Information Technology High School

Long Island City, Queens County, New York

Periodic Review Report

Voluntary Cleanup Program VCP #V00366-2

Prepared for

Virginia S. Peterson, as Trustee, Wendy Peterson Smithson, Judy Ann Sarkisian, Arthur Corey, Sarkisian, David P. Close, as Successor/Trustee, Gabrielle V. Sarkisian as Successor/Trustee, and Fredrick Hanssen as Successor/Trustee.

Prepared by

Fleming, Lee Shue Environmental Engineering and Geology, D.P.C. 158 West 29th Street, 9th Floor New York, New York 10001

Revision #	Submitted	Summary of Revision	Approval

CERTIFICATION

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- (a) the institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER;
- (b) nothing has occurred that would impair the ability of such control to protect public health and the environment;
- (c) nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;
- (d) access to the site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintenance of this control; and

I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Arnold F. Fleming, P.E.

6/13/2025

Signature

Awold F. Plem Lay

NYS Professional Engineer #

050411

Date

It is a violation of Article 145 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 145, New York State Education Law.

TABLE OF CONTENTS

1.0 Site Overview	7
1.1 Site Description	7
1.2 Investigation and Remediation	7
1.3 Remedial Action Objectives.	8
2.0 REMEDY EVALUATION	9
2.1 Remedy Performance, Effectiveness and Protectiveness	9
2.1.1 Soil	9
2.1.2 Groundwater	9
2.1.3 Soil Vapor	10
3.0 INSTITUTIONAL AND ENGINEERING CONTROLS COMPLIANCE	12
3.1 Institutional Controls Requirements and Monitoring	12
3.2 Engineering Controls Requirements and Monitoring	13
3.2.1 Composite Cover System	13
3.2.2 Sub-Slab Depressurization System	14
3.2.3 Vertical Soil Vapor Extraction System	14
3.2.4 Groundwater Pump and Treat System	15
3.3 Corrective Measures	15
3.3.1 Institutional Controls	15
3.3.2 Engineering Controls	15
Composite Cover System	15
Sub-Slab Depressurization System	16
3.4 Institutional and Engineering Control Certification	16
4.0 MONITORING PLAN COMPLIANCE	17
4.1 Components of the Monitoring Plan	17
4.2 Summary of the Monitoring Completed	17
4.3 Groundwater Monitoring	18
4.3.1 Semi-Annual Groundwater Sampling Event (October 2024)	19
4.3.2 Semi-Annual Groundwater Sampling Event (March 2025)	21
4.3.3 Groundwater Sampling Trends during Reporting Period	
4.4 Composite Cover System	23

4.5 Sub-Slab Depressurization System Monitoring	23
4.5.1 Semi-Annual SSDS Monitoring Results (August 8, 2024)	23
4.5.2 Semi-Annual SSDS Monitoring Results (March 4, 2025)	24
4.6 Indoor Air	24
4.6.1 Indoor Air Results	25
4.7 Monitoring Deficiencies	26
4.8 Conclusions and Recommendations for Changes	26
5.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE	27
5.1 Components of the O&M Plan	27
5.1.1 Sub-Slab Depressurization System	27
5.2 Summary of O&M Completed	28
5.2.1 Sub-Slab Depressurization System	28
5.3 Evaluation of Remedial Systems	29
5.3.1 Sub-Slab Depressurization System	29
5.4 Monitoring Well Abandonment	29
5.5 Waste Disposal	29
5.6 O&M Deficiencies	29
6.0 CONCLUSIONS AND RECOMMENDATIONS	30
6.1 Compliance with the SMP	30
6.2 Performance and Effectiveness of the Remedy	30
6.3 Future PRR Submittals	30

Tables

	Tables
Table 1	Requirements of the Monitoring Plan by Media (in text)
Table 2	Requirements of the Monitoring Plan by Remedial Technology (in text)
Table 3	Monitoring Tasks Completed (in text)
Table 4	Post–Remediation Groundwater Sampling Results
Table 5	SSDS Effluent Sampling Results
Table 6	Indoor Air Sampling Results
	Figures
Figure 1	Site Location
Figure 2	Site Plan
Figure 3	Treatment System Piping Layout
Figure 4	Process and Instrumentation Diagram
Figure 5	Treatment Shed Layout
Figure 6	October 2024 Bedrock Groundwater Contour
Figure 7	October 2024 VOC Concentrations in Groundwater
Figure 8	March 2025 Overburden Groundwater Contour
Figure 9	March 2025 Bedrock Groundwater Contour
Figure 10	March 2025 VOC Concentrations in Groundwater
	Appendices
Appendix A	Environmental Easement & Metes and Bounds
Appendix B	Annual Inspection Form
Appendix C	Engineering Control and Institutional Control Certification Form
Appendix D	Photographic Log
Appendix E	Agency Correspondence
Appendix F	SSDS OMM Forms
Appendix G	Laboratory Analytical Reports
Appendix H	Waste Disposal Documentation

EXECUTIVE SUMMARY

This Periodic Review Report (PRR) documents the activities subject to the Site Management Plan (SMP) for Voluntary Cleanup Program (VCP) Site #V00366-2 (Site). This PRR covers Site activity from April 3, 2024 to June 6, 2025. The Site is located at 21-16 44th Road in Long Island City, Queens County, New York and is identified as Block 438, Lots 23 and 26 on the New York City Tax Map. A Site Location Map and a Site Plan are provided as Figure 1 and 2, respectively. The Site is regulated by the New York State Department of Environmental Conservation (NYSDEC). The engineering and institutional controls (EC/IC) were implemented and maintained in accordance with the SMP and its revisions approved by NYSDEC on May 31, 2017 and December 18, 2018.

The purpose of this PRR and Annual Certification is to document on-going Site management activities associated with the permanent ECs and ICs in place at the Site, and to certify that these controls are maintained in accordance with the Cleanup Agreement.

Past activities at the Site resulted in the release of volatile organic compounds (VOCs) to the Site in soil and groundwater. The primary contaminant identified in the soil and groundwater was tetrachloroethylene (PCE). Excavation activities were completed throughout the Site to remove contaminated source material, but residual contamination (dissolved phase and vapor phase) remained on-site. As a result, several Engineering Controls and Institutional Controls were implemented on-site. To date, the ECs and ICs maintained at the Site are operating effectively as designed and are protective of human health and the environment.

Details of the EC/ICs can be found in the Engineering and Institutional Control Plan portion of the SMP. All components of the SMP, including EC and ICs, are functioning as intended and comply with NYSDEC requirements. Fleming, Lee Shue Environmental Engineering and Geology, D.P.C. (FLS) does not recommend any changes to the SMP or site management procedures.

1.0 SITE OVERVIEW

1.1 Site Description

The Site occupies 0.82 acres and is bound by 44th Road to the north, 44th Drive and an industrial building to the south, an industrial building to the east, and 21st Street and a fast-food restaurant to the west. The boundaries of the Site are more fully described in the metes and bounds site description (Appendix A).

The Site consists of a four-story masonry and stucco structure currently utilized as Information Technology High School (the School). The Site is a former drapery hardware manufacturer and distributor. The eastern portion of the factory was dedicated to cleaning, de-greasing, oil-extraction, powder coating and painting of metal drapery hardware. Prior to this usage, the Site is believed to have contained a metal plating and finishing facility. Both operations are historically known for utilizing chlorinated degreasers in their operations.

1.2 Investigation and Remediation

Various Remedial investigations conducted between 1997 and 2002 revealed the presence of VOCs in soil vapor under the building slab and in the groundwater beneath the Site. The source of VOCs was determined to be a former drum storage area (outside the footprint of the current school) where localized contaminated soil was identified and removed from the Site. The Site's primary contaminants of concern are tetrachloroethylene (PCE) and trichloroethylene (TCE). Elevated concentrations of lead were also identified in soil beneath dry drains located under the buildings and in the courtyard.

Remedial excavation took place between December 2001 and August 2002. Remediation removed soil or a combination of soil/ash from several areas around the Site. The following removal of materials took place during that period:

- Excavations near the former drum storage area removed 25 cubic yards of soil;
- approximately 900 cubic yards of soil/ash were removed from the first floor and basement;
- three basement sumps had sediment removed;
- four excavation pits in the parking lot removed 130 cubic yards of soil; and

• an additional 240 cubic yards of topsoil were removed before the parking lot was capped with a six-inch thick concrete slab.

1.3 Remedial Action Objectives

The Remedial Action Objectives (RAO) for the Site are as follows:

Groundwater

RAOs for Public Health Protection:

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection:

• Restore groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable.

Soil

RAOs for Public Health Protection:

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

2.0 REMEDY EVALUATION

2.1 Remedy Performance, Effectiveness and Protectiveness

2.1.1 Soil

In performing the onsite soil cleanup activities, the Volunteer used the NYSDEC recommended soil cleanup objectives, as set forth in the Technical Administrative Guidance Memorandum (TAGM) 4046, as the end goal. These established soil cleanup objectives are considered protective of public health and the environment. The cleanup activities performed at the Site fulfilled requirements for compliance with school use being the intended use for the Site. A minimum one to two feet of all exposed surface soils which exceeded the Site background values for contaminants of concern were excavated and disposed of off-site. This included soils originally covered by the components of the development of the Site (building concrete slab and courtyard asphalt). The excavated areas were then backfilled with clean fill material, all of which was below the applicable soil cleanup objectives. A summary of the material and quantities removed from the Site can be found in section 1.4.1 of the SMP.

2.1.2 Groundwater

Initial groundwater characterization sampling began in September of 2002. Seventeen (17) monitoring wells were used for characterizing the groundwater beneath the Site. Since that time NYSDEC has requested several groundwater monitoring wells be discontinued and/or abandoned. Currently, nine (9) monitoring wells (MW-1, MW-6, MW-7, MW-8, MW-9, BMRW-1, BMRW-2, BMRW-3, and RW-1) are utilized for groundwater elevation measurements and groundwater sampling activities. The current monitoring well network is shown on Figure 2.

The suspected source area is believed to be the former drum storage section of the Site. This theory is generally supported by the dissolved phase contaminant distribution throughout the Site, with the highest concentrations of PCE and TCE being detected in the vicinity of the former drum storage area and historically lower concentrations being detected along the perimeter of the Site. The exception being concentration fluctuations within MW-1 located on the north side of the Site.

The groundwater sampling results from this reporting period (April 2024 – June 2025) demonstrate variability in VOCs concentrations across the Site. The March 2025 groundwater sampling event

showed variability in total VOC concentrations in bedrock wells and a general increase in contaminant concentrations in some overburden wells compared to the previous sampling event (October 2024). The analytical groundwater results from the semi-annual groundwater sampling events conducted during the reporting period are presented in Table 4. Groundwater results are further discussed in section 4.3.

2.1.3 Soil Vapor

Onsite soil vapor data was collected as part of the remedial investigation activities. The investigation consisted of collecting soil vapor samples from thirty-three (33) geoprobe locations in August of 2002. The sampling was conducted prior to the removal of the old concrete slab within the building. The onsite soil vapor contamination consisted of VOCs consistent with the source area (PCE contamination originating from the former drum storage area). The highest concentration of PCE detected in the soil vapor (561,000 μ g/m³) was detected at 13.5 ft below ground surface (bgs), just above the groundwater table and adjacent to the former drum storage area. The remaining sampling locations throughout the Site had VOC concentrations significantly lower than the maximum concentration found. Soil vapor concentrations from the first floor and basement ranged from non-detect to 5,970 μ g/m³ and non-detect to 568 μ g/m³, respectively.

After removal of the concrete slab, another round of soil vapor sampling was conducted. The results of the second investigation showed that the highest concentration of PCE detected was now 8,275 μ g/m³. The removal of the slab and off-gassing caused a large reduction in the first floor. PCE concentrations in the basement remained relatively low after the removal of the slab, ranging from non-detect to 115 μ g/m³.

Currently, sub-slab vapor concentrations are monitored through the sampling of the SSDS effluent. Contaminants of concern, PCE and TCE, had concentrations below the New York State Department of Health (NYSDOH) Final Guidance for Evaluating Soil Vapor Intrusion matrices dated October 2006 (updated May 2017) when analyzing the SSDS effluent. The highest concentrations observed during this reporting period were non-contaminants of concern including acetone (61.9 μ g/m³), isopropanol (16.7 μ g/m³), ethyl acetate (16.6 μ g/m³), p- & m- xylenes

 $(2.91~\mu g/m^3)$ and toluene $(6.4~\mu g/m^3)$. In both the August 2024 and March 2025 SSDS sampling events, PCE and TCE concentrations were detected at relatively low levels (max. conc. non-detect and $0.251~\mu g/m^3$, respectively). At the request of NYSDEC and NYSDOH, an Indoor Air monitoring event was conducted on March 4, 2025, under the approved Corrective Measures Work Plan (CMWP). The results found no evidence of vapor intrusion from the subsurface at the Site.

3.0 INSTITUTIONAL AND ENGINEERING CONTROLS COMPLIANCE

3.1 Institutional Controls Requirements and Monitoring

A series of ICs are required by the SMP to protect human health and the environment. Adherence to these ICs on the Site is required by the environmental easement and are implemented under the SMP. ICs identified in the environmental easement may not be discontinued without an amendment to or extinguishment of the environmental easement (Appendix A). The ICs are as follows:

- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater, soil vapor, and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site management must be reported to NYSDEC at the frequency and in a manner as defined in the SMP;
- On-site environmental monitoring devices, included but not limited to, groundwater monitoring wells and soil vapor points, must be protected and replaced as necessary to ensure continued functioning in the manner specified in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP.

The Site has an additional series of Institutional Controls in the form of Site restrictions. Site restrictions that apply to the Site are:

- Use of groundwater underlying the Controlled Property is prohibited without treatment rendering it safe for the intended use;
- All future activities on the Controlled Property that will disturb residual contaminated material are prohibited unless they are conducted in accordance with the soil management provisions in this SMP;
- The Controlled Property may be used for unrestricted use, provided the long-term Engineering and Institutional Controls included in the SMP remain in use;

• In addition to required environmental monitoring, New York City Department of Education (NYCDOE) had proposed to perform indoor air sampling within the school at the request of the community.

Site-wide inspections will be performed annually by a Professional Engineer or by a person under direct supervision of the Professional Engineer. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, a Site inspection form will be completed as provided in Appendix B. The completed Institutional and Engineering Controls Certification Form is provided in Appendix C. A Photographic Log is provided in Appendix D and documents Site conditions at the end of the reporting period. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- General Site conditions at the time of the inspection;
- The Site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that Site records are up to date.
- A comprehensive Site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the PRR. The inspections will determine and document the following:
 - o Compliance with requirements of the SMP and the Environmental Easement; and
 - o If Site records are complete and up to date.

3.2 Engineering Controls Requirements and Monitoring

3.2.1 Composite Cover System

Exposure to remaining contamination soil/fill is prevented by a composite cover system built on-Site. This composite cover system is comprised of concrete-covered sidewalks, a concrete with overlying paving stone courtyard, and an interior flooring system composed of: (from bottom to top) 1-foot gravel, a 40-mil HDPE liner, a protection board layer, and a steel mesh reinforced 8inch-thick concrete slab as well as a spray-on epoxy vapor barrier along the western basement wall adjacent to the first floor. The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in accordance with the SMP in perpetuity.

3.2.2 Sub-Slab Depressurization System

The sub-slab depressurization system was installed beneath the composite cover system under the building. The system consists of 17 horizontal pipe legs (11 beneath the first floor and 6 beneath the basement) installed within the approximately 1-foot-thick pea gravel layer beneath the Highdensity polyethylene (HDPE) liner. The solid piping consisted of 10-foot lengths of 2-inch inside diameter (I.D.), Schedule 40 polyvinyl chloride (PVC) pipe. The screened areas at the end of each pipe run consist of two 10-foot lengths of 2-inch I.D. 20-slot Schedule 40 PVC slotted pipe. After the elevations of the pipe were set, it was covered over with pea gravel and the interior grade was leveled off. A map showing the location of the system shed as well as the locations of the horizontal SSDS pipe legs is shown in Figure 3. Additionally, a process and instrumentation diagram of the treatment system and the shed layout are shown on Figures 4 and 5, respectively.

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan (Section 4 of the SMP). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of the SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition, which may affect controls at the Site, has occurred.

3.2.3 Vertical Soil Vapor Extraction System

Following written approval from both NYSDEC and NYSDOH in October 2010, the SVE system was shut down. Prior to this, the SVE system consisted of four vertical SVE wells was installed in the former drum storage area (source area). The vapor extraction wells were constructed of 4-inch diameter PVC screen and riser pipe. The screen was set from approximately 21-23 ft bgs to 3 ft bgs. The geologic log and construction details for vapor extraction wells VE-1 through VE-4 are presented in the Remedial Investigation Report dated October 2002. The wells were connected to a 15-horsepower blower which places a vacuum on each well. The air stream was then forced through vapor phase carbon prior to discharge to the atmosphere. The remedial goals for the termination of the SVE system included: residual contamination concentrations in ground water and soil vapor: (1) are cleaned up to levels below NYSDEC standards (TOGS 1.1.1 values for

groundwater and NYSDOH vapor intrusion guidance matrix for soil vapor), and (2) have become asymptotic over an extended period of time. After written approval from both NYSDEC and NYSDOH, the SVE system was shut off in October of 2010.

3.2.4 Groundwater Pump and Treat System

Following written approval from both NYSDEC and NYSDOH in June of 2014, the groundwater pump and treat system (GWTS) system was decommissioned. Prior to this, a GWTS was installed to extract groundwater from RW-1 located in the former drum storage area (source area) to address the remaining residual contamination onsite. Recovery well, RW-1 was constructed of 8-inch diameter PVC screen and riser pipe. The screen was set from approximately 21 ft bgs to 9 ft bgs. The geologic log and construction detail for RW-1 is included in the Remedial Investigation Report dated October 2002. A submersible groundwater pump was installed within RW-1 and pumped water to the treatment shed where there was a groundwater treatment system consisting of four, 200lb liquid phase carbon units. After flowing through the carbon units, the treated groundwater was discharged to the New York City combined sewer system. The remedial goals for the termination of the GWTS included: residual contamination concentrations in ground water and soil vapor: (1) are cleaned up to levels below NYSDEC standards (TOGS 1.1.1 values for groundwater and NYSDOH vapor intrusion guidance matrix for soil vapor), and (2) have become asymptotic over an extended period of time. After written approval from both NYSDEC and NYSDOH, the GWTS system was shut off in June of 2014.

3.3 Corrective Measures

3.3.1 Institutional Controls

There were no deficiencies observed during the reporting period that would require corrective measures for the ICs.

3.3.2 Engineering Controls

Composite Cover System

There were no deficiencies identified that would require corrective measures for the composite cover system.

Sub-Slab Depressurization System

On July 12, 2024, during the school's summer break period, FLS mobilized to the Site to conduct a semi-annual Operation, Maintenance and Monitoring (OMM) event. Upon arriving to the property, it was discovered that some of the SSDS piping was warped and disconnected, likely due to excess summer heat. Upon further inspection, multiple piping connections were fully detached from their connection points and the system was discharging directly into the equipment shed. The system was subsequently shut down, NYSDEC notified, the scheduled OMM tasks were rescheduled, and measurements of the detached piping segments were collected in order to schedule repairs. A MiniRAE 3000 PID was used to screen for VOCs within the school building as well as in the equipment shed in which the system had been discharging for an unknown amount of time. No VOCs were detected at any location during this screening.

The full NYSDEC notification contact listing including NYSDEC and the school staff, were informed of the disconnection and temporary shut down on July 12, 2024. On July 30th and 31st, Brookside Environmental, Inc. replaced the warped and detached polyvinyl chloride (PVC) pipe segments with chlorinated polyvinyl chloride (CPVC) that would be more heat resistant during future high-temperature events. FLS provided oversight during repairs, and returned to the Site on August 1, 2024 to restart the system. All system measurements were within operating parameters. Photos of the SSDS maintenance and repair can be found in Appendix D. Following repairs, the SSDS remains fully functional and protective of human health.

3.4 Institutional and Engineering Control Certification

On March 4, 2025, FLS conducted an annual inspection of the Site. In the annual inspection the institutional and engineering controls were found to be in place and effective. All requirements are being met and FLS does not recommend any changes. The signed Engineering Control and Institutional Control certification form is included in Appendix C

.

4.0 MONITORING PLAN COMPLIANCE

The SMP was originally approved in 2008. In May 2017, the Site consultant and site management responsibilities changed from LBG Engineering Services, P.C to Arnold F. Fleming, P.E and Fleming-Lee Shue Inc. At this time FLS submitted a request to NYSDEC to alterations to the groundwater and SSDS monitoring schedules. On May 31, 2017, the NYSDEC approved the groundwater monitoring was reduced from quarterly to semi-annual and SSDS monitoring frequency were reduced from monthly to semi-annual. Subsequently, FLS modified the SMP to reflect these changes to the monitoring plan. Monitoring wells MW-2, MW-5, MW-10, and MW-13 were approved to be removed from future monitoring events and decommissioned in a December 19, 2018 NYSDEC Approval letter.

4.1 Components of the Monitoring Plan

Tables 1 and 2 describe the monitoring requirements and monitoring frequency by media as approved in the SMP.

