.			
Dibenz(a,h)anthracene	0.014 ¹								
Dibenzofuran	6.2 ¹								
1,4-Dichlorobenzene	NR								
Di-n-butylphthalate	8.1 ¹					· · ·		0.0370 J J	0.0257 J
2,4-Dinitrotoluene	NR								
Fluoranthene	50 ¹				0.260	r			
Flourene	50 ¹						0.230	Y	
Indeno(1,2,3-cd) pyrene	3.2 ¹								
2-Methyl naphthalene	36.4 ¹				0.0253	J	0.0473	J	
3,4-Methylphenol	NR								
Naphthalene	13.0 ¹								
4-Nitrophenol	0.100 ¹								
N nitroso-di-n-propylamine	NR								•
Pentachlorophenol	1.0 ¹								
Phenanthrene	50 ¹		0.155	0.275 Y	Y 0.391	Y	0.936	Y	
Phenol	0.03 ¹								
Pyrene	50 ¹		0.0656	(0.109	Y			
1,2,4-Trichlorobenzene	NR								

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

Sample Location	Sample Date	Depth	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH		
		(feet bls)	(ppm)	Analytes		(ppm)	(ppm)	Comments	
AST WALL	-		•						
A-SW-0,9(13)	11/3/2005	13	na	PCBs, TPH	0511140	0.33	3140	PCB 1260. 10C Transformer	
A-SW-0,15(17)	11/3/2005	17	na	PCBs, TPH	0511140	0.2	1350	PCB 1260. 10C Transformer	
A-SW- ⁻ 2,24 (7)	1/12/2006	7	na	PCBs, TPH, VOCs, SVOCs	0601223	7.14	4600	PCB 1260. 10C Transformer	
A-SW- ⁻ 2,23 (16)	1/27/2006	16	na	PCBS	0601505	1.43	NA	PCB 1260	
· · · ·		÷.							
A-SW- 2,40 (5)	1/24/2006	5	na	PCBs	0601479	0.095	NA	PCB 1260	
A-SW- ⁻ 2,38 (17)	1/26/2006	17	na	PCBs, TPH, VOCs, SVOCs	0601479	2.10	10800	PCB 1260. 10C Transformer	
A-SW-0,57 (0-2)	8/18/2005	1.5	2.1	PCBs, TPH	0508465	0.82	710	PCB 1260. 10C Transformer	
A-SW-0,57 (2-6)	8/17/2005	4	0.0	PCBs, TPH	0508465	< 0.0067	< 40.3	-	
A-SW-0,57 (6-10)	8/17/2005	9	1.3	PCBs, TPH	0508465	< 0.0069	< 42.1		
A-SW-0,57 (12)	11/1/2005	12	na	PCBs, TPH, VOCs, SVOCs	0511021	0.015	< 44.6	PCB 1260. 10C Transformer	

Table 4-12 End Point Soil Sample Summary: East Sidewall PCBs and TPH Former Maspeth Substation

Notes:

ENZ

M M

N N

M

Grab Samples collected at 25-foot intervals at the following vertical depths : 0-2 ft, 2-6 ft, 6-10 ft, 10-14 ft, 14-18 ft.

bls = below land surface

COC = Chain Of Custody

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

NA = Not Analyzed

< = Less than laboratoy method detection limits

J = detected above MDL, but below reporting limt (result is an estimated value)

Y = Estimated value

E = Estimated value

R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

Table 4-13 End Point Soil Sample Summary: East Sidewall VOCs Former Maspeth Substation

· · ·	Sample Location	MA-SW-0,57 (12)	MA-SW-2,24 (7)	MA-SW-2,38 (17)
	Sample Date	11/1/2005	1/12/2006	1/26/2006
	Lab COC	0511021	0601223	0601479
VOCs (Method 8260)	Regulatory Limit			
Analyte	(ppm)			
Acetone	0.2 1			
Benzene	0.06 1			
2-Butanone (MEK)	0.3 ¹			
n-Butylbenzene	NR			0.0101 Y
tert Butylbenzene	NR			
sec Butylbenzene	NR			0.00788 Y
Carbon disulfide	2.7 ¹			
Chlorobenzene	1.7 ¹			0.0103 Y
2-Chloroethylvinylether	NR			
1,2 Dichlorobenzene	7.9 ¹			0.0137 Y
1,3 Dichlorobenzene	1.6 ¹			0.0372 Y
1,4 Dichlorobenzene	8.5 ¹			0.354
1,2 Dichloroethane	0.1 ¹			
1,1 Dichloroethene	0.4 ¹			
p-Diethylbenzene	NR			0.0117 Y
p-Ethyltoluene	NR			0.00838 Y
4-Isopropyltolune	NR			
4-Methyl-2-pentanone (MIBK)	1.0 ¹			
Methylene chloride	0.1 ¹			
Napthalene	NR			
n-Propylybenzene	NR			0.00820 Y
1,2,4,5 Tetramethylbenzene	NR			0.0108 Y
Toluene	1.5 ¹			0.00462 Y
1,2,4 Trichlorobenzene	3.4 ¹			
Trichloroethene (TCE)	0.7 ¹			
1,2,4 Trimethylbenzene	NR			0.653
1,3,5 Trimethylbenzene	NR			
m, p-Xylene	1.2 ²			
o-Xylene	1.2 ²			Y
Tetrahydrofuran	NR			
Ethyl ether	NR			
tert-Amyl methyl ether (TAME)	NR			
Tertiary butyl alcohol (TBA)	NR			
1,4-Dioxane	NR	· .		

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm)

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL). <: Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL)

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Y: Reported concentration was detected below the lowest calibration standard concentration

Table 4-14 End Point Soil Sample Summary: East Sidewall SVOCs Former Maspeth Substation

	Sample Location	MA-SW-0,57 (12)	MA-SW- 2,24 (7)	MA-SW- ² ,38 (17)
	Sample Date	11/1/2005	1/12/2006	1/26/2006
	Lab COC	_0511021	0601223	0601479
	Regulatory Limit			
Analyte	(ppm)			
Acenapthene	50 ¹			
Acenaphthylene	41 ¹			
Anthracene	50 ¹			
Benzo (a) anthracene	0.224 ¹			
Benzo(a) pyrene	0.061 ¹			
Benzo(b) fluoranthene	1.1 ¹	•		
Benzo(g,h,i) perylene	50 ¹			
Benzo(k) fluoranthene	1.1 ¹		1	
Bis(2-Ethylhexyl)phthalate	50 ¹		0.0706	JB 0.0734 Y
4-Chloro 3 methylphenol	0.240 ¹		1	
2-Chlorophenol	0.8 ¹			
Chrysene	0.4 ¹			
Dibenz(a,h)anthracene	0.014 ¹			
Dibenzofuran	6.2 ¹			
1,4-Dichlorobenzene	. NR			0.375 Y
Di-n-butylphthalate	8.1 ¹		1	
2,4-Dinitrotoluene	NR			
Fluoranthene	50 ¹			
Flourene	50 ¹			
Indeno(1,2,3-cd) pyrene	3.2 ¹		1	
2-Methyl naphthalene	36.4 ¹			
3,4-Methylphenol	NR		1	
Naphthalene	13.0 ¹			
4-Nitrophenol	0.100 ¹			
N nitroso-di-n-propylamine	NR			
Pentachlorophenol	1.0 ¹			
Phenanthrene	50 ¹			
Phenol	0.03 1			
Pyrene	50 ¹			
1,2,4-Trichlorobenzene	NR			0.0894 Y

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; *Recommended Soil Cleanup Objectives*; no individual compound above 50 ppm, total SVOCs <500 ppm NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration

Sample Location	Sample Date	Depth	Head Space	Analytas	Lab COC	TOTAL PCBs	TOTAL TPH
	Campie Date	(feet bls)	(ppm)	Analytes		(ppm)	(ppm)
NORTH WALL							
							······································
MA-SW-19,60 (2-6)	8/18/2005	5	2.3	PCBs, TPH	0508522	< 0.0078	12
MA-SW-19,60 (6-10)	8/18/2005	9	2.3	PCBs, TPH	0508522	< 0.0071	< 43.4
MA-SW-37,60 (0-2)	8/19/2005	1,5	1.3	PCBs, TPH	0508522	0.039	110
MA-SW-37,60 (2-6)	8/19/2005	5	1.7	PCBs, TPH	0508522	0.40	133
MA-SW-37,60 (6-10)	8/19/2005	8	2.2	PCBs, TPH	0508522	0.33	24.500
MA-SW-51,62 (5)	11/11/2005	5	NA	PCBs, TPH	0511278	0.13	63.3
MA-SW-62,64 (9)	11/11/2005	9	NA	PCBs, TPH, VOCs, SVOCs	0511278	0.26	10.1
MA-SW-62,65 (14)	12/2/2005	14	NA	PCBs	0512118	0.074	NA
MA-SW-62,64 (18)	12/2/2005	18	NA	PCBs	0512096	0.28	NA c
MA-SW-67,64 (9)	11/11/2005	9	NA	PCBs, TPH	0511278	0.4	21.7
MA-SW-86,60 (0-2)	8/23/2005	2	1.0	PCBs, TPH	0508624	0.087	174
MA-SW-86,60 (2-6)	8/23/2005	4	0.8	PCBs, TPH	0508624	0.82	134
MA-SW-86,60 (6-10)	8/23/2005	8	0.4	PCBs, TPH	0508624	0.31	< 43.4
MA-SW-81,63 (2)	11/30/2005	2	NA	PCBs	0512032	0.067	NA
MA-SW-81,63 (6)	12/1/2005	6	NA	PCBs	0512096	0.40	NA
MA-SW-81,63 (10)	12/2/2005	10	NA	PCBs	0512096	0.069	NA
MA-SW-81,63 (14)	12/2/2005	14	NA	PCBs	0512096	< 0.0070	NA
MA-SW-81,63 (18)	12/2/2005	18	NA	PCBs	0512118	0.073	NA
MA-SW-81,63 (21)	12/2/2005	21	NA	PCBs	0512118	< 0.0071	NA
MA-SW-108,60 (2-6)	8/24/2005	4	0.0	PCBs, TPH	0508624	< 0.0078	352
MA-SW-108,60 (6-10)	8/24/2005	9	0.4	PCBs, TPH	0508624	< 0.0073	< 44.5

 Table 4-15

 End Point Soil Sample Summary: North Sidewall PCBs TPH

 Former Maspeth Substation

Notes:

Grab Samples collected at 25-foot intervals at the following vertical depths : 0-2 ft, 2-6 ft, 6-10 ft, 10-14 ft, 14-18 ft.

bls = below land surface

COC = Chain Of Custody

- PCBs = Polychlorinated biphenyls
- TPH = Total Petroleum Hydrocarbons

ppm = parts per million

NA = Not Analyzed

< = Less than laboratoy method detection limits

J = Detected above MDL, but below reporting limt (result is an estimated value)

Y = Estimated value

- E = Estimated value
- R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

Table 4-16 End Point Soil Sample Summary: North Sidewall VOCs Former Maspeth Substation

	Sample Location	MA-SW-62,64 (9)
	Sample Date	11/11/2005
	Lab COC	0511278
	Regulatory Limit	
VOCs (Method 8260)	(ppm)	
Acetone	0.2 ¹	
Benzene	0.06 ¹	
2-Butanone (MEK)	0.3 ¹	
n-Butylbenzene	NR	
tert Butylbenzene	NR	
Carbon disulfide	2.7 ¹	
Chlorobenzene	1.7 ¹	
2-Chloroethylvinylether	NR	< 0.00518 R
1,2 Dichlorobenzene	7.9 ¹	
1,3 Dichlorobenzene	1.6 ¹	
1,4 Dichlorobenzene	8.5 ¹	
1,2 Dichloroethane	0.1 1	
1,1 Dichloroethene	0.4 ¹	
p-Diethylbenzene	NR	
p-Ethyltoluene	NR	
4-Isopropyitolune	NR	
4-Methyl-2-pentanone (MIBK)	1.0 ¹	
Methylene chloride	0.1 1	0.00404 Y
Napthalene	NR	
n-Propylybenzene	NR	
1,2,4,5 Tetramethylbenzene	NR	
Toluene	1.5 ¹	
1,2,4 Trichlorobenzene	3.4 ¹	
Trichloroethene (TCE)	0.71	
1,2,4 Trimethylbenzene	NR	
1,3,5 Trimethylbenzene	NR	
m, p-Xylene	1.2 ²	
Tetrahydrofuran	NR	
Ethyl ether	NR	
tert-Amyl methyl ether (TAME)	NR	
Tertiary butyl alcohol (TBA)	NR	< 0.0276 R
1,4-Dioxane	NR	

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL

<: Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL)

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H) Y: Reported concentration was detected below the lowest calibration standard concentration

Table 4-17 End Point Soil Sample Summary: North Sidewall SVOCs Former Maspeth Substation

	Sample Location	MA-SW-62,64 (9)
	Sample Date	11/11/2005
	Lab COC	0511278
	Regulatory Limit	
Analyte	(ppm)	
Acenapthene	50 ¹	
Acenaphthylene	41 ¹	
Anthracene	50 ¹	
Benzo (a) anthracene	0.224 ¹	
Benzo(a) pyrene	0.061 1	
Benzo(b) fluoranthene	1.1 ¹	
Benzo(g,h,i) perylene	50 ¹	
Benzo(k) fluoranthene	1.1 ¹	
Bis(2-Ethylhexyl)phthalate	50 ¹	0.0294 J
4-Chlóro 3 methylphenol	0.240 ¹	
2-Chlorophenol	0.8 ¹	
Chrysene	0.4 ¹	
Dibenz(a,h)anthracene	0.014 ¹	
Dibenzofuran	6.2 ¹	
1,4-Dichlorobenzene	NR	0.0313 J
Di-n-butylphthalate	8.1 ¹	0.0303 J
2,4-Dinitrotoluene	NR	
Fluoranthene	50 ¹	
Flourene	50 ¹	
Indeno(1,2,3-cd) pyrene	3.2 ¹	
2-Methyl naphthalene	36.4 ¹	
3,4-Methylphenol	NR	
Naphthalene	13.0 ¹	
4-Nitrophenol	0.100 ¹	
N nitroso-di-n-propylamine	NR	
Pentachlorophenol	1.0 ¹	
Phenanthrene	50 ¹	
Phenol	0.03 ¹	
Pyrene	50 ¹	
1,2,4-Trichlorobenzene	NR	

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL).

