2023-2024 Periodic Review Report

September 6, 2024

Submitted for:

Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York NYSDEC State Superfund Site No. V00347-1

Submitted to:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7011

Report User:

Mr. Nicholas Capparelli c/o Capparelli Properties Ltd. 286 Roosevelt Way Westbury, NY 11590

Project Number:

09406-01

TABLE OF CONTENTS

1	EXE	CUTIVE SUMMARY	2
	1.1	Nature and Extent of Contamination	2
	1.1.	1 Source of Contamination in Soil	2
	1.1.	2 Groundwater Impacts	2
	1.1.	3 Soil-Vapor Impacts	3
	1.2	Remedial History	3
	1.3	Effectiveness of Remedial Program	5
	1.4	Compliance	5
	1.5	Recommendations	5
	1.6	Schedule of IC/EC Activities for 2023/2024	5
2	BAC	CKGROUND	6
	2.1	Site History and Uses	7
	2.2	Environmental History	7
	2.3	Remedial Program Features	10
3	Inst	citutional Control /Engineering Control Plan	10
	3.1	IC/EC Compliance	12
4	Moi	nitoring Plan Compliance	14
	4.1	Components of Monitoring Plan	14
	4.2	Summary of Monitoring Completed During Reporting Period	15
	4.3	Evaluation of Monitoring Results and General Trends	15
	4.4	Monitoring Deficiencies	17
	4.5	Conclusions and Recommendations	17
5	Оре	eration and Maintenance Plan Compliance	19
	5.1	Components of O&M Plan	19
	5.2	O&M Operations	19
	5.3	Conclusions and Recommendations	19

6	Eval	luation of Remedy Performance, Effectiveness and Protectiveness	.20
	6.1	Compliance with SMP	20
	6.2	Future PRR Submittals	21

Figures

Figure 1: Site Map

Figure 2: Site Layout

Figure 3: Onsite Groundwater Monitoring Well and SVE System Well Cluster Location Map

Figure 4: Offsite Groundwater Monitoring Well Cluster Map

Figure 5: Vapor Point Location Map

Tables

 Table 1:
 Groundwater Sampling Data Compendium - Volatile Organic Compounds

Table 2: January 2, 2024 Biannual VOC Groundwater Sampling Summary Table

Table 3: June 26, 2024 Annual VOC Groundwater Sampling Summary Table

 Table 4:
 SSDS Vacuum Measurement Summary Table

Appendices

Appendix A: Field Forms

Appendix B: Groundwater Monitoring Event Laboratory Analysis Reports

Appendix C: Site Management PRR Notice Institutional and Engineering Controls Certification Form

1 EXECUTIVE SUMMARY

The site is a 0.686-acre section of a 1.715-acre property located in East Meadow, Nassau County, New York, with a physical address of 2050 Hempstead Turnpike (herein referred to as the "Site"). The Site is currently in the New York State (NYS) Voluntary Cleanup Program (VCP) which is administered by the New York State Department of Environmental Conservation (NYSDEC). After completion of the remedial work, some contamination was left at this site, which is hereafter referred to as "remaining contamination". Institutional and Engineering Controls (ICs and ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. A Site Management Plan (SMP) is a required element of the remedial program for the Site. This report is a summary of recent compliance activities under the scope of the SMP. A site map presenting the subject site and associated property is presented in **Figure 1** and Site Layout Map presenting the Site features is presented in **Figure 2**.

1.1 Nature and Extent of Contamination

1.1.1 Source of Contamination in Soil

Chlorinated volatile organic compounds (CVOCs) are the contaminants of concern, related to the Melody Cleaners Site. Tetrachloroethylene (PCE) was previously used for clothing dry-cleaning operations and spot removal processes at the Site. Trichloroethylene (TCE) and cis-1,2-Dichloroethylene (cis-1,2-DCE) are two associative chlorinated VOCs that are formed by the natural degradation of PCE. The historical use of the subject Site as a retail dry cleaning facility, with identified chlorinated volatile organic compound CVOC contamination identified in soil and groundwater within footprints of former adjacent onsite leaching structures is evidence that this contamination is related to an on-site release and historic use. Post-remedial residual concentrations of tetrachloroethene (PCE), trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) were identified in onsite soil and are assumed to be currently present.

1.1.2 Groundwater Impacts

Residual concentrations of said VOCs in groundwater are still present in onsite and hydraulic offsite saturated media. Elevated concentrations of VOCs in onsite groundwater are present adjacent to the southeastern extent of the former Laundromat process wastewater leaching system and to a lesser

extent, proximal to former Melody Cleaners tertiary sanitary leaching pool. Said VOCs are present in offsite groundwater at concentrations above NYSDEC Part 703 Class GA groundwater quality standards.

1.1.3 Soil-Vapor Impacts

Residual concentrations of said VOCs in onsite soil vapor appear to be constrained to the extent of the southern and eastern sections of the Site, within the footprints of the former Melody Cleaners building, and the current Pecosa Bakery, and Laundromat buildings.

1.2 REMEDIAL HISTORY

The following is a summary of the Remedial Actions performed at the Site:

1. Excavation of chlorinated VOC impacted soil and sediment from within the former primary, secondary and tertiary sanitary cesspools associated with former Melody Cleaners operations at concentrations exceeding historic NYSDEC Technical Administrative and Guidance Memorandum No. 4046 (TAGM 4046) soil cleanup objectives and current NYSDEC Part 375-6.8 unrestricted SCOs and USEPA Region Two Underground Injection Control (UIC) Cleanup Objectives. Interim Remedial Measures were implemented in October/November 2000 to mitigate identified impacts from within the former Melody Cleaners primary, secondary and tertiary sanitary cesspools. The IRM process was utilized to prevent further contamination of groundwater from the identified pollution sources. The sediment within and the soil below the primary cesspool (UIW-1) was excavated utilizing a crane to a depth of approximately thirty (30) feet below existing grade. The sediment within and the soil below the secondary cesspool (UIW-2) was excavated utilizing a crane to a depth of approximately thirty-two (32) feet below existing grade. The sediment within and the soil below the tertiary cesspool (UIW-3) was excavated utilizing a crane to a depth of approximately nineteen (19) feet below existing grade. End-point samples were secured from the base of each of the cesspool excavations for laboratory analysis to confirm the effectiveness of the remedial services. PCE concentrations in said post-excavation samples secured from within the primary, secondary and tertiary cesspools were 74 µg/kg, 29 µg/kg and non-detect (ND), respectively, indicative of a significant reduction of chlorinated VOC contamination in unsaturated soil within the former source area. Approximately 492.72 tons of contaminated soil was excavated from the remediated cesspools. The excavated media was handled, transported and disposed of as hazardous waste in accordance with 6 NYCRR Part 371.

- 2. Excavation of chlorinated VOC impacted soil and sediment from within seven (7) former industrial process wastewater leaching pools associated with former Laundromat operations at concentrations exceeding historic NYSDEC TAGM 4046 soil cleanup objectives and current NYSDEC Part 375-6.8 unrestricted SCOs/USEPA Region Two UIC Cleanup Objectives Interim Remedial Measures was implemented in November 2004 to mitigate identified impacts from within the former industrial process wastewater leaching pools. The IRM process was utilized to prevent further contamination of groundwater and/or soil-gas from the identified pollution sources. Each of the seven (7) abandoned cesspool structures were accessed utilizing excavating equipment. The bottom sludge/sediment within each of the abandoned leaching structure was evacuated utilizing an industrial vacuum truck. The contaminated sludge/sediment evacuated from the leaching structures was directly transferred from the vacuum truck into approved containers for temporary onsite storage. Approximately 41.11 tons of chlorinated VOC contaminated sediment and soil was reported excavated from said leaching structures. The waste was subsequently transferred onto trucks for transport and disposal to an offsite licensed treatment/disposal facility. The leaching structures were left intact and backfilled to grade after the waste removal activities. Endpoint soil samples were secured from the invert of each former cesspool for laboratory analyses. Based on the results of the laboratory analysis, a significant reduction of contaminant concentrations was observed in soil within the remediated cesspools with solvent-related VOC concentrations detections ranging between 560 µg/kg and 9,400 µg/kg. Chlorinated VOCs detected within four of the seven endpoint soil samples exceeded the applicable standards, criteria and guidance's (SCGs) for soil quality at that time, cited within the NYSDEC, Technical and Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives document. The excavated media was handled, transported and disposed of as hazardous waste in accordance with 6 NYCRR Part 371.
- 3. Installation of Operation of a Soil Vapor Extraction system, to remove chlorinated VOCs from onsite soil vapor and prevent the offsite migration of residual impacted vapor. Installation and operation of two sub-slab depressurization systems located within and beneath the former Melody Cleaners building, to support and expand upon the vapor extraction currently performed by the active onsite SVE system.
- 4. Maintenance of a soil cover system consisting of the existing asphalt pavement and building slab and/or building basement floor to prevent human exposure to remaining contaminated soil/fill remaining at the Site;

- 5. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site;
- 6. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;
- 7. Design and implementation of a full scale chemical ISCO injection application within and adjacent to the former Melody Cleaners sanitary septic system and former laundromat industrial process wastewater leaching system. The full-scale ISCO injection event was performed and completed between November 2011 and January 2012. Supplemental "polishing" ISCO injection events were performed and completed in October 2013, in April/May 2015, and in November 2015.

1.3 EFFECTIVENESS OF REMEDIAL PROGRAM

The Engineering and Institutional controls implemented for this site are performing as designed and are achieving the remedial objectives for this site.

1.4 COMPLIANCE

No areas of non-compliance exist for the components of the Site Management Plan, which include the Institutional/Engineering Control Plan, the Monitoring Plan and Operation and Maintenance (O&M) Plan.

1.5 RECOMMENDATIONS

No changes to the frequency for submittal of PRRs.

1.6 SCHEDULE OF IC/EC ACTIVITIES FOR 2024/2025

No alterations to the current IC/EC monitoring plan are expected. Long term monitoring of groundwater will continue per the schedule detailed in Section 4.2. The SSDSs will continue to operate. The recommended monitoring work as proposed in this document will be scheduled and performed after review and approval by the Department.

2 BACKGROUND

The abovementioned Site comprises of a 74,702 square-foot retail shopping center situated at the southwestern intersection of Hempstead Turnpike and Front Street. The surface area of the Site consists of asphalt parking areas and concrete walkways. The Site exhibits low topographic relief (one to three percent slopes). The elevation of the Site, as presented on the United States Geologic Survey (USGS), Freeport Quadrangle Map, approximates eighty-five (85) feet above mean sea level. Regional groundwater flow direction within and/or proximal to the Site is toward the apparent south. The water table is encountered at approximately thirty-five feet below grade.

The shopping center contains six (6) single-story buildings that are currently utilized by separate commercial tenants including:

- 2050 Hempstead Turnpike: Former retail dry-cleaning facility (Melody Cleaners) single building.
 Current building usage consists of retail restaurant (Dunkin Donuts) operations within the northern section of the building and the Convenience and Smoke Shop at the central and southern sections of said building;
- 2056 Hempstead Turnpike: Miami Car Wash (retail automotive wash and detail facility automotive washing facility building with an accessory automotive detail building);
- 2080 Hempstead Turnpike: Arby's (retail restaurant facility single building);
- 2045 Front Street: Landmark Wash n Dry (retail laundromat facility single building); and
- 2055 Front Street: Pecosa Bakery (retail restaurant facility single building).

The Site is bound by Hempstead Turnpike (New York State Route 24) and further by retail properties to the north, Front Street (New York State Route 102) and further by retail and residential properties to the south, Front Street (New York State Route 102) and further by retail and residential to the east, and retail properties to the west. One elementary school (McVey Elementary School) is located approximately one thousand and six hundred feet south of the Site, and the East Meadow Water Supply District property is located approximately two thousand feet south-southeast of the Site.

The location of the Site is referenced in **Figure 1**. The Site and property boundaries, existing structures, features are presented in **Figure 2**.

2.1 SITE HISTORY AND USES

Retail development of the Site into a commercial shopping center reportedly occurred between 1957 and 1961. Prior use of the Site was reported as predominately vacant land with a potential residential and/or minor retail structure reportedly constructed in 1948. The Site is currently owned by Capparelli Properties, Ltd, located at 286 Roosevelt Way in Westbury, New York. Capparelli Properties Ltd. purchased the property on March 1, 2006 from the previous property owner, Lowden Family Trust. Future use is anticipated to continue for retail commercial operations.

2.2 **ENVIRONMENTAL HISTORY**

- Contamination was first identified at the site in October 1999.
- The former Site owner (Lowden Family Trust, d/b/a Lowden Properties) entered into a Voluntary Cleanup Program (VCP) Agreement (Agreement Index No. D1-0001-00-07) with NYSDEC on July 18, 2000. The Site was summarily registered into the NYSDEC VCP (VCP Site No. 00347-1)
- A Remedial Investigation and subsequent Remedial actions and Interim Remedial Measures was conducted between 2000 and 2009 in accordance with the protocols and methods as established in the following Department-approved documents:
 - October 2000, Interim Remedial Measures Work Plan: Remediation of impacted soil and sediment within the former primary, secondary and tertiary sanitary cesspools associated with former Melody Cleaners operations.
 - July 2004, Interim Remedial Measures Work Plan: Remediation of impacted soil and sediment within seven (7) former industrial process wastewater leaching pools associated with former Laundromat operations.
 - July 2004, Interim Remedial Measures Soil Vapor Extraction Work Plan: Remediation of onsite impacted soil vapor with concurrent offsite vapor migration mitigation.
 - October 2011, Revised Full Scale ISCO Work Plan: Remediation of onsite groundwater impacts by in-situ chemical oxidation.
 - October 2013, Final Supplementary ISCO Work Plan: Continuation of onsite groundwater remediation by in-situ chemical oxidation.
- The following is a summary of the Remedial Actions performed at the Site:

- Excavation of chlorinated VOC impacted soil and sediment from within the former primary, secondary and tertiary sanitary cesspools associated with former Melody Cleaners operations at concentrations exceeding historic NYSDEC Technical Administrative and Guidance Memorandum No. 4046 (TAGM 4046) soil cleanup objectives and current NYSDEC Part 375-6.8 unrestricted SCOs and USEPA Region Two Underground Injection Control (UIC) Cleanup Objectives. Approximately 492.72 tons of contaminated soil was excavated from the remediated cesspools.
- Excavation of chlorinated VOC impacted soil and sediment from within seven (7) former industrial process wastewater leaching pools associated with former Laundromat operations at concentrations exceeding historic NYSDEC TAGM 4046 soil cleanup objectives and current NYSDEC Part 375-6.8 unrestricted SCOs/USEPA Region Two UIC Cleanup Objectives. Interim Remedial Measures was implemented in November 2004 to mitigate identified impacts from within the former industrial process wastewater leaching pools. Approximately 41.11 tons of chlorinated VOC contaminated sediment and soil was reported excavated from said leaching structures.
- Installation and Operation of a Soil Vapor Extraction system, to remove chlorinated VOCs
 from onsite soil vapor and prevent the offsite migration of residual impacted vapor. Two
 additional sub-slab depressurization systems (SSDS) were pro-actively installed within
 and beneath the former Melody Cleaners building to enhance the current SVE system,
 and as a safety measure to protect the employees and customers from potential residual
 contaminant infiltration once approval is granted to permanently shut down the Site SVE
 remediation system.
- Maintenance of a soil cover system consisting of the existing asphalt pavement and building slab and/or building basement floor to prevent human exposure to remaining contaminated soil/fill remaining at the Site;
- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site.
- Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.

- Design and implementation of a full scale chemical ISCO injection application within and adjacent to the former Melody Cleaners sanitary septic system and former laundromat industrial process wastewater leaching system. The full-scale ISCO injection event was performed and completed between November 2011 and January 2012. Supplemental "polishing" ISCO injection events were performed and completed in October 2013, in April/May 2015, and in November 2015.
- Chlorinated VOCs are the contaminants of concern, related to the Melody Cleaners
 Site. Tetrachloroethylene (PCE) was previously used for clothing dry-cleaning
 operations and spot removal processes at the Site. Trichloroethylene (TCE) and cis1,2-Dichloroethylene (cis-1,2- DCE) are two associative chlorinated VOCs that are
 formed by the natural degradation of PCE. Said VOCs are the primary contaminates
 of concern, originating from the Site.
- Residual concentrations of said VOCs are assumed still present in shallow onsite soil beneath the Melody Cleaners building and potentially beneath the excavation extent of the former Melody Cleaners sanitary leaching system and former laundromat process wastewater leaching system.
- Residual concentrations of said VOCs in onsite soil vapor appear to be constrained to the
 extent of the southern and eastern sections of the Site, within the footprints of the
 Melody Cleaners, Pecosa Bakery, and Laundromat buildings. Continual operations of the
 onsite SVE remediation system appeared to be successful in extracting said vapors from
 onsite unsaturated soil and preventing said contaminated media from migrating offsite.
- Residual concentrations of said VOCs in groundwater are still present in onsite and hydraulic offsite saturated media. Elevated concentrations of VOCs in onsite groundwater are present adjacent to the southeastern extent of the former Laundromat process wastewater leaching system and to a lesser extent, proximal to former Melody Cleaners tertiary sanitary leaching pool. Said VOCs are present in offsite groundwater at concentrations above NYSDEC Part 703 Class GA groundwater quality standards. Supplementary ISCO chemical injections within existing onsite injection well clusters may be required to control chlorinated VOC concentrations in onsite and/or offsite groundwater, based on the results of periodic groundwater monitoring events.

2.3 Remedial Program Features

The Remedial Investigation Report, dated February 25, 2009, has the selected remedy. The Remediation Plan, dated March 2, 2010, details the in-situ chemical oxidation plan. The Soil Vapor Extraction Work Plan, dated July 2004, details the plan to install the system as an interim remedial measure. A full scale insitu chemical oxidation work plan, dated October 7, 2011, was approved. Subsequent in-situ chemical oxidation activities were performed to further reduce Site contamination.

The following are components of the selected remedy:

- 1. Operation of an onsite Soil Vapor Extraction (SVE) system.
- 2. In-situ chemical oxidation injection activities to reduce the contaminant mass.
- 3. Maintenance of the cover system which is comprised of concrete-covered sidewalks, paved parking areas and concrete building slabs. The concrete building slabs are approximately 6 inches thick; the paved parking areas are approximately 6-8 inches thick. The paved parking area cover is considered equivalent to 1 foot of clean soil cover.
- 4. Implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) an evaluation of onsite and offsite groundwater monitoring results to determine if remedial action is necessary, (3) operations and maintenance of engineering controls and associated monitoring, and (4) reporting.
- 5. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination on site.
- 6. Periodic certification of the institutional and engineering controls listed above.

3 Institutional Control / Engineering Control Plan

The IC and ECs used at the Site require certification to document performance and effectiveness in compliance with the SMP. The periodic certifications are used to ensure that: 1) the controls are unchanged since they were put in place; 2) the controls are effective and performing as designed; 3) nothing has occurred to impede the IC/ECs ability to protect human health and the environment; and 4) nothing has occurred that constitutes a violation or failure to comply with the operation and maintenance (O&M) plan and/or monitoring for said controls. The following tables provide a summary of the IC/ECs.

Summary of Institutional Controls

Former Melody Cleaners Facility
2050 Hempstead Turnpike, East Meadow, New York
NYSVCP Site No.: V-00347-1

- 1. The property may be used for commercial and industrial uses;
- 2. Listed ICs include:
 - i. The Controlled Property may be used for: Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)
 - ii. All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP)
 - iii. All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP
 - iv. The use of groundwater underlying the property is prohibited without necessary water quality treatment (as determined by the NYSDOH to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department
 - v. Groundwater and other environmental or public health monitoring must be performed as defined in the SMP
 - vi. Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP
 - vii. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP
 - viii. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
 - ix. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP
 - x. Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement

Summary of Engineering Controls

Former Melody Cleaners Facility
2050 Hempstead Turnpike, East Meadow, New York
NYSVCP Site No.: V-00347-1

- 1. Soil Vapor Extraction System (Decommissioned)
- 2. Active Sub-Slab Depressurization Systems (SSDSs)
- 3. Supplementary ISCO Chemical Injections (Remedial Action Complete)
- 4. Cover System

3.1 IC/EC COMPLIANCE

The following is a brief description of the IC/ECs, the applicable objectives, and how the control performance is evaluated:

- The controlled property use is limited to commercial or industrial use. The objective of the controlled use is to manage exposure to contamination remaining at the Site with a goal to protect human health and the environment. The current use of the Site complies with the environmental easement IC.
- The use of groundwater beneath the Site is prohibited. The applicable environmental and health regulatory agencies require approval for groundwater use with obligatory treatment. The limitation on groundwater use is to manage exposure to contamination remaining at a site with a goal to protect human health and the environment. Groundwater from beneath the Site is not used, and the Site is connected to the Town of Hempstead potable water system which complies with the control.
- The Site is subject to the requirements of the approved SMP document which details the ICs and ECs required as well as the associated physical components required for the operation and maintenance (O&M) and monitoring of the controls to ensure continued effectiveness for the management of exposure to contamination remaining at the Site. The SMP provides for the periodic inspection of the controls, O&M of a soil vapor extraction (SVE) system, the monitoring of indoor air and groundwater though sample collection and analysis. The Site is in compliance with the SMP required inspections, O&M, and monitoring requirements.

- The monitoring plan details the periodic sampling and analysis procedures of media with comparison of data to applicable standards and field data collection to assess the performance and effectiveness of the remedy. The monitoring plan for the Site, as detailed in the SMP, includes the:
 - <u>SVE System</u>: The SMP stipulated weekly collection of SVE system field data (i.e., vacuum, PID), and carbon breakthrough data, monthly collection and laboratory analysis of SVE system pre-carbon and post-treatment recovered vapor, and annual sub-slab vapor/indoor air sample collection and analysis. This system has been decommissioned and O&M is not applicable.
 - <u>Groundwater Monitoring</u>: Annual analysis of groundwater from six (6) onsite and off-site network wells and biannual analysis of twelve (12) onsite and off-site wells comprising the monitoring network, with concurrent geochemical/physical measurements of groundwater parameters. monitoring wells.
 - <u>SSDS System</u>: Conduct monthly inspection confirming the operating SSDSs in compliance with the SMP.

The Site monitoring was performed in compliance with the monitoring plan requirements.

- An O&M Plan provides details for the operation, monitoring and maintenance for mechanical ECs present at a Site. In accordance with the SMP, the SVE system was previously operated at the Site 24-hours per day/7days per week and was monitored on a weekly basis during an inspection to assess function. This system has been decommissioned and O&M is not applicable.
- A cap or cover system on a Site prevents exposure to contaminants remaining in soil beneath the
 Site. At the Site, the cover system is comprised of concrete-covered sidewalks, parking areas and
 the building concrete slab, as well as asphalt paved areas. The Site cover system is inspected
 annually. The inspections have indicated that the cover system has not been breached and is in
 compliance with the SMP.
- The operation of the SVE system at a Site was to address soil vapor migration into adjacent site buildings and offsite locations, and to remediate residual contamination within onsite soil. The shutdown of the SVE system at the Site was approved by the NYSDEC on December 24, 2021. The operation of the active SSDSs is to address the potential for soil vapor migration into the former Melody Cleaners building.

4.1 COMPONENTS OF MONITORING PLAN

This Monitoring Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. The Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly groundwater standards and Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment;

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Site Identification:	Site No.: V00347-1 – Former Melody Cleaners Site, 2050 Hempstead Turnpike, East Meadow, New York
Inspections:	Frequency
Cover System Inspection	Annual
Sub-Slab Vapor/Indoor Evaluation	Required When Shut Down of the SSDSs are Proposed
Groundwater Quality Monitoring: Collection field measurements and collect/analyze samples from monitoring network wells for VOC content	Annual sampling of six (6) wells and biannual of thirteen (13) wells
SSDS System Inspection:	Monthly and Annual

4.2 SUMMARY OF MONITORING COMPLETED DURING REPORTING PERIOD

The following provides a summary of the controls implemented at the site, as well as monitoring, and reporting activities required by the Site Management Plan. The annual Site inspection was completed on June 11, 2024 and the field forms are provided in **Appendix A**.

- Inspections of the former Melody Cleaners building SSDS systems were performed monthly by the building management and annually during annual inspection.
- The NYSDEC approved a reduction in the number of wells sampled and the frequency of groundwater sampling events proposed in the 2020 PRR. The revised monitoring network consists of wells MLW-OI, IW-2D, MLW-2D, MLW-3D, MLW-6D and MLW-7D sampled on an annual basis; and IW-1D, IW-3D, MLW-1IS, MLW-1D, SW-1, MLW-2I, MLW-3I, MLW-6I, MLW-7I, MLW-8I, MLW-8D and MLW-9I sampled on a biannual basis. The annual sampling event was completed on June 26, 2024 and the biannual groundwater sampling event was completed on January 2, 2024. The next biannual groundwater sampling event will be performed in December 2024/January 2025.
- An Annual Site Inspection was performed on June 11, 2024.

4.3 EVALUATION OF MONITORING RESULTS AND GENERAL TRENDS

Annual and Biannual Groundwater Sampling Event: The results of the January 2 and June 26, 2024 groundwater sampling event are summarized below:

Source Area Monitoring Wells IW-1D, IW-3D, MLW-1IS, MLW-1ID (Sampled Biannually):

The abovementioned wells are located within the former source areas associated with the Site. PCE concentrations were more elevated within the monitoring network at these locations; however, the PCE concentrations in MLW-1IS and MLW-1ID are now low and stable. The IW-3D well has the highest PCE concentrations, which are three orders of magnitude higher than the MLW-1IS and MLW-1ID wells. The IW-1D well has the second highest PCE concentration and has slightly increased from 2023. However, there is a cyclical pattern of slightly increasing and decreasing concentrations due to seasonal fluctuations with a gradual overall decrease in concentration among these wells.

Onsite Monitoring Wells MLW-OI and IW-2D (Sampled Annually), and MLW-1D and SW-1 (Sampled Biannually):

The CVOC concentrations in said wells have trended downward to below groundwater standard concentrations on a continual basis. The PCE concentrations are low and indicate stable conditions. It should be noted that SW-1 could not be sampled during the biannual event due to excess surface water covering the well. In addition, CVOC concentrations were not detected in wells SW-1 and MLW-OI.

Offsite Monitoring Wells Network MLW-2I, MLW-2I, MLW-3I, MLW-6I, MLW-7I, MLW-8I, MLW-8D and MLW-9I (Sampled Biannually) and MLW-2D, MLW-3D, MLW-6D and MLW-7D (Sampled Annually):

A review of the monitoring data from this review period in concert with a review of historic data indicates a low CVOC concentration pattern with periodic gradual increases and decreases in concentrations above and below the AWQS, except for MLW-7D. The concentrations of PCE in MLW-7D have slightly increased over the previous four sampling events. Overall, a downward trend in CVOC concentrations is noted. The CVOCs in wells MLW-6I and MLW-6D are not detected and no CVOC degradation compounds were detected at these locations. Continual annual and biannual monitoring is required.

The tabulated historic groundwater monitoring event data is presented in **Table 1.** The January 2, and June 26, 2024 groundwater data is summarized on **Table 2** and **Table 3**, respectively. The associated laboratory reports are presented in **Appendix B.** The onsite groundwater monitoring well locations are shown on **Figure 3**, and **Figure 4** shows the locations of the offsite groundwater monitoring well clusters.

SSDS System Performance Monitoring:

Vacuum measurements were collected on June 11, 2024 from the accessible vapor points in the former Melody Cleaners building, which is occupied by a convenience store and smoke shop and the Dunkin Donuts tenant, to verify the efficacy of the sub-slab depressurization systems (SSDSs).

Vacuum measurements were collected from six (6) of the ten (10) vapor points, designated VP-1 through VP-10) located in the Convenience Store Smoke Shop tenant space. Two of the vapor points (VP-2 and VP-7) were not located and no vacuum could be measured at VP-3 and VP-4 at the southeast portion of the building. Vapor point VP-2 was located in the area of the former boiler room and has not been located since the new tenant renovated the space. A commercial beverage refrigeration unit is located over the location of VP-7 where it is not accessible. The VP-3 location is in the restroom and the VP-4 location is in an area that has been enclosed as a storage closet. The five (5) vapor points in the Dunkin Donuts tenant

space, designated VP-11 through VP-15, were accessed. The vacuum measurements were completed using a digital manometer. **Figure 5** shows the location of vapor points within the former Melody Cleaners building.

The vacuum measurements were collected to confirm the operation and efficacy of the active SSDSs. The vacuum measurements for the convenience Store Smoke Shop tenant space ranged from -0.67 inches of water at vapor point VP-1 to -1.52 inches of water at VP-9 and ranged from -0.20 at VP-15 to -0.96 at VP-14 for the Dunkin Donuts tenant space.

The SSDS riser vacuum measurements from the Melody tenant space ranged from -2.2 to -2.6 inches of water and the Dunkin Donut SSDS riser could not be located. Based on the vacuum data collected, the SSDSs are operating in accordance with their specifications.

4.4 Monitoring Deficiencies

Several vapor monitoring deficiencies were noted during the reporting period. Due to renovations in the Dunkin Donuts building, the SSDS riser could not be located. However, all five of the monitoring locations indicated sufficient sub-slab vacuum.

Two (2) of the ten (10) monitoring points were not located in the Convenience Store Smoke Shop tenant space. In addition, no sub-slab vacuum measurements could be collected from two (2) of the monitoring. Although two locations were not measured for vacuum and two were not sufficient, the remainder of the monitoring locations indicated sufficient sub-slab vacuum and that the active SSDSs were operating in accordance with their specifications.

During the biannual sampling event, well SW-1 could not be sampled due to a heavy rain event that resulted in the area around the monitoring cap to be flooded. An attempt was made to remove the excess surface water, however it failed. The well was sampled during the annual event and the results are provided.

4.5 CONCLUSIONS AND RECOMMENDATIONS

Groundwater sampling/monitoring activities have been evaluated and indicated the continued degradation and decrease of dissolved phase CVOCs in on-Site and off-Site groundwater. Overall, there

has been a decreasing trend in the CVOC concentrations, and the data supports that the dissolved-phase plume is stable to decreasing. The distribution of these concentrations also supports that this plume is non-migrating. There appears to be steady CVOC concentrations with seasonal gradual increases and decreases in concentrations closer to the source area. The distribution of PCE in the off-Site wells remains concentrated along the center line of the plume at the intermediate well intervals. The concentrations of PCE in the deep off-Site wells continues to be low and below the NYSDEC 703 Class GA AWQS except in well MLW-7D. The concentration of PCE in well MLW-7D has slightly increased over the last four annual sampling events from 5.1 to 11 micrograms per liter (μ g/I) and will continue to be monitored. Based on the review of the groundwater data, the PCE concentrations within the contaminant plume are generally consistent with a steady state plume. Since CVOC concentrations in groundwater continue to be detected and are above the NYSDEC AWQS at various locations, continued monitoring is required.

The monitoring well cluster MLW-6 is a sentinel well for the protection of two municipal wells to the east which are sensitive receptors. The data from MLW-6I and MLW-6D indicated that CVOCs were not detected and no contaminant plume migration to the east is indicated. The municipal wells have not been affected from the former Melody Cleaners On-Site release(s).

Per approval of the 2020-2021 PRR, shutdown of the SVE system was granted. The SSDSs located beneath the former Melody Cleaners building slab will continue to be online until such time that a soil vapor/indoor air investigation is completed to support shut down.

5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The Operation and Maintenance Plan provides a brief description of the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the site. The Operation and Maintenance Plan:

- Includes the procedures necessary to allow individuals unfamiliar with the site to operate and maintain the SVE and SSDS systems;
- Will be updated periodically to reflect changes in site conditions or the manner in which the SVE and SSDS systems are operated and maintained.

5.1 COMPONENTS OF O&M PLAN

Site Identification:	Site No.: V00347-1 – Former Melody Cleaners Site, 2050 Hempstead Turnpike, East Meadow, New York
Maintenance:	
SSDSs	Continued repairs to system components and verify vacuum measurements.

5.2 **O&M OPERATIONS**

The SSDSs are currently meeting their remedial objectives based on the vacuum measurements collected on June 11, 2024.

5.3 CONCLUSIONS AND RECOMMENDATIONS

No changes are recommended to the O&M compliance plan.

6 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

Based on the results of the Remedial Investigation, the following Remedial Action Objectives were identified for this site.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure to contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

 Prevent migration of contaminants that would result in groundwater, surface water, and/or sediment contamination.

Soil Vapor

 Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the site.

Groundwater RAOs for Public Health Protection

- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.
- · Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Remove the source of ground or surface water contamination.

6.1 COMPLIANCE WITH SMP

All requirements of the SMP; including the IC/EC Plan, Monitoring Plan and O&M were in compliance during the reporting period with the exception of the monitoring deficiencies identified in Section 4.5.

Periodic groundwater sampling/monitoring activities indicate there is an overall decreasing trend in the CVOC concentrations, and the data does not indicate the dissolved-phase plume is expanding/migrating.

The SSDSs will continue to be online until an annual performance retest is completed, and associated data is evaluated.

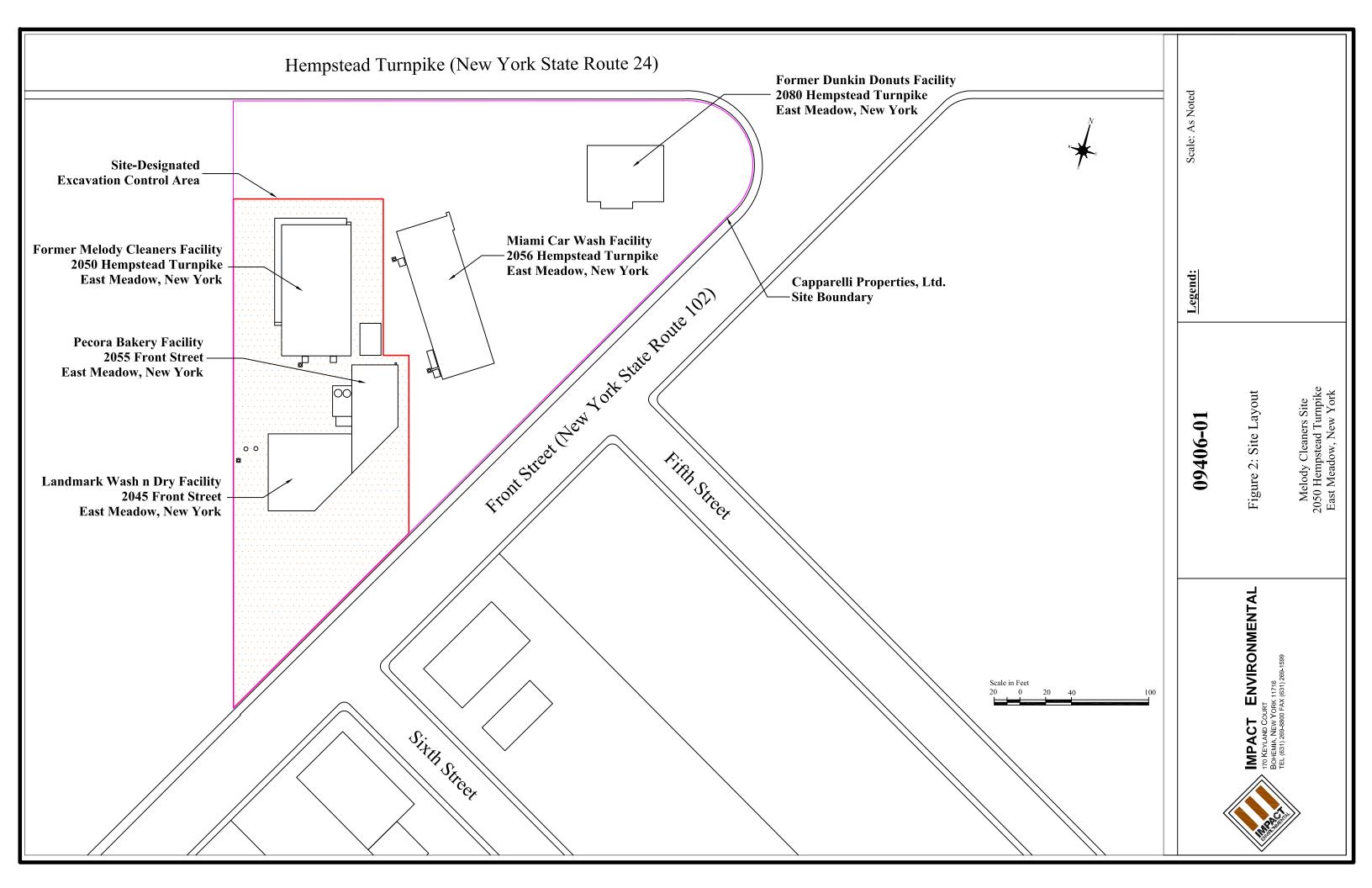
The Site Management PRR Notice Institutional and Engineering Controls Certification Form has been completed and provided as **Appendix C.**

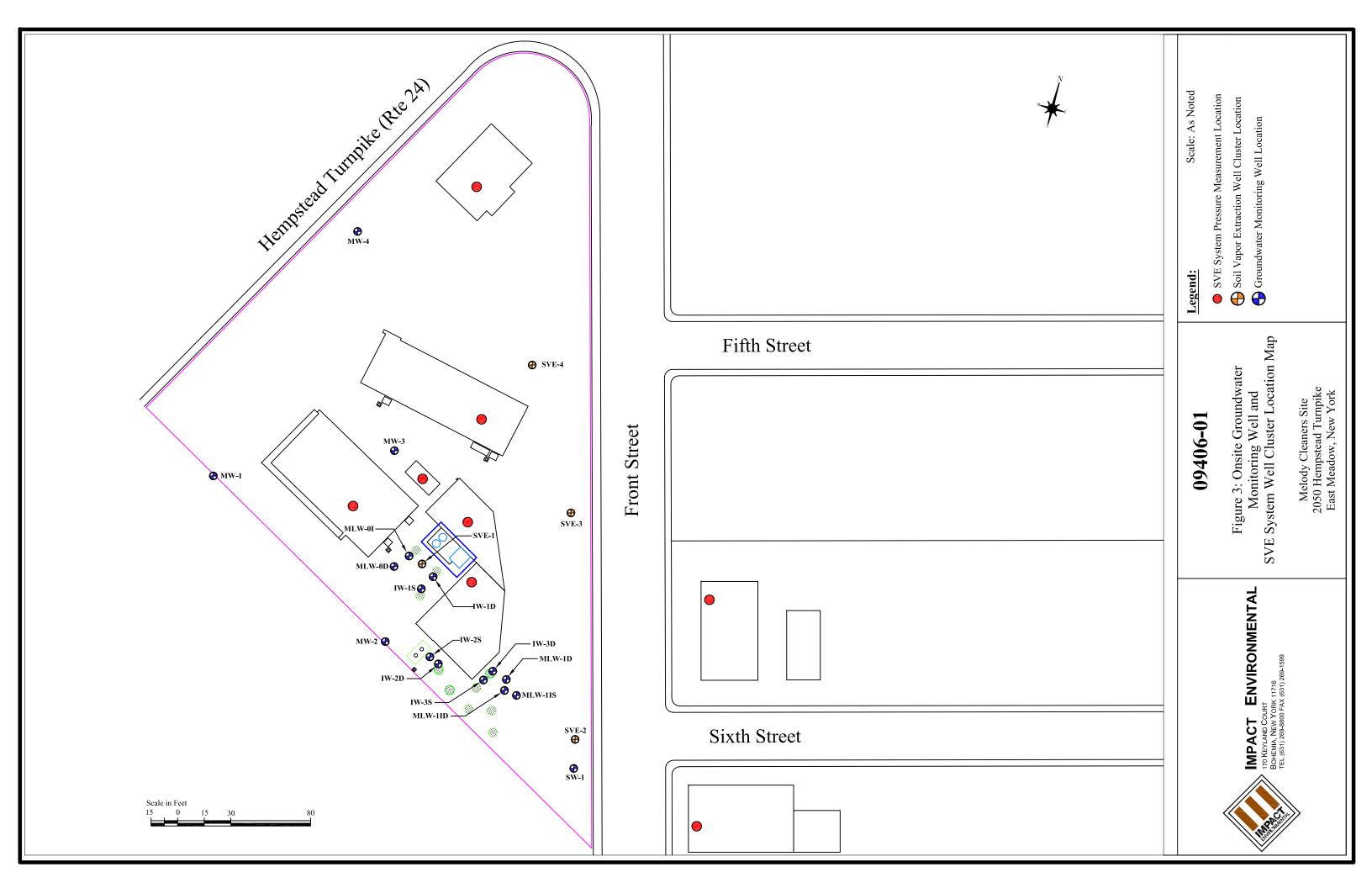
6.2 FUTURE PRR SUBMITTALS

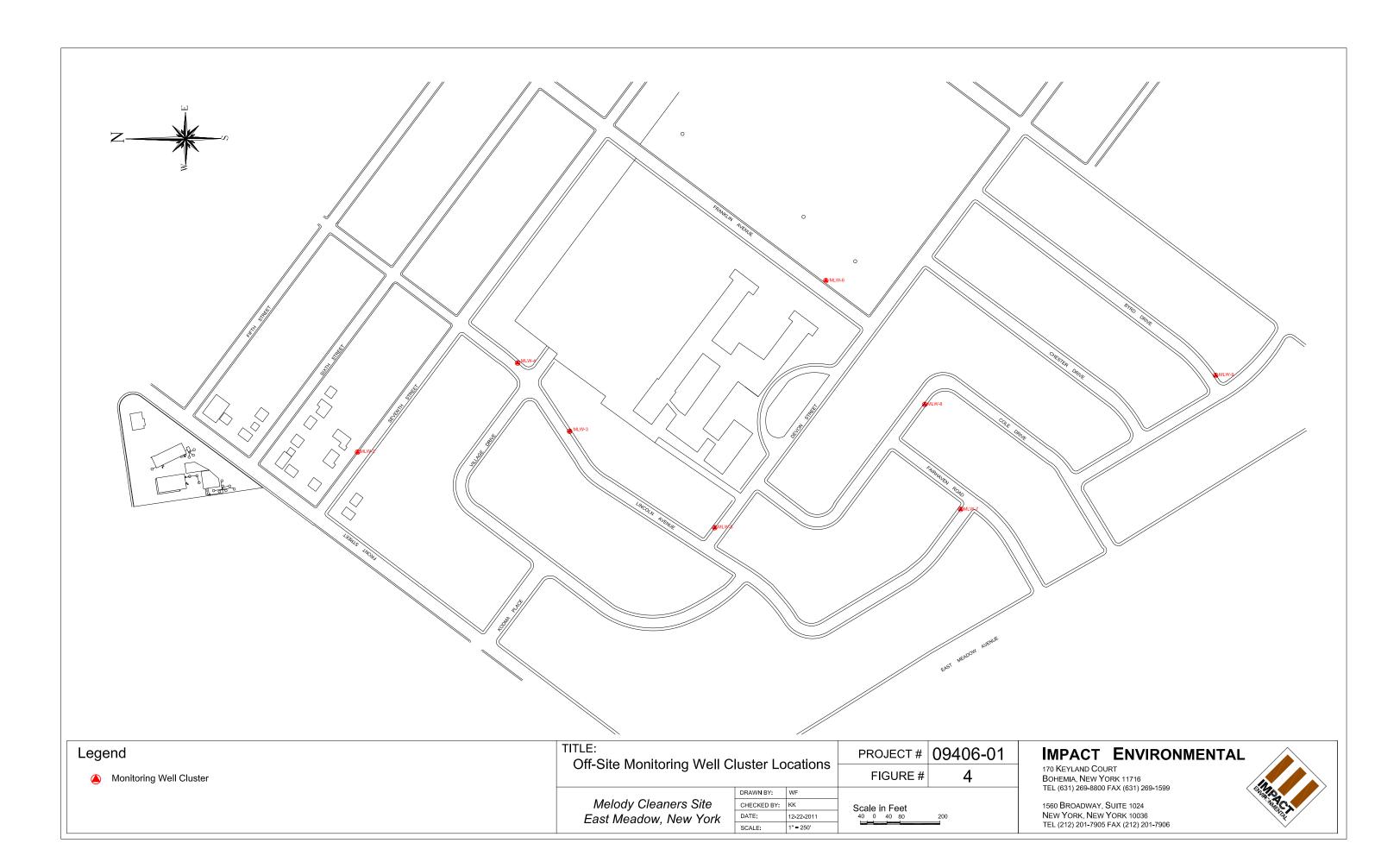
No changes to the frequency of PRR are currently recommended. An annual PRR will be submitted to the NYSDEC for the 2024-2025 period.

