LEGGETTE, BRASHEARS & GRAHAM, INC.

PROFESSIONAL GROUNDWATER AND ENVIRONMENTAL ENGINEERING SERVICES

> 4 WESTCHESTER PARK DRIVE, SUITE 175 WHITE PLAINS, NY 10604 914-694-5711 FAX 914-694-5744 www.lbgweb.com

> > November 21, 2014

Mr. Thomas Biel NYSDEC - Region 7 Office Division of Environmental Remediation 615 Erie Boulevard West Syracuse, NY 13204-2400

Dear Mr. Biel:

Attached is one bound copy and one electronic copy of the Leggette, Brashears & Graham, Inc. (LBG) report titled: "Periodic Review Report, Deluxe Corporation, Former Deluxe Printing Facility, 4707 Dey Road, Liverpool, New York, NYSDEC Site #V-00339-7, Agreement Index No. A7-0419-0005" for your files.

If you have any questions please do not hesitate to contact me at (914) 694-5711.

Very truly yours,

LEGGETTE, BRASHEARS & GRAHAM, INC.

Weler

Jorma Weber Senior Associate

JW:dmd Attachments cc: Jon Robertson Tom Walsh NYSDEC (Albany Office) NYSDOH (Bureau of Environmental Exposure)

f:\reports\deluxe\2014\periodic review report\letter.site003397.2014-11-21.liverpool.periodicreviewreport cover ltr.docx

2014 PERIODIC REVIEW REPORT DELUXE CORPORATION FORMER DELUXE PRINTING FACILITY 4707 DEY ROAD, LIVERPOOL, NEW YORK NYSDEC SITE #V-00339-7 AGREEMENT INDEX NO. A7-0419-0005

Prepared For:

Deluxe Corporation

November 2014

Prepared By:

LEGGETTE, BRASHEARS & GRAHAM, INC. Professional Groundwater and Environmental Engineering Services 4 Westchester Park Drive, Suite 175 White Plains, NY 10604 (914) 694-5711 www.lbgweb.com

TABLE OF CONTENTS

Page

1.0	INTRODUCTION 1
2.0	SCOPE OF WORK
3.0	GROUNDWATER MONITORING PROGRAM33.1Groundwater Sampling3.2Groundwater Flow43.33.3Groundwater Quality – Well Cluster #1 (Former Underground Storage Tank Area)53.43.4Groundwater Quality – Well Clusters #2 and #3
	 3.5 Groundwater Quality – Well Clusters #2 and #5 3.6 Groundwater Quality – Well Clusters #5, #6 and #7 6
4.0	ENGINEERING AND INSTITUTIONAL CONTROLS (ECs and ICs)64.1Engineering Controls/Monitored Natural Attenuation64.2Institutional Controls7
5.0	ANNUAL SITE INSPECTION/SITE EVALUATION
6.0	CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS 8
7.0	STANDARDS OF CARE
8.0	CONCLUSIONS AND RECOMMENDATIONS
APPE	NDICES (on the attached CD)

LIST OF TABLES (at end of report)

Table

1	Summary of Groundwater Elevations and Field Measurements
2.1	Summary of Groundwater Quality - #1 Well Cluster
2.2	Summary of Groundwater Quality - #2 Well Cluster
2.3	Summary of Groundwater Quality - #3 Well Cluster
2.4	Summary of Groundwater Quality - #4 Well Cluster
2.5	Summary of Groundwater Quality - #5, 6, 7 Well Clusters

LIST OF FIGURES (at end of report)

Figure

- 1 Site Plan
- 2 Groundwater Elevation Contour Map For Shallow "A" Wells January 21, 2014
- 3 Generalized Groundwater Flow Directions in "B", "C" and "D" Bedrock Monitor Wells – January 21, 2014

2014 PERIODIC REVIEW REPORT DELUXE CORPORATION FORMER DELUXE PRINTING FACILITY 4707 DEY ROAD, LIVERPOOL, NEW YORK NYSDEC SITE #V-00339-7 AGREEMENT INDEX NO. A7-0419-0005

1.0 INTRODUCTION

The premises located at 4707 Dey Road in Liverpool, New York ("the Site") is the subject of the former Voluntary Cleanup Program (VCP) Index Number A7-0419-0005. In accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan (SMP), a Periodic Review Report (PRR) for the site is to be provided to NYSDEC on an annual basis beginning November 2013. Leggette, Brashears & Graham, Inc. (LBG) was retained to perform the required tasks at the Site in association with the SMP. The following Periodic Review Report summarizes the onsite conditions observed and recorded from October 10, 2013 to October 9, 2014.

Groundwater at the site contains residual contamination (defined in the SMP) left after completion of the remedial action. Engineering Controls (ECs) and Institutional Controls (ICs) have been incorporated into the site remedy to control exposure to residual contamination during the use of the Site to ensure protection of public health and the environment. A Declaration of Covenants and Restrictions (the Declaration) is recorded with the Onondaga County Clerk's office which requires compliance with the SMP and all ECs and ICs placed on the Site (the Declaration is included as Appendix A). The ICs place restrictions on site use, and mandate maintenance, monitoring and reporting measures for all ECs and ICs. The SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the Declaration for contamination that remains at the Site. The SMP provides a detailed description of all procedures required to manage residual contamination at the Site during and after completion of remedial action (monitored natural attenuation of groundwater contamination), which may include: 1) implementation and management of all ECs and ICs; 2) media monitoring; 3) performance of periodic inspections, certification of results, submittal of a Periodic Review Report; and 4) defining criteria for termination of ECs and ICs.

2.0 SCOPE OF WORK

As required by the SMP, a Periodic Review Report will be submitted to NYSDEC for each annual reporting period beginning with the reporting period that commences upon NYSDEC acceptance of the SMP. The report will be submitted to NYSDEC within 45 days of the end of each reporting period. This current reporting period is October 10, 2013 to October 9, 2014 and this Periodic Review Report includes:

- identification, assessment and certification of all ECs/ICs required by the remedy for the Site;
- results of the required annual site inspections and severe condition inspections, if applicable;
- all applicable inspection forms and other records generated for the Site during the reporting period in electronic format;
- a summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- data summary tables of contaminants of concern by media (groundwater, soil vapor), along with the applicable standards, with all exceedances highlighted these will include a presentation of past data as part of an evaluation of contaminant concentration trends;
- results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format; and,
- a site evaluation, which includes the following:
 - the compliance of the Monitored Natural Attenuation (MNA) with the requirements of the Declaration, this SMP, and any other applicable Decision Document;
 - the operation and the effectiveness of all monitoring units, etc., including identification of any needed repairs or modifications;
 - any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;

- recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and,
- the overall performance and effectiveness of the remedy.

3.0 GROUNDWATER MONITORING PROGRAM

Groundwater monitoring will be performed on a periodic basis to assess the performance of the remedy. There is a network of 19 monitor wells located onsite. They are set as seven distinct clusters. Each well cluster contains two to four individual monitor wells set with well screen at a specific depth. The well locations are shown on figure 1.

All of the "A" monitor wells (MW-1A, MW-2A, MW-3A and MW-4A) have well screens set from 5 ft bg (feet below grade) to 20 ft bg. Three of the four "A" wells intersect bedrock at depths ranging from 11 ft bg (MW-4A) to 13 ft bg (MW-1A and MW-2A). Monitor Well MW-3A does not intersect bedrock because bedrock is encountered at 20 ft bg at that location.

All of the "B" monitor wells (MW-1B, MW-2B, MW-3B and MW-4B) have well screens set from 30 ft bg to 40 ft bg. These wells are screened completely in bedrock and are constructed with outer steel casings set from grade to 30 ft bg.

All of the "C" monitor wells (MW-1C, MW-2C, MW-3C and MW-4C) have well screens set from 50 ft bg to 60 ft bg. These wells are screened completely in bedrock and are constructed with outer steel casings set from grade to 50 ft bg.

All of the "D" monitor wells are open rock boreholes from 80 to 110 ft bg constructed with outer steel casings set from grade to 80 ft bg.

Groundwater samples will be collected from these monitor wells every 9 months for a period of 5 years which began in April 2013. The purpose of sampling every 9 months rather than 12 months is to ensure seasonal data collection.

The sampling frequency may be modified with the approval of NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC.

3.1 Groundwater Sampling

On January 21, 2014, LBG personnel measured the depth to water and total depth of each of the 19 monitor wells at the site using an electronic interface probe. Water depths are summarized on table 1. The measurements were used to calculate the volume of water within

each well. On January 22 and 23, 2014, LBG evacuated 3 volumes of water from each well using a submersible pump set approximately 2 feet below the pumping water level. The pump was operated at a flow rate less than 3 gpm (gallons per minute) and dedicated polyethylene tubing was used for each well. At the conclusion of each well evacuation, LBG personnel measured the following geochemical parameters: temperature, pH, conductivity, dissolved oxygen, oxidation/reduction potential and turbidity. All of these geochemical measurements are shown on table 1. Copies of field sheets are included in Appendix B.