Table 1 – Monitoring Requirements by Media

Media	Frequency	Analysis or Measurement	Responsibility
Groundwater	Semi-annually	TCL VOCs	Volunteer
Soil vapor effluent	Semi-annually	TO-15 VOCs	Volunteer
Indoor Air	Annual	TO-15 VOCs	NYCDOE

Table 2 – Monitoring Requirement by Remedial System

Remedial Technology	Frequency	Parameter(s)
Active SSDS Components	Semi- annually	Vacuum, flow rate (cfm), VOCs (ppm)
Composite Cover System	Annually	Intact

4.2 Summary of the Monitoring Completed

Table 3 below describes the monitoring tasks completed during the reporting period.

Table 3 – Monitoring by Reporting Period

Monitoring Task	Frequency	Description
Groundwater sampling	Semi- annually	Collect groundwater samples for required analyses (see Table 4 for sample results).
Groundwater elevation measurement	Semi- annually	Collect depth to water measurements at all monitoring wells (see Section 5.3.2).
SSDS monitoring	Semi- annually	Collect vacuum, flow rate, temperature, and PID readings (ppm) from each leg.
Composite Cover System	Annually	Inspect the condition of concrete slab and foundation walls.
Indoor Air sampling	Annually	Conducted by Volunteer for 2025 only. NYCDOE will reassume responsibility moving forward, per the SMP.

4.3 Groundwater Monitoring

The Composite Cover System prevents exposure to contaminated groundwater and the SSDS prevents inhalation of volatiles from contaminated groundwater. Inspection of the slab and foundation walls found both elements in very good condition with no leakage of groundwater into the building. The SSDS is operating as intended and preventing any exposure to subsurface contaminants.

Initial groundwater characterization sampling began in September of 2002. Seventeen (17) monitoring wells were used for characterizing the groundwater beneath the Site. Since that time NYSDEC has requested several groundwater monitoring wells be discontinued and/or abandoned. Currently, nine (9) monitoring wells (MW-1, MW-6, MW-7, MW-8, MW-9, BMRW-1, BMRW-2, BMRW-3, and RW-1) are utilized for the semi-annual groundwater elevation measurements and groundwater sampling activities. The current monitoring well network is shown on Figure 2. The groundwater monitoring program involves the following:

• Measurement of groundwater field parameters including pH, dissolved oxygen (DO), total dissolved solids (TDS), conductivity, oxidation-reduction potential (ORP), turbidity, salinity, and temperature to determine groundwater conditions; and

• Collection of groundwater samples analyzed for VOCs to evaluate chlorinated VOC concentration trends and monitor natural attenuation.

During the reporting period groundwater sampling was conducted on October 24, 2024 and March 21, 2025.

4.3.1 Semi-Annual Groundwater Sampling Event (October 2024)

Groundwater samples were collected from eight (8) on-Site monitoring wells (MW-6, MW-7, MW-8, MW-9, BRMW-1, BRMW-2, BRMW-3 and RW-1) on October 24, 2024. The one off-Site monitoring well (MW-1) was not sampled during this time as the well was found to be obstructed by silt and with no water column available for sampling. Following this sampling event, FLS returned to the Site on November 29, 2025 and successfully redeveloped well MW-1. All purged groundwater was stored in two (2) 55-gallon waste drums outside the treatment shed.

4.3.1.1 Groundwater Elevation Measurements

Prior to sampling, a synoptic round of water-level measurements was collected using a water-level meter. Groundwater elevations ranged from 2.46 ft-NAVD88 (BRMW-1) to 3.65 ft-NAVD88 (RW-1). Historically, groundwater flow has varied seasonally, with current bedrock groundwater flow direction being towards the southwest. Current overburden groundwater flow direction could not be determined during this sampling event as MW-1 did not have a measurable water column, leading to insufficient data to produce a contour map. The contour map showing groundwater flow within bedrock wells is presented in Figure 6.

4.3.1.2 Groundwater Sampling Analytical Results

The groundwater analytical results were compared to the NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values (AWQS Standard) and are summarized in Table 4. Laboratory analytical results are included in Appendix G. October 2024 groundwater results are shown on Figure 7. Analytical groundwater results from the October 2024 event show the majority of VOCs at all monitoring well locations were non-detect or below the AWQS Standard, the exception being PCE and its associated degradation products (i.e., TCE and cis-1,2-dichloroethene).

PCE

Generally, concentrations of contaminant of concern PCE exhibited variability across the Site during the October 2024 event. PCE was detected in all eight monitoring wells sampled in concentrations exceeding the AWQS Standard and ranged from 42.9 μg/L (RW-1) to 1,240 μg/L (BRMW-2). The mean and median PCE concentrations were 330.4 μg/L and 140 μg/L, respectively. These concentrations represent a decrease from the previous sampling event in wells MW-6 (-54.9%), MW-8 (-13.1%), BRMW-1 (-12.1%), and BRMW-3 (-14.6%); and an increase from the previous sampling event in MW-7 (+154.9%), MW-9 (+80.7%), BRMW-2 (+43.4%), and RW-1 (+58.9%). Overall, although both increases and decreases on Site occurred compared to the last sampling event (March 2024), these changes appear to coincide with seasonal variability within both overburden and bedrock wells.

TCE

Degradation compound TCE was detected in all eight of the monitoring wells sampled, and exceeded the AWQS Standard in five of the eight wells. Concentrations of TCE ranged from 0.85 μ g/L (RW-1) to 49.3 μ g/L (BRMW-2) and the mean and median concentrations were 15.7 μ g/L and 8.9 μ g/L, respectively. Other concentrations of TCE during this sampling event included 8.4 μ g/L (MW-6), 1.1 μ g/L (MW-7), 1.3 μ g/L (MW-8), 9.4 μ g/L (MW-9), 9.7 μ g/L (BRMW-1), and 45.3 μ g/L (BRMW-3). In general, concentrations of TCE in both overburden and bedrock wells remained relatively stable when compared to the previous sampling event (March 2024).

Cis-1,2 DCE

Concentrations of cis-1,2-dichloroethene (cis-DCE) ranged from non-detect (MW-8) to 51.6 μ g/L (RW-1) and exceeded the AWQS Standard in six of the eight monitoring wells sampled. The mean and median concentrations for cis-DCE were 14.7 μ g/L and 10.9 μ g/L, respectively. In general, concentrations of cis-DCE in both overburden and bedrock wells remained relatively stable when compared to the previous sampling event (March 2024).

Overall, concentrations of contaminant of concern PCE remain significantly elevated and continue to exhibit significant variability across sampling events, while concentrations of PCE degradation

products remain significantly lower and more stable by comparison. For this reason, it is believed that there is an off-site source or off-site slug of PCE that is moving through the Site.

4.3.2 Semi-Annual Groundwater Sampling Event (March 2025)

Groundwater samples were collected from eight (8) on-Site monitoring wells (MW-6, MW-7, MW-8, MW-9, BRMW-1, BRMW-2, BRMW-3 and RW-1) and one (1) off-Site monitoring well (MW-1) on March 21, 2025.

4.3.2.1 Groundwater Elevation Measurements

Prior to sampling, a synoptic round of water-level measurements was collected using a water-level meter. Groundwater elevations ranged from 3.36 ft-NAVD88 (MW-1) to 2.53 ft-NAVD88 (MW-7). Historically, groundwater flow has varied seasonally, with current overburden groundwater flow direction being towards the northwest. Contour maps showing groundwater flow within overburden and bedrock wells are presented in Figures 8 and 9, respectively.

4.3.2.2 Groundwater Sampling Analytical Results

The groundwater analytical results were compared to the NYSDEC AWQS Standard and are summarized in Table 4. Laboratory analytical results are included in Appendix G. March 2025 groundwater results are shown on Figure 10. Analytical groundwater results from the March 2025 event show the majority of VOCs at all monitoring well locations were non-detect or below the AWQS Standard, the exception being PCE and its associated degradation daughter products (i.e., TCE and cis-1,2-dichloroethene).

PCE

Generally, concentrations of contaminant of concern PCE exhibited variability across the Site during the March 2025 event. PCE was detected in all nine of the monitoring wells in concentrations exceeding the AWQS Standard. Concentrations ranged from 22.8 μ g/L (MW-8) to 1,040 μ g/L (BRMW-2). The mean and median PCE concentrations were 317.2 μ g/L and 190 μ g/L, respectively.

These concentrations represent a decrease from the previous sampling event in MW-6 (-70%), MW-8 (-60%), MW-9 (-37.6%), and BRMW-2 (-16.1%); and an increase from the previous sampling event in MW-7 (+1.67%), BRMW-1 (+86.3%), BRMW-3 (+26.6%) and RW-1 (+385%). The concentrations of PCE in off-Site MW-1 have been fluctuating, rising from 44.9 μg/L in March 2024 to 491 μg/L during this sampling event. However, as previously mentioned, MW-1 was not sampled during the previous event (October, 2024), as the well was found to be obstructed by silt and had no water column available for sampling. Overall, both overburden and bedrock wells continue to show seasonal variability in PCE concentrations compared to the last sampling event (October 2024).

TCE

TCE was detected in all eight of the monitoring wells sampled, and exceeded the AWQS Standard in six of the nine wells. Concentrations of TCE ranged from 1 μ g/L (MW-7) to 56.8 μ g/L (BRMW-3) and a mean concentration of 20 μ g/L and the median concentration of 12.6 μ g/L. In general, concentrations of TCE in both overburden and bedrock wells remained relatively stable when compared to the previous sampling event (October 2024).

Cis-1,2 DCE

Concentrations of cis-1,2-dichloroethene (cis-DCE) ranged from non-detect (MW-7) to 94.2 μ g/L (MW-1) and exceeded the AWQS Standard in six of the nine monitoring wells sampled. The mean and median cis-DCE concentrations were 30.3 μ g/L and 19 μ g/L, respectively. In general, concentrations of cis-DCE in both overburden and bedrock wells remained relatively stable when compared to the previous sampling event (October 2024).

Overall, concentrations of contaminant of concern PCE remain significantly elevated and continue to exhibit significant variability across sampling events, while concentrations of PCE degradation products remain significantly lower and more stable by comparison.

4.3.3 Groundwater Sampling Trends during Reporting Period

In general, concentrations of PCE in the Site's bedrock wells showed an upward trend, with several wells exhibiting increases in PCE. Overburden wells showed mixed results, with some wells like

RW-1 and MW-1 showing increases and others remaining relatively stable or decreasing. This pattern suggests a continued variability in PCE distribution across the Site, with contamination localized to the bedrock wells in the center of the Site and certain overburden wells, particularly near MW-1 on 44th Road. It appears that the suspected off-site contamination source, which was first identified in MW-1, may be migrating toward the center of the Site. This could explain the increased PCE concentrations observed in MW-6, which had previously shown stability over a sustained period of several years. While PCE concentrations have increased since 2021, they remain significantly lower than the peak historical concentrations recorded at MW-9 (19,000 μg/L) in 3Q 2014, representing a 99.5% decrease at MW-9 over nearly 10 years.

4.4 Composite Cover System

The Composite Cover System and SSDS prevent both exposure to soil and exposure to any soil vapor. An annual inspection of the composite cover system was conducted as required in the SMP. The annual inspection was conducted on March 4, 2025. The slab and foundation walls of the building are in very good condition with no bare soil exposed. No cracks, fissures or other deficiencies were observed in the composite cover system and it is operating as designed and protective of human health. Annual Composite Cover System inspection sheets are included as Appendix C.

4.5 Sub-Slab Depressurization System Monitoring

4.5.1 Semi-Annual SSDS Monitoring Results (August 8, 2024)

SSDS and Soil Vapor monitoring events were conducted during the reporting period on August 8, 2024 and March 4, 2025 during the reporting period. The SSDS is operating as designed and prevents any exposure to contaminants.

In the August 2024 Operation, Maintenance and Monitoring (OMM) event, Photo-Ionization Detector (PID) concentrations (recorded for each individual SSDS leg as well as the SSDS effluent manifold) ranged from 0.0 to 2.9 parts per million (ppm). SSDS effluent sample results showed relatively low-level concentrations for both contaminants of concern, TCE $(1.5\mu g/m^3)$ and PCE $(5.3 \mu g/m^3)$. Several other compounds were also detected in the effluent in low concentrations including toluene $(13 \mu g/m^3)$, 2-butanone $(5.8 \mu g/m^3)$, hexane $(5.7 \mu g/m^3)$, xylenes (total, 18.3)

 μ g/m³), tetrahydrofuran (6.9 μ g/m³), ethyl benzene (4.7 μ g/m³), dichlorodifluoromethane (4.0 μ g/m³), naphthalene (2.5 μ g/m³), trichlorofluoromethane (2.2 μ g/m³), and 1,2,4-trimethylbenzene (2.3 μ g/m³). The highest sample result concentration observed was acetone (25 μ g/m³). Table 5 shows all SSDS Effluent Vapor Results during the reporting period. The majority of these compounds were detected at similar or slightly higher levels than previous sampling events. PCE and TCE remain below the NYSDOH background guideline levels of PCE and TCE in air (30 μ g/m³ and 2 μ g/m³, respectively).

4.5.2 Semi-Annual SSDS Monitoring Results (March 4, 2025)

During the March 2025 Operation, Maintenance, and Monitoring (OMM) event, Photo-Ionization Detector (PID) concentrations remained steady at 0.0 parts per million (ppm) across most SSDS legs. However, concentrations were recorded at 0.1 ppm at HV-7, HV-8, HV-10, and HV-11, and at 0.3 ppm for the header of System 1. The SSDS effluent sample results revealed low concentrations for both contaminants of concern: PCE (non-detect) and TCE (0.251 μg/m³). Several other compounds were also detected in the effluent at low levels, including acetone (61.9 μg/m³), benzene (1.69 μg/m³), toluene (6.4 μg/m³), 2-butanone (2.57 μg/m³), 4-methyl-2-pentanone (2.74 μg/m³), dichlorodifluoromethane (2.16 μg/m³), ethyl acetate (16.6 μg/m³), n-hexane (3.62 μg/m³), p- and m-xylenes (2.91 μg/m³), and isopropanol (16.7 μg/m³). Table 5 provides the complete SSDS effluent vapor results for the reporting period. The highest concentration observed was for acetone (61.9 μg/m³). The majority of these compounds were detected at levels similar to or lower than in previous sampling events. Both PCE and TCE were detected at lower concentrations compared to the August 2024 event and remain below the NYSDOH background guideline levels for PCE (30 μg/m³) and TCE (2 μg/m³).

4.6 Indoor Air

Indoor air monitoring in the school is performed to verify the SSDS is functioning as designed and remains protective of human health in indoor air. According to the SMP, sampling is conducted by the NYC Department of Education (NYCDOE) to address the concerns of the community. The indoor air sampling results are reviewed by NYSDEC and NYSDOH. In its letter dated November 14, 2024 the NYSDEC requested that indoor air monitoring be conducted during the 2024-2025 heating season, due to the lack of recent data submitted by NYCDOE. FLS, on behalf of the

Participant, agreed to conduct indoor air monitoring for the 2024 reporting period as a good faith measure and to expedite the approval of the PRR. On March 4, 2025, FLS conducted the indoor air monitoring event according to an approved CMWP, dated February 7, 2025 (Appendix E).

4.6.1 Indoor Air Results

All results from the Indoor Air Sampling event were submitted to NYSDEC in a Corrective Action Report (CAR) dated April 10, 2025. All results are presented in Table 6 and a copy of the Laboratory Analytical Report is provided as Appendix G.

In general, various NYSDOH regulated compounds were identified in low relatively low concentrations on Site including, 1,2,4-trimethylbenzene (max conc. 1.58 μg/m³), 1,3,5-trimethylbenzene (max conc. 0.459 μg/m³), 2,2,4-trimethylpentane (max conc. 3.8 μg/m³), carbon tetrachloride (max conc. 0.854 μg/m³), methylene chloride (max conc. 2.71 μg/m³), PCE (max conc. 6.73 μg/m³), benzene (max conc. 1.69 μg/m³), n-heptane (max conc. 4.14 μg/m³), n-hexane (max conc. 3.62 μg/m³), o-xylene (max conc. 8.89 μg/m³), naphthalene (max conc. 1.33 μg/m³), and toluene (max conc. 17 μg/m³). None of these listed compounds exceeded NYSDOH Air Guidance Values (AGV), however, AGVs have only been established for methylene chloride (60 μg/m³), PCE (30 μg/m³), and TCE (2 μg/m³). Therefore, as a useful comparison, these concentrations were also compared to their respective NYSDOH Soil Vapor Intrusion (SVI) Decision Matrix indoor air upper limits. Although, not a direct comparison, when compared to SSDS effluent sample concentrations, all these listed compounds resulted in a "No Further Action" decision.

Four (4) NYSDOH compounds were detected at comparably elevated concentrations. These included the three (3) petroleum compounds ethyl benzene (10.2 μg/m³), cyclohexane (10.4 μg/m³) and p-& m-xylenes (37.9 μg/m³) and TCE (1.96 μg/m³). TCE did not exceed its respective AGV of 2 μg/m³. Again, although not fully applicable, when compared to their respective NYSDOH SVI Decision Matrix upper limits, these results automatically trigger an "Identify Source(s) or Resample or Mitigate" determination, despite SSDS effluent results being well below their lower sub-slab vapor limits. However, importantly, all of these high concentrations were isolated to two samples. The petroleum compounds were detected in sample IA-6, which was located in the custodian storage area in the cellar portion of the Site and the TCE detection was in

sample IA-1, located in the custodian's office on the 1st floor of the school. Based on the product inventory, and the lack of these elevated concentrations of these compounds anywhere else on Site, including the subsurface, it is considered highly likely that these compounds are derived from a chemical source within the workshop and custodian office indoor air (i.e., chemicals storage) and are not representative of a soil vapor intrusion condition. Furthermore, the low concentrations of these compounds in other indoor air samples across the Site suggest this is an isolated condition not impacting the high traffic or student designated areas on the first floor of the building.

4.7 Monitoring Deficiencies

Daily monitoring inspection sheets were not provided by school maintenance staff. However, the Site is equipped with a Sensaphone telemetry system that constantly monitors system operations and alerts the appropriate parties in the case of an alarm.

4.8 Conclusions and Recommendations for Changes

Overall, all components of the OMM plan were adhered to during the reporting year, including the conducting of indoor air sampling by the Volunteer. Per the approved CMWP and SMP, the responsibility of indoor air monitoring will revert back to the NYCDOE following this report. Groundwater monitoring and SSDS sampling will continue semi-annually in the next reporting period.

5.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

5.1 Components of the O&M Plan

5.1.1 Sub-Slab Depressurization System

The active SSDS is designed to run continuously and without an operator. All manufacturers' product data, manuals, and drawings related to the active SSDS components are maintained on-Site and available for reference in the event that troubleshooting, adjustments or repairs are necessary.

Routine equipment maintenance and inspection will be conducted on the active SSDS in accordance with the manufacturers' products requirements/recommendations. Semi-annually, a qualified environmental professional will perform an inspection consisting of the following:

- Take vacuum, flow rate, temperature, and photoionization detector (PID) readings from each leg of the SSDS.
- Take an effluent vapor sample and analyze for TO-15.
- Visual inspection of all accessible piping, gauges, fan, and other components. Any faulty components will be repaired or replaced. If there is any indication that the fan requires repair, it must be returned to the factory for repair as it has no user-serviceable parts.
- Determine if any HVAC modifications were made that may affect the operation of the active SSDS.

In the event that the warning device is triggered, which may indicate reduced effectiveness at the operating conditions, or the system becomes damaged the following actions will be taken:

- A qualified professional will inspect the system to determine the cause of damage or reduced performance; and
- after making any repairs, the system will be restarted as described in the SMP.

5.2 Summary of O&M Completed

5.2.1 Sub-Slab Depressurization System

As required by the SMP, FLS personnel conducted inspections and performed maintenance of the SSDS on August 8th, 2024, and March 4, 2025. SSDS OMM Forms are included in Appendix F. Routine maintenance activities completed include keeping the filters clean and the moisture separator empty.

July 12, 2024 SSDS Piping Disconnect

On July 12, 2024, during the school's summer break period, FLS mobilized to the Site to conduct a semi-annual Operation, Maintenance and Monitoring (OMM) event. Upon arriving to the property, it was discovered that some of the SSDS piping was warped and disconnected, likely due to excess summer heat. Upon further inspection, multiple piping connections were fully detached from their connection points and the system was discharging directly into the equipment shed. The system was subsequently shut down, NYSDEC notified, the scheduled OMM tasks were rescheduled, and measurements of the detached piping segments were collected in order to schedule repairs. A MiniRAE 3000 PID was used to screen for VOCs within the school building as well as in the equipment shed in which the system had been discharging for an unknown amount of time. No VOCs were detected at any location during this screening.

The full NYSDEC notification contact listing including NYSDEC and the school staff, were informed of the disconnection and temporary shut down on July 12, 2024. On July 30th and 31st, Brookside Environmental, Inc. replaced the warped and detached polyvinyl chloride (PVC) pipe segments with chlorinated polyvinyl chloride (CPVC) that would be more heat resistant during future high-temperature events. FLS provided oversight during repairs, and returned to the Site on August 1st to restart the system. All system measurements were within operating parameters. Photos of the SSDS maintenance and repair can be found in Appendix D. Following repairs, the SSDS remains fully functional and protective of human health.

March 2025 Primary Blower Alteration

In March, 2025, due to an increase in alarms and maintenance, the primary active blower was switched from Blower 4A to Blower 2. Following this alteration, flow rate and temperature readings were taken from each leg of the SSDS and were found to be comparable to those observed previously. Alarm and system maintenance frequency have decreased.

