

Interim Remedial Measures

Soil Vapor Extraction System – Startup Report

June 27, 2005

04-455

Conducted at:

Melody Cleaners Site 2050 Hempstead Turnpike East Meadow, New York Voluntary Cleanup Program Site Code #347-1

Prepared for:

The New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

IMPACT ENVIRONMENTAL

170 Keyland Court, Bohemia, New York 11754 | 631.269.8800 telephone | 631. 269.1599 Facsimile | Impactenvironmental.com

6

TABLE OF CONTENTS

1.0	Purpose	4
2.0	As-Built Remedial System Specifications	5
2.1 2.	Soil Vapor Extraction System	5
	1.2 SVE System Piping. 1.3 SVE Pollution Control	6 6
3.0	Start-Up & Monitoring	7
3.1 3.2	Start-up Procedures SVES Monitoring	7 7
4.0	Evaluation of Data	9

PLATES

Plate 1:	Project Location Map, East Meadow, New York
Plate 2:	SVE System Layout, East Meadow, New York

TABLES

Table 1:	Remedial System Data, East Meadow, New York
Table 2a:	Monitoring Well Vacuum Influence Data, East Meadow, New
Table 2b:	SVE Well Vacuum Influence Data, East Meadow, New
Table 3:	SVES Air Sampling Analytical, East Meadow, New

EXHIBITS

Exhibit 1:	SVES Blower Specifications
Exhibit 2:	Granular Activated Carbon
Exhibit 3:	SVE Well Logs
Exhibit 4:	Carbon Disposal Manifests

APPENDICES

Appendix A: Laboratory Analytical Reports Appendix B: Quality Assurance / Quality Control Procedures

DISTRBUTION LIST

Report Holder	Number of Reports Issued
Lowden Family Trust	1
NYSDEC	1
Impact Environmental Corporate Records	1

This document is not to be reproduced in any way. The document is protected by the copyright laws of the United States of America.

1.0 Purpose

This Interim Remedial Measures Startup Report presents the subsurface as-built specifications, start-up procedures, and operational data collected during the implementation of the Soil Vapor Extraction (SVE) Interim Remedial Measures (IRM) Work Plan (dated 7/24/04) as approved by the New York State Department of Environmental Conservation (NYSDEC).

The property, herein identified as the Site, is located at 2050 Hempstead Turnpike, East Meadow, New York, and is situated on the real property tax map designation Section 50; Block C; Lot 22. This report is required under the provisions of the Order on Consent between the NYSDEC and the Volunteer, Lowden Family Trust d/b/a Lowden Properties. (see Plate 1: Project Location Map, East Meadow, New York).

The remedial protocols used for the IRM were based upon the following documents: 1) NYSDEC DER-10, Technical Guidance for Site Investigation an Remediation, dated December 2002; 2) the New York State Department of Environmental Conservation, Sampling Guidelines and Protocols, Technical Background and Quality Control Assurance for the New York State Department of Environmental Conservation Spill Response Program, dated September 1992.

The activities performed under the scope of this IRM have been summarized in this report in the following sections.

As-Built Remedial System Specifications

Start-up Procedures

2.0 As-Built Remedial System Specifications

In order to maintain the remediation schedule as approved by the NYSDEC, Impact Environmental installed a temporary trailer mounted Soil Vapor Extraction (SVE) System on the site. The trailer system was activated January 3, 2005 after being connected to the full-scale SVE piping, wells, and carbon treatment systems.

2.1 Soil Vapor Extraction System

A Gast model R6P355R-50 6-horsepower blower, capable of inducing an airflow velocity of approximately 220 CFM at approximately 30 inches of H_2O , was installed to provide soil vapor extraction (SVE) at the site. (See **Exhibit 1**: SVES Blower Specifications) Piping from the vapor extraction lines was connected to the blower through a manifold and a moisture separator unit. The SVES blower effluent is routed to two (2) carbon units before discharging to the atmosphere via an eight (8) inch diameter PVC vent stack that extends to a height 20 feet above grade.

2.1.1 SVE Wells

Four (4) dual level soil SVE wells were installed on the site in August of 2004 (See Plate 2: SVE System Layout). Each SVE well consists of two (2) two-inch diameter wells installed in the same 8.25" borehole, to facilitate better flow control and enhance vacuum efficacy within the contaminated vadose zone. One shallow well is screened from two to twenty feet below grade, the second deeper well is screened from twenty-two to approximately forty two feet below grade, to serve as a groundwater monitoring well in addition to being a vapor extraction well. Number two well gravel serves as a filter pack surrounding each screen. The balance of each well, from the top of the screen to just below land surface, consists of two-inch diameter riser. All well materials are SCH-40 PVC, and screen slot size is 0.020. A one (1) foot thick bentonite seal was installed between the screened sections of each well to segregate the zones. Each dual level well was finished at grade in a two (2) foot square manhole set in a concrete pad. A manifold in each manhole connects both well levels to horizontal piping that extends to the system housing. The wellhead manifold has valves to control, and ports to monitor individual flows, vacuums, and vapor concentrations from each well depth. (See Exhibit 3: SVE Well Logs)

2.1.2 SVE System Piping

Each of the dual level wellhead manifolds is connected to a main system manifold via three (3) inch diameter Schedule-40 PVC piping. Said piping was installed within a trench to minimum depth of two (2) feet below grade from the SVE wells extending to the system housing. Soil excavated during trenching activities was continuously screened with a Photovac model 2020 Photo Ionization Detector (PID) with a 10 eV lamp. None of the soil tested contained vapor levels above ambient levels. Therefore, the excavated native soil was used to backfill the trenches. Pavement removed for trenching was disposed of off site and replaced with new asphalt to match existing grade. SVE well and piping locations are depicted in **Plate 2:** SVE System Layout.

2.1.3 SVE Pollution Control

The SVE blower discharge is piped from the system trailer to two (2) Envirotrol model VPM-2000 vapor phase granular activated carbon (GAC) vessels. Each GAC vessel is rated for a maximum flow rate of 800 CFM and is filled with approximately 2,000 lbs of 4 X 10 mesh, reactivated carbon. (See **Exhibit 2:** Granular Activated Carbon) The GAC vessels are connected in series utilizing six (6) inch heat rated flexible hose fitted with cam and groove hose couplings. Said couplings facilitate the change of lead-lag positions of the GAC vessels, if necessary. After treatment, the SVES effluent is discharged through a six (6) inch diameter schedule 40 PVC stack extending to an elevation of 20 feet above grade. Sampling ports were installed before carbon, between vessels, and after carbon treatment.

Carbon change frequency is based on operational SVES data and monthly laboratory air discharge sampling data. The SVE system is shut down and secured during the carbon change procedure. Each GAC vessel has an 18-inch diameter steel access cover on top through which spent carbon is removed & reactivated carbon is placed. The spent carbon is placed in DOT-17H rated steel drums and removed from site the day of the carbon change for return to Envirotrol's Darlington Pennsylvania facility for reactivation. Oversight and air monitoring is performed by Impact Environmental personnel. The first carbon change was performed on April 27, 2005. A copy of the disposal manifest can be found in **Exhibit 4**: Carbon Disposal Manifests.

3.0 Start-Up & Monitoring

3.1 Start-up Procedures

Startup procedures were initiated January 3, 2005. The SVE system was initially started with full ambient dilution air. All process and electrical equipment was tested for proper operating parameters including; rotation, amps, volts, process flow, and line integrity. No equipment problems were encountered during the testing. Flow was then initiated from of all of the SVE wells. Influent parameters including total and individual vacuums, flows, and vapor concentrations were monitored hourly. SVE system effluent concentrations were monitored hourly with a Photovac model 2020 Photo Ionization Detector (PID) before treatment, between carbon units, and after second carbon unit (stack effluent).