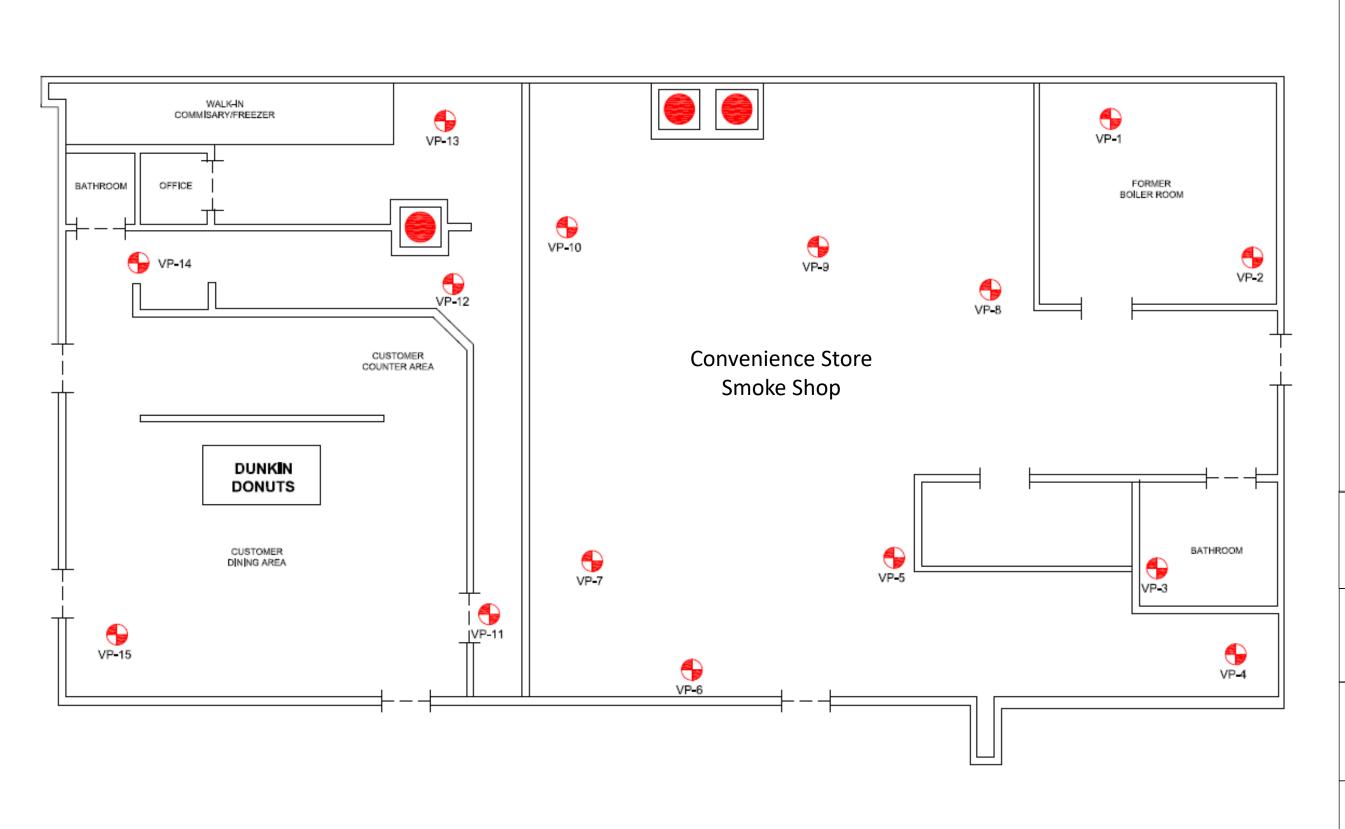
Site No.: V00347-1 – Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York

Figures


NOTES:


LEGEND:


SITE MAP


2050 HEMPSTEAD TPKE.	FIGUR	RE NO: 1
AST MEADOW, NEW YORK	PROJECT NO.	04-455
	DESIGNED BY:	MB
	DRAWN BY:	MB
	CHECKED BY:	KK
	DATE:	9/14/2013
	SCALE:	1": 275'
	REVIS	SIONS
	NO:	DATE:
	01	7/16/2015
	02	4/18/2017
		-
	I	1

LEGEND

•

VAPOR MONITORING POINT LOCATION SSDS LEG LOCATION

Vapor Monitoring Point Location Map

0050 Hammatand	FIGUF	RE 5
2050 Hempstead Turnpike, East	Project #:	9406
Meadow, NY	Drawn By:	JDF
	Checked By:	НХҮ
	Date:	6/26/23
	Revi	sions
		·

IMPACT ENVIRONMENTAL CLOSURES, INC.

170 KEYLAND COURT BOHEMIA, NEW YORK 11716 TEL (631) 269-8800 FAX (631) 269-1599

Not To Scale

Site No.: V00347-1 – Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York

Tables

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part Groundwa Standard	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
IW-1S	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.66 J	ND
(25'-45')				Polic		ull Scale EMOX I								or 2013				
	3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	43	ND	ND	ND	ND	ND	ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	39	ND	ND	ND	ND	ND	ND
	9/29/2014 1/5/2015	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	34 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				Polish	ning RE	MOX In	jection	(Injectio	on Well	Clusters	s IW-1 &	z IW-3)	April/M	lay 2015				
	6/9/2015	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
	7/9/2015 11/17/2015	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	3.1 J	ND	ND	ND	ND ND	0.52 J ND	ND ND
				Polish		MOX In	jection					z IW-3)	Noveml	oer 2015				
	1/6/2016 4/13/2016	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.5 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/7/2016	0.20 J	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	11	ND ND	ND ND	ND ND	ND	ND ND	ND ND
	10/11/2016	0.65	0.41 J	ND	ND	ND	ND	ND	ND	ND	ND	38	ND	ND	ND	ND	ND	ND
	1/31/2017	0.34 J	0.44 J	ND	ND	ND	ND	ND	ND	ND	19	22	ND	ND	ND	ND	ND	ND
	4/11/2017 7/19/2017	0.41 J 0.48 J	0.30 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.1 J	10 12	ND ND	ND ND	ND ND	ND ND	10 ND	ND ND
	11/1/2017	1.1	0.36 J	ND	ND	ND	ND	ND	ND	ND	2.7 J	14	ND	ND	ND	ND	ND	ND
	1/29/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	ND	ND	ND	ND	ND	ND
	4/11/2018 7/16/2018	0.22 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.0 J 2.9 J	15 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	10/10/2018	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	4.1 J	19	ND	ND	ND	ND	ND	ND
	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	3/21/2019 7/16/2019	0.19 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
			ND		ND	ND	ND	ND	ND	ND	ND	34	ND	ND I	ND	ND	25 I	
	12/20/2019	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	34 2.8 J	ND NA	ND NA	ND NA	ND ND	2.5 J ND	ND NA
		-					ND ND	ND ND	NA NA	ND ND	ND ND						_	
W. 48	12/20/2019 4/8/2020	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND Rem	ND ND oved fro	NA NA om Sam	ND ND oling Ne	ND ND etwork	2.8 J 21	NA NA	NA NA	NA NA	ND ND	ND ND	NA NA
IW-1D (60'-80')	12/20/2019	ND	ND	ND	ND ND	ND ND	ND ND Rem	ND ND oved fro	NA NA om Sam ND	ND ND oling Ne	ND ND twork	2.8 J 21	NA NA ND	NA	NA	ND	ND	NA
IW-1D (60'-80')	12/20/2019 4/8/2020 11/21/2011	ND ND	ND ND	ND ND 0.67 J	ND ND ND F	ND ND ND ull Scale	ND Rem ND e REMO	ND ND oved fro ND X Inject	NA NA om Sam ND tion Decion Wel	ND ND oling Ne ND cember 2	ND ND etwork ND 2011 - Ja rs IW-2	2.8 J 21 10 nuary 2	NA NA ND 012 OCtobe	NA NA ND	NA NA	ND ND	ND ND	NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014	180 200	ND ND ND	ND ND 0.67 J Polis	ND ND F Shing R ND	ND ND ND ull Scale	ND Rem ND REMC ND REMC ND ND ND ND	ND oved fro ND X Inject (Inject ND	NA NA Sam ND tion Decion Wel ND	ND ND oling Ne ND cember 2 1 Cluste ND	ND ND twork ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33	NA NA ND Octobe ND	NA NA ND er 2013	NA NA ND	ND ND ND	ND ND ND	NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014	ND ND	ND ND ND ND	ND ND 0.67 J Polis ND ND	ND ND F Shing R ND ND	ND ND UII Scale EMOX I ND ND	ND Rem ND REMC ND RIGHT ND ND ND ND	ND OVER THE PROPERTY OF THE PR	NA NA om Sam ND tion Decion Wel	ND ND oling Ne ND cember 2	ND ND twork ND 2011 - Ja rs IW-2 ND ND	2.8 J 21 10 nuary 2 & IW-3 33 35	NA NA ND 012 OCtobe	NA NA ND Prescription of the state of the st	NA NA ND	ND ND ND	ND ND	NA NA ND ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015	ND ND 180 200 210 460 280	ND ND ND ND ND ND ND	Polis ND ND ND ND ND ND ND ND	ND ND F Shing R ND ND ND ND ND	ND ND UII Scale EMOX I ND ND ND ND	ND Rem ND Rem ND REM ND ND ND ND ND	ND ND OVED FITCH	NA NA Sam ND tion Decion Well ND ND ND ND	ND ND oling Ne ND cember l Cluste ND ND ND ND	ND ND etwork ND 2011 - Ja rs IW-2 ND ND ND ND	2.8 J 21 10 21 & IW-3 33 35 ND ND	NA NA ND Oli2 Octobe ND ND ND ND ND	NA NA ND Pr 2013 ND ND ND ND ND	NA NA ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	NA NA ND ND ND ND ND ND ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014	ND ND 180 200 210 460	ND ND ND ND ND ND	Polis ND	ND ND Fing R ND ND ND ND ND ND ND	ND ND UII Scale EMOX I ND ND ND ND ND	ND ND Rem ND Rem ND Rem ND ND ND ND ND ND ND	ND ND OVED FOR THE PROPERTY OF	NA NA Sam ND tion Decion Well ND ND ND ND ND ND	ND ND oling Ne ND cember 1 l Cluste ND ND ND ND ND ND ND	ND ND ND Vetwork ND 2011 - Ja rs IW-2 ND ND ND ND ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND	NA NA NA ND Oli ND ND ND ND ND ND ND ND	NA NA ND Pr 2013 ND ND ND ND ND ND ND	NA NA ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND	NA NA ND ND ND ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015	ND ND 180 200 210 460 280	ND	Polise ND ND ND ND ND ND ND ND Polise	ND ND Fshing R ND	ND ND Ull Scale EMOX I ND	ND ND Rem ND REMO REMO ND	ND ND OVER IN JECT ND	NA NA NA Sam ND tion Decion Well ND	ND ND cember 2 l Cluster ND ND ND ND ND ND ND Clusters	ND ND Vetwork ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND	NA NA NA ND Octobe ND ND ND ND ND ND ND April/M	NA NA ND Pr 2013 ND ND ND ND ND ND ND ND AD	NA NA ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NA NA ND ND ND ND ND ND ND ND ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 7/9/2015	ND ND 180 200 210 460 280 640	ND	Polish ND	ND ND Fishing R ND	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND	ND ND OVER IN JOECT ND	NA NA NA ND tion Decion Well ND	ND ND cember 2 l Cluste ND	ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 muary 2 & IW-3 33 35 ND ND ND ND ND ND	NA NA NA NA ND Octobe ND	NA NA ND PORT 2013 ND	NA NA ND	ND N	ND	NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015	ND ND 180 200 210 460 280 640	ND	Polish ND	ND ND FShing R ND	ND ND UII Scale EMOX I ND	ND Rem ND Rem ND Rem ND	ND ND OVER IT IN IT	NA NA NA Som Sam ND Stion Decion Well ND	ND ND oling Ne ND cember 2 I Cluste ND	ND ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 muary 2 & IW-3 33 35 ND ND ND ND ND ND ND	NA NA NA ND Octobe ND	NA NA ND PORT 2013 ND	NA NA ND	ND ND ND ND ND ND ND ND	ND	NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 7/9/2015	ND ND 180 200 210 460 280 640	ND	Polish ND	ND ND FShing R ND	ND ND UII Scale EMOX I ND	ND Rem ND Rem ND Rem ND	ND ND OVER IT IN IT	NA NA NA Som Sam ND Stion Decion Well ND	ND ND oling Ne ND cember 2 I Cluste ND	ND ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 muary 2 & IW-3 33 35 ND ND ND ND ND ND ND	NA NA NA ND Octobe ND	NA NA ND PORT 2013 ND	NA NA ND	ND N	ND	NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 7/9/2015 11/17/2015 1/6/2016 4/13/2016	ND ND 180 200 210 460 280 640 80 76 62	ND N	Polish ND	ND ND Fining R ND	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND	ND ND OVER INJECT ND	NA NA NA NA Sam ND Sion Well ND	ND N	ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND ND 2 IW-3) ND ND 3.8 J 2 IW-3) 4.2 J ND	NA NA NA NA NA NA NA ND	NA NA NA ND	NA NA ND	ND N	ND N	NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 7/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016	ND ND 180 210 460 280 640 80 76 62 0.62 19	ND N	Polish ND	ND ND Fing R ND	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND	ND ND OVER INJECT ND	NA NA NA Sam ND Sam Sam ND Sion Well ND	ND N	ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND ND ND ND ND ND ND ND ND	NA NA NA NA NA NA NA ND	NA NA NA ND	NA NA ND	ND N	ND	NA NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 7/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016	ND ND 180 200 210 460 280 640 80 76 62 19 160	ND N	Polish ND	ND ND F Shing R ND	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND	ND ND OVER INJECT ND	NA NA NA NA NA ND	ND ND cember 2 l Cluster ND	ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND	NA NA NA NA NA NA NA NA ND	NA NA NA NA ND	NA NA ND	ND ND ND ND ND ND ND ND	ND	NA NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2015 4/15/2015 6/9/2015 7/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017	ND ND 180 210 460 280 640 80 76 62 19 160 160 22 31	ND N	Polish ND	ND ND Fing R ND	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND	ND ND OVED FOR THE PROPERTY OF	NA NA NA NA NA ND	ND ND Cember 2 I Cluster ND	ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND X IW-3) ND ND 3.8 J x IW-3) 4.2 J ND 88 42 23 2.0 J	NA NA NA NA NA NA NA ND	NA NA NA NA ND	NA NA ND	ND ND ND ND ND ND ND ND	ND	NA NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2015 1/5/2015 4/15/2015 1/9/2015 1/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330	ND N	Polish ND	ND ND Fing R ND	ND N	ND ND Rem ND Rem ND	ND ND OVED FOR THE PROPERTY OF	NA NA NA NA NA NA ND	ND ND Cember 2 I Cluster ND	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND X IW-3) ND ND 3.8 J X IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J	NA NA NA NA NA NA NA ND	NA NA NA NA ND	NA NA NA ND	ND ND ND ND ND ND ND ND	ND	NA NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2015 4/15/2015 6/9/2015 7/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017	ND ND 180 210 460 280 640 80 76 62 19 160 160 22 31	ND N	Polish ND	ND ND Fing R ND	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND	ND ND OVED FOR THE PROPERTY OF	NA NA NA NA NA ND	ND ND Cember 2 I Cluster ND	ND ND ND 2011 - Ja rs IW-2 ND	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND X IW-3) ND ND 3.8 J x IW-3) 4.2 J ND 88 42 23 2.0 J	NA NA NA NA NA NA NA ND	NA NA NA NA ND	NA NA ND	ND ND ND ND ND ND ND ND	ND	NA NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 1/6/2016 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 1/19/2017 1/19/2018 4/11/2018	ND ND ND 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0	ND N	Polish ND	ND N	ND ND UII Scale EMOX I ND	ND ND Rem ND	ND N	NA NB ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND 3.8 J z IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5	NA NA NA NA NA NA NA NA NA ND	NA NA NA NA NA NA ND	NA NA NA ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310	ND N	Polish ND	ND N	ND ND UII Scale EMOX I ND	ND ND Rem ND	ND ND OVED FITTO	NA ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND SIW-3) ND ND SIW-3) ND ND SIW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20	NA ND	NA NA NA NA NA ND	NA NA NA ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018 10/10/2018	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100	ND N	Polish ND	ND N	ND ND UII Scale EMOX I ND	ND ND Rem ND	ND ND OVED FITTE ND	NA N	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND S IW-3) ND ND 3.8 J 2 IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20	NA ND	NA NA NA NA NA NA ND	NA NA NA ND	ND ND ND ND ND ND ND ND	ND	NA NA NA ND
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2017 1/1/2017 1/1/2017 1/1/2018 4/11/2018 1/1/2018 1/16/2018 1/16/2018 1/16/2018 1/16/2019	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89	ND N	ND N	ND N	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND Rem ND	ND ND OVED FITTE ND	NA ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND ND SIW-3) A2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20 13 4.0 J	NA ND	NA NA NA NA NA NA NA ND	NA NA NA ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 7/9/2015 11/17/2016 4/13/2016 4/13/2016 7/7/2016 10/11/2017 1/12017 1/12017 1/12017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89 280 E	ND N	Polish ND	ND N	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND Rem ND	ND ND OVED FOR THE PROPERTY OF	NA ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND ND SIW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20 13 4.0 J 32	NA ND	NA NA NA NA NA NA ND	NA NA NA ND	ND ND ND ND ND ND ND ND	ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2015 1/5/2015 4/15/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 1/29/2018 4/11/2018 7/16/2018 1/24/2019 3/21/2019 1/2/20/2019	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89	ND N	ND	ND N	ND ND UII Scale EMOX I ND	ND ND Rem ND Rem ND Rem ND	ND N	NA ND	ND N	ND N	2.8 J 21 21 21 21 21 21 21 21 21 21 21 21 22 28 24 25 20 20 20 20 20 21 32 2.8 J	NA ND	NA NA NA NA NA NA NA ND	NA NA NA ND	ND	ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 1/5/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 1/29/2018 4/11/2018 1/24/2019 3/21/2019 1/20/2019 4/8/2020 6/29/2021	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89 280 E 29	ND N	ND	ND N	ND N	ND ND Rem ND Rem ND	ND N	NA NA NA NA NA ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND 3.8 J 2 IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20 13 4.0 J 32 2.8 J 6.3 2.8 J	NA N	NA	NA NA NA ND	ND ND ND ND ND ND ND ND	ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 1/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 1/20/2019 4/8/2020 6/29/2021 12/22/2021	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89 280 E 29 48 140 31 D	ND	ND	ND N	ND N	ND ND Rem ND Rem ND Rem ND	ND N	NA NA NA NA ND tion Decion Well ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND 3.8 J 2 IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20 13 4.0 J 32 2.8 J 6.3 2.8 J 8.3	NA	NA N	NA NA NA ND	ND	NID NID	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 7/9/2015 11/17/2016 1/31/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 1/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89 280 E 29 48 140 31 D 160	ND	ND	ND N	ND N	ND ND Rem ND	ND N	NA NA NA NA ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND ND 3.8 J 2 IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20 13 4.0 J 32 2.8 J 6.3 2.8 J 8.3	NA	NA	NA NA ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 1/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 1/20/2019 4/8/2020 6/29/2021 12/22/2021	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89 280 E 29 48 140 31 D	ND	ND	ND N	ND N	ND ND Rem ND Rem ND Rem ND	ND N	NA NA NA NA ND tion Decion Well ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND 3.8 J 2 IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 20 20 13 4.0 J 32 2.8 J 6.3 2.8 J 8.3	NA	NA N	NA NA NA ND	ND	NID NID	NA
	12/20/2019 4/8/2020 11/21/2011 3/27/2014 6/30/2014 9/29/2014 1/5/2015 4/15/2015 6/9/2015 7/9/2015 11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 1/26/2020 1/2/20/2011 6/24/2022 1/26/2023	ND ND ND 180 200 210 460 280 640 80 76 62 19 160 160 22 31 330 160 160 8.0 310 100 26 89 280 E 29 48 140 31 D 160 7.8	ND	ND	ND N	ND ND UIII Scale EMOX I ND	ND ND Rem ND	ND N	NA NA NA NA ND	ND N	ND N	2.8 J 21 10 nuary 2 & IW-3 33 35 ND ND ND ND ND 3.8 J 2 IW-3) 4.2 J ND 88 42 23 2.0 J 9.1 J 8.4 9.2 J 9.5 J 20 20 13 4.0 J 32 2.8 J 6.3 2.8 J ND	NA	NA	NA NA ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NA

											Ī		1		T	I	T	ī
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA				ţ													
Groundwat		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard																		
IW-2S	11/21/2011	ND	ND	ND	ND	ND ull Scale	ND	ND	ND	ND	7.4	13	ND	ND	ND	ND	0.82 J	ND
(25'-45')	6/21/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	9.9	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	ND
				Polis	hing Rl	EMOX I	njection	(Inject	ion Wel	l Cluste	rs IW-2	& IW-3) Octobe	er 2013				
	12/2/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/6/2014	ND	ND	ND	ND	ND	ND Rem	ND	ND m Sami	ND pling Ne	ND	14	ND	ND	ND	ND	0.65 J	ND
****	11 101 10011		N I D) ID	N.I.D.) ID			0.467	
IW-2D (60'-80')	11/21/2011	ND	ND	ND	ND E	ND ull Scale	ND	ND X Inject	ND	ND cember	3,700	2,800	ND	ND	ND	ND	0.46 J	ND
(60 -80)	6/21/2013	ND	0.41 J	ND	ND	ND	ND	ND	ND	ND	4.3 J	2.9 J	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	61	ND	ND	ND	ND	0.49 J	ND
						_) Octobe					
	12/2/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.63 J	ND
	1/6/2014 3/27/2014	22 0.97 J	7.6 ND	18 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 45	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	6/30/2014	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	37	ND	ND	ND	ND	ND	ND
	9/29/2014	ND	ND	0.98 J	ND	ND	ND	ND	ND	ND	ND	31	ND	ND	ND	ND	ND	ND
	1/5/2015	ND	0.70 J	0.48 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	0.77 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/9/2015	ND	ND	ND	ND	ND ND	ND	(Injection ND	ND	ND	ND	ND	April/M ND	ND	ND	ND	ND	ND
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6 J	ND	ND	ND	ND	ND	ND
													Novemb					
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6 J	ND	ND	ND	ND	ND	ND
	4/13/2016 7/7/2016	ND 0.32 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.2 J	ND 0.32 J	ND ND	ND ND	ND ND	ND ND	ND 0.85
	10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	1/31/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3 J	41	ND	ND	ND	ND	ND	ND
	4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.8	18	ND	ND	ND	ND	ND	ND
	7/19/2017	ND 0.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/1/2017 1/29/2018	0.64 0.20 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 9.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/11/2018	ND	0.22 J	ND	ND	ND	ND	ND	ND	ND	2.9 J	9.4	ND	ND	ND	ND	ND	ND
	7/16/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8 J	7.9	ND	ND	ND	ND	ND	ND
	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.2 J	20	ND	ND	ND	ND	ND	ND
	1/24/2019	2.1	0.54	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	3/21/2019 7/16/2019	1.4 1.1	ND 0.23 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 29	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	12/20/2019	0.6	ND	ND	ND	ND	ND	ND	NA	ND	ND	2.5 J	NA	NA	NA	ND	ND	NA
	4/8/2020	1.1	ND	ND	ND	ND	ND	ND	NA	ND	ND	5.4	NA	NA	NA	ND	ND	NA
	6/29/2021	0.73	ND	ND	ND	ND	ND	ND	NA	ND	ND	3.2J	NA	NA	NA	ND	1.0J	NA
	12/22/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	6/24/2022 1/26/2023	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	15 NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS
	6/23/2023	0.23 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
	1/2/2024	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/26/2024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.2 J	ND	ND	ND	ND	ND	ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (µg/l)																	
IW-3S	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	0.42 J	ND
(25'-45')					Fı	ull Scale	REMO	X Injec	tion De	cember :	2011 - Ja	nuary 2	012					
	6/21/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	17.5	ND	ND	ND	ND	ND	ND
	10/14/2013	0.81 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND
					hing RI		njection	(Inject	ion Wel		rs IW-2	& IW-3	Octobe	er 2013				
	12/2/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/6/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	47	ND	ND	ND	ND	ND	ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND	ND	ND	ND
	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	34	ND	ND	ND	ND	ND	ND
	1/5/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										_	s IW-1 &	z IW-3)	April/M					
	6/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND	ND
													Novemb		,			
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6 J	ND	ND	ND	ND	ND	ND
	4/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	ND
	10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND
	1/31/2017	1.1	0.46 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND	ND	ND	ND	ND	ND
	7/19/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13 ND	ND	ND	ND	ND	ND	ND
	11/1/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/29/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	ND	ND	ND	ND	ND	ND
	4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8 J	10	ND	ND	ND	ND	ND	ND
	7/16/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1 J	16	ND	ND	ND	ND	ND	ND
	10/10/2018 1/24/2019	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.9 J ND	19 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8 J	ND	ND	ND	ND	ND	ND
	7/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND
	12/20/2019	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	3.4 J	NA	NA	NA	ND	ND	NA
	4/8/2020	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	7.8	NA	NA	NA	ND	ND	NA
	1 /0/2020	ייי	יייי	יאט	ייי	יאט				oling Ne		7.0	11/1	1 1/1	11/1	אור	אויי	11/7

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwa	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (μg/l)																	
IW-3D	11/21/2011	78	ND	ND	ND	ND	ND	ND	ND	ND	14	12	ND	ND	ND	ND	ND	ND
(60'-80')						ull Scale												
	6/21/2013	42.2	ND	ND	ND	ND	ND	ND	ND	ND	6.4	13.8	ND	ND	ND	ND	0.55 J	ND
	10/14/2013	17,000	ND	ND D-1:	ND	ND	ND	ND	ND	ND 1 Classic	ND	ND	ND	ND	ND	ND	ND	ND
	10/0/0010	45.000	NID			EMOX I					1		1		NID	NID	NID	NID
	12/2/2013	17,000	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
	1/6/2014	27,000	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
	3/27/2014	15,000	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	6/30/2014 9/29/2014	26,000 3,400	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/5/2015	3,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	5,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/13/2013	3,900	ND											ay 2015		ND	ND	ND
	6/9/2015	3,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015	25,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	480 E	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.1 J	ND	ND	ND	0.19 J	3.4	ND
	,,													er 2015		J. J		
	1/6/2016	3,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/13/2016	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.9	ND
	7/7/2016	59	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	3.6	ND
	10/11/2016	160	ND	ND	ND	ND	ND	ND	ND	ND	ND	37	ND	ND	ND	ND	ND	ND
	1/31/2017	4,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/11/2017	1,700	5.1	ND	ND	ND	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	0.72	17	ND
	7/19/2017	6,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/1/2017	1,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/29/2018	18,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/11/2018	11,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/16/2018	12,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/10/2018	5,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/24/2019	700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/21/2019 7/16/2019	460 58	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 8.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1	12/20/2019	71	ND	ND	ND	ND	ND	ND	NA NA	ND	ND	3.0 J	NA NA	NA	NA NA	ND	ND	NA NA
		180	ND	ND	ND	ND	ND	ND	NA	ND	ND	24	NA	NA	NA	ND	ND	NA
	4/8/2020		$\Gamma V D$	עויו			ND	ND	NA	ND	ND	ND	NA	NA	NA	ND	ND	NA
	4/8/2020 6/29/2021		ND	ND	ND				T A T _ T	. 10	ייי	בי	T A1_J	T A 7_J	T A 1_J		. 10	
	6/29/2021	730	ND ND	ND ND	ND ND	ND ND				ND	ND	10	0.37 I	ND	ND		0.57 I	0.72 I
	6/29/2021 12/22/2021	730 440 D	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	10 ND	0.37 J ND	ND NA	ND ND	ND	0.57 J ND	0.72 J ND
	6/29/2021 12/22/2021 6/24/2022	730 440 D 3900	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND	ND	ND	ND	ND NA ND	ND	ND ND	ND	ND
	6/29/2021 12/22/2021	730 440 D	ND	ND	ND	ND	ND	ND	ND				ND ND	NA		ND	ND ND	ND ND
	6/29/2021 12/22/2021 6/24/2022 1/26/2023	730 440 D 3900 7500	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND NA ND	ND ND	ND ND	ND ND	ND	NA ND	ND ND	ND ND ND	ND	ND

	<u> </u>																	
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard																		
SW-1	11/21/2011	4.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(60'-80')	- 12 2 12 2 1 2										2011 - Ja							
	5/30/2012	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	22	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	1.1	ND	ND	ND	ND	ND	ND	ND	10.3	15.1	ND	ND	ND	ND	ND	ND
	6/21/2013	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	5.9 ND	14.5	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND	ND Police	ND shing Rl			ND	ND on Wel	ND 1 Clusto		ND	ND Octobe	ND	ND	ND	ND	ND
	12/2/2013	0.76 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/6/2014	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
	3/27/2014	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	48	ND	ND	ND	ND	ND	ND
	6/30/2014	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	39	ND	ND	ND	ND	ND	ND
	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
	1/5/2015	180	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	83	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/10/2010	00	IVD										April/M		ND	ND	ND	ND
	6/9/2015	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015	2.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8 J	ND	ND	ND	ND	ND	ND
													Novemb					
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.0	24	ND	ND	ND	ND	ND	ND
	4/13/2016	0.92 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	0.29 J	ND	ND	ND	ND	ND	ND	ND	ND	2.4 J	55	ND	ND	ND	ND	ND	ND
	10/11/2016	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	31	ND	ND	ND	ND	ND	ND
	4/11/2017	130	ND	ND	ND	ND	ND	ND	ND	ND	11	13	ND	ND	ND	ND	ND	ND
	7/19/2017	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1 J	ND	ND	ND	ND	ND	ND
	11/1/2017	0.36 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.8	ND	ND	ND	ND	ND	ND
	1/29/2018	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.8	ND	ND	ND	ND	ND	ND
	4/11/2018	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND	ND	ND	ND
	7/16/2018	3.0	ND	ND	ND	ND	ND	ND	ND	ND	4.5 J	52	ND	ND	ND	ND	ND	ND
	10/10/2018	1 7	ND	ND	ND	ND	ND	ND	ND	ND	ND	42	ND	ND	ND	ND	ND	ND
		1.7					3.75			3.75	3.7	-				3 TT		3 TT-
	1/24/2019	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.2	ND	ND	ND	ND	ND	ND
	1/24/2019 3/21/2019	24 6.8	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	7.9	ND	ND	ND	ND	ND	ND
	1/24/2019 3/21/2019 7/16/2019	24 6.8 0.39 J	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	7.9 19	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/24/2019 3/21/2019 7/16/2019 12/20/2019	24 6.8 0.39 J ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND NA	ND ND ND	ND ND ND	7.9 19 3.5 J	ND ND NA	ND ND NA	ND ND NA	ND ND ND	ND ND ND	ND ND NA
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020	24 6.8 0.39 J ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND NA NA	ND ND ND	ND ND ND	7.9 19 3.5 J 5.6	ND ND NA NA	ND ND NA NA	ND ND NA NA	ND ND ND	ND ND ND	ND ND NA NA
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021	24 6.8 0.39 J ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND NA NA	ND ND ND ND	ND ND ND ND	7.9 19 3.5 J 5.6 4.6J	ND ND NA NA NA	ND ND NA NA NA	ND ND NA NA NA	ND ND ND ND	ND ND ND ND	ND ND NA NA
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021	24 6.8 0.39 J ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND NA NA NA	ND ND ND ND ND	ND ND ND ND ND	7.9 19 3.5 J 5.6 4.6J 23	ND ND NA NA NA ND	ND ND NA NA NA ND	ND ND NA NA NA ND	ND ND ND ND ND	ND ND ND ND ND	ND ND NA NA NA ND
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022	24 6.8 0.39 J ND ND ND ND ND	ND	ND	ND	ND	ND ND ND ND ND ND	ND	ND ND NA NA NA ND NA	ND ND ND ND ND ND	ND ND ND ND ND ND	7.9 19 3.5 J 5.6 4.6J 23 12	ND ND NA NA NA ND	ND ND NA NA NA ND	ND ND NA NA NA ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND NA NA NA ND
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022 1/26/2023	24 6.8 0.39 J ND ND ND ND ND ND	ND	ND	ND	ND	ND ND ND ND ND ND ND	ND	ND ND NA NA NA NA ND NA	ND	ND ND ND ND ND ND ND ND	7.9 19 3.5 J 5.6 4.6J 23 12 4.5 J	ND NA NA NA NA ND ND	ND NA NA NA NA ND NA	ND NA NA NA NA ND ND	ND	ND	ND ND NA NA NA ND ND
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022 1/26/2023 6/23/2023	24 6.8 0.39 J ND ND ND ND ND ND ND	ND N	ND N	ND N	ND N	ND	ND N	ND ND NA NA NA NA ND ND ND ND ND ND ND ND	ND	ND N	7.9 19 3.5 J 5.6 4.6J 23 12 4.5 J	ND NA NA NA NA ND ND ND ND ND	ND NA NA NA NA ND NA ND NA	ND NA NA NA NA ND ND ND ND	ND	ND N	ND NA NA NA NA ND ND ND ND
	1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022 1/26/2023	24 6.8 0.39 J ND ND ND ND ND ND	ND	ND	ND	ND	ND ND ND ND ND ND ND	ND	ND ND NA NA NA NA ND NA	ND	ND ND ND ND ND ND ND ND	7.9 19 3.5 J 5.6 4.6J 23 12 4.5 J	ND NA NA NA NA ND ND	ND NA NA NA NA ND NA	ND NA NA NA NA ND ND	ND	ND	ND ND NA NA NA ND ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	er Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ls (µg/l)																	
MLW-0I	9/27/2010	1.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND
70'-80'	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.7	29	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2 J	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	4.2	ND	ND	ND	ND	ND	ND	ND	ND	8.8	2.0 J	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
						ull Scale				cember !	2011 - Ja	nuary 2						
	5/30/2012	0.52 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	0.78 J	6.7	16	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	0.48 J	ND	ND	ND	ND	ND	ND	ND	10.3	14.9	ND	ND	ND	ND	ND	ND
	6/21/2013	ND	0.51 J	0.54 J	ND	ND	ND	ND	ND	ND	5.8	12.5	ND	ND	ND	ND	ND	ND
	10/14/2013	0.96 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND
				Polis	hing Ri	EMOX I	njectior	(Inject	ion Wel	l Cluste	rs IW-2	& IW-3	Octobe	er 2013				
	1/6/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/27/2014	ND	0.81 J	ND	ND	ND	ND	ND	ND	ND	ND	46	ND	ND	ND	ND	ND	ND
	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	40	ND	ND	ND	ND	ND	ND
	1/5/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	0.68 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
						MOX In												
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	0.23 J	ND	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	ND	ND	ND	ND
						MOX In												
	1/6/2016	ND	0.24 J	ND	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND
	4/13/2016	0.25 J	0.24 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	ND	0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	10/11/2016	ND	0.27 J	ND	ND	ND	ND	ND	ND	ND	ND	40	ND	ND	ND	ND	ND	ND
	1/31/2017	ND	0.22 J	ND	ND	ND	ND	ND	ND	ND	11	16	ND	ND	ND	ND	ND	ND
	4/11/2017	ND	0.34 J	ND	ND	ND	ND	ND	ND	ND	4.3 J	12	ND	ND	ND	ND	ND	ND
	7/19/2017	0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	2.5 J	11	ND	ND	ND	ND	ND	ND
	11/1/2017	ND	0.32 J	ND	ND	ND	ND	ND	ND	ND	ND	9.8	ND	ND	ND	ND	ND	ND
	1/29/2018	0.28 J	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	7.6	ND	ND	ND	ND	ND	ND
	4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.4 J	17	ND	ND	ND	ND	ND	ND
	7/16/2018	ND	0.18 J	ND	ND	ND	ND	ND	ND	ND	4.3 J	12	ND	ND	ND	ND	ND	ND
	1/24/2018	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	4.2 J	26	ND ND	ND ND	ND	ND	ND ND	ND ND
	1/24/2019 3/21/2019	0.21 J	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	11 3.4 J	ND	ND	ND ND	ND ND	ND	ND
	7/16/2019	0.21 J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/202019	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	2.5 J	NA	NA	NA	ND	ND	NA
	4/8/2020	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	6.8	NA	NA	NA	ND	ND	NA
	6/29/2021	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	4.4J	NA	NA	NA	ND	ND	NA
	12/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/24/2022	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/26/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/23/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
	1/2/2024	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/26/2024	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.2	6.5	ND	ND	ND	ND	ND	ND
	0,20,2021	. 12	.,2	. 12	. 12	. 10	. 12	. 12	. 12	. 1.0	U.=	0.0	. 12	. 12	. 1.0	. 12	. 1.0	. 10