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective

Table 4-18
End Point Soil Sample Summary: West Sidewall PCBs TPH
Former Maspeth Substation

Sample Location	Sample Date	Depth (feet bls)	Head Space (ppm)	Analytes	LAB COC	TOTAL PCBs (ppm)	TOTAL TPH
			<u>/</u> /				(PP/
WEST WALL				· · · · · · · · · · · · · · · · · · ·		····	
MA-SW/112 57 (0-2)	8/24/2005	2	1.9		0509634	0.45	070
MA-SW-112,57 (0-2) MA-SW-112,57 (2-6)	8/24/2005	4	0.5	PCBs TPH	0508624	0.45	979 326 I
MA-SW-112,57 (6-10)	8/24/2005	8	0.0	PCBs, TPH	0508624	< 0.0070	3.60 J
MA-SW-119.30 (2)	8/3/2006	2	NA	PCBs	SA 49014	< 0.0303	NA
MA-SW-117,30 (6)	8/3/2006	6	NA	PCBs	SA 49014	< 0.0329	NA
MA-SW-114,30 (10)	8/3/2006	10	NA	PCBs	SA 49014	0.0370	NA
MA-SW-113,30 (14)	8/3/2006	14	NA	PCBs	SA 49014	0.179	NA
MA-SW-119,19 (2)	8/3/2006	2	NA	PCBs	SA 49014	0.0921	NA
MA-SW-117,19 (6)	8/3/2006	6	NA	PCBs	SA 49014	0.236	NA
MA-SW-114,19 (10)	8/3/2006	10	NA	PCBs	SA 49014	0.0273	NA
MA-SW-113,19 (14)	8/3/2006	14	NA	PCBs	SA 49014	0.0434	NA
L							

Notes:

Grab Samples collected at 25-foot intervals at the following vertical depths : 0-2 ft, 2-6 ft, 6-10 ft, 10-14 ft, 14-18 ft.

bls = below land surface

COC = Chain Of Custody

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

NA = Not Analyzed

- < = Less than laboratoy method detection limits
- J = detected above MDL, but below reporting limit (result is an estimated value)
- Y = Estimated value
- E = Estimated value
- R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs).

Sample Location	Sample Date	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
POTTOM							
MA-SSB-30 55 (18)	9/15/2005	18	ΝΔ		0500287	< 0.0070	96.1
MA-000-00,00 (10)	3/13/2003	10		1 603, 11 11	0309207	< 0.0070	00.1
MA-SSB-18,18 (20)	9/21/2005	20	NA	PCBs, TPH	0509393	0.075	938
MA-SSB-18,18 (25)	9/21/2005	25	NA	PCBs, TPH	0509393	0.08	368
		•					
MA-SSB-30,18 (18)	9/21/2005	18	NA	PCBs, TPH	0509393	0.36	1,470
MA-SSB-30,18 (24)	9/21/2005	24	NA	PCBs, IPH	0509393	0.085	2,150
MA-SSB-1 4 (15)	9/28/2005	15	NA	PCBs TPH	0509542	0.64	8 520
	0/20/2000				0000042	0.04	0,020
MA-SSB-13,4 (15)	9/28/2005	15	NA	PCBs, TPH	0509542	0.043	445
MA-SSB-22,4 (18)	9/28/2005	18	NA	PCBs, TPH	0509542	0.18	2,820
MA SSR 3 0 (18)	0/28/2005	18	ΝΑ		0500542	0.0004	596
MA-00D-0,9 (10)	9/20/2003	10		FCDS, IFN	0309342	0.0094	500
MA-SSB-18,9 (18)	9/28/2005	18	NA	PCBs, TPH	0509542	0.0	89.5
MA-SSB-12,29(18)	11/4/2005	18	NA	PCBs, TPH, VOCs, SVOCs	0511140	0.26	1330
	44440005	10	N 4				1750
MA-SSB-38,7(18)	11/4/2005	18	NA NA	PCBS, IPH	0511140	0.22	1750
MA-SSB-26 43(18)	11/4/2005	18	37	PCBs TPH	0511140	0.80	2540
111/ 000 20, 10(10)	111 11 2000		0.1	1 000, 11 11	0011110	0.00	2010
MA-SW-12,50 (16)	11/8/2005	16	1.6	PCBs, TPH	0511210	0.79	5700
MA-SW-12,55 (13)	11/8/2005	13	1.1	PCBs, TPH	0511210	0.30	1760
MA SSD 12 15 (19)	11/0/2005	19	ΝΑ		0511210	0.47	2060
WIA-556-12,15(16)	11/9/2003	10			0311210	0.47	2900
MA-SSB-37.25 (18)	11/9/2005	18	NA	PCBs, TPH	0511210	0.16	1050
MA-SSB-37,15 (18)	11/9/2005	18	NA	PCBs, TPH, VOCs, SVOCs	0511210	0.18	2110
	44/0/0005	40	NIA			0.40	450
MA-SW-8,7 (13)	11/9/2005	13		PCBs, 1PH, VOCs, SVOCs	0511210	0.13	450
MA-SSB-90 40 (18)	12/2/2005	18	NA	PCBs	0512118	< 0.0071	NA
	12/2/2000			1 000	0012110		
MA-SSB-92,34 (18)	12/6/2005	18	NA	PCBs	0512148	0.52	NA
MA-SSB-79,30 (18)	12/6/2005	18	NA	PCBs	0512175	< 0.0060	NA
MA SSB 90 19 (10)	12/6/2005	10	NA	DCPa	0510175	0.16	NA
WIA-35B-00, 10 (18)	12/0/2005	10		PUDS	0012170	0.10	
MA-SSB-105 18 (18)	12/6/2005	18	NA	PCBe	0512148	0.19	NA
	12/0/2000			1 003	0012140	0.13	

Table 4-19 End Point Soil Sample Summary: Bottom PCBs TPH Former Maspeth Substation

Sample Location	Sample Date	Depth (fact blo)	Head Space	Analytes	Lab COC	TOTAL PCBs	TOTAL TPH
MA SSR 59 0 (19)	12/21/2005	(Teet DIS)	(ppm)		510469	(ppm)	(ppm)
MA-33B-30, 9 (10)	12/21/2005	10	11/2	FCBS	512400	0.13	NA
MA-SSB-94 10 (18)	12/22/2005	18	ΝΔ	PCBs	512468	< 0.0061	ΝA
	12/22/2003	10		1 003	512400	< 0.0001	
MA-SSB-62, 55 (18)	12/23/2005	18	NA	PCBs	512490	0.028 Y	NA
MA-SSB-51, 39 (18)	12/23/2005	18	NA	PCBs	512490	0.27	NA
MA-SSB-100, 50 (18)	12/23/2005	18	NA	PCBs	512482	< 0.0061	NA
NA 000 40 00 (00)	E (E (00000		N10			.0.0040	
MA-SSB-13,30 (30)	5/5/2006	30	NA	PCBs	SA 44497	< 0.0316	NA
MA-SSB-40 35 (30)	5/17/2006	30	ΝΔ	PCBs TPH VOCs SVOCs	SA 15232	< 0.0356	< 35.1
107-000-40,00 (00)	3/1//2000				0/ 40202	× 0.0300	< 55.1
MA-SSB-52,18 (30)	6/9/2006	30	NA	PCBs, TPH, VOCs, SVOCs	SA 46237	< 0.0379	< 35.1
				i			
MA-SSB-66,29 (30)	6/15/2006	30	NA	PCBs	SA 46594	< 0.0303	< 31.8
							,
MA-SSB-77,49 (22)	6/22/2006	22	NA	PCBs	SA 46881	< 0.0303	NA
MA COD 400 00 (20)	7/04/0000		NIA		CA 40000	< 0.0250	NIA
MA-SSB-106,22 (30)	//31/2006	30		PCBS, TPH, VOCS, SVOCS	SA 48800	< 0.0300	NA
MA-SSB-70.5 (20)	8/8/2006	5	NA	PCBs	SA 49202	0.105	NA
1417 (000-70,5 (20)	0/0/2000			1 000		0.100	
MA-SSB-87.5 (20)	8/8/2006	20	NA	PCBs	SA 49202	0.0378	NA
· · · · · · · · · · · · · · · · · · ·							
MA-SSB-101,5 (19)	8/8/2006	19	NA	PCBs, TPH, VOCs, SVOCs	SA 49202	0.1263	84.6
				·			
MA-SSB-89,26 (18)	8/8/2006	18	NA	PCBs	SA 49202	0.278	NA
	0/0/0000	10		D0D-	0.4.40000	0.040	NIA
MA-SSB-107,41 (13)	8/8/2006	13	NA NA	PCBS	SA 49202	0.642	NA
MA-SSB-91 55 (10)	8/8/2006	10	NA	PCBs	SA 49202	< 0.0280	NA
	0/0/2000					10.0200	
MA-SSB-107,55 (13)	8/8/2006	13	NA	PCBs, TPH, VOCs, SVOCs	SA 49202	0.712	131
				, , , , , , , , , , , , , , , , , , , ,			
MA-SSB-57-30 (12)	11/13/2007	12	NA	PCBS	SA 70997	< 0.0321	NA

Table 4-19 End Point Soil Sample Summary: Bottom PCBs TPH Former Maspeth Substation

Notes:

Grab Samples collected at a rate on one sample per 250 square feet of bottom within main excavation and from bottom of various trench boxes.

bls = below land surface

COC = Chain Of Custody

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

- ppm = parts per million
- NA = Not Analyzed

< = Less than laboratoy method detection limits

J = Detected above MDL, but below reporting limt (result is an esitmated value)

Y = Estimated value

E = Estimated value

R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

Table 4-20 End Point Soil Sample Summary: Bottom VOCs Former Maspeth Substation

	Sample Location	MA-SSB-12,29 (18)		MA-SSB-37,15 (18)	M/	4-SW-8,7 (13)	MA-S	SB-40,35 (30)	м	IA-SSB-52,18 (30)		MA-SSB-106,22 (30)		MA-SSB-101,5 (1	9)	MA-SSB-107,55 ((13)
	Sample Date	11/4/2005	!	11/9/2005		11/9/2005		5/17/2006	Τ	6/9/2006		7/31/2006		8/8/2006	•	8/8/2006	
	Lab COC	0511140		0511210		0511210		SA 45232	Τ	SA 46237		SA 48806		SA 49202		SA 49202	
VOCs (Method 8260)	Regulatory Limit		1	1					Т								
Analyte	(ppm)		ا ا	<u> </u>													
Acetone	0.2 ¹	0.0417 Y R	YR		\Box	0.0164 Y		< 1.430	R	< 0.149	R					Γ	
Benzene	0.06 ¹				T				T					1			
2-Butanone (MEK)	0.3 ¹				T			< 0.714	R	< 0.0743	R	0.208	J	< 0.0982	F	< 0.0628	R
n-Butylbenzene	NR								T					0.0027	J		
tert Butylbenzene	NR												-				
Carbon disulfide	2.7 ¹		'						T					0.003	J		
Chlorobenzene	1.7 ¹	0.00210	Y			-			T								
2-Chloroethylvinylether	NR		'						Τ								
1,2 Dichlorobenzene	7.9 ¹	0.00289	Y						T								
1,3 Dichlorobenzene	1.6 ¹	0.00378	<u> </u>														
1,4 Dichlorobenzene	8.5 ¹	0.0605	!						Τ								
1,2 Dichloroethane	0.1 ¹		'						Τ								1
1,1 Dichloroethene	0.4 ¹		!						Τ								
p-Diethylbenzene	NR			<u>[</u>					T								
p-Ethyltoluene	NR								T								
4-Isopropyltolune	NR			1													
4-Methyl-2-pentanone (MIBK)	1.0 ¹								T								
Methylene chloride	0.1 ¹	0.00506	Y	0.00356	Y	0.00437	Y		T	0.0418	J	0.0443 J	VOC3, J	0.0106	ļ	0.0039	J
Napthalene	NR				Τ				Τ				·····	0.0062	J		
n-Propylybenzene	NR								Τ								
1,2,4,5 Tetramethylbenzene	NR																
Toluene	1.5 ¹			0.00203	Y				T								
1,2,4 Trichlorobenzene	3.4 ¹	0.00213	Y														
Trichloroethene (TCE)	0.7 ¹																
1,2,4 Trimethylbenzene	NR	0.00142	Y						Τ								
1,3,5 Trimethylbenzene	NR								Τ								
m, p-Xylene	1.2 ²													<u> </u>			
Tetrahydrofuran	NR		'														
Ethyl ether	NR											0.137	J				
tert-Amyl methyl ether (TAME)	NR		'							< 0.0074	R						
Tertiary butyl alcohol (TBA)	NR	< 0.0254	R					< 0.714	R					< 0.0982	F	< 0.0628	R
1,4-Dioxane	NR		'					< 1.430	R	< 0.149	R			< 0.196	F	< 0.126	R
												i					

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective MDL.

<: Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL)

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Cliffon Park, NJ (refer to Appendix H).

Y: Reported concentration was detected below the lowest calibration standard concentration.

Page 1 of 1

Table 4-21 End Point Soil Sample Summary: Bottom SVOCs Former Maspeth Substation

	Sample Location	MA-SSB-12,29 (18)	MA-SSB-37,15 (18)	MA-SW-8,7 (13)	MA-SSB-40,35 (30)	MA-SSB-52,18 (30)	MA-SSB-106,22 (30)	MA-SSB-101,5 (19)	MA-SSB-107,55 (13)
	Sample Date	11/4/2005	11/9/2005	11/9/2005	5/17/2006	6/9/2006	7/31/2006	8/8/2006	8/8/2006
	Lab COC	0511140	0511210	0511210	SA 45232	SA 46237	SA 48806	SA 49202	SA 49202
	Regulatory Limit								
Analyte	(ppm)								
Acenapthene	50 ¹								
Acenaphthylene	41 ¹								
Anthracene	50 ¹								0.0656 J
Benzo (a) anthracene	0.224 ¹							0.0412	J 0.134 J
Benzo(a) pyrene	0.061 ¹							0.039	J 0.142 J
Benzo(b) fluoranthene	1.1 ¹								0.127
Benzo(g,h,i) perylene	50 ¹								0.0601 J
Benzo(k) fluoranthene	1.1 ¹							0.0326	J 0.0981 J
Bis(2-Ethylhexyl)phthalate	50 ¹	0.0557 J	B 0.0488	J 0.0273	J				1.84
4-Chloro 3 methylphenol	0.240 ¹								
2-Chlorophenol	0.8 ¹								
Chrysene	0.4 ¹							0.0486	J 0.17 J
Dibenz(a,h)anthracene	0.014 ¹								0.0221 J
Dibenzofuran	6.2 ¹								
1,4-Dichlorobenzene	NR	0.0762	J 0.0557	J 0.0227	J				
Di-n-butylphthalate	8.1 ¹								
2,4-Dinitrotoluene	NR								
Fluoranthene	50 ¹			1. Sec. 1. Sec				0.0652	J 0.214
Flourene	50 ¹		· ·						
Indeno(1,2,3-cd) pyrene	3.2 ¹								0.0551 J
2-Methyl naphthalene	36.4 ¹			-					
3,4-Methylphenol	NR								
Naphthalene	13.0 ¹								
4-Nitrophenol	0.100 ¹								
N nitroso-di-n-propylamine	NR								
Pentachlorophenol	1.0 ¹								
Phenanthrene	50 ¹							0.0273	J 0.091 J
Phenol	0.03 ¹								
Pyrene	50 ¹							0.0743	J 0.288
1,2,4-Trichlorobenzene	NR								

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; *Recommended Soil Cleanup Objectives*; no individual compound above 50 ppm, total SVOCs <500 ppm.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL).

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration.