Evacuated purge water was stored temporarily in 55-gallon steel drums and was removed from the site on January 22, 2014 by Environmental Products and Services of Vermont, Inc. (EPS). A waste manifest for this purge water is included in Appendix C.

After purging each well, groundwater samples were collected with disposable polyethylene bailers and transferred to laboratory-supplied containers. Each sample was stored in a chilled cooler and shipped to York Analytical Laboratories (York) of Stratford, Connecticut for analysis of volatile organic compounds (VOCs) by EPA Method 8260. York is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The laboratory report supplied by York included NYSDEC Analytical Services Protocol (ASP) Category B Deliverables. A field blank, trip blank, matrix spike and matrix spike duplicate were also sent to York. A copy of the laboratory reports including Category B Deliverables are included in Appendix D. A Data Usability Summary Report (DUSR) has been prepared by Premier Environmental Services of Merrick, New York and is included in Appendix E.

3.2 Groundwater Flow

Groundwater flow through a bedrock aquifer is primarily through fractures, joints and bedding-plane partings. Flow direction is controlled by differences in potentiometric surface elevation within the aquifer and the orientation and general character of the secondary porosity paths (fractures, joints, etc.) over a local and regional scale.

Groundwater elevations calculated for the shallow "A" wells indicated a horizontal gradient to the north. The groundwater elevation in MW-5A was the lowest of all "A" wells on January 21, 2014 and was 8.64 feet lower than groundwater in the contamination source area (1A) 110 feet away. Groundwater in the shallow "A" zone flows to the north through

unconsolidated sediment and weathered bedrock. A groundwater elevation contour map for the January 21, 2014 measurements from the "A" monitor wells is shown on figure 2.

Groundwater elevations calculated for the "B" wells indicate a horizontal gradient to the south-southeast. Groundwater elevations calculated for the "C" wells indicate a horizontal gradient to the southwest. Groundwater elevations calculated for the "D" wells indicate a horizontal gradient to the northeast.

Groundwater in the "B", "C" and "D" wells flows through bedrock fractures; the flow patterns described above are estimates of the generalized flow direction and do not take into account any localized secondary porosity effects. Figure 3 depicts the generalized groundwater flow direction for the different bedrock intervals.

3.3 Groundwater Quality - Well Cluster #1 (Former Underground Storage Tank Area)

Monitor Well Cluster #1 is located at the former underground storage tank (UST) area (figure 1). Groundwater samples collected from these wells contain the highest concentrations of tetrachloroethylene (PCE) and its degradation byproducts. Laboratory analysis of groundwater samples collected from MW-1A and MW-1B on January 23, 2014 indicated PCE concentrations exceeding NYSDEC Ground Water Quality Standards (GWQS). On these dates, PCE concentrations were 160 ug/l (micrograms per liter) and 25 ug/l in MW-1A and MW-1B, respectively.

The historic concentrations of PCE and its degradation products decreases with depth below grade at the Well Cluster #1 location. No VOCs were detected in MW-1C on January 23, 2014 and VOCs have never been detected in MW-1D (the deepest #1 cluster well at 109 feet). Table 2.1 summarizes groundwater quality at Well Cluster #1.

3.4 Groundwater Quality - Well Clusters #2 and #3

Well Clusters #2 and #3 are located to the east and northeast of the former UST area (50 to 60 feet away). Groundwater samples from Cluster #2 (east of the former UST area) did not contain VOCs above GWQS during the most recent sampling event. Historically, GWQS were exceeded for only one compound on one date in Cluster #2 (7 ug/l, 1,1 dichloroethane, MW-2C, April 30, 2003). Table 2.2 summarizes groundwater quality at Monitor Well Cluster #2.

Consistent with historical results, groundwater samples collected from Well Cluster #3 (northeast of the former UST area) had no VOCs exceeding GWQS in the January 2014 samples. Table 2.3 summarized groundwater quality at Well Cluster #3.

3.5 Groundwater Quality – Well Cluster #4 (North of Former UST Area)

Groundwater samples collected from Well Cluster #4 contain the greatest VOC concentration lateral to Well Cluster #1. On the most recent sampling date (January 23, 2014), groundwater samples collected from Monitor Wells MW-4A and MW-4B contained PCE at concentrations of 29 ug/l and 50 ug/l, respectively. In addition, cis-1,2-dichloroethylene was detected in the groundwater samples from Monitor Well MW 4B at a concentration of 13 ug/l. Table 2.4 summarizes groundwater quality at Well Cluster #4.

3.6 Groundwater Quality - Well Clusters #5, #6 and #7

The results of laboratory analysis from the most recent groundwater sampling date (January 23, 2014) indicate that the only VOC detection at this well cluster was PCE at 13 ug/l in Monitor Well MW-5A. Table 2.5 summarizes groundwater quality in Well Clusters 5, 6 and 7.

4.0 ENGINEERING AND INSTITUTIONAL CONTROLS (EC and ICs)

4.1 Engineering Controls/Monitored Natural Attenuation

The EC required by the SMP is MNA. In a letter to Deluxe dated November 10, 2009, NYSDEC concluded that the lateral and vertical extent of groundwater contamination beneath the Site has been well established and it accepted the recommendation of MNA as the remedial approach. Groundwater monitoring activities to assess natural attenuation will continue until residual groundwater concentrations are found to be consistently below NYSDEC GWQS or have become asymptotic at an acceptable level for a sufficient period of time as provided in Section 6.4 of NYSDEC DER-10. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

4.2 Institutional Controls

A series of ICs is required by the SMP and the Declaration, which refers to the Site as the "Property", and was implemented under the SMP. The Declaration is attached as Appendix A. The ICs listed in the SMP and the Declaration are:

- compliance with the Declaration and the SMP by Deluxe, the site owner, and their respective successors and assigns;
- the prohibition of the Property for any purposes other than Commercial or Industrial use without the express written waiver of such prohibition by NYSDEC or its successor agency;
- the owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from NYSDEC or its successor agency;
- unless prior written approval by NYSDEC or its successor agency is first obtained, where contamination remains at the Property subject to the provisions of the SMP, there shall be no construction, use or occupancy of the Property that results in the disturbance or excavation of the Property which threatens the integrity of the ECs or which results in unacceptable human exposure to contaminated groundwater;
- groundwater monitoring must be performed as defined in the SMP; and,
- data and information pertinent to the SMP for the Property must be reported at the frequency and in a manner defined in the SMP.

ICs identified in the Declaration may not be discontinued without an amendment to or extinguishment of the Declaration.

5.0 ANNUAL SITE INSPECTION/SITE EVALUATION

A site-wide inspection was conducted between October 6, 2014 and October 8, 2014 by Michael Reiff, a Hydrogeologist with LBG. The inspection included verification of the site owner and site use, verification that the Declaration is on record with Onandaga County and documenting the condition of the onsite monitor wells. The Site-Wide Inspection Form required by the SMP is included in Appendix F.

The MNA program is continuing on schedule as required by the SMP. Groundwater quality is consistent with the remaining contamination defined by the SMP and there are no changes recommended to the Remedy or to the Monitoring Plan.

6.0 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

There are no modifications to the onsite ECs/ICs as outlined in the SMP. As specified in the SMP, the remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitutes a violation or failure to comply with the SMP. NYSDEC retains the right to access such Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an engineer or a Qualified Environmental Professional (QEP).

The certification form has been completed by the QEP, Dan C. Buzea, P.G., CPG, Senior Consultant of LBG. A copy of the signed certification is included in Appendix G.

7.0 STANDARDS OF CARE

All inspections performed at the Site were conducted at the frequency specified in the schedules provided in Section 3 - Monitoring Plan of the SMP. Site inspections and sampling activities at the Site will continue to take place as outlined in the SMP. Frequency of inspection is subject to change by NYSDEC.

All sampling and analyses were performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) described in the SMP.

8.0 CONCLUSIONS AND RECOMMENDATIONS

All onsite ECs/ICs are in place and being implemented properly. As such, all onsite sampling and monitoring activities will continue as outlined in the SMP. A groundwater sampling event occurred in October 2014; however, all of the data associated with that event was

not received within the time frame of this PRR. A summary report for this sampling event will be submitted by December 31, 2014. The next scheduled groundwater sampling event is July 2015 and the 2015 PRR including the EC/IC certification will be submitted by November 22, 2015.

This annual Periodic Review Report will be submitted, in hard-copy and electronic format, to the central NYSDEC office and the Regional office. Additionally, copies of this report will be submitted to the property owner and the New York State Department of Health (NYSDOH) Bureau of Environmental Exposure Investigation.