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part 70	03 Class GA																	
Groundwater	r Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standards	(μg/l)																	
MLW-0D	9/27/2010	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7	ND
105'-115'	11/29/2010	39	ND	ND	ND	ND	ND	ND	ND	ND	11	36	ND	ND	ND	ND	0.89 J	ND
<u> </u>	3/25/2011	3.8	0.8 J	0.48 J	ND	ND	ND	ND	ND	ND	3.6 J	ND	ND	ND	ND	ND	ND	ND
l <u> </u>	7/7/2011	3.6	1.0	0.75 J	ND	ND	ND	ND	ND	1.0 J	11	3. 8 J	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	0.5 J	ND	ND	ND	ND	ND	ND	0.64 J	ND	ND	ND	ND	ND	ND	ND	ND
_	- 12 2 12 2 1 2						e REMO											
l –	5/30/2012	0.81 J	0.62 J	ND	ND	ND	ND	ND	ND	0.84 J	ND	ND	ND	ND	ND	ND	ND	ND
l –	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1	16	ND	ND	ND	ND	ND	ND
<u> </u>	3/15/2013 6/21/2013	ND	0.54 J	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	9.2	13.1	ND ND	ND	ND ND	ND	ND	ND
<u> </u>		ND	0.54 J	ND	ND ND	ND	ND	ND	ND	ND ND	6.6 ND	14.3 29	ND	ND ND		ND	ND	ND
	10/14/2013	0.77 J	ND	ND									Octobe		ND	ND	ND	ND
	1/6/2014	ND	0.84 J	0.76 J	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
<u> </u>	3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	49	ND	ND	ND	ND	ND	ND
 	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	37	ND	ND	ND	ND	ND	ND
<u> </u>	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	ND
 	1/5/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2, 20, 2020	- 1, -	- 1, -										April/M		- 1,-	- 1,-	- 1,-	- 11-
	6/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND	ND	ND	ND
				Polish	ing REI	MOX In	jection ((Injectio	n Well	Cluster	s IW-1 &	z IW-3) :	Novemb	er 2015				
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0 J	ND	ND	ND	ND	ND	ND
[4/13/2016	0.25 J	0.24 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L	7/7/2016	ND	0.20 J	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
<u> </u>	10/11/2016	ND	0.23 J	ND	ND	ND	ND	ND	ND	ND	ND	52	ND	ND	ND	ND	ND	ND
l –	1/31/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	14	ND	ND	ND	ND	ND	ND
l –	4/11/2017	0.19 J	0.33 J	ND	ND	ND	ND	ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND
⊢	7/19/2017	0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	3.0 J	14	ND	ND	ND	ND	ND	ND
⊢	11/1/2017	ND	0.22 J	ND	ND	ND	ND	ND	ND	ND	1.9 J	11	ND	ND	ND	ND	ND	ND
⊢	1/29/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 4.2.I	8.8	ND	ND	ND	ND	ND	ND
⊢	4/11/2018 7/16/2018	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.3 J	13 14	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
⊢	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.1 J 4.3 J	21	ND	ND	ND	ND	ND	ND
⊢	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	3/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND	ND
⊢	7/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	33	ND	ND	ND	ND	ND	ND
ı L	12/202019	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	3.0 J	NA	NA	NA	ND	ND	NA
							110	1 1	T 47 T	. 10	110	0.0	7 47 7	T 41 F	T 47 T			T 47 T
	4/8/2020	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	4.3 J	NA	NA	NA	ND	ND	NA

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part																		
Groundwat		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard																		
MW-1	2/26/2008	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30'-45'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 10	24	ND	ND	ND	ND	ND	ND
	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	93	ND	ND	3.1	ND	ND	ND
	12/1/2008	1.8 ND	3.5 ND	3.2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20	59 110	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/24/2009 6/30/2009	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	6.9	100	ND	ND	ND ND	ND	ND ND	ND
	9/21/2009	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	15	72	ND	ND	ND ND	ND	ND ND	ND
	1/7/2010	3.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	31	ND	ND	ND	ND	0.59 J	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6 J	ND	ND	ND	0.55 J	ND	1.2	ND
	7/7/2011	0.71 J	ND	ND	ND	ND	ND	ND	ND	ND	8.0	2.0 J	ND	ND	ND	ND	1.7	ND
	11/21/2011	4.9	ND	ND	ND	ND	ND	ND	ND	ND	2.2 J	10	ND	ND	ND	ND	0.76 J	ND
	11/21/2011	1.7	ND	ND								nuary 2		ND	ND	ND	0.70)	ND
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.2	ND	ND	ND	ND	0.72 J	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND
	3/15/2013	0.55 J	ND	ND	ND	ND	ND	ND	ND	ND	8.9	13.9	ND	ND	ND	ND	0.8 J	ND
	-, -, -	,						oved fro		oling Ne							,	
MW-2	2/26/2008	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29'-44'	4/8/2008	1.4 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 -44	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.1	80	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	42	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	96	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	110	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	79	ND	ND	ND	ND	ND	ND
	1/7/2010	0.94 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	32	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	0.33 J	ND	ND	ND	ND	ND	ND	ND	3.3 J	ND	ND	ND	ND	ND	0.49 J	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.6	ND	ND	ND	ND	ND	0.6 J	ND
	11/21/2011	4.3	ND	ND	ND	ND	ND	ND	ND	ND	2. 3 J	ND	ND	ND	ND	ND	ND	ND
												nuary 2						
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.2	ND	ND	ND	ND	0.69 J	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.3	15	ND	ND	ND	ND	0.87 J	ND
	3/15/2013	0.41 J	ND	ND	ND	ND	ND	ND	ND	ND	10.7	42.7	ND	ND	ND	ND	0.65 J	ND
							Rem	oved fro	om Samj	oling Ne	etwork							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (µg/l)																	
MW-3	2/26/2008	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND
30'-45'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	1.0 J	ND
	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.6	74	ND	ND	ND	ND	0.85 J	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	63	ND	ND	ND	ND	0.56 J	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	98	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.4	110	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	83	ND	ND	ND	ND	ND	ND
	1/7/2010	0.72 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	31	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	0.28 J	ND	ND	ND	ND	ND	ND	ND	3.3 J	ND	ND	ND	ND	ND	0.58 J	ND
	7/7/2011	ND	1.1	1.1	ND	ND	ND	ND	ND	ND	6.8	ND	ND	ND	ND	ND	0.55 J	ND
	11/21/2011	4.0	0.71 J	0.65 J	ND	ND	ND	ND	ND	ND	7.3	9.9	ND	ND	ND	ND	ND	ND
				ı					tion Dec					ı				
	5/22/2012	ND	0.79 J	0.73 J	ND	ND	ND	ND	ND	ND	ND	9.3	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	0.64 J	ND	ND	ND	ND	ND	ND	6.3	15	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	0.56 J	ND	ND	ND	ND	ND	ND	ND	8.2	17.5	ND	ND	ND	ND	ND	ND
							Rem	oved fro	om Samj	oling Ne	etwork							
MW-4	11/19/2007	31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23'-38'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND
	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.2	76	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	67	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	50	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.1	120	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	84	ND	ND	ND	ND	ND	ND
	1/7/2010	0.71 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	30	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.0 J	ND	ND	ND	ND	ND	0.36 J	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.7	4.2 J	ND	ND	ND	ND	0.83 J	ND
	11/21/2011	3.8	ND	ND	ND	ND	ND	ND	ND	ND	6.2	6.0	ND	ND	ND	ND	ND	ND
									tion Dec									
	5/30/2012	0.51 J	ND	ND	ND	ND	ND	ND	ND	ND	2.3 J	7.9	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	15	ND	ND	ND	ND	0.45 J	ND
	3/15/2013	ND	0.48 J	ND	ND	ND	ND	ND	ND	ND	8.5	73.1	ND	ND	ND	ND	ND	ND
							Kem	oved fro	om Samj	oung Ne	etwork							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	er Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ls (µg/l)																	
SVE-1	2/26/2008	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27'-42'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	3.0	ND
	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	65	ND	ND	ND	ND	0.94 J	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	41	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	100	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.1	110	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	1.0	ND	ND	ND	ND	ND	ND	ND	15	70	ND	ND	ND	ND	ND	ND
	1/7/2010	0.51 J	ND	ND	ND	ND	ND	ND	ND	ND	13	51	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/27/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	44	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	0.31 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.63 I	ND
ľ	7/7/2011	ND	0.86 J	0.94 J	ND	ND	ND	ND	ND	ND	8.8	4.3 J	ND	ND	ND	ND	ND	ND
ŀ	11/21/2011	3.9	ND	ND	ND	ND	ND	ND	ND	ND	5.7	ND	ND	ND	ND	ND	0.56 J	ND
	11/21/2011	3.9	ND	ND					tion Dec					ND	ND	ND	0.50)	ND
	5/30/2012	0.59 J	0.68 J	0.56 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	14	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.1	14.4	ND	ND	ND	ND	0.47 J	ND
	6/21/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.8 J	12.1	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND						ion Wel						ND	ND	ND	ND
	1/6/2014	ND	ND	0.73 J	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	3/27/2014	ND	0.95 J	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND	ND	ND	ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	42	ND	ND	ND	ND	ND	ND
	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
	1/5/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.9	ND	ND	ND	ND	ND	ND
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.61 J	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1 J	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND										Novemb			ND	ND	ND
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0 J	ND	ND	ND	ND	ND	ND
	4/13/2016	0.23 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	10/11/2016	0.21 J	0.30 J	ND	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J	12	ND	ND	ND	ND	1.4 J	ND
	7/19/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J	11	ND	ND	ND	ND	ND	ND
	11/1/2017	0.35 J	ND	ND	ND	ND	ND	ND	ND	ND	2.2 J	10	ND	ND	ND	ND	ND	ND
	1/29/2018	0.33 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.5	ND	ND	ND	ND	ND	ND
	4/11/2018	0.20 J ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7 J	20	ND	ND	ND	ND	ND	ND
	7/16/2018	0.19 J	ND	ND	ND	ND	ND	ND	ND	ND	3.5 J	12	ND	ND	ND	ND	ND	ND
	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.0 J	19	ND	ND	ND	ND	ND	ND
	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	3/21/2019	83	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
- - - - - - - - - - - -		ND			ND	ND		ND	ND	ND			ND	ND			ND	ND
	7/16/2019 12/20/2019	ND	ND ND	ND ND	ND	ND	ND ND	ND	NA NA	ND	ND ND	26 2.7 J	NA NA	NA NA	ND NA	ND ND	ND	NA
							ND	ND		ND	ND							
	4/8/2020	ND	ND	ND	ND	ND			NA om Samı			4.9 J	NA	NA	NA	ND	ND	NA
							Kem	ovea iro	ını samı	omig ine	LWOIK							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part																		
Groundwat	•	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard SVE-2	is (μg/I) 2/26/2008	760	ND	ND	NID	ND	NID	ND	NID	ND	ND	ND	ND	ND	ND	ND	ND	ND
27'-42'	4/8/2008	360	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	22	ND	ND	ND	ND	ND	ND
27 -42	7/28/2008	470	ND	0.93 J	ND	ND	ND	ND	ND	ND	5.0	73	ND	ND	ND	ND	3.5	ND
	12/1/2008	760	ND	ND	ND	ND	ND	ND	ND	ND	17	58	ND	ND	ND	ND	0.74 J	ND
	3/24/2009	1,200	ND	ND	ND	ND	ND	ND	ND	ND	18	100	ND	ND	ND	ND	ND	ND
	6/30/2009	120	ND	ND	ND	ND	ND	ND	ND	ND	6.6	110	ND	ND	ND	ND	0.57 J	ND
	9/21/2009	62	0.53 J	ND	ND	ND	ND	ND	ND	ND	14 ND	72	ND	ND	ND	ND	ND	ND
	1/7/2010 6/3/2010	9.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	29 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	8/25/2010	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	6.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND
	3/25/2011	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	6.0	ND	ND	ND	ND	ND	ND	ND	ND	7.2	3.4 J	ND	ND	ND	ND	ND	ND
	11/21/2011	7.6	0.57 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	F/20/2012	11	NID	NID		ull Scale								NID	NID	NID	NID	NID
	5/30/2012 11/9/2012	11 5.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.3 J 15	50 24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/15/2013	4.8	ND	ND	ND	ND	ND	ND	ND	ND	10.5	21.7	ND	ND	ND	ND	ND	ND
	6/21/2013	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8 J	ND	ND	ND	ND	0.7 J	ND
	10/14/2013	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
						EMOX I										l		
	1/6/2014	7.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
	3/27/2014 6/30/2014	3.1 2.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	44	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
	1/5/2015	3.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	2.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
														ay 2015			•	
	6/9/2015	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015 11/17/2015	2.6 0.87	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 3.2 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/17/2013	0.67	ND											per 2015		ND	ND	ND
	1/6/2016	0.82	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.2	ND	ND	ND	ND	ND	ND
	4/13/2016	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	0.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	10/11/2016	0.78	0.37 J	ND	ND	ND	ND	ND	ND	ND	ND	34	ND	ND	ND	ND	ND	ND
	1/31/2017 4/11/2017	0.46 J 1.0	0.31 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 ND	7.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/19/2017	0.65	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	ND	ND	ND	ND	ND	ND
	11/1/2017	1.7	0.38 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/29/2018	2.4	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	4/11/2018	ND	0.93	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
	7/16/2018	0.74	ND	ND	ND	ND	ND	ND	ND	ND	5.6	65	ND	ND	ND	ND	ND	ND
	10/10/2018 1/24/2019	1.2 1.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	34 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/21/2019	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.5	ND	ND	ND	ND	ND	ND
	7/16/2019	0.44 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND
	12/20/2019	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	3.7 J	NA	NA	NA	ND	ND	NA
	4/8/2020	0.30 J	ND	ND	ND	ND	ND	ND	NA	ND	ND	9	NA	NA	NA	ND	ND	NA
							Rem	oved fro	om Samj	pling Ne	etwork							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (μg/l)																	
SVE-3	2/26/2008	4.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26'-41'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND
	7/28/2008	2.5	ND	ND	ND	ND	ND	ND	ND	ND	7.8	83	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	49	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.7	120	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	66	ND	ND	ND	ND	ND	ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	ND	ND	ND	0.47 J	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.3	ND	ND	ND	ND	ND	0.84 J	ND
	11/21/2011	ND	0.57 J	0.43 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
						ull Scale												
	5/22/2012	ND	0.4 5 J	ND	ND	ND	ND	ND	ND	ND	ND	8.2	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.8	14	ND	ND	ND	ND	ND	ND
	3/15/2013	0.66 J	0.55 J	ND	ND	ND	ND	ND	ND	ND	9.3	20.8	ND	ND	ND	ND	ND	ND
							Rem	oved fro	om Samı	oling Ne	etwork							
SVE-4	2/26/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27'-42'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.6	75	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	62	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	120	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.2	100	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	93	ND	ND	ND	ND	ND	ND
	1/7/2010	0.54 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	28	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5 J	ND	ND	ND	ND	ND	0.38 J	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.0	ND	ND	ND	ND	ND	1.5	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.1	11	ND	ND	ND	ND	ND	ND
						ull Scale												
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.9	ND	ND	ND	ND	0.5 J	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.0	14	ND	ND	ND	ND	0.67 J	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	17.1	ND	ND	ND	ND	0.76 J	ND
							Rem	oved fro	om Samj	oling Ne	etwork							

		ne	ie	hene	thene	ane	ə	lane	lane	ine	K)		hane		le	ride		thane
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chlorid	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA				ţ													
Groundwa		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	•						_		_		00		00				,	
MLW-1IS	11/19/2007	830	0.67 J	ND	ND	0.59 J	ND	2.2	ND	1.4	ND	4.8 J	ND	ND	ND	ND	ND	ND
70'-80'	4/1/2008	910	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND
	7/28/2008	230	ND	ND	ND	ND	ND	ND	ND	ND	6.3	79	ND	ND	ND	ND	1.2	ND
	12/1/2008	2,700	ND	ND	ND	ND	ND	ND	ND	ND	21	59	ND	ND	ND	ND	0.8 J	ND
	3/24/2009	2,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	75	ND	ND	ND	ND	1.2	ND
	6/30/2009 9/21/2009	2,000 940	1.4 0.6 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	17 12	ND ND	ND ND	ND ND	ND ND	0.67 0.66 J	ND ND
	1/7/2010	2,300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.57 J	ND
	6/3/2010	380	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	0.84 J	ND
	8/25/2010	3,100	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	4,000	2.6	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
	3/25/2011	3,300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	5,300	3.0	ND	ND	ND	ND	ND	ND	ND	9.1	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	2,100	2.4	ND	ND E	ND	ND	ND V Inject	ND	ND	1.8 J 2011 - Ja	ND	ND 012	ND	ND	ND	ND	ND
	5/23/2012	850	ND	ND	ND	ND	ND	ND	ND	ND	2011 - ja ND	260	ND	ND	ND	ND	10	ND
	11/9/2012	590 E	ND	ND	ND	ND	ND	ND	ND	ND	15	25	ND	ND	ND	0.42	16	ND
	3/15/2013	1,100	ND	ND	ND	ND	ND	ND	ND	ND	90.2 D	24.7	ND	ND	ND	ND	8.5 J	ND
	6/21/2013	850	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/14/2013	190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND
											rs IW-2							
	12/2/2013	33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	27	ND
	1/6/2014 3/27/2014	310 150	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 48	ND ND	ND ND	ND ND	0.84 J 1.2	28 30	ND ND
	6/30/2014	140	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND
	9/29/2014	1.4	4.7	1.2	ND	8.6	ND	4.7	ND	24	ND	24	ND	ND	ND	ND	0.78 J	ND
	1/5/2015	750	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7 J	ND
	4/15/2015	1,300	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3 J	ND	ND	ND	ND	ND	ND
	6 10 10 01 5		NID.										April/M			1170	0.70.7) ID
	6/9/2015	15	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	0.59 J	ND
	7/9/2015 11/17/2015	73 330	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
	11/17/2013	330	ND										Novemb			ND	ND	ND
	1/6/2016	3.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	0.50	4.6	ND
	4/13/2016	990 E	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.83 J	4.0	ND
	7/7/2016	22	ND	ND	ND	ND	ND	ND	ND	ND	2.0 J	16	ND	ND	ND	0.42 J	ND	ND
	10/11/2016	1,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/31/2017 4/11/2017	760 1,100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 35 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/19/2017	7,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/1/2017	5,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/29/2018	4,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/11/2018	4,300	ND	ND	ND	ND	ND	ND	ND	ND	ND	74 J	ND	ND	ND	ND	ND	ND
	7/16/2018	470	ND	ND	ND	ND	ND	ND	ND	ND	ND	42 42.T	ND	ND	ND	ND	ND	ND
	10/10/2018	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	42 J	ND	ND	ND	ND	ND	ND
	1/24/2019 3/21/2019	1,400 390	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.3 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/16/2019	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7	ND	ND	ND	ND	ND	ND
	12/20/2019	5.6	ND	ND	ND	ND	ND	ND	NA	ND	ND	4.3 J	NA	NA	NA	ND	ND	NA
	4/8/2020	33	ND	ND	ND	ND	ND	ND	NA	ND	ND	8.7	NA	NA	NA	ND	ND	NA
	6/29/2021	3.5	ND	ND	ND	ND	ND	ND	NA	ND	ND	6.7	NA	NA	NA	ND	ND	NA
	12/22/2021	58 D	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	6/24/2022	1.3	ND	ND	ND	ND	ND	ND	NA	ND	ND	14	ND	NA	ND	ND	ND	ND
	1/26/2023 6/23/2023	15 1.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.9 J 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/2/2024	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	6/26/2024	2.4	ND	ND	ND	ND	ND	ND	ND	ND	4.8 J	5.6	ND	ND	ND	ND	ND	ND
	-, -0, -0-1	_, _		- , -			_ , _	_ , _	- , -	_ , _	j		, _	_ , _	, _		, _	

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
		Te	T	cis-1	trans-	1,1		1,1,	1,1,2	1,1	2-I		Brom		Ö	Carl		Dibro
NYSDEC Part																		
Groundwat	-	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard MLW-1ID	ds (μg/l) 11/19/2007	47	0.79 J	ND	ND	1.3	ND	1.7	ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND
149'-159'	4/1/2008	410	3.5	1.3	ND	7.5	ND	5.8	ND	18	ND	37	ND	ND	ND	ND	ND	ND
	7/28/2008	680	2.3	1.5	ND	5.3	ND	3.7	ND	10	5.6	85	ND	ND	ND	ND	0.56 J	ND
	12/1/2008	600	1.8	0.67 J	ND	7.0	ND	3.4	ND	12	20	66	ND	ND	ND	ND	ND	ND
	3/24/2009	770	2.2	ND	ND	4.6	ND	3.5	ND	13	24	160	ND	ND	ND	ND	0.59 J	ND
	6/30/2009 9/21/2009	410 290	1.6 1.8	0.72 J ND	ND ND	3.4	ND ND	3.0 ND	ND ND	9.6 12	5.4 ND	83 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/7/2010	240	1.8	0.56 J	ND	2.5	ND	3.0	ND	10	12	53	ND	ND	ND	ND	ND	ND
	6/3/2010	34	2.4	1.1	ND	7.3	ND	4.4	ND	19	ND	ND	ND	ND	ND	ND	ND	ND
	8/25/2010	30	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	760	2.3	0.54 J	ND	3.2	ND	ND	ND	7.5	ND	22	ND	ND	ND	ND	ND	ND
	3/25/2011	29	1.8	0.69 J	ND	3.2	ND	2.8	ND	10	3.1,J	ND	ND	ND	ND	ND	ND	ND
	7/7/2011 11/21/2011	7.6	2.2	0.83 J 0.99 J	ND ND	5.6 4.5	ND ND	ND ND	ND ND	11 10	8.3 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.41 J	ND ND
	11/21/2011	21	2.2	0.99					tion Dec					ND	ND	ND	0.41)	ND
	5/23/2012	5.5	ND	ND	ND	ND	ND	ND	ND	0.46 J	ND	3.7 J	ND	ND	ND	ND	ND	ND
	11/9/2012	17	1.5	0.83 J	ND	2.7	ND	ND	ND	9.2	16	27	ND	ND	ND	ND	ND	ND
	3/15/2013	17.1	0.4 5 J	ND	ND	ND	ND	ND	ND	0.58 J	7.2	14.5	ND	ND	ND	ND	ND	ND
	6/21/2013	8.2	1.7	0.62 J	ND	2.9	ND	2.2	ND	9.8	4.7 J	3.5 J	ND	ND	ND	ND	ND 0.46 I	ND
	10/14/2013	15	ND	ND	ND	ND FMOY I	ND	ND (Inject	ND	ND 1 Clusto	ND	ND	ND Octobe	ND	ND	ND	0.46 J	ND
	12/2/2013	11	3.3	0.97 I	ND	4.5	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	0.57 J	ND
	1/6/2014	6.3	3.1	1.2	ND	6.4	ND	2.8	ND	15	ND	7.5 J	ND	ND	ND	ND	0.68 J	ND
	3/27/2014	23	ND	ND	ND	ND	ND	2.8	ND	ND	ND	47	ND	ND	ND	ND	ND	ND
	6/30/2014	1.5	4.5	1.2	ND	8.4	ND	3.4	ND	18	ND	54	ND	ND	ND	ND	ND	ND
	9/29/2014	160	ND	ND	ND	ND	ND	ND	ND	ND	ND	34	ND	ND	ND	ND	2.3	ND
	1/5/2015 4/15/2015	93 110	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/13/2013	110	ND										April/M			ND	ND	ND
	6/9/2015	64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	9.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4 J	ND	ND	ND	ND	ND	ND
	1/6/2016	24	ND	ND	ND	MOX In ND	ND	ND	ND ND	ND	ND		Novemb ND	ND	ND	ND	ND	ND
	4/13/2016	11.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3 J ND	ND	ND	ND	ND	ND	ND
	7/7/2016	12	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J	15	ND	ND	ND	ND	ND	ND
	10/11/2016	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	44	ND	ND	ND	ND	ND	ND
	1/31/2017	4.1	ND	ND	ND	ND	ND	ND	ND	ND	14	20	ND	ND	ND	ND	ND	ND
	4/11/2017	11	0.18 J	ND	ND	ND	ND	ND	ND	ND	5.6 J	15	ND	ND	ND	ND	ND 0.74 I	ND
	7/19/2017 11/1/2017	16 2.4	ND 2.2	ND ND	ND ND	ND 2.1	ND ND	ND 1.1 J	ND ND	ND 6.2	ND ND	13 3.3 J	ND ND	ND ND	ND ND	ND ND	0.74 J ND	ND ND
	1/29/2018	13	1.4	ND	ND	1.6	ND	0.81 J	ND	5.2	ND	6.2	ND	ND	ND	ND	ND	ND
	4/11/2018	14	0.31 J	ND	ND	0.19 J	ND	ND	ND	0.96 J	3.6 J	10	ND	ND	ND	ND	ND	ND
	7/16/2018	7.5	1.9	ND	ND	2.1	ND	1.0 J	ND	6.5	3.2 J	9.7	ND	ND	ND	ND	ND	ND
	10/10/2018	11	0.66	ND	ND	0.66	ND	ND	ND	1.4 J	ND	36	ND	ND	ND	ND	ND	ND
	1/24/2019 3/21/2019	7.4	ND 0.98	ND 0.87	ND ND	0.24 J ND	ND ND	ND ND	ND ND	ND 2.8	ND ND	8.9 5.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/16/2019	5.8	1.8	0.87 ND	ND	2.0	ND	0.77 J	ND	5.4	ND	31	ND	ND	ND	ND	ND	ND
	12/20/2019	3.2	0.37 J	ND	ND	0.27 J	ND	ND	NA	0.86 J	ND	3.6 J	NA	NA	NA	ND	ND	NA
	4/8/2020	3.2	1.2	ND	ND	1.2	ND	ND	NA	4.2	ND	26	NA	NA	NA	ND	ND	NA
	6/29/2021	1.1	2.4	ND	ND	2.3	ND	0.97J	NA	6.9	ND	4.2J	NA	NA	NA	ND	ND	NA
	12/22/2021	5.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.2	ND	ND	ND	ND	ND	ND
	6/24/2022	3.3	1.9	ND	ND	2.4	ND	ND	NA ND	6.3	ND	13	ND	NA	ND	ND	ND	ND
	1/26/2023 6/23/2023	3.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.5 J 9.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/2/2024	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	6/26/2024	0.7	1.3	ND	ND	1.2	ND	ND	ND	3.8	5.5	7.4	ND	ND	ND	ND	ND	ND