5.3 Evaluation of Remedial Systems

5.3.1 Sub-Slab Depressurization System

Based on the flow rate, temperature, and photoionization detector (PID) readings taken from each leg of the SSDS during semi-annual inspections, the SSDS is functioning as required. The most recent TO-15 sample results showed that contaminants of concern, TCE and PCE, had were well below their respective NYSDOH Ambient Air guideline values.

5.4 Monitoring Well Abandonment

No monitoring wells were abandoned during this reporting period.

5.5 Waste Disposal

Following the redevelopment of MW-1 on November 29, 2025, FLS sampled the contents of the drum for contained-in determination. FLS submitted a contained-in request on January 30, 2025 to NYSDEC. Subsequently, a contained-in determination approval letter was sent on February 4, 2025. On April 16, 2025, Brookside Environmental removed the two (2) purge water waste drums and transported them to Dale Transfer Corp. in West Babylon, NY for disposal. Copies of the contained-in request, approval letter and waste manifests are included in Appendix H.

5.6 O&M Deficiencies

There were no deficiencies in complying with the O&M plan during this PRR reporting period for any of the ECs.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Compliance with the SMP

Following the implementation of the onsite EC/ICs, the Site has been maintained under a regularly scheduled Operation, Maintenance and Monitoring (OMM) program as outlined in the approved SMP and NYSDEC-approved modifications. The current OMM program consists of:

- Daily Site walkthroughs completed by onsite custodial personnel (Inspection forms not provided by school staff);
- Semi-annual treatment system monitoring of the SSDS;
- Annual indoor air sampling by NYCDOE;
- Semi-annual groundwater sampling program; and
- Annual inspection of the Site Composite Cover to ensure it is functioning as designed.

Based on the evaluation of the monitoring and OMM data, FLS concludes that all of the EC/ICs are in place and remained effective during the reporting period.

6.2 Performance and Effectiveness of the Remedy

The remedy has been effective in reaching and maintaining its stated objectives. The contaminated soil was excavated per the approved RAWP and the soil cleanup goals were attained in most instances. The composite cover system and SSDS provide complete protection against remaining contaminant and eliminate any exposure pathway. Both the ICs and ECs are in-place mechanisms designed as permanent protections against exposure to remaining contaminant. Semi-annual groundwater monitoring following removal of the contaminant mass has demonstrated significant and sustained decreases in groundwater concentrations of contaminants.

6.3 Future PRR Submittals

The next PRR is due no later than May 3, 2026 and will cover the reporting period April 3, 2025 to April 3, 2026.

Tables

	Earryle ID Lab Sample ID Sale Sample Cultected	Class GA Elembris							Milit 1 1-1 JESSSES-4 00 3/25/2021			. JOHNEZ . JOHNEZ 007/002 8/17/00			200-1 200-110-1 3/23/2014												2011864 . 911001													MAN 7 14 JONE 75-1 10 1018/0000						10023 10250	7 MM 7 877 JOHN 10 1023 3/23/008	3/23/2026	10/26/2024	607 SUP MW7 098030-1 JE7962 034/3034 3/21/2038
1	Walls Creams Commound	_1	Croundwater	Groundwater Dro	ndeater Crouns	leader Ground	water Oroundesi	lar Drounde	der Grandwick	Grandester	Groundealer	- Ground B	Name Construction	oler Ground Water	Grand Water	. 010	and Water Dree	ndeater Grand	sale: Droundea	Groundwater	Groundwater G	nunderlier Drou	ndwater Ground	ealer Croundes	Der Groundester	Groundwater	Groundester O	nundealer Dro.	undealer Dround	Maler Crount W.	aber Dround History	Ground Water	Crount Nate: 0	Ground Water C	roundealer (b)	undeater Great	Indexion Draw	Sealer Grounds	abe Grounde	atier Groundeste	Coundator	Groundwaler	Groundealer (Downdarder C	ound Nater Crown	William Crowns	Moder Ground Wa	er Grand Water	Ground Water 0	ound Water - Cround Water
1		- 1	ND (0.20)	ND (0.29)	ND(27) 1	app s			D.M. ND (0.14)	ND (DAG)		NII NII	ND ND	ND ND (0.8)	4) ND (0.14)		ND (1.0)	ND (0.25) ND	(0.29) NO (0	86) NO (0.25)	NO (0.25)	ND(634) 1	D(034) NO	(0.84) ND (0	34) ND (3.34)	ND (0.84)	 ND (0.14) 	ND (0.84)	ND (9.4)	ND ND ((M) ND (5.M)	NO.	ND(1.0)	ND (1.0)	ND (0.25)	ND (0.28)	ND(DAG)	D(0.84) NO	(0.84) ND	(0.84) NO(0.1	D ND(0.84)	ND (5.84) a	ND (0.84)	ND (0.84)			(0.04) ND (0	34) ND (0.3	, AD	
	1,1,2,2 Sebashbouethane		ND (3.17)	ND (0.17)		000 0	D(13) AD)	(6.5) NO (DEL MODE	MD (DAS)	ND (D.ES)	NII NII	ND ND	AD AD DA	ND (DAN)						ND (0.17)	NO(048) 5	D(0.83) NO	(0.48) ND (0	(40) ND (540)	I AD DAY	n) ND (D.KE)	NO (048)	ND (EX)	NO NO (MD (S.M)				ND (0.17)	AD (0.17)	ND (DAY)	D(E4N) ND	OAS DEED	(0.68) NO (0.4	ND (DARK)	AD (DAY)	NO (5.65)	ND (D.ES)	ND (D.EE)	AD AS	O (DAR) AD (O	AND AND DO) AD	
	1.1 Childrenethane		ND (9.21)	ND (0.21)	ND(ZX) P	ops s	D(T.T) AD I	(8.7) NO	par) AD (par	MD(DAT)		NI	MD	ND ND (0.8)	7) ND (0.87)	NO.	ND (1.0)	ND (0.31) ND	(0.21) NO (0	NO (021)	ND (0.21)	ND(DSF) 1	D (0.87) NO	GAD NO.	37) ND (337	n appar	n ND (0.87)	NO IDEO	ND (8.7)	NO NO I	37) ND (3.87)	1 100	ND(1.0)	MD (1.0)	ND (0.21)				(0.87) ND	(0.87) NO (0.1		ND (0.87)		ND (D.ET)	ND (D.ET)					ND ND (1.0)
State Stat												NI	ND																																					ND ND(1.0)
State Stat						DON 1	D(IA) ND	(80) NO	0.001 ND (0.00	1 ND 0.00	ND (0.80)	NI NI	ND.	ND ND DA	0) ND (0.00)	No.					ND (0.80)		D (0.80) NO					NO (0.00)	ND (8.0)	ND ND I	(80) ND (5.80)	1 10	ND(1.0)	ND (14)		ND (0.80)	ND 0.00	0 (3.00 ND	(0.80) ND	0.00 NO (0.	n ND (0.80)	ND (0.00)	NO (0.80)	ND (0.80)	ND (0.80)	NO NO	DOME AD I			ND ND (1.0)
		0.04	ND (5.69)				D (2.4) ND	(12) NO	(12) NO (12)	MD (0.00)	ND (0.83)	NII	ND	ND ND (0.5)	3) ND (0.03)	NO.		ND (SAR) ND			ND (0.69)	ND (1.2)	ND (12) N	0(12) NO(12) NO(12	ND (1.2)	2) ND (0.13)		ND (9.3)			, NO				ND (D.RR)	ND (1.2)	ND (12) NO			ND (1.2)	ND (0.83)				NO NO				ND ND (2.0)
State Stat			ND (9.21)									NI	ND			NO.	ND (1-0)	ND (0.31) ND																																
The column The	1,2 Childrenethane	0.6					D(12) ND	(60) NO	0.40 ND (0.40	ND (DAD)	ND (0.60)	NI	ND ND	ND ND (DA)	D) ND (DAD)	No.					ND (0.20)	NO (640) 1	D(DAD) NO	(0.60) ND (0	(80) NO (5.60	ND D RD			NO (6.0)	NO NO I	(80) ND (3.60)	NO.	ND(1.0)	ND (1.0)		ND (0.20)	ND 040	D(5.60 ND	0.601 ND	D 80 NO (3.4	ND (0.60)	ND (0.60) a	N2 (3.60)	ND (0.60)	ND (0.60)	ND NO	DID NO IS	SD) ND (D.S	ND ND	ND ND (1.0)
												NI	ND .			NO.	ND (1.0)	ND (0.34) ND	(0.24) NO (0	81) NO (0.34)															NO (0.36)															
	1.4 Childrenbergene	2	ND (5.80)	ND (D3D)	ND(ZA) 7	pos s	D(TA) ND	(8.1) NO	DATE NO GAT	MPRAT	ND (0.11)	NI	ND ND	ND ND (0.8)	T) ND (DAT)	NO.			0.001 NO 12	att NO (080)	ND (0.80)	NE(DAI)	DIDATI NO	(0.81) NO 10	ati ND (SA)	MP ID AT	D NO(0.01)	NP (0.01)	ND (8.1)	NO NO I	ATI NO GATI				ND (5.80)	ND (D.NE)	MD ID AT	D(0.81) NO	DATE NO.	DATI NOG	0 ND(0.01)	MP (DAT)	NO (0.81)	ND (SAT)	ND (0.81)	NO NO	(DAT) NO (ati MP (9.8	ND ND	ND ND (1.0)
												NII NII	ND ND				NO (100)	AD(D) N																									NO (18) Ir							
1 1 1 1 1 1 1 1 1 1	2 Hecanone		N2 (3.3)	ND(33)	ND (10)	ND (10)	D (ET) NO	(20) NO	gaj Naga	ND(2.0) a	ND (2.0)	NII	ND	NO NO ILI	n ND(ER)	NO.	ND (S.D)	NO (3.3) NO	(83) NO(2.01 ND (3.3)	ND (3.3)	ND (2.0)	ND (2.0) N	DOM: NO	2.0) ND(2.0	ND (ZIZ)	m MD(ZD)a	ND (2.0)	NO 001	NO NO	CE NO ICE	I NO	NO(5.0)	ND (SC)	ND (3.3)	ND (3.3)	ND (ZII)	NO CODE NO	(2.5) NE	ga No o	ND (2.0)	AD (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND 9	D(EE) ND	LEI NOIL) ND	ND ND (5.0)
	Others 2 personne(MIDC)	1 :	ND (3.0)									NI	ND																			NO NO	NO (8.0)	ND (5-0)																ND ND (5.0)
		- 1		ND (0.38)	ND(24) 1	(D (2.4) NO	(0.86) ND	(ER) NO	0.48) ND (0.48)	ND (DAR)	ND (0.48)	NI	ND ND	ND ND (0.6)	E) ND (0.6E)	NO.	ND (1.0)	ND (S.38) ND	0.38) ND (2	48) NO (0.38)	NO (0.38)	NO(048) 1	D(0.08) NO	(0.48) ND (0	(48) ND (5.48)	ND D 48	B) NO (0.48)	NO (0.48)	ND (ER)	NO NO I	(68) ND (5.68)				ND (0.38)	ND (0.38)	ND 0.00	D(0.68 ND	(0.68) ND	(0.68) NO(0.	D ND (0.48)	ND (0.48)	N2 (3.48)	ND (0.48)	ND (0.48)	NO NO	(0.0E) ND (0	68) ND (0.6	ND ND	ND ND (1.0)
The column The												NI	ND .			NO.																	ND(1.0)	ND (10)																ND ND (1.0)
	Expoundhare	1 :	907/141	ND(14)	ND (82) NO	(B.2) a b	DOM: NO	(16) NO	CAL NO CAL	MP (14)	ND (1.6)	NI NI	ND.	NO NO IN	E ND(14)		ND (2.0)*	NO.1141 NO.	(1.0) NO.	1.61 ND (1.6)	ND (1.4)	ADULED IN	SCHOOL ST	DITAL NO	1.6) NO.16	II NO ITAL	0.00000	APR (140	NO (NI)	ND ND	1.6) ND(1.6)9	NO.	N2(2.0)	ND G.D*	NR (14)	MOGRA	ADULED A	1/1 file Mr	ION NO	(14) NP (1	1 1000.0	ND (1.6)	MOUNTAIN	90000	MD CLES	NO 1	DOM: NO	140 NO(1		
Second Process Seco			ND (3.33)	MD (0.80)	ND(48) 7	10 (4.8)	D(1.8) ND)	(93) NO			140 (0.46)	NI	ND .	ND ND(1.	B) ND(1.8)		ND (Z.E)	ND (323) ND	piani No (s	NO (0.23)	ND (0.10)	NO(686) 8	D(0.80) NO	(0.86) AD (0	NO (5.44)		(i) ND (0.46)	NO (046)	ND (E.E)	NO NO	1.8) NO(18)	Į NO	N2 (2.0)	ND (20)	NO (0.20)	ND (0.80)	ND(DRG) 1	D(S NO NO	(0.86) AD	(0.89) NO (0.	0 10 (0.44)	ND (0.66)	NO (0.46)	ND (0.46)	ND (0.46)		D(1.8) ND			
Second Column Second Colum												NI NI	ND ND																				ND(1.0)	ND (10)																ND ND(1.0)
The column The	Chlorethane		ND (5.89)	ND (D3R)	ND(34) 7	opa s	D(1.8) ND)	(73) ND	p.mj ND(p.m)s	MD (0.73)	0.74 J	NII	ND .	ND ND (0.7)	3) ND (9.73)		13	ND (S.89) ND	(0.58) ND (0	73) NO (0.09)	ND (0.88)	ND (6.73) 1	D (0.73) NO	(0.79) ND (0	73) ND (0.73)	ND (2.73) is	b ND (0.73)	ND (0.73)	ND (7.3)	ND ND ((73) ND (5.73)	, NO			ND (0.00)	AD (0.88)	ND(073) 1	D(ETR) ND	(0.73) AD	(0.73) NO (0.	ND (0.73)	ND (0.73)	ND (9.73) b	ND (0.73)	ND (0.73)					ND ND (1.0)
1																																																		ND ND(1.0)
	do 1,2 Chillianselbene		ND (0.80)	0.01.2	MD (2.0)	303 9	D(1.0) ND	(8.1)	141.2 2.4	MD(DAT)	79.3	NI	38.4	44.7 B.	8 43	NO.	94.2	0.882	1.1 ND(2	81 NO (080)	0.89.2	ND(DA1)	14 10	(0.81) NO (0	(81) NO (8.81	I MD (DAT)	T) ND (0.81)	1.6	882	20	62 16.6	11.0	1.0	22	NO (0.80)	ND (0.80)	ND (DAT)	D(SS) NO	(0.81) ND	(0.91) NO(0.1	0 10 (0.81)	ND(DST)	NO(0.81)	0.82 J	1	NO NO	(0.81) ND (0	81) ND (9.8	0.823	1.1 ND (1.0)
Second Continue	dic 1,3 Chilitianspropene		ND (5.31)					(6.7) NO (ND (0.47)		ND ND	NO NO DE	7) ND (0.67)		ND (1.0)	ND (S2S) ND	(0.29) NO (0 (0.47) NO (0	47) NO (0.25)							7) ND (0.47)	NO (047)	ND (E.F)	ND ND ((47) ND (5.47)	1 NO	NO(1.0)	ND (10)	ND (0.38)															
	Discomochiaromethane		ND (0.16)		ND(23) 9	eps s	D(1.1) AD)					NI	ND ND	AD AD (0.3)	E) ND (0.86)	NO.	ND (1.0)	ND (3.16) ND	(0.16) NO(0	NO (0.16)										NO NO (M) ND (5.96)	NO.	ND(1.0)	ND (1.0)	ND (5.16)	AD (0.W)	ND (DAK)							ND (0.86)	ND (0.86)		(0.86) ND (0	M) ND (0.8	ND ND	ND ND (1.0)
Second Continue			ND(1.9)								ND (0.86)	NII	MD					NO (18) NO		1.4) ND (1.9)								NO (0.00) 1	ND (LE) a				NO (2.0)	AD (2.0)*	NO (1.8)															ND ND (2.0)
A A A A A A A A A A			ND (0.32) ND (1.2)				D(13) ND)	(10) NO (NI NI	ND ND			NA NA		ND (0.32) ND ND (1.2) ND							180) ND (580 18) ND (18	n Abjeau							ND (3.0)	ND (10)	ND (0.22)					(0.80) NO (0.6										ND ND (5.0)
Section Continue												NII	MD			Att																																		ND ND (1.0)
Second Continue	Methyl Appliate		N2(3.1)	ND(3.1)	ND (60) 7	E-1601 1	D(TA) ND	(80) NO	0.801 ND (0.80	ND (3.80) o	NO (080) a	NI NI	ND ND	ND ND (S.E.	D) ND (DAD)		ND (3.0)	NO GUI NO	(3.1) NO (2	80 MD (3.1)	ND (3.1)	NO(080) 5	DIDADI NO	(0.80) NO (0	(80) ND (0.80)	ND ID AD	D NO 0804	ND (0.80) a	ND (8.0)	NO NO I	(80) ND (0.80)	No.	10.00	ND (SC)	NO (3.1)	ND (3.1)	ND 0.80	D(0.80) ND	0.801 ND	D.801 NO.01	D ND (0.80)	ND (0.80) a	NO (0.80)	ND (0.80)	ND (0.80)	NO NO	(0.80) ND (0	NO NO IOR	ND.	
Figure F		10	NO (0.20)		MD(23) 9	e jaq s	D(1.0) ND)	(9.1) NO				NI	MD .	ND ND (0.8)	t) ND (DAT)			ND (\$25) ND				NO(DAY) I	D(0.81) NO					NO (DAT)	ND (S.T)				N0(1.0)	ND (10)	NO (0.3%)	ND (0.28)	ND(DAT)	o (s.sr) No	(0.81) AD	(0.81) NO (0.1			NO(0.81)	ND (0.81)	ND (0.81)			at) AD (sa		
The control of the		1 1	NO(10)	ND(1.0)		10 (10) b	D (2.6) NO	(18) NG	me Nome	MD (14)	ND (1.0)	NI NI	ND ND	ND ND (14	D) ND(1.0)	NO.	NDGD	NO:1101 NO	(14) NP:	1.01 ND(10)	ND (1.6)	MP(1.0)	ND(18) N	DITE NO	1.0) NO(1.0)	MD (10)	D N2(1.0)	ND(10)	NO (10)	NO NO	1.0) NO:11.0)		90.00	AD COS	NO:1101	ND (1.6)	ND (10)	NO ITEM NO	(GE) NE	(1.0) NP-(1	1 100 (1.0)	ND(1.0)	MD(1.0)	NO(1.0)	ND (1.0)		DOD NO	1.01 10011	ND.	ND ND (2.0)
	o Xylana		ND (9.32)	ND (0.22)	ND(30) 7	10 (10) b	D(12) ND)	(8.8) NO	DIES NO DIE	ND (0.88)	ND (0.88)		ND .	ND ND (SA)	8) ND (0.88)			ND (9.32) ND	(0.22) NO (0	88) NO (0.22)	ND (0.32)	ND (0.08) 5	D (0.88) NO	(0.88) ND (0	189) ND (5.50)	ND (DAR)	(i) NO (0.88)	NO (0.08)	ND (9.8)	ND ND ((88) NO (5.88)	NO.	NO (1.0)	ND (10)	ND (0.32)	ND (0.32)	ND (D SH)	D(S.M) ND	(0.50) ND	(0.59) NO (5.	() ND (0.88)	ND (0.88)	NO (5.88)	ND (0.88)	ND (0.88)		(0.88) ND (0	M) ND (0.8	ND ND	
A Companies War Wa	Debashbroethere				618	8290	628 2	1670	197 43.3	22.7	1340	NI NI	418	G1 44	9 44.9	N3					187	65.6	172	68.6 0	18.3 46.4	4 21.0	D 198	803	1690	1090	419 1183	832	762	177	86.1	6.0	17.3	38.6	1.0	383 2	8.8	AD (0.80)	143	103	168	12.0	6.7	0.6 21	82.6	71.7 60
1 1 2 2 2 2 2 2 2 2	Tillanne		NO (5.25)	ND (0.29)	MD(27) 9	007) 9	D(5.1) MD((9.3) NO	9.821 ND (9.82)	MD (0.03)		NI	ND				ND (1.0)	ND (0.35) ND	(0.29) NO (0	NO (0.25)	ND (0.31)	ND (0.63) 1	D (0.03) NO	(0.80) NO (0	(33) NO (2.13	II AD (0.03)	a) ND (0.13)	NO (083)	NO (ER)	ND ND (MD (5.49)	(NO	NO (1.0)	ND (10)	ND (0.38)	ND (0.38)	ND (0.83)	o (s.sa) NO	(0.33) AD			ND (0.83)	NO (0.83)							ND ND (1.0)
	Name 1,3 Childrangrapme	1 1	ND (0.22)	ND (0.22)	ND (22) 2	RRI M	(0.86) ND	(8.3) NO	9.43 ND (9.43	MD (DAD)	ND (0.43)	NI	ND.	ND ND (D.E.	3) ND (0.03)	NO.	ND (1.0)	ND (0.22) ND	(0.22) NO (0	411 NO (0.22)	ND (0.22)	NO (043) 1	DOM: NO	(5.43) ND (0	(C) ND (S.C)	ND (0.40)	D ND (0.43)	NO (043)	ND (63)	NO NO I	ACI NO G.CI	i NO	ND(1.0)	MD (1.0)	ND (0.33)	ND (0.22)	ND D AD	D(0.43) NO	9.431 ND	0.00 NO.0	ND (0.43)	ND ID (E)	NO (0.43)	ND (0.43)	ND (0.43)	NO NO	(0.40) ND (0	(II) ND (0.6	, ND	
Figure F	Collowbere	1 :	2.8	1.0			44	13.6	43		16.1		9.7	18.7 4	B 2.1	NO.	12.6	ND (9.37) ND	(0.27) NO (0	88 21		1.7	11.8		1.0 1.1		1 2.6	63	19.1	1.1	8.4 11.9	1.4	3.4	3.5	1.1	ND (9.37)	ND (0.83)	0.80 J ND	0.83	79.2 0.0	J ND (0.83)	ND (0.83)	0.87.3							14 1
		1 2											ND.																				ND(1.0)																	ND ND (1.0)
Teachers Annual	Eylene (MSA)											NII	ND .			- 10																	ND (1.0)	MD (14)																ND (1.0)
	Exceedances boiled and highly ND = Not detected above taken NC = No Ordenso J = Estimated Value Class GA Value = Class GA St	ided in gray lary reporting limit	Values personne	SEA	ETB	add 7	629.6 26		221.3 48.6	21.6	1609.6		863.1	MIA M	7 803	•	200		1.1	4 82	796.7	era	36.0	m - 1	r3 (0)	1 86	4 200.0	#11.1	1790.1	1119.8	1208.3		100.3	192.7	27		173	20.0	10	28.2 2			140	-	187.1	12.0	47	21		762 61