Table 4-22
End Point Soil Sample Summary: Over-Drill Excavations Bottom PCBs TPH
Former Maspeth Substation

Sample Location	Sample Date	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
BOTTOM							
MA-SSB-4.5,44.8 (31-32): CAN 14	3/19/2007	31-32	NA	PCBS	SA 59578	< 0.0350	NA
MA-SSB-10.7,44.8 (31-32): CAN 26	3/19/2007	31-32	NA	PCBS	SA 59578	< 0.0316	NA
MA-SSB-51,52.8 (30-31): CAN 56	3/28/2007	30-31	NA	PCBS	SA 59849	< 0.0388	NA
MA-SSB-49,42.2 (30-31): CAN 60	3/28/2007	30-31	NA	PCBS	SA 59849	< 0.0329	NA
MA-SSB-36.7,53.5 (31-32): CAN 40	3/29/2007	31-32	NA	PCBS	SA 59919	< 0.0392	NA NA
MA-SSB-36.4,46.5 (31-32): CAN 44	3/29/2007	31-32	NA	PCBS	SA 59919	< 0.0426	NA

Notes:

Samples collected from the bottom of the cans using a tripod Geoprobe unit.

- bls = below land surface
- COC = Chain Of Custody
- PCBs = Polychlorinated biphenyls
- TPH = Total Petroleum Hydrocarbons
- ppm = parts per million
- NA = Not Analyzed

- < = Less than laboratoy method detection limits
- J = Detected above MDL, but below reporting limit (result is an estimated value)
- Y = Estimated value
- E = Estimated value
- R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs).

Table 4-23 End Point Soil Sample Summary: Shallow Bottom PCBs TPH Former Maspeth Substation

Sample Location	Sample Date	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
BOTTOM							
MA-SSB-138,50 (2.5)	1/5/2007	2.5	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0289	< 31.9
MA-SSB-152,54 (2.5)	1/5/2007	2.5	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0329	< 32.4
MA-SSB-169.5,59 (2)	1/5/2007	2	3.2	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0320	< 31.4
•							
MA-SSB-135,4.3 (2.5)	1/5/2007	2.5	0.1	PCBs, TPH, VOCs, SVOCs	SA 56522	0.155	< 33.3
MA-SSB-138,17.25 (2.5)	1/5/2007	2.5	0.1	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0334	< 33.1
MA-SSB-146,25 (2.5)	1/5/2007	2.5	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	0.0199	< 30.3
MA-SSB-146,25 (2.5) Dupe	1/5/2007	2.5	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	0.258	16.6 J
MA-SSB-148,37.25 (3)	1/5/2007	3	0.0	PCBs, TPH, VOCs, SVOCs	SA 56522	< 0.0310	84.0

Notes:

Grab Samples collected at a rate of one sample per 250 square feet of bottom.

- bls = below land surface
- COC = Chain Of Custody
- PCBs = Polychlorinated biphenyls
- TPH = Total Petroleum Hydrocarbons
- ppm = parts per million
- NA = Not Analyzed

- < = Less than laboratoy method detection limits
- J = Detected above MDL, but below reporting limit (result is an estimated value)
- Y = Estimated value
- E = Estimated value
- R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs).

Table 4-24
End Point Soil Sample Summary: Shallow Bottom Excavations VOCs
Former Maspeth Substation

	Sample Location	MA-SSB-138,50 (2.5)	MA-SSB-152,54 (2.5)	Ν	MA-SSB-169.5,59 (2)	M	MA-SSB-135.4,4.3 (2.5)	MA-SSB-138,17.25 (2.5)	MA-SSB-146,25 (2.5)	M	IA-SSB-148,37.25 (3)
	Sample Date	1/5/2007	1/5/2007		1/5/2007	T	1/5/2007	1/5/2007	1/5/2007	T	1/5/2007
	Lab COC	SA 56522	SA 56522		SA 56522	Τ	SA 56522	SA 56522	SA 56522		SA 56522
VOCs (Method 8260)	Regulatory Limit					Τ				T	
Analyte	(ppm)	l									ľ
Acetone	0.2 1	< 0.108	R < 0.137	R	< 0.106	R	< 0.152 R	< 0.152	R < 0.137	R	< 0.153 R
Benzene	0.06 1	< 0.0074	R < 0.0068	R	< 0.008	R	< 0.076 R	< 0.076	R < 0.0069	R	< 0.0077 R
2-Butanone (MEK)	0.3 ¹	< 0.0542	R < 0.0684	R	< 0.0799	R	< 0.076 R	< 0.076	R < 0.0687	R	< 0.0765 R
n-Butylbenzene	NR					I				T	P
tert Butyibenzene	NR									\top	
Carbon disulfide	2.7 ¹					Ι					
Chlorobenzene	1.7 ¹									T	
2-Chloroethylvinylether	NR					Τ				T	
1,2 Dichlorobenzene	7.9 ¹										
1,3 Dichlorobenzene	1.6 1										
1,4 Dichlorobenzene	8.5 ¹									T	
1,2 Dichloroethane	0.1 ¹										
1,1 Dichloroethene	0.4 1									T	
p-Diethylbenzene	NR										
p-Ethyltoluene	NR										
4-isopropyltolune	NR										
4-Methyl-2-pentanone (MIBK)	1.0 ¹	< 0.0542	R < 0.0684	R	< 0.0799	R	< 0.0766 F	< 0.0761	R < 0.0687	R	< 0.0765 R
Methylene chloride	0.1 1	0.0118	J 0.0134	J	0.0162	J	0.0090 J	0.0119	J 0.0115	J	0.0110 J
Napthalene	NR					Τ					
n-Propylybenzene	NR										
1,2,4,5 Tetramethylbenzene	NR										
Toluene	1.5 ¹									T	<u> </u>
1,2,4 Trichlorobenzene	3.4 ¹										· · ·
Trichloroethene (TCE)	0.7 ¹										
1,2,4 Trimethylbenzene	NR								•		
1,3,5 Trimethylbenzene	NR										
m, p-Xylene	1.2 ²										
Tetrahydrofuran	NR	< 0.0542	R < 0.0684	R	< 0.0799	R	< 0.076 F	< 0.0761	R < 0.0687	R	< 0.0765 F
Ethyl ether	NR				•						
tert-Amyl methyl ether (TAME)	NR	< 0.0054	R < 0.0068	R	< 0.008	R	< 0.0076 F	R < 0.0076	R < 0.0069	R	< 0.0077 F
Tertiary butyl alcohol (TBA)	NR	< 0.0542	R < 0.0684	R	< 0.0799	R	< 0.076 F	R < 0.0761	R < 0.0687	R	< 0.0765
1,4-Dioxane	NR	< 0.108	R < 0.137	R	< 0.160	R	< 0.152 F	R < 0.152	R < 0.137	R	< 0.153 F
	1	· ·				\neg				-	

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives for total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL).

<: Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL).

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Y: Reported concentration was detected below the lowest calibration standard concentration.

Page 1 of 1

Table 4-25
End Point Soil Sample Summary: Shallow Excavation Bottoms SVOCs
Former Maspeth Substation

	Sample Location	MA-SSB-138,50 (2.5)	MA-SSB-152,54 (2.5)	MA-SSB-169.5,59 (2)	MA-SSB-135,4.3 (2.5)	MA-SSB-138,17.25 (2.5)	MA-SSB-146,25 (2.5)	MA-SSB-148,37.25 (3)
	Sample Date	1/5/2007	1/5/2007	1/5/2007	1/5/2007	1/5/2007	1/5/2007	1/5/2007
	Lab COC	SA 56522	SA 56522	SA 56522	SA 56522	SA 56522	SA 56522	SA 56522
	Regulatory Limit							
Analyte	(ppm)							
Acenapthene	50 ¹					0.0319 J		
Acenaphthylene	41 ¹							
Anthracene	50 ¹				0.0258	J 0.0995 J		0 137
Benzo (a) anthracene	0.224 ¹				0.0796	0.144 J		0.789
Benzo(a) pyrene	0.061 ¹				0.0632	0.120 .1		0.678
Benzo(b) fluoranthene	1.1 ¹			· · · · · · · · · · · · · · · · · · ·	0.0646	0.115 J		0.539
Benzo(g,h,i) perylene	50 ¹				0.0351	J 0.0582 J		0 217
Benzo(k) fluoranthene	1.1 ¹				0.0468	J 0.0780 J		0.283
Bis(2-Ethylhexyl)phthalate	50 ¹							
4-Chloro 3 methylphenol	0.240 ¹							
2-Chlorophenol	0.8 ¹							
Chrysene	0.4 ¹				0.0763	0.137 ./	· · · · · · · · · · · · · · · · · · ·	0.949
Dibenz(a,h)anthracene	0.014 ¹							0.0584
Dibenzofuran	6.2 ¹							0.0004 0
1,4-Dichlorobenzene	NR						· · · · · · · · · · · · · · · · · · ·	
Di-n-butylphthalate	8.1 ¹							
2,4-Dinitrotoluene	NR					· · · ·		
Fluoranthene	50 ¹				0.159	0.285	0.0364	1.030
Flourene	50 ¹					0.0267 J		
Indeno(1,2,3-cd) pyrene	3.2 ¹			····	0.0295	J 0.0534 J		0.203 J
2-Methyl naphthalene	36.4 ¹							
3,4-Methylphenol	NR							
Naphthalene	13.0 ¹			······································			· · ·	1
4-Nitrophenol	0.100 ¹							
N nitroso-di-n-propylamine	NR							
Pentachlorophenol	1.0 ¹							
Phenanthrene	50 ¹				0.102	0.267		0.481
Phenol	0.03 ¹							
Pyrene	50 ¹				0.142	0.236	0.0288	1.640
1,2,4-Trichlorobenzene	NR							

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration.

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

Blank Space: Indicates not present at its respective method detection limit (MDL).

Sample Location	Sample Date	Depth	Head Space	Analytas	Chain of Custody	TOTAL PCBs	TOTAL TPH
		(feet bls) *	(ppm)	Analytes	chain of custouy	(ppm)	(ppm)
MA-SW-51,62 (5)	11/11/2005	5	0.9	PCBs, TPH	0511278	0.13	63.3
MA-SW-51,64 (5)	11/11/2005	5	0.8	PCBs, TPH, VOCs, SVOCs	0511278	0.2	31.3
MA-SW-51,64 (9)	11/11/2005	9	1.3	PCBs, TPH	0511278	0.3	< 43.7
MA-SW-51,65 (14)	12/2/2005	14	na	PCBs	0512118	< 0.0073	NA NA
MA-SW-51,64 (18)	12/2/2005	18	na	PCBs	0512096	< 0.0069	NA
				-			
MA-SW-53.5,64 (10.5)	1/2/2008	10.5	na	PCBS	SA 72884	< 0.0340	NA
						•	
MA-SW-54,64 (7.5)	12/6/2007	7.5	na	PCBs	SA 71943	0.142	NA
MA-SSB-55.5,64 (12)	1/2/2008	12	na	PCBS	SA 72884	< 0.0310	NA
					×		
MA-SSB-61,64 (8.5)	11/27/2007	8.5	na	PCBs	SA 71514	0.293	NA
MA-GP-66,64 (7.5-8.0)	8/27/2007	7.5-8.0	NA	PCBS	SA 67320	< 0.0328	NA
MA-SSB-67,64 (7.5)	11/14/2007	7.5	na	PCBS	SA 71058	0.737	NA
MA-SW-67,64 (9)	11/11/2005	9	1.1	PCBs, TPH	0511278	0.40	21.7
MA-SSB-70,64 (8.5)	11/26/2007	8.5	na	PCBS	SA 71454	< 0.0325	NA NA
	0/07/0007						
MA-GP-72,64 (6.0-6.5)	8/2//2007	6.0-6.5	NA	PCBS	SA 67320	< 0.0343	NA
	14/00/0007						
IVIA-SVV-/4,64 (/.5)	11/26/2007	1.5	na	PCBS	SA 71454	< 0.0346	NA
							1

TABLE 4-26 End-Point Soil Sample Summary: Beneath Concrete Footer PCBs & TPH Former Maspeth Substation

Notes:

* bls = Depth below the established grade of the M&A Linens property, referenced to as elevation "0.0".

- bls = below land surface
- COC = Chain Of Custody
- PCBs = Polychlorinated biphenyls
- TPH = Total Petroleum Hydrocarbons
- ppm = parts per million
- NA = Not Analyzed

- < = Less than laboratoy method detection limits
- J = detected above MDL, but below reporting limit (result is an estimated value)
- Y = Estimated value
- E = Estimated value
- R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

Table 4-27 End-Point Soil Sample Summary: Beneath Concrete Footer VOCs Former Maspeth Substation

	Sample Location	MA-SW-51,64 (5)
	Sample Date	11/11/2005
	Lab COC	0511278
VOCs (Method 8260)	Regulatory Limit	
Analyte	(ppm)	
Acetone	0.2 1	
Benzene	0.06 ¹	
2-Butanone (MEK)	0.3 ¹	
n-Butylbenzene	NR	
tert Butylbenzene	NR	
Carbon disulfide	2.7 ¹	
Chlorobenzene	1.7 1	
2-Chloroethylvinylether	NR	< 0.00516 R
1,2 Dichlorobenzene	7.9 ¹	
1,3 Dichlorobenzene	1.6 ¹	
1,4 Dichlorobenzene	8.5 ¹	
1,2 Dichloroethane	0.1 ¹	
1,1 Dichloroethene	0.4 ¹	
p-Diethylbenzene	NR	
p-Ethyltoluene	NR	
4-Isopropyltolune	NR	
4-Methyl-2-pentanone (MIBK)	1.0 ¹	
Methylene chloride	0.1 1	0.00385 Y
Napthalene	NR	
n-Propylybenzene	NR	
1,2,4,5 Tetramethylbenzene	NR	
Toluene	1.5 ¹	
1,2,4 Trichlorobenzene	3.4 ¹	
Trichloroethene (TCE)	0.7 ¹	
1,2,4 Trimethylbenzene	NR	
1,3,5 Trimethylbenzene	NR	
m, p-Xylene	1.2 ²	
Tetrahydrofuran	NR	
Ethyl ether	NR	
tert-Amyl methyl ether (TAME)	NR	
Tertiary butyl alcohol (TBA)	NR	< 0.0275 R
1,4-Dioxane	NR	

Notes:

Results presented in milligrams per kilogram (mg/Kg) or parts per million (ppm).

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives.

² Based upon TAGM HWR-94-4046, Appendix A, Table 1; Recommended Soil Cleanup Objectives total xylenes.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL).

<: Less than laboratory reporting limit

Bold: Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below calibrated Method Detection Limit (MDL).

R: Unusable data as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Y: Reported concentration was detected below the lowest calibration standard concentration.