Once all parameters had stabilized, the system flows were adjusted to maximize recovery with emphasis on reduction of vapor concentrations in area basements by maximizing contaminant capture. Vacuum influence readings were then taken at MW-1 and MW-2 to verify design vacuum influence. (See **Table 2a:** Monitoring Well Vacuum Influence) In addition, flow to SVE-3 was stopped by closing ball valves at the wellhead and at the system manifold, thus isolating SVE-3 from the remedial system. Dilution air was introduced to match the vacuum readings prior to closing flow from SVE-3; vacuum influence readings were then taken at both well depths of SVE-3. (See **Table 2b:** SVE Well Vacuum Influence)

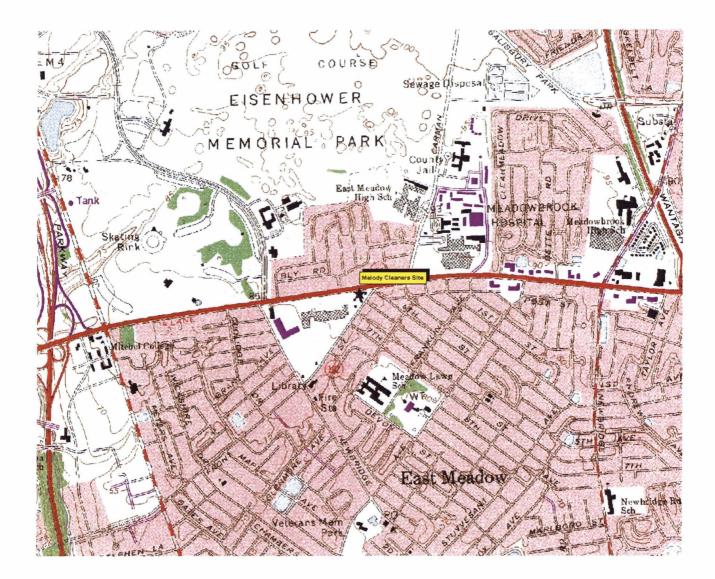
At the end of the first day of the startup, stack effluent, carbon midpoint, and pre-treatment samples were collected utilizing summa canisters and submitted to an ELAP certified laboratory for analysis. The analysis consisted of USEPA test method TO-14 for tetrachloroethene, trichloroethene (TCE), cis-1,2-dichloroethene (1,2-DCE) and vinyl chloride (VC) by GC/MS. (See **Table 3:** SVES Air Sampling Analytical)

3.2 SVES Monitoring

After the first carbon change had been completed, the frequency of system O&M/Monitoring events was reduced to bi-weekly. The SVES influent and effluent parameters including total and individual: vacuums, flows, and vapor concentrations were monitored. Vapor concentrations were monitored with a Photovac model 2020 Photo Ionization Detector (PID) before treatment, between carbon units, and after second carbon unit. (See **Table 1:** Remedial System Data) Stack effluent samples have been collected monthly utilizing a summa canister and submitted to an ELAP certified laboratory for analysis. The analysis consisted of USEPA test method TO-14 for tetrachloroethene, trichloroethene (TCE), cis-1,2-dichloroethene (1,2-DCE) and vinyl chloride (VC) by GC/MS. (See **Table 3:** SVES Air Sampling Analytical)

4.0 Evaluation of Data

Startup and bi-weekly PID screening, indicates that the SVE system has reduced contaminant concentrations significantly since startup. SVE system optimization is currently being performed by the rotation of vacuum influence by applying higher vacuum to two of the SVE wells in order to extend the radius of influence of the wells. After one week, the focus is switched to the opposite two SVE wells. Impact Environmental recommends continued operation of the SVE system in this manner until the full remedial system can be installed.


Monthly SVE system effluent analytical reports indicate that the system is operating within discharge limits.

Plates

East Meadow, New York

Plate 1: Project Location Map East Meadow, New York

Scale 1:24000 CONTOUR INTERVAL 10 FEET DASHED LINES REPRESENT 5 ~ FOOT CONTOURS DATUM IS MEAN SEA LEVEL DEPTH CURVES AND SOUNDINGS IN FEET - DATUM IS MEAN LOW WATER

Bin at

IMPACT ENVIRONMENTAL 170 Keyland Court Bohemia, New York 11716

631.269.8800 TELEPHONE 631.269.1599 FACSIMILE

Plate 2: SVE SYSTEM LAYOUT

Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York VCP Site Code # 347-1

SVE Well

scale: 1" = 40'

• soil probe

Legend

soil-gas probe

•	Tables
•	East Meadow, New York
•	
•	
•	
•	
•	
÷	
÷	

		11	-	-	_	_	_	-	_	_	-	_	_		_		_	_	_	_			_	_	_	-	_	_	_	_	_	—
SVE4	How(CFM)	i.	Ħ	1	33	1	ж	35	33	33	33	33	33	33	33	33	33	47	47	47	45	45	45	45	45	45	45	45	45	45	45	45
S	Vacuum (Inches of Water)	ı.	2	2	2	2	2	2	4	4	4	4	4	4	4	8	12	15	15	18	17	16	16	16	15	14	12	12	13	14	14	14
6.3	How (CFM)		78	r	62	1		62	62	62	62	31	31	33	33	33	33	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SVE-3	Vacuum (Inches of Water)	,	2	2	2	2	2	2	4	4	4	4	4	4	4	12	13	15	15	16	16	16	16	15	14	12	12	12	12	12	12	13
SVE-2	Vacuum How(CFM) Inches of Water)		70	ï	103	1	×.	8	74	74	74	72	74	74	74	74	74	19	67	99	67	66	99	67	67	67	67	67	67	67	67	67
SW	Vacuum (Inches of Water)		0	0	5	5	5	5	8	10	10	10	10	10	10	10	13	12	12	12	13	15	16	12	12	11	10	10	11	II	10	=
SVE-1	Vacuum How (CFM) Inches of Water)	,	76	x	28		a.	78	\$	22	25	25	84	84	28	\$	28	19	19	67	67	99	99	99	99	99	99	99	99	99	98	99
S	Vacuum (Inches of Water)	- 1	1	I	5	5	5	5	~	10	10	10	10	10	10	13	13	12	12	16	16	17	16	16	15	14	12	12	14	14	14	14
tions	Stack Effluent (PPM)	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vapor Concentrations	Carbon #2 Influent (PPM)	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	2	5.9	1.8	1.5	18.3	0.9	0	0	0	0	0
Vapo	Carbon #1 Influent (PPM)	0	292	264	422	500	525	516	318	270	21	210	176	107	76	99	25	29	13	11	11	7.6	6.7	3.6	4.2	1.8	1.8	1.8	0.8	0	0.8	0.3
eadings	Total How Blower Effluent (CFM)	200	250	250	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
Soil Vapor Extraction System Readings	Blower Discharge Temp	124	106	108	109	110	110	109	109	108	105	106	106	107	99	98	99	108	104	94	104	108	116	116	116	122	160	120	105	128	122	140
or Extractio	Blower Dischange Pressure	∞	12	12	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	10	10	8	10	8	8	10	10	10	10	10	10	10
Soil Va _f	Vacuumat Blower Inlet ("HDO)	44	16	16	22	21	21	21	21	21	21	21	20	20	20	20	20	22	2	23	24	38	30	28	28	26	26	26	27	26	26	26
Time		006	1000	1100	1200	1305	1405	1505	1300	006	006	900	006	1000	1130	1300	930	1445	1000	006	1400	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Date		1/3/2005							1/4/2005	1/5/2005	1/6/2005	1/7/2005	1/10/2005	1/13/2005	1/17/2005	1/26/2005	2/2/2005	2/1/2005	2/16/2005	2/25/2005	3/3/2005	3/10/2005	3/17/2005	3722/2005	4/1/2005	4/11/2005	4/21/2005	4/21/2005	5/2/2005	5/17/2005	5/26/2005	6/8/2005

Table 1: Remedial System DataEast Meadow, New York

Table 2a: Monitoring Well Vacuum Influence Data East Meadow, New York

.

Date		SVES Vac @ Blower (in. H2O)	FLOW	Vacuum	Distance SVE-1 to MW-1	Vacuum	Distance SVE-1 to MW-2
1/3/2005	1255	22	220	0.16	53	0.06	140
1/5/2005	1035	21	220	0.17	53	0.06	140
1/17/2005	1215	20	220	0.16	53	0.07	140

Table 2b: SVE Well Vacuum Influence DataEast Meadow, New York

Date	Time	SVES Vac @ Blower (in. H2O)	SVES FLOW (FPM)	SVE-3 Shallow Well Vacuum ("H2O)	SVE-3 Deep Well Vacuum ("H2O)	Distance SVE-3 to SVE-1	Distance SVE-3 to SVE-2	Distance SVE-3 to SVE-4
1/4/2005	1255	22	220	_0.1	0.16	95	130	130
1/5/2005	1035	21	220	0.1	0.17	95	130	130
1/17/2005	1215	20	220	0.11	0.17	95	130	130

Cari	Sample Collection Date		01/ /05	02/ /05	03/ /05	04/ /05	05/ /05
Carbon Effluent Concentration	cis-1,2-Dichloroethylene	ug/m ³	ND	ND	ND	ND	ND
Concentrat	Tetrachloroethylene	ug/m ³	8.28	ND	ND	ND	ND
ions	Trichloroethylene	ug/m ³	ND	ND	ND	ND	ND
	Vinyl Chloride	ug/m ³	ND	ND	ND	ND	ND
Ca	cis-1,2-Dichloroethylene	ug/m ³	ND				
Carbon Mid Point	Tetrachloroethylene	ug/m³	8.28				
oint	Trichloroethylene	ug/m³	ND				
•1	Vinyl Chloride	ug/m³	ND				
	cis-1,2-Dichloroethylene	ug/m³	19356				
Carbon	Tetrachloroethylene	ug/m³	211150				
Carbon Influent	Trichloroethylene	ug/m³	19129				
	Vinyl Chloride	ug/m ³	11.4				

 Table 3: SVES Air Sampling Analytical

 East Meadow, New York

•

.