Sanule D Lab Zanyle D Dule Sanyle Calleded Malitis	Class GA Elendenis	200 S 2019024 20 8010017 3 Onundester On	0003 00 000094 JCN 090218 928 0xxdaste Groon	4 ME 207 JCR66 018 41620 leafer Drovide	800 8 67 JCH0140-4 119 W100019 salar Grandesian	2003 20034 7 63703 Grandester	JONETTS-4 10/15/0020 Grandwiller	50V-5 J022348-1 3/35/2021 Grandesler	2001866-4 8/11/0021 Drawnlesder	JOSEPH A STREET OF THE STREET	30V 8 JD66606 1 JD 10282002 91 Groundesley Gro	110023 100	1043 U 19437-4 "CH 190023 923 14 Walley Groun	02 500 2 1104 J09602 0034 1024030 FWeley Dround Mar	MW 8 4 JE7962 6 3210028 Ser Dround Wales	9232217		JC169224 9282018 Dravelaster		4192019	USW 8 JCHENGO 2 BYOGOTH Groundester	UW 8 201514 8 403030 Droundester	1018/2020	325/2021	MW 8 JC01884-1 . B13/2021	0076 2042496-0 45/2027 1	50V-9 ID54605-1 J ID546303 I ID546303 I	1072023	Miles JOTHER'S 10/28/2023 Februal Walley Co.	MIS 5 JORS 110-5 JS 3/20/2024 10 Stand Water Chr	DW 5 10 D99030-7 JE 936/3004 301 bund Wider Chour	1/2029 92		MW 1 BROSS 0283 7 JC78822 92018 928221 odester Groundes								000 1 800001 6400-3 617000 960003 617000 entente Grandes			8Mile 1 8PM/V-1 199000 6 Al 7990 04/2004 301/0008 und Water Cround Bibles
Sortine Grazes Community Sortine 1.1.1 Traditionshipse	- 1	ND (8.0) ND (9.38)			(6.0) ND (6.0 (0.0) ND (0.0)			AD (6.0) AD (0.00	ND (3.1) a ND (3.10	ND (3.1) ND (3.8)	AD (3.1) AD (3.8)				NO NO(10)				ND (60) a ND (636)		ND (6.0) ND (6.00)	ND (8.0) ND (3.6)	ND (6.0) ND (0.0)		ND (3.1) a ND (3.6)	ND (3.1) ND (3.6)	ND (3.1) ND (3.0)	ND ND	ND (3.1) a ND (3.6)	ND (S.1) a ND (S.M)	NO.	ND (1.0)		NO (LO) NO NO (S28) NO (ND (6.0) ND (0.0)	ND (6.0) ND (6.0)	NO (KO) NO (LM)			ND (3.1) a ND (3.80	ND ND(3.1) ND ND(3.0)		ND A ND (10)*
1,1,2,2 Tellachterethane		ND (0.17)			(DAS) NO (DAS				NO (0.40)	ND (0.65)	ND (0.69)				NO NO(1)					MD (049)	NO (046)	ND (2.65)	ND (DAS)	NO (048)	ND (5.60)	ND (0.83)	NO (048)		ND (0.83)	NO (5.66)				ND (ETF) ND (ND (0.83)	NO (048)	NO (5.46)			NO (0.40)	ND ND (D III		ND ND(10)
1,1,2 frahissebare 1,1 Districtions	1	ND (936) ND (931)			(0.03) NO (0.03)				NO (0.83) NO (0.83)	ND (0.83)	AD (0.83)	ND ND			NO NO(1)	ND (0.34)				ND (0.83)	NO (0.63)	ND (3.83)	ND (0.33)	NO (0.83)	ND (5.83) ND (5.87)	ND (0.83) ND (0.87)	NO (0.03)	ND ND	ND (0.33)	ND (5.83)				ND (S3E) ND (ND (0.33) ND (0.37)	NO (0.83)	ND (S.EE) ND (S.EE)				ND ADDS	NO (0.80)	ND ND(10)
1,1-Children Chara	- 1	ND (3.47)	NO (047) N	(0.80) ND	(0.89) NO (0.80		AD (0.88)	ND (0.50)	NO (5.88)	ND (0.89)	ND (0.59)	ND	ND (0.88)		NO NO(1	ND (0.47)					NO (0.00)	ND (2.81)	ND (0.38)	NO (0.00)	ND (5.89)		NO (CSR)			ND (5.89)	ND	ND (1.0)	NO (047)	ND (S.47) ND (ND (0.38)	NO (038)	ND (5.86)				ND ND DA		ND ND(10)
1,2,3 Traillandergene		NO (3.80)	NO (0.00) N	(0.80) ND	(0.80) NO (0.80	NO (0.80)	ND (0.80)	ND (0.50)	NO (5.80)	ND (0.10)	ND (0.50)	ND	ND (0.80)	4D (0.10)	NO NO(1.0)	ND (0.80)	ND (0.50)	NO (0.80)	ND (0.10)	MD (0.80)	NO (6.60)	140 (3.10)	ND (0.80)	NO (0.00)	ND (5.80)	ND (0.80)	NO (0.00)	140	ND (0.80)	ND (3.80)		ND (1.0)	NO (0.00)	ND (3.80) ND (3.1	00 NO (000	ND (0.80)	MD (0.80)	NO (0.00)	ND (5.80)	ND (0.80)	ND (0.50)	NO (5.80)	ND ND (DA)	N2 (5.80)	ND ND (14)*
1,2,6 Tra/Montenzene		ND (5.80)		(0.80) NO	(0.80) NO (0.80	NO (5.80)	ND (0.80)	ND (0.80)	NO (5.80)	ND (0.80)	ND (0.50)	ND	ND (0.80)	(D) (D) (D)	NO NO(1)	ND (0.80)		NO (5.80)	ND (0.80)	MD (0.80)	NO (0.00)	ND (3.80)	ND (0.50)	NO (0.00)	ND (5.80)	ND (0.80)	NO (0.00)	NO	ND (0.80)	NO (5.80)	NO N			ND (5.80) ND (5.	0)0 NO (030	ND (5.80)	ND (0.80)	NO (0.00)	NO (3.80)	ND (0.80)	ND (0.80)	NO (5.80)	ND ND (S.M.		ND ND(10)
1,3 Obromo 3 shloropropane	0.04	ND (2.69)		10 (1.2) NO	(12) ND (12	ND (12)	ND (1.2)	ND (1.2)	NO (0.83)	ND (0.83)	MD (0.83)	ND	ND (0.83)	(D) (0 AS)	NO NO DI	ND (D.89)		ND (1.2)	ND(1.2)	NO (1.2)	ND (1.2)	ND(1.2)	ND (1.2)	ND (1.2)	ND (5.83)	ND (0.33)	NO (083)	ND ND	ND (0.03)	ND (5.83)			NO (049)	ND (SAR) NO (1	(b AD(12	ND (12)	ND (12)	ND (12)	ND (12)	ND (0.00)	AD (DAX)	NO (3.83)	ND ADDS		ND ND(23)
1,3 Dáromosthane 1,3 Distrondeniene	0.0006	ND (0.31)			(0.00) NO (0.00			AD DAR	NO (5.48)	ND (0.48)	AD (CAR)				NO NO(1)	ND (0.31)			ND (0.48)	MD (GAN)	NO (0.48)	ND (3.48)	AD (0.00)	NO (0.48)	ND (5.48)	ND (0.00)	NO (0.48)		ND (0.00)	ND (5.48)				ND (0.31) ND (ND (0.00)	NO (0.68)	ND (S. 68)			NO (5.48)	NO ADDA		ND ND(10)
1.2 Dishlorethare	0.6	NO (9.20)			(DAD) NO (DAD				NO (5.60)	ND (0.60)	ND (0.60)				NO NO(1)	ND (0.30)					NO (540)	140 (3.60)	ND (DAD)	NO (040)	ND (0.60)		NO (040)	NO	ND (DAD)	ND (5.60)				ND (9.20) ND (ND (DAD)	NO (040)	ND (5.60)			NO (5.60)	ND ND D III		ND ND (14)
1.3 Dishloropropane 1.3 Dishloroberoproe	1	ND (9.36) ND (9.80)			(0.81) NO (0.81			AD(DAT)	NO (0.81)	ND (0.81)	ND(0.81)				NO NO(1)	ND (0.34)	ND (0.24)	NO(0.81)	ND (0.81)	ND(031)	ND(0.81)	ND (3.81)	ND (DAT)	NO (0.81)	ND (S.ST)	ND (DAT)	NO (081)	ND ND	ND (DAT)	ND (S.ST)				ND (S36) ND (AD (DAT)	NO (0.81)	ND (0.81)	AD (0.81)	ND(DAT)	NO (0.81)	ND ADDS		ND ND(10) ND ND(10)
1.5 Dishlosidenciene	3	ND (5.50)			(0.54) NO (0.54 (0.54) NO (0.54			AD DAG	NO (5.54)	ND (0.14)	AD (0.54)				NO NO(1)	ND (0.10)			ND (0.14)	MD (GS4)	NO(0.54)	ND (3.84)	ND (0.34)	NO (0.54)	ND (5.54)	ND (0.34)	NO (0.04)	NO NO	ND (0.34)	ND (S.M)				ND (0.10) ND (ND (0.84)	NO (0.64)	ND (0.84)		AD DAG	NO (0.54)	ND ADDS		ND ND(10)
1,4 Dissane	- 1	ND (KZ)	NO (52)		D(W) ND(W		NO (69)		NO (18) b	NO (19)	NO (18)				NO MO(18	NO (82)			NO (69)	NO (NY)	MD (69)	ND (60)	NO (88)	NO (68)	NO (18)a	NO (18)	NO (19)	NO	N2 (38)	ND (38)	NO 1	ND (130)	NO (12)	MD (62) NO			NO (RR)	NO (NII)	AD (69)	ND (19) b	NO (18)	MD (19)	NO NO (III		ND ND (130)
Diffusione (MER)					O(ER) AD(ER		ND (ER)	AD (6.9)	NO (6.0) NO (2.0) a	ND (ER)	ND (2.7)				NO NO (1	ND (EX)			ND(68) a	ND (6.8)	AD (6.8)	NO (K.R) NO (Z.O)	ND (6.8)	AD (6.8)	NO (E.II)	ND (6.8)	MD (27)	ND ND	NO (27) a NO (ER)	ND (27) a		ND (10)	ND (4.8) ND (3.3)	NO(48) NO			ND (ER)	AD (ER)	ND (E.R) a	ND (ER) ND (ER)	AD (63)	NO (27)	ND ND(2.7)		ND ND(10)
Ottowanone Ottobal 2 ownlanone/MERO					1(2.0) ND (2.0				ND (Z.E) a	ND (2.0)	ND (24)				NO NO ILI	ND (3.5)					MD (2.0)	NO(2.0)	ND(2.0)	ND(2.0)	ND (DD) A	ND(2.0)	ND (20)	NO NO	ND (EX)	NO(4.8)	NO NO		ND(33)	NO(33) NO			ND (2.0)	ND (24)	NO (20)	MODEL	ND (20)	NO (20)	ND ADJES		AD NO(64)
Senjere	1	ND (3.17)	NO GITTO N		(0.43) NO (0.43				NO (5.43)	ND (0.43)	ND (0.43)				NO NO G.S						ND (0.43)	ND (2.43)	ND (0.03)	NO (043)	ND (0.43)	ND (0.63)	NO (043)		ND (0.63)	NO (0.43)				ND (5.17) ND (ND (0.43)	NO (043)	ND (0.43)				ND ND D E		ND ND (0.50)
Bromodioronethane Bromodi/Stromethane		ND (0.38)			(0.00) NO (0.00				NO (0.48)	ND (0.48)	ND (0.68)				NO NO(1)	ND (0.38)			ND (0.48)		NO(048)	ND (2.48)	ND (D.EE)	NO (0.48)	ND (0.48)	ND (D.EE)	NO (0.48)	NO	ND (D.EE)	ND (0.48)				ND (0.38) ND (AD (D.EE)	NO (0.48)	ND (I. de)			NO (0.48)	ND ADDE		ND ND(10)
Bromodu/suromethane		ND (9.32)			(0.58) NO (0.58				NO (5.45)	ND (0.41)	AD (CAS)				NO NO(1)	ND (0.32)					NO (0.58)	ND (S.SE)	AD (D.EE)	NO (0.45)	ND (S.41)	ND (0.00)	NO (0.45)	NO NO	ND (0.00)	ND (S.ES)				ND (0.32) ND (ND (0.58)	NO (0.45)				NO (0.45)	NO ADDE		ND ND(10)
Somemebase		N2(1.4)	NR(14) 1		Table MP (Ta				NR (14)	ND (14)	ND (14)				NO MODE	ND (7.4)		NR/140	NR(1.6)		NR(14)	NR:0.61	ND (1.6)	NP(14)	NR(1.6)	ND (1.6)	ND(14)	NO	ND (14)	ND (1819	NO N		NR(14)	ND(14) ND			ND (14)	NP (14)	NR-(14)	ND (14)	NR (14)		ND ND ITS		ND ND (24)*
Carbon disultide	60	NO (3.23)			(D.80) NO (D.80				NO (0.44)	ND (0.46)	ND (0.66)				NO NO (II	ND (0.33)			140 (0.86)		ND (6.99)	140 (3.86)	ND (0.66)	NO (0.46)	ND (0.46)	ND (0.66)	NO (046)	NO	140 (1.8)	ND(18)				ND (3.50) ND (MD (0.80)	ND (0.46)				NO (0.44)	ND ND(1.8		ND ND (24)
Carbon febautionde		ND (9.34) ND (9.34)			(0.85) NO (0.85				NO (0.88)	ND (D.SS)	ND (0.88)				NO NO(1)	ND (0.34)					NO(030)	ND (2.88)	AD (DAS)	NO (0.88)	ND (5.88)	ND (0.88)	NO (0.88)	ND ND	ND (0.88)	ND (S.SS)		ND (1.0) ND (1.0)	ND (034)	ND (S.M.) ND (as) ND (0.88	ND (5.88)	ND (0.88)	NO (0.88)	ND (0.88)	AD (D.M)	ND (0.89)	NO (5.88)	ND ADDS		ND ND(10)
Dissellane		ND (3.88)			(0.75) NO (0.75				NO (0.10)	ND (C.NE)	AD (CAR)				NO NO (1)	MD (0.34)		NO (0.10)	ND (C.TI)	ADJOIN)	NO(0.00)	NO (2.00)	AD (CTI)	NO (0.00)	ND (0.73)	AD (CTI)	NO (C-20)	NO.	AD (CTI)	ND (CRI				MODEL AND		MORTE	AD DES	10.070	ADJUSTES.	AD D TO	AD D TO		an anne		ND ND(10)
Chloridam	7	0.38.2	NO (029) N	(0.80) ND	(0.80) NO (0.80	GATA	0.39.2	ND (0.10)	NO (5.80)	ND (0.10)	ND (0.50)	ND	ND (0.10)	0.79 J	NO NO(1)	0.39 2	ND (0.29)	NO (5.80)	ND (0.10)	ND (0.80)	NO (6.80)	140 (3.10)	0.07.2	NO (0.00)	ND (5.80)	ND (0.80)	NO (0.80)	0.812	ND (0.80)	ND(0.00)+	ND	ND (1.0)	NO (0.29)	ND (9.29) ND (ac) NO (0 ac	ND (5.10)	ND (0.10)	NO (0.00)	NO (0.80)	ND (0.10)	AD (0.00) A	(D)(0.80) b	ND ND (SA)	NO (5.60)	ND ND (14)
Ottoromethane		ND (5.83)			.79) a NO (0.79		ND (0.70)	ND (0.7%)	NO (5.74)	ND (0.76)	ND (0.7%)	ND	ND (0.76)		NO NO(10)	ND (0.33)	ND (0.83)		ND (0.70)	ND (0.70) a	NO (6.79)	ND (3.76)	ND (0.7%)	NO (0.7%)	ND (5.76)	ND (9.7%)	NO (0.7%)	NO		ND (5.76)	NO N	(0.7) Di		ND (S.ES) ND (74) ND (9.74) A		ND (9.7%)	NO (0.79)	NO (0.76)		ND (0.70)	NO (5.74)		ND (5.7%)	ND ND (14)
dis 1,2 Children bene dis 1,3 Children come		0.65.J ND (0.25)			DED NO DE			AD (0.81) AD (0.61)	NO (0.81) NO (0.41)	1.2	ND(DAT)				NO 0.83	ND (0.50)			ND (0.81)	ND(GST)	0.60 J NO(0.60	ND (2.47)	AD (0.81)	14 NO 040	ND (0.81)	ND (0.67)	NO (DAT)	2.3 ND	ND (0.81) ND (0.67)	ND (SAT)	8.1	14.2	1.7 NO (0.29)	OMJ	22 2	13	2.8 ND (0.67)	23 NP 040	ND (0.4f)	ND (0.47)	ADD OF	8.2	MA 13.		10.7 19
Collegane		ND (2.63)	N2 (543) N		(0.78) NO:078	ND (0.78)	ND (0.78)	ND (0.78)	NO (0.17)	ND (0.78)	ND (S.78)	ND ND	ND (0.78)		NO NO IN	ND (0.63)			ND (0.78)	ND (0.78)	NO(0.78)	ND (2.78)	ND (0.78)	NO (0.79)	ND (0.78)	ND (SZE)	NO (0.79)	ND	ND (SZE)	ND (0.78)		ND (5.0)	NO (0.50)	ND (SAS) ND (ND (0.07)	NO (0.79)	ND (0.79)	ND (0.78)		NO (0.19)	ND NDS7	NO (3.19)	ND ND (64)
Disconstitutorethane		ND (3.16)			(DM) NO (DM	ND (5.84)	AD (0.86)	ND (0.86)	NO (0.84)	ND (0.86)	ND (0.96)			4D (0.84)	NO NO(1)	ND (0.16)		NO (5.84)	ND (0.86)	MD (0.96)	NO(0.00)	ND (3.86)	ND (0.86)	NO (0.86)	NO (5.84)	ND (0.86)	NO (036)	NO	ND (0.86)	NO (5.86)				ND (EN) ND (M) NO (0.06	ND (5.84)	ND (0.86)	NO (036)	NO (5.86)	ND (0.86)	ND (0.86)	NO (0.84)	NO NO DE		ND ND(10)
DishloradEusromethane				(0 (14) ND	[1.0] a ND [1.0	ND(14)	ND (1.4)	ND (1.4)	ND (0.86) a	ND (0.86)	ND (3.86) a		ND (0.86)	en in sei	NO NO DO	NO (1.8)		ND(1.4)	ND(1.4)	ND (14) a	MD (1.4)	ND (1.4)	ND (1.4)	ND(1.4)	ND (D30) a	MD (0.86)	ND (0.86) a	NO	ND (DAY)	ND(0.00)4	NO N		MD (18)	NO(18) NO	1.4) ND (1.4) i	ND (14)	ND (1.4)	ND (1.4)	ND (14)	ND(0.06) a	AD(DM) A	(D)(0.00) a	NO NO DA		ND ND (2.0)*
Displacement					(0.80) NO (0.60 2 (1.8) NO (1.6			AD (DAD) AD (18)	NO (5.60) NO (5.60)	ND (0.80)	ND (D 60)	ND ND			NO NO (1)	ND (0.32)		NO (0.60)	ND (0.60)	ND (GRD)	ND (0.60) ND (1.8)	ND (3.60) ND (3.81	ND (DRD)	NO (040)	ND (5.60) ND (5.86)	ND (DAD) ND (DAE)	NO (040)	NO	ND (DAID) ND (DAID)	ND (5.60)			NO (0.22) NO (1.2)	ND (0.32) ND (ND (1.2) ND			ND (DAD)	NO (040)	ND (5.60) ND (1.8)			NO (2.60)	ND ND D III		ND ND(10)
hopropythenia me	- 1	NO (5.25)	NO (029) N	(2.61) NO	(DAI) NO (DAI	ND (5.46)	ND (0.88)	ND (0.69)	NO (0.40)	ND (0.65)	ND (0.65)	ND	ND (0.65)		NO NO(1)	ND (0.25)	ND (6.29)		ND (0.65)	ND (049)	N2 (548)	140 (3.65)	ND (DAS)	NO (046)	ND (5.65)	ND (0.83)	NO (048)	NO	ND (0.83)	NO (5.66)	NO.	ND (1.0)	NO (0.25)	ND (5.25) ND (88) NO (048		ND (DAS)	NO (046)	ND (5.66)	AD (0.88)	ND (0.69)	NO (0.40)	ND ND D III	ND (5.66)	ND ND(10)
n.p.Xylana		ND (3.43)			(0.7W) NO (0.79				NO (5.78)	ND (0.78)	ND (0.79)				NO NO (1)	ND (0.43)					NO(679)	ND (3.78)	MD (0.79)	NO (0.79)	ND (0.78)		NO (0.79)		ND (S7K)	ND (3.78)				ND (3.43) ND (MD (9.79)	NO (0.79)					ND ND D7		ND ND(14)
Methyl Austidia Methyl Test Build Ether	-	ND (3.1) ND (3.2)			(0.80) NO (0.80 (0.81) NO (0.81				ND (0.80) 4 ND (0.80)	NO (0.80) a NO (0.81)	ND (0.80)				NO NO ILI			NO (0.80) NO (0.81)	ND (0.80) ND (0.81)	ND (0.80) ND (0.81)	ND (680) ND (681)	ND (3.80) ND (3.81)	ND (DAD) ND (DAT)	NO (0.80) NO (0.81)	ND (SAT)	ND (0.80) a ND (0.81)	NO (0.80)		ND (DAD)	ND (5.80) ND (5.81)		ND (3.0)	MD (3.1) 9.39 J	ND(3.1) ND (0.38.2 ND (ND (0.80)	ND (0.80) ND (0.81)	ND (0.80) ND (0.81)			NO (5.80) NO (5.80)	ND ND D N		ND ND(60)
McDuboshibesane					(0.60) NO (0.60				NO (3.60)	ND (0.60)	ND (D 6D)				NO NO IN	ND (1.6)		N2 (3.60)	ND (0.60)	ND (080)	N2 (540)	100 (3.60)	ND (DED)	NO (040)	ND (3.60)	ND (DED)	N2 (540)	160	ND (DED)	ND (3.60)			ND(18)	NO CLASS NO S			ND (080)	N2 (540)	ND (3.60)		NO DED	NO (3.60)	ND ND D II		ND ND(6/0)
McDighera shisolae		ND(7.0)			(1.0) MD (1.0	NO(10)	ND (1.0)	ND (10)	NO (1.0)	NO (1.0)	ND (14)	ND	ND (1.0)	ND (1.0)	NO NO (2)	ND (7.0)			ND(1.0)	NO (1.0)	ND(1.0)	NO(1.0)	ND (1.0)	ND (1.0)	NO(1.0)	ND (1.0)	ND(10)	NO	ND (1.0)	ND(10)	NO		ND(10)	NO(10) NO		NO (1.0)	ND (1.0)	ND (1.0)	NO (1.0)	ND (1.0)	ND (10)	NO (1.0)	ND ND (14		ND ND(20)
a Xylana		ND (9.32)	ND (0.22) N		(D38) NO (D38	ND (S.M)	ND (0.00)	ND (0.88)	NO (5.88)	ND (0.88)	ND (DAY)				NO NO(1)	ND (0.32)	ND (0.22)				N2 (0.88)	ND (3.89)	ND (0.88)	NO (0.00)	ND (5.88)		NO (0.09)	NO	ND (D3R)	ND (5.89)		ND (1.0)		ND (0.32) ND (ND (D38)	NO (0.09)					NO NO DE	NO (5.88)	ND ND(14)
Departmenture		109	111	45.8	41 64	21.6	48.7	11.3	71.2	83.9	14.0	42.1	10	65.7	17.1 22	76.8	181	71.1	75.1	42.7	74.7	44.0	80.0	86.2	81	79.8	28.7	86.7	81.4	98.8	178	111	21.8	12.4	0.4 21.6	8.0	TE.D	418	94.9	126	122	76.2	117 26	114	162 190
Dilume		ND (9.35)			(0.03) NO (0.03			MD (0.83)	NO (3.83)	ND (0.83)	ND (0.69)				NO NO(1)	NO (0.21)				MD (0.83)	N2 (0.83)	ND (3.83)	MD (0.33)	NO (0.83)	ND (3.33)	MD (0.33)	NO (049)		ND (0.69)	140 (3.49)				ND (0.25) ND (MD (0.83)	NO (0.83)	ND (3.83)					NO (5.49)	ND ND(10)
tans 1,2 Childistrathere tans 1,3 Childistrations		ND (0.40)			(0.84) NO (0.84 (0.83) NO (0.43		AD (0.84)	ND (0.60) ND (0.60)	NO (0.64)	ND (0.84)	ND (0.84)				NO NO(1)	ND (0.40)				ND (0.84)	ND(0.60)	ND (3.64) ND (3.63)	AD (DAY)	NO (0.64) NO (0.63)	ND (5.84)	ND (0.84) ND (0.63)	NO (0.64) NO (0.63)	ND ND	ND (DAG)	ND (5.64) ND (5.63)				ND (0.40) ND (ND (0.84)	NO (0.00)	ND (E.M.) ND (E.M.)			NO (0.84)	ND ADDS	NO (0.84)	ND ND(10)
Dishbeselvene		6.2		14	2.1 2	18	2.2	ND (0.00)	22	8.6	961.2	3.9	ND (0.83)	1.1	1.3 1	1.7	12.4	2.7	2.7	1.0	3	3.4	33		2.2		14	5.0	14		2.6	29.1	2.0	27	64 63	2.8	2.5	10.4	5.6	7.1	7.4		11 16		9.7 164
Stationations and and	- 6		NO (040) N							ND (0.40)	ND (0.60)				NO NO DI	ND (0.60)						ND (3.84)	ND (0.60)		NO (0.40)	MD (0.60)	NO (0.40)	NO		ND (0.40)					84) ND (0.84)		MD (0.84)	NO (040)	ND (2.40)		ND (0.40)	NO (0.40)	ND ND D II		ND ND (2-0)
Mongli ubdorbite	2	ND (3.62)	NO (042) N		179) a NO (0.79					ND (0.79)	ND (0.82)			4D (0.12)	NO NO(10)	ND (DAZ)					NO (6.79)	ND (2.79)	ND (0.79)	NO (0.79)	ND (0.79)	ND (0.79)	NO (0.02)	ND ND		ND (0.82)	NO N			ND (S.EZ) ND (ND (0.79)	NO (0.79)					ND ADDA	NO (5.82)	ND ND(10)
Sylene (MM)		ND (0.32) 113.2	NO (0.22) N	518 AD	(D38) NO (D38 43.1 KT	ND (5.86)	ND (0.89) 67.9	AD (0.5%) 11.3	NO (0.88) 73.4	100 (D.00) 100 (D.00)	AD (0.59) 16.8	ND 67.1	ND (0.88) 70	40 (0.50) 68.8	NO NO (1.	ND (0.22)	MD (0.22) 163.7	ND (0.88) 73.8	ND (0.88) 73.8	ND (0.89) 65.6	ND (ESR) 77.7	ND (2.10) 69.2	ND (0.59) 56.2	ND (0.08) 68.2	ND (5.89) 84.3	MD (0.89) 100	NO (038) 27.1	ND 63.9	ND (0.00) 83.2	ND (5.89) 109-8	NO	190.3	ND (0.22) 28.6	ND (5.22) ND (16.0	59) NO (538 82 217	ND (5.88)	ND (0.59) 93.1	ND (0.89) 633.1	ND (2.88) 109	AID (0.88) 137.1	ND (0.5%) 130.3	NO (5.88) SEA	MD MD (0.56 8.3 293	NO (5.8%)	ND ND(10)