LEGGETTE, BRASHEARS & GRAHAM, INC.

maWeber

Jorma Weber Senior Associate

Reviewed By:

John Benvegna, CPG

Vice President

dmd November 21, 2014 report.sitev003397.2014-11-21.liverpool.periodicreviewreport

LEGGETTE, BRASHEARS & GRAHAM, INC.

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date	Top of Casing Elevation	Total Depth	Depth to Water	Groundwater Elevation	Conductivity	Temperature	рН	Turbidity	Dissolved Oxygen	ORP ⁶⁾
		(feet) ¹⁾	(feet)	(ft btoc) ²⁾	(feet)	(S/m) ³⁾	(°C)		(NTU) ⁴⁾	(mg/l) ⁵⁾	(mV) ⁷⁾
1A	04/05/01	98.78	20.00	12.38	86.40	NM ⁸⁾	NM	NM	NM	NM	NM
	10/15/02	-	-	15.25	83.53	0.067	15.2	7.21	72	7.0	76
	01/29/03	-	-	13.91	84.87	0.057	8.1	7.21	120	7.3	118
	04/28/03	-	-	13.00	85.78	0.140	15.0	7.02	270	8.1	NM
	09/24/03	-	-	16.64	82.14	0.050	NM	6.63	NM	NM	NM
	10/16/03	-	-	16.02	82.76	NM	NM	NM	NM	NM	NM
	04/22/13	-	20.05	12.15	86.63	0.117	12.04	7.55	321	7.03	-17
	01/21/14	-	20.15	13.63	85.15	0.092	6.98	7.46	NM	9.48	174
1B	04/05/01	98.87	40.20	33.39	65.48	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	39.80	59.07	NM	NM	NM	NM	NM	NM
	01/29/03	-	-	Dry	-	-	-	-	-	-	-
	04/28/03	-	-	35.55	63.32	0.150	18.6	6.76	180	5.1	NM
	09/24/03	-	-	39.85	59.02	NM	NM	NM	NM	NM	NM
	04/22/13	-	40.40	36.58	62.29	0.145	14.54	7.59	287	5.14	-17
	01/21/14	-	40.32	39.38	59.49	0.127	8.49	9.18	NM	8.53	164
1C	04/05/01	99.20	60.10	37.55	61.65	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	52.02	47.18	0.200	12.6	7.20	9	8.0	83
	01/29/03	-	-	43.97	55.23	0.140	11.8	6.98	21	8.0	124
	04/28/03	-	-	37.34	61.86	0.160	17.6	6.76	280	13.3	NM
	09/24/03	-	-	52.19	47.01	0.081	NM	6.60	NM	NM	NM
	10/16/03	-	-	52.33	46.87	NM	NM	NM	NM	NM	NM
	04/22/13	-	60.25	42.50	56.70	0.252	15.57	8.78	565	7.74	-72
	01/21/14	-	60.40	42.65	56.55	0.324	6.64	7.22	NM	9.54	31

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date	Top of	Total	Depth to	Groundwater	Conductivity	Temperature	pН	Turbidity	Dissolved	ORP ⁶⁾
		Casing	Depth	Water	Elevation		_			Oxygen	
		Elevation									
		(feet) ¹⁾	(feet)	(ft btoc) ²⁾	(feet)	(S/m) ³⁾	(°C)		(NTU) ⁴⁾	(mg/l) ⁵⁾	(mV) ⁷⁾
1D	09/24/03	98.78	109.52	49.74	49.04	0.294	NM	11.41	NM	NM	NM
	04/22/13	-	109.52	42.25	56.53	0.342	12.22	10.73	NM	6.73	-261
	01/21/14	-	109.50	41.00	57.78	0.354	7.22	11.52	NM	9.18	-38
2A	04/05/01	98.73	20.08	9.49	89.24	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	14.52	84.21	0.210	17.4	6.88	81	5.0	91
	01/29/03	-	-	12.55	86.18	0.220	9.3	6.99	90	8.3	91
	04/28/03	-	-	10.75	87.98	0.220	12.2	6.79	820	5.8	NM
	09/24/03	-	-	15.42	83.31	0.084	NM	6.48	NM	NM	NM
	04/22/13	-	20.10	10.76	87.97	0.292	12.52	6.94	NM	9.20	17
	01/21/14	-	20.08	12.71	86.02	0.186	7.96	8.06	NM	8.66	182
2B	04/05/01	98.92	40.18	35.48	63.44	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	39.80	59.12	NM	NM	NM	NM	NM	NM
	01/29/03	-	-	Dry	-	-	-	-	-	-	-
	04/28/03	-	-	36.01	62.91	0.100	16.6	6.87	500	6.0	NM
	09/24/03	-	-	39.95	58.97	NM	NM	NM	NM	NM	NM
	04/22/13	-	40.15	36.98	61.94	0.154	15.97	7.49	NM	8.19	4
	01/21/14	-	39.57	40.15	58.77	0.164	8.23	8.86	NM	8.50	161
2C	04/05/01	98.83	60.10	37.24	61.59	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	51.78	47.05	0.220	13.2	6.64	5	7.7	97
	01/29/03	-	-	43.66	55.17	0.190	11.5	6.88	46	7.6	96
	04/28/03	-	-	37.00	61.83	0.180	17.2	6.99	390	7.7	NM
	09/24/03	-	-	51.83	47.00	0.077	NM	6.68	NM	NM	NM
	04/22/13	-	61.00	38.95	59.88	0.279	14.00	7.25	350	8.57	11
	01/21/14	-	61.00	42.30	56.53	0.202	7.13	7.11	NM	9.06	12

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date	Top of Casing	Total Depth	Depth to Water	Groundwater Elevation	Conductivity	Temperature	pН	Turbidity	Dissolved Oxygen	ORP ⁶⁾
		Elevation									
		(feet) ¹⁾	(feet)	(ft btoc) ²⁾	(feet)	(S/m) ³⁾	(°C)		(NTU) ⁴⁾	(mg/l) ⁵⁾	(mV) ⁷⁾
3A	04/05/01	98.31	20.00	8.79	89.52	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	14.33	83.98	0.120	17.7	7.58	67	6.2	74
	01/29/03	-	-	12.39	85.92	0.120	13.1	7.02	56	4.9	53
	04/28/03	-	-	10.65	87.66	0.140	13.2	7.14	150	3.4	NM
	09/24/03	-	-	15.12	83.19	0.069	NM	6.82	NM	NM	NM
	04/22/13	-	20.00	10.20	88.11	0.244	12.55	9.78	NM	3.69	-198
	01/21/14	-	20.02	12.15	86.16	0.153	9.07	6.89	NM	7.79	31
3B	04/05/01	98.36	40.18	34.30	64.06	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	39.86	58.50	NM	NM	NM	NM	NM	NM
	01/29/03	-	-	39.17	59.19	0.090	12.8	6.88	72	11.0	151
	04/28/03	-	-	35.10	63.26	0.078	19.6	7.10	100	4.5	NM
	09/24/03	-	-	39.95	58.41	NM	NM	NM	NM	NM	NM
	04/22/13	-	40.30	35.90	62.46	0.140	16.48	7.37	317	11.09	-4
	01/21/14	-	40.23	38.13	60.23	0.100	6.66	6.84	NM	9.30	191
3C	04/05/01	98.19	60.18	36.24	61.95	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	50.06	48.13	0.230	13.4	7.13	23	8.0	87
	01/29/03	-	-	42.62	55.57	0.210	12.7	6.82	47	7.5	154
	04/28/03	-	-	35.99	62.20	0.200	15.2	6.59	110	8.0	NM
	09/24/03	-	-	50.15	48.04	0.072	NM	6.67	NM	NM	NM
	04/22/13	-	60.20	37.75	60.44	0.326	16.92	7.60	NM	8.58	-13
	01/21/14	-	60.30	41.10	57.09	0.270	7.87	5.66	NM	7.22	118