Page 1 of 1

	Sample Location	MA-SW-51,64 (5)
	Sample Date	11/11/2005
	Lab COC	0511278
	Regulatory Limit	
Analyte	(ppm)	
Acenapthene	50 ¹	
Acenaphthylene	41 ¹	
Anthracene	50 ¹	0.0546
Benzo (a) anthracene	0.224 ¹	0.225
Benzo(a) pyrene	0.061 1	0.199
Benzo(b) fluoranthene	1.1 ¹	0.159
Benzo(g,h,i) perylene	50 ¹	0.0905
Benzo(k) fluoranthene	1.1 ¹	0.179
Bis(2-Ethylhexyl)phthalate	50 ¹	0.0602
4-Chioro 3 methylphenol	0.240 ¹	
2-Chlorophenol	0.8 ¹	
Chrysene	0.4 ¹	0.263
Dibenz(a,h)anthracene	0.014 ¹	
Dibenzofuran	6.2 ¹	
1,4-Dichlorobenzene	NR	0.0343
Di-n-butylphthalate	8.1 ¹	0.0308
2,4-Dinitrotoluene	NR	
Fluoranthene	50 ¹	0.475
Flourene	50 ¹	0.0247
Indeno(1,2,3-cd) pyrene	3.2 ¹	0.0934
2-Methyl naphthalene	36.4 ¹	
3,4-Methylphenol	NR	
Naphthalene	13.0 ¹	
4-Nitrophenol	0.100 ¹	
N nitroso-di-n-propylamine	NR	
Pentachlorophenol	1.0 ¹	
Phenanthrene	50 ¹	0.322
Phenol	0.03 ¹	
Pyrene	50 ¹	0.354
1,2,4-Trichlorobenzene	NR	0.142

Table 4-28 End-Point Soil Sample Summary: Beneath Concrete Footer SVOCS

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL).

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration.

			Converted to	Total Tons per
Date	⊺icket #	Pounds	Tons	Month
10/23/2006	20955230	49860	24.93	
10/25/2006	20955806	46340	23.17	
10/25/2006	20955879	47500	23.75	
10/25/2006	20955969	48200	24.10	-
10/25/2006	20956036	47360	23.68	
10/30/2006	20956709	53020	26.51	
10/30/2006	20956710	53200	26.60	
10/30/2006	20956728	53400	26.70	
10/30/2006	20956804	49700	24.85	224.29
11/2/2006	20957627	51320	25.66	
11/2/2006	20957628	50780	25.39	
11/2/2006	20957756	51120	25.56	
11/2/2006	20957758	51600	25.80	
11/3/2006	20957845	53880	26.94	
11/3/2006	20957843	52840	26.42	
11/3/2006	20957898	51860	25.93	
11/3/2006	20957921	50000	25.00	
11/3/2006	20957945	53500	26.75	
11/3/2006	20957950	54600	27.30	
11/3/2006	20957990	50160	25.08	
11/3/2006	20958023	56380	28.19	
11/3/2006	20958037	53120	26.56	
11/3/2006	20958035	54880	27.44	
11/6/2006	20958325	49540	24.77	
11/6/2006	20958331	50120	25.06	
11/6/2006	20958332	50660	25.33	
11/6/2006	20958390	50060	25.03	
11/6/2006	20958388	53980	26.99	
11/6/2006	20958392	51460	25.73	
11/6/2006	20958481	52740	26.37	
11/6/2006	20958492	52740	26.37	
11/6/2006	20958493	53280	26.64	
11/10/2006	20959362	51720	25.86	
11/10/2006	20959363	50020	25.01	
11/10/2006	20959364	53720	26.86	
11/10/2006	20959373	49860	24.93	
11/10/2006	20959374	54020	27.01	
11/20/2006	20961223	55340	27.67	
11/27/2006	20962521	53880	26.94	
11/27/2006	20962526	56120	28.06	
11/27/2006	20962548	49260	24.63	
11/27/2006	20962483	41460	20.73	
11/28/2006	20962651	54420	27.21	
11/28/2006	20962653	53920	26.96	
11/28/2006	20962656	53820	26.91	
11/28/2006	20962675	54200	27.10	
11/29/2006	20962999	52240	26.12	
11/29/2006	20963001	52160	26.08	
11/29/2006	20963004	52800	26.40	
11/29/2006	20963012	54560	27.28	
11/29/2006	20963013	53620	26.81	

			Converted to	Total Tons per
Date	Ticket #	Pounds	Tons	Month
11/29/2006	20963015	52420	26.21	
11/29/2006	20963016	52920	26.46	
11/29/2006	20963030	51460	25.73	
11/30/2006	20963354	50100	25.05	
11/30/2006	20963357	50420	25.21	
11/30/2006	20963359	52320	26.16	
11/30/2006	20963360	50780	25.39	
11/30/2006	20963362	52740	26.37	
11/30/2006	20963363	55560	27.78	
11/30/2006	20963364	52600	26.30	
11/30/2006	20963365	53620	26.81	
11/30/2006	20963368	54240	27.12	
11/30/2006	20963401	53140	26.57	1440.04
, ,				
12/1/2006	20963717	53080	26.54	
12/1/2006	20963718	50300	25.15	
12/1/2006	20963720	52860	26.43	1
12/1/2006	20963721	51660	25.83	1
12/1/2006	20963722	51040	25.52	
12/1/2006	20963719	49060	24.53	
12/4/2006	20964086	50460	25.23	
12/4/2006	20964087	50380	25.19	
12/4/2006	20964089	50340	25.17	
12/4/2006	20964091	51140	25.57	
12/4/2006	20964094	48700	24.35	
12/4/2006	20964095	50620	25.31	
12/4/2006	20964096	49560	24.78	
12/4/2006	20964097	51900	25.95	
12/4/2006	20964098	49840	24.92	
12/4/2006	20964100	50660	25.33	
12/5/2006	20964432	53600	26.80	
12/5/2006	20964434	53820	26.91	·
12/5/2006	20964436	53600	26.80	
12/5/2006	20964437	52920	26.46	
12/5/2006	20964440	53180	26.59	
12/5/2006	20964441	52520	26.26	
12/5/2006	20964442	54420	27.21	
12/5/2006	20964444	51780	25.89	
12/5/2006	20964445	54340	27.17	
12/5/2006	20964448	53500	26.75	
12/5/2006	20964457	52460	26.23	
12/6/2006	20964723	52240	26.12	
12/6/2006	20964724	50520	25.26	
12/6/2006	20964725	52540	26.27	
12/6/2006	20964729	52520	26.26	
12/6/2006	20964730	53600	26.80	
12/6/2006	20964732	52720	26.36	
12/7/2006	20965002	55140	27.57	
12/7/2006	20965004	51640	25.82	
12/7/2006	20965005	51580	25.79	
12/7/2006	20965006	51840	25.92	
12/7/2006	20965010	52300	26.15	

÷

			Converted to	Total Tons per
Date	Ticket #	Pounds	Tons	Month
12/7/2006	20965012	52860	26.43	
12/7/2006	20965014	51180	25.59	
12/7/2006	20965020	53400	26.70	
12/7/2006	20965024	54040	27.02	
12/7/2006	20965036	52500	26.25	
12/7/2006	20965037	53620	26.81	
12/8/2006	20965295	48200	24.10	
12/8/2006	20965297	47760	23.88	
12/8/2006	20965304	54200	27.10	
12/8/2006	20965307	51840	25.92	
12/8/2006	20965308	53340	26.67	
12/8/2006	20965311	52180	26.09	
12/8/2006	20965312	54440	27.22	·
12/8/2006	20965327	46960	23.48	
12/8/2006	20965328	50500	25.25	
12/11/2006	20965620	52000	26.00	
12/11/2006	20965621	54620	27.31	
12/11/2006	20965624	50880	25.44	
12/11/2006	20965625	53220	26.61	
12/11/2006	20965627	53360	26.68	
12/11/2006	20965628	53620	26.81	
12/11/2006	20965630	52840	26.42	
12/11/2006	20965631	50400	25.20	
12/11/2006	20965639	50860	25.43	
12/11/2006	20965640	52780	26.39	
12/11/2006	20965799	43740	21.87	
12/12/2006	20965853	54000	27.00	
12/12/2006	20965857	49080	24.54	
12/12/2006	20965861	53960	26.98	
12/12/2006	20965863	53960	26.98	
12/12/2006	20965865	53480	26.74	
12/12/2006	20965866	54320	27.16	
12/12/2006	20965867	53600	26.80	-
12/12/2006	20965870	54040	27.02	
12/12/2006	20965895	53240	26.62	
12/12/2006	20965896	51740	25.87	
12/12/2006	20965898	52880	26.44	
12/12/2006	20965904	52940	26.47	•
12/12/2006	20965906	51420	25.71	
12/12/2006	20965914	54360	27.18	
12/12/2006	20966034	55180	27.59	
12/12/2006	20966036	53240	26.62	
12/12/2006	20966110	53140	26.57	·
12/13/2006	20966131	52760	26.38	
12/13/2006	20966134	53560	26.78	
12/13/2006	20966136	53560	26.78	
12/13/2006	20966140	53080	26.54	
12/13/2006	20966142	51480	25.74	
12/13/2006	20966143	54780	27.39	
12/13/2006	20966153	52380	26.19	
12/13/2006	20966155	51820	25.91	
12/13/2006	20966157	54320	27.16	

			Converted to	Total Tons per
Date	Ticket #	Pounds	Tons	Month
12/13/2006	20966162	54320	27.16	
12/13/2006	20966221	52460	26.23	
12/13/2006	20966232	52620	26.31	
12/13/2006	20966234	52440	26.22	
12/13/2006	20966235	53000	26.50	· · · · · · · · · · · · · · · · · · ·
12/13/2006	20966236	52720	26.36	
12/13/2006	20966247	53020	26.51	
12/13/2006	20966295	57000	28.50	
12/15/2006	20966633	53240	26.62	
12/15/2006	20966636	53640	26.82	
12/15/2006	20966637	51620	25.81	
12/15/2006	20966639	51280	25.64	
12/15/2006	20966641	54320	27.16	
12/15/2006	20966643	52540	26.27	
12/15/2006	20966645	53100	26.55	
12/15/2006	20966648	53040	26.52	
12/15/2006	20966650	53020	26.51	
12/19/2006	20967433	51820	25.91	
12/19/2006	20967438	52380	26.19	
12/19/2006	20967443	51980	25.99	
12/19/2006	20967446	52840	26.42	
12/19/2006	20967457	51340	25.67	
12/19/2006	20967464	52500	26.25	
12/19/2006	20967459	51320	25.66	
12/19/2006	20967461	51920	25.96	
12/19/2006	20967476	56200	28.10	-b
12/19/2006	20967436	51120	25.56	
12/19/2006	20967440	51060	25.53	
12/19/2006	20967444	51440	25.72	
12/19/2006	20967448	50800	25.40	
12/19/2006	20967452	51420	25.71	
12/19/2006	20967453	52400	26.20	
12/19/2006	20967467	50240	25.12	
12/20/2006	20967768	53720	26.86	
12/20/2006	20967770	52840	26.42	
12/20/2006	20967771	50580	25.29	
12/20/2006	20967772	53160	26.58	
12/20/2006	20967773	51420	25.71	
12/20/2006	20967774	53260	26.63	-
12/20/2006	20967775	51300	25.65	
12/20/2006	20967776	53760	26.88	
12/20/2006	20967779	49920	24.96	
12/20/2006	20967780	53320	26.66	
12/20/2006	20967781	49960	24.98	
12/20/2006	20967783	53400	26.70	
12/20/2006	20967784	52320	26.16	
12/20/2006	20967787	51380	25.69	
12/21/2006	20968076	49620	24.81	1
12/21/2006	20968078	51380	25.69	
12/21/2006	20968079	49880	24.94	1
12/21/2006	20968080	51980	25.99	
12/21/2006	20968082	52080	26.04	

Page 4 of 6

			Converted to	Total Tons per
Date	Ticket #	Pounds	Tons	Month
12/21/2006	20968085	53420	26.71	
12/21/2006	20968088	52180	26.09	1
12/21/2006	20968089	51820	25.91	
12/21/2006	20968092	51860	25.93	· · ·
12/21/2006	20968093	52940	26.47	· ·
12/21/2006	20968094	53620	26.81	
12/21/2006	20968095	54080	27.04	
12/21/2006	20968096	52120	26.06	
12/21/2006	20968097	52380	26.19	
12/21/2006	20968102	53660	26.83	· · · · · · · · · · · · · · · · · · ·
12/21/2006	20968106	52480	26.24	
12/21/2006	20968135	55440	27.72	1
12/21/2006	20968217	53060	26.53	
12/21/2006	20968259	51000	25.50	
12/21/2006	20968294	52520	26.26	
12/21/2006	20968310	52340	26.17	x
12/21/2006	20968312	52780	26 39	
12/21/2006	20968334	50820	25.35	·
12/22/2006	20968400	52300	26.15	
12/22/2006	20968402	48100	24.05	
12/22/2000	20968404	52380	24.05	
12/22/2000	20968407	50920	25.15	
12/22/2006	20968409	18980	23.40	
12/22/2000	20968408	54480	24.43	
12/22/2000	20968409	51960	27.24	
12/22/2000	20968410	52120	25.58	-
12/22/2006	20906411	52120	20.00	
12/22/2006	20906413	50740	25.57	
12/22/2006	209069414	50600	25.50	
12/22/2000	20908413	50300	20.23	
12/22/2000	20968417	55400	27.70	
12/22/2000	20908429	40080	27.70	
12/22/2006	20969511	52600	24.33	4571 72
12/22/2000	20909311	52000	20.50	4371.72
1/2/2007	20969322	53660	26.83	
1/2/2007	20303322	51280	25.64	
1/2/2007	20969324	50060	25.04	
1/2/2007	20969329	52660	26.33	
1/2/2007	20969330	47400	23.55	
1/2/2007	20969331	52280	26.14	
1/2/2007	20969332	48100	24 05	
1/2/2007	20969334	53820	26.91	
1/2/2007	20969335	52740	26.37	
1/2/2007	20969336	47580	23.79	
1/2/2007	20969338	47920	23.96	
1/2/2007	20969339	53220	26.50	
1/2/2007	20969340	51640	20.01	
1/2/2007	20069340	50360	25.02	
1/2/2007	20969342	49140	23.10	
1/2/2007	20969343	54320	27.16	
1/2/2007	20969344	53540	26.77	
1/2/2007	20969345	55200	27.60	
-, -, -00,	20000010			

	Ticket #	Pounds	Converted to	Total Tons per
Date			Tons	Month
1/2/2007	20969346	55300	27.65	
1/2/2007	20969347	51040	25.52	
1/2/2007	20969357	51980	25.99	
1/2/2007	20969367	51360	25.68	
1/3/2007	20969504	49180	24.59	
1/3/2007	20969505	50800	25.40	
1/3/2007	20969506	49680	24.84	
1/3/2007	20969507	50940	25.47	
1/3/2007	20969508	50540	25.27	
1/3/2007	20969509	55420	27.71	
1/3/2007	20969510	52580	26.29	
1/3/2007	20969511	55040	27.52	
1/3/2007	20969512	52300	26.15	
1/3/2007	20969513	50160	25.08	
1/3/2007	20969514	51120	25.56	
1/3/2007	20969515	51340	25.67	
1/3/2007	20969516	52200	26.10	
1/3/2007	20969518	51180	25.59	
1/3/2007	20969521	52980	26.49	
1/3/2007	20969525	51500	25.75	
1/3/2007	20969526	53560	26.78	
1/3/2007	20969557	51960	25.98	
1/4/2007	20969728	51680	25.84	
1/4/2007	20969731	52860	26.43	
1/4/2007	20969733	52460	26.23	
1/4/2007	20969736	53120	26.56	
1/4/2007	20969749	54960	27.48	
1/5/2007	20970032	50620	25.31	
1/5/2007	20970033	48780	24.39	
1/5/2007	20970034	50220	25.11	
1/5/2007	20970035	50980	25.49	
1/5/2007	20970036	51180	25.59	
1/5/2007	20970037	51160	25.58	
1/5/2007	20970039	52000	26.00	
1/5/2007	20970041	50040	25.02	
1/5/2007	20970042	50880	25.44	
1/5/2007	20970043	49380	24.69	
1/5/2007	20970044	49500	24.75	
1/5/2007	20970045	50960	25.48	
1/5/2007	20970046	50860	25.43	
1/5/2007	20970047	51560	25.78	
1/5/2007	20970073	49480	24.74	
1/8/2007 `	20970383	27120	13.56	1558.44

Notes:

All Item 4 backfill brought in from Tilcon facility in Nyack, NY.