۲

.

.

.

Exhibits

.

Brooklyn, New York

Exhibit 1

SVES Blower Specifications

۲

.

•

- .
- ۲
- .
- •

SEAST REGENAIR[®] Regenerative Blowers with Explosion Proof Motors

.

۲

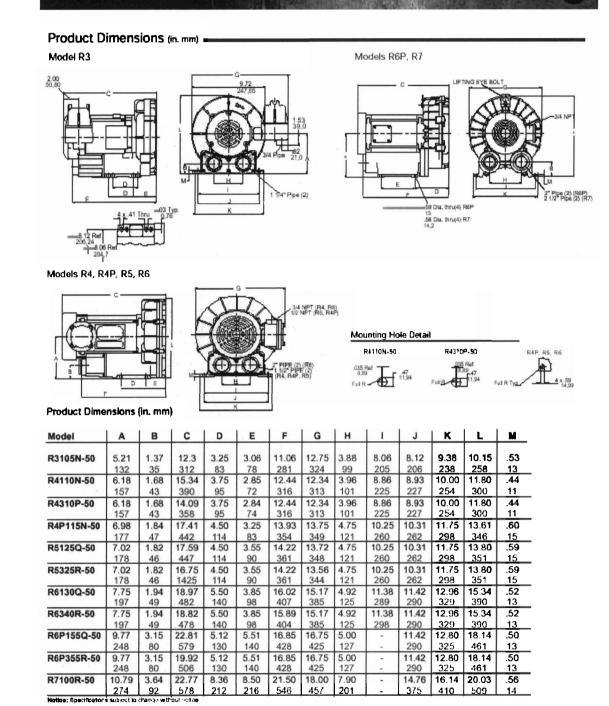
.

R4 - R7 Series

Maximum Maximum Maximum Pressure ("H₂O) Vacuum ("H₂O) Air Flow (CFM) MODELS 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz R3105N-50 43 31 40 28 53 44 R4110N-50 51 38 48 35 92 74 R4310P-50 R4P115N-50 65 45 60 40 133 112 R5125Q-50 55 60 160 R5325R-50 65 50 65 47 160 133 R6130Q-50 60 215 180 75 70 65 R6340R-50 100 75 80 65 215 180 R6P155Q-50 95 235 80 85 65 280 R6P355R-50 100 232 80 85 65 280 R7100R-50 100 90 110 85 425 350

PRODUCT FEATURES

- Rugged design, maintenance free
- Quiet operation within OSHA standards
- · Blowers and motors rated for continuous duty
- UL and CSA approved multi-voltage motors, incorporating approved thermal protection
- Motors classified as Explosion Proof Division 1 and 2, for Group D explosive atmospheres
- Motors carry full rated load at temperatures below Class B motor insulation limits
- Class F motor insulation used in motors larger than 1 HP
- Motors conform to NEMA frame sizes; motor enclosures conform to IP54 (suitable for outdoor use)
 Pilot duty thermal overload protection is standard on all
- 1 HP and larger motors


 Double sealed motor ball bearings with a B10 life exceeding
- 30,000 hours of continuous operation at the maximum rated continuous blower load
- Sealed air streams
- · Aluminum impeller, housing and cover; viton shaft seal.
- Pressurized and leak-tested to less than 5cc/minute

Recommanded Accessories	R3 Series	R4 Series	R4P Series	R5 Series	R6 Series	R6P Series	R7 Series
Pressure Gauge	AJ496	AJ496	AE133	AE133	AE133	AE133	AE133
Vacuum Gauge	AJ497	AJ497	AE134	AE134	AE134	AE134	AE134
Pressure Filter	AJ126C	AJ126D	AJ126D	AJ1260	AJ126F	AJ126F	AJ126G
Vacuum Filter (Inline)	AJ151C	AJ151D	AJ151D	AJ151E	AJ151G	AJ151G	AJ151H

Gast Manufacturing Inc., A Unit of IDEX Corporation, Benton Harbor, MLUSA • ph 816-926-6171 • fx 616-925-8288 • www.gastmfg.com #Registered Trademark/^{IM} Trademark of Gast Manufacturing Inc., Copyright © 2001 Gast Manufacturing Inc. All rights reserved

R3-R7 SERIES - EXPLOSION PROOF MOTORS

ØGAST

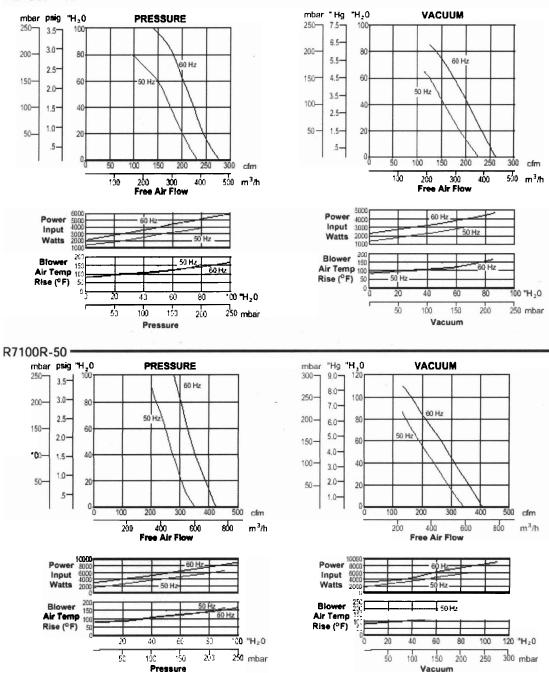
57

SEAST REGENAIR® Regenerative Blowers

Product Specifications

MODEL NUMBER		R3105N-50	R4110N-50	R4310P-50	R4P115N-50
		XPEC	XPFC	KPF C	XPFC -
DUNN	50 Hz	.50/0,37	1.0/0,75	.0/0,75	1.5/1,1
HP/kW 50 Hz		.33:0,25	.60/0,45	60/0,45	1.0/0,75
Voltage 60 Hz		115/208-230-1	115/208-230-1	208 230/460-3	115/208-230-1
vonage	50 Hz	110/220-240-1	110/220-240-1	220/380-3	110/223-240-1
Amps	50 Hz	5.2/2.3-2.6	11.4/5.2-5.6	3.4-3.307.5	29.3/11.2-10.6
zantaz	50 Hz	4.8/2.4-2.2	9.2/5.2 4.6	3.2/7.6	15.2/1.6-8
Starting Amps	60 Hz	12.a -9 230V	25.5 @ 230¥	19.7 @ 230V	60.6 🖓 230V
startung Amps	50 Hz	13 @ 2207	40.6 # 240¥	23.3 @ 223V	Consult Factory
Insulation Class		3	6	B	
Recommended NEMA	Starter Size	00:00	0/00	00	<u>رين</u>
Net Weight (lbs/kg)		52/24	50/28	58/27	/9/36