				e	ne			0)	0)				ЭС			0)		Je
		Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	je Je	Bromodichloromethane	ırm	Carbon Disulfide	Carbon Tetrachloride	ırm	Dibromochloromethane
Parameters	Sampling Date	loro	oroe	chlo	ichl	lloro	Chl	hlor	hlor	lloro	one	Acetone	nlore	Bromoform	ı Dis	etra	Chloroform	nlore
	Date	rach	ichle	2-Di	,2-D	Dich	inyl	-Tric	-Tric	Dick	utan	Ac	odic	Broi	rbor	on T	Chlc	mod
		Tet	Tr	s-1,2	ns-1	1,1-]	^	1,1,1	1,1,2	1,1-	2-B		romo		Ca	Carb		ibroı
NYSDEC Part	702 Class C A			Ğ	tra			, ,	, '				Bi					D
Groundwat		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard																		
MLW-1D 182'-192'	10/29/2007 4/1/2008	24 78	ND 16	ND ND	ND ND	ND 2.6	ND ND	ND ND	ND ND	1.3 6.7	ND 11	ND 90	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
102 172	7/28/2008	180	3.9	0.99 J	ND	0.65 J	ND	ND	ND	2.2	5.9	81	ND	ND	ND	ND	ND	ND
	12/1/2008 3/24/2009	200	4.0	ND	ND ND	ND ND	ND ND	ND	ND ND	3.0	34 13	85 76	ND ND	ND	ND ND	ND	ND ND	ND
	6/30/2009	140 100	3.1 2.8	ND ND	ND	0.79 J	ND	ND ND	ND	2.7 3.3	7.5	110	ND	ND ND	ND	ND ND	ND	ND ND
	9/21/2009	85	2.0	ND	ND	0. 57 J	ND	ND	ND	2.9	16	83	ND	ND	ND	ND	ND	ND
	1/7/2010 6/3/2010	56 59	1.9 3.4	ND ND	ND ND	0.62 J 1.0	ND ND	ND ND	ND ND	2.9 5.5	ND ND	30 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/29/2010	62	2.0	ND	ND	0.86 J	ND	ND	ND	2.5	ND	10	ND	ND	ND	ND	ND	ND
	3/25/2011 7/7/2011	71 48	2.1	ND ND	ND ND	0.64 J	ND ND	ND ND	ND ND	2.7	3.9 J	ND 4.4.I	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	11/21/2011	30	1.3 1.4	ND	ND	1.0 J 0.64 J	ND	ND	ND	2.8 1.8	9.0 ND	4.4 J ND	ND	ND	ND	ND	ND	ND ND
					F	ull Scale	e REMO	X Injec	tion Dec	cember	2011 - Ja	nuary 2	012		•			
	5/30/2012 11/9/2012	14 61	ND 0.58 J	ND ND	ND ND	ND 0.69 J	ND ND	ND ND	ND ND	ND 4.2	ND 15	ND 22	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/15/2013	9.8	1.4	ND	ND	1.7	ND	ND	ND	6.9	ND	13.1	ND	ND	ND	ND	ND	ND
	6/21/2013	14.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0 J	ND	ND	ND	ND	0.96 J	ND
	10/14/2013	7.3	2.8	0.74 J Polis	ND shing RI	5.4 EMOX I	ND njection	2.7 (Inject	ND ion Wel	12 l Cluste	rs IW-2	ND & IW-3	ND Octobe	ND er 2013	0.59 J	ND	0.54 J	ND
	12/2/2013	11	3.3	0.97 J	ND	4.5	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	0.57 J	ND
	1/6/2014 3/27/2014	6.9 8.2	2.9	1.2 0.85 J	ND ND	5.9 4.8	ND ND	2.5 2.5	ND ND	9.6	ND ND	10 39	ND ND	ND ND	ND ND	ND ND	0.69 J 1.3	ND ND
	6/30/2014	35	1.1	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	0.43 J	ND
	9/29/2014	67	ND	ND	ND	ND	ND	ND	ND	ND	ND	38 ND	ND	ND	ND	ND	ND 0.70 I	ND
	1/5/2015 4/15/2015	5.0 11.0	3.7	0.97 J ND	ND ND	5.6 1.9	ND ND	2.9 0.41 J	ND ND	16 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.78 J ND	ND ND
	4 10 10 0 1												April/M					
	6/9/2015 7/9/2015	16.0 4.9	3.5	0.80 J 0.85 J	13 ND	4.2	ND ND	2.9	ND ND	13 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.79 J ND	ND ND
	11/17/2015	3.0	1.9	0.78 J	ND	3.2	ND	1.2 J	ND	8.2	ND	2.6 J	ND	ND	ND	ND	ND	ND
	1/6/2016	3.6	3.0	Polish	iing REI ND	MOX In 4.8	jection ND	(Injection 1.6 J	n Well ND	Cluster 8.7	s IW-1 & 13	z IW-3) 89	Novemb ND	oer 2015 ND	ND	ND	ND	ND
	4/13/2016	2.5	3.6	0.99 J	ND	4.6	ND	2.2	ND	13.4	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	3.9	2.7	0.76 J	ND	8.5	ND	1.4 J	ND	3.3	ND	14	ND	ND	ND	ND	ND	ND
	10/11/2016 1/31/2017	3.2	3.4 1.7	0.82 J ND	ND ND	4.0 3.1	ND ND	2.0 J 0.78 J	ND ND	11.0 6.4	ND 20	40	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/11/2017	5.1	3.0	0.77 J	ND	4.2	ND	1.5 J	ND	9.0	4.2 J	11	ND	ND	ND	ND	ND	ND
	7/19/2017 11/1/2017	10 22	2.6 ND	ND ND	ND ND	3.1 ND	ND ND	1.0 J ND	ND ND	6.7 ND	ND ND	7.3 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/29/2018	26	0.31 J	ND	ND	0.31 J	ND	ND	ND	2.0 J	ND	7.9	ND	ND	ND	ND	ND	ND
	4/11/2018	6.1	1.3	ND	ND	1.3	ND	ND	ND	3.1	2.8 J	10	ND	ND	ND	ND	ND	ND
	7/16/2018 10/10/2018	24	0.38 J ND	ND ND	ND ND	0.32 J ND	ND ND	ND ND	ND ND	1.4 J ND	2.8 J ND	14 34	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
	3/21/2019 7/16/2019	2.5 7.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.9 J 28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	12/20/2019	3.2	0.37 J	ND	ND	0.27 J	ND	ND	NA	0.86 J	ND	3.6 J	NA	NA	NA	ND	ND	NA
	4/8/2020	3.8	ND	ND	ND	ND	ND	ND	NA	ND	ND	9.0	NA	NA	NA	ND	ND 2.0	NA
	6/29/2021 12/22/2022	3.7 5.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	5.8 22.0	NA ND	NA ND	NA ND	ND ND	2.9 0.73 J	NA ND
	6/24/2022	7.4	ND	ND	ND	ND	ND	ND	NA	ND	ND	18.0	ND	NA	ND	ND	ND	ND
	1/26/2023 6/23/2023	5.9 2.1	ND 1.5	ND ND	ND ND	ND 1.7	ND ND	ND ND	ND ND	ND 5.1	ND ND	4.4 J 16	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/2/2024	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
II	6/26/2024	2.5	ND	ND	ND	3.7	ND	ND	ND	ND	6.0	7.1	ND	ND	ND	ND	ND	ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part																		
Groundwat	•	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard					110								110		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
MLW-2S	3/10/2008	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21'-36'	4/4/2008	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/28/2008	3.9	0.59 J	1.0 J	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND
	3/24/2009	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND
	6/30/2009 9/21/2009	0.87 0.79 I	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	5.2 ND	24 ND	ND	ND ND	ND ND	ND	ND	ND ND
	1/7/2010	0.79 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	1.4	ND	ND	ND	ND	ND	ND	ND	ND	8.3	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	3.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
					F	ull Scale	REMO	X Inject	tion Dec	ember :	2011 - Ja	nuary 2	012					
	5/22/2012	0.42 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.7	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/15/2013	0.53 J	0.54 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/11/2017	0.34 J	ND	ND	ND	ND	ND	ND	ND	ND	6.1	100	ND	ND	ND	ND	ND	ND
							Rem	oved fro	om Samj	oling Ne	etwork							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part Groundwa Standard	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-2I	2/27/2008	14	ND	2.2	ND	ND	ND	ND	ND	ND	ND	27	ND	ND	ND	ND	13	ND
102'-112'	5/2/2008	11	4.8	16	ND	ND	ND	ND	ND	ND	11	27	ND	ND	ND	ND	3.5	ND
	7/28/2008	30	12	21	ND	ND	ND	ND	ND	ND	7.1	86	ND	ND	ND	ND	3.1	ND
	12/1/2008	23	7.3	18	ND	ND	ND	ND	ND	ND	31	80 100	ND	ND	ND	ND	1.3	ND
	3/24/2009 6/30/2009	15 13	7.2 7.2	19 16	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	26 5.4	84	ND ND	ND ND	ND ND	ND ND	1.0 0.53 J	ND ND
	9/21/2009	14	8.8	21	ND	ND	ND	ND	ND	ND	18	110	ND	ND	ND	ND	0.72 J	ND
	1/7/2010	42	13	19	ND	ND	ND	ND	ND	ND	9.8	43	ND	ND	ND	ND	0.59 J	ND
	6/3/2010	17	12	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.63 J	ND
	11/29/2010 3/25/2011	11 11	8.1 6.2	13 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	16 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/7/2011	14	8.6	17	ND	ND	ND	ND	ND	ND	7.8	3.5 J	ND	ND	ND	ND	ND	ND
	11/21/2011	13	6.5	17	ND	ND	ND	ND	ND	ND	ND	9.1	ND	ND	ND	ND	ND	ND
									tion Dec									
	5/22/2012	32	9.7	20	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND
	11/9/2012 3/15/2013	40 12.3	9.2 6.1	18 15.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 8.1	16 14.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	6/21/2013	26.1	8.2	18	ND	ND	ND	ND	ND	ND	5.8	9.9	ND	ND	ND	ND	ND	ND
	10/14/2013	53	13	19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				Polis	shing Rl	EMOX I	njection	(Inject	ion Wel	l Cluste	rs IW-2	& IW-3) Octobe	er 2013				
	12/2/2013	33	9.9	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/6/2014 3/27/2014	ND 20	0.97 J 8.9	ND 14	ND ND	2.2 ND	ND ND	0.96 J ND	ND ND	4.9 ND	ND ND	8.4 J 51	ND ND	ND ND	ND ND	ND ND	ND 0.46 J	ND ND
	6/30/2014	22	8.9	15	ND	ND	ND	ND	ND	ND	ND	40	ND	ND	ND	ND	0.70 J	ND
	9/29/2014	18	4.5	11	ND	ND	ND	ND	ND	ND	ND	30	ND	ND	ND	ND	ND	ND
	1/5/2015	10	4.8	8.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	23	4.2	5.4	ND	ND MOV In	ND	ND (Inicatio	ND Mari	ND	ND	ND	ND	ND	ND	ND	0.49 J	ND
	6/9/2015	14	1.7	1.8	ND	ND	ND	ND	on Well ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/9/2015	8.6	2.2	4.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68 J	ND
	11/17/2015	2.6	1.3	3.6	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	ND	ND	ND	ND
								- / 	on Well									
	1/6/2016 4/13/2016	6.5	1.6 1.6	3.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.8 ND	23 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/7/2016	5.8	2.2	5.5	ND	ND	ND	ND	ND	ND	2.5 J	45	ND	ND	ND	ND	ND	ND
	10/11/2016	6.8	1.8	4.1	ND	ND	ND	ND	ND	ND	ND	37	ND	ND	ND	ND	ND	ND
	1/31/2017	3.4	1.7	3.7	ND	ND	ND	ND	ND	ND	2.6 J	61	ND	ND	ND	ND	ND	ND
	4/11/2017	7.9	1.5	2.6	ND	ND	ND	ND	ND	ND	ND	7.6	ND	ND	ND	ND	ND	ND
	7/19/2017 11/1/2017	8.4 12	2.2	5.3 5.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.8 2.7 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/29/2018	10	2.0	4.6	ND	ND	ND	ND	ND	ND	ND	4.7 J	ND	ND	ND	ND	ND	ND
	4/11/2018	10	2.3	5.2	ND	ND	ND	ND	ND	ND	ND	2.8 J	ND	ND	ND	ND	ND	ND
	7/16/2018	7.3	2.4	4.5	ND	ND	ND	ND	ND	ND	4.4 J	37	ND	ND	ND	ND	ND	ND
	10/10/2018	8.8	2.9	4.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	36	ND ND	ND ND	ND ND	ND	ND ND	ND ND
	1/24/2019 3/21/2019	19 8.9	4.8 2.6	8.5 5.0	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	8.8 3.7 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	7/16/2019	9.8	2.8	4.9	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	ND
	12/20/2019	13	2.9	5.2	ND	ND	ND	ND	NA	ND	ND	3.7 J	NA	NA	NA	ND	ND	NA
	4/8/2020	12	2.8	5.3	ND	ND	ND	ND	NA	ND	ND	5.6	NA	NA	NA	ND	ND	NA
	6/29/2021	10	3.7	6.1	ND ND	ND	ND	ND	NA ND	ND	ND	3.5J	NA ND	NA	NA ND	ND	ND 0.21 I	NA
	12/22/2021 6/24/2022	7.2	3.7	4.8	ND ND	ND ND	ND ND	ND ND	ND NS	ND ND	ND ND	34 9.5	ND ND	ND ND	ND ND	ND ND	0.31 J ND	ND ND
	1/26/2023	7.4	4.8	5.1	ND	ND	ND	ND	ND	ND	ND	4.3 J	ND	ND	ND	ND	ND	ND
	6/23/2023	11	9.0	11	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND
	1/2/2024 6/26/2024	8.3 6.9	8.6 5.8	8.7 5.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 5.3	9.6 6.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part Groundwat Standard	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-2D	10/17/2007	8.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
191'-201'	4/1/2008	ND	ND	ND	ND	3.4	ND	ND	ND	5.6	ND	24	ND	ND	ND	ND	ND	ND
	7/28/2008	1.4	ND	1.0	ND	2.6	ND	1.4	ND	5.9	8.8	91	ND	ND	ND	ND	ND	ND
	12/1/2008 3/24/2009	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.4 ND	ND ND	5.8 6.8	31 25	81 110	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	6/30/2009	ND	ND	ND	ND	2.0	ND	1.4	ND	5.5	7.0	79	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	0.51 J	ND	ND	1.6	ND	ND	ND	7.3	17	100	ND	ND	ND	ND	ND	ND
	1/7/2010	0.85 J	ND	ND	ND	1.5	ND	1.4	ND	6.1	ND	16	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	0.55 J	ND	ND	2.3	ND	ND	ND	7.8	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	97	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND 0.76 I	ND	ND	0.53 J	ND	ND	ND	2.6	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011 11/21/2011	0.77 J 3.5	0.76 J ND	ND ND	ND ND	2.1 1.2	ND ND	ND ND	ND ND	6.3 4.6	8.6 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/21/2011	3.3	ND	ND				X Inject						ND	ND	ND	ND	ND
	5/22/2012	ND	0.76 J	ND	ND	1.8	ND	ND	ND	6.1	ND	9.4	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	1.7	ND	ND	ND	6.6	6.0	15	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	0.77 J	ND	ND	1.6	ND	ND	ND	6.0	9.3	18.1	ND	ND	ND	ND	ND	ND
	6/21/2013	ND	0.87 J	ND	ND	1.9	ND	ND	ND	6.7	ND	4.0 J	ND	ND	ND	ND	ND	ND
	10/14/2013	1.4	ND	ND Polis	ND	2.3 FMOX I	ND niection	1.4 ı (Inject	ND on Wel	7.7	ND	ND & IW-3)	ND Octobe	ND r 2013	2.3	ND	ND	ND
	1/6/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
	3/27/2014	ND	ND	ND	ND	ND	ND	1.7	ND	5.4	ND	44	ND	ND	ND	ND	ND	ND
	6/30/2014	ND	1.8	ND	ND	3.8	ND	1.8	ND	10	ND	37	ND	ND	ND	ND	0.43 J	ND
	9/29/2014	ND	ND	ND	ND	3.4	ND	1.9	ND	11	ND	40	ND	ND	ND	ND	ND	ND
	1/5/2015 4/15/2015	ND 1.4	1.5 ND	ND	ND	2.2	ND	1.5 1.2	ND	6.3	ND	ND	ND	ND	ND	ND	ND ND	ND ND
	4/13/2013	1.4	ND					(Injection								ND	ND	ND
	6/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
	7/9/2015	110	1.5	ND	ND	2.4	ND	1.5	NID	6.3	ND	ND	ND	ND				
	7/2/2010	ND	1.5						ND	0.0		ND			ND	ND	ND	ND
	11/17/2015	ND ND	1.2	ND	ND	2.2	ND	1.0 J	ND	6.1	ND	5.6	ND	ND	ND ND	ND ND	ND ND	ND ND
	11/17/2015	ND	1.2	ND Polish	ND	2.2 MOX In	ND jection	1.0 J (Injectio	ND on Well	6.1 Clusters	ND s IW-1 &	5.6 z IW-3) I	ND Novem l	ND er 2015	ND	ND	ND	ND
	11/17/2015	ND ND	1.2	ND Polish ND	ND ing RE ND	2.2 MOX In 2.3	ND jection ND	1.0 J (Injection 1.1 J	ND on Well ND	6.1 Clusters 5.8	ND s IW-1 & 6.1	5.6 z IW-3) 1 32	ND <mark>Novemb</mark> ND	ND er 2015 ND	ND ND	ND ND	ND ND	ND ND
	11/17/2015	ND	1.2	ND Polish	ND	2.2 MOX In	ND jection	1.0 J (Injectio	ND on Well	6.1 Clusters	ND s IW-1 &	5.6 z IW-3) I	ND Novem l	ND er 2015	ND	ND	ND	ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016	ND ND 0.47 J	1.2 1.3 1.3 1.8 1.3	ND Polish ND ND ND ND	ND ing RE ND ND ND ND ND ND	2.2 MOX In 2.3 ND 2.4 1.7	ND jection ND ND ND ND	1.0 J (Injection 1.1 J 1.1 1.1 J 1.0 J	ND ND ND ND ND ND	6.1 Clusters 5.8 5.7 5.5 5.0	ND 6.1 ND ND ND	5.6 32 IW-3) 1 32 ND 7.4 41	ND Novemb ND ND ND ND ND ND	ND Per 2015 ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017	ND 0.47 J 0.21 J 0.28 J ND	1.2 1.3 1.3 1.8 1.3 1.2	ND Polish ND ND ND ND ND ND ND	ND	2.2 MOX In 2.3 ND 2.4 1.7 2.4	ND ND ND ND ND ND	1.0 J (Injection 1.1 J 1.1 1.1 J 1.0 J 1.1 J	ND	6.1 Clusters 5.8 5.7 5.5 5.0 5.7	ND 6.1 ND ND ND ND ND	5.6 2 IW-3) 32 ND 7.4 41 45	ND Novemb ND ND ND ND ND ND ND	ND PORT 2015 ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017	ND 0.47 J 0.21 J 0.28 J ND 0.26 J	1.2 1.3 1.3 1.8 1.3 1.2 1.4	ND Polish ND ND ND ND ND ND ND ND ND	ND	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0	ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J	ND	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6	ND S IW-1 & 6.1 ND ND ND ND ND ND ND	5.6 32 ND 7.4 41 45 6.8	ND November ND	ND	ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J	1.2 1.3 1.8 1.3 1.2 1.4 1.9	ND Polish ND	ND N	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5	ND N	1.0 J (Injectic 1.1 J 1.1 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4	ND s IW-1 & 6.1 ND	5.6 2 IW-3) 1 32 ND 7.4 41 45 6.8 7.9	ND Novemb ND	ND Per 2015 ND	ND	ND	ND	ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017	ND 0.47 J 0.21 J 0.28 J ND 0.26 J	1.2 1.3 1.3 1.8 1.3 1.2 1.4	ND Polish ND	ND N	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6	ND jection ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6	ND 5 IW-1 & 6.1 ND	5.6 2 IW-3) 1 32 ND 7.4 41 45 6.8 7.9 14	ND Novemb ND	ND Per 2015 ND	ND N	ND	ND	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.33 J	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3	ND Polish ND	ND N	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5	ND N	1.0 J (Injectic 1.1 J 1.1 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4	ND s IW-1 & 6.1 ND	5.6 2 IW-3) 1 32 ND 7.4 41 45 6.8 7.9	ND Novemb ND	ND Per 2015 ND	ND	ND	ND	ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.33 J 0.26 J ND	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4	ND Polish ND	ND Jing RE ND ND ND ND ND ND ND ND ND N	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7	ND jection ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5	ND 6.1 ND	5.6 z IW-3) 1 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J	ND Novemb ND	ND Per 2015 ND	ND N	ND N	ND N	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND ND ND 0.28 J	1.3 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5	ND Polish ND	ND IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2	ND jection ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.1 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8	ND 5 IW-1 8 6.1 ND	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42	ND Novemb ND	ND Per 2015 ND	ND N	ND N	ND N	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.33 J 0.26 J ND 0.28 J ND 0.31 J	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1	ND Polish ND	ND IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2	ND jection ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.1 J 1.0 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3	ND 5 IW-1 8 6.1 ND	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11	ND Novemb ND	ND Per 2015 ND	ND N	ND N	ND N	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND ND ND 0.28 J 0.19 J 0.19 J	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.6	ND Polish ND	ND IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2 1.8	ND jection ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.1 J 1.0 J 1.1 J 0.89 J 1.1 J 0.94 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6	ND 5 IW-1 8 6.1 ND	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8	ND Novemb ND	ND Per 2015 ND	ND N	ND N	ND N	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.33 J 0.26 J ND 0.28 J ND 0.31 J	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1	ND Polish ND	ND IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2	ND jection ND	1.0 J (Injection 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.1 J 1.0 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3	ND 5 IW-1 8 6.1 ND	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11	ND Novemb ND	ND Per 2015 ND	ND N	ND N	ND N	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND 0.28 J ND 0.19 J ND ND 0.28 J 0.19 J 0.19 J	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.6 1.3	ND Polish ND	ND IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2 1.8 1.3	ND jection ND	1.0 J (Injectic 1.1 J 1.1 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J 1.0 J 1.0 J 1.0 J 1.1 J 0.98 J 0.71 J	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6 3.8	ND 5 IW-1 8 6.1 ND	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8 21	ND Novemb ND	ND PORT 2015 ND	ND N	ND N	ND	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2017 1/29/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND 0.28 J ND 0.21 J 0.19 J 0.19 J ND 0.19 J ND	1.2 1.3 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1 1.6 1.3 1.1 1.3	ND Polish ND	ND N	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2 1.8 1.3 1.0 1.3 0.97	ND jection ND ND ND ND ND ND ND ND ND N	1.0 J (Injectic 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J 1.1 J 1.0 J 1.0 J 1.1 J ND ND ND	ND N	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6 3.8 3.2 4.1	ND 5 IW-1 8 6.1 ND	5.6 2 IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8 21 3.0 J 5.0 2.9J	ND Novemb ND	ND N	ND N	ND N	ND	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018 7/16/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND ND 0.28 J 0.19 J 0.19 J 0.19 J ND 0.21 J ND 0.21 J ND ND	1.2 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1 1.6 1.3 1.1 1.3 1.2 NS	ND	ND ND ND ND ND ND ND ND	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 1.8 1.3 1.0 1.3 0.97 NS	ND PORTOR NO ND	1.0 J (Injectic) 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J 1.0 J 1.0 J 1.0 J ND ND ND ND NS	ND	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6 3.8 3.2 4.1 3.3 NS	ND S IW-1 & 6.1 ND ND ND ND ND ND ND ND ND N	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8 21 3.0 J 5.0 2.9J NS	ND NO ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND	ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018 1/29/2018 4/11/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND ND 0.28 J ND 0.19 J ND	1.2 1.3 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1 1.6 1.3 1.1 1.3 1.2 NS 0.91	ND	ND ND ND ND ND ND ND ND	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2 1.8 1.3 1.0 1.3 0.97 NS 0.88	ND PERIOR ND N	1.0 J (Injectic) 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J 1.1 J 1.0 J 1.0 J 1.0 J ND ND ND NS ND	ND	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6 3.8 3.2 4.1 3.3 NS	ND S IW-1 & 6.1 ND ND ND ND ND ND ND ND ND N	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8 21 3.0 J 5.0 2.9J NS 10.0	ND NO ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND	ND
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018 1/29/2018 4/11/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022 1/26/2023	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND ND 0.28 J 0.19 J ND NS	1.2 1.3 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1 1.6 1.3 1.1 1.3 1.2 NS 0.91 NS	ND	ND ND ND ND ND ND ND ND	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2 1.8 1.3 1.0 1.3 0.97 NS 0.88 NS	ND PORTOR ND	1.0 J (Injectic 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J 1.0 J 1.0 J 1.0 J ND ND ND NS ND NS	ND	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6 3.8 3.2 4.1 3.3 NS 3.2 NS	ND 5 IW-1 8 6.1 ND ND ND ND ND ND ND ND ND N	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8 21 3.0 J 5.0 2.9J NS 10.0 NS	ND NO ND	ND	ND	ND N	ND	ND N
	11/17/2015 1/6/2016 4/13/2016 7/7/2016 10/11/2016 1/31/2017 4/11/2017 7/19/2017 11/1/2018 4/11/2018 1/29/2018 4/11/2018 10/10/2018 1/24/2019 3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022	ND 0.47 J 0.21 J 0.28 J ND 0.26 J 0.19 J 0.26 J ND ND 0.28 J ND 0.19 J ND	1.2 1.3 1.3 1.8 1.3 1.2 1.4 1.9 1.3 1.5 1.4 1.5 1.8 2.1 1.6 1.3 1.1 1.3 1.2 NS 0.91	ND	ND ND ND ND ND ND ND ND	2.2 MOX In 2.3 ND 2.4 1.7 2.4 2.0 2.5 1.6 2.0 1.8 1.7 2.2 2.2 1.8 1.3 1.0 1.3 0.97 NS 0.88	ND PERIOR ND N	1.0 J (Injectic) 1.1 J 1.1 J 1.0 J 1.1 J 0.94 J 1.1 J 0.89 J 1.1 J 1.0 J 1.0 J 1.1 J 1.0 J 1.0 J 1.0 J ND ND ND NS ND	ND	6.1 Clusters 5.8 5.7 5.5 5.0 5.7 4.6 6.4 4.6 6.1 5.6 5.5 5.8 6.3 5.6 3.8 3.2 4.1 3.3 NS	ND S IW-1 & 6.1 ND ND ND ND ND ND ND ND ND N	5.6 z IW-3) 32 ND 7.4 41 45 6.8 7.9 14 8.6 3.0 J 44 42 11 6.8 21 3.0 J 5.0 2.9J NS 10.0	ND NO ND	ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND	ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part		_	_	_		_		_		_	=0	=0	=0	=0		_	_	=0
Groundwa	,	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard MLW-3S	10/17/2007	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18'-33'	4/1/2008	4.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	ND
16 -33	7/28/2008	8.2	1.1	1.3	ND	ND	ND	ND	ND	ND	9.8	91	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	0.64 I	ND	ND	ND	ND	ND	ND	ND	33	ND	ND	ND	ND	ND	ND
	3/24/2009	1.7	ND	1.5	ND	ND	ND	ND	ND	ND	12	42	ND	ND	ND	ND	ND	ND
	6/30/2009	3.0	1.5	4.5	ND	ND	ND	ND	ND	ND	5.2	92	ND	ND	ND	ND	ND	ND
	9/21/2009	9.9	19	19	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND
	1/7/2010	6.9	3.1	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	3.7	ND
	11/29/2010	6.9	3.4	11	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND
	3/25/2011	9.0	1.8	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	6.4	0.73 J	0.95 J	ND	ND	ND	ND	ND	ND	8.3	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	4.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	F /00 /0010			1.10								nuary 2	_	NID	N.ID	N.T.D.	NID	NID
	5/22/2012	2.7	0.52 J	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	11/9/2012	0.6 J	ND	0.56 J	ND	ND	ND	ND	ND	ND	6.1	15 ND	ND	ND	ND	ND	ND 0.74 I	ND
	3/15/2013	ND	ND	ND	ND	ND	ND Rem	ND	ND om Sami	ND oling Ne	ND	ND	1.1	1.5	ND	ND	0.74 J	1.5
							Kelli	oveu III	nn Sailt	omig Ne	TOWER							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part		_	_	_	_	_		_	_	_	=0	=0	=0	=0		_		=0
Groundwat Standard		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-3I	10/17/2007	190	30	150	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND
118'-128'	5/2/2008	380	110	430	ND	ND	ND	ND	ND	ND	62	42	ND	ND	4.7	ND	ND	ND
	7/28/2008	270	120	400	3.6	0.78 J	ND	ND	ND	ND	10	94	ND	ND	ND	ND	ND	ND
	12/1/2008 3/24/2009	260 150	160 140	430 270	1.8 2.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	32 96	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	6/30/2009	160	130	270	1.7	ND	ND	ND	ND	ND	4.2	29	ND	ND	ND	ND	0.59 J	ND
	9/21/2009	190	84	230	1.1	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
	1/7/2010	260	84	190	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	160	64	180	ND 0.77 I	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	ND
	11/29/2010 3/25/2011	140 94	62 40	140 99	0.77 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	13 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/7/2011	110	36	100	ND	ND	ND	ND	ND	ND	9.0	3.8 J	ND	ND	ND	ND	ND	ND
	11/21/2011	110	30	91	0.57 J	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	- /22 /2 2 4	100								cember !								
	5/22/2012 11/9/2012	190 240	33 29	99 68	0.48 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	9.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/15/2013	57.2	17.6	57.8	ND	ND	ND	ND	ND	ND	9.5	11.5	ND	ND	ND	ND	ND	ND
	6/21/2013	68.9	20	63.4	ND	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND	ND	ND	ND	ND
	10/14/2013	96	31	70	ND	ND	ND	ND	ND	0.59 J	ND	ND	ND	ND	ND	ND	0.64 J	ND
	1 // /2014	=4	24		shing R										NID	NID	NID	NID
	1/6/2014 3/27/2014	71 55	21 29	67 69	ND 0.55 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	8.1 J 47	ND ND	ND ND	ND ND	ND ND	ND 0.65 J	ND ND
	6/30/2014	50	26	65	ND	ND	ND	ND	ND	ND	ND	42	ND	ND	ND	ND	1.2	ND
	9/29/2014	38	18	72	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	1/5/2015	41	20	51	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62 J	ND
	4/15/2015	58	23		ning RE											ND	0.77 J	ND
	7/9/2015	46	19	44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	14	8.4	33	ND	ND	ND	ND	ND	ND	ND	3.5 J	ND	ND	ND	ND	ND	ND
	1/6/2016			T	ning RE										NID	NID	N.D.	NID
	1/6/2016 4/13/2016	20.3	11 10.2	39 26	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.1 ND	22 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/7/2016	16	9.8	28	ND	ND	ND	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND
	10/11/2016	19	7.4	21	ND	ND	ND	ND	ND	ND	ND	38	ND	ND	ND	ND	ND	ND
	1/31/2017	12	10	34	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
	4/11/2017 7/19/2017	21 31	9.5	26 22	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/1/2017	21	6.6	16	ND	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND	ND	ND	ND	ND
	1/29/2018	26	7.8	21	ND	ND	ND	ND	ND	ND	ND	7.4	ND	ND	ND	ND	ND	ND
	4/11/2018	16	7.1	20	ND	ND	ND	ND	ND	ND	ND	4.1 J	ND	ND	ND	ND	ND	ND
	7/16/2018 10/10/2018	14 12	5.9 6.6	14 16	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.7 J ND	51 46	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		27	9.1	22	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	1/24/2019	4/				•					ND	4.8 J	ND	ND	ND	ND	ND	ND
	1/24/2019 3/21/2019	12	6.6	17	ND	ND	ND	ND	ND	ND	ND	1.0	112	ואו	עעו	ND	110	
	3/21/2019 7/16/2019	12 9.8	6.6 6.6	17 19	ND	ND	ND	ND	ND	ND	3.7 J	46	ND	ND	ND	ND	ND	ND
	3/21/2019 7/16/2019 12/20/2019	9.8 12	6.6 6.6 5.5	17 19 15	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	3.7 J ND	46 2.9 J	ND NA	ND NA	ND NA	ND ND	ND ND	ND NA
	3/21/2019 7/16/2019 12/20/2019 4/8/2020	12 9.8 12 18	6.6 6.6 5.5 8.0	17 19 15 22	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND NA NA	ND ND ND	3.7 J ND ND	46 2.9 J 6.2	ND NA NA	ND NA NA	ND NA NA	ND ND ND	ND ND ND	ND NA NA
	3/21/2019 7/16/2019 12/20/2019	9.8 12	6.6 6.6 5.5	17 19 15	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	3.7 J ND	46 2.9 J	ND NA	ND NA	ND NA	ND ND	ND ND	ND NA
	3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022	12 9.8 12 18 12 7.5 8.5	6.6 6.6 5.5 8.0 7.3 4.7	17 19 15 22 17 13 13	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND NA NA NA ND	ND ND ND ND ND	3.7 J ND ND ND ND ND	46 2.9 J 6.2 2.6J 8.4 12	ND NA NA NA ND ND	ND NA NA NA ND NA	ND NA NA NA ND ND	ND ND ND ND ND	ND ND ND ND 0.32 J ND	ND NA NA NA NA ND ND
	3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022 1/26/2023	12 9.8 12 18 12 7.5 8.5 10	6.6 6.6 5.5 8.0 7.3 4.7 4.7 5.0	17 19 15 22 17 13 13	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND NA NA NA ND NA ND	ND ND ND ND ND ND	3.7 J ND ND ND ND ND ND	46 2.9 J 6.2 2.6J 8.4 12 4.1	ND NA NA NA ND ND	ND NA NA NA ND NA ND	ND NA NA NA ND ND ND	ND ND ND ND ND ND	ND ND ND ND O.32 J ND ND	ND NA NA NA ND ND ND
	3/21/2019 7/16/2019 12/20/2019 4/8/2020 6/29/2021 12/22/2021 6/24/2022	12 9.8 12 18 12 7.5 8.5	6.6 6.6 5.5 8.0 7.3 4.7	17 19 15 22 17 13 13	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND NA NA NA ND	ND ND ND ND ND	3.7 J ND ND ND ND ND	46 2.9 J 6.2 2.6J 8.4 12	ND NA NA NA ND ND	ND NA NA NA ND NA	ND NA NA NA ND ND	ND ND ND ND ND	ND ND ND ND 0.32 J ND	ND NA NA NA NA ND ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
		Tetr	Tri	cis-1,2	trans-1,	1,1-I	Vi	1,1,1-	1,1,2-	1,1-I	2-Bı		Bromo		Caı	Carbo	Ŭ	Dibron
NYSDEC Part Groundwat		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	•	3	3	3	3	3	2	3	1	3	30	30	30	30	60	3	/	30
MLW-3D	9/20/2007	140	31	140	0.86 J	ND	ND	ND	3.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
210'-220'	4/4/2008	48	12	52	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND
	7/28/2008	37	12	44	ND	0.73 J	ND	0.96 J	ND	1.4	8.4	86	ND	ND	ND	ND	ND	ND
	12/1/2008	26	3.5	12	ND	ND	ND	0.55 J	ND	1.5	ND	31	ND	ND	ND	ND	ND	ND
	3/24/2009 6/30/2009	20 9.7	3.4 1.3	8.3 3.4	ND ND	ND ND	ND ND	ND ND	ND ND	1.4 1.5	12 5.3	43 94	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	9/21/2009	10	1.3	2.4	ND	ND	ND	ND	ND	1.8	ND	18	ND	ND	ND	ND	ND	ND
	1/7/2010	19	1.5	3.1	ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	12	1.6	3.8	ND	0.84 J	ND	ND	ND	2.9	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	5.2	ND	1.7	ND	ND	ND	ND	ND	1.2	ND	9.2	ND	ND	ND	ND	ND	ND
	3/25/2011	6.9	0.77 J	1.5	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	7.7	0.89 J	2.0	ND	ND	ND	ND	ND	1.3	8.5	0.52 J	ND	ND	ND	ND	ND	ND
	11/21/2011	5.5	0.48 J	0.72 J	ND	ND	ND	ND V Inica	ND	1.0	ND 2011 - J a	ND	ND	ND	ND	ND	ND	ND
	5/22/2012	5.9	0.73 J	0.7 J	ND	ND	ND	ND	ND	0.99 J	ND	9.7	ND	ND	ND	ND	ND	ND
	11/9/2012	8.0	ND	0.94 J	ND	ND	ND	ND	ND	0.88 J	6.1	15	ND	ND	ND	ND	ND	ND
	3/15/2013	17.6	0.70 J	1.5	ND	ND	ND	ND	ND	0.72 J	ND	ND	ND	ND	ND	ND	ND	ND
	6/21/2013	3.4	ND	0.43 J	ND	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND	ND	ND	ND
	10/14/2013	7.7	0.85 J	0.76 J	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND
	1/4/2011												Octobe					
	1/6/2014	7.0	1.1 1.2	2.5 ND	ND ND	0.69 J	ND ND	ND ND	ND ND	1.4 1.1	ND ND	9.2 J 45	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/27/2014 6/30/2014	7.0 ND	ND	ND	ND	0.71 J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	2.0	ND	ND	ND	ND	ND	ND	ND	2.7	ND	45	ND	ND	ND	ND	ND	ND
	1/5/2015	2.9	0.76 J	ND	ND	0.72 J	ND	0.67 J	ND	2.2	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015			ND	ND	1.0	ND	0.46 J	ND	1.9	ND	ND	ND	ND	ND			ND
							,						April/M					
	7/9/2015	1.4	ND	ND	ND	ND 0.46 I	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	1.2	0.36 J	ND Polish	ND	0.46 J	ND	ND (Injection	ND m Well	0.95 J		5.4 - IW-3)	ND Novem l	ND per 2015	ND	ND	ND	ND
	1/6/2016	1.8	0.42 J	ND	ND	0.34 J	ND	ND	ND	0.76 J	5.5	29	ND	ND	ND	ND	ND	ND
	4/13/2016	1.6	0.47 J	0.38 J	ND	ND	ND	ND	ND	0.84 J	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	1.2	0.35 J	ND	ND	0.26 J	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	10/11/2016	5.6	0.55	0.70 J	ND	0.17 J	ND	ND	ND	ND	ND	30	ND	ND	ND	ND	ND	ND
	1/31/2017	1.6	0.44 J	ND	ND	ND	ND	ND	ND	ND	ND	34 4.0 I	ND	ND	ND	ND	ND	ND
	4/11/2017 7/19/2017	3.5 8.4	0.39 J 0.76	ND 0.89 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.1 J	4.0 J 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/1/2017	2.9	0.55 J	ND	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND
	1/29/2018	2.5	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	8.1	ND	ND	ND	ND	ND	ND
	4/11/2018	2.6	0.43 J	0.74 J	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	7/16/2018	2.4	0.55	0.93 J	ND	ND	ND	ND	ND	ND	6.1	42	ND	ND	ND	ND	ND	ND
	10/10/2018	1.7	0.32 J	ND	ND	ND	ND	ND	ND	ND	ND	47	ND	ND	ND	ND	ND	ND
	1/24/2019	3.0	0.65	1.1 J	ND	ND	ND	ND	ND	ND	ND	9.7	ND	ND	ND	ND	ND	ND
	3/21/2019 7/16/2019	1.6 2.4	0.58	1.1 J 2.0 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 3.3 J	5.6 32	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	12/20/2019	3.6	0.94	1.5 J	ND	ND	ND	ND	NA	ND	ND	3.0 J	NA	NA	NA	ND	ND	NA
	4/8/2020	1.4	0.71	1.6 J	ND	ND	ND	ND	NA	ND	ND	7.2	NA	NA	NA	ND	ND	NA
	6/29/2021	1.2	0.43J	0.88J	ND	ND	ND	ND	NA	ND	ND	3.8J	NA	NA	NA	ND	ND	NA
	12/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/24/2022	2.2	0.75	1.5 J	ND	ND	ND	ND	NA	ND	ND	9.5	ND	NA	ND	ND	ND	ND
	1/26/2023	NS 0.64	NS 0.20 I	NS	NS	NS 0.22 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/23/2023	0.64	0.28 J	ND	ND	0.23 J	ND	ND NG	ND NG	ND NG	ND NG	9.2	ND	ND	ND NG	ND NG	ND NS	ND NG
	1/2/2024 6/26/2024	NS 0.39 I	NS 0.27 J	NS ND	NS ND	NS 0.18 J	NS ND	NS ND	NS ND	NS ND	NS ND	NS 4.5 J	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND
	0/20/2024	0.39 J	U.4/ J	עע	שוע	0.10]	עע	אט	אט	אט	מא	4.5 J	אט	אט	מע	אט	אט	אט

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (μg/l)																	
MLW-4S	2/29/2008	2.2	8.2	ND	ND	2.6	ND	ND	ND	5.4	ND	12	ND	ND	4.7	ND	ND	ND
18'-33'	4/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND
	7/28/2008	0.77 J	ND	1.2	ND	ND	ND	ND	ND	ND	ND	37	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7	24	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.3	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.9	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
					F	ull Scale	REMO	X Inject	tion De	ember :	2011 - Ja	nuary 2	012					
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
							Rem	oved fro	om Samj	oling Ne	twork							
MLW-4D	12/12/2007	2.1	ND	ND	ND	ND	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
200'-210'	4/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND
200 210	7/28/2008	1.1	ND	ND	ND	ND	ND	ND	ND	ND	9.4	80	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	0.94 J	36	90	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.9	40	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.5	85	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND
	1/7/2010	0.65 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
					F		REMO		tion Dec	cember :	2011 - Ja	nuary 2	012					
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	15	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.3	13.4	ND	ND	ND	ND	ND	ND
							Rem	oved fro	m Sam	oling Ne	twork							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (µg/l)																	
MLW-5S	3/10/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.8	ND
14'-29'	4/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND
	7/28/2008	1.1	1.2	0.53 J	ND	ND	ND	ND	ND	ND	6.8	36	ND	ND	ND	ND	ND	ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.4	26	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23	ND	ND	ND	ND	ND	ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.7	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND tion De	ND	ND	ND	ND	ND	ND	ND	ND	ND
	F/22/2012	ND	NID	NID										NID	NID	NID	LND	NID
	5/22/2012 11/9/2012	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.92 J	ND	ND	ND	0.70 J	1.3
	3/13/2013	ND	ND	ND	ND	ND			om Sam			ND	0.92	ND	ND	ND	0.70)	1.5
										Jing IVe								
MLW-5D	11/19/2007	15	3.1	ND	ND	0.57 J	ND	1.0 J	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
204'-214'	4/1/2008	20	7.8	27	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND
	7/28/2008	15	8.9	32	ND	ND	ND	ND	ND	ND	9.5	74	ND	ND	ND	ND	ND	ND
	12/1/2008	27	7.1	28	ND	ND	ND	ND	ND	0.64 J	ND	29	ND	ND	ND	ND	0.56 J	ND
	3/24/2009	18	8.1	27	ND	ND	ND	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND
	6/30/2009	7.0	4.8	21	ND	ND	ND	ND	ND	0.59 J	6.6	100	ND	ND	ND	ND	ND	ND
	9/21/2009	18	9.1	32	ND	ND	ND	ND	ND	ND	ND	44	ND	ND	ND	ND	0.75 J	ND
	1/7/2010	23	6.6	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	9.0	5.5	24	ND	ND	ND	ND	ND	ND	ND	12 ND	ND	ND	ND	ND	ND	ND
	11/29/2010	11	7.5	22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011 7/7/2011	15	7.2 5.9	20	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/21/2011	6.8	7.5	22 24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	11	7.5	4 4					tion De					אט	אט	אור	ND	אור
	5/22/2012	8.4	5.1	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	9.4	5.2	15	ND	ND	ND	ND	ND	ND	6.5	15	ND	ND	ND	ND	ND	ND
	3/15/2013	3.9	2.9	9.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0,20,2010	2.0	_,,			- , -			om Sam				- 12	- 12				12

Parameters Sampling Date: Parameters Date:						4)							Ī	1		I	I	1	
MIW-48 19/17/2017 ND ND ND ND ND ND ND N	Parameters		Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
Standards Lugal	NYSDEC Part	703 Class GA																	
MIW-68 1017/2007 ND ND ND ND ND ND ND N	Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
4/1/20/8	Standard	ls (µg/l)																	
7/28/2008 ND ND ND ND ND ND ND N	MLW-6S	10/17/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12/12/09 ND ND ND ND ND ND ND ND	21'-36'		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND
3242(209) ND ND ND ND ND ND ND N												-							
6/30/2009 ND																			
9/21/2009 ND																			
1/2/2010 ND																			
6/3/2010 ND ND ND ND ND ND ND N																			
11/29/2010 ND ND ND ND ND ND ND N																			
3/25/2011 ND ND ND ND ND ND ND																			
777/2011 ND																			
11/21/2011 ND ND ND ND ND ND ND																			
									-										
5/22/2012		11/21/2011	ND	ND	ND										ND	ND	ND	ND	ND
11/9/2012 ND ND ND ND ND ND ND N		5/22/2012	ND	ND	ND										ND	ND	ND	ND	ND
3/15/2013 ND ND ND ND ND ND ND N																			
10/14/2013 0.93 ND ND ND ND ND ND ND N																			
Polishing REMOX Injection (Injection Well Clusters IW-2 & IW-3) October 2013																			
1/6/2014 NID NID		10/11/2010	0.20	- 1, -												- 1.	- 1-	- 112	- 112
6/30/2014 ND ND ND ND ND ND ND N		1/6/2014	ND	ND				_							ND	ND	ND	ND	ND
9/29/2014 ND ND ND ND ND ND ND N		3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
1/5/2015 0.65 ND ND ND ND ND ND ND N		6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2015 0.59 ND ND ND ND ND ND ND N		9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND
Polishing REMOX Injection (Injection Well Clusters IW-1 & IW-3) April/May 2015		1/5/2015	0.65 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/9/2015 ND ND ND ND ND ND ND N		4/15/2015	0.59 J	ND													ND	ND	ND
11/17/2015 ND ND ND ND ND ND ND N								,						_				•	
Polishing REMOX Injection (Injection Well Clusters IW-1 & IW-3) November 2015																			
1/6/2016 ND ND ND ND ND ND ND N		11/17/2015	ND	ND													ND	ND	ND
4/13/2016 0.27 J ND ND ND ND ND ND ND		1/6/2016	NID	NID		_											NID	NID	NID
7/7/2016 ND <																			
10/11/2016 ND ND ND ND ND ND ND N			_																
1/31/2017 ND																			
4/11/2017 ND																			
7/19/2017 ND																			
11/1/2017 ND																			
1/29/2018 ND																			
4/11/2018 ND																			
7/16/2018 ND																			
10/10/2018 ND																			
3/21/2019 ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	46	ND	ND	ND	ND	ND	ND
7/16/2019 ND		1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
12/20/2019 ND NA ND ND NA ND NA NA NA NA NA ND ND NA 4/8/2020 ND NA													6.4					ND	
4/8/2020 ND ND ND ND ND ND ND ND ND NA ND ND 12 NA NA NA NA ND ND NA												3.7 J	44						
Removed from Sampling Network		4/8/2020	ND	ND	ND	ND	ND						12	NA	NA	NA	ND	ND	NA
								Rem	oved fro	om Samj	pling Ne	etwork							

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part		_	_	_	_	_		_	_	_	=0	=0	=0	=0	- 10	_		
Groundwat Standard		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-6I	10/17/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2. 5 J	ND	ND	ND	ND	ND	ND
148'-158'	5/2/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	33	ND	ND	ND	ND	ND	ND
,	7/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	78	ND	ND	ND	ND	ND	ND
,	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND
	3/24/2009	1.9	ND	ND	ND	ND	ND	ND	ND	ND	6.8	170	ND	ND	ND	ND	ND	ND
	6/30/2009 9/21/2009	0.71 J 0.31 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	22 22	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	0.87 J	ND	ND	ND	ND	ND	ND	ND	ND	16	24	ND	ND	ND	ND	ND	ND
,	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.2	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 10	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND F	ND ull Scale	ND RFMC	ND X Inject	ND	ND cember '	5.0 2011 - Ia	10	ND 012	ND	ND	ND	ND	ND
	5/22/2012	0.49 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75 J	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.6	16	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.6	17	ND	ND	ND	ND	ND	ND
,	6/21/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	1.2	ND	ND	ND
	10/14/2013	ND	ND	ND Dalia	ND	ND	ND	ND	ND	ND 1 Classic	ND	ND ND	ND	ND	ND	ND	ND	ND
,	1/6/2014	ND	ND	ND	ND	EMOX I ND	ND	ND	ND	ND	ND	7.0 J	ND	ND	ND	ND	ND	ND
,	3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
,	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND
	1/5/2015	0.51 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	0.96 J	ND			ND MOX In									ND	ND	ND	ND
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8 J	ND	ND	ND	ND	ND	ND
				Polish		MOX In				Cluster		z IW-3)		er 2015				
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	24	ND	ND	ND	ND	ND	ND
,	4/13/2016 7/7/2016	ND 0.22 I	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.7 J	ND 42	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
,	10/11/2016	0.22 J ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	42 28	ND	ND	ND	ND	ND	ND ND
,	1/31/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
	4/11/2017	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND
,	7/19/2017	0.27 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	11/1/2017	0.26 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7	ND	ND	ND	ND	ND	ND
,	1/29/2018 4/11/2018	ND 0.26 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
,	7/16/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND
,	10/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	40	ND	ND	ND	ND	ND	ND
,	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.1	ND	ND	ND	ND	ND	ND
,	3/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1	ND	ND	ND	ND	ND	ND
,	7/16/2019 12/20/2019	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	3.6 J ND	40 2.8 J	ND NA	ND NA	ND NA	ND ND	ND ND	ND NA
,	4/8/2020	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	8.6	NA	NA	NA	ND	ND	NA NA
.1	6/29/2021	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	3.4J	NA	NA	NA	ND	ND	NA
' 			ND	ND	ND	ND	ND	ND	ND	ND	ND	8.2	ND	ND	0.95 J	ND	ND	ND
	12/22/2021	ND	IND	112														
	6/24/2022	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	8.9	ND	NA	ND	ND	ND	ND
	6/24/2022 1/26/2023	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	4.1 J	ND	ND	ND	ND	ND	ND
	6/24/2022	ND	ND	ND	ND													