TOTAL

7794.49
Table 4-30	
Residual Soil Contamination Remaining On-site: PCBs and TPH	ł
Former Maspeth Substation	

Sample Location	Sample Date	Depth (feet bls)	Head Space (ppm)	Analytes	Lab COC	TOTAL PCBs (ppm)	TOTAL TPH (ppm)
MA SIA(-2.24 (7)	1/12/2006	7			0004000		
IVIA-3VV-2,24 (7)	1/12/2006	!	na	PCBS, TPH, VOCS, SVOCS	0601223	/.14	4600
MA-SW-2,23 (16)	1/27/2006	16	na	PCBS	0601505	1.43	NA
MA-SW-2,38 (17)	1/26/2006	17	na	PCBs, TPH, VOCs, SVOCs	0601479	2.10	10800
· · · · · · · · · · · · · · · · · · ·							

Notes:

Grab Samples collected at 25-foot intervals at the following vertical depths : 0-2 ft, 2-6 ft, 6-10 ft, 10-14 ft, 14-18 ft.

bls = below land surface

COC = Chain Of Custody

PCBs = Polychlorinated biphenyls

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

NA = Not Analyzed

< = Less than laboratoy method detection limits

J = detected above MDL, but below reporting limit (result is an estimated value)

Y = Estimated value

E = Estimated value

R = Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H)

Bold: Indicates compound reported above Recommended Soil Cleanup Objective (1.0 ppm for PCBs)

Table 4-31 Residual Contamination Remaining On-site: SVOCs Former Maspeth Substation

	Sample Location	MA-SW-51,64 (5)		MA-SSB-107,55 (13)		MA-SSB-135,4.3 (2.5)	ľ	MA-SSB-138,17.25 (2.5)	MA-SSB-148,37.25 (3)
	Sample Date	11/11/2005	·	8/8/2006		1/5/2007		1/5/2007	1/5/2007
	Lab COC	0511278		SA 49202		SA 56522	T	SA 56522	SA 56522
	Regulatory Limit				T	· ·	T		
Analyte	(ppm)								
Acenapthene	50 ¹				Τ		Т	0.0319 J	
Acenaphthylene	41 ¹				Т		Т		
Anthracene	50 ¹	0.0546	J	0.0656 J	J	0.0258	J	0.0995 J	0.137 J
Benzo (a) anthracene	0.224 ¹	0.225	Ý	0.134 J	J	0.0796	J	0.144 J	0.789
Benzo(a) pyrene	0.061	0.199	Y	0.142 J	J	0.0632	J	0.120 J	0.678
Benzo(b) fluoranthene	1.1 ¹	0.159	Y	0.127		0.0646	٦	0.115 J	0.539
Benzo(g,h,i) perylene	50 ¹	0.0905	J	0.0601 J	J	0.0351	J	0.0582 J	0.217 J
Benzo(k) fluoranthene	1.1 ¹	0.179	_Y	0.0981 J	J	0.0468	J	0.0780 J	0.283
Bis(2-Ethylhexyl)phthalate	50 ¹	0.0602	J	1.84					
4-Chloro 3 methylphenol	0.240 ¹						Τ		
2-Chlorophenol	0.8 ¹						Τ	17	
Chrysene	0.4 ¹	0.263	Y	0.17 J	J	0.0763	J	0.137 J	0.949
Dibenz(a,h)anthracene	0.014 ¹			0.0221 J	J				0.0584 J
Dibenzofuran	6.2 ¹								
1,4-Dichlorobenzene	NR	0.0343	J						
Di-n-butylphthalate	8.1 ¹	0.0308	J						
2,4-Dinitrotoluene	NR								
Fluoranthene	50 ¹	0.475	Y	0.214		0.159	J	0.285	1.030
Flourene	50 ¹	0.0247	J					0.0267 J	
Indeno(1,2,3-cd) pyrene	3.2 ¹	0.0934	J	0.0551 J	J	0.0295	J	0.0534 J	0.203 J
2-Methyl naphthalene	36.4 ¹								
3,4-Methylphenol	NR								
Naphthalene	13.0 ¹								
4-Nitrophenol	0.100 ¹								· · ·
N nitroso-di-n-propylamine	NR								
Pentachlorophenol	1.0 ¹								
Phenanthrene	50 ¹	0.322	Y	0.091 J	J	0.102	J	0.267	0.481
Phenol	0.03 ¹								
Pyrene	50 ¹	0.354	Y	0.288		0.142	J	0.236	1.640
1,2,4-Trichlorobenzene	NR	0.142	Y						
					Τ		T		-

Notes:

¹ Based upon TAGM HWR-94-4046, Appendix A, Table 2; Recommended Soil Cleanup Objectives; no individual compound above 50 ppm, total SVOCs <500 ppm.

NR: No Regulatory Limit

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Blank Space: Indicates not present at its respective method detection limit (MDL).

Bold : Indicates compound reported above Recommended Soil Cleanup Objective.

B: Detected in method blank

J: Estimated value below MDL

Y: Reported concentration was detected below the lowest calibration standard concentration.

R: Unusable. No Data deemed unusable as determined by Data Validation conducted by Alpha Geoscience of Clifton Park, NJ (refer to Appendix H).

Table 4-32Post-Excavation Well Gauging DataFormer Maspeth Substation

Well	Gauging	Depth to	Depth to	Measuring Point	Groundwater
Identification	Date	Product	Groundwater	Elevation	Elevation
		(ft TOPVC) ¹	(ft TOPVC) ¹	$(\mathbf{ft} \mathbf{AD}^2)$	(feet AD ²)
MW-301	7/28/2008	N/D	16.12	99.50	83.38
	9/29/2008	N/D	16.58	99.50	82.92
	11/5/2008	N/D	16.63	99.50	82.87
	1/28/2009	N/D	15.28	99.50	84.22
	5/19/2009	N/D	15.44	99.50	84.06
	7/23/2009	N/D	15.96	99.50	83.54
	10/27/2009	N/D	16.54	99.50	82.96
	2/3/2010	N/D	16.33	99.50	83.17
	4/27/2010	N/D	14.84	99.50	84.66
MW-302	7/28/2008	N/D	14.91	99.15	84.24
	9/29/2008	N/D	14.85	99.15	84.30
	11/5/2008	N/D	15.95	99.15	83.20
	1/28/2009	N/D	16.47	99.15	82.68
	5/19/2009	N/D	14.62	99.15	84.53
	7/23/2009	N/D	15.22	99.15	83.93
	10/27/2009	N/D	15.59	99.15	83.56
	2/3/2010	N/D	15.90	99.15	83.25
	4/27/2010	N/D	14.19	99.15	84.96
N (1) 1 202	Z /20 /2000	NO	15.44	00.50	0.4.00
MW-303	7/28/2008	N/D	15.44	99.52	84.08
	9/29/2008	N/D	16.54	99.52	82.98
	11/5/2008	N/D	16.75	99.52	82.77
	1/28/2009	N/D	15.17	99.52	84.35
	5/19/2009	N/D	15.40	99.52	84.12
	10/27/2009	N/D	13.83	99.32	83.09
	2/2/2010	N/D	17.03	99.32	82.49
	2/3/2010 4/27/2010	N/D N/D	14.55	99.32	84.07
	4/27/2010		14.55	<u></u>	04.97
MW-304	7/28/2008	N/D	14.60	98.55	83.95
	9/29/2008	N/D	14.98	98.55	83.57
	11/5/2008	N/D	14.22	98.55	84.33
	1/28/2009	N/D	13.43	98.55	85.12
	5/19/2009	N/D	14.22	98.55	84.33
	7/23/2009	N/D	14.35	98.55	84.20
	10/27/2009	N/D	15.39	98.55	83.16
	2/1/2010	N/D	15.48	98.55	83.07
	4/27/2010	N/D	13.63	98.55	84.92
MW-305	7//28/2008	N/D	14.51	97.19	82.68
ļ	9/29/2008	N/D	14.20	97.19	82.99
	11/5/2008	N/D	14.30	97.19	82.89
	1/28/2009	N/D	13.81	97.19	83.38
	5/19/2009	IN/D	13.96	97.19	83.23
	1/25/2009	N/D	14.22	97.19	82.97
	2/1/2010	IN/D	9.93	97.19	8/.20 81.67
	4/27/2010		10.72	97.19	01.0/
	4/2//2010	IN/D	10.72	97.19	00.47

Table 4-32Post-Excavation Well Gauging DataFormer Maspeth Substation

Well	Gauging	Depth to	Depth to	Measuring Point	Groundwater
Identification	Date	Product	Groundwater	Elevation	Elevation
		(ft TOPVC) ¹	(ft TOPVC) ¹	$(\mathbf{ft} \mathbf{AD}^2)$	(feet AD ²)
MW-306	7/28/2008	N/D	14.28	97.30	83.02
11111 2000	9/29/2008	N/D	16.25	97.30	81.05
	11/5/2008	N/D	14.46	97.30	82.84
	1/28/2009	N/D	15.53	97.30	81.77
	5/19/2009	N/D	14.74	97.30	82.56
	7/23/2009	N/D	15.31	97.30	81.99
	10/27/2009	N/D	16.06	97.30	81.24
	2/2/2010	N/D	16.41	97.30	80.89
	4/27/2010	N/D	13.97	97.30	83.33
MW-401	7/28/2008	N/D	10.38	99.23	88.85
	9/29/2008	N/D	10.32	99.23	88.91
	11/5/2008	N/D	10.50	99.23	88.73
	1/28/2009	N/D	NR	99.23	-
	5/19/2009	N/D	10.36	99.23	88.87
	7/23/2009	N/D	9.66	99.23	89.57
	10/27/2009	N/D	10.35	99.23	88.88
	2/3/2010	N/D	10.26	99.23	88.97
	4/27/2010	N/D	10.00	99.23	89.23
N (1) 1 (0)	7/20/2000	NO	0.00	00.44	00.50
MW-402	7/28/2008	N/D	9.88	98.44	88.56
	9/29/2008	N/D	9.78	98.44	88.66
	1/3/2008	N/D	9.95	98.44	88.49
	5/10/2009	N/D	9.64	98.44	88.80
	3/19/2009	N/D	9.75	98.44	00./1
	10/27/2009	N/D	0.84	90.44	00.10 99.60
	2/3/2010	N/D	9.04	98.44	89.70
	4/27/2010	N/D	9.38	98.44	89.06
	4/2//2010		7.50	70.11	07.00
MW-501*	7/28/2008	N/D	16.68	99.31	82.63
	9/29/2008	N/D	17.02	99.31	82.29
	11/5/2008	N/D	16.51	99.31	82.80
	1/28/2009	N/D	16.31	99.31	83.00
	5/19/2009	N/D	16.70	99.31	82.61
	7/23/2009	N/D	17.42	99.31	81.89
	10/27/2009	N/D	18.12	99.31	81.19
	2/3/2010	N/D	18.51	99.31	80.80
	4/27/2010	N/D	16.00	99.31	83.31
MW-502*	7/28/2008	N/D	17.21	99.67	82.46
	9/29/2008	N/D	17.02	99.67	82.65
	11/5/2008	N/D	17.03	99.67	82.64
	1/28/2009	N/D	17.00	99.67	82.67
	5/19/2009	N/D	17.23	99.67	82.44
	10/27/2009	N/D	18.39	99.67	81.28
	10/27/2009	N/D	18.92	99.67	80.75
	2/2/2010	IN/D	19.09	99.07	80.58
MW-503*	7/28/2008	N/D N/D	17.00	99.07	02.39 82.42

Table 4-32 Post-Excavation Well Gauging Data Former Maspeth Substation

Well	Gauging	Depth to	Depth to	Measuring Point	Groundwater
Identification	Date	Product	Groundwater	Elevation	Elevation
		(ft TOPVC) ¹	(ft TOPVC) ¹	$(ft AD^2)$	(feet AD ²)
	9/29/2008	N/D	16.98	99.51	82.53
	11/5/2008	N/D	17.06	99.51	82.45
	1/28/2009	N/D	16.87	99.51	82.64
	5/19/2009	N/D	17.21	99.51	82.30
	7/23/2009	N/D	18.44	99.51	81.07
	10/27/2009	N/D	18.95	99.51	80.56
	2/2/2010	N/D	19.22	99.51	80.29
	4/27/2010	N/D	17.11	99.51	82.40
MW-504*	7/28/2008	N/D	16.37	98.68	82.31
	9/29/2008	N/D	16.29	98.68	82.39
	11/5/2008	N/D	16.34	98.68	82.34
	1/28/2009	N/D	15.33	98.68	83.35
	5/19/2009	N/D	16.42	98.68	82.26
	7/23/2009	N/D	17.65	98.68	81.03
	10/27/2009	N/D	18.30	98.68	80.38
	2/2/2010	N/D	18.49	98.68	80.19
	4/27/2010	N/D	15.48	98.68	83.20
MW-601	12/15/2009	N/D	15.00	99.18	84.18
	2/3/2010	N/D	15.87	99.18	83.31
	4/27/2010	N/D	14.87	99.18	84.31
MW-602	12/15/2009	N/D	15.89	98.92	83.03
	2/3/2010**	16.15	16.17	98.92	82.77
	4/27/2010	N/D	14.17	98.92	84.75
MW-603	12/15/2009	N/D	15.15	99.16	84.01
	2/3/2010	N/D	15.48	99.16	83.68
	4/27/2010	N/D	13.38	99.16	85.78

¹ Measured from Top of PVC riser pipe to nearest 0.01 foot

² Assumed Datum: Paint spot on facilty assumed to be 100.00 feet

N/D: Non-Detect

NR: Not Recorded

* The 500-series wells were surveyed after the installation of the 600-series wells.

The previous measuring points were assumed to be 100 ft AD.

Therefore, some previously reported water level values have been changed.