MODEL NUMBER Motor Enclosure		R5125Q-50 R5325R-50		R6130Q-50	R6340R-50	
		XPFC	XPFC	XPFC	XPFC	
HP/kW	60 Hz	2.0/1,5	2.0/1,5	3.0/2,2	4.0/3,0	
HP/KW	50 Hz		1.5/1,1	2.5/1,9	3.0/2,2	
N. 0.	60 Hz	115/230-1	208-230/460-3	230-1	208-230/460-3	
Voltage	50 Hz	1111 - 11	190-220/380-415-3	220-240-1	190-220/380-415-3	
Amps	60 Hz	25/12.5	6.6-6.1/3.05	16.3	13-12/6	
	50 Hz		5.0-4.4/2.5-2.6	14.7-13.5	14.4-13.4/7.2-6.8	
Canadiana Annana	60 Hz	78 @ 230V	48 @ 230V	64 @ 230V	125 @ 230V	
Starting Amps	50 Hz		Consult Factory	Consult Factory	Consult Factory	
Insulation Class		F	F	F	F	
Recommended NEMA Starter Size		1/0	avo	1	1,40	
Net Weight (lbs/kg)		77/35	75/34	129/59	112/51	


MODEL NUMBER		R6P155Q-50	R6P355R-50	R7100R-50 XPFC	
		XPFC	XPFC		
HP/kW	60 Hz	5.5/4,1	6.0/4,5	10/7,5	
TIPIKW	50 Hz	4.0/3,0	4.5/3,4	8.0/6,0	
1 false and	60 Hz	230-1	208-230/460-3	208-230/460-3	
Voltage	50 Hz	220-240-1	190-220/380-415-3	190-220/380-415-3	
	60 Hz	29.9	20-18/9	26.5-24/12	
Amps	50 Hz	20.8-19.1	14.9-11/7.45-5.8	23.2-21.0/11.6-10.9	
Charting Amon	60 Hz	198.4 @ 230V	59 @ 460V	105 @ 460V	
Starting Amps 50 Hz		189 @ 240V	Consult Factory	Consult Factory	
Insulation Class		F	F	F	
Recommended NEMA Starter Size		0/2	1/0	2/1	
Net Weight (Ibs/kg)		243/110	233/105	297/134	

58

Gast Manufacturing Inc. - A Unit of IDEX Corporation. Benton Harber: MLUSA + ph.816-926-6171 + fx.616-925-8288 + www.gastmfg.com #Registered Trademark TM Frademark of Gast Manufacturing Inc., Copyright < 2001 Gast Manufacturing Inc. All rights reserved.

ØGAST

R6P355R-50=

Gast Manufacturing Inc., A Unit of IDEX Corporation, Benton Harbor, MI USA + ph 616-928-8171 + fx 616-925-8288 + www.gastmfg.com *Registered frademark/³⁴ Trademark of Gast Manufacturing Inc., Copyright <2001 Gast Manufacturing Inc. All rights reserved.

63

Blower Sound Levels of Gast Blowers

OGAST Application Engineering Information

Q. What happens to the noise when I locate two blowers

A. If the blowers are of the same design they produce

sound frequencies that are close together. These may

cause a "beating" change in volume of the blower noise.

This is because the units are not synchronized. If two small blowers are needed this change in volume can be

reduced by moving tham further apart. With larger

Q. How do I control relief valve or bleed off valve noise?

A. Attach AJ121 series silencer on the port of the relief

Contact Gast at 616-926-6171 or www.gastmfg.com with any further questions you may have on reducing blower

Noise Reduction and Absorption Coefficients for **Common and Specialty Noise Reduction Materials**

.07

.03 .03

.10 .15

.35 .55

.22

.60 1.21

1.10 1.34

*TEP4 and TEW4000 are products of Techiloam, Inc., 7145 Boone Avenue North,

250Hz 500Hz 1000Hz 2000Hz 4000Hz NRC .04

.30

.72

.04

1.14

1.23

.05

.50

.70

.03

1.16

1.24

.07 .04

.55 .26

.65 .62

.07 .09

1.13 1.05

1.21 1.25

Q. What causes the noise relief valves make?

valve that is open to atmosphere.

blowers a dual blower with two blowers on one motor

close together?

will solve this problem.

A. Air rush through the valve.

noise in your application.

Brick, unglazed

Carpet 1/4 in pile height

Fabric Heavy Velour 18 az per sa, yd draped to 1/2 area .14

Hardwood Plywood Paneling 1/4 in thick wood frame

Techifoam TFP4 Pyramind shape

Tecnfoarn' TFW4000 Anaechoic

Wedge shape

Minneacolis, MN., 55428

125Hz

.03

.05

.58

.39

.64

Source: Mechancial Engineering Reference Manual

Data is highest sound level out of 4 places around the blower at 1 meter.

Data represents average of several units run at nominal voltage.

Lowest to highest maximum dba level throughout performance range is shown.

Readings at other than the maximum around the blower at 1 meter may be from 2 to 10 dba less than data shown.

Readings taken in a laboratory sound room that does not reflect much noise.

Note: For comparison purposes, some blower manufacturers show sound data from 1-1/2 meters instead of from 1 meter; also, some blower manufacturers show an "average" sound level across performance instead of the full range between minimum and maximum sound levels; either of these methods will provide different and usually lower sound levels compared to Gast's sound level method.

60Hz	dBa at Pressure	50Hz	dBa at Pressure
R1	59-67	R1	59-64
R2	66	R2	61-63
R3	67-70	R3	63-68
R4	69-73	R4	64-69
R4P	69-75	R4P	64-71
R5	73-77	R5	71-77
R6	73-79	R6	70-79
RilP	82-83	R6P	77-80
REPP	77-79	R6PP	73-76
R6PS	76,77	REPS	72-75
	NE-ST	151	11-12
R7P	77-80	R7P	74-79
R7S	75-77	R7S	72-76
R9	82-85	R9	78-86
R9P	81-88	R9P	79-86
R98	79-61	R9S	77-81
R4H	80-62	R4H	75-81
R4M	82-83	R4M	78-79
R7H	83	R7H	79-81

60Hz	dBa at Vacuum	50Hz	dBa at Vacuum
R1	58-63	R1	54-60
R2	67	R2	63-64
R3	67-71	R3	64-69
R4	70-72	R4	66-70
R4P	73-74	R4P	68-71
R5	75-78	R5	71-73
36	7° 80	176	74.77
RéP	81 65	RC2	79.81
REPP	81 53	REPP	78 79
R6PS	79-81	REPS	76-77
R7	85-67	R7	79-84
R7P	84-66	R7P	80-83
R7S	82-63	R7S	78-80
R9	85-90	R9	83-84
R9P	88-90	R9P	84-87
R9S	87-68	R9S	83-86
R4H	82-89	R4H	79-88
R4M	85-89	R4M	80-85
R7H	82-91	R7H	80-90

Gast Manufacturing Inc., A Unit of IDEX Corporation, Benton Harbor, MI USA • ph 616-926-8171 • 1x 816-925-8288 • www.gastmig.com • Registered Trademark/¹⁴⁴Trademark of Gast Manufacturing Inc., Copyright < 2001 Gast Manufacturing Inc. All rights reserved.

83

Exhibit 2

6

Granular Activated Carbon

P.O. 61 Sewickley, PA 15143

Envirotrol, Inc. 432 Green Street

VPM-1000 VPM-2000

VPM-2500

VPM-3000

Vapor Phase Adsorbers

General Description

Envirotrol's vapor phase adsorbers are prefabricated steel vessels engineered to remove contaminants and/or odors from air at moderate flow rates with low pressure drop. The steel adsorbers are provided with lifting lugs and are mounted on a fork truck mobile base for easy placement and carbon exchange service. Envirotrol provides a complete turnkey service to handle carbon reactivation and exchange of these adsorbers. They are available in four sizes to best suit your application and they can be provided on a lease or purchase basis. These adsorbers can be utilized by industrial, municipal or commercial users in a variety of air purification applications including but not limited to the following:

- * Emergency Air Quality Control
- * Tank or Sump Air Vents
- * Soil Vapor Extraction
- * Air Stripper Off-Gas
- * Work Environments

Features and Benefits

Adaptable

Adsorbers are charged with the media best suited for your application.

Dependable

Operates continuously with minimal maintenance.

Durable

Adsorber is heavy steel construction lined with a high performance epoxy resin for superior corrosion resistance and long life.

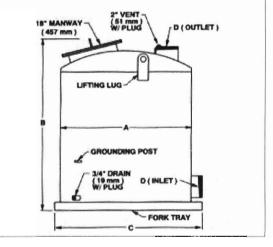
Efficient

Recycle of adsorber vessels and carbon optimizes treatment economics.

Identifiable

Individual serial numbers are assigned to each adsorber to facilitate tracking and documentation

<u>Portable</u>


Easily transported and installed at almost any location.

<u>Versatile</u>

Easily configured as single or multiple unit systems to handle higher flows.