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard				1						1	1	<u> </u>		1				
MLW-6D	9/18/2007	ND	ND	ND	ND	ND	ND	ND	ND	0.86 J	ND	6.1	ND	ND	ND	ND	ND	ND
214'-224'	4/4/2008	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 10	18 81	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/28/2008 12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	ND
	6/30/2009	0.50 J	ND	ND	ND	ND	ND	0.76 J	ND	0.75 J	6.8	94	ND	ND	ND	ND	0.90 J	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	0.79 J	ND
	1/7/2010	0.69 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.78 J	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.89 J	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND 12	ND	ND	ND	ND	0.82 J	ND
	11/21/2011	ND	ND	ND	ND E	ND	ND	ND X Inject	tion Dec	ND	4.5 J	12	ND	ND	ND	ND	1.0 J	ND
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1	15	ND	ND	ND	ND	1.0 [ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.79 J	ND
	6/21/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.0	13.2	ND	ND	2.8	ND	0.98 J	ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND
) Octobe				•	
	1/6/2014	ND	ND	0.69 J	ND	ND	ND	ND	ND	ND	ND	9.2 J	ND	ND	ND	ND	1.2	ND
	3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	11 ND	ND	ND	0.59 J	ND	ND	ND
	6/30/2014 9/29/2014	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND 30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/5/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND
	4/15/2015												ND					ND
													April/M					
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND
	11/17/2015	0.23 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1	ND	ND	ND	ND	ND	ND
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	21	Novemb ND	ND	ND	ND	0.87 J	ND
	4/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4 J	51	ND	ND	ND	ND	0.85 J	ND
	10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	0.81 J	ND
	1/31/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.3 J	140	ND	ND	ND	ND	ND	ND
	4/11/2017	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.6	ND	ND	ND	ND	0.85 J	ND
	7/19/2017	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	0.93 J	ND
	11/1/2017 1/29/2018	0.21 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.8 ND	ND ND	ND ND	ND ND	ND ND	0.89 J ND	ND ND
	4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.6	ND	ND	ND	ND	0.98 J	ND
	7/16/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	53	ND	ND	ND	ND	0.90 J	ND
	10/10/2018	0.18 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	0.92 J	ND
	1/24/2019	0.20 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	0.83 J	ND
	3/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	ND	ND	ND	ND	0.88 J	ND
	7/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8 J	48	ND	ND	ND	ND	0.80 J	ND
	12/20/2019	0.24 J	ND	ND	ND	ND	ND	ND	NA	ND	ND	2.8 J	NA	NA	NA	ND	0.72 J	NA
	4/8/2020 6/29/2021	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	6.6 4.1J	NA NA	NA NA	NA NA	ND ND	ND 0.95]	NA NA
	12/22/2021	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS
	6/24/2022	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	21	ND	NA	ND	ND	0.97 J	ND
	1/26/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/23/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
	1/2/2024	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/26/2024	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.5	7.3	ND	ND	ND	ND	ND	ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part																_		
Groundwa	~ 5	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard		NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID	NID
MLW-7S	2/28/2008	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 27	ND ND	ND ND	ND ND	ND ND	ND ND	ND
16'-31'	4/2/2008 7/28/2008	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	7.2	32	ND	ND	ND	ND	ND	ND ND
	12/1/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23	ND	ND	ND	ND	ND	ND
	3/24/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND
	6/30/2009	ND	ND	ND	ND	ND	ND	0.51 J	ND	ND	5.0	19	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	0.65 J	ND	4.6 J	ND	ND	ND	ND	ND	ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	6/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										cember !								
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	0.47 J	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12 ND	ND	ND	ND	ND	ND	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND vm Sami	ND pling Ne	ND	ND	1.3	ND	ND	ND	0.85 J	1.8
							Kem	oveu m	ını əam	binig Me	twork							

		ne	ie	hene	thene	ane	ə	lane	lane	ine	K)		thane		Je Je	ride		thane
n .	Sampling	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	one	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
Parameters	Date	chlo	hlor	Oich	-Dic	chlo	yl C	richl	richl	ichlo	anor	Acetone	ichlc	ошо	on D	ı Tet	nlorc	ochlo
		etra	Tric	.1,2-]	s-1,2	.1-Dj	Vin	L,1-T	1,2-T	,1-D	-But		mod	Bı	Carb	ırbor	ס	rom
		T		cis-	trans	1,		1,1	1,1	1	2		Bro			S		Dib
NYSDEC Part																		
Groundwat Standard		5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-7I	2/28/2008	33	10	19	ND	0.67 J	ND	1.4	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
193'-203'	4/8/2008	19	16	ND	ND	ND	ND	ND	ND	3.2	ND	32	ND	ND	ND	ND	1.2	ND
	7/28/2008 12/1/2008	12 13	8.6 7.2	22 18	ND ND	ND ND	ND ND	1.3 ND	ND ND	1.9 1.9	12 ND	86 24	ND ND	ND ND	ND ND	ND ND	0.51 J 0.59 J	ND ND
	3/24/2009	11	8.7	18	ND	ND	ND	0.99 J	ND	1.9	ND	100	ND	ND	ND	ND	ND	ND
	6/30/2009	7.2	5.3	12	ND	1.0	ND	1.3	ND	1.9	ND	80	ND	ND	ND	ND	0.58 J	ND
	9/21/2009 1/7/2010	7.2	5.9 5.5	9.7	ND ND	0.68 J 0.64 J	ND ND	1.4 ND	ND ND	2.2 1.9	ND ND	14 ND	ND ND	ND ND	ND ND	ND ND	0.57 J	ND ND
	6/3/2010	7.6	6.7	17	ND	1.2	ND	ND	ND	2.6	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	5.0	5.3	11	ND	ND	ND	ND	ND	ND	ND	19 ND	ND	ND	ND	ND	ND	ND
	3/25/2011 7/7/2011	8.4 3.5	5.8 3.6	9.9	ND ND	0.64 J 0.55 J	ND ND	ND ND	ND ND	1.4 0.84 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/21/2011	6.6	5.7	16	ND	0.66 J	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	0.54 J	ND
	F /00 /0010		5 0	45							2011 - Ja			NID	NID	NID	0.40.1	NID
	5/22/2012 11/9/2012	6.6 8.8	5.8 6.1	17 18	ND ND	0.62 J 0.61 J	ND ND	ND ND	ND ND	1.5 1.6	ND 5.7	ND 15	ND ND	ND ND	ND ND	ND ND	0.48 J 0.47 J	ND ND
	3/15/2013	5.5	4.1	13.8	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND
	6/21/2013	7.5	5.4	17	ND	0.47 J	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND
	10/14/2013	12	9.2	21 Polis	ND shing R	1.7 EMOX I	ND niection	0.76 J	ND ion Wel	0.84 J 1 Cluste	ND ers IW-2	ND & IW-3	ND) Octobe	ND er 2013	ND	ND	0.47 J	ND
	1/6/2014	16	7.3	22	ND	0.92 J	ND	0.89 J	ND	1.5	ND	8.7 J	ND	ND	ND	ND	ND	ND
	3/27/2014	5.3	10 ND	8.4	ND	ND	ND	1.5	ND	1.7	ND	45	ND	ND	ND	ND	ND	ND
	6/30/2014 9/29/2014	ND 13	6.3	ND 21	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.8	ND ND	ND 24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/5/2015	14	6.9	15	ND	0.66 J	ND	0.72 J	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	21	9.0										ND April/M			ND	ND	ND
	7/9/2015	14	7.2	18	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	5.8	4.9	17	ND	0.36 J	ND	ND	ND	0.91 J		3.5 J	ND	ND	ND	ND	ND	ND
	1/6/2016	7.4	5.5	Polish 15	ND	0.36 J	ND	ND	ND	0.82 J	5.8	23	Novemb ND	ND	ND	ND	ND	ND
	4/13/2016	7.4	4.9	11.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	9.1	5.7	15	ND	0.34 J	ND	ND	ND	0.94 J	2.5 J	ND	ND	ND	ND	ND	ND	ND
	10/11/2016 1/31/2017	6.6	5.8 5.0	15 12	ND ND	0.33 J 0.32 J	ND ND	ND ND	ND ND	0.90 J ND	ND ND	38	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/11/2017	10	5.7	14	ND	0.27 J	ND	ND	ND	0.71 J	ND	1.6 J	ND	ND	ND	ND	ND	ND
	7/19/2017	12	5.9	15	ND	0.26 J	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND
	11/1/2017 1/29/2018	13 14	6.2 5.7	14 15	ND ND	0.23 J 0.21 J	ND ND	ND ND	ND ND	ND ND	ND ND	15 4.0 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/11/2018	15	7.0	17	ND	0.21 J	ND	ND	ND	ND	ND	4.5 J	ND	ND	ND	ND	ND	ND
	7/16/2018	12	5.3	13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	29	ND ND	ND ND	ND ND	ND	ND	ND ND
	10/10/2018 1/24/2019	14 21	6.5 7.0	15 14	ND	ND ND	ND	ND ND	ND	ND	ND ND	44 10	ND	ND	ND	ND ND	ND ND	ND
	3/21/2019	9.1	5.1	13	ND	ND	ND	ND	ND	ND	ND	4.5 J	ND	ND	ND	ND	ND	ND
	7/16/2019	14	6.7	14	ND	ND	ND	ND	ND NA	ND ND	ND	281	ND NA	ND NA	ND NA	ND	ND	ND NA
	12/20/2019 4/8/2020	15 13	5.2 6.5	10	ND ND	ND ND	ND ND	ND ND	NA NA	ND	ND ND	2.8 J 5.3	NA NA	NA NA	NA NA	ND ND	ND ND	NA NA
	6/29/2021	9.7	3.5	9.5	ND	ND	ND	ND	NA	ND	ND	3.9J	NA	NA	NA	ND	ND	NA
	12/22/2021 6/24/2022	9.9	3.6	7.7 9.9	ND ND	ND ND	ND ND	ND ND	ND NA	0.29 J ND	ND ND	7.6 19	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND
	1/26/2023	19	5.0	9.9	ND	ND	ND	ND	ND	ND	ND	4.2 J	ND	ND	ND	ND	ND	ND
	6/23/2023	13	4.3	12	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND	ND	ND	ND
	1/2/2024 6/26/2024	12 13	3.5	7.2 6.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 5.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	0/20/2024	13	3.5	0.0	ND	ND	אט	ND	ND	ND	NU	5.1	ND	ND	Nυ	ND	Nυ	Nυ

		a		ane	ıene	e,		ne	ne	٥			ane			de		ane
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
		Tetrac	Trich	cis-1,2-D	trans-1,2-]	1,1-Dic	Viny	1,1,1-Tr	1,1,2-Tr	1,1-Dio	2-Buta	Ą	Bromodi	Bro	Carbo	Carbon	J.	Dibromo
NYSDEC Part			_	_	_		_			_						_		
Groundwat	-	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard MLW- 7D	is (μg/1) 2/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
230'-240'	4/2/2008	ND	4.8	4.4	ND	2.2	ND	2.8	ND	3.4	ND	18	ND	ND	ND	ND	ND	ND
200 210	7/28/2008	9.5	9.7	20	ND	1.8	ND	2.2	ND	2.6	12	79	ND	ND	ND	ND	ND	ND
	12/1/2008	14	8.6	18	0.66 J	1.1	ND	2.0	ND	2.3	ND	20	ND	ND	ND	ND	ND	ND
	3/24/2009	9.4	13	17	ND	ND	ND	3.4	ND	4.0	ND	120	ND	ND	ND	ND	ND	ND
	6/30/2009	4.2	7.6	9.2	ND	1.6	ND	2.5	ND	3.0	8.0	86	ND	ND	ND	ND	ND	ND
	9/21/2009	5.8	8.6	13	ND	1.6	ND	3.1	ND	3.7	ND	21	ND	ND	ND	ND	0.47 J	ND
	1/7/2010 6/3/2010	7.2 3.3	8.7 9.3	10 11	ND ND	1.4 1.7	ND ND	ND ND	ND ND	2.8	ND 2.8 J	2.9 J 4.9 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/29/2010	3.7	9.1	9.8	ND	1.7	ND	ND	ND	2.3	ND	18	ND	ND	ND	ND	ND	ND
	3/25/2011	5.0	10	9.1	ND	1.5	ND	1.9	ND	2.3	ND	4.9 J	ND	ND	ND	ND	ND	ND
	7/7/2011	3.0	8.3	9.7	ND	1.6	ND	ND	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	2.6	8.5	7.7	ND	1.6	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND
	F /00 /0010		0.5	10							2011 - Ja			NID	NID	NID	NID	NID
	5/22/2012 11/9/2012	5.7 5.4	9.7 9.1	12 10	ND ND	1.2 1.1	ND ND	ND 1.6	ND ND	2.0 1.9	ND 6.2	ND 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/15/2013	2.1	5.2	7.5	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND
	6/21/2013	5.1	7.4	9.8	ND	0.83 J	ND	ND	ND	ND	ND	4.0 J	ND	ND	ND	ND	ND	ND
	10/14/2013	10	12	14	ND	1.1	ND	1.4	ND	2.0	ND	ND	ND	ND	ND	ND	ND	ND
				Poli	shing Rl	EMOX I	njection	(Inject	ion Wel	l Cluste	ers IW-2	& IW-3) Octobe	er 2013		•		
	1/6/2014	6.1	8.1	6.8	ND	1.3	ND	1.6	ND	2.0	ND	7.8 J	ND	ND	ND	ND	0.42 J	ND
	3/27/2014	11	11	19	ND	0.63 J	ND	0.83 J	ND	0.88 J	ND	ND	ND	ND	ND	ND	0.66 J	ND
	6/30/2014	ND	ND 8.2	ND 14	ND ND	ND ND	ND ND	ND 1.1	ND ND	ND	ND ND	ND 26	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	9/29/2014 1/5/2015	7.8 5.7	7.9	7.9	ND	0.63 J	ND	1.1	ND	2.2 1.8	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	15	10		ND				+		ND				ND		ND	ND
											s IW-1 &							
	7/9/2015	8.6	9.4	10	ND	0.81 J	ND	1.2	ND	1.6	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	2.1	5.1	5.0	ND	ND	ND	ND	ND	1.2 J	ND	3.5 J	ND	ND	ND	ND	ND	ND
	1/6/2016	2.1	5.2	4.7	ND	0.56	ND	0.76 J	ND	1.1 J	s IW-1 &	ND	NOVEME	ND	ND	ND	ND	ND
	4/13/2016	3.2	5.6	6.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	2.7	5.6	5.6	ND	0.58	ND	ND	ND	1.1 J	4.6 J	64	ND	ND	ND	ND	ND	ND
	10/11/2016	3.1	6.3	4.3	ND	0.62	ND	0.86 J	ND	1.2 J	ND	32	ND	ND	ND	ND	ND	ND
	1/31/2017	1.6	4.4	3.8	ND	0.52	ND	ND	ND	ND	3.2 J	62	ND	ND	ND	ND	ND	ND
	4/11/2017	2.5	4.9	3.9	ND	0.55	ND	ND	ND	0.99 J	ND	8.0	ND	ND	ND	ND	ND	ND
	7/19/2017	2.5	6.1	3.1	ND	0.57	ND	0.87 J	ND	1.0 J	ND	11	ND	ND	ND	ND	ND	ND
	11/1/2017 1/29/2018	3.6 4.0	5.6 5.2	4.6 6.6	ND ND	0.44 J 0.44 J	ND ND	ND ND	ND ND	1.0 J 0.79 J	ND ND	5.5 4.1 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	4/11/2018	3.5	5.7	5.8	ND	0.44 J	ND	ND	ND	0.79 J	ND	13	ND	ND	ND	ND	ND	ND
	7/16/2018	2.6	4.7	4.2	ND	0.30 J	ND	ND	ND	0.71 J	3.0 J	37	ND	ND	ND	ND	ND	ND
	10/10/2018	3.2	5.5	5.2	ND	0.42 J	ND	ND	ND	0.92 J	ND	42	ND	ND	ND	ND	ND	ND
	1/24/2019	2.7	4.5	3.0	ND	0.40 J	ND	ND	ND	0.71 J	ND	10	ND	ND	ND	ND	ND	ND
	3/21/2019	2.7	5.0	4.5	ND	ND	ND	ND	ND	0.40 J	ND	3.0 J	ND	ND	ND	ND	0.88 J	ND
	7/16/2019	2.3	4.6	5.0	ND	0.24 J	ND	ND	ND NA	0.76 J	ND	40	ND MA	ND	ND NA	ND	ND	ND NA
	12/20/2019 4/8/2020	4.1 3.7	4.7 4.5	4.7 4.8	ND ND	0.26 J 0.27 J	ND ND	ND ND	NA NA	ND ND	ND ND	3.2 J 6.8	MA NA	NA NA	NA NA	ND ND	ND ND	NA NA
	6/29/2021	5.1	4.5	7.2	ND	0.27 J	ND	ND	NA	ND	ND	3.0J	NA	NA	NA	ND	ND	NA
	12/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/24/2022	6.7	3.9	6.5	ND	ND	ND	ND	NA	ND	ND	12	ND	NA	ND	ND	ND	ND
	1/26/2023	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/23/2023	8.2	4.5	6.1	ND	0.28 J	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND
	1/0/0004	N TO	3 TC	3 TC	N IC	B T.C	3 TC	3.70	4 N.T.C.	3.70	3.70	B TC	N TC	N TO			N IC	NS
	1/2/2024 6/26/2024	NS 11	NS 4.9	NS 9.4	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS 5.3	NS ND	NS ND	NS ND	NS ND	NS ND	ND

<u> </u>																		
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	er Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ls (µg/l)																	
MLW-8S	10/30/2007	4.3	1.0 J	3.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20'-35'	4/8/2008	1.6	0.63 J	ND	ND	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
	7/28/2008	4.6	ND	2.2	ND	ND	ND	ND	ND	ND	6.8	32	ND	ND	ND	ND	ND	ND
	12/1/2008	1.7	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND	ND
	3/24/2009	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7	ND	ND	ND	ND	ND	ND
	6/30/2009	1.2	ND	1.2	ND	ND	ND	ND	ND	ND	5.2	21	ND	ND	ND	ND	ND	ND
	9/21/2009	1.2	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/7/2010	1.2	ND	0.84 J	ND	ND	ND	ND	ND	ND	ND	6.7	ND	ND	ND	ND	ND	ND
	6/3/2010	0.71 J	ND	0.84 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	0.77 J	ND	ND	ND	ND	ND	ND	ND	6.3	ND	ND	ND	ND	ND	ND
	3/25/2011	0.59 J	ND	0.61 J	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	0.55 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	0.54 J	0.81 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
					Fı	ull Scale	REMO	X Injec	tion Dec	cember	2011 - Ja	nuary 2	2012					
	5/22/2012	0.57 J	ND	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.64 J	ND
	3/15/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.81 J	0.96 J	ND	ND	0.77 J	1.0
	6/21/2013	0.46 J	0.41 J	0.84 J	ND	ND	ND	ND	ND	ND	ND	7.5	ND	0.96 J	ND	ND	0.64 J	ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.96 J	1.9	ND	ND	ND
											rs IW-2			_				
	1/6/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	49	ND	ND	ND	ND	ND	ND
	3/27/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	47	ND	ND	ND	ND	ND	ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	1/5/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND
	4/15/2015	ND	ND		ND						ND		ND	ND	ND	ND	ND	ND
	_,												April/M					
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.0 J	ND	ND	ND	ND	ND	ND
			- 1-										Noveml					
	1/6/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/13/2016	0.21 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND
	10/11/2016	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	ND	ND	ND	ND	ND	ND
	1/31/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2 J	54	ND	ND	ND	ND	ND	ND
	4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.6	89	ND	ND	ND	ND	ND	ND
	7/19/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND
	11/1/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.3	0.71	ND	ND	ND	0.94 J	0.53
	1/29/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	39	ND	ND	ND	ND	ND	ND
	4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.6	ND	ND	ND	ND	ND	ND
	7/16/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	10/10/2018	7.1	2.6	5.5	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND
	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.1 J	26	ND	ND	ND	ND	ND	ND
	3/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND
	7/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.0	ND	ND	ND	ND	ND	ND
	12/20/2019	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	4.3 J	NA	NA	NA	ND	ND	NA
	4/8/2020	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	24 J	NA	NA	NA	ND	ND	NA
									om Sam			. ,						
										0-1								

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part		_	_	_	_	_		_	4	_	5 0	F0.	5 0	5 0	60	_	_	50
Groundwa Standare	•	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-8I	10/30/2007	94	31	82	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
123'-133'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/28/2008	14	5.6	18	ND	ND	ND	ND	ND	ND	11	81	ND	ND	ND	ND	ND	ND
	12/1/2008	39	9.6	27	ND	ND	ND	ND	ND	ND	ND	23	ND	ND	ND	ND	ND	ND
	3/24/2009	75	16	55 5 0	ND	ND	ND	ND	ND	ND	ND	71	ND	ND	ND	ND	ND	ND
	6/30/2009 9/21/2009	230 96	33 28	79 92	1.1 0.81 J	ND ND	ND ND	ND ND	ND ND	ND ND	6.6 ND	97 18	ND ND	ND ND	ND ND	ND ND	ND 0.47 J	ND ND
	1/7/2010	240	23	72	0.67 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/3/2010	85	9.8	31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	34	8.2	23	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	ND	ND
	3/25/2011	41	7.1	19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	11	3.8	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	12	5.9	18	ND	ND	ND	ND	ND	ND cember 2	ND	ND	ND	ND	ND	ND	ND	ND
	5/22/2012	12	4.9	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	7.9	5.3	20	ND	ND	ND	ND	ND	ND	5.6	15	ND	ND	ND	ND	ND	ND
	3/15/2013	15.9	7.7	27.5	ND	ND	ND	ND	ND	ND	2.1 J	2.8 J	ND	ND	ND	ND	ND	ND
	6/21/2013	10.2	3.6	12.9	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	ND	ND	ND	ND
	10/14/2013	9.7	4.6	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/5/2014	-	-10					<u> </u>		1 Cluste					NID	170	1.170	L N I D
	1/6/2014 3/27/2014	41 36	12 19	42 47	0.58 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	9.1 J 53	ND ND	ND ND	ND ND	ND ND	ND 0.59 J	ND ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	15	7.3	33	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND
	1/5/2015	49	14	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.56 J	ND
	4/15/2015	59	17	35						0.47 J						ND	ND	ND
	F 10 10 01 F									Cluster						170	N.ID	
	7/9/2015 11/17/2015	6.3 4.0	2.3 3.1	8.6 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.7 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/17/2015	4.0	3.1							Clusters						ND	ND	ND
	1/6/2016	11	5 . 7	20	ND	ND	ND	ND	ND	ND	6.8	24	ND	ND	ND	ND	ND	ND
	4/13/2016	13.3	5.8	16.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	2.6	1.7	6.2	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND
	10/11/2016	4.3	1.3	4.0	ND	ND	ND	ND	ND	ND	2.2 J	36	ND	ND	ND	ND	ND	ND
	1/31/2017 4/11/2017	6.0 25	4.2 7.1	14 21	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	47 5.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/19/2017	5.6	0.88	2.1 J	ND	ND	ND	ND	ND	ND	ND	7.6	ND	ND	ND	ND	ND	ND
	11/1/2017	10	2.5	5.3	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND
	1/29/2018	14	3.3	8.5	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	ND	ND	ND	ND
	4/11/2018	20	6.2	15	ND	ND	ND	ND	ND	ND	ND	4.9 J	ND	ND	ND	ND	ND	ND
	7/16/2018	1.5	0.38 J	1.0 J	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	ND
	10/10/2018 1/24/2019	ND 20	ND 4.6	ND 9.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6.2 9.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	3/21/2019	15	4.5	11	ND	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND	ND	ND	ND
	7/16/2019	6.1	1.6	3.4	ND	ND	ND	ND	ND	ND	ND	51	ND	ND	ND	ND	ND	ND
	12/20/2019	13	4.8	11	ND	ND	ND	ND	NA	ND	ND	3.3 J	NA	NA	NA	ND	ND	NA
	4/8/2020	17	6.0	16	ND	ND	ND	ND	NA	ND	ND	7.4	NA	NA	NA	ND	ND	NA
	6/29/2021	10	3.1	8.5	ND	ND	ND	ND	NA	ND	ND	3.8J	NA	NA	NA	ND	ND	NA
	12/22/2021 6/24/2022	8.2	3.8	10 9	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	9 23	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND
	1/26/2023	15	4.8	11	ND	ND	ND	ND	ND	ND	ND	4.6 J	ND	ND	ND	ND	ND	ND ND
	6/23/2023	12	3.2	8.1	ND	ND	ND	ND	ND	ND	ND	8.8	ND	ND	ND	ND	ND	ND
	,										ND	10		ND	ND		ND	ND
	1/2/2024	15	3.6	8.9	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA															<u> </u>		
Groundwa	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard												<u> </u>						
MLW-8D	11/19/2007	420	ND	25 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
215'-225'	4/8/2008 7/28/2008	290 210	24 91	92 270	ND 2.7	ND ND	ND ND	ND ND	ND ND	ND ND	ND 11	27 79	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	12/1/2008	260	79	240	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/24/2009	150	100	180	2.6	ND	ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	ND
	6/30/2009	240	83	240	2.4	ND	ND	ND	ND	ND	7.4	87	ND	ND	ND	ND	0.54 J	ND
	9/21/2009	94	110	150	3.1	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	1.2	ND
	1/7/2010	180	56	140	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6 J	ND
	6/3/2010	190	95	260	2.9	ND	ND	ND	ND	ND	ND	23	ND	ND	ND	ND	0.98 J	ND
	11/29/2010 3/25/2011	98 130	39 41	110 110	1.4 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/7/2011	50	31	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	74	36	120	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	71	50	120					tion Dec					IVE	ND	IND	ND	ND
	5/22/2012	90	39	86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47 J	ND
	11/9/2012	150	41	100	0.83 J	ND	ND	ND	ND	ND	6.3	14	ND	ND	ND	ND	ND	ND
	3/15/2013	64.2	32.2	96.2	0.49 J	ND	ND	ND	ND	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND
	6/21/2013	110	41	95.7	ND	ND	ND	ND	ND	ND	ND	3.8 J	ND	ND	ND	ND	ND	ND
	10/14/2013	180	47	99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.50 J	ND
	1/6/2014	160	42		shing R			<u> </u>							NID	NID	0.56.1	NID
	1/6/2014 3/27/2014	160 120	60	94 89	0.81 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.6 J 50	ND ND	ND ND	ND ND	ND ND	0.56 J 0.57 J	ND ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	120	35	78	ND	ND	0.90 J	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	ND
	1/5/2015	110	34	55	ND	0.29 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68 J	ND
	4/15/2015	160	34	53		ND			ND					ND	ND	ND	ND	ND
					hing RE								_					
	7/9/2015	88	22	45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.73 J	ND
	11/17/2015	23	10	Polisi	ND hing RE	ND MOX In	ND	ND (Injection	ND Well	ND	ND s IW-1 &	3.5 J	Novemb	ND	ND	ND	ND	ND
	1/6/2016	34	12	25	ND	ND	ND	ND	ND	ND	6.5	24	ND	ND	ND	ND	ND	ND
	4/13/2016	63.8	16.6	32.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	54	14	30	ND	ND	ND	ND	ND	ND	ND	50	ND	ND	ND	ND	ND	ND
	10/11/2016	83	18	41	ND	ND	ND	ND	ND	ND	ND	51	ND	ND	ND	ND	ND	ND
	1/31/2017	54	22	53	ND	ND	ND	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	ND
	4/11/2017	93	24	55	ND	ND	ND	ND	ND	ND	ND	ND 20	ND	ND	ND	ND	ND	ND
	7/19/2017 11/1/2017	120 100	23	48	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.1 J ND	6.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/29/2018	110	24	56	ND	ND	ND	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND
	4/11/2018	100	29	61	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND	ND
	7/16/2018	64	15	34	ND	ND	ND	ND	ND	ND	2.0 J	29	ND	ND	ND	ND	ND	ND
	10/10/2018	53	13	28	ND	ND	ND	ND	ND	ND	ND	63	ND	ND	ND	ND	ND	ND
	1/24/2019	87	11	21	ND	ND	ND	ND	ND	ND	ND	8.9	ND	ND	ND	ND	ND	ND
	3/21/2019	90	10	20	ND	ND	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND
	7/16/2019	57	8.8	17	ND	ND	ND	ND	ND NA	ND	ND	77	ND	ND	ND	ND	ND	ND
	12/20/2019 4/8/2020	35 20	3.8	7.1	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	3.2 J 5.9	NA NA	NA NA	NA NA	ND ND	ND ND	NA NA
	6/29/2021	12	3.8	7.1	ND	ND	ND	ND	NA NA	ND	ND	3.4J	NA NA	NA NA	NA NA	ND	ND	NA NA
	12/22/2021	12	2.2	5.3	ND	ND	ND	ND	ND	ND	ND	9.2	ND	ND	ND	ND	0.27 J	ND
	6/24/2022	11	2.5	6.6	ND	ND	ND	ND	NA	ND	ND	14	ND	NA	ND	ND	ND	ND
	1/26/2023	8.4	2.6	6.5	ND	ND	ND	ND	ND	ND	ND	4.9 J	ND	ND	ND	ND	ND	ND
	6/23/2023	9.5	2.4	4.3	ND	ND	ND	ND	ND	ND	ND	8.8	ND	ND	ND	ND	ND	ND
	1/2/2024	9.9	2.9	8.9	ND	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND
	6/26/2024	6.8	2.2	4.4	ND	ND	ND	ND	ND	ND	ND	4.8 J	ND	ND	ND	ND	ND	ND

				4)	e								0)					0)
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	I,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
				ci	tra								Bı)		D
NYSDEC Part	703 Class GA																	
Groundwat	•	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard																		
MLW-9S	2/28/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20'-35'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
	7/28/2008	4.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.2 ND	32 30	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	12/1/2008 3/24/2009	0.74 J ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
	6/30/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	19	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.8	ND	ND	ND	ND	ND	ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	6/3/2010	0.79 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
								X Injec									_	
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47 J	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND
	3/15/2013 6/21/2013	ND ND	0.52 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND					(Inject							ND	ND	ND	ND
	1/6/2014	0.78 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	0.46 J	ND
	3/27/2014	0.87 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	ND	ND	ND	ND	ND	ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/5/2015	0.92 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	ND	ND		ND			ND						ND	ND	ND	ND	ND
							,						April/M					
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	0.31 J	ND	ND Polish	ND	ND MOX In	ND	ND (Injection	ND Well	ND	ND S IW-1 &	4.4 J	ND Novem l	ND	ND	ND	ND	ND
	1/6/2016	0.44 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/13/2016	0.44 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.8 J	ND	ND	ND	ND	ND	ND
	7/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3 J	33	ND	ND	ND	ND	ND	ND
	10/11/2016	0.32 J	ND	ND	ND	ND	ND	ND	ND	ND	2.4 J	54	ND	ND	ND	ND	ND	ND
	1/31/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.3 J	60	ND	ND	ND	ND	ND	ND
	4/11/2017	0.30 J	ND	ND	ND	ND	ND	ND	ND	ND	5.0	33	ND	ND	ND	ND	ND	ND
	7/19/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9 J	ND	ND	ND	ND	ND	ND
	11/1/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2 J	32	ND	ND	ND	ND	ND	ND
	1/29/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND
	4/11/2018	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7	ND	ND	ND	ND	ND	ND
	7/16/2018 10/10/2018	0.21 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.9 J ND	19 6.1	ND ND	ND ND	ND ND	ND ND	ND 0.97 J	ND ND
	1/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1	ND	ND	ND	ND	0.97 J ND	ND
	3/21/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND
	7/16/2019	100	22	44	ND	ND	ND	ND	ND	0.17 J	ND	36	ND	ND	ND	ND	ND	ND
	12/20/2019	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	44	NA	NA	NA	ND	ND	NA
	4/8/2020	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	2.1 J	NA	NA	NA	ND	ND	NA
							Rem	oved fro	om Samj	pling Ne	etwork							

		ene	ne	thene	ethene	iene	de	hane	hane	ıane	EK)		ethane		ide	oride		ethane
Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
				cis	trar	7		1,	1,	, .			Bro			O		Dil
NYSDEC Part		_	_	_	_	_		_	4	_	5 0	50	5 0	5 0		_		50
Groundwa Standard	-	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
MLW-9I	2/27/2008	150	53	120	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
212'-222'	4/8/2008	210	140	240	3.7	2.0	ND	ND	ND	5.1	ND	22	ND	ND	ND	ND	ND	ND
	7/28/2008	160	99	190	1.5	1.4	ND	1.1	ND	4.5	9.9	61	ND	ND	ND	ND	ND	ND
	12/1/2008	180	84	180	2.2	1.6	ND	0.68 J	ND	4.9	ND	22	ND	ND	ND	ND	0.66 J	ND
	3/24/2009	150	150	140	2.0	ND	ND	ND	ND	5.8	ND	96	ND	ND	ND	ND	ND	ND
	6/30/2009 9/21/2009	110 120	84 72	110 120	1.7 1.6	ND 1.5	ND ND	ND ND	ND ND	5.8 6.2	ND ND	20 27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1/7/2010	260	96	100	1.5	1.4	ND	ND	ND	4.2	ND	ND	ND	ND	ND	ND	0.4 J	ND
	6/3/2010	220	79	99	1.7	1.5	ND	1.0	ND	5.0	2.2 J	18	ND	ND	ND	ND	ND	ND
	11/29/2010	95	65	68	1.2	2.0	ND	ND	ND	4.4	ND	5.5	ND	ND	ND	ND	ND	ND
	3/25/2011	86	60	64	0.94 J	1.3	ND	ND	ND	4.6	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	60	41	42	ND	1.4	ND	ND	ND	3.2	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	40	52	80	1.0	1.6	ND	ND X Injec	ND	4.5	ND	ND	ND	ND	ND	ND	0.42 J	ND
	5/22/2012	110	51	43	ND	1.2	ND	ND	ND	4.0	2011 - Ja ND	ND	ND	ND	ND	ND	ND	ND
	11/9/2012	160	55	72	ND	1.3	ND	ND	ND	3.4	ND	15	ND	ND	ND	ND	ND	ND
	3/15/2013	70.5	25.8	50.1	ND	0.74 J	ND	ND	ND	2.4	ND	0.85 J	ND	ND	ND	ND	ND	ND
	6/21/2013	90.6	26.2	37.9	ND	0.96 J	ND	ND	ND	3.3	ND	3.8 J	ND	ND	ND	ND	ND	ND
	10/14/2013	170	44	60	0.63 J	1.4	ND	ND	ND	3.9	ND	ND	ND	ND	ND	ND	0.50 J	ND
	1/4/2014	100			shing R			<u> </u>) ID		N.ID	N.I.D.
	1/6/2014 3/27/2014	180 110	54 56	110 67	0.87 J	1.1 ND	ND ND	0.73 J ND	ND ND	2.8	ND ND	9.4 J 46	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	2.1 ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	210	44	72	ND	0.79 J	ND	1.0 J	ND	3.1	ND	23	ND	ND	ND	ND	ND	ND
	1/5/2015	190	43	71	ND	0.83 J	ND	0.42 J	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND
	4/15/2015	230	39	64				0.58 J					ND	ND	ND	ND	ND	ND
					hing RE								_	_				
	7/9/2015	130	25	46	ND	0.86 J	ND	ND	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	52	23	43 Polisi	ND	0.50 MOX In	ND	ND (Injection	ND n Well	1.5 J	ND s IW-1 &	6.1	ND Novemb	ND per 2015	ND	ND	ND	ND
	1/6/2016	86	31	46	ND	0.56	ND	ND	ND	1.2 J	23	42	ND	ND	ND	ND	ND	ND
	4/13/2016	74.8	22.9	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2016	79	26	44	ND	0.46 J	ND	ND	ND	1.4 J	2.5 J	48	ND	ND	ND	ND	ND	ND
	10/11/2016	140	46	90	ND	ND	ND	ND	ND	ND	ND	33	ND	ND	ND	ND	ND	ND
	1/31/2017	91	40	89	ND	ND	ND	ND	ND	0.84 J	ND	46	ND	ND	ND	ND	ND	ND
	4/11/2017 7/19/2017	180 280	38 52	63 85	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	9.2 J 22	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	11/1/2017	190	38	65	ND	ND	ND	ND	ND	ND	ND	9.8 J	ND	ND	ND	ND	ND	ND
	1/29/2018	260	45	92	ND	ND	ND	ND	ND	ND	ND	3.8 J	ND	ND	ND	ND	ND	ND
	4/11/2018	210 E	41	77	ND	ND	ND	ND	ND	ND	ND	9.4	ND	ND	ND	ND	ND	ND
	7/16/2018	160	30	59	ND	ND	ND	ND	ND	ND	ND	32	ND	ND	ND	ND	ND	ND
	10/10/2018	170	38	77	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND
	1/24/2019 3/21/2019	200 160	31	56	ND ND	ND 0.21 I	ND ND	ND ND	ND ND	ND ND	ND ND	14 4.6 I	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	7/16/2019	88	36 23	66 48	ND	0.21 J 0.21 J	ND	ND	ND ND	ND	ND ND	4.6 J 55	ND ND	ND	ND ND	ND	ND ND	ND ND
	12/20/2019	110	25	51	ND	0.21 J	ND	ND	NA	ND	ND	3.0 J	NA	NA	NA	ND	ND	NA
	4/8/2020	160	28	55	ND	ND	ND	ND	NA	ND	ND	6.1 J	NA	NA	NA	ND	ND	NA
	6/29/2021	77	14	32	ND	ND	ND	ND	NA	ND	ND	4.3J	NA	NA	NA	ND	ND	NA
	12/22/2021	80 D	15	26	ND	ND	ND	ND	ND	0.28 J	ND	10	ND	ND	ND	ND	0.39 J	ND
	6/24/2022	80	12	18	ND	ND	ND	ND	NA	ND	ND	21	ND	NA	ND	ND	ND	ND
	1/26/2023	120 47	7.6	14 10	ND ND	ND 0.18 I	ND ND	ND ND	ND ND	ND ND	ND ND	4.2 J	ND ND	ND ND	ND ND	ND	ND ND	ND ND
	6/23/2023 1/2/2024	47	7.6 6.5	6.3	ND	0.18 J ND	ND ND	ND	ND ND	ND ND	ND	18 11	ND ND	ND ND	ND	ND ND	ND ND	ND ND
	6/26/2024	45	6.5	4.4	ND	0.18	ND	ND	ND	ND	ND	4.5 J	ND	ND	ND	ND	ND	ND
	0/ = 0/ ± 0/ ± 1	10	0.0	1,1	110	3,10	. 10	. 10	. 10	. 10	. 10		. 10	. 10	.10	. 10	. 10	. 10

Parameters	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	Acetone	Bromodichloromethane	Bromoform	Carbon Disulfide	Carbon Tetrachloride	Chloroform	Dibromochloromethane
NYSDEC Part	703 Class GA																	
Groundwat	ter Quality	5	5	5	5	5	2	5	1	5	50	50	50	50	60	5	7	50
Standard	ds (μg/l)																	
MLW-9D	2/28/2008	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
247'-257'	4/8/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND	ND	ND
21, 20,	7/28/2008	1.9	ND	ND	ND	ND	ND	ND	ND	ND	8.3	59	ND	ND	ND	ND	ND	ND
	12/1/2008	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND
	3/24/2009	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND
	6/30/2009	1.0	ND	ND	ND	ND	ND	ND	ND	ND	8.4	91	ND	ND	ND	ND	ND	ND
	9/21/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	32	ND	ND	ND	ND	ND	ND
	1/7/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND
	6/3/2010	0.84 J	ND	ND	ND	ND	ND	ND	ND	ND	2.8 J	ND	ND	ND	ND	ND	ND	ND
	11/29/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	3/25/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	7/7/2011	50	31	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND
	11/21/2011	ND	ND	ND							2011 - Ja			ND	ND	ND	ND	ND
	5/22/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	ND	ND	ND	ND	0.46 J	ND
	11/9/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.6	14	ND	ND	ND	ND	ND	ND
			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	3/15/2013 6/21/2013	0.57 J ND	ND	ND	ND	ND	ND	ND	ND	ND	15.5	43.9	ND	ND	ND	ND	ND	ND ND
	10/14/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	10/14/2013	ND	ND								ers IW-2				ND	ND	ND	ND
	1/6/2014	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.0 [ND	ND	ND	ND	0.58 J	ND
	3/27/2014	0.93 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	49	ND	ND	ND	ND	0.38 J	ND
	6/30/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/29/2014	2.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1/5/2015	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		0.75 J			ND						ND			ND	ND	ND	ND	ND
	4/15/2015	0.75 j	ND										April/M			ND	IVD	ND
	7/9/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/17/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.4 J	ND	ND	ND	ND	ND	ND
	11/17/2010	ND	ND										Novemb			ND	IVD	ND
	1/6/2016	0.72	0.26 J	ND	ND	ND	ND	ND	ND	ND	7.0	35	ND	ND	ND	ND	ND	ND
	4/13/2016	0.66 J	0.27 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68 J	ND
	7/7/2016	0.78	ND	ND	ND	ND	ND	ND	ND	ND	2.7 J	58	ND	ND	ND	ND	1.1 J	ND
	10/11/2016	0.9	0.30 J	ND	ND	ND	ND	ND	ND	ND	2.3 J	47	ND	ND	ND	ND	0.81 J	ND
	1/31/2017	0.27 J	0.20 J	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND	ND	ND	ND
	4/11/2017	0.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND	ND	ND	ND
	7/19/2017	0.31 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.9	ND	ND	ND	ND	ND	ND
	11/1/2017	0.29 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND	ND
	1/29/2018	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.7 J	ND	ND	ND	ND	ND	ND
	4/11/2018	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND	ND
	7/16/2018	0.30 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	32	ND	ND	ND	ND	ND	ND
	10/10/2018	1.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	38	ND	ND	ND	ND	ND	ND
	1/24/2019	0.28 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	1.8 J	ND
	3/21/2019	0.19 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND	ND	2.0 J	ND
	7/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	0.75 J	ND
	12/20/2019	0.24 J	ND	ND	ND	ND	ND	ND	NA	ND	ND	2.6 J	NA	NA	NA	ND	ND	NA
	4/8/2020	0.31 J	ND	ND	ND	ND	ND	ND	NA	ND	ND	6.3	NA	NA	NA	ND	ND	NA
	6/29/2021	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	3.9J	NA	NA	NA	ND	ND	NA