** Due to the presence of free product, corrected groundwater elevation was calculated using the formula: corrected groundwater elevation = measuring point elevation - depth to groundwater + (product thickness * 0.9) where 0.9 is the assumed specific gravity of the product

Sample Lo	cation				MW-3	801							MW-3	302				MW-302 Dupe	
Sample I	Date	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010	11/6/2008	1/30/2009
PCBs (Method 8082)	TOGS Groundwater																		
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L	ug/L	ug/L						
Aroclor 1016	0.09																		
Aroclor 1221	0.09																		
Aroclor 1232	0.09																		
Aroclor1242	0.09																		
Aroclor 1248	0.09																		
Aroclor 1254	0.09			0.128 J															
Aroclor 1260	0.09				1.63	8.03	2.82	1.44	0.528	1.99				0.965	3.87	0.138 J	0.528		
Aroclor 1262	0.09																		
Aroclor 1268	0.09																		

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

ug/L = micrograms per liter Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Lo	cation				M\\/_	303				1			MM/-	304			
Sample LU	cation		r	1	10100-	303	1	r	1		1	r	10100-	304	1		1
Sample [Date	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010
PCBs (Method 8082)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Aroclor 1016	0.09																
Aroclor 1221	0.09																
Aroclor 1232	0.09																
Aroclor1242	0.09																
Aroclor 1248	0.09																
Aroclor 1254	0.09																
Aroclor 1260	0.09																
Aroclor 1262	0.09																
Aroclor 1268	0.09							I									

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Lo	cation				MW	-305							MW	-306			
Sample I	Date	7/29/2008	11/5/2008	1/29/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/29/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010
PCBs (Method 8082)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Aroclor 1016	0.09																
Aroclor 1221	0.09																
Aroclor 1232	0.09																
Aroclor1242	0.09																
Aroclor 1248	0.09																
Aroclor 1254	0.09																
Aroclor 1260	0.09																
Aroclor 1262	0.09																
Aroclor 1268	0.09																

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Lo	cation				MW	-401							MW	-402			
Sample I	Date	7/28/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010	7/28/2008	11/5/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010
PCBs (Method 8082)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Aroclor 1016	0.09																
Aroclor 1221	0.09																
Aroclor 1232	0.09																
Aroclor1242	0.09																
Aroclor 1248	0.09																
Aroclor 1254	0.09																
Aroclor 1260	0.09											4.34					
Aroclor 1262	0.09																
Aroclor 1268	0.09																

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Lo	cation				MW	-501					MW-501 Dupe	9				MW	-502			
Sample I	Date	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/27/2010	7/23/2009	2/3/2010	4/27/2010	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/24/2009	10/27/2009	2/3/2010	4/27/2010
PCBs (Method 8082)	TOGS Groundwater																			
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L
Aroclor 1016	0.09																			
Aroclor 1221	0.09																			
Aroclor 1232	0.09																			
Aroclor1242	0.09																			
Aroclor 1248	0.09																			
Aroclor 1254	0.09																			
Aroclor 1260	0.09	0.131J		0.0811 J	0.0677 J	0.203 J	0.192 J	0.100 J		0.137 J		0.0863 J								
Aroclor 1262	0.09																			
Aroclor 1268	0.09																			

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Lo	ocation	MW-502 Dupe				MW	-503				MW-50	3 Dupe				MW	-504			
Sample	Date	10/27/2009	7/28/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/27/2010	7/28/2008	5/19/2009	7/28/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/27/2010
PCBs (Method 8082)	TOGS Groundwater																			
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L								
Aroclor 1016	0.09																			
Aroclor 1221	0.09																			
Aroclor 1232	0.09																			
Aroclor1242	0.09																			
Aroclor 1248	0.09																			
Aroclor 1254	0.09																			
Aroclor 1260	0.09																			
Aroclor 1262	0.09																			
Aroclor 1268	0.09																			

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Entered by: SAE Checked by: DFM

Sample Lo	cation		MW-601			MW-602		MW-602 Dupe		MW-603					I	Field Blank				
Sample D	Date	12/15/2009	2/3/2010	4/27/2010	12/15/2009	2/3/2010	4/28/2010	12/15/2009	12/15/2009	2/3/2010	4/28/2010	7/28/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	12/15/2009	2/3/2010	4/28/2010
PCBs (Method 8082)	TOGS Groundwater																			
Analyte	Quality Std (ug/L)	ug/L	μg/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aroclor 1016	0.09																			
Aroclor 1221	0.09																			
Aroclor 1232	0.09																			
Aroclor1242	0.09																			
Aroclor 1248	0.09																			
Aroclor 1254	0.09																			
Aroclor 1260	0.09	0.751	0.975	0.674		0.655	0.478		0.120 J	0.0967 J	0.270									
Aroclor 1262	0.09																			
Aroclor 1268	0.09																			

Notes:

PCBs = Polychlorinated Biyphenyls

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Lo	cation				MW	-301							MW	-302				MW-30	2 Dupe
Sample I	Date	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010	11/6/2008	1/30/2009
VOCs (Method 8260B)	TOGS Groundwater																		
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	μg/L	ug/L	ug/L						
Acetone	50																		
Benzene	1						0.5 J												
Bromodichloromethane	50																		
2-Butanone	NS																		
Chlorobenzene	5									2.1		1.2	0.5 J	1.5	1.9	1.4			1.2
Chloroform	7																		
Chloromethane	NS																		
1,2 Dichlorobenzene	3														0.4 J				
1,3 Dichlorobenzene	3									1.2		1.2	0.6 J	1.0	1.7	1.2			1.2
1,4 Dichlorobenzene	3			1.7	1.3	1.5	1.8	1.9	1.8	12.3	13.5	10.8	5.5	9.4	16.2	10.6	2.8	14.4	10.9
Methyl t-butyl ether (MTBE)	NS																		
Tetrachloroethene	5																		
Toluene	5																		
1,2,4 Trichlorobenzene	5						0.6 J								0.6 J				
1,2,4 Trimethyl benzene	5			0.8 J															
tert Butyl Alcohol	NS																		

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Lo	cation				MW	-303							MW	-304			
Sample I	Date	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/1/2010	4/28/2010
VOCs (Method 8260B)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acetone	50																
Benzene	1																
Bromodichloromethane	50																
2-Butanone	NS																
Chlorobenzene	5																
Chloroform	7			0.6 J													
Chloromethane	NS																
1,2 Dichlorobenzene	3																
1,3 Dichlorobenzene	3																
1,4 Dichlorobenzene	3																
Methyl t-butyl ether (MTBE)	NS									2.5							
Tetrachloroethene	5																
Toluene	5																
1,2,4 Trichlorobenzene	5																
1,2,4 Trimethyl benzene	5																
tert Butyl Alcohol	NS									235							

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Lo	cation				MW	-305							MW	-306			
Sample I	Date	7/29/2008	11/5/2008	1/29/2009	5/20/2009	7/23/2009	10/27/2009	2/1/2010	4/28/2010	7/29/2008	11/6/2008	1/29/2009	5/20/2009	7/23/2009	10/27/2009	2/1/2010	4/27/2010
VOCs (Method 8260B)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acetone	50																
Benzene	1																
Bromodichloromethane	50																
2-Butanone	NS																
Chlorobenzene	5																
Chloroform	7									16.0	8.9	6.5	9.5		16.1	13.7	17.2
Chloromethane	NS		1.6 J														
1,2 Dichlorobenzene	3																
1,3 Dichlorobenzene	3																
1,4 Dichlorobenzene	3																
Methyl t-butyl ether (MTBE)	NS																
Tetrachloroethene	5					1.0											
Toluene	5																
1,2,4 Trichlorobenzene	5																
1,2,4 Trimethyl benzene	5																
tert Butyl Alcohol	NS																

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Lo	cation				MW	-401							MW	-402			
Sample I	Date	7/28/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010	7/28/2008	11/5/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010
VOCs (Method 8260B)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acetone	50																
Benzene	1																
Bromodichloromethane	50																
2-Butanone	NS																
Chlorobenzene	5																
Chloroform	7	1.0													2.3		
Chloromethane	NS																
1,2 Dichlorobenzene	3																
1,3 Dichlorobenzene	3																
1,4 Dichlorobenzene	3																
Methyl t-butyl ether (MTBE)	NS																
Tetrachloroethene	5						1.3	0.8 J							1.0	1.0	
Toluene	5												0.9 J				
1,2,4 Trichlorobenzene	5																
1,2,4 Trimethyl benzene	5																
tert Butyl Alcohol	NS																

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Lo	cation				MW-501						MW-501 Dupe	•				MW	-502			
Sample I	Date	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/27/2010	7/23/2009	2/3/2010	4/28/2010	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/24/2009	10/27/2009	2/2/2010	4/27/2010
VOCs (Method 8260B)	TOGS Groundwater																			
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L
Acetone	50																			
Benzene	1																			
Bromodichloromethane	50																			
2-Butanone	NS																			
Chlorobenzene	5	0.5J															0.6 J	0.6 J		
Chloroform	7												1.8							
Chloromethane	NS																			
1,2 Dichlorobenzene	3																			
1,3 Dichlorobenzene	3																			
1,4 Dichlorobenzene	3	6.3	1.5	1.1		0.6 J				1.4 J			1.0	1.4	0.8 J		1.4	0.7 J	0.8 J	
Methyl t-butyl ether (MTBE)	NS																			
Tetrachloroethene	5																			
Toluene	5															0.7 J				
1,2,4 Trichlorobenzene	5																			
1,2,4 Trimethyl benzene	5																			
tert Butyl Alcohol	NS																			

Notes:

VOCs = volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Lo	cation	MW-502				MW	-503				MW-50	3 Dupe				MW-504					
Sample	Date	10/27/2009	7/28/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/2/2010	4/27/2010	7/28/2008	5/19/2009	7/28/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/2/2010	4/27/2010	12/15/2009
VOCs (Method 8260B)	TOGS Groundwater																				
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L	ug/L	μg/L	ug/L	ug/L
Acetone	50													4.1 J							
Benzene	1																				
Bromodichloromethane	50																				
2-Butanone	NS													35.0							
Chlorobenzene	5																				
Chloroform	7				10.7								5.5		4.6						
Chloromethane	NS								1.6 J										1.1 J		
1,2 Dichlorobenzene	3																				
1,3 Dichlorobenzene	3																				0.5 J
1,4 Dichlorobenzene	3		0.5J							0.7 J	0.6J										3.8
Methyl t-butyl ether (MTBE)	NS		0.7J					3.2	3.2		0.7J										
Tetrachloroethene	5																				
Toluene	5															0.8 J					
1,2,4 Trichlorobenzene	5																				
1,2,4 Trimethyl benzene	5																				
tert Butyl Alcohol	NS									9.7 J											

Notes:

VOCs = volatile organic compounds Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard ug/L = micrograms per liter Blank spaces indicate compound reported below Method Detection Limit (MDL).

Bold: Indicates compound reported above Cited Regulatory Standards.

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

V11 = Analyte concentration confirmed by duplicate analysis.

Notes: VOCs = volat Groundwater NS = No Star ug/L = microg Blank spaces **Bold**: Indicate J = Detected V11 = Analyte

Sample Lo	cation	MW-601			MW-602		MW-602 Dupe		MW-603					Field	Blank			
Sample I	Date	2/3/2010	4/27/2010	12/15/2009	2/3/2010	4/28/2010	12/15/2009	12/15/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010
VOCs (Method 8260B)	TOGS Groundwater																	
Analyte	Quality Std (ug/L)	μg/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L
Acetone	50										10.6	5.1 J	2.75 J	8.9 V11, J	12.5 V11			
Benzene	1			0.6 J			0.5 J											
Bromodichloromethane	50												2.9 V11					
2-Butanone	NS																	
Chlorobenzene	5			2.1	2.6	1.8	2.2											
Chloroform	7												30.1 V11					
Chloromethane	NS																	
1,2 Dichlorobenzene	3			0.7 J	0.7 J	0.6 J	0.6 J	0.4J										
1,3 Dichlorobenzene	3			2.0	2.3	2.6	2.1	0.6 J		0.6 J								
1,4 Dichlorobenzene	3	2.8	1.7	24.0	26.1	22.7	24.2	5.3	4.4	3.9								
Methyl t-butyl ether (MTBE)	NS																	
Tetrachloroethene	5																	
Toluene	5													1.0 V11				1.6
1,2,4 Trichlorobenzene	5			0.6 J			0.6 J											
1,2,4 Trimethyl benzene	5																	
tert Butyl Alcohol	NS													54.8 V11				

ile organic compounds

Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards

ıdard

rams per liter

indicate compound reported below Method Detection Limit (MDL). ss compound reported above Cited Regulatory Standards.

above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

concentration confirmed by duplicate analysis.

Sample Loca	tion				MW	/-301							MW	-302				MW-30	J2 Dupe
Sample Dat	te	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010	11/6/2008	1/30/2009
SVOCs (Method 8270B)	TOGS Groundwater																		
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L	ug/L	ug/L						
Acenapthene	20																		
Acenaphthylene	NS									0.189									
Anthracene	50																		
Benzo (a) anthracene	NS or 0.002*																		
Benzo(a) pyrene	ND																		
Benzo(b) fluoranthene	NS or 0.002*																		
Benzo(g,h,i) perylene	NS																		
Benzo(k) fluoranthene	NS or 0.002*																		
bis(2-Ethylhexyl)phthalate	5		2.66 J			4.59 J	5.31 J			53.5	7.72	3.43 J		6.70	14.8	3.47 J	4.09 J	8.06	
Chrysene	NS or 0.002*																		
Dibenz(a,h)anthracene	NS																		
1,3 dichlorobenzene	3										1.41 J			0.609 J	1.03 J	0.806 J		1.43 J	
1,4 dichlorobenzene	3		0.894 J		0.767 J	0.791 J	1.11 J		0.825 J		9.45	7.29 J	3.20 J	5.25 J	8.45	6.75	1.62 J	10.0	9.29 J
Diethylphthalate	NS or 50*																		
Di-n-butylphthalate	NS																		
Di-n-octylphthalate	NS or 50*																		
Fluoranthene	NS or 50*																		
Flourene	NS or 50*									0.256									
Indeno(1,2,3-cd) pyrene	NS or 0.002*																		
2-Methyl naphthalene	NS																		
Naphthalene	10																		
Phenanthrene	NS or 50*																		
Phenol	1																		
Pyrene	NS or 50*																		

Notes: SVOCs = semi-volatile organic compounds

SVOS = serie-volatile organic compones Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard ND = Non-Detectable

* = Guidance Value

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Loc	ation				MW	-303							MW	-304			
Sample D	ate	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/1/2010	4/28/2010
SVOCs (Method 8270B)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acenapthene	20																
Acenaphthylene	NS																
Anthracene	50																
Benzo (a) anthracene	NS or 0.002*																
Benzo(a) pyrene	ND																
Benzo(b) fluoranthene	NS or 0.002*																
Benzo(g,h,i) perylene	NS																
Benzo(k) fluoranthene	NS or 0.002*																
bis(2-Ethylhexyl)phthalate	5		0.969 J				2.77 J	3.84 J				8.94 J			1.70 J	1.79 J	
Chrysene	NS or 0.002*																
Dibenz(a,h)anthracene	NS																
1,3 dichlorobenzene	3																
1,4 dichlorobenzene	3																
Diethylphthalate	NS or 50*																
Di-n-butylphthalate	NS																
Di-n-octylphthalate	NS or 50*																
Fluoranthene	NS or 50*																
Flourene	NS or 50*																
Indeno(1,2,3-cd) pyrene	NS or 0.002*																
2-Methyl naphthalene	NS																
Naphthalene	10																
Phenanthrene	NS or 50*																
Phenol	1																
Pyrene	NS or 50*					1											