Name is specied to compare as 100 logic).

Extractions belief and hydrolide large of

I a filliance Vision (Control Maries and Hudroline Vision (MOSICC), Join 1995 Delates of State Technical and Cymenton Guidene States).

Control Vision (Control States and Hudroline Vision (MOSICC), Join 1995 Delates of State Technical and Cymenton Guidene States).

Cample D Lab Sample ID	Clare OA Mandanis	201900 J		9824 JORGS	2 BROWN 3		3 BRMW3 3 JO16774-6 0 10/16/000		2/23/1996-4 9/17/2021	.000000	20000 2 E 200000 4 JO 5020002 E	100 EPRO 1073, 1-02801	WG BRWWGD BFG JDF8457 DDS 1005000	P BRIDGS 1 JOHN 104 .	BRANCO BRANCO DRIGODA JETRO DOLOGO 307100	2 BR000-3 2 JC01932-4	1083083-2 80008-3					16776-8 JC02368- 167503 305/202	2001864-0	200200-3 200200-3	100W3	ERMA 3 ERMA (DBB22-9 JC754	13 BMW3 174 JS811104	100000-3 EPG000-3	2800013 387902 3 3710003 9		N-1 RIE- 1019-1 JC765	9901 0.6 JORGES 08 6160019		2001 20004 A 20 40200 10		W-1 R00- 2368-4 JD218	1 8W-1	700 1 0 10000000 0 100000000	200.1 200.023-11	89-1 89-1 079487-10 2083110-8	200000 4 1000000 4	2001 201000
Oute Sample Collected																																								read their Crown file		
Votable Organic Compounds		Chinaman Co														an Constant													COLUMN CO													
Acetione		AD (SI)	ND (20)	ND (SII) NO	0(12) NO		(30) NO (6			MD (12)	ND (12)		D(I.T)a MD(I		ND a NO				ND (6.0)			ND(6.0) ND(MD (9.1)	ND ND	(3.1) a NO (12)		NO (10)			(EQ) a ND (I						(0.1) ND (0.1)		ND (3.1) a ND (3.1		ND (10)
1,1,1-Dishbookhane		ND(13)					(az) No (a)			N0 (2.1)	ND (2.1)		D(SA) ND(S		NO NO				MD (0.84)			ND (0.84) ND (0			NO (0.84)		(pair) ND (2.1		ND (1.0)			(0.84) AD (0.						(0.94) NO (0.0		MD (0.84) ND (0.0		ND (1.0
1,1,2,2 Telephonethane 1,1,2 Collisionethane					(13) ND		(0.3) ND (0.4			NO (24)	ND (2.4)		D(EAS) ND(E		NO NO				AD (OAR)			ND (DAS) NO (D			NO (048)		(DAS) ND (ZA		ND (1.0)			(DAR) AD (D					(2.65) AD:			ND (088) NO (08		ND(1.0
1.1 Outstrochure							GR NDG			ND (2.1)	ND (2.1)		DOIN NO		NO NO				ADJOST			ND (DAT) NO (I			NO (010)		(DAT) AD (T		ND (1.0)			(DAT) NO:0					HARD ADI			ADJUST NO.		ND(1)
1,1 Childianachese	- 1	ND(24)	ND (1.8)	MD(24) NO	(12) NO	(3.0) ND	(30) ND (3)	30 0.09	0.72.1	ND (2.4)	ND (2.4)	NO.	0.86.1 0	HJ ND(SD)	NO NO		N2 (5.86)	ND (3.80)	0.83.2	ND(12)	ND (5.89)	ND (0.58) ND (0	(8) NO (5.89)	ND (0.88)	NO (0.88)	NO NO	(D38) ND (Z4	i) ND	NO (1.0)	ND (0.47)	90 (0.47) NO	(0.10) ND (0.	18) 0.66.1	NO (0.88)	ND (0.59)	NO(0.00) NO	(2.10) ND:	(G38) NO (G3	88) ND	ND(038) ND(01	88) NO	ND(1.0
1,2,3 Chattandergene		N2 (2.8)	ND (2.0)	ND(20) ND	(1.0) NO	(2.1) ND	(2.5) ND (3.1	80) ND (0.80	MD (0.00)	NO (2.0)	ND (2.0)	NO N	D(0.00) ND(0	80) ND (2.8)	NO NO	(E.O. AD (GRO)	MD (1.0)	ND (3.80)	MD (0.80)	ND (1.0)	ND (5.80)	ND (0.00) ND (0	(0) NO (0.00)	ND (0.80)	NO (0.00)	NO NO	(0.00) ND (2.0	() NO	ND (1.0)	ND (0.00)	ND (0.80) NO	(0.10) ND (0.	NO (0.00)	ND (0.10)	ND (0.50)	ND (0.00) NO	(2.10) AD-	(0.00) NO (0.0	90) ND	ND (030) ND (01	80) NO	ND(1.0)
1,2,4 Chattandergene		N2 (2.8)	ND (2.0)	ND(20) ND	(1.0) NO	(2.1) ND	(2.5) ND (3.1	80) ND (0.80	MD (0.00)	NO (2.0)	ND (2.0)	NO N	D(0.00) ND(0		NO NO	(E.O. AD (GRO)	MD (1.0)	ND (3.80)	MD (0.80)	ND (1.0)	ND (5.80)	ND (0.00) ND (0	(0) NO (0.00)	ND (0.80)	NO (0.00)	NO NO	(0.00) ND (2.0	() NO	NO(1.0)	ND (0.00)	ND (0.80) NO	(0.10) ND (0.	NO (0.00)	ND (0.10)	ND (0.50)	NO(0.00) NO	(2.10) AD-	(0.00) NO (0.0	90) ND	ND (030) ND (01	80) NO	ND(1.0)
1,2 Ottrono 3 shoropropane	0.04	ND (3.4)	NO (2.8)		(24) NO			12) ND (12		N0 (2.1)	ND (2.1)		D(0.10) ND(0		NO NO			ND(1.2)	ND (1.2)	ND (2.4)	ND(1.2)	ND(12) ND(NO (0.83)		(0.03) ND (2.5		ND (2.0)	ND (D4R)	N2 (5.69) N	(1.2) ND (1	2) NO (12)	ND (1.2)	ND (1.2)			(0.33) NO (0.3		MD (0.33) ND (0.0		ND (2.0
1,2 Oteranostrane	0.0004				DANS NO.		(DA) ND (DA			ND (1.8)	ND (1.8)		D(E48) ND(E		NO NO		NO (0.42)	ND (0.48)	ND (0.00)			ND (D.EE) NO (D			NO (0.48)		(D.08) ND (1.0		ND (1.0)			(D.48) AD (D.					(2.48) ND:	(0.68) NO (0.6		MD (0.88) ND (0. MD (0.83) ND (0.		ND(1
1.2 Childreniana 1.2 Childreniana		ND(2.8) ND(1.0)	ND (2.0) ND (0.80)		(1.1) ND		(37) ND (3.1	(E) AD (0.10	ND (0.00)	NO (2.1)	ND (2.1)		D(0.50) ND(0 D(0.60) ND(0		ND NO			ND (3.83)	ND (0.33)			ND (0.03) ND (0.00)			NO (0.83)		(0.00) ND (2.1		NO CLES			(0.13) ND (0.						(0.53) NO (0.5 (0.60) NO (0.6	33) ND	ND (033) ND (01 ND (030) ND (01		MD (1
12 Chilliananosane	1	NR(12)	ND (DM)		ITEL NO	(2.8) ND	GAI NO G	ati ND (0.81	MPRAT	NO COL	ND (2.0)		posm Nos	ati ND (2.8)	NO NO			ND (2.81)	MP(03T)		ND (SAT)	ND (DAT) NO (D	m ND (0.81)	ND (DAT)	NP (SAT)		(DAT) ND (Z)	n NO	ND (1.0)	ND ID 26	12 (3.20) NO	(9.81) NO:00	11) NO(0.81)		MD(DAT)	NO(0.81) NO	HEATT NO.	DATI NO DA		ND (0.81) ND (0.1	800 NO	ND(1
1,3 Old Sindergene	3	N2 (2.1)					(27) ND (3.1			ND (22)	ND (2.2)		D(0.84) ND(0		NO NO				MD (0.84)			ND (0.84) ND (0			NO (034)		(D34) ND (D2		NO (1.0)			(0.84) ND (0.					(3.84) ND(86) ND	ND(034) ND(0)		ND(1
1,4 Childreniana 1,4 Childrenia	3	ND (2.8) ND (380)	ND (2.0) ND (210)				(2.5) NO (3.1 (350) NO (NO (2.0) NO (77)	ND (2.0) ND (77)		D(0.81) ND(0 ND(08) ND		NO NO			ND (3.81) ND 881	ND (0.81) ND (88)	ND (1.0) ND (100)		ND (0.81) NO (0. NO (88) NO			NO (0.01) NO (19)		(0.81) ND (2.0 (0.08) ND (16)		ND (1.0)			(0.81) ND (0.10)		ND (0.81) NO 689				(0.81) ND (0.8 2 (18) ND (1	81) ND	ND(031) ND(01 ND(09) ND(0		ND(1
1,6 Oranie 2 Bulanie MEX		NO (NO)	ND (210) ND (18)				(380) ND (ND (77)	NO (77)		ND(SS) ND		NO NO			NO (44)	NO (KII)			NO (III) NO (I			ND (19)		10 (38) ND (16)		ND (130)			D(R) ND(NO (68)				1(18) AD(1		NO(SI) NO(
Table more		ND (NI					2(10) NO 0			NO. (31)	MD (FT)		PORT NO.		NO NO				MD (E.E)			ND G S ND S			ND (27)		D(ES) MD(II)		MD (10)			COD NO		ND (EA)				IGS NDG		MODEL MODE		MOUS
(Methol 2 perfaroneMIRK)		ND (18)		ND(TA) NO			(83) NP (1			NO (7.6)	ND (7.4)	NO 1	NO SERVICE NO	LB ND (26)	NO NO	100 MD (3.0)			100 (1.8)			ND(18) ND(MD (18)	NO N	D (S.R) ND (1)	n ND	NO (S.D)	ND (SS)		OTAL MODE						(IA) NO.	1.00	NO (E.E) NO (6	1.00	ND (S
Berjane		NO (S.EF)					(2.1) NO (5.	41 ND (9.4)	MD (0.40)	NO (17)	ND (1.7)		0 (5.43) NO (5		NO NO				ND (0.03)			ND (0.03) NO (0			NO (0.43)		(D.03) ND (1.1		NO (0.80)			(0.43) ND (0.43)						(0.63) NO (0.4		MD (0.63) ND (0.		ND (1.1
Enomoditarome/hane		ND(1.0)	ND (1.8) ND (0.87)		0.86) NO		(24) ND (24)		1 ND (0.00)	NO (18)	ND (1.8) ND (1.8)		D(0.48) ND(0 D(0.48) ND(0		NO NO			ND (5.48)	ND (0.88)			ND (D.IR) NO (I			NO (0.48) NO (0.48)		(0.00) AD (1.0 (0.00) AD (1.0		ND (1.0)			(0.48) ND (0.48)						(0.68) NO (0.6 (0.68) NO (0.6		MD (0.00) ND (0.00)		ND(1
Toron Term		ND(11)			(12) NO		(CT) NO.			NO (18)	ND (13)		DOM: NO		NO NO			ND (2.65)	AD (OAK)			AD DAY NO IS		AD (DAY)	NO (040)		(DAT) AD (12		ND (1.0)			ON ADD						0.00) 700(0.0	80) NO	ADJORN NO.01		ND(1
Economethere		NO (6.0)	ND (3.8)	ADDRESS ADDR	Dia NO	(8.7) 80	(82) NO.11	141 ND (14	MP (14)	100,000	MD (E.E.)	100 1	MOUTH NO.	10 95/8715	NO NO	(8.0) ND(1.6)	AD CLD	200,000	NO.CLEL A	ND GUIL	2000	ND(14) ND(an arriva	MOUNT	AP (140	100 a	non more		NO(2.0)	AD (140)	MOUTH M	100 1000	le ND(14)a	ND (1.6)	ND (1.6)	NR(14) N	DOM: NO	(7.6) 550.0	140 440	MD(18) AD(1	100	ND (2.6
Carbon doublide	60	ND (1.2)	NO (2.0)		(1.0) NO	(EX) NO	(6.8) NO (5.4	ALI ND (0.44)	1 ND (0.40)	ND (1.8)	ND (1.8)		40 (1.8) NO		NO NO	(K.0) ND (0.23)	ND(1.0)		ND (0.89)	MD (1.9)		ND (0.66) NO (0	(8) NO (5.46)		NO (0.48)		D (1.8) ND (7.2		ND (2.0)			(0.86) ND (0.	NO NO (5.86)	ND (0.86)	MD (0.89)	ND(0.66) NO		(0.6K) NO (0.6		ND(1.8) ND(1		N0 (2
Carbon Intrachtunde		ND(17)			(1.1) NO		(DR) ND (D			ND (22)	ND (2.2)		D(0.88) ND(0		NO NO				MD (0.88)			ND (0.88) ND (0			NO (035)		(DAS) ND (Z2		ND (1.0)			(0.88) AD (0.						(0.38) NO (0.8		ND (0.88) ND (0.0		ND(1
Chimberiere			ND (0.80)		(1.1) NO		(CR) NO (C)			ND (22)	ND (23)		D(EM) ND(E		NO NO				AD (0.86)			ND (DM) ND (D			NO (0.00)		(DM) ND(III		ND (1.0)			(D.ME) AD (D.						(0.86) NO (0.8		MD (OM) ND (O		NO(1
Otometiane		ND(3.0) ND(1.4)			(1.0) ND		(34) ND (3.1			NO CO	ND (2.8)		0 (5.73) ND (5 0 (5.10) ND (5		ND NO		ND (1.2)	ND (3.73)	ND (0.73)			ND (0.73) ND (0.7 ND (0.80) ND (0.7			NO (0.73) NO (0.00)		(073) ND (21		NO CLES			(0.73) ND (0.		ND (0.73)				(0.73) NO (0.1 (0.30) NO (0.30)		ND (0.73) ND (0.1		MOUT
Channellane		90(11)			CONTRACTOR NAMED IN		OR MOS			100,000	MD (DD)		non mo		NO NO			NO (2.20)	MELET THE A			AD (CR) NO. (C			100,0000	NO 100			NO.00		Maria M	one work		MO (0.76)				0.70 97/0.7	70 40	Aminomi amino		MOUNT
do 12 Distoriethere	i	11.0	7.6	16.3	13.1	23	21.1	16 261	20	28.7	20.1	28.4	18.1	8.4 13.4	26.6	23.0	18.9	3.4	3.3	16.7	22.2	18.8	19 15.4	13.2	12.4	12.4	11.2 8	2 11.1	16.7	19.9	14	11.6 1	01 314	72.6	768	124	63.1	68.8 T	177 81	128 2	22 214	31
do 1,3 Dishloopopene		N2 (1.3)	ND (1.0)			(2.4) ND	(24) ND (2			NO (1.8)	ND (1.8)		D(0.47) ND(0		NO NO	(E.O. AD (0.29)		ND (2.47)	MD (0.67)			ND (0.67) ND (0			NO (047)		(0.67) ND (1.6		ND (1.0)			(0.47) ND (0.47)						(0.67) NO (0.6		ND (0.67) ND (0.		ND (1
Optimizare Obronostorometrane		ND (3.2)					(SIR) ND (S.			ND (3.1)	ND (3.1) ND (3.2)		D(S.NI) ND(S D(S.NI) ND(S		NO NO				ND (0.79) ND (0.89)			ND (079) NO (0 ND (039) NO (0			NO (0.79) NO (0.99)		(0.79) ND (3.1		ND (S.D)			(0.78) AD (0. (0.36) AD (0.						(0.79) NO (0.1		MD (0.79) ND (0. MD (0.89) ND (0.		NO IS
Didtorodfuoromethane		ND (8.3)		ND(S) ND(SE NO.			ND (22)	ND (23)		DGM NDS		NO NO			M2(2.00)	Man (U.Se)			MO(14) AD(NO (CIN)		(DM) ND(2.2)		NO COL		90 (1 H) H	formal service	14 307,1141	MD (C.C)				(CAR) AD (CAR		ND (GM) ND (G)		ND G
Eligeniese							(SA) MOUTH			NO (2.4)	MOUNT		DOM: NO		NO NO		MD(2.7)	MD (1.4)	AD INST			AD DED SOLE			Manager and a	NO NO	(DAN) AD (D.)	0 10	ND (1.0)	ADJUSTS		(CA) AD(CA						loss) spiros		ADJORD NO.01		ND:11
Firmon 113	- 1	N2 (6.2)					(9.7) NO (1			ND (23)	ND (2.3)		D(0.88) ND(0		NO NO				ND (1.8)			ND(1.8) ND(NO (0.88)		(D38) ND (Z3		NO (8.0)			(1.8) ND (1		ND (1.8)			(2.88) ND:			ND(038) ND(01		ND(S
(nopropythenolene		ND (13)	ND (1.0)				(32) ND (3.0			NO (24)	ND (2.4)		D(EAS) ND(E		NO NO			ND (2.65)	AD (OAR)			ND (DAS) NO (D			NO (048)		(DAS) NO (ZA		ND (1.0)			(DAS) AD (D						(0.88) NO (0.6		ND (0.89) NO (0.		
mp Xylana Mathet Anadola		ND (2.1)					(3.8) ND (3.1			ND (3.1)	ND (3.1)		D(0.79) ND(0		NO NO				ND (0.79)			ND (0.79) NO (0.			NO (0.79)		(0.79) AD (3.1		ND (S.D)			(0.78) AD (0.					(2.78) NO:			ND (079) NO (0:		Mor
Methy Test Bull Sther	10	ND(13)	ND(1.0)		(10) ND		(CA) ND (C.)			NO CO	ND (2.0)		DOM: NO		NO NO			ND (2.81)	MD (DAT)			ND (SAT) NO (S			NO (GAD)		(DAT) ND (II		ND (1.0)			(0.81) ND (0.					HEAT ME			ND (DAT) ND (D)		ND:
Methylogistesiane		N2 (9.2)			(12) NO		(DO) NO(D)			ND (2.4)	ND (2.4)		D(0.40) ND(0		NO NO				ND (080)			ND (DAD) NO (D			NO (040)		(DAD) ND (ZA		NO (8.0)			(0.40) ND (0.					(3.60) ND:			ND (080) ND (04		ND
Metrylene ditunde		NO (1.0)			(ZO) NO		(80) NO (1			NO (40)	NO (6.0)		ND (1.0) ND		NO NO				ND (1.0)			ND (1.0) ND (MD (1.0)		D (1.0) ND (6.0		ND (2.0)			(1.0) AD (1						(1.0) ND (1		ND (1.0) ND (1		ND (I
o Sylene Shanne		ND(1.1) ND(1.2)	ND (D.RE) ND (D.RT)		(12) ND	(3.5) ND	(30) ND (3.1	SE ADD S	1 ND (0.00) 1 ND (0.00)	ND (2.4) ND (1.8)	ND (2.4)	NO N	D(S.M) ND(S	88) ND (3.0) 481 ND (2.0)	NO NO		ND (0.43) ND (0.48)	ND (3.88)	ND (0.88)	ND(12)	ND (5.89)	ND (0.89) NO (0 ND (0.89) NO (0	(8) ND (5.89)	ND (0.89) ND (0.69)	NO (0.09)	NO NO	(0.88) ND (2.6 (0.88) ND (1.8		ND (1.0)	ND (0.22) ND (0.20)	ND (0.32) NO	(0.30) ND (0. (0.70) ND (0.	NO (5.86)	ND (0.88) ND (0.70)	ND (D SK)	NO (0.00) NO NO (0.00) NO	(2.88) ND:	(0.58) NO (0.5		ND (0.89) NO (0.00)		NO(1
Tebachtorsethere	- 1	1043	1330	1340	200 1	1230	713 4	414 47	1040	613	974	712		787 868	1240	1040 431	724	428	987	871	883	349	77 276	304	383	412	490 81		888	404	311	171 1	00 149	88.1	86.1	44.6	94.8	43.1 41	88 269	33.6	27 42.9	-
Tobacca							(27) ND (5.			N0 (2.1)	ND (2.0)		D(0.48) ND(0		NO NO	(E.0) ND (0.29)		ND (3.83)	MD (0.83)			MD (0.83) NO (0			NO (048)		(D.ER) ND (Z.0		ND (1.0)			(0.83) MD (0.						(033) NO (04		MD (0.69) NO (0.		ND(1
tions 1,3 Childronthera tions 1,3 Childrontoene					(1.1) NO		(27) 10 (2) NO (2)		27 ND 0.60	3.0.7	ND (2.1)	347	3.1 0.0.40 ND 0	3.3 ND (2.7) 431 ND (2.2)	NO NO	2.6.2 1.1 (6.0) ND (0.22)		1.6 ND (2.63)	1.0 MD (0.63)	18 J NO 080	1.0 MD (TATE	1.7 ND (0.63) ND (0	17 18 10 ND (541)		23 NO 043	24	2.8 ND (2.1		2.7			(0.84) AD (0. (0.43) AD (0.					(3.64) ND((0.84) NO (0.8		ND (0.84) ND (0.8		ND(1
Irans 1,3 Clahloropropene Trobloroethere		NO (11)	111					78 10			ND (1.7)	99.4		61 ND (12)	63	86.0 MD 33.2			MD (0.03)	161	ND (3.41)		ND (3.4)				51.1 MD (1)		ND C.E.	19.3			D No. (1.0)	ND (0.43)	ND (0.43)		TEA NO	22 2		ND (0.03) ND (0.03)		- No (1
1 to bloom business than a		NO (3.0)		MD (3.3) NO		(62) ND	(E2) NO (L	40 ND (0.40	MODAR	NO (14)	ND (1.6)	NO N	D(0.40) ND(0		NO NO	(K.0) ND (0.60)	MD (1.2)	ND (3.84)	ND (0.84) a	MD (1.7)	ND (0.84)	ND (0.60) NO (0	10) NO (3.40)	MD (0.60)	NO (040)	NO NO	(0.60) ND (1.6	() NO	ND (2.0)	ND (0.60)	ND (0.60) NO	(0.84) ND (0.84	(a NO(0.86)	ND (0.84)	ND (0.84)	NO (0.40) NO	(0.40) ND	(0.60) NO (0.6	40) ND	ND (0.60) ND (0.	40) NO	ND (2
Vired eliterate	2	ND(3.1)	ND (2.8)	ND(3.1) ND (1.00 NO	GRI NO	GR NDG	TH ADDA	1 100 10 70	ND (3.1)	ND (2.1)	NO N	D(0.12) ND(0	AZI ADGAD	NO NO	(E.O. ND (ORZ)	ND(12)	ND (3.79)	ND (0.79) a	ND(14)	ND (9.79)	ND (0.79) ND (0	TO NO 0.791	ND (0.78)	NO (0.02)	NO NO	(0.02) ND (2.1	n NO	NO(1.0)	ND ID ID	10 (3.62) NO	GZH NDGZH	14 NO(0.79)	ND (9.79)	NO IS 781	NO G.THI NO	19.781 NO.	10.791 NO:10.0	12) ND	ND (0.82) ND (0.1	12) NO	ND:11.6
Cylene (total)		ND(1.1)	ND (0.86)	ND(24) ND	(12) NO	(3.0) ND	(30) NO (5)	SE AD D.SE	1 10 (0.00)	NO (2.4)	ND (2.4)	NO N	D(0.88) ND(0	and MD (3.0)	NO NO	(E.0) ND (0.22)	ND (0.43)	ND (3.88)	MD (0.88)	MD (1.2)	NO (3.89)	ND (0.88) NO (0	(8) NO (5.89)	ND (0.88)	NO (0.88)	NO NO	(DAN) MD (Z.)	E NO	ND (1.0)	MD (0.22)	ND (0.22) NO	(0.88) ND (0.	NO (5.86)	NO (0.88)	ND (0.88)	NO (0.00) NO	(2.88) ND:	(0.38) NO (0.8	SNND	ADJOSE NO SI	se No	ND(1
-		1107.8	162.6	1677.3	186.1	1479 1	077 Sh	6.7 627.	11887	792.3	1108.1	797.8	120.8 B	0.9 129.8	1319.7	100 65	8072	489.3	1087.4	728.7	718.1	Ot 3	13 477	372	OLE	681.2	772.6 568.	4 48	629.2	40.2	232	183 21	11 111	132.7	136.7	139.3	76	111.1 226	67 759	761.6 K	23 913	201
Notes																																										
Results reported in misrograms, per liter (Exceedances builded and highlighted in a																																										
Exceedances bolded and togrophed in g ND = Not detected above biboratory reco																																										
MC with Criterion																																										