Table 2. January 2, 2024 VOC Groundwater Data Summary Table

Melody Cleaners Site - VCP Program No. V-00347-1 2050 Hempstead Turpnpike, East Meadow, New York

LOCATION		IW-1D	IW-3D	MLW-1IS	DUP-1	MLW-1ID	MLW-1D	SW-1	MLW-2I	MLW-3I	MLW-6I	MLW-7I	MLW-8I	MLW-8D	MLW-9I	DUP-2	TRIP BLANK	FIELD BLANK
SAMPLING DATE		1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	NS	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024	1/2/2024
LAB SAMPLE ID		L2400400-01	L2400400-02	L2400400-03	L2400400-13	L2400400-04	L2400400-05	NS	L2400400-06	L2400400-07	L2400400-08	L2400400-09	L2400400-10	L2400400-11	L2400400-12	L2400400-14	L2400400-15	L2400400-16
SAMPLE TYPE		Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Volatile Organics by GC/MS	AWQS - mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	NS	ND									
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	NS	ND									
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	NS	ND									
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	NS	ND									
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	NS	ND									
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	NS	ND									
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	NS	ND									
2-Butanone	50	ND	ND	ND	ND	ND	ND	NS	ND									
Acetone	50	11	15	12	10	13	16	NS	9.6	12	13	20	10	14	11	9.1	ND	8.4
Benzene	1	ND	ND	ND	ND	ND	ND	NS	ND									
Bromodichloromethane	50	ND	ND	ND	ND	ND	ND	NS	ND	2.4								
Carbon disulfide	60	ND	ND	ND	ND	ND	ND	NS	ND									
Carbon tetrachloride	5	ND	ND	ND	ND	ND	ND	NS	ND									
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
Chloroform	7	ND	ND	ND	ND	ND	ND	NS	ND	1.5 J								
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	NS	8.7	12	ND	7.2	8.9	8.9	6.3	5.8	ND	ND
Dibromochloromethane	50	ND	ND	ND	ND	ND	ND	NS	ND	3.9								
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
Methyl tert butyl ether	10	ND	ND	ND	ND	ND	ND	NS	ND									
Methylene chloride	5	ND	ND	ND	ND	ND	ND	NS	ND									
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
o-Xylene	5	ND	ND	ND	ND	ND	ND	NS	ND									
p/m-Xylene	5	ND	ND	ND	ND	ND	ND	NS	ND									
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	NS	ND									
Tetrachloroethene	5	3.2	2500	1.0	17	2.0	1.3	NS	8.3	8.0	ND	12	15	9.9	46	52	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	NS	ND									
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	NS	ND									
Trichloroethene	5	ND	0.25 J	ND	ND	ND	ND	NS	8.6	4.0	ND	3.5	3.6	2.9	6.5	6.9	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	NS	ND									
Xylenes, Total	5	ND	ND	ND	ND	ND	ND	NS	ND									

Notes:

AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

mg/L: miligrams per liter

ND: analyte not detected above the laboratory reporting limit

J: Estimated value

Bold Value: Analyte was detected

Yellow Highlight: Analyte was detected at a concentration above the AWQS

Table 2. June 26, 2024 VOC Groundwater Data Summary Table

Melody Cleaners Site - VCP Program No. V-00347-1 2050 Hempstead Turpnpike, East Meadow, New York

LOCATION		MLW-01	IW-1D	IW-2D	IW-3D	MLW-1IS	DUP-1	MLW-1ID	MLW-1D	SW-1	MLW-2I	MLW-2D	MLW-3I	MLW-3D	MLW-6I
SAMPLING DATE		6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024
LAB SAMPLE ID		L2436394-01	L2436394-02	L2436394-03	L2436394-04	L2436394-05	L2436394-06	L2436394-07	L2436394-08	L2436394-09	L2436394-10	L2436394-11	L2436394-12	L2436394-13	L2436394-14
SAMPLE TYPE		Water													
Volatile Organics by GC/MS	AWQS - mg/L	mg/L													
1,1,1-Trichloroethane	5	ND													
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	3.8	ND	ND	ND	2.9	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	0.83	ND	0.18 J	ND
1,2,4-Trimethylbenzene	5	ND													
1,2-Dichlorobenzene	3	ND													
1,2-Dichloroethane	0.6	ND													
1,3,5-Trimethylbenzene	5	ND													
1,3-Dichlorobenzene	3	ND													
1,4-Dichlorobenzene	3	ND													
2-Butanone	50	6.2	ND	ND	ND	4.8 J	ND	5.5	6.0	ND	5.3	4.6 J	ND	ND	ND
Acetone	50	6.5	7.1 J	4.2 J	ND	5.6	5.2	7.4	7.1	5.5	6.1	5.7	4.2 J	4.5 J	4.7 J
Benzene	1	ND													
Bromodichloromethane	50	ND													
Carbon disulfide	60	ND													
Carbon tetrachloride	5	ND													
Chlorobenzene	5	ND													
Chloroform	7	ND													
cis-1,2-Dichloroethene	5	ND	5.4	ND	11	ND	ND								
Dibromochloromethane	50	ND													
Ethylbenzene	5	ND													
Methyl tert butyl ether	10	ND													
Methylene chloride	5	ND													
n-Butylbenzene	5	ND													
n-Propylbenzene	5	ND													
o-Xylene	5	ND													
p/m-Xylene	5	ND													
sec-Butylbenzene	5	ND													
tert-Butylbenzene	5	ND													
Tetrachloroethene	5	ND	280	ND	1200	2.4	2.4	0.74	2.5	ND	6.9	0.20 J	10	0.39 J	ND
Toluene	5	ND													
trans-1,2-Dichloroethene	5	ND													
Trichloroethene	5	ND	ND	ND	ND	ND	ND	1.3	ND	ND	5.8	0.88	4.7	0.27 J	ND
Vinyl chloride	2	ND													
Xylenes, Total		ND													

Notes:

AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

mg/L: miligrams per liter

ND: analyte not detected above the laboratory reporting limit

J: Estimated value

Bold Value: Analyte was detected

Yellow Highlight: Analyte was detected at a concentration above the AWQS

Table 4 - SSDS Vacuum Measurements

2050 Hempstead Turnpike East Meadow, New York

r		
Vapor Monitoring Point	Vacuum (In. Water)	PID (PPM)
Polit	6/11,	/2024
VP-1	-0.67	0.0
VP-2	-	-
VP-3	0.0	0.2
VP-4	0.0	0.0
VP-5	-0.96	0.0
VP-6	-0.93	0.0
VP-7	-	-
VP-8	-0.96	0.0
VP-9	-1.52	0.0
VP-10	-1.35	0.0
VP-11	-0.32	0.0
VP-12	-0.67	0.0
VP-13	-0.35	0.0
VP-14	-0.96	0.0
VP-15	-0.2	0.0

Notes:

In. Water - vacuum measured in inches of water

PID - photoionization detector

ppm - Parts per Million

^{&#}x27;- Vapor Point Not Located

Table 2. June 26, 2024 VOC Groundwater Data Summary Table

Melody Cleaners Site - VCP Program No. V-00347-1 2050 Hempstead Turpnpike, East Meadow, New York

LOCATION		MLW-6D	MLW-7I	MLW-7D	MLW-8I	MLW-8D	MLW-9I	DUP-2	TRIP BLANK	FIELD BLANK
SAMPLING DATE		6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024	6/26/2024
LAB SAMPLE ID		L2436394-15	L2436394-16	L2436394-17	L2436394-18	L2436394-19	L2436394-20	L2436394-21	L2436394-22	L2436394-23
SAMPLE TYPE		Water								
Volatile Organics by GC/MS	AWQS - mg/L	mg/L								
1,1,1-Trichloroethane	5	ND								
1,1-Dichloroethane	5	ND								
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	0.18	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND								
1,2-Dichlorobenzene	3	ND								
1,2-Dichloroethane	0.6	ND								
1,3,5-Trimethylbenzene	5	ND								
1,3-Dichlorobenzene	3	ND								
1,4-Dichlorobenzene	3	ND								
2-Butanone	50	5.5	ND	ND	5.8	ND	ND	ND	ND	ND
Acetone	50	7.3	5.1	5.3	7.2	4.8 J	4.5 J	4.9 J	3.8 J	4.1 J
Benzene	1	ND								
Bromodichloromethane	50	ND								
Carbon disulfide	60	ND								
Carbon tetrachloride	5	ND								
Chlorobenzene	5	ND								
Chloroform	7	ND	ND	ND	ND	ND	0.8	0.71 J	ND	ND
cis-1,2-Dichloroethene	5	ND	6	9.4	8.7	4.4	4.4	4.5	ND	ND
Dibromochloromethane	50	ND								
Ethylbenzene	5	ND								
Methyl tert butyl ether	10	ND								
Methylene chloride	5	ND								
n-Butylbenzene	5	ND								
n-Propylbenzene	5	ND								
o-Xylene	5	ND								
p/m-Xylene	5	ND								
sec-Butylbenzene	5	ND								
tert-Butylbenzene	5	ND								
Tetrachloroethene	5	ND	13	11	8.1	6.8	45	50	ND	ND
Toluene	5	ND								
trans-1,2-Dichloroethene	5	ND								
Trichloroethene	5	ND	3.5	4.9	3.9	2.2	6.5	6.5	ND	ND
Vinyl chloride	2	ND								
Xylenes, Total		ND								

Notes:

AWQS: New York TOGS 111 Ambient Water Quali

mg/L: miligrams per liter

ND: analyte not detected above the laboratory re

J: Estimated value

Bold Value: Analyte was detected

Yellow Highlight: Analyte was detected at a conce

Site No.: V00347-1 – Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York

Appendices

Site No.: V00347-1 – Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York

Appendix A

Inspection Forms

Melody Cleaners Site - Site No. V00347-1 East Meadow, New York Site Wide Inspection Log

General Information					
Project Name	Melody	Cleaners	Site		
Date/Time of Inspection		5/11/24			
Inspectior's Name(s)	11	RT			
Inspector's Contact Information	AA	ive	store	S	
Describe Present Condition of Site	J	/		-	
Change in Site Operations since Last Inspection?	N	0			
Type of Inspection	Annual	5	Storm Event		Other
Weather Conditions at Time of Inspection	5	onny			
Cover Inspection			*		
Evidence of Asphalt/Concrete Damage	Yes	X	No		Typical weathering cracks
Evidence of Recent Trenching and/or Excavation	Yes		No	X	
Evidence of New Subsurface Structure Installation	Yes		No	X	
Evidence of Tentative Excavation and/or Trenching Work	Yes		No	X	-
Evidence of Weather Related Impacts to the Site Cover.	Yes	X	No		
Evidence of Cover and Substratum Subsidence	Yes		No	X	
Remediation to Cover Required	Yes		No	×	-
General Comments					
Montoring Well Inspection					
Are Well Covers found intact and secured?	Yes		No	X	No buts
Evidence of Well Pad deterioration?	Yes		No	X	
Evidence of Damaged/Vandalized Well box covers and Assemblies	Yes	X	No		MW-FI missing I-plug
Evidence of Well Plug Deficiences?	Yes		No	X	
Evidence of Damage/Deterioration to Well Assemblies? Monitoring Well Comments, Deficiencies	Yes	×	No		7I has bent cising
and Corrective Actions					

Is onsite groundwater currently utilized for	Yes		No	V	
potable/non-potable use?	165		140		
Groundwater Usage Comments			9-		
Soil Vapor Implant Inspection			_	_	_
Are SSV Implants Intact?	Yes	X	No		aren't function
Any evidence of cracks, perforations and or potential trenching within the basement floor building slab?	Yes		No	X	
Is the sample area air-tight	Yes	X	No	,	
		1			
Are VOC vapors present in indoor air?	N	0			
Any evidence in a change of existing	To Vice				
HVAC/Ventilation Systems	N	0			
Any observed coatings, sealants or other floor/slab treatments present?	N	C)			
Any additional sources of chlorinated VOCs		*			
within the interior of the building(s)?	Cleo	ining	groduc	K	
Sub-Slab Vapor Implant Comments					
	1				
	-				
nspection Summary Comments					
nspector's Signature(s)					

Site No.: V00347-1 – Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York

Appendix B

Groundwater Monitoring Event Laboratory Analysis Reports

ANALYTICAL REPORT

Lab Number: L2400400

Client: Impact Environmental

170 Keyland Ct Bohemia, NY 11716

ATTN: Julie de la Fuente Phone: (631) 269-8800

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406 Report Date: 01/15/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400 **Report Date:** 01/15/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2400400-01	IW-1D	WATER	Not Specified	01/02/24 08:10	01/03/24
L2400400-02	IW-3D	WATER	Not Specified	01/02/24 08:20	01/03/24
L2400400-03	MLW-1IS	WATER	Not Specified	01/02/24 08:25	01/03/24
L2400400-04	MLW-1ID	WATER	Not Specified	01/02/24 08:35	01/03/24
L2400400-05	MLW-1D	WATER	Not Specified	01/02/24 08:42	01/03/24
L2400400-06	MLW-2I	WATER	Not Specified	01/02/24 09:00	01/03/24
L2400400-07	MLW-3I	WATER	Not Specified	01/02/24 09:10	01/03/24
L2400400-08	MLW-6I	WATER	Not Specified	01/02/24 09:20	01/03/24
L2400400-09	MLW-7I	WATER	Not Specified	01/02/24 09:30	01/03/24
L2400400-10	MLW-8I	WATER	Not Specified	01/02/24 09:35	01/03/24
L2400400-11	MLW-8D	WATER	Not Specified	01/02/24 09:40	01/03/24
L2400400-12	MLW-9I	WATER	Not Specified	01/02/24 09:50	01/03/24
L2400400-13	DUP-1	WATER	Not Specified	01/02/24 08:30	01/03/24
L2400400-14	DUP-2	WATER	Not Specified	01/02/24 09:55	01/03/24
L2400400-15	TRIP BLANK		Not Specified	01/02/24 00:00	01/03/24
L2400400-16	FIELD BLANK	WATER	Not Specified	01/02/24 00:00	01/03/24

Project Name:2050 HEMPSTEAD TPKLab Number:L2400400Project Number:9406Report Date:01/15/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:2050 HEMPSTEAD TPKLab Number:L2400400Project Number:9406Report Date:01/15/24

Case Narrative (continued)

Report Submission

January 15, 2024: This final report includes the results of all requested analyses.

January 09, 2024: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2400400-15: A sample identified as "TRIP BLANK" was listed on the Chain of Custody, but not received. This was verified by the client.

Volatile Organics

L2400400-16: The Field Blank has results for dibromochloromethane, bromodichloromethane, bromoform, and acetone present above the reporting limit. The sample was re-analyzed and confirmed the original results. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 01/15/24

ORGANICS

VOLATILES

01/02/24 08:10

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

L2400400

Report Date: 01/15/24

Lab Number:

Date Collected:

Lab ID: L2400400-01

Client ID: IW-1D

Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 13:57

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	3.2		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

IW-1D

L2400400-01

Not Specified

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 08:10

Date Received: 01/03/24 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Result Qualifier Unite MDI Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	11		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-01 Date Collected: 01/02/24 08:10

Client ID: IW-1D Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Westb	orough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	102	70-130	

01/02/24 08:20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Lab ID: L2400400-02

Client ID: IW-3D

Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 14:21

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2000	E	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/02/24 08:20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

IW-3D

L2400400-02

Not Specified

SAMPLE RESULTS

Report Date: 01/15/24

Lab Number:

Date Collected:

Date Received: 01/03/24

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Trichloroethene	0.25	J	ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
Xylenes, Total	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1		
Dibromomethane	ND		ug/l	5.0	1.0	1		
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1		
Acrylonitrile	ND		ug/l	5.0	1.5	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	15		ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
Vinyl acetate	ND		ug/l	5.0	1.0	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1		
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1		
Bromobenzene	ND		ug/l	2.5	0.70	1		
n-Butylbenzene	ND		ug/l	2.5	0.70	1		
sec-Butylbenzene	ND		ug/l	2.5	0.70	1		
tert-Butylbenzene	ND		ug/l	2.5	0.70	1		
o-Chlorotoluene	ND		ug/l	2.5	0.70	1		
p-Chlorotoluene	ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
Naphthalene	ND		ug/l	2.5	0.70	1		

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-02 Date Collected: 01/02/24 08:20

Client ID: IW-3D Date Received: 01/03/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	77	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	85	70-130	

01/02/24 08:20

Not Specified

20

01/03/24

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Date Collected:

Date Received:

Field Prep:

10

3.6

Lab ID: L2400400-02 D

Client ID: IW-3D

Sample Location: Not Specified

Sample Depth:

Tetrachloroethene

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/07/24 19:50

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	_ab					

ug/l

2500

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	98		70-130
Toluene-d8	103		70-130
4-Bromofluorobenzene	109		70-130
Dibromofluoromethane	97		70-130

01/02/24 08:25

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Date Collected:

Lab ID: L2400400-03

Client ID: MLW-1IS Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 01/07/24 19:29

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	1.0		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2400400

01/02/24 08:25

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

01/15/24

Report Date:

Lab Number:

Date Collected:

Lab ID: L2400400-03

Client ID: MLW-1IS Sample Location: Not Specified

Date Received: 01/03/24 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	12		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-03 Date Collected: 01/02/24 08:25

Client ID: MLW-1IS Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	102	70-130	

L2400400

01/02/24 08:35

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Report Date: 01/15/24

Lab Number:

Date Collected:

Lab ID: L2400400-04

Client ID: MLW-1ID Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D 01/06/24 15:10 Analytical Date:

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-04

Not Specified

MLW-1ID

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 08:35 Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	13		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-04 Date Collected: 01/02/24 08:35

Client ID: MLW-1ID Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

01/02/24 08:42

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Lab ID: L2400400-05

Client ID: MLW-1D Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 15:34

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	1.3		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-05

Not Specified

MLW-1D

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 08:42

Lab Number:

Report Date:

Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

• · · · · · · · · · · · · · · · · · · ·						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	16		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-05 Date Collected: 01/02/24 08:42

Client ID: MLW-1D Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	105	70-130	

01/02/24 09:00

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Date Collected:

Lab ID: L2400400-06

Client ID: MLW-2I Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 15:58

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	8.3		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

MLW-2I

L2400400-06

Not Specified

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:00

Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - \	Vestborough Lab					
Trichloroethene	8.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	8.7		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	8.7		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	9.6		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-06 Date Collected: 01/02/24 09:00

Client ID: MLW-2I Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	104	70-130	

01/02/24 09:10

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

♥/ == ...=

Lab ID: L2400400-07
Client ID: MLW-3I
Sample Location: Not Specified

Date Received: 01/03/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 01/06/24 16:22

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	8.0		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-07

MLW-3I

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:10

Lab Number:

Report Date:

Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Sample Location: Not Specified

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	4.0		ug/l	0.50	0.18	1
1.2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	12		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	12		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	12		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-07 Date Collected: 01/02/24 09:10

Client ID: MLW-3I Date Received: 01/03/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	105	70-130	

01/02/24 09:20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Lab ID: L2400400-08

Client ID: MLW-6I Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 01/06/24 16:47

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-08

Not Specified

MLW-6I

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:20

Lab Number:

Report Date:

Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	13		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-08 Date Collected: 01/02/24 09:20

Client ID: MLW-6I Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	105	70-130	

01/02/24 09:30

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Lab ID: L2400400-09

Client ID: MLW-7I Sample Location: Not Specified

Date Received: 01/03/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 01/06/24 17:11

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	12		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

MLW-7I

L2400400-09

Not Specified

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:30

Lab Number:

Report Date:

Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	3.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.2		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	7.2		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	20		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-09 Date Collected: 01/02/24 09:30

Client ID: MLW-7I Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Lab ID: L2400400-10

Client ID: MLW-8I Sample Location: Not Specified Date Collected: 01/02/24 09:35 Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 17:35

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	15		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-10

Not Specified

MLW-8I

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:35

Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Trichloroethene	3.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	8.9		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	8.9		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	10		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-10 Date Collected: 01/02/24 09:35

Client ID: MLW-8I Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	103		70-130	

01/02/24 09:40

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Date Collected:

Lab ID: L2400400-11

Client ID: MLW-8D Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 01/06/24 18:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	9.9		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-11

Not Specified

MLW-8D

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:40

Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	2.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	8.9		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	8.9		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	14		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-11 Date Collected: 01/02/24 09:40

Client ID: MLW-8D Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	104	70-130	

01/02/24 09:50

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

L2400400

Lab Number:

Date Collected:

Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-12

Client ID: MLW-9I Sample Location: Not Specified Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 18:24

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	46		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-12

Not Specified

MLW-9I

Project Number: 9406

SAMPLE RESULTS

01/02/24 09:50

Date Collected:

Lab Number:

Report Date:

Date Received: 01/03/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	6.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.3		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	6.3		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	11		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-12 Date Collected: 01/02/24 09:50

Client ID: MLW-9I Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	100	70-130	

L2400400

01/02/24 08:30

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Report Date: 01/15/24

Lab Number:

Date Collected:

Lab ID: L2400400-13

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 18:48

Client ID:	DUP-1	Date Received:	01/03/24
Sample Location:	Not Specified	Field Prep:	Not Specified
Sample Depth:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	17		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-13

Not Specified

DUP-1

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 08:30

Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	10		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-13 Date Collected: 01/02/24 08:30

Client ID: DUP-1 Date Received: 01/03/24 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	103	70-130	

01/02/24 09:55

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

Lab ID: L2400400-14

Client ID: DUP-2

Sample Location:

Not Specified

Date Received: 01/03/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 01/06/24 19:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	52		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-14

Not Specified

DUP-2

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 09:55

Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Volatile Organics by GC/MS - Westborough Lab Trichtoroethene 6.9 ug/l 0.50 0.18 1 1,2-Dichlorobenzene ND ug/l 2.5 0.70 1 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 ylene ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 zylene, Strate ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ug/l 2.5 0.70 1 1,2-Schichloroethene, Total 5.8 ug/l 2.5 0.70 1 1,2-Schichloroethene, Total 5.8	Peremeter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Trichidrocethane			Qualifier	Offics	NL	WIDE	Dilution Factor
1.2-Dichlorobenzene ND ugil 2.5 0.70 1 1.3-Buikhorobenzene ND ugil 2.5 0.70 1 1.4-Dichlorobenzene S.8 Ugil 2.5 0.70 1 1.4-Dichlorobenzene S.8 Ugil 2.5 0.70 1 1.2-Dichlorobenzene ND Ugil 2.0 1.0 1 1.2-Dichlorobenzene ND Ugil 2.0 1.0 1 1.2-Dichlorobenzene ND Ugil 2.0 1.0 1 1.2-Dichlorobenzene ND Ugil 2.0 0.70 1 1.2-Dichlorobenzene ND Ugil 2.5 0.70 1 1.2-Dichlorobenzene ND Ugil 2.5 0.70 1 1.3-Dichlorobenzene ND Ugil 2.5 0.70 1 1.3-Dichloropropane	Volatile Organics by GC/MS - Wes	Siborough Lab					
1,4-Dichlorobenzene ND	Trichloroethene	6.9		ug/l	0.50	0.18	1
1.4.Dichlorobenzene ND Ugl 2.5 0.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Mathyl tert buyl ether ND ugl 2.5 0.70 1 pfm-Xylene ND ugl 2.5 0.70 1 c-Xylene ND ugl 2.5 0.70 1 c-Xylene ND ugl 2.5 0.70 1 cis-1,2-Dichloroethene 5.8 ugl 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ugl 2.5 0.70 1 Dibromomethane ND ugl 5.0 1.0 1 Actoric ND ugl 5.0 1.0 1 Styrene ND ugl 5.0 1.5 1 Obchlorodifluoromethane ND ugl 5.0 1.0 1 Acetone 9.1 ugl 5.0 1.0 1 Carbon disuffide ND ugl 5.0 1.0 1 Vilvij acetate ND ugl 5.0 1.0 1 Howanone <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene ND ugl 2.5 0.70 1 o-Xylene ND ugl 2.5 0.70 1 Xylenes, Total ND ugl 2.5 0.70 1 Stylenes, Total 5.8 ugl 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ugl 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ugl 2.5 0.70 1 1,2-Britchloropropane ND ugl 2.5 0.70 1 Acylonitrie ND ugl 2.5 0.70 1 Styrene ND ugl 2.5 0.70 1 Dichlorodifluoromethane ND ugl 5.0 1.0 1 Acetone 9.1 ugl 5.0 1.0 1 Carbon disulfide ND ugl 5.0 1.0 1 Sebutanone ND ugl 5.0 1.0 1 Vinyl aceta	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene, Total 5.8 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ug/l 5.0 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2-S-Trichloropropane ND ug/l 5.0 1.5 1 Actrylonitile ND ug/l 5.0 1.5 1 Slyrene ND ug/l 5.0 1.5 1 Actrodice 9.1 ug/l 5.0 1.0 1 Actrodice 9.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Virul acetate ND ug/l 5.0 1.0 1	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 5.8 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloroptopane ND ug/l 5.0 1.5 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 9.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 <t< td=""><td>p/m-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	p/m-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene 5.8 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 5.8 ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 5.0 0.70 1 Actylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 9.1 ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1	o-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total 5.8 ug/l 2.5 0.70 1	Xylenes, Total	ND		ug/l	2.5	0.70	1
Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 9.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetale ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2	cis-1,2-Dichloroethene	5.8		ug/l	2.5	0.70	1
1,2,3-Trichloropropane ND ug/l 2.5 0.70 1	1,2-Dichloroethene, Total	5.8		ug/l	2.5	0.70	1
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 9.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Lebanone ND ug/l 2.5 0.70 1 1,2-Dibromoethane <	Dibromomethane	ND		ug/l	5.0	1.0	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 9.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 8-Porthorogene ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1,12-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobbenzene ND ug/l 2.5 0.70 1 1,1	1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1	Acrylonitrile	ND		ug/l	5.0	1.5	1
Acetone 9.1 ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2-2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dichomoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 <	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <	Acetone	9.1		ug/l	5.0	1.5	1
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Letr-Butylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1	2-Butanone	ND		ug/l	5.0	1.9	1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 ctrt-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 bro-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Vinyl acetate	ND		ug/l	5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 <th< td=""><td>Bromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></th<>	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
•	Isopropylbenzene	ND			2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-14 Date Collected: 01/02/24 09:55

Client ID: DUP-2 Date Received: 01/03/24 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	101	70-130	

01/02/24 00:00

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2400400

Report Date: 01/15/24

SAIVIFEL NESO

Lab ID: L2400400-16
Client ID: FIELD BLANK

Sample Location: Not Specified

Date Received: 01/03/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 01/06/24 19:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.5	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	3.9		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	2.4		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	2.9		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2400400

01/15/24

Project Name: 2050 HEMPSTEAD TPK

L2400400-16

Not Specified

FIELD BLANK

Project Number: 9406

SAMPLE RESULTS

Date Collected: 01/02/24 00:00

Date Received: 01/03/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	8.4		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2400400

Project Number: 9406 Report Date: 01/15/24

SAMPLE RESULTS

Lab ID: L2400400-16 Date Collected: 01/02/24 00:00

Client ID: FIELD BLANK Date Received: 01/03/24
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	105		70-130	

Project Number: 9406 Report Date: 01/15/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/07/24 19:07

arameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	02-03	Batch:	WG1871852-5
Methylene chloride	ND	uç	y/I	2.5	0.70
1,1-Dichloroethane	ND	uç	ı/l	2.5	0.70
Chloroform	ND	uç	ı/l	2.5	0.70
Carbon tetrachloride	ND	uç	ı/l	0.50	0.13
1,2-Dichloropropane	ND	uç	ı/l	1.0	0.14
Dibromochloromethane	ND	uç	ı/l	0.50	0.15
1,1,2-Trichloroethane	ND	uç	ı/l	1.5	0.50
Tetrachloroethene	ND	uç	ı/l	0.50	0.18
Chlorobenzene	ND	uç	ı/l	2.5	0.70
Trichlorofluoromethane	ND	uç	ı/l	2.5	0.70
1,2-Dichloroethane	ND	uç	ı/l	0.50	0.13
1,1,1-Trichloroethane	ND	uç	ı/l	2.5	0.70
Bromodichloromethane	ND	uç	ı/l	0.50	0.19
trans-1,3-Dichloropropene	ND	uç	ı/l	0.50	0.16
cis-1,3-Dichloropropene	ND	uç	ı/l	0.50	0.14
1,3-Dichloropropene, Total	ND	uç	ı/l	0.50	0.14
1,1-Dichloropropene	ND	uç	ı/I	2.5	0.70
Bromoform	ND	uç	ı/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	uç	ı/l	0.50	0.17
Benzene	ND	uç	ı/l	0.50	0.16
Toluene	ND	uç	ı/l	2.5	0.70
Ethylbenzene	ND	uç	ı/l	2.5	0.70
Chloromethane	ND	uç	ı/l	2.5	0.70
Bromomethane	ND	uç	ı/l	2.5	0.70
Vinyl chloride	ND	uç	ı/I	1.0	0.07
Chloroethane	ND	uç	ı/I	2.5	0.70
1,1-Dichloroethene	ND	uç	ı/I	0.50	0.17
trans-1,2-Dichloroethene	ND	uç	y/I	2.5	0.70
Trichloroethene	ND	uç	ı/l	0.50	0.18

Project Number: 9406 Report Date: 01/15/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/07/24 19:07

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 0	2-03 Batch:	WG1871852-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2400400

Project Name: 2050 HEMPSTEAD TPK Lab Number:

Project Number: 9406 Report Date: 01/15/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/07/24 19:07

Parameter	Result C	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab fo	or sample(s): 02-03	Batch:	WG1871852-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	103		70-130		
Toluene-d8	103		70-130		
4-Bromofluorobenzene	106		70-130		
Dibromofluoromethane	101		70-130		

Project Number: 9406 Report Date: 01/15/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/06/24 13:33

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS -	Westborough Lab	o for sample(s):	01-02,04-14,16	Batch:	WG1871873-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Project Number: 9406 Report Date: 01/15/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/06/24 13:33

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS -	Westborough Lab	o for sample(s):	01-02,04-14,16	Batch:	WG1871873-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
Xylenes, Total	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

Project Number: 9406 Report Date: 01/15/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 01/06/24 13:33

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02,04-14,16	Batch: V	VG1871873-5
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance
Surrogate	%Recovery Qual	•
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	103	70-130

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch: W0	G1871852-3 WG1871852-4		
Methylene chloride	97		92	70-130	5	20
1,1-Dichloroethane	110		100	70-130	10	20
Chloroform	100		95	70-130	5	20
Carbon tetrachloride	100		94	63-132	6	20
1,2-Dichloropropane	100		100	70-130	0	20
Dibromochloromethane	90		88	63-130	2	20
1,1,2-Trichloroethane	94		93	70-130	1	20
Tetrachloroethene	100		88	70-130	13	20
Chlorobenzene	100		93	75-130	7	20
Trichlorofluoromethane	96		89	62-150	8	20
1,2-Dichloroethane	96		97	70-130	1	20
1,1,1-Trichloroethane	100		92	67-130	8	20
Bromodichloromethane	94		92	67-130	2	20
trans-1,3-Dichloropropene	96		92	70-130	4	20
cis-1,3-Dichloropropene	93		91	70-130	2	20
1,1-Dichloropropene	100		94	70-130	6	20
Bromoform	85		85	54-136	0	20
1,1,2,2-Tetrachloroethane	93		98	67-130	5	20
Benzene	100		95	70-130	5	20
Toluene	110		96	70-130	14	20
Ethylbenzene	110		97	70-130	13	20
Chloromethane	100		97	64-130	3	20
Bromomethane	81		75	39-139	8	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch:	WG1871852-3	WG1871852-4			
Vinyl chloride	99		91		55-140	8		20
Chloroethane	100		73		55-138	31	Q	20
1,1-Dichloroethene	96		82		61-145	16		20
trans-1,2-Dichloroethene	99		90		70-130	10		20
Trichloroethene	97		89		70-130	9		20
1,2-Dichlorobenzene	100		93		70-130	7		20
1,3-Dichlorobenzene	100		94		70-130	6		20
1,4-Dichlorobenzene	100		93		70-130	7		20
Methyl tert butyl ether	83		88		63-130	6		20
p/m-Xylene	105		95		70-130	10		20
o-Xylene	105		95		70-130	10		20
cis-1,2-Dichloroethene	99		91		70-130	8		20
Dibromomethane	90		92		70-130	2		20
1,2,3-Trichloropropane	92		100		64-130	8		20
Acrylonitrile	95		110		70-130	15		20
Styrene	100		95		70-130	5		20
Dichlorodifluoromethane	76		71		36-147	7		20
Acetone	89		100		58-148	12		20
Carbon disulfide	100		87		51-130	14		20
2-Butanone	83		96		63-138	15		20
Vinyl acetate	96		100		70-130	4		20
4-Methyl-2-pentanone	86		98		59-130	13		20
2-Hexanone	79		97		57-130	20		20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch:	WG1871852-3	WG1871852-4			
Bromochloromethane	93		90		70-130	3	20	
2,2-Dichloropropane	110		98		63-133	12	20	
1,2-Dibromoethane	92		93		70-130	1	20	
1,3-Dichloropropane	99		98		70-130	1	20	
1,1,1,2-Tetrachloroethane	95		87		64-130	9	20	
Bromobenzene	99		92		70-130	7	20	
n-Butylbenzene	110		99		53-136	11	20	
sec-Butylbenzene	110		97		70-130	13	20	
tert-Butylbenzene	100		94		70-130	6	20	
o-Chlorotoluene	110		98		70-130	12	20	
p-Chlorotoluene	110		98		70-130	12	20	
1,2-Dibromo-3-chloropropane	79		90		41-144	13	20	
Hexachlorobutadiene	95		81		63-130	16	20	
Isopropylbenzene	110		97		70-130	13	20	
p-Isopropyltoluene	100		94		70-130	6	20	
Naphthalene	85		90		70-130	6	20	
n-Propylbenzene	110		100		69-130	10	20	
1,2,3-Trichlorobenzene	92		89		70-130	3	20	
1,2,4-Trichlorobenzene	94		87		70-130	8	20	
1,3,5-Trimethylbenzene	110		97		64-130	13	20	
1,2,4-Trimethylbenzene	110		97		70-130	13	20	
1,4-Dioxane	104		118		56-162	13	20	
p-Diethylbenzene	100		92		70-130	8	20	

L2400400

Lab Control Sample Analysis Batch Quality Control

Project Name: 2050 HEMPSTEAD TPK

Report Date: 01/15/24

Lab Number:

Project Number: 9406

Parameter	LCS %Recovery	Qual	LCS %Reco		ual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-03 Bat	ch: WG18	71852-3	WG1871852-4				
p-Ethyltoluene	110		97			70-130	13		20	
1,2,4,5-Tetramethylbenzene	95		88			70-130	8		20	
Ethyl ether	82		85			59-134	4		20	
trans-1,4-Dichloro-2-butene	91		100			70-130	9		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	99	108	70-130
Toluene-d8	106	105	70-130
4-Bromofluorobenzene	105	106	70-130
Dibromofluoromethane	96	99	70-130

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	ery RP	D	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02,04-14,16	Batch:	WG1871873-3	WG1871873-	4			
Methylene chloride	100		98		70-130	2			20	
1,1-Dichloroethane	97		100		70-130	3			20	
Chloroform	96		100		70-130	4			20	
Carbon tetrachloride	100		110		63-132	1)		20	
1,2-Dichloropropane	86		92		70-130	7			20	
Dibromochloromethane	82		86		63-130	5			20	
1,1,2-Trichloroethane	86		91		70-130	6			20	
Tetrachloroethene	99		100		70-130	1			20	
Chlorobenzene	99		100		75-130	1			20	
Trichlorofluoromethane	110		100		62-150	1)		20	
1,2-Dichloroethane	85		92		70-130	8			20	
1,1,1-Trichloroethane	97		100		67-130	3			20	
Bromodichloromethane	87		94		67-130	8			20	
trans-1,3-Dichloropropene	85		90		70-130	6			20	
cis-1,3-Dichloropropene	88		92		70-130	4			20	
1,1-Dichloropropene	96		100		70-130	4			20	
Bromoform	83		88		54-136	6			20	
1,1,2,2-Tetrachloroethane	82		90		67-130	Ş			20	
Benzene	100		100		70-130	C			20	
Toluene	99		100		70-130	1			20	
Ethylbenzene	100		100		70-130	C			20	
Chloromethane	91		82		64-130	1)		20	
Bromomethane	88		88		39-139	C			20	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s):	01-02,04-14,16	Batch:	WG1871873-3	WG1871873-4			
Vinyl chloride	100		93		55-140	7		20	
Chloroethane	100		96		55-138	4		20	
1,1-Dichloroethene	100		100		61-145	0		20	
trans-1,2-Dichloroethene	94		100		70-130	6		20	
Trichloroethene	82		87		70-130	6		20	
1,2-Dichlorobenzene	98		100		70-130	2		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	100		100		70-130	0		20	
Methyl tert butyl ether	84		90		63-130	7		20	
p/m-Xylene	100		100		70-130	0		20	
o-Xylene	95		100		70-130	5		20	
cis-1,2-Dichloroethene	96		100		70-130	4		20	
Dibromomethane	89		94		70-130	5		20	
1,2,3-Trichloropropane	86		93		64-130	8		20	
Acrylonitrile	90		86		70-130	5		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	74		68		36-147	8		20	
Acetone	81		76		58-148	6		20	
Carbon disulfide	100		97		51-130	3		20	
2-Butanone	76		78		63-138	3		20	
Vinyl acetate	91		94		70-130	3		20	
4-Methyl-2-pentanone	67		76		59-130	13		20	
2-Hexanone	66		72		57-130	9		20	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	•	PD	Qual	RPD Limits	
olatile Organics by GC/MS	- Westborough Lab Associated	sample(s):	01-02,04-14,16	Batch:	WG1871873-3	WG187187	3-4			
Bromochloromethane	100		100		70-130		0		20	
2,2-Dichloropropane	99		110		63-133		11		20	
1,2-Dibromoethane	84		89		70-130		6		20	
1,3-Dichloropropane	87		89		70-130		2		20	
1,1,1,2-Tetrachloroethane	86		91		64-130		6		20	
Bromobenzene	97		100		70-130		3		20	
n-Butylbenzene	100		110		53-136		10		20	
sec-Butylbenzene	100		110		70-130		10		20	
tert-Butylbenzene	140	Q	110		70-130		24	Q	20	
o-Chlorotoluene	88		91		70-130		3		20	
p-Chlorotoluene	97		100		70-130		3		20	
1,2-Dibromo-3-chloropropane	82		83		41-144		1		20	
Hexachlorobutadiene	100		110		63-130		10		20	
Isopropylbenzene	100		100		70-130		0		20	
p-Isopropyltoluene	100		110		70-130		10		20	
Naphthalene	93		92		70-130		1		20	
n-Propylbenzene	99		100		69-130		1		20	
1,2,3-Trichlorobenzene	96		99		70-130		3		20	
1,2,4-Trichlorobenzene	97		99		70-130		2		20	
1,3,5-Trimethylbenzene	100		100		64-130		0		20	
1,2,4-Trimethylbenzene	100		100		70-130		0		20	
1,4-Dioxane	126		104		56-162		19		20	
p-Diethylbenzene	100		100		70-130		0		20	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2400400