STANDARD CONFIGURATION

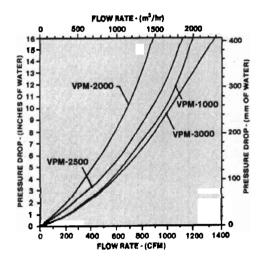
Operating Parameters

Conditions	Limits
Maximum Working Pressure	15 PSI
Temperature Limit	140° F

Contact Us Today 412.741.2030

VPM-3000

Vapor Phase Adsorbers


Dimensions and Capacities

Adsorbers	A Inches	B Inches	C Inches	D Inches	Max Flow CFM	Carbo Fill (lbs.)	Ship Weight (lbs.)
VPM-1000	48	66	54	8	1000	1000	2100
VPM-2000	48	90	54	8	800	2000	3550
VPM-2500	54	90	60	8	1000	2500	4150
VPM-3000	60	91	66	8	1200	3000	5100

The standard vessel is furnished with MNPT inlet and outlet fittings. The vent and drain are FNPT fittings furnished with a plug. The man way is furnished with a bolted-on cover and neoprene gasket. Other optional fittings can be provided as required. All dimensions and capacities are approximate.

Pressure Drop Information

PRESSURE DROP CHART

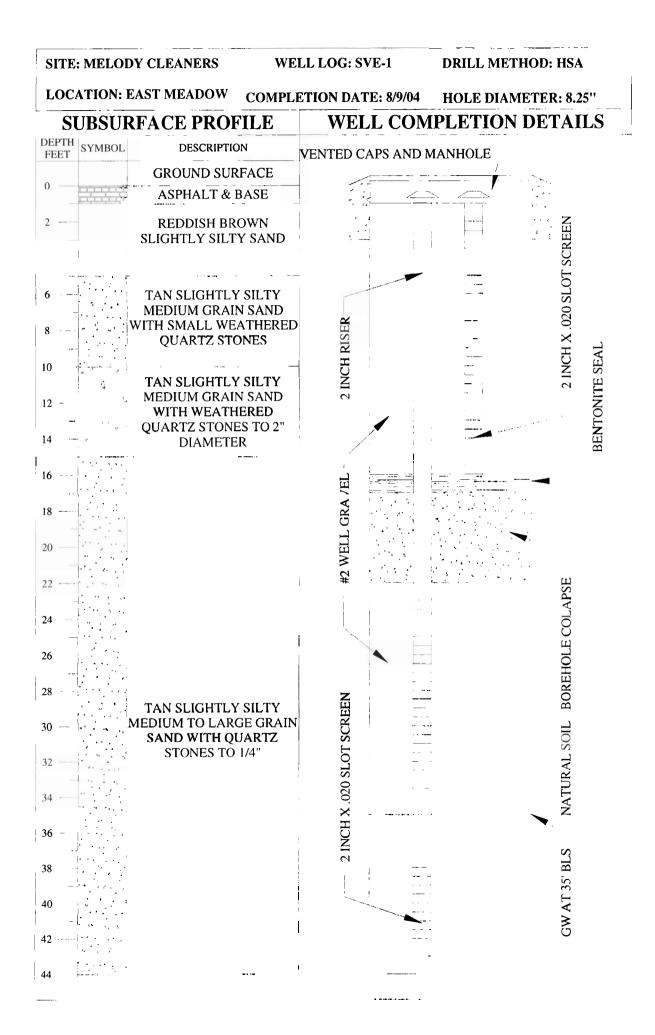
The pressure drop across a vapor phase adsorber unit is a function of the vapor flow rate as shown on the above pressure drop chart. Additionally, sufficient retention time must be provided within the carbon bed. For this reason, the recommended maximum vapor flow rate through each type of adsorber is as follows:

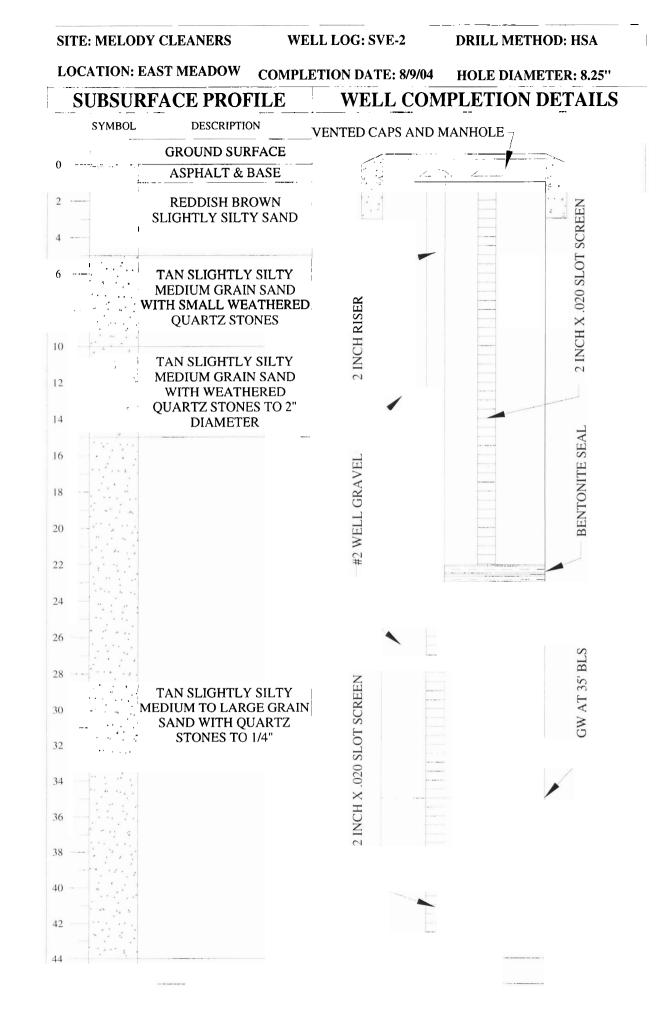
Туре	Limits
VPM-1000	1000 CFM (1699 m³/hr)
VPM-2000	800 CFM (1359 m³/hr)
VPM-2500	1000 CFM (1699 m³/hr)
VPM-3000	1200 CFM (2039 m ³ /hr)

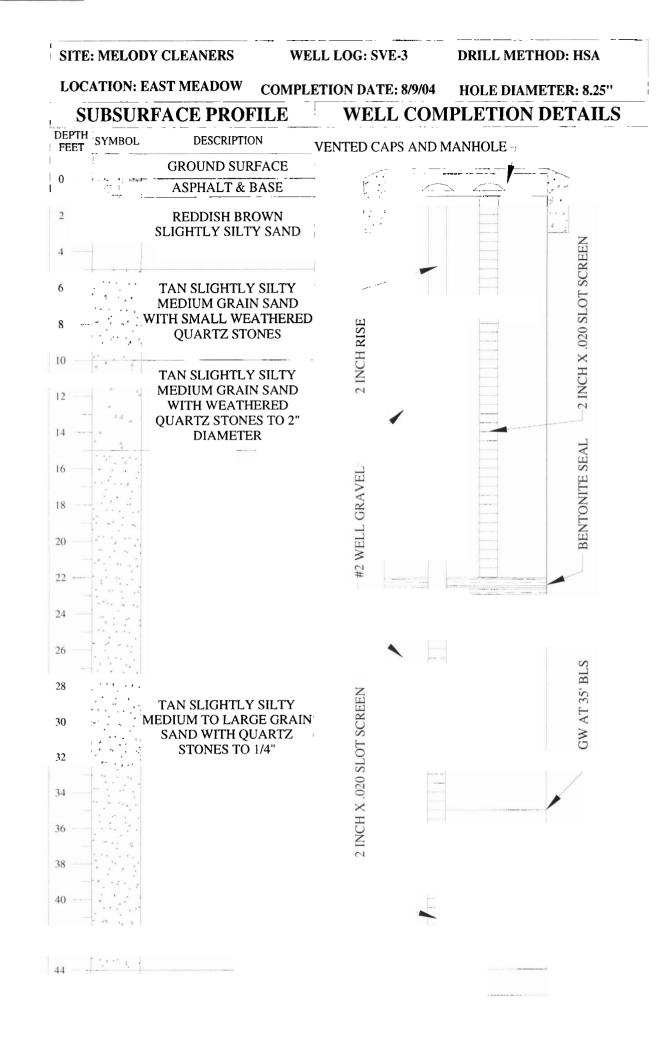
If higher flows or lower pressure drops are required, multiple vapor phase adsorbers may be installed in parallel operation.