Notes: SVOCs = semi-volatile organic compounds SVOS = serie-volatile organic compounds Groundwater (Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard ND = Non-Detectable * = Guidance Value ug/L = micrograms per liter Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards. J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Loca	ation				MW	-305							MW	-306			
Sample Da	ate	7/29/2008	11/5/2008	1/29/2009	5/20/2009	7/23/2009	10/27/2009	2/1/2010	4/28/2010	7/29/2008	11/6/2008	1/29/2009	5/20/2009	7/23/2009	10/27/2009	2/1/2010	4/27/2010
SVOCs (Method 8270B)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acenapthene	20																
Acenaphthylene	NS																
Anthracene	50																
Benzo (a) anthracene	NS or 0.002*																
Benzo(a) pyrene	ND																
Benzo(b) fluoranthene	NS or 0.002*																
Benzo(g,h,i) perylene	NS																
Benzo(k) fluoranthene	NS or 0.002*																
bis(2-Ethylhexyl)phthalate	5						4.22 J								2.47 J		
Chrysene	NS or 0.002*																
Dibenz(a,h)anthracene	NS																
1,3 dichlorobenzene	3																
1,4 dichlorobenzene	3																
Diethylphthalate	NS or 50*																
Di-n-butylphthalate	NS																
Di-n-octylphthalate	NS or 50*																
Fluoranthene	NS or 50*																
Flourene	NS or 50*																
Indeno(1,2,3-cd) pyrene	NS or 0.002*																
2-Methyl naphthalene	NS																
Naphthalene	10																
Phenanthrene	NS or 50*																
Phenol	1																
Pyrene	NS or 50*																

Notes: SVOCs = semi-volatile organic compounds SVOS = serie-volatile organic compounds Groundwater (Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard ND = Non-Detectable * = Guidance Value ug/L = micrograms per liter Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards. J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Loca	ition				MW	-401							MW	-402			
Sample Da	te	7/28/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010	7/28/2008	11/5/2008	1/30/2009	5/19/2009	7/23/2009	7/23/2009	2/3/2010	4/27/2010
SVOCs (Method 8270B)	TOGS Groundwater																
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acenapthene	20																
Acenaphthylene	NS																
Anthracene	50																
Benzo (a) anthracene	NS or 0.002*																
Benzo(a) pyrene	ND																
Benzo(b) fluoranthene	NS or 0.002*																
Benzo(g,h,i) perylene	NS																
Benzo(k) fluoranthene	NS or 0.002*																
bis(2-Ethylhexyl)phthalate	5			1.60 J	2.64 J		2.84 J					3.60 J					
Chrysene	NS or 0.002*																
Dibenz(a,h)anthracene	NS																
1,3 dichlorobenzene	3																
1,4 dichlorobenzene	3																
Diethylphthalate	NS or 50*			1.16 J													
Di-n-butylphthalate	NS																
Di-n-octylphthalate	NS or 50*																
Fluoranthene	NS or 50*																
Flourene	NS or 50*																
Indeno(1,2,3-cd) pyrene	NS or 0.002*																
2-Methyl naphthalene	NS																
Naphthalene	10																
Phenanthrene	NS or 50*																
Phenol	1																
Pyrene	NS or 50*							1			1						

Notes: SVOCs = semi-volatile organic compounds SVOS = serie-volatile organic compounds Groundwater (Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard ND = Non-Detectable * = Guidance Value ug/L = micrograms per liter Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards. J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

Sample Loca	tion				MW	-501					MW-501 Dupe					MM	/-502			
Sample Da	le	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/27/2010	7/23/2009	2/3/2010	4/27/2010	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/24/2009	10/27/2009	2/2/2010	4/27/2010
SVOCs (Method 8270B)	TOGS Groundwater																			
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	μg/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L						
Acenapthene	20	0.122											0.211							
Acenaphthylene	NS	0.111											0.189							
Anthracene	50	0.100											0.244							
Benzo (a) anthracene	NS or 0.002*	0.122											0.278							
Benzo(a) pyrene	ND	0.100											0.211							
Benzo(b) fluoranthene	NS or 0.002*	0.089											0.189							
Benzo(g,h,i) perylene	NS	0.100											0.256							
Benzo(k) fluoranthene	NS or 0.002*	0.111											0.244							
bis(2-Ethylhexyl)phthalate	5						1.60 J		4.57 J								25.6	1.60 J		
Chrysene	NS or 0.002*	0.144											0.311							
Dibenz(a,h)anthracene	NS	0.122											0.256							
1,3 dichlorobenzene	3																			
1,4 dichlorobenzene	3																0.979 J			
Diethylphthalate	NS or 50*																			
Di-n-butylphthalate	NS																			
Di-n-octylphthalate	NS or 50*																0.638 J			
Fluoranthene	NS or 50*	0.211											0.267							
Flourene	NS or 50*	0.144											0.267							
Indeno(1,2,3-cd) pyrene	NS or 0.002*	0.122											0.289							
2-Methyl naphthalene	NS												0.089							
Naphthalene	10	0.056											0.089							
Phenanthrene	NS or 50*	0.144											0.300							
Phenol	1	0.156																		
Pyrene	NS or 50*												0.333							

Notes: SVOCs = semi-volatile organic compounds

Groundwater Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards.

NS = No Standard

ND = Non-Detectable

* = Guidance Value

ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Locat	ion	MW-502 Dupe				MW-503					MW-50	3 Dupe				MM	/-504			
Sample Dat	e	10/27/2009	7/28/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/2/2010	4/27/2010	7/28/2008	5/19/2009	7/28/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/2/2010	4/27/2010
SVOCs (Method 8270B)	TOGS Groundwater																			
Analyte	Quality Std (ug/L)	ug/L	ug/L	ug/L	(ug/L)	ug/L	ug/L	ug/L	μg/L	ug/L	μg/L	ug/L								
Acenapthene	20																			
Acenaphthylene	NS																			
Anthracene	50																			
Benzo (a) anthracene	NS or 0.002*										0.056									
Benzo(a) pyrene	ND																			
Benzo(b) fluoranthene	NS or 0.002*																			
Benzo(g,h,i) perylene	NS																			
Benzo(k) fluoranthene	NS or 0.002*																			
bis(2-Ethylhexyl)phthalate	5	7.14		1.99 J				2.55 J								12.7		2.66 J		
Chrysene	NS or 0.002*		0.089								0.078									
Dibenz(a,h)anthracene	NS																			
1,3 dichlorobenzene	3																			
1,4 dichlorobenzene	3																			
Diethylphthalate	NS or 50*																			
Di-n-butylphthalate	NS															2.34 J				
Di-n-octylphthalate	NS or 50*															5.12 J				
Fluoranthene	NS or 50*		0.111								0.156									
Flourene	NS or 50*																			
Indeno(1,2,3-cd) pyrene	NS or 0.002*																			
2-Methyl naphthalene	NS																			
Naphthalene	10																			
Phenanthrene	NS or 50*		0.078																	
Phenol	1																			
Pyrene	NS or 50*		0.089							1	0.122						1			

Notes: SVOCs = semi-volatile organic compounds Stroce - series claulity Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard

ND = Non-Detectable

* = Guidance Value ug/L = micrograms per liter

Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Loca	tion	MW	-601	MW	-602	MW	-603				Field E	Blank			
Sample Da	te	2/3/2010	4/28/2010	2/3/2010	4/28/2010	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010
SVOCs (Method 8270B)	TOGS Groundwater														
Analyte	Quality Std (ug/L)	μg/L	ug/L	μg/L	ug/L	μg/L	ug/L	ug/L	μg/L						
Acenapthene	20														
Acenaphthylene	NS														
Anthracene	50														
Benzo (a) anthracene	NS or 0.002*														
Benzo(a) pyrene	ND														
Benzo(b) fluoranthene	NS or 0.002*														
Benzo(g,h,i) perylene	NS														
Benzo(k) fluoranthene	NS or 0.002*														
bis(2-Ethylhexyl)phthalate	5		1.10 J	1.74 J									1.51 J		
Chrysene	NS or 0.002*														
Dibenz(a,h)anthracene	NS														
1,3 dichlorobenzene	3			1.59 J	1.41 J										
1,4 dichlorobenzene	3		0.556 J	16.3	14.1	2.60 J	2.06 J								
Diethylphthalate	NS or 50*														
Di-n-butylphthalate	NS														
Di-n-octylphthalate	NS or 50*														
Fluoranthene	NS or 50*														
Flourene	NS or 50*														
Indeno(1,2,3-cd) pyrene	NS or 0.002*														
2-Methyl naphthalene	NS														
Naphthalene	10														
Phenanthrene	NS or 50*														
Phenol	1														
Pyrene	NS or 50*														

Notes:

SVOCs = semi-volatile organic compounds Svoos a serie-volate organic compounds Groundwater (Quality Standard from: NYSDEC Technical and Operational Guidance Series (TOGS) groundwater standards. NS = No Standard ND = Non-Detectable * = Guidance Value ug/L = micrograms per liter Blank spaces indicate compound reported below Method Detection Limit (MDL). Bold: Indicates compound reported above Cited Regulatory Standards.

Sample Loca	tion				MW	-301							MW	-302				MW-30)2 Dupe
Sample Da	te	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/20/2009	7/24/2009	10/28/2009	2/3/2010	4/28/2010	11/6/2008	1/30/2009
TPH (Method 8100 Modified)	Groundwater																		
Analyte	Quality Std (mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Gasoline	NS																		
No. 2 Fuel Oil	NS																		
No. 4 Fuel Oil	NS																		
No. 6 Fuel Oil	NS																		
Motor Oil	NS																		
Ligroin	NS																		
Aviation Fuel	NS																		
DielectricFlui	NS						18.9								27.4				
Unidentified	NS	3.4	30.9	23.3	15.5	60.1		15.3	18.8	45.4	11.9	24.8	18.3	17.3		11.2	19.3	11.2	
Other Oil	NS																		
Total TPH		3.4	30.9	23.3	15.5	60.1	18.9	15.3	18.8	45.4	11.9	24.8	18.3	17.3	27.4	11.2	19.3	11.2	0

Notes:

TPH = Total Petroleum Hydrocarbons NS = No Standard

mg/L = milligrams per liter or parts per million (ppm)

Blank spaces indicate compound reported below Method Detection Limit (MDL).

Sample Locat	ion				MW	-303							MW	-304			
Sample Date	e	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/27/2009	2/1/2010	4/28/2010
TPH (Method 8100 Modified)	Groundwater																
Analyte	Quality Std (mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Gasoline	NS																
No. 2 Fuel Oil	NS																
No. 4 Fuel Oil	NS																
No. 6 Fuel Oil	NS																
Motor Oil	NS																
Ligroin	NS																
Aviation Fuel	NS																
DielectricFlui	NS																
Unidentified	NS	2.6	2.7	2.4	2.6	2.8	2.7	1.9	3.3	1.3	0.9	1.3	1.5	1.2	1.4	1.1	1.0
Other Oil	NS																
Total TPH		2.6	2.7	2.4	2.6	2.8	2.7	1.9	3.3	1.3	0.9	1.3	1.5	1.2	1.4	1.3	1.0

Notes:

Sample Local	tion				MW	-305							MW	-306			
Sample Local		7/20/2009	11/5/2009	1/20/2000	E/20/2000	7/22/2000	10/27/2000	2/1/2010	4/28/2010	7/20/2008	11/6/2008	1/20/2000	5/20/2009	7/23/2009	10/27/2009	2/1/2010	4/27/2010
Sample Dai	le	1/29/2006	11/3/2006	1/29/2009	5/20/2009	1/23/2009	10/27/2009	2/1/2010	4/20/2010	1123/2000	11/0/2000	1/23/2003	3/20/2003	1123/2003	10/21/2003	2/1/2010	4/21/2010
TPH (Method 8100 Modified)	Groundwater																
Analyte	Quality Std (mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Gasoline	NS																
No. 2 Fuel Oil	NS																
No. 4 Fuel Oil	NS																
No. 6 Fuel Oil	NS																
Motor Oil	NS																
Ligroin	NS																
Aviation Fuel	NS																
DielectricFlui	NS																
Unidentified	NS																
Other Oil	NS																
Total TPH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes:

Sample Locat	ion				MW	-401							MW	-402			
Sample Dat	e	7/28/2008	11/6/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010	7/28/2008	11/5/2008	1/30/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/27/2010
TPH (Method 8100 Modified)	Groundwater																
Analyte	Quality Std (mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Gasoline	NS																
No. 2 Fuel Oil	NS																
No. 4 Fuel Oil	NS																
No. 6 Fuel Oil	NS																
Motor Oil	NS																
Ligroin	NS																
Aviation Fuel	NS																
DielectricFlui	NS																
Unidentified	NS																
Other Oil	NS																
Total TPH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes:

										r			T.							
Sample Loca	tion				MW	-501					MW-501 Dupe	•				MW	-502			
Sample Da	te	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/23/2009	10/27/2009	2/3/2010	4/27/2010	7/23/2009	2/3/2010	4/28/2010	7/29/2008	11/5/2008	1/29/2009	5/19/2009	7/24/2009	10/27/2009	2/2/2010	4/27/2010
TPH (Method 8100 Modified)	Groundwater																			
Analyte	Quality Std (mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Gasoline	NS																			
No. 2 Fuel Oil	NS																			
No. 4 Fuel Oil	NS																			
No. 6 Fuel Oil	NS																			
Motor Oil	NS																			
Ligroin	NS																			
Aviation Fuel	NS																			
DielectricFlui	NS																			
Unidentified	NS	3.1	0.9	2.0	1.1	0.8	0.9	0.6		0.6	0.9		1.7	1.3	5.6	2.5	4.1	1.8	1.9	5.8
Other Oil	NS																			
Total TPH		3.1	0.9	2.0	1.1	0.8	0.9	0.6	0	0.6	0.9	0	1.7	1.3	5.6	2.5	4.1	1.8	1.9	5.8

Notes:

TPH = Total Petroleum Hydrocarbons NS = No Standard mg/L = milligrams per liter or parts per million (ppm) Blank spaces indicate compound reported below Method Detection Limit (MDL).

Table 4-36_Hist TPH.xls

2/2/2010	4/27/2010
mg/L	mg/L
0.5	
0.5	0
	mg/L

Notes:

Sample Locat	ion	MW	-601	MW	-602	MW	-603				Field.	Blank			
		0/0/0040	4/07/0040	0/0/004.0	4/00/0040	0/0/0040	4/00/0040	7/00/0000	44/0/0000	4/00/0000	- /	7/00/0000	40/00/0000	0/0/0040	
Sample Dat	e	2/3/2010	4/27/2010	2/3/2010	4/28/2010	2/3/2010	4/28/2010	7/29/2008	11/6/2008	1/29/2009	5/19/2009	7/23/2009	10/28/2009	2/3/2010	4/28/2010
TPH (Method 8100 Modified)	Groundwater														
Analyte	Quality Std (mg/L)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Gasoline	NS														
No. 2 Fuel Oil	NS														
No. 4 Fuel Oil	NS														
No. 6 Fuel Oil	NS														
Motor Oil	NS														
Ligroin	NS														
Aviation Fuel	NS														
DielectricFlui	NS														
Unidentified	NS	8.7	7.3	7.8	16.6	5.3	10.3								
Other Oil	NS														
Total TPH		8.7	7.3	7.8	16.6	5.3	10.3	0	0	0	0	0	0	0	0

Notes:

TPH = Total Petroleum Hydrocarbons

NS = No Standard

mg/L = milligrams per liter or parts per million (ppm)

Blank spaces indicate compound reported below Method Detection Limit (MDL).