Report Date:

01/15/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recover Limits	y RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02,04-14,16	Batch: V	VG1871873-3	WG1871873-4			
p-Ethyltoluene	100		100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	90		93		70-130	3		20	
Ethyl ether	87		96		59-134	10		20	
trans-1,4-Dichloro-2-butene	83		90		70-130	8		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	91	97	70-130	
Toluene-d8	99	100	70-130	
4-Bromofluorobenzene	98	99	70-130	
Dibromofluoromethane	98	101	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou	_	Recover / Qual Limits	y RPD	RPD Qual Limits
Volatile Organics by GC/MS - Client ID: MLW-1ID	- Westborough	Lab Ass	ociated sample(s): 01-02,04-14	,16 QC Batch	ID: WG1871873-	6 WG1871873-7	QC Sam	ple: L2400400-04
Methylene chloride	ND	10	9.8	98	9.9	95	70-130	3	20
1,1-Dichloroethane	ND	10	13	130	9.9	99	70-130	27	Q 20
Chloroform	ND	10	10	100	10	100	70-130	0	20
Carbon tetrachloride	ND	10	11	110	1′	110	63-132	0	20
1,2-Dichloropropane	ND	10	9.2	92	9.0	90	70-130	2	20
Dibromochloromethane	ND	10	8.5	85	8.3	83	63-130	2	20
1,1,2-Trichloroethane	ND	10	8.8	88	8.0	86	70-130	2	20
Tetrachloroethene	2.0	10	11	90	11	90	70-130	0	20
Chlorobenzene	ND	10	9.8	98	9.0	96	75-130	2	20
Trichlorofluoromethane	ND	10	11	110	11	110	62-150	0	20
1,2-Dichloroethane	ND	10	9.4	94	9.0	90	70-130	4	20
1,1,1-Trichloroethane	ND	10	11	110	10	100	67-130	10	20
Bromodichloromethane	ND	10	9.1	91	9.0	90	67-130	1	20
trans-1,3-Dichloropropene	ND	10	8.3	83	8.0	80	70-130	4	20
cis-1,3-Dichloropropene	ND	10	8.6	86	8.4	84	70-130	2	20
1,1-Dichloropropene	ND	10	9.9	99	9.9	99	70-130	0	20
Bromoform	ND	10	8.4	84	8.0	80	54-136	5	20
1,1,2,2-Tetrachloroethane	ND	10	8.6	86	8.2	2 82	67-130	5	20
Benzene	ND	10	10	100	10	100	70-130	0	20
Toluene	ND	10	9.8	98	9.	97	70-130	1	20
Ethylbenzene	ND	10	9.8	98	9.	97	70-130	1	20
Chloromethane	ND	10	9.2	92	9.0	90	64-130	2	20
Bromomethane	ND	10	5.8	58	6.	5 65	39-139	11	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Client ID: MLW-1ID	- Westborough I	∟ab Asso	ciated sample	(s): 01-02,04-14,	,16 QC Batch ID:	WG1871873-6	WG1871873-7 C	C Sam	ple: L2400400-04
Vinyl chloride	ND	10	9.8	98	9.7	97	55-140	1	20
Chloroethane	ND	10	10	100	10	100	55-138	0	20
1,1-Dichloroethene	ND	10	11	110	10	100	61-145	10	20
rans-1,2-Dichloroethene	ND	10	10	100	10	100	70-130	0	20
Trichloroethene	ND	10	10	100	8.4	84	70-130	17	20
1,2-Dichlorobenzene	ND	10	9.6	96	9.5	95	70-130	1	20
1,3-Dichlorobenzene	ND	10	9.8	98	9.6	96	70-130	2	20
1,4-Dichlorobenzene	ND	10	9.8	98	9.5	95	70-130	3	20
Methyl tert butyl ether	ND	10	8.6	86	8.5	85	63-130	1	20
o/m-Xylene	ND	20	20	100	19	95	70-130	5	20
o-Xylene	ND	20	19	95	19	95	70-130	0	20
cis-1,2-Dichloroethene	ND	10	10	100	9.8	98	70-130	2	20
Dibromomethane	ND	10	9.3	93	8.9	89	70-130	4	20
1,2,3-Trichloropropane	ND	10	9.0	90	8.5	85	64-130	6	20
Acrylonitrile	ND	10	8.9	89	8.8	88	70-130	1	20
Styrene	ND	20	19	95	19	95	70-130	0	20
Dichlorodifluoromethane	ND	10	7.2	72	7.2	72	36-147	0	20
Acetone	13	10	20	70	21	80	58-148	5	20
Carbon disulfide	ND	10	9.8	98	9.7	97	51-130	1	20
2-Butanone	ND	10	9.7	97	9.1	91	63-138	6	20
/inyl acetate	ND	10	9.0	90	8.8	88	70-130	2	20
4-Methyl-2-pentanone	ND	10	7.2	72	7.1	71	59-130	1	20
2-Hexanone	ND	10	7.3	73	7.1	71	57-130	3	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2400400

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou		Recovei y Qual Limits		RPD Qual Limits
Volatile Organics by GC/MS Client ID: MLW-1ID	- Westborough	Lab Asso	ciated sample(s): 01-02,04-14	,16 QC Batch	ID: WG1871873	-6 WG1871873-7	QC Sam	ple: L2400400-04
Bromochloromethane	ND	10	10	100	9.	7 97	70-130	3	20
2,2-Dichloropropane	ND	10	9.0	90	8.	7 87	63-133	3	20
1,2-Dibromoethane	ND	10	8.6	86	8.	4 84	70-130	2	20
1,3-Dichloropropane	ND	10	8.7	87	8.	4 84	70-130	4	20
1,1,1,2-Tetrachloroethane	ND	10	9.1	91	8.	7 87	64-130	4	20
Bromobenzene	ND	10	9.8	98	9.	4 94	70-130	4	20
n-Butylbenzene	ND	10	9.8	98	9.	98	53-136	0	20
sec-Butylbenzene	ND	10	10	100	10	100	70-130	0	20
ert-Butylbenzene	ND	10	10	100	13	130	70-130	26	Q 20
o-Chlorotoluene	ND	10	8.2	82	8.	1 81	70-130	1	20
o-Chlorotoluene	ND	10	9.6	96	9.	3 93	70-130	3	20
1,2-Dibromo-3-chloropropane	ND	10	7.9	79	7.	78	41-144	1	20
Hexachlorobutadiene	ND	10	9.5	95	9.	7 97	63-130	2	20
Isopropylbenzene	ND	10	10	100	9.	7 97	70-130	3	20
p-Isopropyltoluene	ND	10	10	100	10	100	70-130	0	20
Naphthalene	ND	10	8.3	83	8.	3 83	70-130	0	20
n-Propylbenzene	ND	10	9.7	97	9.	96	69-130	1	20
1,2,3-Trichlorobenzene	ND	10	9.0	90	8.	9 89	70-130	1	20
1,2,4-Trichlorobenzene	ND	10	8.8	88	8.	7 87	70-130	1	20
1,3,5-Trimethylbenzene	ND	10	10	100	9.	98	64-130	2	20
1,2,4-Trimethylbenzene	ND	10	9.8	98	9.	6 96	70-130	2	20
1,4-Dioxane	ND	500	570	114	57	0 114	56-162	0	20
p-Diethylbenzene	ND	10	9.5	95	9.	4 94	70-130	1	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2400400

Report Date:

01/15/24

Parameter	Native Sample	MS Add		MS %Recovery	Qual	MSD Found	MSD %Recovery		Recover Limits	y RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Client ID: MLW-1ID	- Westborough	Lab /	Associated sample	(s): 01-02,04-14	,16 C	QC Batch ID:	WG1871873-6	WG187	1873-7	QC Samp	ole: L240	0400-04
p-Ethyltoluene	ND	1	10 9.9	99		9.7	97		70-130	2		20
1,2,4,5-Tetramethylbenzene	ND	1	10 8.4	84		8.3	83		70-130	1		20
Ethyl ether	ND	1	9.2	92		8.9	89		59-134	3		20
trans-1,4-Dichloro-2-butene	ND	1	10 8.4	84		8.0	80		70-130	5		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	99	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	104	103	70-130
Toluene-d8	98	99	70-130

Serial_No:01152412:36 *Lab Number:* L2400400

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406 Report Date: 01/15/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2400400-01A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-01B	Vial HCI preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-01C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-02A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-02B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-02C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-03A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-03B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-03C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04D	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04E	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04F	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04G	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04H	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-04I	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-05A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-05B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-05C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-06A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-06B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)

Serial_No:01152412:36

Lab Number: L2400400

Report Date: 01/15/24

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2400400-06C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-07A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-07B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-07C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-08A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-08B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-08C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-09A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-09B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-09C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-10A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-10B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-10C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-11A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-11B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-11C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-12A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-12B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-12C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-13A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-13B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-13C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-14A	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-14B	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-14C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-16A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-16B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260(14)
L2400400-16C	Vial HCl preserved	А	NA		3.5	Υ	Absent		NYTCL-8260(14)

Serial_No:01152412:36

Lab Number: L2400400

Report Date: 01/15/24

Container Information Initial Final Temp Frozen

Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)

Project Name:

Project Number: 9406

2050 HEMPSTEAD TPK

Project Name:2050 HEMPSTEAD TPKLab Number:L2400400Project Number:9406Report Date:01/15/24

GLOSSARY

Acronyms

EDL

EMPC

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2050 HEMPSTEAD TPKLab Number:L2400400Project Number:9406Report Date:01/15/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:2050 HEMPSTEAD TPKLab Number:L2400400Project Number:9406Report Date:01/15/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:01152412:36

Project Name:2050 HEMPSTEAD TPKLab Number:L2400400Project Number:9406Report Date:01/15/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:01152412:36

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	NEW YORK	Service Centers Mahwah, NJ 07430: 35 Whi	tney Rd. Suite 5		Pag		Date Re	e'd I I	
ΔLPHA	CHAIN OF CUSTODY	Albany, NY 12205: 14 Walk Tonawanda, NY 14150: 275	er Way	105	10	of 2	in Lat		ALPHA Job #
Westborough, MA 01581	Mansfield, MA 02048	TO 100 ON THE REAL PROPERTY.	37242 343 2130				Bollowsplates		LZ400400
8 Walkup Dr. TEL: 508-896-9220	320 Forbes Blvd TEL 508-822-9300	Project Information			1 =	73.	Deliverables ASP-A	ASP-B	Billing Information Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3268		050 H	empsteo	d luir	pike	EQuis (
Client Information	-	Project Location:			_		Other	Tile) caus (4 File), IFO
Client Information		Project# 940						n Ilminia	Disposal Site Information
		(Use Project name as	Project #)	_			Regulatory Re		A STATE OF THE PARTY OF THE PAR
Address: 170 K	Leyland CT	Project Manager:					= =		r lease identity below localitin or
Bohemia, N	4	ALPHAQuote #:	-				AWQ Star		***************************************
Phone:		Turn-Around Time	53	-/			NY Restric	100	Disposal Facility
Fax: Stand			ard 🔀	Due Date			NY Unrest		□ NJ □ NY
-		- Paring	ved)	# of Days	50			er Discharge	Other:
These samples have b							ANALYSIS		Sample Filtration
Other project specific	c requirements/comm	nents:					3		Done
							100		Lab to do
									Preservation Lab to do
Please specify Metals	or TAL.						2	4 1 1 1	
							12		(Please Specify below)
ALPHA Lab ID		mple ID	Col	lection	Sample	Sampler's	7		
(Lab Use Only)	36	inple ID	Date	Time	Matrix	Initials	0		Sample Specific Comments
00400	IW- 10		1/2/24	0810	L	TI	X		
-12	IW-30		1	0820		1	til o		Xneeds to be
-03	MLW- IIS		Trans.	0825					sampled in
-04	MLW-IID			0835	1 - 1 - 1				7 days
-05	MLW-ID			0842	1 - 1 - 1				1 / 5 / 3
-06	3 MLW-	27		0900				1-1-1-1-	
60	MLW-3I			0910	+				
-08	MLW &	MIN-67		0920					
-09	MLW-73		1 - 1 -	0930					
-10	MLW-8I			0935					
Preservative Code:	Container Code	Westboro: Certification	No MADZE	10435	-				The second second second
A = None	P = Plastic	O'CLE STATE TO STATE STATE OF THE STATE OF T			Con	tainer Type	1 1 1 1 1 1 1 1	14 1 = 1 = 1	Please print clearly, legibly
B = HCI A = Amber Glass Mansfield: Certification No C = HNO ₃ V = Vlat D = H ₂ SO ₄ G = Glass			NO: WAU 13						and completely. Samples car not be logged in and
					P	reservative	1.111.11		turnaround time clock will no
110001	B = Bacteria Cup C = Cube	E107131	7-1	T	_				start until any ambiguities are
S = NaHSO ₄	O = Other	Relinquishe	d By:	Date		NA	Received By	Date/Tin	THE DOC THE SHEET
1 - 1403-2503	E = Encore D = BOD Bottle	Ja se	~	1/3/24	1700	-	7	7	HAS READ AND AGREES
UE = Zn Ac/NaOH) = Other	D - BOD BOILE	MA	No	113	1995	CAN	nony g	reen JAN 03 2021	
			Freen		2345		SOF	1/2/2Y 23	(Con entirena alda)
200 701 25 80 (rev. 30)-Sept-2013)	2000	-	44124	3145	1		114124 0	(See reverse side.)

ДІРНА	CUSTODY Tonawanda, NY 14150: 275 Cooper Ave			105	Pag 2			Date Rec'd in Lab	1/4/2	ALPHA Job #		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		200			Deliv	erables			Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-622-3288	Project Name: 209	50 Hemp	istead Tur	npike			ASP-A EQuIS (1 Fi		SP-B QuIS (4 File)	Same as Client Info	
Client Information		Project # 9406						Other				
Client: TEC		(Use Project name as F					Regu	latory Requir	ement		Disposal Site Information	
Address: 170 Kg	eyland Ct	Project Manager:	roject Manager:					NY TOGS	□ N	Y Part 375	Please identify below location of	
Bohemia, N		ALPHAQuote #:					AWQ Standards NY CP-51				applicable disposal facilities.	
Phone		Turn-Around Time	Turn-Around Time					NY Restricted	Use 0	ther	Disposal Facility	
Fax:		Standar	rd 🔀	Due Date:				NY Unrestricte	ed Use		□ NJ □ NY	
Email: delatoente	Dimpactenuironm	Rush (only if pre approve	d) [# of Days;				NYC Sewer D	ischarge		Other:	
These samples have b							ANAL	YSIS			Sample Filtration	
Please specify Metals	or TAL.						375 VOC				Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID	Sa.	mple ID	Collection			Sampler's	Part					
(Lab Use Only)		mple to	Date	Time	Matrix	Initials	00				Sample Specific Comments	
00400 11	MLW-8D		1/2/24	0458940	L	75	×					
-12	MLW-9I			0950		1	11	14 14			* needs to be	
-04	MS			0846							sampled in	
J	MSD			0840	Till i	- 1					7 days	
-13	Dup-1			0836	55							
-14	Dup-2			0955		1						
-15	Trip Blan	14	100									
-16	Field Blan	a)c	1		1	X	7	++	-++			
= None	Container Code P = Plastic	Westboro: Certification N			Con	tainer Type					Please print clearly, legibly	
# = HCl		Mansfield: Certification No: MA015			Preservative				1		and completely. Samples can not be logged in and turnaround time clock will no start until any ambiguities are	
= NaHSO ₄ = Na ₂ S ₂ O ₃ /E = Zn Ac/NaOH	C = Cube O = Olher E = Encore D = BOD Bottle	Relinquished	AN)	V3/25	A			Required By:		1700 3 2024 2003	resolved, BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
= Other		Anthony	Freen	1/3/24 2	2345		82			Y 2345	TERMS & CONDITIONS. (See reverse side.)	
m No. 01-25 HC (rev. 30-	-Sept-2013)	000		1/4/24 0	1145	-			114/2	1 0145	face of the pinest.	

ANALYTICAL REPORT

Lab Number: L2436394

Client: Impact Environmental

170 Keyland Ct Bohemia, NY 11716

ATTN: Julie de la Fuente Phone: (631) 269-8800

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406 Report Date: 07/05/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

 Lab Number:
 L2436394

 Report Date:
 07/05/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2436394-01	MLW-0I	WATER	Not Specified	06/26/24 09:00	06/27/24
L2436394-02	IW-1D	WATER	Not Specified	06/26/24 09:05	06/27/24
L2436394-03	IW-2D	WATER	Not Specified	06/26/24 09:10	06/27/24
L2436394-04	IW-3D	WATER	Not Specified	06/26/24 09:15	06/27/24
L2436394-05	MLW-1IS	WATER	Not Specified	06/26/24 09:20	06/27/24
L2436394-06	DUP-1(MLW-1IS)	WATER	Not Specified	06/26/24 09:25	06/27/24
L2436394-07	MLW-1ID	WATER	Not Specified	06/26/24 09:30	06/27/24
L2436394-08	MLW-1ID	WATER	Not Specified	06/26/24 09:40	06/27/24
L2436394-09	SW-1	WATER	Not Specified	06/26/24 09:45	06/27/24
L2436394-10	MLW-2I	WATER	Not Specified	06/26/24 09:50	06/27/24
L2436394-11	MLW-2D	WATER	Not Specified	06/26/24 09:53	06/27/24
L2436394-12	MLW-3I	WATER	Not Specified	06/26/24 10:00	06/27/24
L2436394-13	MLW-3D	WATER	Not Specified	06/26/24 10:02	06/27/24
L2436394-14	MLW-6I	WATER	Not Specified	06/26/24 10:10	06/27/24
L2436394-15	MLW-6D	WATER	Not Specified	06/26/24 10:14	06/27/24
L2436394-16	MLW-7I	WATER	Not Specified	06/26/24 10:20	06/27/24
L2436394-17	MLW-7D	WATER	Not Specified	06/26/24 10:25	06/27/24
L2436394-18	MLW-8I	WATER	Not Specified	06/26/24 10:30	06/27/24
L2436394-19	MLW-8D	WATER	Not Specified	06/26/24 10:35	06/27/24
L2436394-20	MLW-9I	WATER	Not Specified	06/26/24 10:40	06/27/24
L2436394-21	DUP-2 (MLW-9I)	WATER	Not Specified	06/26/24 10:43	06/27/24
L2436394-22	TRIP BLANK	WATER	Not Specified	06/26/24 00:00	06/27/24
L2436394-23	FIELD BLANK	WATER	Not Specified	06/26/24 00:00	06/27/24
Page 2 of 104					Δ

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2436394

Project Number: 9406 Report Date: 07/05/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 2050 HEMPSTEAD TPK Lab Number: L2436394
Project Number: 9406 Report Date: 07/05/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/05/24

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Report Date: 07/05/24

Lab Number:

Date Collected:

Lab ID: L2436394-01 Client ID: MLW-0I

Sample Location: Not Specified

Field Prep:

06/26/24 09:00

L2436394

Date Received: 06/27/24 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 10:38

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2436394

Project Name: 2050 HEMPSTEAD TPK **Lab Number:**

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-01 Date Collected: 06/26/24 09:00

Client ID: MLW-0I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Triableseath and	ND			0.50	0.40	4
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	<u> </u>
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	6.5		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	6.2		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
<u> </u>						

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-01 Date Collected: 06/26/24 09:00

Client ID: MLW-0I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	104	70-130	

06/26/24 09:05

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Date Collected:

Lab ID: L2436394-02 D

Client ID: I۷

Sample Location: Ν

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 17:03

Analyst: MAG

W-1D Not Specified	Date Received: Field Prep:	06/27/24 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
Methylene chloride	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5	
Chloroform	ND		ug/l	6.2	1.8	2.5	
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5	
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5	
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5	
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5	
Tetrachloroethene	280		ug/l	1.2	0.45	2.5	
Chlorobenzene	ND		ug/l	6.2	1.8	2.5	
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5	
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5	
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5	
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5	
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5	
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5	
1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5	
Bromoform	ND		ug/l	5.0	1.6	2.5	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5	
Benzene	ND		ug/l	1.2	0.40	2.5	
Toluene	ND		ug/l	6.2	1.8	2.5	
Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Chloromethane	ND		ug/l	6.2	1.8	2.5	
Bromomethane	ND		ug/l	6.2	1.8	2.5	
Vinyl chloride	ND		ug/l	2.5	0.18	2.5	
Chloroethane	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5	
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-02 D Date Collected: 06/26/24 09:05

Client ID: IW-1D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS	- Westborough Lab						
Trichloroethene	ND		ug/l	1.2	0.44	2.5	
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	0.42	2.5	
p/m-Xylene	ND		ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
Xylenes, Total	ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethene, Total	ND		ug/l	6.2	1.8	2.5	
Dibromomethane	ND		ug/l	12	2.5	2.5	
1,2,3-Trichloropropane	ND		ug/l	6.2	1.8	2.5	
Acrylonitrile	ND		ug/l	12	3.8	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	7.1	J	ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
Vinyl acetate	ND		ug/l	12	2.5	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
Bromochloromethane	ND		ug/l	6.2	1.8	2.5	
2,2-Dichloropropane	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
1,3-Dichloropropane	ND		ug/l	6.2	1.8	2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l	6.2	1.8	2.5	
Bromobenzene	ND		ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
o-Chlorotoluene	ND		ug/l	6.2	1.8	2.5	
p-Chlorotoluene	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Hexachlorobutadiene	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-02 D Date Collected: 06/26/24 09:05

Client ID: IW-1D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
p-Diethylbenzene	ND		ug/l	5.0	1.8	2.5	
p-Ethyltoluene	ND		ug/l	5.0	1.8	2.5	
1,2,4,5-Tetramethylbenzene	ND		ug/l	5.0	1.4	2.5	
Ethyl ether	ND		ug/l	6.2	1.8	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	105	70-130	

06/26/24 09:10

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Date Collected:

Lab ID: L2436394-03

Client ID: IW-2D

Sample Location: Not Specified

Date Received: 06/27/24
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 11:02

Analyst: MAG

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-03 Date Collected: 06/26/24 09:10

Client ID: IW-2D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-03 Date Collected: 06/26/24 09:10

Client ID: IW-2D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	103	70-130	

06/26/24 09:15

Not Specified

06/27/24

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Date Collected:

Date Received:

Field Prep:

Lab ID: L2436394-04 D

Client ID: IW-3D

Sample Location: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 17:27

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	1200		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-04 D Date Collected: 06/26/24 09:15

Client ID: IW-3D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	1.7	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Xylenes, Total	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
Vinyl acetate	ND		ug/l	50	10.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-04 D Date Collected: 06/26/24 09:15

Client ID: IW-3D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	103	70-130	

06/26/24 09:20

Dilution Factor

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Date Collected:

Result

Lab ID: L2436394-05

Client ID: MLW-1IS Sample Location: Not Specified Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Parameter

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 07/03/24 11:26

Analyst: MAG

Parameter	Result	Qualifier Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1	
Chloroform	ND	ug/l	2.5	0.70	1	
Carbon tetrachloride	ND	ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1	
Dibromochloromethane	ND	ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1	
Tetrachloroethene	2.4	ug/l	0.50	0.18	1	
Chlorobenzene	ND	ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1	
Bromodichloromethane	ND	ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1	
Bromoform	ND	ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1	
Benzene	ND	ug/l	0.50	0.16	1	
Toluene	ND	ug/l	2.5	0.70	1	
Ethylbenzene	ND	ug/l	2.5	0.70	1	
Chloromethane	ND	ug/l	2.5	0.70	1	
Bromomethane	ND	ug/l	2.5	0.70	1	
Vinyl chloride	ND	ug/l	1.0	0.07	1	
Chloroethane	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	

Qualifier

Units

RL

MDL

L2436394

Project Name: 2050 HEMPSTEAD TPK Lab Number:

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-05 Date Collected: 06/26/24 09:20

Client ID: MLW-1IS Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westbo	Volatile Organics by GC/MS - Westborough Lab							
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
Xylenes, Total	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1		
Dibromomethane	ND		ug/l	5.0	1.0	1		
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1		
Acrylonitrile	ND		ug/l	5.0	1.5	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	5.6		ug/l	5.0	1.5	1		
Carbon disulfide	ND		ug/l	5.0	1.0	1		
2-Butanone	4.8	J	ug/l	5.0	1.9	1		
Vinyl acetate	ND		ug/l	5.0	1.0	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1		
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1		
Bromobenzene	ND		ug/l	2.5	0.70	1		
n-Butylbenzene	ND		ug/l	2.5	0.70	1		
sec-Butylbenzene	ND		ug/l	2.5	0.70	1		
tert-Butylbenzene	ND		ug/l	2.5	0.70	1		
o-Chlorotoluene	ND		ug/l	2.5	0.70	1		
p-Chlorotoluene	ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
Naphthalene	ND		ug/l	2.5	0.70	1		

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-05 Date Collected: 06/26/24 09:20

Client ID: MLW-1IS Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	104	70-130	

06/26/24 09:25

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Date Collected:

Report Date: 07/05/24

Lab ID: L2436394-06

Client ID: DUP-1(MLW-1IS) Sample Location: Not Specified

Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 11:50

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	2.4		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2436394

Project Name: 2050 HEMPSTEAD TPK Lab Number:

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-06 Date Collected: 06/26/24 09:25

Client ID: DUP-1(MLW-1IS) Date Received: 06/27/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	5.2		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-06 Date Collected: 06/26/24 09:25

Client ID: DUP-1(MLW-1IS) Date Received: 06/27/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
p-Diethylbenzene	ND		ug/l	2.0	0.70	1			
p-Ethyltoluene	ND		ug/l	2.0	0.70	1			
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1			
Ethyl ether	ND		ug/l	2.5	0.70	1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	104	70-130	

Project Name: 2050 HEMPSTEAD TPK

L2436394-07

Not Specified

MLW-1ID

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Date Collected: 06/26/24 09:30

Date Received: 06/27/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 12:14

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	3.8		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	0.74		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	1.2		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

L2436394

Project Name: 2050 HEMPSTEAD TPK

L2436394-07

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Date Collected: 06/26/24 09:30

Lab Number:

Client ID: MLW-1ID Date Received: 06/27/24
Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	1.3		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND			2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND ND		ug/l	2.5	0.70	1
<u> </u>	ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane .	ND		ug/l	5.0	1.0	1
Acetone	7.4		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	5.5		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-07 Date Collected: 06/26/24 09:30

Client ID: MLW-1ID Date Received: 06/27/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	117	70-130	
Dibromofluoromethane	106	70-130	

06/26/24 09:40

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-08

Client ID: MLW-1ID Sample Location: Not Specified Date Received: 06/27/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 07/03/24 12:38

Analyst: MAG

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2.5		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-08 Date Collected: 06/26/24 09:40

Client ID: MLW-1ID Date Received: 06/27/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	7.1		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	6.0		ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-08 Date Collected: 06/26/24 09:40

Client ID: MLW-1ID Date Received: 06/27/24
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

•/ ····· == ···

Lab ID: L2436394-09

Client ID: SW-1

Sample Location: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 13:02

Analyst: MAG

Date Collected:	06/26/24 09:45
Date Received:	06/27/24
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-09 Date Collected: 06/26/24 09:45

Client ID: SW-1 Date Received: 06/27/24

Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier Un	its RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab				
Trichloroethene	ND	uç	g/l 0.5	0.18	1
1,2-Dichlorobenzene	ND	uç	g/l 2.5	0.70	1
1,3-Dichlorobenzene	ND	uç	g/l 2.5	0.70	1
1,4-Dichlorobenzene	ND	uç	g/l 2.5	0.70	1
Methyl tert butyl ether	ND	uç	g/l 2.5	0.17	1
p/m-Xylene	ND	uç	g/l 2.5	0.70	1
o-Xylene	ND	uç	g/l 2.5	0.70	1
Xylenes, Total	ND	uç	g/l 2.5	0.70	1
cis-1,2-Dichloroethene	ND	uç	g/l 2.5	0.70	1
1,2-Dichloroethene, Total	ND	uç	g/l 2.5	0.70	1
Dibromomethane	ND	uç	g/l 5.0	1.0	1
1,2,3-Trichloropropane	ND	uç	g/l 2.5	0.70	1
Acrylonitrile	ND	uç	g/l 5.0	1.5	1
Styrene	ND	uç	g/l 2.5	0.70	1
Dichlorodifluoromethane	ND	uç	g/l 5.0	1.0	1
Acetone	5.5	uç	g/l 5.0	1.5	1
Carbon disulfide	ND	uç	g/l 5.0	1.0	1
2-Butanone	ND	uç	g/l 5.0	1.9	1
Vinyl acetate	ND	uç	g/l 5.0	1.0	1
4-Methyl-2-pentanone	ND	uç	g/l 5.0	1.0	1
2-Hexanone	ND	uç	g/l 5.0	1.0	1
Bromochloromethane	ND	uç	g/l 2.5	0.70	1
2,2-Dichloropropane	ND	uç	g/l 2.5	0.70	1
1,2-Dibromoethane	ND	uç	g/l 2.0	0.65	1
1,3-Dichloropropane	ND	uç	g/l 2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	uç	g/l 2.5	0.70	1
Bromobenzene	ND	uç	g/l 2.5	0.70	1
n-Butylbenzene	ND	uç	g/l 2.5	0.70	1
sec-Butylbenzene	ND	uç	g/l 2.5	0.70	1
tert-Butylbenzene	ND	uç	g/l 2.5	0.70	1
o-Chlorotoluene	ND	uç	g/l 2.5	0.70	1
p-Chlorotoluene	ND	uç	g/l 2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	uç	g/l 2.5	0.70	1
Hexachlorobutadiene	ND	uç	g/l 2.5	0.70	1
Isopropylbenzene	ND	uç	g/l 2.5	0.70	1
p-Isopropyltoluene	ND	uç	g/l 2.5	0.70	1
Naphthalene	ND	uç	g/l 2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-09 Date Collected: 06/26/24 09:45

Client ID: SW-1 Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	107	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-10

Client ID: MLW-2I Sample Location: Not Specified Date Collected: 06/26/24 09:50 Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 13:26

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	6.9		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2436394

Project Name: 2050 HEMPSTEAD TPK Lab Number:

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

L2436394-10 Date Collected: 06/26/24 09:50

Client ID: MLW-2I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	5.8		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND			2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
	ND		ug/l	2.5	0.70	1
p/m-Xylene o-Xylene	ND ND		ug/l	2.5	0.70	1
	ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	5.4		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	5.4		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	6.1		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	5.3		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-10 Date Collected: 06/26/24 09:50

Client ID: MLW-2I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	108	70-130	

L2436394

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 07/05/24

Lab ID: L2436394-11

Client ID: MLW-2D Sample Location: Not Specified

06/26/24 09:53 Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 13:50

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	2.9		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.20	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.83		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-11 Date Collected: 06/26/24 09:53

Client ID: MLW-2D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
Trichloroethene	0.88		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	5.7		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	4.6	J	ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-11 Date Collected: 06/26/24 09:53

Client ID: MLW-2D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	106	70-130	

L2436394

07/05/24

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2436394-12

Client ID: MLW-3I Sample Location: Not Specified Date Collected: 06/26/24 10:00 Date Received: 06/27/24

Date Received: 06/27/24
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 14:14

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-12 Date Collected: 06/26/24 10:00

Client ID: MLW-3I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	4.7		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	11		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	11		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-12 Date Collected: 06/26/24 10:00

Client ID: MLW-3I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough	Volatile Organics by GC/MS - Westborough Lab									
						,				
n-Propylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
p-Diethylbenzene	ND		ug/l	2.0	0.70	1				
p-Ethyltoluene	ND		ug/l	2.0	0.70	1				
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1				
Ethyl ether	ND		ug/l	2.5	0.70	1				
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	108	70-130	

06/26/24 10:02

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-13 Client ID: MLW-3D

Client ID: MLW-3D Sample Location: Not Specified Date Received: 06/27/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 14:38

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.39	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.18	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-13 Date Collected: 06/26/24 10:02

Client ID: MLW-3D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Trichloroethene	0.27	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-13 Date Collected: 06/26/24 10:02

Client ID: MLW-3D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	107	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-14

Client ID: MLW-6I Sample Location:

Field Prep:

Date Collected:

06/26/24 10:10

Not Specified

Date Received: 06/27/24 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 07/03/24 15:03

Analyst: MAG

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2436394

Project Name: Lab Number: 2050 HEMPSTEAD TPK

Project Number: Report Date: 9406 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-14 Date Collected: 06/26/24 10:10

Client ID: Date Received: 06/27/24 MLW-6I Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-14 Date Collected: 06/26/24 10:10

Client ID: MLW-6I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	107	70-130	

06/26/24 10:14

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-15

Client ID: MLW-6D Sample Location: Not Specified Date Received: 06/27/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 15:27

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-15 Date Collected: 06/26/24 10:14

Client ID: MLW-6D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	7.3		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	5.5		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-15 Date Collected: 06/26/24 10:14

Client ID: MLW-6D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	107	70-130	

L2436394

06/26/24 10:20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Report Date: 07/05/24

Lab Number:

Date Collected:

Lab ID: L2436394-16

Client ID: MLW-7I Sample Location: Not Specified Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 15:51

Analyst: MAG

Volatile Organics by GC/MS - Westborough	h I ah				
	Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	13	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

L2436394

07/05/24

Project Name: 2050 HEMPSTEAD TPK

L2436394-16

Project Number: 9406 Report Date:

SAMPLE RESULTS

Date Collected: 06/26/24 10:20

Lab Number:

Client ID: MLW-7I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier Unit	s RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab				
Trichloroethene	3.5	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.17	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.0	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	6.0	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	5.1	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-16 Date Collected: 06/26/24 10:20

Client ID: MLW-7I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	106	70-130	

06/26/24 10:25

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-17

Client ID: MLW-7D Sample Location: Not Specified Date Received: 06/27/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/03/24 16:15

Analyst: MAG

Volatile Organics by GC/MS - Westborough I Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 0.50 1.0 0.50 1.5 0.50	0.70 0.70 0.70 0.13 0.14 0.15 0.50	1 1 1 1 1 1 1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 0.50 1.0 0.50 1.5 0.50	0.70 0.70 0.13 0.14 0.15 0.50	1 1 1 1 1
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	2.5 0.50 1.0 0.50 1.5 0.50	0.70 0.13 0.14 0.15 0.50	1 1 1 1 1
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	0.50 1.0 0.50 1.5 0.50	0.13 0.14 0.15 0.50	1 1 1 1
1,2-Dichloropropane Dibromochloromethane	ND ND ND 11	ug/l ug/l ug/l ug/l	1.0 0.50 1.5 0.50	0.14 0.15 0.50	1 1 1
Dibromochloromethane	ND ND 11 ND	ug/l ug/l ug/l	0.50 1.5 0.50	0.15 0.50	1
	ND 11 ND	ug/l ug/l	1.5 0.50	0.50	1
1,1,2-Trichloroethane	11 ND	ug/l	0.50		
	ND			0.18	1
Tetrachloroethene					ı
Chlorobenzene	ND	ug/i	2.5	0.70	1
Trichlorofluoromethane		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-17 Date Collected: 06/26/24 10:25

Client ID: MLW-7D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier Ur	nits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	4.9	uį	g/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	uį	g/I	2.5	0.70	1
1,3-Dichlorobenzene	ND	uį	g/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	uį	g/l	2.5	0.70	1
Methyl tert butyl ether	ND	uį	g/l	2.5	0.17	1
p/m-Xylene	ND	uį	g/l	2.5	0.70	1
o-Xylene	ND	uį	g/l	2.5	0.70	1
Xylenes, Total	ND	uį	g/l	2.5	0.70	1
cis-1,2-Dichloroethene	9.4	uį	g/l	2.5	0.70	1
1,2-Dichloroethene, Total	9.4	uį	g/l	2.5	0.70	1
Dibromomethane	ND	uį	g/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	uį	g/l	2.5	0.70	1
Acrylonitrile	ND	uį	g/l	5.0	1.5	1
Styrene	ND	uį	g/l	2.5	0.70	1
Dichlorodifluoromethane	ND	uį	g/l	5.0	1.0	1
Acetone	5.3	uį	g/l	5.0	1.5	1
Carbon disulfide	ND	uį	g/l	5.0	1.0	1
2-Butanone	ND	uį	g/l	5.0	1.9	1
Vinyl acetate	ND	uį	g/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	uį	g/l	5.0	1.0	1
2-Hexanone	ND	uį	g/l	5.0	1.0	1
Bromochloromethane	ND	uį	g/l	2.5	0.70	1
2,2-Dichloropropane	ND	uį	g/l	2.5	0.70	1
1,2-Dibromoethane	ND	uį	g/l	2.0	0.65	1
1,3-Dichloropropane	ND	uį	g/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	uį	g/l	2.5	0.70	1
Bromobenzene	ND	uį	g/l	2.5	0.70	1
n-Butylbenzene	ND	uį	g/l	2.5	0.70	1
sec-Butylbenzene	ND	uį	g/l	2.5	0.70	1
tert-Butylbenzene	ND	uį	g/l	2.5	0.70	1
o-Chlorotoluene	ND	uį	g/l	2.5	0.70	1
p-Chlorotoluene	ND	uį	g/I	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	uį	g/I	2.5	0.70	1
Hexachlorobutadiene	ND	uį	g/I	2.5	0.70	1
Isopropylbenzene	ND	u	g/I	2.5	0.70	1
p-Isopropyltoluene	ND	uį	g/I	2.5	0.70	1
Naphthalene	ND	u	g/I	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-17 Date Collected: 06/26/24 10:25

Client ID: MLW-7D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-18 Date Collected: 06/26/24 10:30

Client ID: MLW-8I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 16:39

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	8.1		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2436394

Project Name: Lab Number: 2050 HEMPSTEAD TPK

Project Number: Report Date: 9406 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-18 Date Collected: 06/26/24 10:30

Client ID: Date Received: 06/27/24 MLW-8I Sample Location: Field Prep: Not Specified Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Trichloroethene	3.9		ua/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND			2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND ND		ug/l	2.5	0.70	
<u> </u>	ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	8.7		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	8.7		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	7.2		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	5.8		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-18 Date Collected: 06/26/24 10:30

Client ID: MLW-8I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Westb	orough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	109	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-19

Client ID: MLW-8D Sample Location: Not Specified Date Collected: 06/26/24 10:35
Date Received: 06/27/24
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 13:16

Analyst: MJV

			RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	6.8	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-19 Date Collected: 06/26/24 10:35

Client ID: MLW-8D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Trichloroethene	2.2		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.4		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	4.4		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-19 Date Collected: 06/26/24 10:35

Client ID: MLW-8D Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	110	70-130	

06/26/24 10:40

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

SAMI EL RESC

Lab ID: L2436394-20
Client ID: MLW-9I

Sample Location: Not Specified

Date Received: 06/27/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 07/03/24 13:40

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	45		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-20 Date Collected: 06/26/24 10:40