Table 5 - 2024-2025 SSDS Effluent Vapor Results Information Technology High School Voluntary Cleanup Program VCP #V00366-2

Sample ID York ID			Effluent 551-01	SSDS E 25C01	iffluent
Sampling Date			L1:02:00 AM		3:25:00 PM
Client Matrix			Vapor	Soil \	
Compound	CAS Number	Result	Q	Result	Q
Volatile Organics, EPA TO15 Full List Dilution Factor		ug/m3 1.671		ug/m3 1.557	
1.1.1.2-Tetrachloroethane	630-20-6	ND	U	ND	U
1,1,1-Trichloroethane	71-55-6	2.200	D	ND	U
1,1,2,2-Tetrachloroethane	79-34-5	ND	U	ND	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	ND	U	ND	U
1,1,2-Trichloroethane	79-00-5	ND	U	ND	U
1,1-Dichloroethane 1,1-Dichloroethylene	75-34-3 75-35-4	ND ND	U	ND ND	U
1,2,4-Trichlorobenzene	120-82-1	ND ND	U	ND ND	U
1,2,4-Trimethylbenzene	95-63-6	2.300	D	ND ND	Ü
1,2-Dibromoethane	106-93-4	ND	U	ND	U
1,2-Dichlorobenzene	95-50-1	ND	U	ND	U
1,2-Dichloroethane	107-06-2	ND	U	ND	U
1,2-Dichloropropane	78-87-5	ND	U	ND	U
1,2-Dichlorotetrafluoroethane	76-14-2 108-67-8	ND 0.900	U D	ND ND	U
1,3,5-Trimethylbenzene 1,3-Rutadiene	108-67-8	0.900 ND	U U	ND ND	U
1.3-Dichlorobenzene	541-73-1	ND ND	U	ND ND	U
1,3-Dichloropropane	142-28-9	ND ND	Ü	ND ND	Ü
1,4-Dichlorobenzene	106-46-7	ND	Ü	ND	Ü
1,4-Dioxane	123-91-1	ND	U	ND	U
2,2,4-Trimethylpentane	540-84-1	1.100	D	0.945	D
2-Butanone	78-93-3	5.800	BD	2.570	D
2-Hexanone	591-78-6	1.600	D	ND	U
3-Chloropropene 4-Methyl-2-pentanone	107-05-1	ND 1.800	U D	ND 2.740	U D
Acetone	67-64-1	25	BD.	61,900	D
Acrylonitrile	107-13-1	0.620	D	ND	U
Benzene	71-43-2	1.700	D	1.690	D
Benzyl chloride	100-44-7	ND	U	ND	U
Bromodichloromethane	75-27-4	ND	U	ND	U
Bromoform	75-25-2	ND	U	ND	U
Bromomethane Carbon disulfide	74-83-9 75-15-0	ND ND	U	ND ND	U
Carbon disultide Carbon tetrachloride	75-15-0 56-23-5	0.950	D	0.294	D
Chlorobenzene	108-90-7	0.990 ND	Ü	ND	Ü
Chloroethane	75-00-3	ND	Ü	ND	Ü
Chloroform	67-66-3	ND	U	ND	U
Chloromethane	74-87-3	0.660	D	0.965	D
cis-1,2-Dichloroethylene	156-59-2	ND	U	ND	U
cis-1,3-Dichloropropylene Cyclobexane	10061-01-5 110-82-7	ND 1,300	U D	ND 0.750	U D
Dibromochloromethane	110-82-7	1.300 ND	U	0.750 ND	U
Dichlorodifluoromethane	75-71-8	4	D	2.160	D
Ethyl acetate	141-78-6	ND	Ü	16.600	D
Ethyl Benzene	100-41-4	4.700	D	0.811	D
Hexachlorobutadiene	87-68-3	ND	U	ND	U
Isopropanol	67-63-0	2.100	BD	16.700	D
Methyl Methacrylate	80-62-6	ND	U	0.637	D
Methyl tert-butyl ether (MTBE) Methylene chloride	1634-04-4 75-09-2	ND 1,600	U D	ND ND	U
Methylene chloride Nanhthalene	75-09-2 91-20-3	1.600 2.500	D D	ND ND	U
n-Heptane	142-82-5	1.800	D	1,400	D
n-Hexane	110-54-3	2.500	D	3.620	D
o-Xylene	95-47-6	5.300	D	0.946	D
p- & m- Xylenes	179601-23-1	13	D	2.910	D
p-Ethyltoluene	622-96-8	2.300	D	ND	U
Propylene	115-07-1	1.200	D	ND	U
Styrene Tetrachloroethylene	100-42-5 127-18-4	3.500 5.300	D D	ND ND	U
Tetrahydrofuran	127-18-4	6.900	D	1.470	D
Toluene	108-88-3	7.600	D	6.400	D
trans-1,2-Dichloroethylene	156-60-5	ND	U	ND	Ü
trans-1,3-Dichloropropylene	10061-02-6	ND	U	ND	U
Trichloroethylene	79-01-6	1.500	D	0.251	D
Trichlorofluoromethane (Freon 11)	75-69-4	2.300	D	1.050	D
Vinyl acetate	108-05-4	ND	U	ND	U
Vinyl bromide Vinyl Chloride	593-60-2 75-01-4	ND ND	U	ND ND	U
vinyi chionae	/5-01-4	NU	U	NU	U

Any Neginatory Extensions are curve or strangering.

Q is the Qualifier Column with definitions as follows:

Deresult is from an analysis that required a dilution

Jensalyse detected at or above the MDI, (method detection limit) but below the RI. (Reporting Limit) - data is estimated

U-analyse and extered at or above the eliminated

B-analyse found in the analysis batch blank

Cereanth is estimated and cannot be accurately reported due to levels encountered or interferences

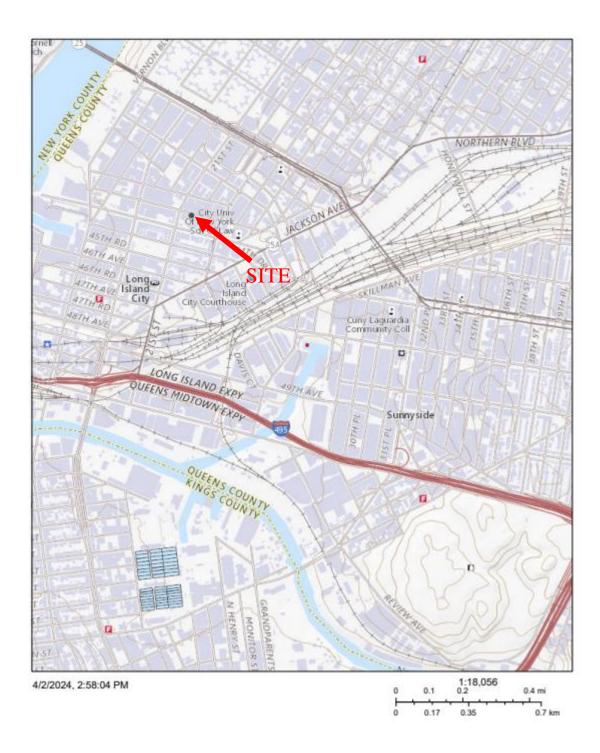
Pethol Rig a used for pesticide and PCR (Anotor)s target compounds when there is a "% difference for detected concentrations that exceed method dictated limits between

N°-this indicate the analyses used on target for this sample.

DISCLAIMER:

York Analytical laboratories, Inc. is providing this information as a convenience to you. York makes no representations or warranties that these data are accurate, complete or represent the latest regulatory authority limits or analytes. York is not responsible for any errors or omissions in these specific regulations. Your use of these data constitute your understanding of these imitations and you agree to hold vink themsels from any and all action that may arise from use of said information. As regulations change often, we encourage the user to review the regulatory limits and lists of interest to confirm these data.