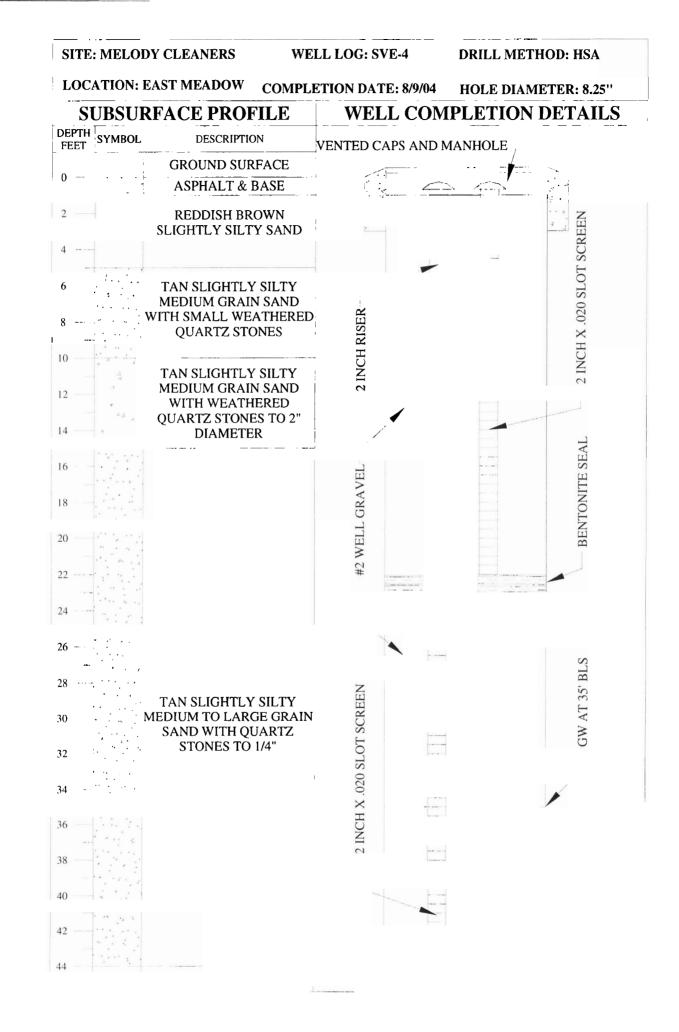
Carbon Change-Out Service

Envirotrol offers a complete turnkey service to change-out activated carbon at your site. This service includes vacuum of the spent carbon, delivery and installation of the fresh carbon and return of the spent carbon to our reactivation facilities. Additionally, Envirotrol offers complete turnkey service to handle carbon reactivation and recycle of the vapor phase adsorbers via our facilities. This is done by disconnecting and draining the adsorber and shipping the adsorber with carbon to Envirotrol.


Safety Information


Whenever workers enter a vessel containing carbon, all precautions must be taken since dangerously low levels of oxygen may be encountered. Atmosphere sampling and work procedures for potentially low oxygen areas should be followed.


P.O. 61 Sewickley, PA 15143 Envirotrol, Inc. 432 Green Street


Exhibit 3

SVE Well Logs

Exhibit 4

100

Carbon Disposal Manifests

500-FM-LRWM0051 REV. 7/99	PENNSYLVANIA DEPARTMENT OF Bureau of Land Recycling a P.O. Box Harrisburg, PA OFFICIAL PENNSYLVAN	and Waste Manager 8550 17105-8550	ment	NO		Form approved OMB No. 2050-	
3. Generator's Name and Mailing Address	1. Generator's US EPA ID No. Manifest Document No.		2. Page of A. State	2. Page 1 Information within the bold red bord			
4. Generator's Phone (LJA)	6. US EPA IC 	Number	D. Trans E. State PA F. Trans G. State	Trans. ID -AH 22 porter's Phone (97 Trans. ID -AH porter's Phone (Facility's ID y's Phone (j.,-9252	
11. US DOT Description (Including Proper Shipping HM a.	Name, Hazard Class, and ID Number)	No.	Type	13. Total Quantity	14. Unit Wt/Vol	F 001.	
b. d.			BA	19	ę	D059 D040	
J. Additional Descriptions for Materials Listed Abov 15. Special Handling Instructions and Additional Inf EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		ा (631) शा	a. b.	Codes for Wastes	- 1 -		
practicable and that I have selected the practic	I hereby declare that the contents of this consignn e in all respects in proper condition for transport by that I have a program in place to reduce the volu able method of treatment, storage, or disposal cur renerator. I have made a good faith effort to minimi Signature	ently available to me whi	ch minimizes :	the present and futu	ire threat to	human health i	
17. Transporter 1. Acknowledgement of Receipt of Materials Printed/Typed Name //:::	Signature Signature				MONTH MONTH MONTH	27 09 Day Yea 27 2 Day Yea	
 Discrepancy Indication Space Eaclity Owner or Operator: Certification of receip Printed/Typed Name 	pt of hezardous materials covered by this manifest e Signature	xcept as noted in item 19.			MONTH	DAY YEA	
Form 8700-22 (Rev. 9/88) Previous editions are obsolete					1.00	E	

COPY 6 - GENERATOR: RETAIN THIS COPY

.

	٠	
		Appendix A Laboratory Analytical Reports
1		
1	•	
	•	
	•	
	۲	
1	•	
(۲	

Technical Report

prepared for

Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Report Date: 1/6/2005 *Re: Client Project ID: 04-455* York Project No.: 05010027 Revision

CT License No. PH-0723 New York License No. 10854 Mass. License No. M-CT106 Rhode Island License No. 93 NJ License No. CT401

120 RESEARCH DRIVE

STRATFORD, CT D6615

FAX (203) 357-0166

(203) 325-1371

Report Date: 1/6/2005 Client Project ID: 04-455 York Project No.: 05010027 R

Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 01/04/05. The project was identified as your project "04-455 ".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			Carbon-Eff		Carbon-Mid	
York Sample ID			05010027-01		05010027-02	
Matrix			AIR		AIR	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles(TO-14 list)	EPA TO-14A	ppbv				
cis-1,2-Dichloroethylene			Not detected	0.34	Not detected	0.34
Tetrachloroethylene			1.2	0.34	1.2	0.34
Trichloroethylene			Not detected	0.34	Not detected	0.34
Vinyl Chloride			Not detected	0.34	Not detected	0.34
Volatile Organics, TO14 List	EPA TO14A	ug/cu.m.			~	
cis-1,2-Dichloroethylene			Not detected	1.36	Not detected	1.36
Tetrachloroethylene			8.28	2.33	8.28	2.32
Trichloroethylene			Not detected	1.84	Not detected	1.83
Vinyl Chloride			Not detected	0.876	Not detected	0.874

Analysis Results

Client Sample ID			Carbon-Inf	
York Sample ID			05010027-03	
Matrix			AIR	
Parameter	Method	Units	Results	MDL
Volatiles(TO-14 list)	EPA TO-14A	ppbv		
cis-1,2-Dichloroethylene			4800	340
Tetrachloroethylene			30610	340
Trichloroethylene			3500	340
Vinyl Chloride			4.4	0.34
Volatile Organics, TO14 List	EPA TO14A	ug/cu.m.		
cis-1,2-Dichloroethylene			19356	810
Tetrachloroethylene			211150	1380
Trichloroethylene			19129	1090
Vinyl Chloride			11.4	0.52

Units Key:

For Waters/Liquids: mg/L = ppm; ug/L = ppb

For Soils/Solids: mg/kg = ppm ; ug/kg = ppb

Notes for York Project No. 05010027 R

1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.

- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved By Robert Q. Bradlev Managing Director

Date: 1/6/2005

		0	•	•		•			•	•	•	
YC	DRK			F	ielo		ha	in-	of-Ci	ustod	y Record	Page of
ANALYTICAL LA 120 RESEARCH DRIVE (203) 325-1371	STRATFORD, FAX (203) 35	CT 06615			1010				<u></u>		(0501	0007.
<u>Company</u> Impact		<u>Report</u> Hal Benjo			<u>ce To:</u> Njamin		C	_	ect ID/N 455	<u>0.</u>	Samples Colleg Hal Benjan Name	cted By (Signature)
Sample No.	Loca	ation/ID	Date Sa	ampled	Sa Water	mple N Soil		THER	ANA	LYSES R	EQUESTED	Container Description(s)
	Carba	N-EPP	1/3/0	5			×		TO	-14		Summa-S23
	Carto	n-Mid	1/3/0	5			×		TO	- 14		SUMMA-SOZ
	Carbo	n-Inf	13	05			×		τc	>-14		Summa-011
		а. 								·····		
											、	
											PP6450 87	
	L - 13 102 - 12 8 199	1.07 2.0 4.0 0 7.07 2.0 4.0 0 7.07 2.0 0		1111日 111日日 11日日 11日日 11日日 11日日 11日日 1	- 蒙然注意。 發出該新聞		(新)方向 (月)一日 (月)一日 (月)一日 (月)	· 前月4日 前月1日前		4 小小公司 (1) 大型 4 电音乐的标志的		
Chain-of-Custo				1/h		>		, ;	/1530	6/	ame	1/4 1030
Bottles Relinquis				Sample Relin		3		Date/	me	Sarty	Die Received bi	
Bottles Receive		Date/Tim	ie S	Sample Relind	quished by	1.5		Date/Ti	me		Received In LAB by	Date/Time
commentaropet	nai motruct	10115										SH(define)

The preparation of the state of

prepared for

.

Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Report Date: 3/1/2005 *Re: Client Project ID: 04-455* York Project No.: 05020462 Revised

CT License No. PH-0723

New York License No. 10854

120 REBEARDH DRIVE

STRATFORD, CT D6615

5 (203) 328-1371

FAX (203) 357-0166

Page 1 of 3

Report Date: 3/1/2005 Client Project ID: 04-455 York Project No.: 05020462 Revised

Impact Environmental

170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 02/18/05. The project was identified as your project "04-455 ".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			Stack	
York Sample ID			05020462-01	
Matrix			AIR	
Parameter	Method	Units	Results	MDL
Target Volatiles	EPA TO14A	ppbv		
1,2-Dichloroethylene			Not detected	0.2
Tetrachloroethylene			Not detected	0.2
Trichloroethylene			Not detected	0.2
Vinyl chloride			Not detected	0.2
Target Volatiles	EPA TO14A	ug/cu.m.		
1,2-Dichloroethylene			Not detected	1.0
Tetrachloroethylene			Not detected	1.0
Trichloroethylene			Not detected	1.0
Vinyl chloride			Not detected	1.0

Analysis Results

Units Key:

For Waters/Liquids: mg/L = ppm; ug/L = ppb

For Soils/Solids: mg/kg = ppm ; ug/kg = ppb

Report Date: 3/1/2005 Client Project ID: 04-455 York Project No.: 05020462 Revised

Notes for York Project No. 05020462 R

1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.

- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved By: Robert Q. Bradley 10 Managing Director

Date: 3/1/2005

	DRK	3, INC.		F	Field	I Cl	hain-	of-C	ustody Recor	
20 RESEARCH DRIVE (203) 325-1 371		CT 06615 7-0166							DDDLC	762.
Company	Name	Repor	t To:	Invoi	ce To:		Pro	ject ID/N	lo.	
Impact		Hal Benji	amin	Peret	Forres	5	04	- 455		ilected By (Signature)
Sample No.	Loc	ation/ID	Date Sa	ampled	Sa Water	ample M Soil A	atrix Air DTHER	ANA	ALYSES REQUESTED	Container Description(s)
	Sta	nck	2/1	6105			×	TO -14	M For: PCE, TCE,)CE, VC	York Summa S-
								-		
		• • • • •								
Chain-of-Custo	dy Record	1				>	2/16	105	Warme	2/17/030
Bottles Relinquis	ned from Lab	by Date/Tin	ne	Sample Relind	quished by		Date/T	(BM Date/Time
Bottles Received	d in Field by	Date/Tin	ne S	Sample Relind	quished by		Date/1	ime	Sample Received in LAB by	Date/Time
Comments/Spec	ial Instruct	tions							Turn-Around Time Standard R	USH(define)

.

۲

• •

prepared for

Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Report Date: 3/30/2005 Re: Client Project ID: 04-455.1 / Melody York Project No.: 05030568 Revised

CT License No. PH-0723

New York License No. 10854

Page 1 of 3

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371 FAX (203) 357-0166

Report Date: 3/30/2005 Client Project ID: 04-455.1 / Melody York Project No.: 05030568 Revised

> Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 03/18/05. The project was identified as your project "04-455.1/ Melody ".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			Stack Eff	
York Sample ID			05030568-01	
Matrix			AIR	
Parameter	Method	Units	Results	MDL
Target Volatiles	EPA TO14A	ppbv		
1,2-Dichloroethylene			Not detected	0.2
Tetrachloroethylene			Not detected	0.2
Trichloroethylene			Not detected	0.2
Vinyl chloride			Not detected	0.2
Target Volatiles	EPA TO14A	ug/cu.m.		
1,2-Dichloroethylene			Not detected	1.0
Tetrachloroethylene			Not detected	1.0
Trichloroethylene			Not detected	1.0
Vinyl chloride			Not detected	1.0

Analysis Results

Units Key:

For Waters/Liquids: mg/L = ppm ; ug/L = ppb

For Soils/Solids: mg/kg = ppm; ug/kg = ppb

Report Date: 3/30/2005 Client Project ID: 04-455.1 / Melody York Project No.: 05030568 Revised

Notes for York Project No. 05030568 R

1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.

- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.

7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved By: Robert Q. Bradley Managing Director

Date: 3/30/2005

	•	•		•	•	•		•
YORK	5, INC.	E	ield (Chain-	of-Cu	stody R	ecord	Page of
Company Name	Report To Hall Benjan	-	<u>же То:</u> 147	D4-	ect ID/No. 4JS、/		Samples Collecte	
Sample No. Loc	ation/ID D	ate Sampled	Samp	Me ble Matrix bil Air DTHER		YSES REQUE		Container Description(s)
04-455-1 Stack		3/17/05-				··· / /.	2.VCE.VC	YOKK 330
		•						
hain-of-Custody Record		72	5	3/17/	105.	mt	2	1805
Bottles Relinquished from Lab Bottles Received in Field by	Date/Time	Sample Reling		Date/1	ime	Sample Received	I IN LAB by	Date/Time
Comments/Special Instruc	tions					Stand		H(define)

prepared for

Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Report Date: 5/4/2005 Re: Client Project ID: 04-455-1 / Melody York Project No.: 05040812 Revised

CT License No. PH-0723

New York License No. 10854

120 REBEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371 FAX (203)

FAX (203) 357-0166

Report Date: 5/4/2005 Client Project ID: 04-455-1 / Melody York Project No.: 05040812 Revised

Impact Environmental

170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 04/28/05. The project was identified as your project "04-455-1 / Melody".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			Stack Eff	
York Sample ID			05040812-01	
Matrix			AIR	
Parameter	Method	Units	Results	MDL
Target Volatiles	EPA TO14A	ppbv		
1,2-Dichloroethylene			Not detected	0.2
Tetrachloroethylene			Not detected	0.2
Trichloroethylene			Not detected	0.2
Vinyl chloride			Not detected	0.2
Target Volatiles	EPA TO14A	ug/cu.m.		
1,2-Dichloroethylene			Not detected	1.0
Tetrachloroethylene			Not detected	1.0
Trichloroethylene			Not detected	1.0
Vinyl chloride			Not detected	1.0

Analysis Results

Units Key:

For Waters/Liquids: mg/L = ppm; ug/L = ppb

For Soils/Solids: mg/kg = ppm ; ug/kg = ppb

Report Date: 5/4/2005 Client Project ID: 04-455-1 / Melody York Project No.: 05040812 Revised

Notes for York Project No. 05040812 R

1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.

- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3 York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.