Client ID: MLW-9I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	· Westborough Lab						
Trichloroethene	6.5		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	4.4		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	4.4		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	4.5	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-20 Date Collected: 06/26/24 10:40

Client ID: MLW-9I Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	115	70-130	

06/26/24 10:43

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Lab ID: L2436394-21

Client ID: DUP-2 (MLW-9I)
Sample Location: Not Specified

Date Received: 06/27/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/03/24 14:05

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.71	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	50		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2436394

Project Name: Lab Number: 2050 HEMPSTEAD TPK

Project Number: Report Date: 9406 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-21 Date Collected: 06/26/24 10:43

DUP-2 (MLW-9I) Client ID: Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	6.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.5		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	4.5		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-21 Date Collected: 06/26/24 10:43

Client ID: DUP-2 (MLW-9I) Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	110	70-130	

06/26/24 00:00

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Lab Number: L2436394

Report Date: 07/05/24

Date Collected:

Lab ID: L2436394-22

Client ID: TRIP BLANK Sample Location: Not Specified Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 07/03/24 14:29

Analyst: MJV

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-22 Date Collected: 06/26/24 00:00

Client ID: TRIP BLANK Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-22 Date Collected: 06/26/24 00:00

Client ID: TRIP BLANK Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	112	70-130	

L2436394

06/26/24 00:00

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

SAMPLE RESULTS

Report Date: 07/05/24

Lab Number:

Date Collected:

Lab ID: L2436394-23

Client ID: FIELD BLANK Sample Location: Not Specified

Date Received: 06/27/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 07/03/24 14:53

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-23 Date Collected: 06/26/24 00:00

Client ID: FIELD BLANK Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

SAMPLE RESULTS

Lab ID: L2436394-23 Date Collected: 06/26/24 00:00

Client ID: FIELD BLANK Date Received: 06/27/24 Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	110	70-130	

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/03/24 08:55

Parameter	Result	Qualifier Units	; RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-18 Batch:	WG1942938-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/03/24 08:55

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-18 Batch:	WG1942938-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2436394

Lab Number:

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406 Report Date: 07/05/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/03/24 08:55

Parameter	Result (Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab f	or sample(s):	01-18 Batch:	WG1942938-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance
Surrogate	%Recovery 0	•
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	117	70-130
Dibromofluoromethane	100	70-130

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/03/24 08:50

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	19-23 Batch:	WG1943310-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: 2050 HEMPSTEAD TPK **Lab Number:** L2436394

Project Number: 9406 Report Date: 07/05/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/03/24 08:50

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	19-23 Batch:	WG1943310-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2436394

Project Name: 2050 HEMPSTEAD TPK Lab Number:

Project Number: 9406 Report Date: 07/05/24

Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260D

07/03/24 08:50

Analytical Date: 07/0 Analyst: PID

Analytical Method:

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	19-23 Batch:	WG1943310-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

	Acceptance
%Recovery Q	ualifier Criteria
117	70-130
103	70-130
94	70-130
112	70-130
	117 103 94

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS -	Westborough Lab Associated	sample(s):	01-18 Batch:	WG1942938-3	WG1942938-4			
Methylene chloride	92		96		70-130	4		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	97		94		70-130	3		20
Carbon tetrachloride	100		100		63-132	0		20
1,2-Dichloropropane	98		100		70-130	2		20
Dibromochloromethane	91		99		63-130	8		20
1,1,2-Trichloroethane	89		95		70-130	7		20
Tetrachloroethene	96		96		70-130	0		20
Chlorobenzene	93		95		75-130	2		20
Trichlorofluoromethane	96		92		62-150	4		20
1,2-Dichloroethane	95		100		70-130	5		20
1,1,1-Trichloroethane	100		100		67-130	0		20
Bromodichloromethane	92		96		67-130	4		20
trans-1,3-Dichloropropene	95		100		70-130	5		20
cis-1,3-Dichloropropene	89		97		70-130	9		20
1,1-Dichloropropene	100		96		70-130	4		20
Bromoform	82		91		54-136	10		20
1,1,2,2-Tetrachloroethane	100		120		67-130	18		20
Benzene	95		97		70-130	2		20
Toluene	98		98		70-130	0		20
Ethylbenzene	96		95		70-130	1		20
Chloromethane	100		97		64-130	3		20
Bromomethane	35	Q	40		39-139	13		20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-18 Batch: V	VG1942938-3	WG1942938-4			
Vinyl chloride	99		93		55-140	6		20
Chloroethane	81		78		55-138	4		20
1,1-Dichloroethene	98		93		61-145	5		20
trans-1,2-Dichloroethene	95		93		70-130	2		20
Trichloroethene	84		84		70-130	0		20
1,2-Dichlorobenzene	94		96		70-130	2		20
1,3-Dichlorobenzene	95		98		70-130	3		20
1,4-Dichlorobenzene	94		97		70-130	3		20
Methyl tert butyl ether	81		94		63-130	15		20
p/m-Xylene	90		90		70-130	0		20
o-Xylene	85		85		70-130	0		20
cis-1,2-Dichloroethene	91		90		70-130	1		20
Dibromomethane	87		91		70-130	4		20
1,2,3-Trichloropropane	91		100		64-130	9		20
Acrylonitrile	100		110		70-130	10		20
Styrene	90		90		70-130	0		20
Dichlorodifluoromethane	80		75		36-147	6		20
Acetone	78		76		58-148	3		20
Carbon disulfide	100		95		51-130	5		20
2-Butanone	94		99		63-138	5		20
Vinyl acetate	160	Q	180	Q	70-130	12		20
4-Methyl-2-pentanone	91		110		59-130	19		20
2-Hexanone	89		110		57-130	21	Q	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - We	stborough Lab Associated	sample(s):	01-18 Batch: W	G1942938-3 WG1942938-4				
Bromochloromethane	87		92	70-130	6		20	
2,2-Dichloropropane	110		110	63-133	0		20	
1,2-Dibromoethane	89		99	70-130	11		20	
1,3-Dichloropropane	93		100	70-130	7		20	
1,1,1,2-Tetrachloroethane	89		98	64-130	10		20	
Bromobenzene	94		97	70-130	3		20	
n-Butylbenzene	96		92	53-136	4		20	
sec-Butylbenzene	110		100	70-130	10		20	
tert-Butylbenzene	99		96	70-130	3		20	
o-Chlorotoluene	110		110	70-130	0		20	
p-Chlorotoluene	100		100	70-130	0		20	
1,2-Dibromo-3-chloropropane	78		98	41-144	23	Q	20	
Hexachlorobutadiene	100		100	63-130	0		20	
Isopropylbenzene	96		93	70-130	3		20	
p-Isopropyltoluene	100		100	70-130	0		20	
Naphthalene	61	Q	81	70-130	28	Q	20	
n-Propylbenzene	110		100	69-130	10		20	
1,2,3-Trichlorobenzene	71		87	70-130	20		20	
1,2,4-Trichlorobenzene	80		90	70-130	12		20	
1,3,5-Trimethylbenzene	100		100	64-130	0		20	
1,2,4-Trimethylbenzene	100		100	70-130	0		20	
1,4-Dioxane	78		94	56-162	19		20	
p-Diethylbenzene	97		97	70-130	0		20	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2436394

Report Date:

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-18	Batch:	WG1942938-3	WG1942938-4				
p-Ethyltoluene	100			98		70-130	2		20	
1,2,4,5-Tetramethylbenzene	77			82		70-130	6		20	
Ethyl ether	87			94		59-134	8		20	
trans-1,4-Dichloro-2-butene	72			79		70-130	9		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	109	112	70-130	
Toluene-d8	109	107	70-130	
4-Bromofluorobenzene	120	115	70-130	
Dibromofluoromethane	103	100	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	19-23 Batch: WG	G1943310-3 WG1943310-4		
Methylene chloride	98		97	70-130	1	20
1,1-Dichloroethane	120		110	70-130	9	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	110		110	70-130	0	20
Dibromochloromethane	94		96	63-130	2	20
1,1,2-Trichloroethane	100		99	70-130	1	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	110		100	75-130	10	20
Trichlorofluoromethane	120		120	62-150	0	20
1,2-Dichloroethane	110		110	70-130	0	20
1,1,1-Trichloroethane	110		110	67-130	0	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	94		97	70-130	3	20
cis-1,3-Dichloropropene	98		100	70-130	2	20
1,1-Dichloropropene	110		110	70-130	0	20
Bromoform	88		89	54-136	1	20
1,1,2,2-Tetrachloroethane	110		110	67-130	0	20
Benzene	110		100	70-130	10	20
Toluene	110		110	70-130	0	20
Ethylbenzene	110		110	70-130	0	20
Chloromethane	100		98	64-130	2	20
Bromomethane	67		66	39-139	2	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	19-23 Batch:	WG1943310-	3 WG1943310-4		
Vinyl chloride	110		110		55-140	0	20
Chloroethane	140	Q	140	Q	55-138	0	20
1,1-Dichloroethene	96		96		61-145	0	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	94		94		70-130	0	20
1,2-Dichlorobenzene	99		100		70-130	1	20
1,3-Dichlorobenzene	100		110		70-130	10	20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	80		88		63-130	10	20
p/m-Xylene	110		110		70-130	0	20
o-Xylene	110		110		70-130	0	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Dibromomethane	94		100		70-130	6	20
1,2,3-Trichloropropane	98		97		64-130	1	20
Acrylonitrile	97		100		70-130	3	20
Styrene	110		110		70-130	0	20
Dichlorodifluoromethane	97		97		36-147	0	20
Acetone	83		89		58-148	7	20
Carbon disulfide	110		100		51-130	10	20
2-Butanone	88		96		63-138	9	20
Vinyl acetate	190	Q	200	Q	70-130	5	20
4-Methyl-2-pentanone	77		84		59-130	9	20
2-Hexanone	73		80		57-130	9	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	19-23 Batch: W0	G1943310-3 WG1943310-4		
Bromochloromethane	110		100	70-130	10	20
2,2-Dichloropropane	120		120	63-133	0	20
1,2-Dibromoethane	91		92	70-130	1	20
1,3-Dichloropropane	96		100	70-130	4	20
1,1,1,2-Tetrachloroethane	100		100	64-130	0	20
Bromobenzene	98		94	70-130	4	20
n-Butylbenzene	110		110	53-136	0	20
sec-Butylbenzene	110		110	70-130	0	20
tert-Butylbenzene	100		110	70-130	10	20
o-Chlorotoluene	110		110	70-130	0	20
p-Chlorotoluene	110		110	70-130	0	20
1,2-Dibromo-3-chloropropane	75		86	41-144	14	20
Hexachlorobutadiene	94		94	63-130	0	20
Isopropylbenzene	100		100	70-130	0	20
p-Isopropyltoluene	100		110	70-130	10	20
Naphthalene	75		80	70-130	6	20
n-Propylbenzene	110		110	69-130	0	20
1,2,3-Trichlorobenzene	84		89	70-130	6	20
1,2,4-Trichlorobenzene	84		91	70-130	8	20
1,3,5-Trimethylbenzene	110		110	64-130	0	20
1,2,4-Trimethylbenzene	100		110	70-130	10	20
1,4-Dioxane	78		84	56-162	7	20
p-Diethylbenzene	100		100	70-130	0	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number: L2436394

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	19-23	Batch:	WG1943310-3	WG1943310-4				
p-Ethyltoluene	110			110		70-130	0	l	20	
1,2,4,5-Tetramethylbenzene	91			94		70-130	3		20	
Ethyl ether	100			100		59-134	0		20	
trans-1,4-Dichloro-2-butene	97			100		70-130	3		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	107	110	70-130	
Toluene-d8	104	103	70-130	
4-Bromofluorobenzene	95	95	70-130	
Dibromofluoromethane	106	106	70-130	

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2436394

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/N MLW-1ID	1S - Westborough	Lab Assoc	ciated sample	(s): 01-18 C	C Batch ID	: WG19429	938-6 WG194	2938-7	QC Sample	: L2436	394-07	Client ID:
Methylene chloride	ND	10	9.8	98		9.4	94		70-130	4		20
1,1-Dichloroethane	3.8	10	11	72		12	82		70-130	9		20
Chloroform	ND	10	10	100		9.8	98		70-130	2		20
Carbon tetrachloride	ND	10	12	120		11	110		63-132	9		20
1,2-Dichloropropane	ND	10	11	110		10	100		70-130	10		20
Dibromochloromethane	ND	10	9.8	98		9.8	98		63-130	0		20
1,1,2-Trichloroethane	ND	10	9.8	98		9.7	97		70-130	1		20
Tetrachloroethene	0.74	10	14	133	Q	12	113		70-130	15		20
Chlorobenzene	ND	10	9.7	97		9.5	95		75-130	2		20
Trichlorofluoromethane	ND	10	11	110		11	110		62-150	0		20
1,2-Dichloroethane	ND	10	10	100		10	100		70-130	0		20
1,1,1-Trichloroethane	ND	10	12	120		11	110		67-130	9		20
Bromodichloromethane	ND	10	10	100		9.6	96		67-130	4		20
trans-1,3-Dichloropropene	ND	10	9.8	98		9.8	98		70-130	0		20
cis-1,3-Dichloropropene	ND	10	9.0	90		8.7	87		70-130	3		20
1,1-Dichloropropene	ND	10	11	110		10	100		70-130	10		20
Bromoform	ND	10	8.7	87		8.7	87		54-136	0		20
1,1,2,2-Tetrachloroethane	ND	10	11	110		12	120		67-130	9		20
Benzene	ND	10	10	100		10	100		70-130	0		20
Toluene	ND	10	10	100		10	100		70-130	0		20
Ethylbenzene	ND	10	10	100		9.7	97		70-130	3		20
Chloromethane	ND	10	11	110		10	100		64-130	10		20
Bromomethane	ND	10	2.4J	24	Q	3.5	35	Q	39-139	37	Q	20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2436394

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MLW-1ID	- Westborough L	ab Asso	ciated sample(s): 01-18 Q	C Batch ID:	: WG19429	938-6 WG1942	2938-7	QC Sample	: L243	6394-07	Client ID:
Vinyl chloride	ND	10	10	100		10	100		55-140	0		20
Chloroethane	ND	10	7.2	72		7.0	70		55-138	3		20
1,1-Dichloroethene	1.2	10	10	88		10	88		61-145	0		20
rans-1,2-Dichloroethene	ND	10	9.9	99		9.7	97		70-130	2		20
Trichloroethene	1.3	10	9.1	78		8.9	76		70-130	2		20
1,2-Dichlorobenzene	ND	10	9.5	95		9.5	95		70-130	0		20
1,3-Dichlorobenzene	ND	10	9.7	97		9.6	96		70-130	1		20
1,4-Dichlorobenzene	ND	10	9.5	95		9.4	94		70-130	1		20
Methyl tert butyl ether	ND	10	8.2	82		8.6	86		63-130	5		20
o/m-Xylene	ND	20	18	90		18	90		70-130	0		20
o-Xylene	ND	20	17	85		17	85		70-130	0		20
sis-1,2-Dichloroethene	ND	10	9.2	92		9.4	94		70-130	2		20
Dibromomethane	ND	10	9.6	96		9.1	91		70-130	5		20
1,2,3-Trichloropropane	ND	10	10	100		9.5	95		64-130	5		20
Acrylonitrile	ND	10	11	110		11	110		70-130	0		20
Styrene	ND	20	19	95		18	90		70-130	5		20
Dichlorodifluoromethane	ND	10	9.0	90		9.0	90		36-147	0		20
Acetone	7.4	10	16	86		14	66		58-148	13		20
Carbon disulfide	ND	10	10	100		10	100		51-130	0		20
2-Butanone	5.5	10	17	115		18	125		63-138	6		20
/inyl acetate	ND	10	16	160	Q	16	160	Q	70-130	0		20
4-Methyl-2-pentanone	ND	10	11	110		10	100		59-130	10		20
2-Hexanone	ND	10	11	110		11	110		57-130	0		20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2436394

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MLW-1ID	- Westborough L	.ab Asso	ciated sample(s	s): 01-18 Q	C Batch ID:	WG19429	938-6 WG1942	2938-7	QC Sample	: L243	6394-07	Client ID:
Bromochloromethane	ND	10	9.6	96		9.2	92		70-130	4		20
2,2-Dichloropropane	ND	10	8.8	88		9.2	92		63-133	4		20
1,2-Dibromoethane	ND	10	9.8	98		9.9	99		70-130	1		20
1,3-Dichloropropane	ND	10	10	100		10	100		70-130	0		20
1,1,1,2-Tetrachloroethane	ND	10	10	100		9.8	98		64-130	2		20
Bromobenzene	ND	10	9.8	98		9.4	94		70-130	4		20
n-Butylbenzene	ND	10	9.3	93		9.3	93		53-136	0		20
sec-Butylbenzene	ND	10	11	110		11	110		70-130	0		20
tert-Butylbenzene	ND	10	9.8	98		9.6	96		70-130	2		20
o-Chlorotoluene	ND	10	11	110		10	100		70-130	10		20
p-Chlorotoluene	ND	10	10	100		10	100		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	9.1	91		9.6	96		41-144	5		20
Hexachlorobutadiene	ND	10	10	100		10	100		63-130	0		20
Isopropylbenzene	ND	10	9.5	95		9.4	94		70-130	1		20
p-Isopropyltoluene	ND	10	10	100		10	100		70-130	0		20
Naphthalene	ND	10	6.7	67	Q	7.4	74		70-130	10		20
n-Propylbenzene	ND	10	11	110		11	110		69-130	0		20
1,2,3-Trichlorobenzene	ND	10	8.0	80		8.5	85		70-130	6		20
1,2,4-Trichlorobenzene	ND	10	8.4	84		8.6	86		70-130	2		20
1,3,5-Trimethylbenzene	ND	10	10	100		10	100		64-130	0		20
1,2,4-Trimethylbenzene	ND	10	10	100		10	100		70-130	0		20
1,4-Dioxane	ND	500	480	96		490	98		56-162	2		20
p-Diethylbenzene	ND	10	9.5	95		9.5	95		70-130	0		20

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Lab Number:

L2436394

Parameter	Native Sample	MS Adde	MS ed Found	MS %Recove	ery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MLW-1ID	- Westborough	Lab A	Associated sample((s): 01-18	QC	Batch ID:	WG19429	938-6 WG1942	2938-7	QC Sample	: L2436	6394-07	Client ID:
p-Ethyltoluene	ND	10	0 10	100			10	100		70-130	0		20
1,2,4,5-Tetramethylbenzene	ND	10	7.6	76			7.8	78		70-130	3		20
Ethyl ether	ND	10	0 8.8	88			8.5	85		59-134	3		20
trans-1,4-Dichloro-2-butene	ND	10	7.2	72			7.2	72		70-130	0		20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	118	114	70-130	_
4-Bromofluorobenzene	111	112	70-130	
Dibromofluoromethane	103	103	70-130	
Toluene-d8	106	106	70-130	

Project Name: 2050 HEMPSTEAD TPK Project Number: 9406

Lab Number: L2436394

Report Date: 07/05/24

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2436394-01A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-01B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-01C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-02A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-02B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-02C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-03A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-03B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-03C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-04A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-04B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-04C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-05A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-05B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-05C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-06A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-06B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-06C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07A1	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07A2	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07B	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07B1	Vial HCI preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)

Lab Number: L2436394

Report Date: 07/05/24

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2436394-07B2	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07C	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07C1	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-07C2	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-08A	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-08B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-08C	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-09A	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-09B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-09C	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-10A	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-10B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-10C	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-11A	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-11B	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-11C	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-12A	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-12B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-12C	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-13A	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-13B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-13C	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-14A	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-14B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-14C	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-15A	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-15B	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-15C	Vial HCl preserved	А	NA		3.4	Υ	Absent		NYTCL-8260(14)

Lab Number: L2436394

Report Date: 07/05/24

Project Name: 2050 HEMPSTEAD TPK

Project Number: 9406

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2436394-16A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-16B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-16C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-17A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-17B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-17C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-18A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-18B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-18C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-19A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-19B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-19C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-20A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-20B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-20C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-21A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-21B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-21C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-22A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-22B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-22C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-23A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-23B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)
L2436394-23C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: 2050 HEMPSTEAD TPK L2436394 **Report Date: Project Number:** 9406 07/05/24

GLOSSARY

Acronyms

EMPC

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME). - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

values; although the RPD value will be provided in the report.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:2050 HEMPSTEAD TPKLab Number:L2436394Project Number:9406Report Date:07/05/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:2050 HEMPSTEAD TPKLab Number:L2436394Project Number:9406Report Date:07/05/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:07052411:48

Project Name:2050 HEMPSTEAD TPKLab Number:L2436394Project Number:9406Report Date:07/05/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:07052411:48

ID No.:17873 Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Serial_No:07052411:48

	V-2-1					_		-					10017	
Διρικ	NEW YORK CHAIN OF CHAIN OF Albarry, NY 12205: 14 Walker Way CUSTODY CUSTODY Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albarry, NY 12205: 14 Walker Way Toriswanda, NY 14150: 275 Cooper Ave, Suite 105			Date Re		ALPHA JOB # 77 19								
Westborough, MA 01581	Mansfield, MA 62048	Project Information				Deliv	rerables		Billing Information					
8 Walkup Dr. TEL: 508-898-9220	320 Forbes 8/vd TEL: 508-822-9300	Personal Printers of the Party	Project Name: 2050 Henrytead Tura De Ke					TO	ASP-A	_	SP-B	Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3286	Project Location:	116	-403	The I	-ra pr		10	☐ EQuIS (1 File) ☐ EQUIS (4 File)				PO#	
Client information		Project # 94	OF						Other	1 - 0 - 1	1.5			
Client: TEC		(Use Project name as		E				Ren	-	miremen	Disposal Site Information			
Address: 170 V				_		- 1		0.0257	Regulatory Requirement NY TOGS NY Part 375				AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I	
Bohmis	cylind CT	Project Manager. ALPHAQuote #:	201.0	35	de la	trent.			AWQ Standards NY CP-51				Please identify below location of applicable disposal facilities.	
Phone: (631) 269	12222	The second second second							NY Restr		□ Ot		***************************************	
	-2000	Turn-Around Time	ard 🗡		Down Date			=		tricted Use		HE1	Disposal Facility:	
Fax:	NIMPRET	Rush (only If pre appro	and E		Due Date:								NJ NY	
			(ved)	_	# of Days:			1000		er Dischar	je		Other:	
	been previously analyz ic requirements/comm						-	ANA	LYSIS	- 1		-	Sample Filtration	
Please specify Metal		inerria.						15 VOC.					Lab to do Preservation Lab to do	
			-	- 1				W					(Please Specify below)	
(Lan Use Only)	Enmale ID			Collection		Sample Sampler		A 4						
			_)ate	Time	Matrix	Initials	Do					Sample Specific Comments	
3094-01	MLW- OI		6/21	124		4	75	X						
-02	IW-ID		- 1 1 1	1	09:005	1	1	1						
703	IW-ZD				09:10									
·aj	IW-3D				139:15									
-05	MIW-II				04:20									
-06	DU? - 1 (MLU				09:25									
-07	Wrm-II	0			09:30			1						
-07	MS-MLW-	CIII-			59:32		1 -							
707	M5D-ML	W-IID			09:35									
-0X	MLW-IT	D		V	OP-40	4	1	V						
Preservative Code: Container Code Westboro: Certification A = None P = Plastic: B = HCl A = Amber Glass Mansfield: Certification C = HNO ₃ V = VIal				No: MA935		Container Type		12					Please print clearly, legibly and completely. Samples can not be logged in and	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup	Preservation				reservative	8 0					turnaround time clock will no start until any ambiguities ar		
F = MeOH	C = Cube	Relinquished By:			Date/Tima			Recei	ved By:	G .	173	ata/Time	resolved BY EXECUTING	
H = Na ₁ S ₂ O ₁ H = Na ₂ S ₂ O ₁ H = Na ₂ S ₂ O ₁ H = Encore D = BOD Bottle D = BOD Bottle D = Other				1	1 Pace 6/1/14 10/5 1/18				THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.					
Form No: 01-25 HC (rev.	30-Sent-2013)	11/10	100000	= 6	XXIA	1	1	-	and a	ALC 9	6/23	1242330		
and the street of the tipy.	an ander wat rail	Con on	IALE	61	to /201	233	1				01-1	7 30		

ДРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 (r Way	2 of 3			Date I	ab 6	127/24	ALPHA JOHN L 24/36394	
Westborough, MA 01581 8 Walkup Dr. TEL: 505-398-9220 FAX: 508-896-9183	Mansfield, MA 02048 320 Forbes Blvd TEL 508-822-9300 FAX: 508-822-3288	Project Information Project Name: 2050 Hempstead Tornpite Project Location:			دو	Deliverable ASP-	4	ASP-B EQuIS (4 File)	Billing Information Same as Client Info		
Client Information		Project# 9406					Other				
Client TEC		(Use Project name as	-				Regulatory	Requireme	nt	Disposal Site Information	
Bohenia, N		Project Manager: ALPHAQuote #:	uliana de	LIR FU	ete		NY TO	GS Standards	Please identify below location of applicable disposel facilities.		
Phone: (631) 249		Turn-Around Time			-		NY Re	stricted Use	Other	Disposal Facility:	
Fax:		The state of the s	ard 🔀	Due Date: # of Days:				restricted Us ewer Discha		NJ NY	
These samples have be				w or Days.			ANALYSIS	9109 21221	ar-	Sample Filtration	
Other project specific	requirements/comm						S voc.			Done Lab to do Preservation Lab to do	
Please specify Metals	or TAL.						4 33			(Please Specify below)	
(Lab Use Only)			Collection Date Time		Sample Sampler Matrix Initials		25			Sample Specific Comments	
3674-09	SW-1		6126124	9:45	L	25	X	- [-			
-10	MLW-2	I	1	09150	1	1	1	-			
-11	MLW-Z	D		09:53							
-12	MLW-3	I		40:00							
-D	MLW-37			10:02							
-14	MLW- 6I			10:10							
-15	MILW-FI	>		10:14						1	
-16	MLW - 7 I			10:20							
	MUW-T			10:25							
Preservative Code: A = None	Container Code P = Ptastic	Westboro: Certification	n No: MA935	10:30	Co	ntainer Type	2			Please print clearly, legibly	
B = HCI C = HNO ₃ D = H ₂ SO ₄						Preservative	0			and completely. Samples ca not be logged in and tumeround time clock will no	
E = NaOH ' F = MeOH G = NaHSO ₄ H = Na ₂ S ₃ O ₃ IVE = Zn Ac/NaOH O = Other					alf	Received By Date/Time Pace 127/24 102 La Mangella 127/24 102 La Mangella 127/24 22			start until any ambiguities at resolved. BY EXECUTING THIS COC, THE CLIENT HAS BEAD AND AGREES TO BE BOUND BY ALPHA! TERMS & CONDITIONS, (See reverse side.)		

Westbornor, MA 01391 Marked Shed Westbornor Cartification No: MASSS Manager Shed Marked Shed Marked Shed Marked Shed Marked Shed Marked Shed Marked Shed Shed Shed Shed Shed Shed Shed Sh	ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albeny, NY 12205; 14 Walker Tonawanda, NY 14150: 275 Ce	Way	105	Page 3 of	13		Rec'd	17/21	ALPHA JOD# 26394	
TRI. 108-80-0000 FAX 508-92-101 FAX			Project Information				100	Deliverable	15		The second second	
Project Location: Project Set LOG Other	TEL: 508-898-9220	TEL: 508-898-9220 TEL: 508-822-9300 Project Name: 2-50 Hampisters Ta			mpik		ASP.	-A	ASP-B	Same as Client Info		
Client: TEC Use Project name as Project # Wr Cos NY Part 375 Project Manager: June 1 Project Manager: June 2 Project Manag	FAX: 508-898-9193	FAX: 508-822-3288						☐ EQu	S († File)	EQuIS (4 File)	POB	
Address: TO Veget Analysis Project Manager Not Cost Not Tools Not Peri 375 Presse identify below location of applicable disposal facilities. Not Peri 375 Not Tools Not Peri 375	Client Information								r			
Address: D V D V Project Manager D V Project	Client: IEC		(Use Project name as P	roject#)				Regulatory	Requireme	nt	Disposal Site Information	
AVO Standards NY CP-51 Special disposed facilities Standard NY CP-51 Special disposed facilities Standard NY CP-51 Special facilities Standard NY CP-51 Standard Special facilities Standard NY CP-51 NY Unrestricted Use NY Unrestric	Address: 170 kg	entered Ct.			e la Fu	st.		NYT	DGS	NY Part 375	Please identify below location of	
Please samples have been previously analyzed by Alpha ANALYSIS Sample Filtration Other project specific requirements/comments: ALEHA Lab LD Lab to do Preservative Code A None Preservative Code Code A None Preservative Code Code A None Preservative Code								☐ AWQ	Standards	NY CP-51	applicable disposal facilities.	
Standard Such Container Code A Nord Please specify Metals or TAL. ALENA Lab ED Lac Mark Container Code A Nord Supple Su			Turn-Around Time		-			NYR	estricted Use	Other	Disposal Facility:	
These samples have been previously analyzed by Alpha Other project specific requirements/comments: ALE HAS Lab ID (Lab to do Preservation Lab	Fax:		Standar	rd 🗵	Due Date			NYU	nrestricted Us	e	□ NJ □ NY	
These samples have been previously analyzed by Alpha Other project specific requirements/comments: ALE HAS Lab ID (Lab to do Preservation Lab	Email yela fuere	environment .	Rush (only if pre approve	d)	# of Days:			☐ NYC	Sewer Discha	rge	Other:	
Please specify Metals or TAL. ALPHA Lab to D Collection Date Time Matrix Initials ALPHA Lab to D Collection Date Time Matrix Initials ALPHA Lab to D Please Specify below) Sample Specific Comments Sample Specific Comments ALPHA Lab to D Please Specify below) Sample Specific Comments Sample Specific Comments DUP-7 (MLW-4T) DUP-7 (MLW-4T) DUP-7 (MLW-4T) Container Type A = None B = Holl A = Arriber Glass Container Type A = None B + Holl D = H, SO, C = Glass D = H, SO, C = Glass D = H, SO, C = Glass D = H, SO, C = Cube C = NoABH B = Balceha Cup F = NoOH B = Balceha Cup F = MoOH C = Cube C								ANALYSIS	3		Sample Filtration	
Please specify Metals or TAL. Collection											Done	
ALPHA Late LD Collection Date Time Matrix Initials Matrix Sample Specific Comments Sample Specific Comments Matrix Sample Specific Comments Sample Specific Comm	Please specify Metal	is or TAL.						200			Lab to do Preservation	
ALFHA Lab LD Collection Date Time Matrix Matrix Sample Specific Comments Sample Specific Com	Control opening manage							5			/Please Specify helevil	
Preservalive Code: A None B + HCI A - Amber Glass C + INO, C	ALPHEN L. L. IV			T C	illaetkin	1	Towns in the	-1000			(Flease Specify below)	
Preservative Code: A = None B = HCl: A = Amber Glass B = HCl: A = Amber Glass C = HNC ₃ D = H ₃ SO ₄ G = Glass E = NaOH E = MaOH G = NaHSO ₄ H = NaySO ₅ G = Stackeria Cup E = NaOH G = NaHSO ₄ H = NaySO ₅ G = Stackeria Cup G = NaHSO ₄ H = NaySO ₅ G = Stackeria Cup G = NaHSO ₄ H = NaySO ₅ D = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = BOD Bottle D = Cother D = RASO B = BOD Bottle D = BOD Bottle D = Cother D = RASO B = BOD Bottle D = BOD Bottle D = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = RASO B = BOD Bottle D = RASO B = BOD Bottle D = BOD Bottle D = RASO B = RASO B = BOD Bottle D = BOD Bottle D = RASO B = RASO B = BOD Bottle D = BOD Bottle D = RASO B				-	1			3			Sample Specific Comments	
Preservalive Cote: A = None B = Plastic B = NcI D = A = Amber Glass E = NaOH B = Bacteria CU E = NaOH B = Bacteria CU E = NaOH C	I Service Serv					300 - 50 - 40	-	1			Sample Specific Continents	
Preservalive Code: A = None B = P = Plastic B = HCl	26217-17			0,2012		1	103	^				
Preservalive Code: A = None B = P = Plastic B = HCl	-11			+	-							
Preservalive Code: A = Nons B = HCl) C = HASO, D = H_SO, E = NaOH C = CObe C = Container Code D = Plastic: A = Amber Gless Mansfield: Certification No: MA015 C = HNO, D = H_SO, E = NaOH E = NaOH E = NaOH C = Cobe C =					10.43		-					
Preservative Code: A = None B = HCl C = HNO ₁ C = HNO ₂ D = H ₂ SO ₂ G = Glass E = NaOH E = MaOH G = NaHSO ₂ H = Na ₂ S ₂ O ₃ H = Na ₂ S ₃ O ₃ H = Na ₃ S ₃ O ₃ H = Na	27	THE BLANK				1	1	1				
A = None P = Plastic B = HCl A = Amber Glass C = HNCl A = Amber Glass C = HNCl V = Vial D = H_SO_4 G = Glass E = NaOH B = Bactena Cup E = NaOH C = Cube G = NaHSO_4 D = Other H = Ne)iS_2O_5 D = BOD Bottle D = BOD Bottle C = Chincardon No. MAD15 Container Type Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Despived By: Date/Time Despived By: Date/Time TERMS & CONDITIONS.		FIELD	BLANK	W	-	-	1	~	-			
A = None P = Plastic B = HCl A = Amber Glass C = HNCl A = Amber Glass C = HNCl V = Vial D = H_SO_4 G = Glass E = NaOH B = Bactena Cup E = NaOH C = Cube G = NaHSO_4 D = Other H = Ne)iS_2O_5 D = BOD Bottle D = BOD Bottle C = Chincardon No. MAD15 Container Type Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Despived By: Date/Time Despived By: Date/Time TERMS & CONDITIONS.	_			+			1	-				
A = None P = Plastic B = HCl A = Amber Glass C = HNCl A = Amber Glass C = HNCl V = Vial D = H_SO_4 G = Glass E = NaOH B = Bactena Cup E = NaOH C = Cube G = NaHSO_4 D = Other H = Ne)iS_2O_5 D = BOD Bottle D = BOD Bottle C = Chincardon No. MAD15 Container Type Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Despived By: Date/Time Despived By: Date/Time TERMS & CONDITIONS.					1	-		-	-			
A = None P = Plastic B = HCl A = Amber Glass C = HNCl A = Amber Glass C = HNCl V = Vial D = H_SO_4 G = Glass E = NaOH B = Bactena Cup E = NaOH C = Cube G = NaHSO_4 D = Other H = Ne)iS_2O_5 D = BOD Bottle D = BOD Bottle C = Chincardon No. MAD15 Container Type Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Despived By: Date/Time Despived By: Date/Time TERMS & CONDITIONS.				-	_				-			
A = None P = Plastic B = HCl A = Amber Glass C = HNCl A = Amber Glass C = HNCl V = Vial D = H_SO_4 G = Glass E = NaOH B = Bactena Cup E = NaOH C = Cube G = NaHSO_4 D = Other H = Ne)iS_2O_5 D = BOD Bottle D = BOD Bottle C = Chincardon No. MAD15 Container Type Container Type Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. By EXECUTING Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Date/Time Despived By: Date/Time Despived By: Date/Time Despived By: Date/Time TERMS & CONDITIONS.					_		1	++-	-			
D = H ₂ SO ₄ E = NaOH E = NaOH E = NaOH F = MeOH G = NaHSO ₄ G = Slass B = Bacteria Cup Start until any ambiguitles are resolved. BY EXECUTING O = Other H = Ne) ₂ S ₂ O ₃ E = Enzore D = BOD Bottle D = BOD Bottle D = BOD Bottle D = BOD Bottle D = Mass Read AND AGREES D = BOD Bottle D = BOD Bottle D = Relinquished By: Date/Time D = BOD Bottle D = B	Preservative Code; A = None B = HCl	P = Plastic A = Amber Glass	Conta								and completely. Samples can	
F = MeOH G = NaHSO H = Nelso H = Nelso H = Nelso O = Other H = Nelso O = Other D = BOD Bottle O = Other O = Other C = Cube Relinquished By: Date/Time Relinquished By: Date/Time D = Date/Time Relinquished By: D	$C = HNO_3$ $D = H_2SO_4$ E = NaOH	G = Glass				Preservative					turnaround time clock will not	
H = Najszoj B = E = ERIDORE D = BOD Bottle D	F = MaQH			Date	Time	A Test	Received By:		.Date/Time	resolved BY EXECUTING		
	G = Nansoy H = NayS ₂ O ₃ ICE = 2n Ac/NaOH O = Other	H = Ne ₃ S ₂ O ₃ E = Erizore D = BOD Bottle D = BOD Bottle UL fice (D) 1/04/353				all	nul m	PACE	6/27/24/	HAS READ AND AGREES SOURCE BOUND BY ALPHA'S		
Form No: 07-25 HC (rev. 30-Sept-2013)	Form No: 01-25 HC (rev.	30-Sept-2013)	Vilia-P	2-01	93/3/6	929	2		_	6/2/12 V 733	(See reverse side.)	

Site No.: V00347-1 – Former Melody Cleaners Site 2050 Hempstead Turnpike, East Meadow, New York

Appendix C

Site Management PRR Notice Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	No.	Site Details V00347		Box 1			
Site Name Melody Cleaners							
City	Address: (//Town: He unty:Nassau Acreage:	1	1554				
Rep	oorting Perio	od: July 08, 2023 to July 08, 2024					
1.	Is the infor	mation above correct?		YES	NO		
	If NO, inclu	ide handwritten above or on a separate s	heet				
2.		or all of the site property been sold, subd nendment during this Reporting Period?	ivided, merged, or undergone	а	\checkmark		
3.		been any change of use at the site during CRR 375-1.11(d))?	this Reporting Period		\checkmark		
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?						
		wered YES to questions 2 thru 4, inclumentation has been previously submit					
5.	Is the site	currently undergoing development?			V		
6.	Is the curr	ent site use consistent with the use(s) list	ed below?	Box 2 YES	NO		
		al and Industrial		1			
7.	Are all ICs	in place and functioning as designed?		√			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
1	1	Measures Work Plan must be submitted a	731	s these iss	ues.		

SITE NO. V00347

Box 3

Description of Institutional Controls

Parcel

Owner

50-C-22 (portion of)

Mr. Nicholas Capparelli

Institutional Control

Ground Water Use Restriction

Soil Management Plan

Landuse Restriction **Building Use Restriction** Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- limit use and development of the property to commercial or industrial use;
- compliance with the Site Management Plan;
- restricting the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by NYSDOH; and
- property owner to complete and submit to the NYSDEC a periodic certification of institutional and engineering controls.

Box 4

Description of Engineering Controls

Parcel

50-C-22 (portion of)

Engineering Control

Vapor Mitigation Cover System

Monitoring Wells

- asphalt cover system;
- monitoring site related contamination in the environment;
- fencing around active remedial systems;
- annual pressure monitoring to confirm communication of the SVE system;
- continued operation and maintenance of SVE system;
- subsequent injections of chemical oxidation to achieve groundwater objectives on-site; and
- evaluation of off-site groundwater to determine if remedial action is necessary.

Periodic Review Report (PRR) Certification Statements

- I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department,
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

DI

IC CERTIFICATIONS SITE NO. V00347

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210,45 of the Penal Law.

1 Nicholas Capparelli at 276	Print business address Uestbury Ny 11570
am certifying as OWNER	(Owner or Remedial Party)
for the Site named in the Site Details Section of this Signature of Owner, Remedial Party, or Designated Rendering Certification	73124

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

IXin Yuan, P.E. #096444 at	170 Keyland Court, Bohemia, NY 11716,
print name	print business address
am certifying as a Professional Engineer for	Mr. Nicholas Capparelli
, ,	(Owner)

Signature of Professional Engineer, for the Owner Remedial Party, Rendering Certification

TO POSSION TO STAND THE ST

Stamp (Required for PE) 9/06/2024

Date