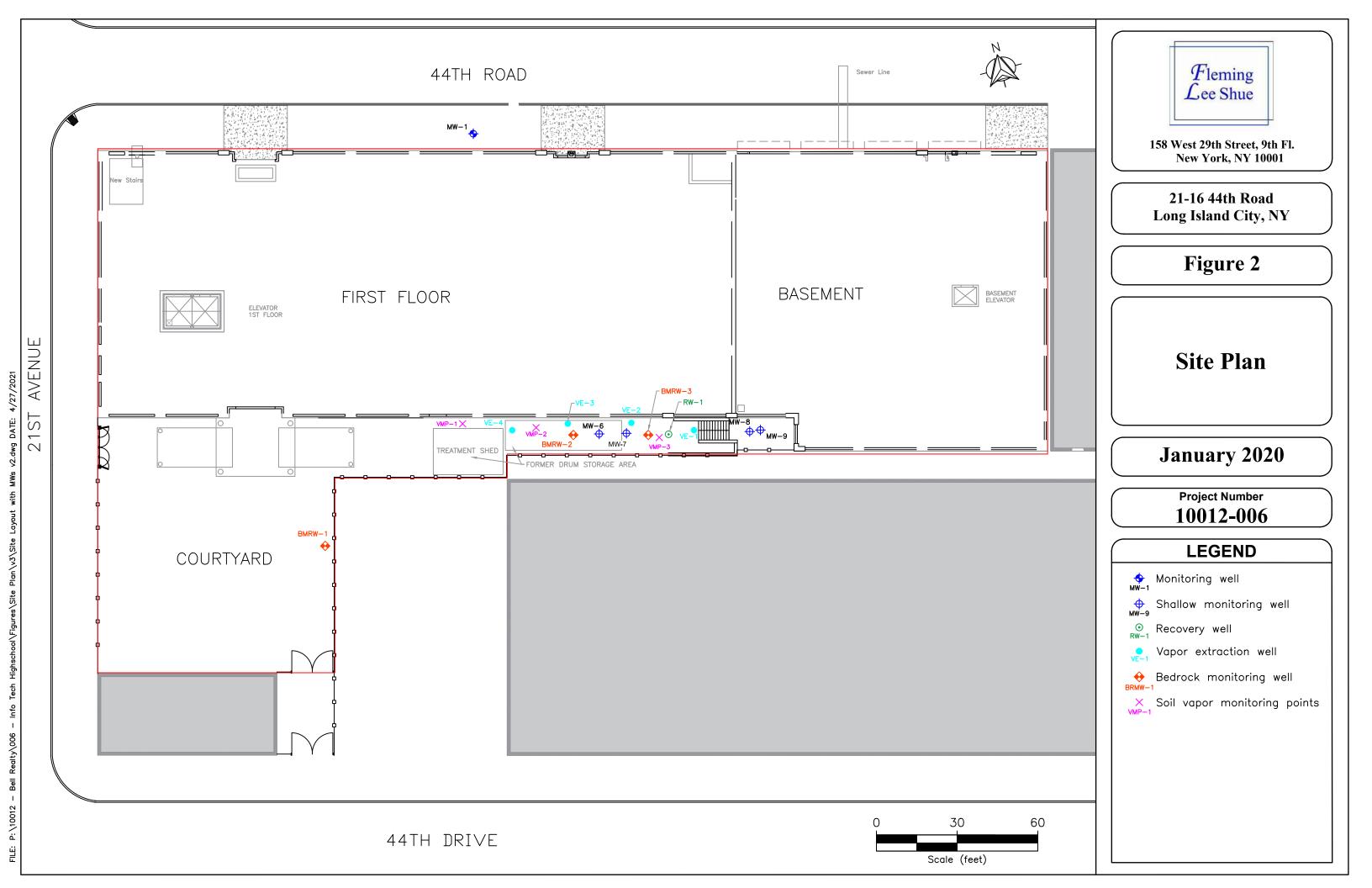
Table 6 - 2025 Indoor and Ambient Air Results Information Technology High School Voluntary Cleanup Program VCP #V00366-2

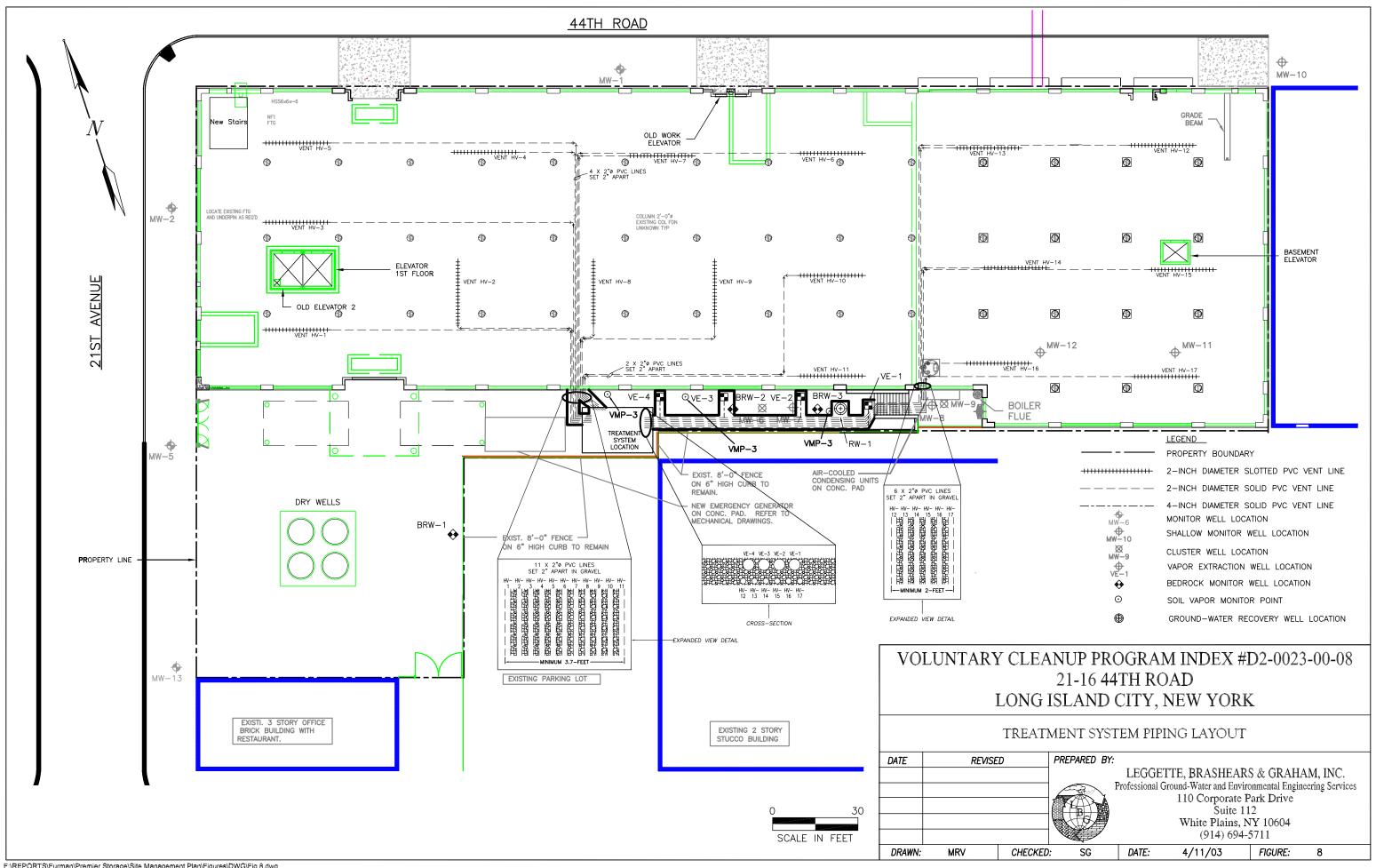

Sample ID	IA-1	AA-1	IA-2	IA-4	IA-5	IA-6
York ID	25C0160-01	25C0160-02	25C0160-03	25C0160-05	25C0160-06	25C0160-07
Sampling Date	3/4/2025 3:52:00 PM	3/4/2025 4:20:00 PM	3/4/2025 4:02:00 PM	3/4/2025 4:00:00 PM	3/4/2025 4:14:00 PM	3/4/2025 3:25:00 PM
Client Matrix	Indoor Ambient Air					
Compound	Result	Result	Result	Result	Result	Result
VOA, TO15 MASTER	ug/m3	ug/m3 0.744	ug/m3	ug/m3	ug/m3	ug/m3
Dilution Factor	0.848 ND	0.744 ND	0.786 ND	0.976 ND	0.888 ND	16.5 ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane	ND ND	ND ND	ND ND	ND ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ND	ND	ND ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	1.580	ND	0.773	0.720	0.829	1.210
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane 1,2-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene	0.459	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Butadiene	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ND	ND	ND	ND	ND	ND
2-Butanone	3.680	0.856	1.650	1.210	2.410	3.080
2-Hexanone	0.834 ND	ND ND	ND ND	ND ND	ND ND	ND ND
3-Chloropropene 4-Methyl-2-pentanone	4.060	ND 0.579	1.160	0.960	1.020	1.220
Acetone	28.700	8.180	17.200	14.700	81.700	774
Acrylonitrile	ND	ND.	ND.	11.100	ND	3.110
Benzene	1.680	0.761	1.160	1.060	1.020	1.070
Benzyl chloride	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND 	ND	ND
Carbon disulfide	ND	ND 0.374	ND 0.305	ND 0.430	ND 0.559	ND 0.552
Carbon tetrachloride Chlorobenzene	0.854 ND	0.374 ND	0.396 ND	0.430 ND	0.559 ND	0.553 ND
Chloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroform	0.538	ND	ND	ND	ND	ND
Chloromethane	1.490	1.040	1.180	1.130	1.280	1.180
cis-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND
Cyclohexane	0.613	ND	0.379	0.370	1.380	10.400
Dibromochloromethane	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	2.350	2.020	2.060	2.170	2.060	2.090
Ethyl Rosson	7.430 1.470	2.360 0.355	16.900 0.717	2.640 0.636	2.180 1.430	5.320 10.200
Ethyl Benzene Hexachlorobutadiene	1.470 ND	0.355 ND	0.717 ND	0.636 ND	1.430 ND	10.200 ND
Isopropanol	53.700	3.510	22.100	25.200	17.100	19.300
Methyl Methacrylate	0.729	ND	0.386	ND	ND	ND
Methyl tert-butyl ether (MTBE)	ND	ND	ND	ND	ND	ND
Methylene chloride	2.710	ND	ND	ND	ND	ND
n-Heptane	4.140	0.366	2.030	3.720	2.400	2.520
n-Hexane	1.940	0.839	1.140	1.070	1.190	1.520
o-Xylene	1.800	0.452	0.853	0.720	1.500	8.890
p- & m- Xylenes	5.630	1.260	2.630	2.080	5.130	37.900
p-Ethyltoluene Propylene	1.330 ND	ND ND	0.657 ND	0.624 ND	0.742 ND	1.170 ND
Styrene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene	6.730	0.908	1.070	0.993	0.843	0.954
Tetrahydrofuran	2.800	ND ND	ND ND	ND ND	ND ND	0.933
Toluene	17	2.190	6.100	5.110	3.610	4.540
trans-1,2-Dichloroethylene	4.640	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND
Trichloroethylene	1.960	ND	ND	ND	ND	ND
Trichlorofluoromethane (Freon 11)	1.430	1.130	1.100	1.040	0.998	1.090
Vinyl acetate	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl bromide Vinyl Chloride	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
NOTES:	IND	ND	ND	ND	ND	ND

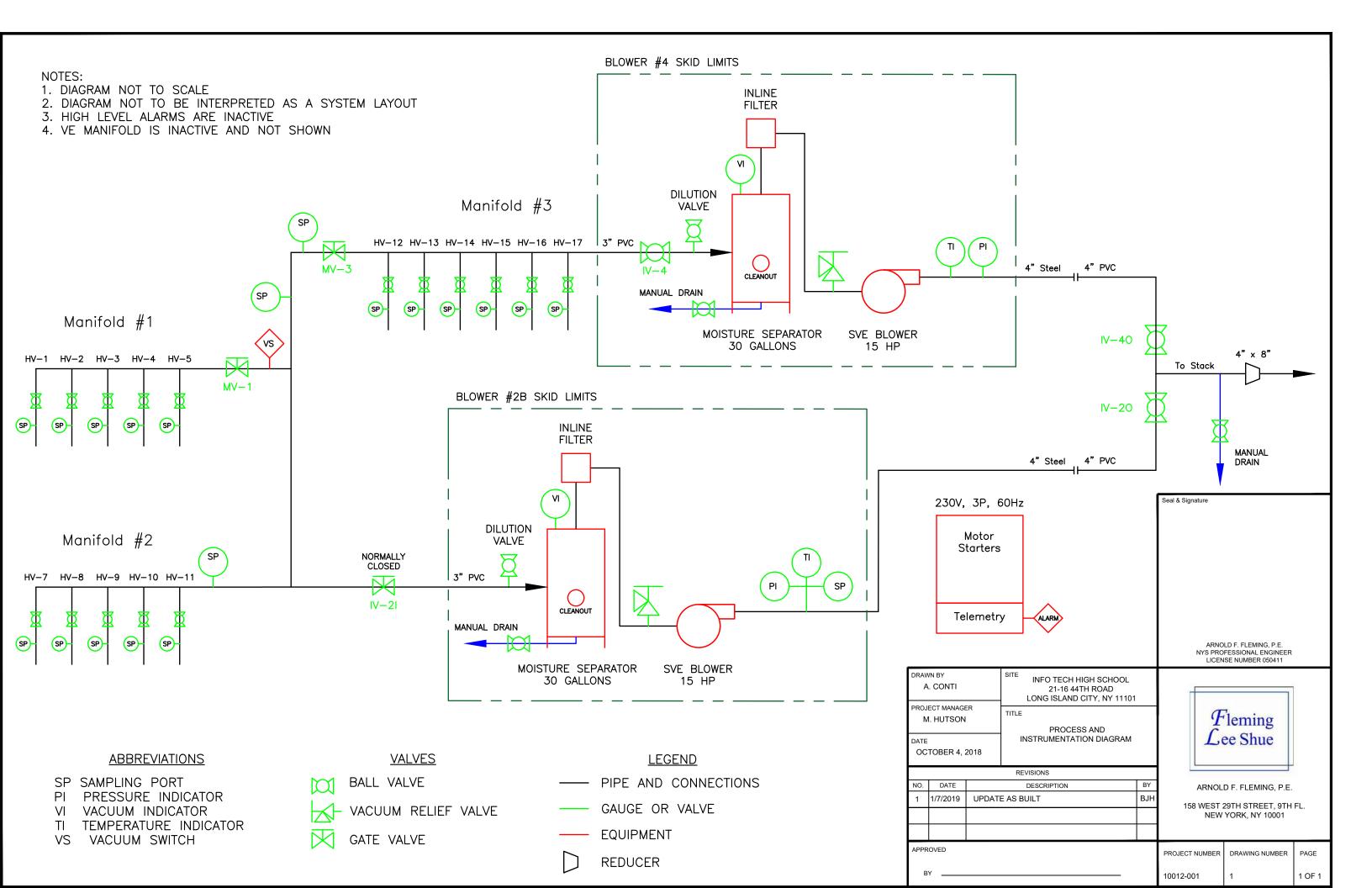
NOTES:

Result are from analyses that required a dilution ND=analyte not detected

Figures


Figure 1: Site Location


Site: Information Technology High School


21-16 44th Road

Long Island City, New York

Client: Bell Realty

/High School

Arnold F. Fleming, P.E. 158 West 29th Street, 9th Fl. New York, NY 10001

		Revisions
No.	Date	Description
1	1/7/19	ADD TELEMETRY SYSTEM
Approv	ed	

фриотов

BY

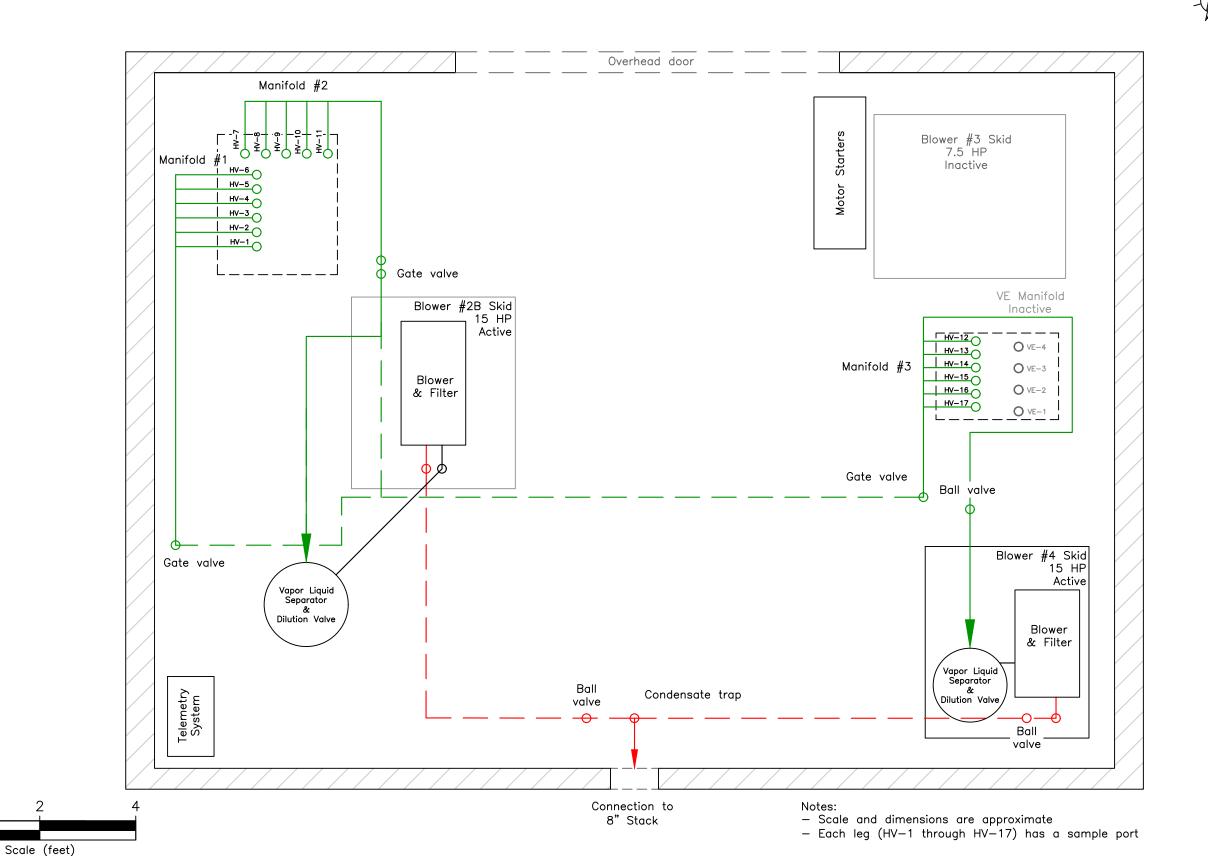
Title

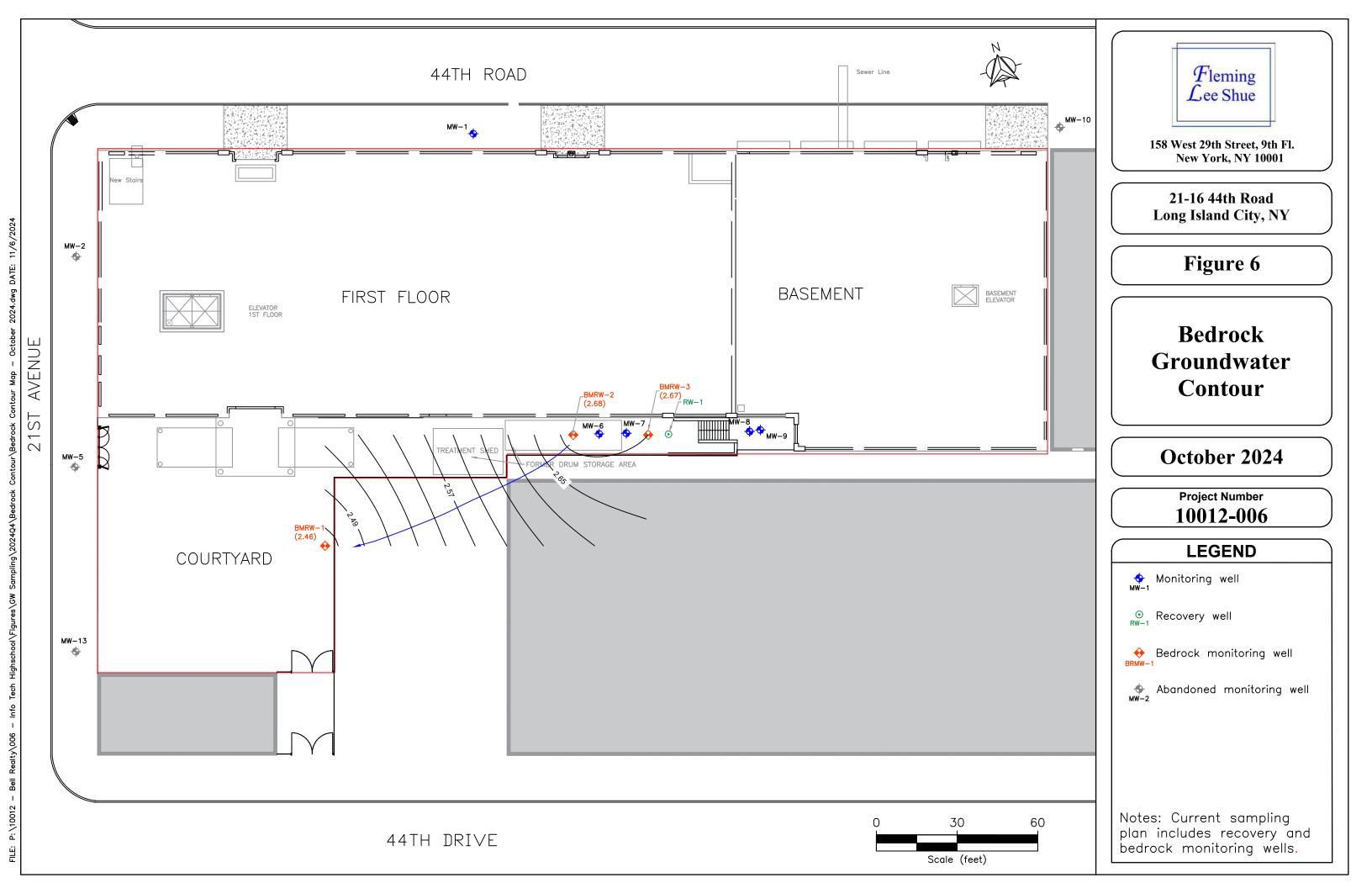
SSDS Layout As-Built

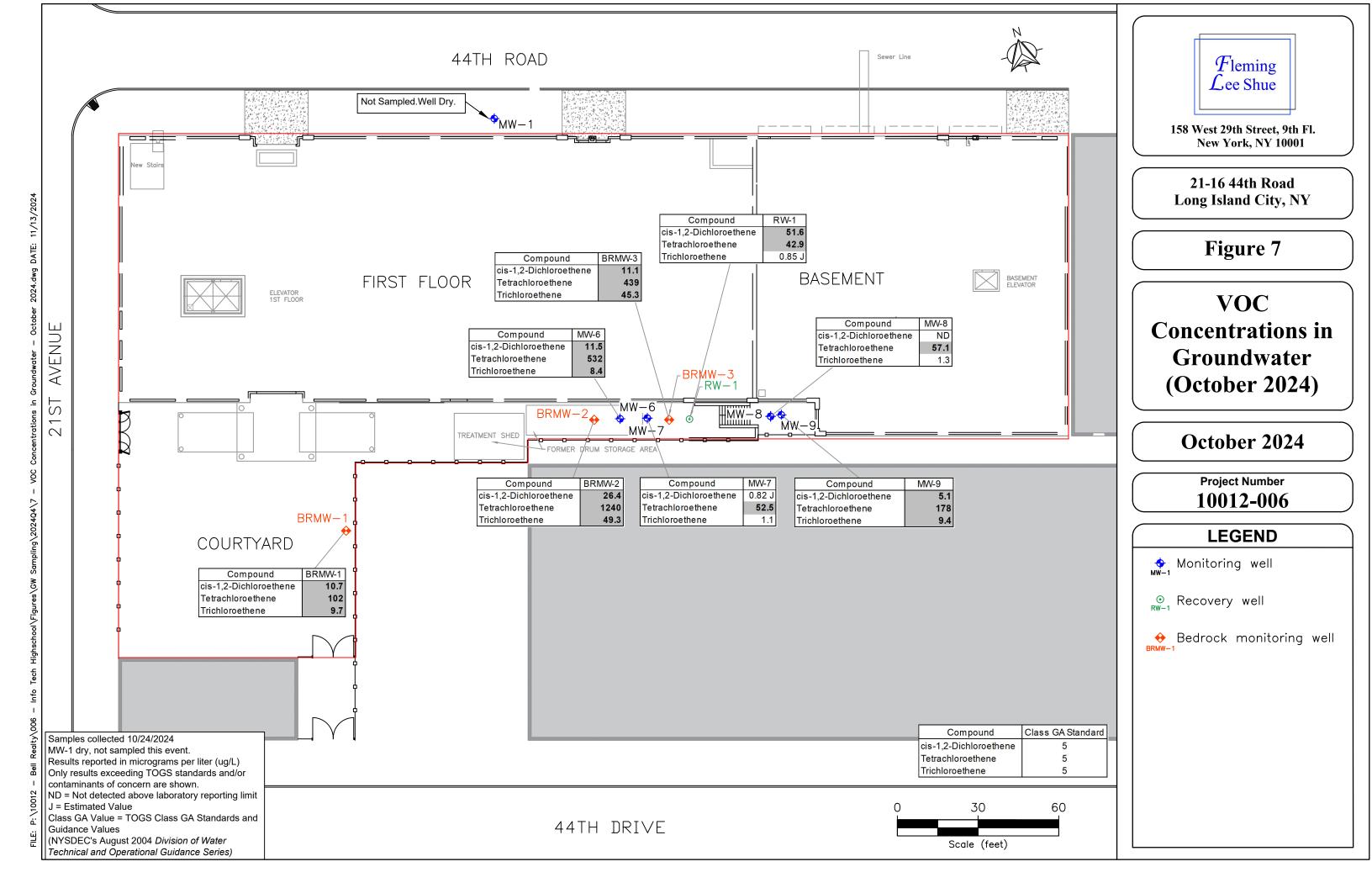
Site Information Technology High School 21-16 44th Road Long Island City, NY