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date	Top of	Total	Depth to	Groundwater	Conductivity	Temperature	pH	Turbidity	Dissolved	ORP ⁶⁾
		Casing Elevation	Depth	Water	Elevation					Oxygen	
		(feet) ¹⁾	(feet)	(ft btoc) $^{2)}$	(feet)	$(S/m)^{3)}$	(°C)		(NTU) ⁴⁾	(mg/l) ⁵⁾	(mV) ⁷⁾
4A	04/05/01	96.90	20.03	8.91	87.99	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	13.19	83.71	0.120	16.0	7.16	97	6.3	82
	01/29/03	-	-	11.81	85.09	0.110	10.5	6.85	95	6.7	124
	04/28/03	-	-	10.70	86.20	0.100	19.3	6.56	500	5.7	NM
	09/24/03	-	-	13.85	83.05	0.053	NM	6.63	NM	NM	NM
	04/22/13	-	19.97	10.73	86.17	0.145	11.98	7.00	NM	6.50	19
	01/21/14	-	20.00	11.94	84.96	0.121	10.09	6.91	NM	8.16	186
4B	04/05/01	96.76	40.18	32.85	63.91	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	38.78	57.98	NM	NM	NM	NM	NM	NM
	01/29/03	-	-	37.99	58.77	0.089	11.1	6.45	87	9.3	174
	04/28/03	-	-	33.35	63.41	0.083	17.3	6.78	700	7.0	NM
	09/24/03	-	-	39.01	57.75	0.017	NM	7.14	NM	NM	NM
	04/22/13	-	40.21	33.83	62.93	0.126	13.32	6.99	226	6.50	16
	01/21/14	-	40.17	36.65	60.11	0.102	8.32	7.36	nm	8.72	183
4C	04/05/01	96.50	60.20	34.73	61.77	NM	NM	NM	NM	NM	NM
	10/15/02	-	-	49.03	47.47	0.140	12.5	7.69	5	8.9	77
	01/29/03	-	-	41.15	55.35	0.150	12.8	7.01	160	9.2	115
	04/28/03	-	-	34.52	61.98	0.140	15.6	6.90	200	9.5	NM
	09/24/03	-	-	48.96	47.54	0.062	NM	6.78	NM	NM	NM
	04/22/13	-	60.17	36.42	60.08	0.301	13.65	4.69	246	6.17	16
	01/21/14		62.30	39.62	56.88	0.269	6.31	7.60	NM	10.22	167

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Summary of Groundwater Elevations and Field Measurements

Well ID	Date	Top of Casing Elevation	Total Depth	Depth to Water	Groundwater Elevation	Conductivity	Temperature	рН	Turbidity	Dissolved Oxygen	ORP ⁶⁾
		(feet) ¹⁾	(feet)	(ft btoc) ²⁾	(feet)	(S/m) ³⁾	(°C)		(NTU) ⁴⁾	(mg/l) ⁵⁾	(mV) ⁷⁾
5A	09/24/03	96.52	22.48	21.98	74.54	0.016	NM	7.29	NM	NM	NM
	04/22/13	-	22.50	19.81	76.71	0.150	8.49	5.69	5	8.59	99
	01/21/14	-	22.59	20.01	76.51	0.128	4.66	7.32	NM	10.74	220
5D	09/24/03	96.19	111.88	106.14	-9.95	0.173	NM	7.10	NM	NM	NM
	04/22/13	-	111.88	40.20	55.99	2.70	13.19	10.47	648	6.78	-152
	01/21/14	-	112.00	51.80	44.39	1.77	10.11	12.59	NM	8.45	-6
6A	09/24/03	102.73	22.50	17.75	84.98	0.016	NM	6.71	NM	NM	NM
	04/22/13	-	23.50	13.15	89.58	0.097	8.66	8.57	NM	5.40	-48
	01/21/14	-	23.50	14.69	88.04	0.303	9.22	8.86	NM	8.94	23
6D	09/24/03	103.03	112.28	108.58	-5.55	0.148	NM	7.28	NM	NM	NM
	04/22/13	-	112.28	43.20	59.83	1.80	11.43	9.83	431	6.17	-95
	01/21/14	-	112.60	46.26	56.77	0.359	4.23	10.27	NM	9.00	87
7A	09/24/03	106.31	22.52	Dry	-	-	-	-	-	-	-
	04/22/13	-	22.55	11.00	95.31	0.379	11.92	8.84	973	4.44	-126
	01/21/14	-	22.59	11.20	95.11	0.009	9.67	7.13	NM	10.83	127
7D	09/24/03	105.98	112.15	59.83	46.15	0.016	NM	7.19	NM	NM	NM
	04/22/13	-	112.15	46.90	59.08	1.800	13.42	9.94	197	3.34	-230
	01/21/14	-	112.10	50.05	59.08	0.685	11.24	7.75	NM	12.42	-532

1) Elevations referenced to arbitrary datum

2) Feet below top of casing

3) Siemens per meter

4) Nephelometric turbidity units

5) Milligrams per liter

6) Oxydation reduction potential

7) Millivolts

8) Not measured

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date Sampled	1,1,1- Trichloro- ethane	1,1- Dichloro- ethane	1,1- Dichloro- ethylene	cis-1,2- Dichloro- ethylene	1,2,4-Tri- methyl- benzene	1,3,5-Tri- methyl- benzene	Tetrachloro- ethylene (PCE)	Trichloro- ethylene (TCE)	Vinyl Chloride
1A	04/05/01	2	2	6	75	45	14	730	300	23
	10/15/02	7	<5	<5	53	<5	<5	860	340	<5
	01/31/03	12	<1	3	23	3	<1	610	190	3
	04/30/03	<5	<5	<5	12	<5	<5	310	82	<5
	09/24/03	12	<1	3	25	<1	<1	390	130	<1
	10/16/03	10	<1	3	49	<1	<1	360	140	<1
	04/23/13	<5	<5	<5	40	<5	<5	740	300	<5
	01/23/14	<5	<5	<5	25	<5	<5	160	140	<5
1B	04/05/01	27	1	7	70	34	11	670	290	20
	10/15/02	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/31/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/30/03	5	<1	<1	10	<1	<1	140	25	<1
	09/24/03	16	3	<2	8	<2	<2	280	27	<2
	04/23/13	<5	<5	<5	40	<5	<5	18	<5	<5
	01/23/14	<5	<5	<5	3 J	<5	<5	25	8.1	<5
1C	04/05/01	5	<1	<1	3	<1	<1	44	9	<1
	10/15/02	3	2	1	<1	<1	<1	3	<1	<1
	01/31/03	3	<1	<1	2	<1	<1	25	8	<1
	04/30/03	3	4	2	<1	<1	<1	10	1	<1
	09/24/03	4	3	2	<1	<1	<1	<1	<1	<1
	10/16/03	3	3	3	<1	<1	<1	2	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5	<5	<5
1D	09/24/03	<1	<1	<1	<1	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5	<5	<5
NYSDE	EC GWQS ¹⁾	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0

Summary of Groundwater Quality - #1 Well Cluster (all concentrations in micrograms per liter)

1) - New York State Department of Environmental Conservation Ground Water Quality Standards

NS = Not sampled

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date Sampled	1,1,1- Trichloro- ethane	1,1- Dichloro- ethane	1,1- Dichloro- ethylene	cis-1,2- Dichloro- ethylene	Tetrachloro- ethylene (PCE)	Trichloro- ethylene (TCE)	Vinyl Chloride
2 A	04/04/01	<1	<1	<1	<1	<1	<1	<1
	10/15/02	<1	<1	<1	<1	<1	<1	<1
	01/31/03	<1	<1	<1	<1	<1	<1	<1
	04/30/03	<1	<1	<1	<1	<1	<1	<1
	09/24/03	<1	<1	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5
2 B	04/04/01	<1	<1	<1	<1	<1	<1	<1
	10/15/02	NS	NS	NS	NS	NS	NS	NS
	01/31/03	NS	NS	NS	NS	NS	NS	NS
	04/30/03	<1	<1	<1	<1	<1	<1	<1
	09/24/03	NS	NS	NS	NS	NS	NS	NS
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5
2 C	04/04/01	4	2	2	<1	<1	<1	<1
	10/15/02	3	2	2	<1	<1	<1	<1
	01/31/03	2	2	1	<1	<1	<1	<1
	04/30/03	3	7	3	<1	<1	<1	<1
	09/25/03	3	2	1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5
NYSDE	C GWQS ¹⁾	5.0	5.0	5.0	5.0	5.0	5.0	2.0

Summary of Groundwater Quality - #2 Well Cluster (all concentrations in micrograms per liter)

1) - New York State Department of Environmental Conservation Ground Water Quality Standards NS = Not sampled

- Not sampled

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Well ID	Date Sampled	1,1,1- Trichloro- ethane	1,1- Dichloro- ethane	1,1- Dichloro- ethylene	cis-1,2- Dichloro- ethylene	Tetrachloro- ethylene (PCE)	Trichloro- ethylene (TCE)	Vinyl Chloride
	04/04/01	<1	<1	<1	<1	<1	<1	<1
	10/15/02	<1	<1	2	<1	2	<1	<1
	01/31/03	<1	2	<1	<1	2	<1	<1
3 A	04/30/03	<1	<1	<1	<1	<1	<1	<1
	09/25/03	<1	2	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
	04/04/01	<1	<1	<1	<1	<1	<1	<1
	10/15/02	NS	NS	NS	NS	NS	NS	NS
	01/31/03	<1	<1	<1	<1	<1	<1	<1
3 B	04/30/03	<1	<1	<1	<1	<1	<1	<1
	09/25/03	NS	NS	NS	NS	NS	NS	NS
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
	04/04/01	3	1	<1	<1	<1	<1	<1
	10/15/02	2	2	1	<1	<1	<1	<1
	01/31/03	4	2	2	<1	<1	<1	<1
3 C	04/30/03	3	3	1	<1	<1	<1	<1
	09/25/03	2	2	1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
NYSDEC	C GWQS ¹⁾	5.0	5.0	5.0	5.0	5.0	5.0	2.0