7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Date: 5/4/2005 Approved By: W Robert Q. Bradley Managing Director

										,	
ANALYTICAL	YORK	N		Ц	ield	ch Ch	ain	of-Cu	Field Chain-of-Custody Record	ecord	Page / of /
120 RESEARCH DRIVE (203) 325-1371	518417080, CT 06615 Fax (203) 357-0166	CT 36615								CCD	10812.
Company Name	Name	Report To:	To:	Invoid	Invoice To:		Pro	Project ID/No.	1	77	
							50	1.554-40		Samples Collected By (Signature)	d By (Signature)
/mparct		Hal Benjamin		Inspurt	Ę,		Me	Melody	1	El Ceno Name (Printed)	J O Printed)
Sample No.		Location/ID	Date Sampled		Sarr Water S	Sample Matrix r Soil Air C	Matrix Air þTHER		ANALYSES REQUESTED	STED	Container Description(s)
1-528-40	Struck Eff	臣弘	4-27-	- as		×	2	TO 14 M	TO 14 M for: PCE. TCE 1.2 DCE		SUMAA
				1.1				Trainer	· · · · · · · · · · · · · · · · · · ·		
unain-or-custody kecord	ay kecord		6			ſ	0.27 05	Į a	<i>i</i> /	Þ	1/2 cr 17 -
Bottles Relinquished from Lab by	hed from Lab by	Date/Time	Sar	Sample Relinquished by	ished by		Date/Time	3 a	Samplefieceived	The state	Date/Time
Bottles Received in Field by	t in Field by	Date/Time		Sample Relinquished by	shed by		Date/Time	me	Sample Received in LAB by	1 AB by	Date/Time
Comments/Special Instructions	ial Instructio	suc							Turn-Around Time		RU/SH/define)
									+		

prepared for

Impact Environmental 170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Report Date: 6/7/2005 Re: Client Project ID: 04-455-1 / Melody York Project No.: 05050993 Revised

CT License No. PH-0723

New York License No. 10854

ne 2

120 RESEARCH DRIVE

STRATFORD, CT 06615

5 (203) 325-1371

FAX (203) 357-0166

Report Date: 6/7/2005 Client Project ID: 04-455-1 / Melody York Project No.: 05050993 Revised

Impact Environmental

170 Keyland Court Bohemia, NY 11716 Attention: Hal Benjamin

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 05/27/05. The project was identified as your project "04-455-1/ Melody ".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Client Sample ID			Stack Eff	
York Sample ID			05050993-01	
Matrix			AIR	
Parameter	Method	Units	Results	MDL
Target Volatiles	EPA TO14A	ppbv		
1,2-Dichloroethylene	ja -		Not detected	0.2
Tetrachloroethylene			Not detected	0.2
Trichloroethylene			Not detected	0.2
Vinyl chloride			Not detected	0.2
Target Volatiles	EPA TO14A	ug/cu.m.		
1,2-Dichloroethylene			Not detected	1.0
Tetrachloroethylene			Not detected	1.0
Trichloroethylene			Not detected	1.0
Vinyl chloride			Not detected	1.0

Analysis Results

Units Key:

For Waters/Liquids: mg/L = ppm ; ug/L = ppb

For Soils/Solids: mg/kg = ppm; ug/kg = ppb

Report Date: 6/7/2005 Client Project ID: 04-455-1 / Melody York Project No.: 05050993 Revised

Notes for York Project No. 05050993

1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.

- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.

7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved By: Robert Q. Bradley Managing Director

Date: 6/7/2005

	AUDV							02	05050993	Pade / of /
ANALYTIGAL L	ABURATURES, INC. STRAFFURE, T D6615	NES, ING. Ro, CT 06615		Ц	ield	ch	ain-	Field Chain-of-Custody Record	/ Record	5 5
Company Name	Name	Report To:	To:	Invoid	Invoice To:		Proje	Project ID/No.		(
mplut		Had Benjamin		Impact	ţ	0	Nelou	04.455-1 Melody	Samples Collec	Samples Collected by (Signature)
Sample No.	Loca	Location/ID	Date Sampled		San Water 5	Sample Matrix	Matrix Air OTHER	ANALYSES REQUESTED	QUESTED	Container Description(s)
04-465-1	Stark Et	EH	5-26-	2				TO 14 M Sor: PCE. TUE1.2 DUE	TUE1.2 OCE	VORK 130
				, ,						
			×							
	,		ž							
			ę							
Chain-of-Custody Record	dy Record		$\left(\right)$		N		12.22			SUDIS
Bottles Relinquished from Lab by	ned from Lab by	Date/Time		Sample Relinquished by	ished by		Date/Time	admas -	Received by	S-23- 17
Bottles Received in Field by	d in Field by	Date/Time		Sample Relinquished by	ished by		Date/Time		Sample Received in LAB by	Date/Time
Comments/Special Instructions	ial Instructic	SUC						Turn	Turn-Around Time X Standard RUS	RUSH(define)
								2		

Appendix B

Quality Assurance / Quality Control (QA/QC) Procedures

The sampling QA/QC protocol will be in accordance with the United States Environmental Protection Agency's accepted sampling procedures for hazardous waste streams [Municipal Research Laboratory, 1980, <u>Sampling and Analysis Procedures for Hazardous Material Waste Streams</u>, Environmental Protection Agency, Cincinnati, Ohio. USEPA-600/280-018] and ASTM Material Sampling Procedures.

A.1 Sample Personnel

All samples will be taken by or under the auspices of a United States Environmental Protection Agency Office of Emergency and Remedial Response Certified Sampler for Hazardous Materials. Sample staff (samplers) possessed a minimum of a B.A. Degree in the Earth and Space Sciences or a B.S. Degree in Engineering. Samplers will have a minimum of one (1) year experience in environmental/geological/biological/engineering fieldwork. Additionally, all samplers will have received mandatory forty-hour Occupational Safety and Health Administration training on working with potentially hazardous materials and appropriate Hazard Communication Program, "Right-To-Know" training.

A.2 Sample Equipment

A.2.1 Sediment/Soil Sampling Equipment

All sample handling (transferring) will be conducted using decontaminated stainless steel spoons and/or ponar grab (prepared as indicated below). When not in use, spoons and/or ponar grab will be wrapped in aluminum foil that has been rinsed with distilled/deionized water.

Wash with detergent (Alconox/Liquinox) and tap water Rinse with distilled water Rinse with acetone and/or acidic rinse and air dry Rinse with distilled water Air dry

A.2.2 Groundwater Sampling Equipment

All groundwater samples will be secured utilizing dedicated disposable sampling apparatus.

A.2.3 Organic Vapor Analyzer

Calibration of the PID was conducted prior to sampling using a span gas of known concentration. The PID was a Photovac Micro-Tip, photo ionization detection meter.

A.2.4 Sample Vessels

All sample vessels will be "level A" certified decontaminated containers. Containers will be of appropriate volume and type according to the analysis to be performed. Those samples to be analyzed for volatile and semi-volatile organic analytes will be placed in containers with Teflon lined caps.

A.3 Sample Acquisition

A.3.1 Sample Preservation

Those samples requiring preservation (i.e. acid) to maintain their integrity will be placed in containers preserved, prior to collection, by the laboratory. After acquisition, samples will be cooled to four degrees Celsius.

A.3.2 Laboratory Analysis

Soil and groundwater samples were analyzed by a New York State Certified Commercial Laboratory.

A.4 Sample Documentation

A sample represents physical evidence. An essential part of liability reduction is the proper control of gathered evidence. To establish proper control, the following sample identification and chain-of custody procedures will be followed.

A.4.1 Sample Identification

Sample identification will be executed by use of a sample tag, log book and manifest. Said documentation will provide the following information:

Project Code Sample Laboratory Number Sample Preservation Instrument Used For Source Soil Grabs Composite Medium Used For Source Soil Grabs Date Sample Was Secured From Source Soil Time Sample Was Secured From Source Soil

A.4.2 Chain-of-Custody Procedures

Due to the evidential nature of samples, possession will be traceable from the time the samples will be collected until they are received by the testing laboratory. A sample will be considered under custody if:

It is in a person's possession, or It is in a person's view, after being in possession, or It is in a person's possession and they are to lock it up, or It is in a designated secure area.

When transferring custody, the individuals relinquishing and receiving the samples will sign, date and note the time on transference on the Chain-of-Custody Form.

A.4.3 Laboratory Custody Procedures

A designated sample custodian accepted custody of the shipped samples and verified that the information on the sample tags matched that on the Chain-of-Custody Records. Pertinent information as to shipment, pick-up, courier, etc., were entered in the "remarks" section. The custodian entered the sample tag data into a bound logbook.

The laboratory custodian used the sample tag number, or assigned a unique laboratory number to each sample tag, and assured that all samples were transferred to the proper analyst or stored in the appropriate source area. The laboratory custodian distributed samples to the appropriate analysts. Laboratory personnel were responsible for the care and custody of samples, from the time they were received, until the sample was exhausted or returned to the sample custodian. All identifying data sheets and laboratory records were retained as part of the permanent documentation. Samples received by the laboratory were retained until after analysis and quality assurance checks were completed.