FIGURES

		Jacques Whitford Engineering Group, Inc., P.C.								
		JACQUES WHITFORD PORTSMOUTH,	LOCATION: NEW HAM	IPSHIRE						
		<i>DATE PREPARED:</i> 3–10–09	designed by: DBH	drawn by: JJW	снескед ву: DFM	reviewed by: DBH				
	Jacques	REVISION DATE:	REVISION NO:	DRAWN BY:	CHECKED BY:	REVIEWED BY:		57-77 RUST STREET MASPETH, NEW YORK		
	w wnitiora	PROJECT NAME/FILE NAME:		PROJECT NUMBER/PHASE:		SCALE:	PREPARED FOR:	FIGURE NO.	4 [
L		MASPETH/SITE		1012163.		AS SHOWN	CON EDISON		•	

APPROXIMATE.

JACQUES WHITFORD PORTSMOUTH,	location: NEW HAM	PSHIRE			DRAWING TITLE: SPIDER MAP OF TOTAL PCBs IN SOIL			
date prepared: 3–10–09 revision date:	designed by: DBH revision no:	drawn by: JJW drawn by:	CHECKED BY: DFM CHECKED BY:	reviewed by: DBH reviewed by:	FORMER MASPETH SUBSTATION 57-77 RUST STREET MASPETH, NEW YORK			
project name/file MASPETH/SITE	NAME:	ргојест NU 1012163	IMBER/PHASE: 3.	scale: AS SHOWN	prepared for: CON EDISON		TIGURE NO. 7	

									//////	
		\mathbf{A}		SB-11			\$8-10			
			SAMPLE DEPT	H VOCs	CONCENTRATION	I NYSDEC RSCO	SAMPLE DEPTH (ft bgs)	4/1 VOCs	CONCENTRATION (ppm)	NYSDEC R (ppm)
			(7-9)	ACETONE	1.5	0.2	(5-7)	ACETONE	3.2	0.2
\backslash		$\setminus \mathbf{V}$	(13–15)	ACETONE	1.5	0.2	(15–17)	ACETONE	3.4	0.2
	\$B-12	ר X					<u> </u>		/////	////
SAMPLE DEPTH	3/30/1999 CONCENTRATION NYSDEC RSCO		\backslash							
(ft bgs) (13-15)	METHYLENE 1.8 0.1	+						\searrow		
			20		,o	0-0-0	CHAIN	-LINK FENCE	$\overline{}$	
	\$8-13 / MW-201A	л \`		FORMER C	N ED NHOLE					MW—10
SAMPLE DEPTH	3/30/1999 CONCENTRATION NYSDEC RSCO		G	ATE					Ň	\searrow
(ft bgs) (15-17)	VOCs (ppm) (ppm) ACETONE 1.71 0.2	_			(MH)					
(21-23)	ACETONE 2.72 0.2	SITE AC	CESS							
									SB-2	29
	SB-14 / 14A]	\uparrow	- 4						Ŭ●
SAMPLE DEPTH	4/1/1999 CONCENTRATION NYSDEC RSCO									SB-18
(ft bgs) (5-7)	VOCS (ppm) (ppm) ACETONE 5.02 0.2	-								
(7–9)	ACETONE 8.6 0.2	_				IW-101			SB	-27
				\longrightarrow						SB-17
					P					Ī
				\backslash	\ \	$\langle \cdot, \cdot \rangle$				
			RU			$\langle \rangle \langle \rangle$				
		\backslash		1					\sim	
			NO_NA	STR		X		Fo	ORMER CONCRETE	SLABS
		\backslash		EET		W.				
						sible V		/		
—— L	egend ——					WALK				
			S 3/31	B-9 /1999					/	//
		SAMPLE DEPTH (ft bgs)	VOCs	CONCENTRATION (ppm)	NYSDEC RSCO (ppm)		\mathbf{X}			
o	— — CHAIN LINK FENCE	(7-9)	CETONE	2.5	0.2	$\left \right\rangle$	V			
/////	- EXISTING BUILDING	(13–15)	ACÈTONE	3.2	0.2		X			
· /						\backslash				
	- FORMER CONCRETE DAD		S 3/31	B-8		\backslash	14114-300			
\frown	– FORMER CONCRETE PAD									
•	– FORMER CONCRETE PAD – TREE	SAMPLE DEPTH (ft bgs)	VUCs	CONCENTRATION (ppm)	NYSDEC RSCO (ppm)					
\bigcirc	– FORMER CONCRETE PAD – TREE	SAMPLE DEPTH (ft bgs) (11-13)	ACETONE	CONCENTRATION (ppm) 140	NYSDEC RSCO (ppm) 0.2					
\bigcirc	 FORMER CONCRETE PAD TREE PROPERTY LINE 	SAMPLE DEPTH (ft bgs) (11–13) (15–17)	ACETONE	CONCENTRATION (ppm) 140 4.4	NYSDEC RSCO (ppm) 0.2 0.2			<u> </u>		
W-304	 FORMER CONCRETE PAD TREE PROPERTY LINE 	SAMPLE DEPTH (ft bgs) (11–13) (15–17)	ACETONE	CONCENTRATION (ppm) 140 4.4	NYSDEC RSCO (ppm) 0.2 0.2					
₩-304 ₩	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION 	SAMPLE DEPTH (ft bgs) (11–13) (15–17)	VUCS ACETONE ACETONE SI 3/31	CONCENTRATION (ppm) 140 4.4 B-16 I/1999	NYSDEC RSCO (ppm) 0.2 0.2					
₩-304 ₩-304	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION 	SAMPLE DEPTH (ft bgs) (11–13) (15–17) SAMPLE DEPTH (ft bgs)	VUCS ACETONE ACETONE SI 3/31 VOCS	CONCENTRATION (ppm) 140 4.4 3-16 CONCENTRATION (ppm)	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm)					
₩-304 ₩-304 €	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION 	SAMPLE DEPTH (ft bgs) (11–13) (15–17) SAMPLE DEPTH (ft bgs) (9–11)	VUCS ACETONE ACETONE SI 3/31 VOCs ACETONE	CONCENTRATION (ppm) 140 4.4 3-16 CONCENTRATION (ppm) 3.41	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2					
W - 304	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION 	SAMPLE DEPTH (ft bgs) (11–13) (15–17) SAMPLE DEPTH (ft bgs) (9–11) (17–19)	VUCS ACETONE ACETONE S 3/31 VOCs ACETONE ACETONE	CONCENTRATION (ppm) 140 4.4 B-16 /1999 CONCENTRATION (ppm) 3.41 7.16	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2					
W - 304 $SB - 21$ NOTES: 1. BUILDING AN	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION 	SAMPLE DEPTH (ft bgs) (11-13) (15-17) SAMPLE DEPTH (ft bgs) (9-11) (17-19)	VUCS ACETONE ACETONE SI 3/31 VOCS ACETONE ACETONE SB-7 /	CONCENTRATION (ppm) 140 4.4 3-16 1/1999 CONCENTRATION (ppm) 3.41 7.16	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2					
W-304 SB-21 NOTES: 1. BUILDING AN FROM FIELD PLANS PROV	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION 	SAMPLE DEPTH (ft bgs) (11-13) (15-17) SAMPLE DEPTH (ft bgs) (9-11) (17-19) SAMPLE DEPTH	VUCS ACETONE ACETONE ACETONE ACETONE ACETONE SB-7 / 3/31 VOCs	CONCENTRATION (ppm) 140 4.4 B-16 //1999 CONCENTRATION (ppm) 3.41 7.16 MW-202 //1999 CONCENTRATION	NYSDEC RSCO (ppm) 0.2 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2 NYSDEC RSCO					
W−304 SB−21 NOTES: 1. BUILDING AN FROM FIELD PLANS PROV FOR ILLUSTR DIMENSIONS	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION D SITE DIMENSIONS ARE OBTAINED MEASUREMENTS AND FACILITY IDED BY CON EDISON AND GIVEN ATIVE PURPOSES ONLY. ACTUAL AND SITE FEATURES TO BE	SAMPLE DEPTH (ft bgs) (11–13) (15–17) SAMPLE DEPTH (ft bgs) (9–11) (17–19) SAMPLE DEPTH (ft bgs) (16–18)	VUCS ACETONE ACETONE SI 3/31 VOCs ACETONE ACETONE SB-7 / 3/31 VOCs ACETONE	CONCENTRATION (ppm) 140 4.4 B-16 /1999 CONCENTRATION (ppm) 3.41 7.16 MW-202 /1999 CONCENTRATION (ppm) 3.4	NYSDEC RSCO (ppm) 0.2 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2 NYSDEC RSCO (ppm) 0.2					
W-304 → SB-21 NOTES: 1. BUILDING AN FROM FIELD PLANS PROV FOR ILLUSTR DIMENSIONS VERIFIED BY 2. CONCRETE F	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION D SITE DIMENSIONS ARE OBTAINED MEASUREMENTS AND FACILITY IDED BY CON EDISON AND GIVEN ATIVE PURPOSES ONLY. ACTUAL AND SITE FEATURES TO BE THE CONTRACTOR AND MAY DIFFER.	SAMPLE DEPTH (ft bgs) (11–13) (15–17) SAMPLE DEPTH (ft bgs) (9–11) (17–19) SAMPLE DEPTH (ft bgs) (16–18) (20–22)	VUCS ACETONE ACETONE SI 3/31 VOCS ACETONE ACETONE ACETONE ACETONE ACETONE	CONCENTRATION (ppm) 140 4.4 3-16 //1999 CONCENTRATION (ppm) 3.41 7.16 MW-202 //1999 CONCENTRATION (ppm) 3.4 0.53	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2					
 ✓ ✓	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION D SITE DIMENSIONS ARE OBTAINED MEASUREMENTS AND FACILITY IDED BY CON EDISON AND GIVEN ATIVE PURPOSES ONLY. ACTUAL AND SITE FEATURES TO BE THE CONTRACTOR AND MAY DIFFER. PADS AND SITE FEATURES SHOWN LECT ALL SITE FEATURES.	SAMPLE DEPTH (ft bgs) (11-13) (15-17) SAMPLE DEPTH (ft bgs) (9-11) (17-19) SAMPLE DEPTH (ft bgs) (16-18) (20-22)	VUCS ACETONE ACETONE ACETONE ACETONE ACETONE ACETONE ACETONE ACETONE	CONCENTRATION (ppm) 140 4.4 B-16 //1999 CONCENTRATION (ppm) 3.41 7.16 MW-202 //1999 CONCENTRATION (ppm) 3.4 0.53	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2		NORTH			
W-304 SB-21 NOTES: 1. BUILDING AN FROM FIELD PLANS PROV FOR ILLUSTR DIMENSIONS VERIFIED BY 2. CONCRETE P DO NOT REF 3. TEST BORING WERE MEASU	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION D SITE DIMENSIONS ARE OBTAINED MEASUREMENTS AND FACILITY IDED BY CON EDISON AND GIVEN ATIVE PURPOSES ONLY. ACTUAL AND SITE FEATURES TO BE THE CONTRACTOR AND MAY DIFFER. PADS AND SITE FEATURES TO BE THE CONTRACTOR AND MAY DIFFER. PADS AND SITE FEATURES SHOWN LECT ALL SITE FEATURES. C AND MONITORING WELL LOCATIONS INCE DUSING 100-FOOT TAPE	SAMPLE DEPTH (ft bgs) (11–13) (15–17) SAMPLE DEPTH (ft bgs) (9–11) (17–19) SAMPLE DEPTH (ft bgs) (16–18) (20–22)	VUCS ACETONE ACETONE 3/31 VOCS ACETONE ACETONE ACETONE ACETONE ACETONE	CONCENTRATION (ppm) 140 4.4 B-16 //1999 CONCENTRATION (ppm) 3.41 7.16 MW-202 //1999 CONCENTRATION (ppm) 3.4 0.53	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2 0.2		NORTH			
W−304 SB−21 NOTES: 1. BUILDING AN FROM FIELD PLANS PROV FOR ILLUSTR DIMENSIONS VERIFIED BY 2. CONCRETE F DO NOT REF 3. TEST BORING WERE MEASU REFERENCING APPROXIMATE	 FORMER CONCRETE PAD TREE PROPERTY LINE EXISTING MONITORING WELL LOCATION SOIL BORING LOCATION D SITE DIMENSIONS ARE OBTAINED MEASUREMENTS AND FACILITY IDED BY CON EDISON AND GIVEN ATIVE PURPOSES ONLY. ACTUAL AND SITE FEATURES TO BE THE CONTRACTOR AND MAY DIFFER. PADS AND SITE FEATURES TO BE THE CONTRACTOR AND MAY DIFFER. PADS AND SITE FEATURES SHOWN LECT ALL SITE FEATURES. PADD MONITORING WELL LOCATIONS INEED USING 100-FOOT TAPE PADD SITE FEATURES AND ARE	SAMPLE DEPTH (ft bgs) (11-13) (15-17) SAMPLE DEPTH (ft bgs) (9-11) (17-19) SAMPLE DEPTH (ft bgs) (16-18) (20-22)	VUCS ACETONE ACETONE 3/31 VOCs ACETONE ACETONE ACETONE ACETONE ACETONE	CONCENTRATION (ppm) 140 4.4 B-16 //1999 CONCENTRATION (ppm) 3.41 7.16 MW-202 //1999 CONCENTRATION (ppm) 3.4 0.53	NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 NYSDEC RSCO (ppm) 0.2 0.2 0.2 0.2		NORTH			

) '	5–24–10	DBH	JJW	DFM	DBH		APRIL 27, 2010	
	REVISION DATE:	REVISION NO:	DRAWN BY:	CHECKED BY:	REVIEWED BY:		FORMER MASPETH SUBSTATION MASPETH, NEW YORK	
ntec	PROJECT NAME/FILE NAME:		PROJECT NUMBER/PHASE:		SCALE:	PREPARED FOR:		· FIGURE N
	MASPETH/SITE		191710024		AS SHOWN	CON EDISON		

APPENDICES

The following Appendices are contained on the first accompanying CD:

- APPENDIX A: Digital Copy of the Entire FER and Entire Project Record
- **APPENDIX B: Digital Copy of the Approved RAWP**
- **APPENDIX C: NYSDEC Agency Approvals**
- **APPENDIX D: Weekly Reports**
- **APPENDIX E: Project Photo Log**
- **APPENDIX F: Soil/Waste Characterization Documentation**
- **APPENDIX G:** Data Usability Summary Reports
- **APPENDIX H: Imported Materials Documentation**
- **APPENDIX I:** Analytical Profile of Item No. 4 Backfill Material
- **APPENDIX J: Site Management Plan**
- **APPENDIX K: Resume of Site Safety Coordinator**