Summary of Groundwater Quality - #3 Well Cluster (all concentrations in micrograms per liter)

1) - New York State Department of Environmental Conservation Ground Water Quality Standards NS = Not sampled

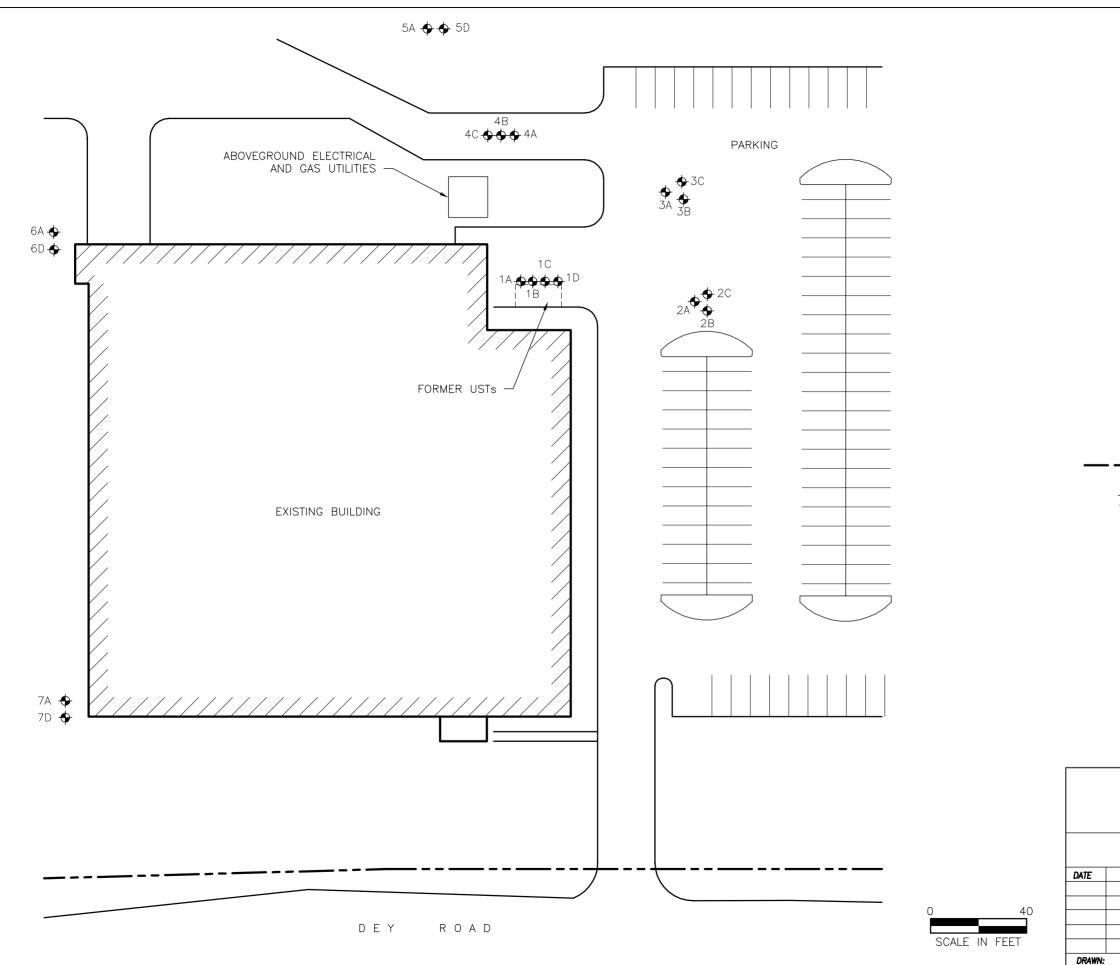
DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

Summary of Groundwater Quality - #4 Well Cluster (all concentrations in micrograms per liter)

Well ID	Date Sampled	1,1,1- Trichloro- ethane	1,1-Dichloro- ethane	1,1- Dichloro- ethylene	cis-1,2- Dichloro- ethylene	Tetrachloro- ethylene (PCE)	Trichloro- ethylene (TCE)	Vinyl Chloride
4A	04/04/01	<1	<1	<1	<1	5	<1	<1
	10/15/02	6	<1	<1	2	170	13	<1
	01/31/03	2	<1	<1	<1	110	9	<1
	04/30/03	<1	<1	<1	<1	48	3	<1
	09/25/03	4	2	<1	1	130	9	<1
	04/23/13	23	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	29	2.7 J	<5
4B	04/04/01	<1	<1	<1	<1	<1	<1	<1
	10/15/02	NS	NS	NS	NS	NS	NS	NS
	01/31/03	6	<1	1	5	68	12	<1
	04/30/03	8	<1	<1	11	88	20	<1
	09/25/03	<1	<1	<1	<1	14	3	<1
	04/23/13	3.7 J	<5	<5	18	67	28	<5
	01/22/14	3.3 J	<5	<5	13	58	20	<5
4C	04/04/01	4	<1	<1	<1	15	3	<1
	10/15/02	7	1	2	2	54	7	<1
	01/31/03	2	<1	<1	1	20	4	<1
	04/30/03	4	4	3	<1	12	1	<1
	09/25/03	5	2	2	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
NYSDEC	GWQS ¹⁾	5.0	5.0	5.0	5.0	5.0	5.0	2.0

1) - New York State Department of Environmental Conservation Ground Water Quality Standards NS = Not sampled

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK


Well ID	Date Sampled	1,1,1- Trichloro- ethane	1,1- Dichloro- ethane	1,1- Dichloro- ethylene	cis-1,2- Dichloro- ethylene	Tetrachloro- ethylene (PCE)	Trichloro- ethylene (TCE)	Vinyl Chloride
5A	09/25/03	<1	<1	<1	<1	21	<1	<1
	04/23/13	< 5	<5	<5	<5	9.7	<5	<5
	01/22/14	<5	<5	<5	<5	13	<5	<5
5D	09/25/03	<1	<1	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
6A	09/25/03	<1	<1	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
6D	09/25/03	<1	<1	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/22/14	<5	<5	<5	<5	<5	<5	<5
7A	09/25/03	NS	NS	NS	NS	NS	NS	NS
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5
7D	09/25/03	<1	<1	<1	<1	<1	<1	<1
	04/23/13	<5	<5	<5	<5	<5	<5	<5
	01/23/14	<5	<5	<5	<5	<5	<5	<5
NYSDEC	C GWQS ¹⁾	5.0	5.0	5.0	5.0	5.0	5.0	2.0

Summary of Groundwater Quality - #5, 6, 7 Well Clusters (all concentrations in micrograms per liter)

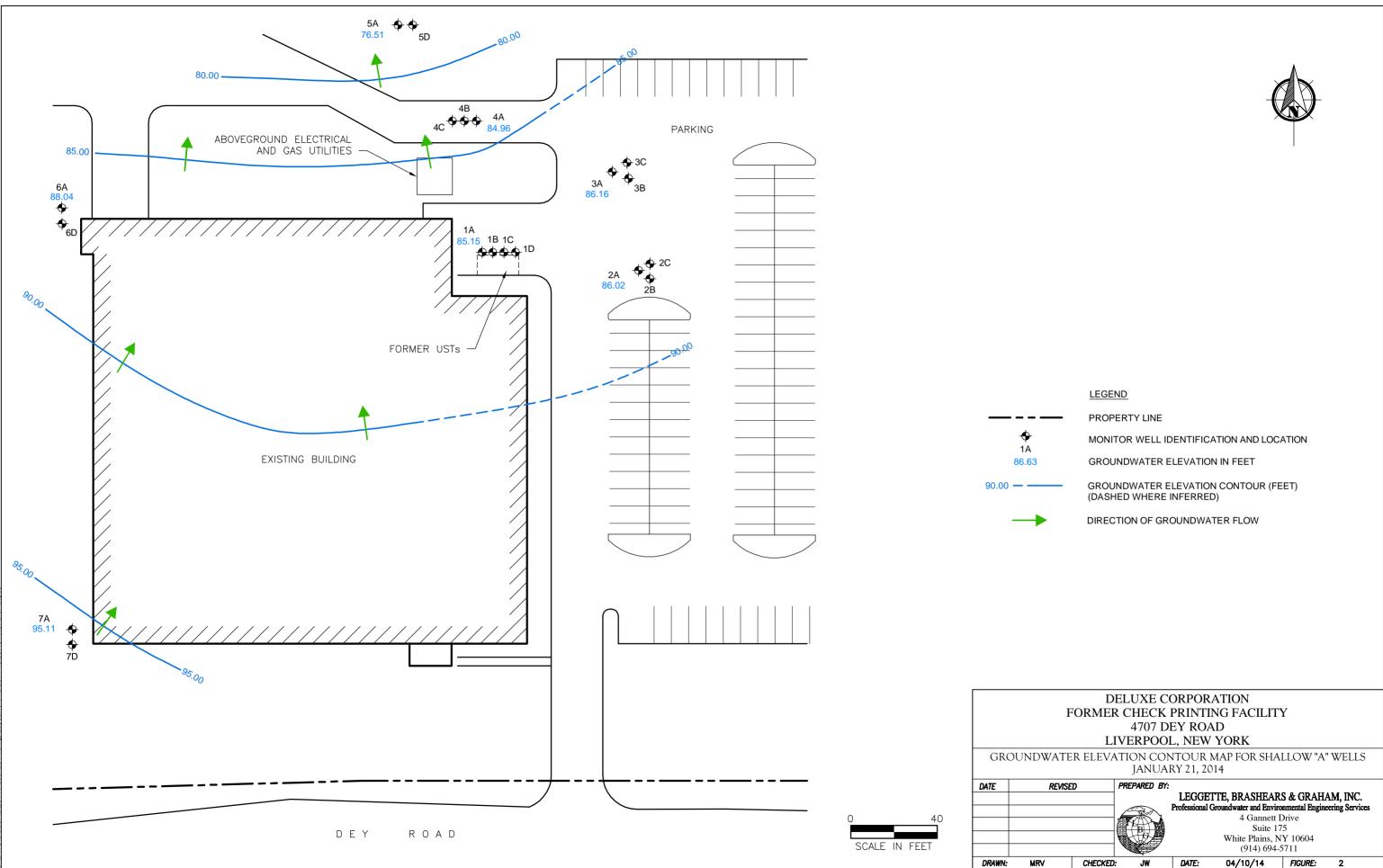
1) - New York State Department of Environmental Conservation Ground Water Quality Standards NS = Not sampled

FIGURES

LEGGETTE, BRASHEARS & GRAHAM, INC.

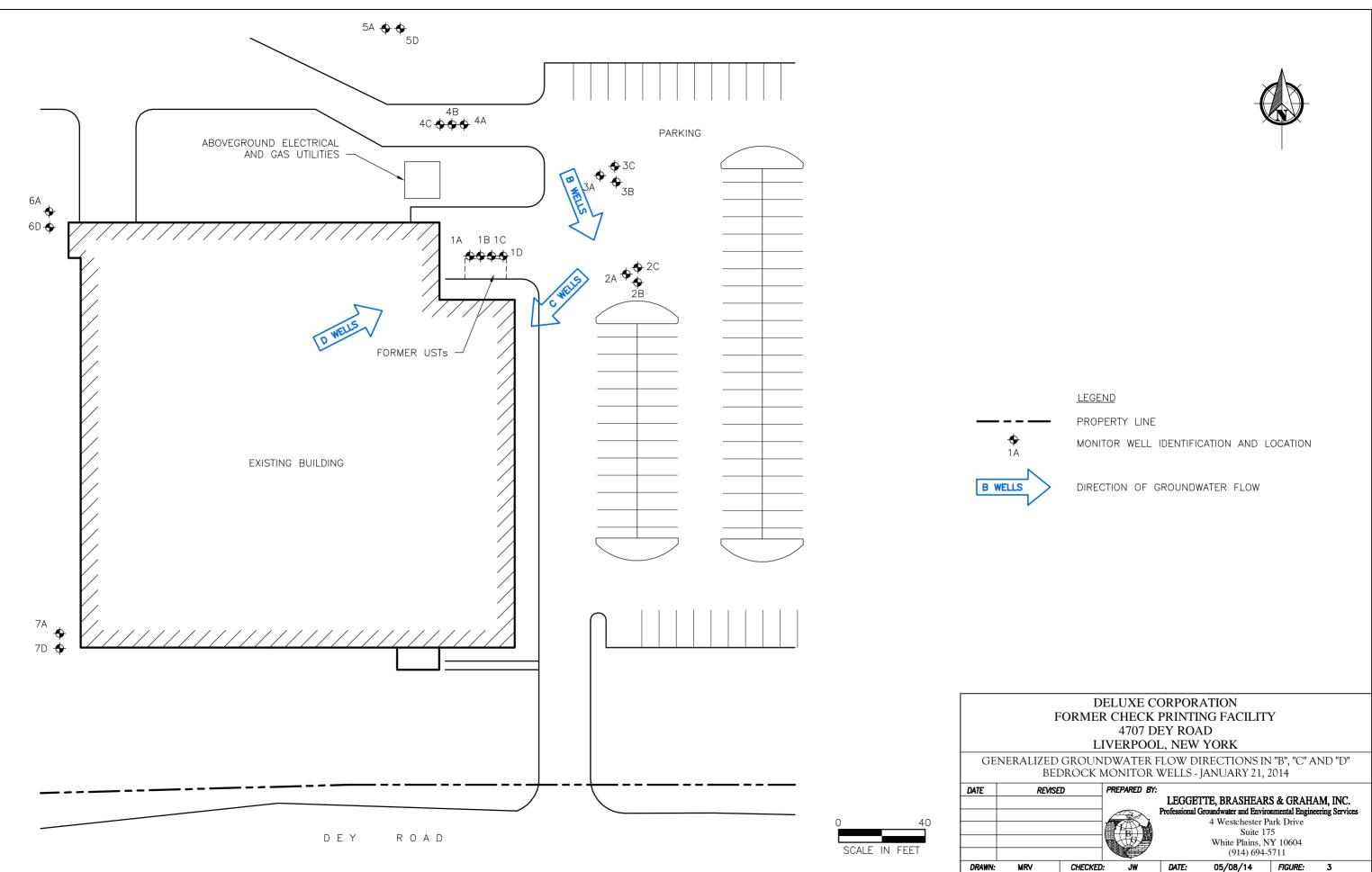
∲ 1A

<u>LEGEND</u>


PROPERTY LINE

MONITOR WELL IDENTIFICATION AND LOCATION

DELUXE CORPORATION FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK


SITE PLAN

REVISE	ס	PREPARED BY:				
				ITE, BRASHEARS Groundwater and Environ		
				4 Gannett D Suite 17 White Plains, N (914) 694-5	5 Y 10604	·
RAC	CHECKED	DM	DATE:	11/08/13	FIGURE:	1

LEGEND

APPENDIX A

LEGGETTE, BRASHEARS & GRAHAM, INC.

DECLARATION of COVENANTS and RESTRICTIONS

THIS DECLARATION of COVENANTS and RESTRICTIONS is made the 25 day of December, 2011, by M. S. Kennedy Corp. ("M. S. Kennedy"), a corporation organized and existing under the laws of the State of New York and having an office for the transaction of business at 4707 Dey Road, Liverpool, New York.

WHEREAS, Deluxe Corporation Former Check Printing Site is the subject of a Voluntary Cleanup Agreement executed by Deluxe Corporation ("Deluxe") as part of the New York State Department of Environmental Conservation's (the "Department's) Voluntary Cleanup Program, namely that parcel of real property located on 4707 Dey Road in the Town of Clay, County of Onondaga, State of New York, which is part of lands conveyed by Deluxe Financial Services, Inc. to M. S. Kennedy by deed dated December 29, 1999 and recorded in the Onondaga County Clerk's Office in Liber and Page 4383/287, and being more particularly described in Appendix "A," attached to this declaration and made a part hereof, and hereinafter referred to as the "Property"; and

WHEREAS, the Department approved a remedy to eliminate or mitigate all significant threats to the environment presented by the contamination disposed at the Property and such remedy requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, M. S. Kennedy, as the current owner of the Property, for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions is as shown on a map attached to this declaration as Appendix "B" and made a part hereof.

Second, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no construction, use or occupancy of the Property that results in the disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results in unacceptable human exposure to contaminated groundwater.

Third, the owner of the Property shall not disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the remedy, which are described in the SMP, unless in each instance the owner first obtains a written waiver of such prohibition from the Department or Relevant Agency.

* This document is being rerearded to include Appendices A & B which were inadvertently orarited on the prior recorded document Fourth, the owner of the Property shall prohibit the Property from ever being used for purposes other than for Commercial or Industrial use without the express written waiver of such prohibition by the Department or Relevant Agency.

Fifth, the owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency.

Sixth, the owner of the Property shall provide a periodic certification prepared and submitted by a professional engineer or environmental professional acceptable to the Department or Relevant Agency, which will certify that the institutional and engineering controls put in place are unchanged from the previous certification, comply with the SMP, and have not been impaired, unless such periodic certification has been timely provided to the Department or Relevant Agency by Deluxe or Deluxe's successors or assigns.

Seventh, the owner of the Property shall continue in full force and effect any institutional and engineering controls required for the remedy and maintain such controls, unless Deluxe or Deluxe's successors or assigns have timely continued in full force and effect any such institutional and engineering controls and maintained such controls, or permission to discontinue such controls is first obtained from the Department or Relevant Agency, in compliance with the approved SMP, which is incorporated and made enforceable hereto, subject to modifications as approved by the Department or Relevant Agency.

Eighth, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property, and shall provide that the owner and its successors and assigns consent to enforcement by the Department or Relevant Agency of the prohibitions and restrictions that the Voluntary Cleanup Agreement requires to be recorded, and hereby covenant not to contest the authority of the Department or Relevant Agency to seek enforcement.

Ninth, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Department or Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and

Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

M. S. KENNED By: Print Name: Title Date:

ACKNOWLEDGEMENT OF DELUXE CORPORATION

Deluxe Corporation hereby acknowledges that it is a former owner of the above-referenced Property and that it continues to have certain obligations under the above-referenced Voluntary Cleanup Agreement to undertake periodic monitoring at the Property and to submit annual certifications to the New York State Department of Environmental Conservation.

DELUXE CORPORATION						
By: J. D. Pit-						
Print Name:	D. Peterson					
Title: CFO+SVP						

STATE OF NEW YORK)) s.s.: COUNTY OF ONONDAGA)

On the <u>28</u> day of December, in the year 2011, before me, the undersigned, personally appeared <u>Richard Roehn</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ics), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) aeted, executed the instrument.

Notary Public State of New York n Mareb 13, <u>7-0</u>15

STATE OF MINNESOTA)) s.s.: COUNTY OF RAMSEY)

On the $\underline{1944}$ day of December, in the year 2011, before me, the undersigned, personally appeared $\underline{7v_{Fr}}$ D. $\underline{9}$, 4, r_{50} , personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public State of UNIN

S --- 7 ST: ٩. D - --с. JUN 27 2012 separate. . CHATLER . 5

APPENDIX A

Metes and Bounds Description of the Controlled Property from Schedule "A" to Deed dated December 29, 1999, and recorded in Onondaga County Deeds Liber 4383, page 287 on January 3, 2000

ł

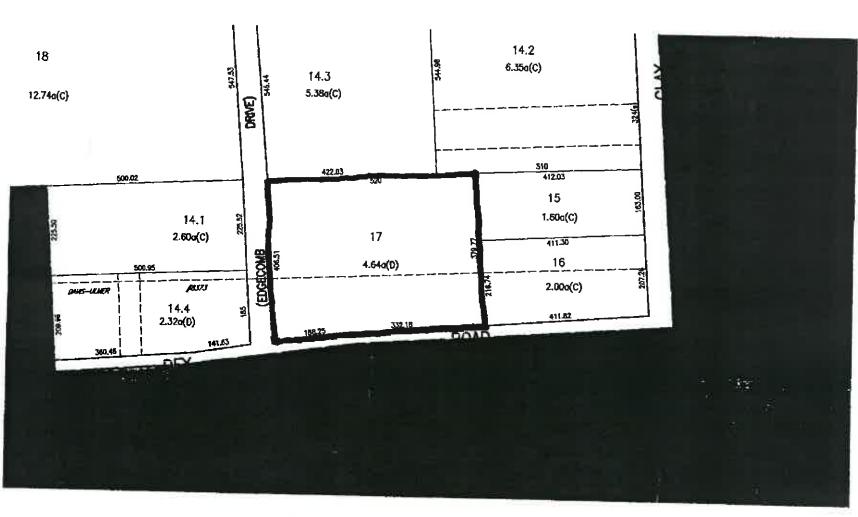
±5

Schedule "A"

ALL THAT TRACT OR PARCEL OF LAND, situate in the Town of Clay, County of Onondaga and State of New York and being Part of Farm Lot 76 – BEGINNING at a point on the northerly line of Deys Road South 89° 09' 30" West 411.22 feet from the intersection of said northerly line of Deys Road with the westerly line of Seventh North Street (as widened), running thence from the above mentioned point of beginning South 89° 09' 30" West along the northerly line of Deys Road 332.18 feet to an angle point in said Deys Road, thence South 84° 39' 30" West along the northerly line of Deys Road 188.25 feet, thence North 0° 50' 30" West 406.51 feet, thence South 89° 31' 20" East 520.0 feet, thence South 0° 50' 30" East 379.77 feet to the northerly line of Deys Road and the place of beginning.

b.

1914404.1 10/28/2011


APPENDIX B

Map of Controlled Property
Tax Map #095.02-17.0
Excerpt from Section Map 95
Town of Clay, Onondaga County, NY
Onondaga County Finance Department
dated March 1, 2011

ŝ,

ļ

(f

100

2.....

· • • 10 C F

ಸ್ ಎಂ ಪ್ರಶ

(6))*

APPENDIX B

1									(a-c)			Sheet	_ of
AT IL			RASHEARS &				Client:		Delut	B			
	Professional G		ter and Enviroon			28	Location:		- V .				
3B	0 40		oorate Park Drive e Plains, New Yor	rk 10604		19137							
as as a sol f	12.5%	,	(914) 694-5711 Fax: (914) 694-57		TEL ST		Date:	1-1-0	. 23 .		Weather/Co	monte	
111		11111					- hard.	41221	1751	23 14		_//	
Well	Time	Depth to	Depth to	Product	Total	GW Evacuated	Professional	34/1	FIELD PAI	DAMETED		11	Time
Identification	Gauged	Product	Groundwater	Thickness	Depth	calc/actual	pH		uctivity	DO	Temp	ORP	Sampled
		(ft btoc)	(ft btoc)	(ft)	(ft btoc)	(gallons)			onit	(mg/l)	(C)	(mV)	
3A~	1300	-	12.15	1	20.02	3.77 5	6.89	1.53	ms/cm	3.79	9.07	31	1/22 094
332	1305		38.13		40.23	1.00 2	6.89	1.00	mslem	9.30	6.66	191	100
30	1306	Property life	41.10	مي	60.30		5.66	2.70	#s(cm	7.22	7.87		1014
4 A 2	1315	- Terring	11.94		60.00	3.46 4	6.91	1.21	Ms/cm	8.16	10.09	186	1 100
4B	1326		36.65			1.68	7.36	1.02	Ms/cm	8.72	8.32	185	1120
4CF	1333	•	39.62	1		10.55	7.60	2.69	MS/CM	10.22	6.31	167	1140
5 A 2"	1340		20.01		27.59	1.2 2	7.32	1.26	Molem	10.74	4.66	2.20	1220
2 Din	1345		51.80	~	112.00	115.58	12.59	13.7	Mslcm	8.45	1-10	-6	1255
684"	1400		64 14.69	- 6	6-23.50	4.22 S 6D	8.86	2.03	NSCAM	8.94	9.22	23	6+14204
6	1405	- 6	6046.26	- 6		124.9 64	10.27	3.59	ms/cm	9.00	4.23	87	6015002
74-2"	1415		11.20	- 7	22.59	5.46 5	7.13	0.90	Mslem	10.53	9.67	127	0900
704	1420	~~	50.05		112.10	119.1815	7.75	6.85	Malcm	12.42	11.24	-532	0930
14 46	1450	- 1	13.63	~	20.15	12.52	7.46	6.92	Mskm	9.48	6.98	174	1105
134	1455	-	39.38		40.32	150 2	9.18	1.27	Molem	8.53	8.49	164	1145
104	. 1500	- 3.	42.65	~	60.40	34.58 Why	7.22	3.24	Ms/cm	9.54	6.64	3	- 1445
10 4"	1502		41.00	~	109.50	131.52 15	11.52	3.59	MSfem	9.18	7.22	-38	1338
21	1525		12.71	-	20.08	3.53 54	3.06	1.86	Msfem	8.66	7.96	182	- 1416
28	1530		39.57	-		0.27	8.86	1.64	Ms/cm		8.23	161	14-40
20	1535	~	42.50		61.00	8.9 23	ネル	2.02	Ms/cm	. 9.06	7.13	12	1530
						and the second s		ļ					
								ļ					

р., с

APPENDIX C

Plea	ise prii	nt or type. (Form desig			ter.)			_					. OMB No. 2	2050-0039
1		ORM HAZARDOUS	1. Generator ID Nu NYD 0	mber 41826	470	2. Page 1 of	3. Emerger 800-84		e Phone	4. Manifest		umber 565	3 F	E
	M 47	nerator's Name and Mailin S KENNEDY CO 707 DEY ROAD VERPOOL NY	ÖRPORTAK	ИС			Generator's	Site Address	s (if different th	an mailing addres	ss)			
	6. Tra	rator's Phone: 9 Insporter 1 Company Nam	e	4 - 5 7 1 1	CT. 1840					U.S. EPA ID		0.4.4	5 7 a	12
		INVIRONMENT		A SVCS OF V	1, 1146					U.S. EPAID N		UII	010	5
		signated Facility Name an								U.S. EPA ID N	Number			
	55 LE	50 INDUSTRIAL EWISBERRY P/	DR. A 17339							PAD	0.6	7 0 0	880	2
	9a. HM	ty's Phone: 717 93 9b. U.S. DOT Description and Packing Group (if a	on (including Proper	Shipping Name, Hazar	d Class, ID Number,	te		10. Conta No.	iiners Type	11. Total Quantity	12. Unit Wt./Vol.		Waste Code	
OR	TIN	1NA3082, Haza PGIII, K.Q.		, liquid, n.o.s. (Tetrachloros	thylene), i	9,	2	Type	150		0039	F002	L
GENERATOR		2.						1	DM		G			
10														
		3.												
		4.												
	14 5	pecial Handling Instruction	e and Additional Infe	ormation										
	2)	APP #EPS337-			RG#171									
		JOB #N12795		N: I berehu dealare th	at the contents of this	c consignment	are fully and	accuratelu de	and about	by the proper ch	ionina nom	and are old	(and
	r E I	marked and labeled/placar Exporter, I certify that the o I certify that the waste min	rded, and are in all r contents of this cons imization statement	espects in proper cond ignment conform to the	tion for transport acc terms of the attache	cording to appli ed EPA Acknow ge quantity gen	cable internat vledgment of (nerator) or (b)	ional and na Consent.	tional governm	ental regulations.	If export sh	nipment and I	am the Prima	ary
ļ		rator's/Offeror's Printed/Ty	ped Name	2005		Sig	gnature	1	s+).	~~~~		00.2	onth Day	Year
TR ANSPORTER INT'L	Trans	ternational Shipments sporter signature (for expo				Export from	U.S.	Port of e Date leav			_			
RTER	122200000000000000000000000000000000000	ansporter Acknowledgmen porter 1 Printed/Typed Nar		ials		Sig	nature	14	1			Мо	nth Day	Year
NSPO	Transi	porter 2 Printed/Typed Nar	me			Sig	gnature	1	25			Mo	onth Day	Year
TRA														
		screpancy Discrepancy Indication Spa	ace 🗌 Quan	tity	Туре		F I	Residue		Partial Rej	ection		Full Reje	ection
	18b A	Alternate Facility (or Gener	ator)				Manif	est Referenc	e Number:	U.S. EPA ID N	Jumber			
FACILIT										1				
DESIGNATED FACILITY		y's Phone: Signature of Alternate Facil	ity (or Generator)									M	onth Day	Year
SIG	19. Ha	azardous Waste Report Ma	anagement Method	Codes (i.e., codes for h	azardous waste trea	atment, disposa	al, and recyclin	ng systems)		17				
	1.			2.		3.				4.				
		esignated Facility Owner o d/Typed Name	r Operator: Certifica	tion of receipt of hazar	dous materials cover		ifest except as gnature	noted in Ite	m 18a			Me	onth Day	Year
Ļ		, F												

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

GENERATOR'S INITIAL COPY

Page 1 of <u>1</u>

Cycle Chem

Recycling, Treatment & Disposal of Hazardous Waste

217 South First Street, Elizabeth, NJ 07206 * 908-355-5800, Fax (908) 355-0562

Generator Name: M S KENNEDY CORPORATION

Generator EPA ID #:<u>NYD041826470</u>

Manifest #:006705653FLE

LAND DISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM This land disposal restriction (LDR) notification must be submitted with the initial shipment of all new waste streams. Subsequent notification is not required unless the waste stream changes. All sections MUST be completed. INSTRUCTION

WASTE STREAM INFORMATION – For each manifest line complete the following sections. For LDR's previously submitted or LAB PACK's with packing slips indicate such in column A or B and stop.

	A	В	С	D Treata Group	ability	E	FTI		Method for e per 40CFR	
Line #	LDR on file Non RCRA	Lab Pack & Packing Slip	EPA Waste Codes and subcategory reference letter from table (if applicable)	WW Wastew < 1% TC < 1% TS NW Not W	ater DC SS W/	F001 to F005 list numbers of Spent Solvent Constituents	which For Atl	standard	nent mark d applies reatment fication	Meets LDR treatment standards 40CFR268 Listed Waste Certify below
1			D039, F002	NWW		21	⊠ Other	SOIL	DEBRIS	
2				NWW	ww		Other	SOIL	DEBRIS	
3				NWW	ww		Other	SOIL	DEBRIS	
4				NWW	ww		Other	SOIL	DEBRIS	

ADDITIONAL INFORMATION FOR CHARACTERISTIC CODES D001 to D043. (check one)

Some or all of these waste streams contain underlying hazardous constituents (UHCs) in excess of the treatment standard of 40CFR268.40. These are indicated on the UHC/UTS table section of this LDR form or included on the waste profile.

There are no underlying hazardous constituents (UHCs) present in any of these waste streams.

	SUB	CATEGORY LETTER TABLE		NT WASTE CONSTITUENTS
D001	A B	Ignitable except high TOC ignitable liquids High TOC (> 10%) ignitable liquid	For F001-F005 indicate 1) -acetone 2) benzene	e number of constituent in above table 15) methanol 16) methylene chloride
D003	A B C D	Reactive sulfide Reactive cyanide Water reactive Other reactive	 a) n-butyl alcohol 4) iso-butyl alcohol 5) carbon disulfide 6) carbon tetrachloride 	 17) methyl ethyl ketone 18) methyl isobutyl ketone 19) nitrobenzene 20) pyridine
D006	A B	Cadmium non-battery Cadmium containing batteries	7) chlorobenzene 8) Cresols [o, m or p]	21) tetrachloroethylene {Perc} 22) toluene
D008	A B	Lead non-battery Lead acid batteries	9) cresylic acid 10) cyclohexanone	23) 1,1,1,-trichloroethane24) 1,1,2-trichloroethane
D009	A B C D	High mercury organic (≥260 PPM Total Hg) High mercury inorganic (≥ 260 PPM Total Hg) Low mercury (< 260 PPM Total Hg)	 11) o-dichlorobenzene 12) ethyl acetate 13) ethyl benzene 14) ethyl ether 	 25) trichloroethylene 26) trichloromonofluoromethane 27) 1,1,2-trichloro-1,2,2,-trifluoroethane 28) xylenes

□ This SOIL CERTIFICATION per alternate soil treatment {268.49} for indicated [circle] items.

This is a hazardous waste contaminated soil. This contaminated soil **does/does not** (circle one) contain listed hazardous wastes and **does/does not** (circle one) exhibit a characteristic of hazardous waste and **is subject to/complies with** (circle one) the soil treatment standards as provided by 268.49(c) or the universal treatment standards.

This Certification for material that meets treatment standards applies to the above listed items. This is an EPA hazardous waste that meets all applicable treatment standards set forth in 40 CFR 268 subpart D, and can be landfilled without further treatment. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or thorough knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d). I believe that the information I submitted is true, accurate and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.

CERTIFICATION - A	All section MUST be comple	ted: I certify that all	information on the	his and all associate	d documents is complete and
accurate to the best of	of my knowledge.				

Signature:	mal On	- Title:	by Maint	- MGR
Printed Name:	James Burrows	Date: 2	4/14	

APPENDIX D

This page intentionally left blank Appendix Included on CD **APPENDIX E**

This page intentionally left blank Appendix Included on CD **APPENDIX F**

SITE-WIDE INSPECTION FORM **DELUXE CORPORATION** FORMER CHECK PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

NYSDEC SITE #V00339-7 VCA #A7-0419-0005

Site Owner:	M. S. Kennedy Corporation
Site Use Limited to Industrial and/or Commercial	Yes, Verified October 6, 2014
Use of On-Site Groundwater	No, site supplied with Public Water
Declaration of Covenants & Restrictions on Record with Onandaga County:	Yes, Verified on October 8, 2014
Condition of Onsite Monitor Wells:	Good, Inspected October 6, 2014

Inspected By:

(signature)

Mike Reiff (print name)

10/8/14 (date)

APPENDIX G

ANNUAL CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS **NYSDEC SITE #V-00339-7** FORMER DELUXE PRINTING FACILITY 4707 DEY ROAD LIVERPOOL, NEW YORK

October 10, 2013 through October 9, 2014

As described and required by the Site Management Plan, as a Qualified Environmental Professional (QEP) I certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The control employed is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the Site is compliant with the Declaration of Covenants and Restrictions recorded with Ó the Onondaga County Clerk's office;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the Site remedial program and generally accepted engineering practices;
- The information presented in the Periodic Review Report is accurate and complete; and, ٠
- No new information has come to my attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of offsite contamination are no longer valid.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Dan C. Buzea, P.G, CPG, of LBG, 4 Westchester Park Drive, Suite 175, White Plains, New York, 10604, am certifying as the Deluxe Corporation Designated Site Representative that all of the above statement are true.

Dan C. Buzea, P.G., CPG

Date: 11/18/14