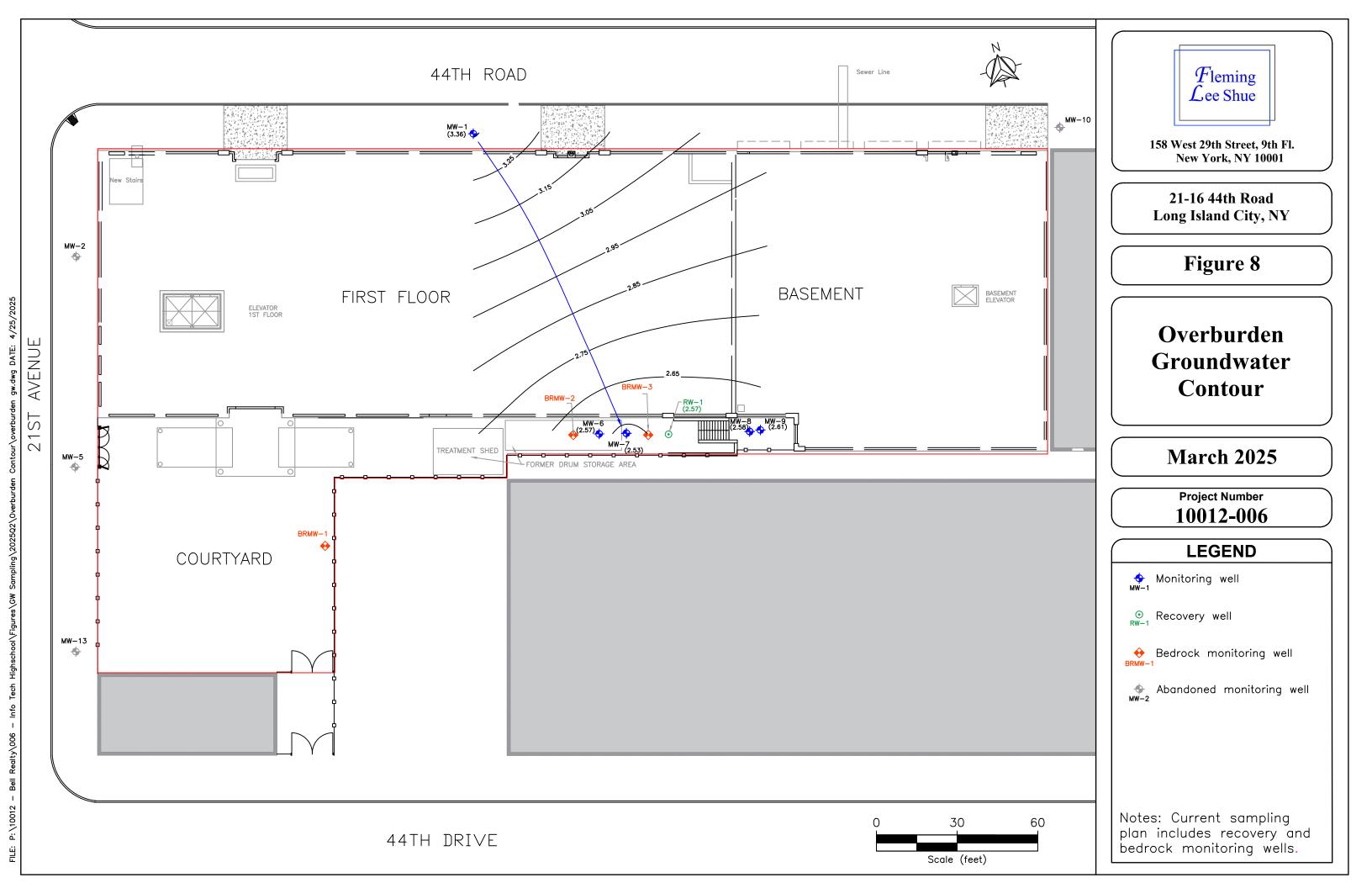
Legend

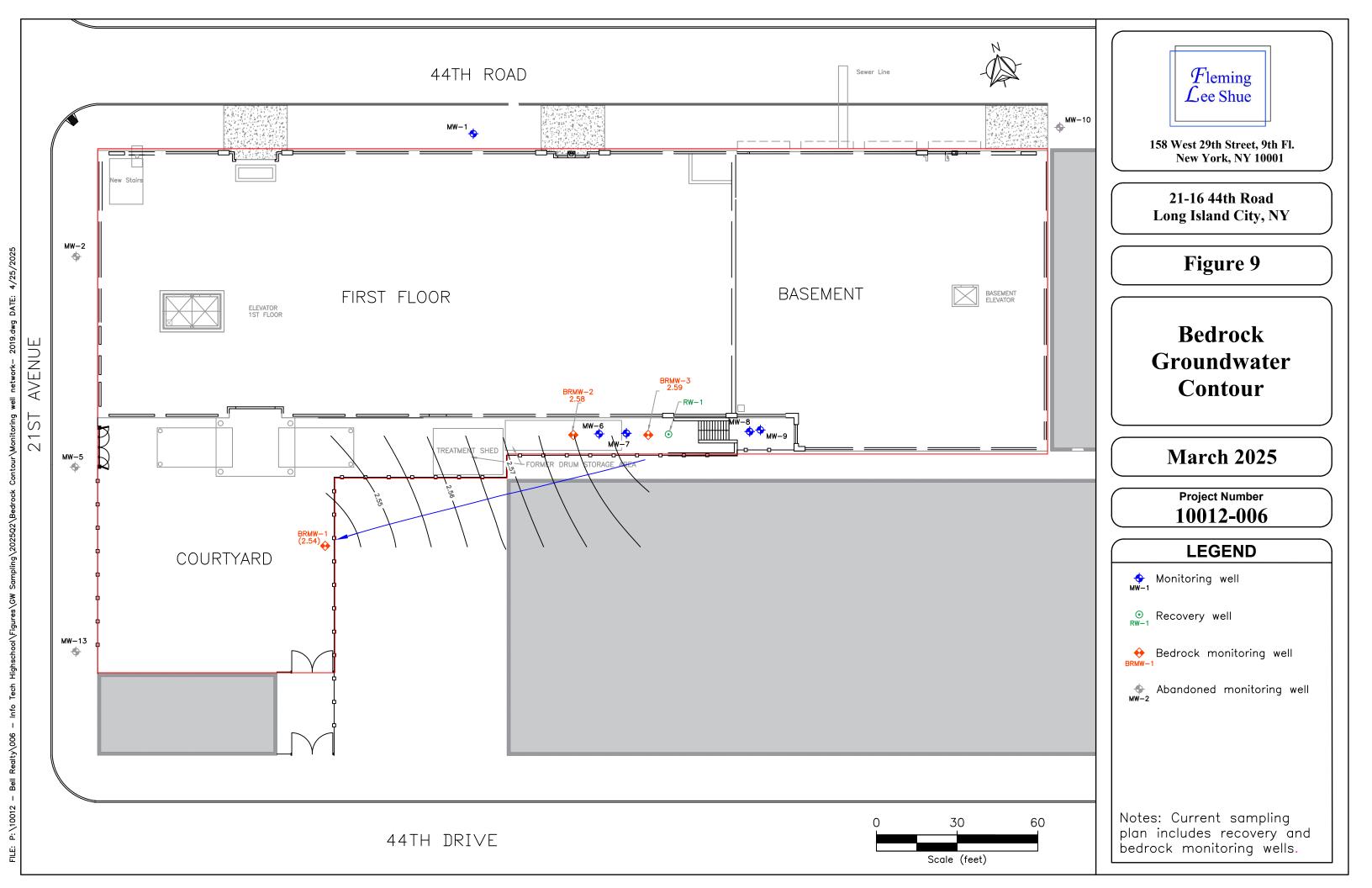
- Active vacuum pipe (dashed where suspended)
 - Active exhaust pipe (dashed where suspended)
- O Fitting or vertical pipe

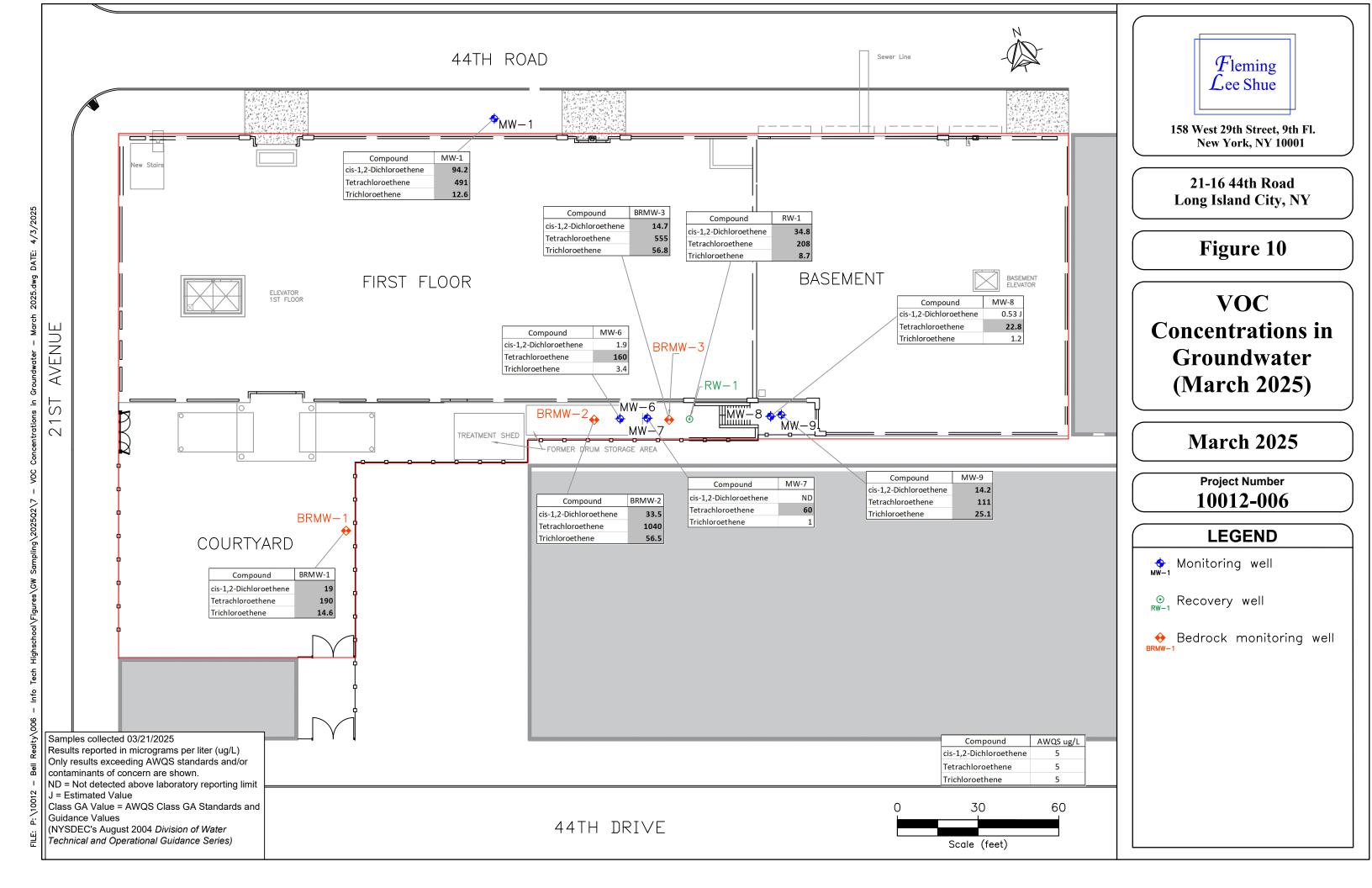

Seal & Signature

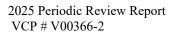

ARNOLD F. FLEMING, P.E. NYS PROFESSIONAL ENGINEER LICENSE NUMBER 050411


September 17, 2018 10012-06


 Drawn By
 Drawing Number
 Page


 A. Conti
 1
 1 of 1





Appendix A

Environmental Easement & Metes and Bounds

APPENDIX I

Metes and Bounds

Title No.: 3601-00306

LEGAL DESCRIPTION

AS TO LOT 23:

ALL THAT CERTAIN PLOT, PIECE, OR PARCEL OF LAND, SITUATE, LYING, AND BEING IN THE BOROUGH AND COUNTY OF QUBENS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT 79 FEET EASTERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF 21ST STREET (VANALST AVENUE AND EMERALD AVENUE) WHERE IT INTERSECTS WITH THE NORTHERLY SIDE OF 44TH DRIVE (NOTT AVENUE) AND NORTHERLY 27 FEET PARALLEL WITH THE EASTERLY SIDE OF 21ST STREET;

THENCE MORTHERLY AND PARALLEL WITH THE MORTHERLY SIDE OF 21ST STREET, 65 PEET;
THENCE EASTERLY AND PARALLEL WITH THE MORTHERLY SIDE OF 21ST STREET, 8 FEET;
THENCE WESTERLY AND PARALLEL WITH THE MORTHERLY SIDE OF 44TH DRIVE, 136 FEET;
THENCE SOUTHERLY AND PARALLEL WITH THE RASTERLY SIDE OF 21ST STREET, 73 PEET;
THENCE EASTERLY AND PARALLEL WITH THE RASTERLY SIDE OF 21ST STREET, 73 PEET;
THENCE EASTERLY AND PARALLEL WITH THE MORTHERLY SIDE OF 44TH DRIVE, 79 PEET TO
THE POINT OF FLACE OF BEGINNING.

FOR INFORMATION ONLY BLOCK: 438 LOT: 23

Title No.: 3601-00306

LEGAL DESCRIPTION

AS TO LOT 26:

ALL THAT CERTAIN PLOT. PIECE, OR PARCEL OF LAND, SITUATE, LYING, AND BEING IN THE BOROUGH AND COUNTY OF QUEENS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE SOUTHERLY SIDE OF 44TH ROAD, FORMERLY 13TH STREET WITH THE EASTERLY SIDE OF 21ST STREET, FORMERLY VAN ALST AVENUE;

RUMNING THENCE SOUTHERLY ALONG THE SAID EASTERLY SIDE OF 21ST STREET, 100 FEET;

THENCE EASTERLY PARALLEL WITH SAID SIDE OF 44TH ROAD, 315 PEET;

THENCE NORTHERLY AND PARALLEL WITH SAID SIDE OF 21ST STREET, 100 FEET TO THE SOUTHERLY SIDE OF 44TH ROAD;

AND THENCE WESTERLY ALONG SAID SIDE OF 44TH ROAD, 315 FEET TO THE CORMER, THE POINT OR PLACE OF BEGINNING.

FOR INFORMATION ONLY BLOCK: 438 LOT: 26

Title No.: 3601-00306

LEGAL DESCRIPTION

BLANKET DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE, OR PARCEL OF LAND, SITUATE, LYING, AND BEING IN THE BOROUGH AND COUNTY OF QUEENS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE SOUTHERLY SIDE OF 44TH ROAD, FORMERLY 13TH STREET WITH THE EASTERLY SIDE OF 21ST STREET, FORMERLY VAN ALST AVENUE;

THENCE EASTERLY ALONG THE SOUTHERLY SIDE OF 44TH ROAD 315.00 FEET;

THENCE SOUTHERLY AT RIGHT ANGLES TO 44TH ROAD 100.00 FEET;

THENCE WESTERLY AND PARALLEL WITH THE SOUTHERLY SIDE OF 44TH ROAD 179.0 FEET;

THENCE SOUTHERLY AT RIGHT ANGLES WITH THE PRECEDING COURSE 6.0 FEET;

THENCE WESTERLY AND AGAIN PARALLEL WITH THE SOUTHERLY SIDE OF 44TH ROAD 57.0 FEET;

THENCE SOUTHERLY AND PARALLEL WITH THE EASTERLY SIDE OF 21ST STREET 65.0 PEET;

THENCE WESTERLY AND AGAIN PARALLEL WITH THE SOUTHERLY SIDE OF 44TH ROAD 79.0 FEET TO THE EASTERLY SIDE OF 21ST STREET;

THENCE NORTHERLY ALONG THE EASTERLY SIDE OF 21ST STREET 173.0 FEET TO THE SOUTHERLY SIDE OF 44TH ROAD, THE POINT OR PLACE OF BEGINNING.

FOR INFORMATION ONLY: BLOCK 438 LOTS 23 AND 26

APPENDIX II

Site Specific Deed Restriction

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

This page is part of the instrument. The City Register will rely on the information provided by you on this page for purposes of indexing this instrument. The information on this page will control for indexing purposes in the event of any conflict with the rest of the document.

City Register Official Signature

will control for indexing purpo of any conflict with the rest of t		# 2 4 (2003071100522001001E387B
	RECORDI	NG AND EN	DORSEMENT COVER PAGE PAGE 1 OF 12
Document ID: 2003071100 Document Type: DECLARA Document Page Count: 11	0522001		t Date: 07-10-2003 Preparation Date: 07-11-2000
PRESENTER:	,,		RETURN TO:
DONALD LUHRS C/O CH	HICAGO TITLE		SIVE,PAGET & RIESEL,PC
330 OLD COUNTRY RD			460 PARK AVENUE
MINEOLA, NY 11501			NEW YORK, NY 10022-1906
516-535-5209			212-421-2150
		PROP	ERTY DATA
Borough Block	Lot	Unit	Address
QUEENS 438 Property Type	23 Entire l		4441 21 STREET
Borough Block	Lot	Unit	Address
QUEENS 438 Property Types	26 Entire I OTHER	Lot	21-02 44 ROAD
	·	CROSS RE	FERENCE DATA
CRFNor Docume	ent ID	<i>or</i>	Year ReelPage or File Number
		P	ARTIES
PARTY 1:			
CDI 21ST LIC, LLC			
525 NORTHERN BOULEV	ARD, SUITE 3	00	
GREAT NECK, NY 11021			
		EEEO	AND
Mortgogo		rees	AND TAXES Recording Fee: \$ 95.00
Mortgage Amount:	s	0.00	Affidavit Fee: \$ 95.00
Taxable Mortgage Amount:		0.00	NYC Real Property Transfer Tax Filing Fee:
Exemption:		0.00	1 NTC Real Property Transfer Tax Trining Fee. 0.00
TAXES:			NYS Real Estate Transfer Tax:
County (Basic):	 \$	0.00	\$ 0.00
City (Additional):	\$	0.00	RECORDED OR FILED IN THE OFFICE
Spec (Additional):	\$	0.00	OF THE CITY REGISTER OF THE
TASF:	\$	0.00	CITY OF NEW YORK
MTA:	\$	0.00	Recorded/Filed 07-11-2003 15:00
NYCTA:	\$	0.00	City Register File No.(CRFN):
TOTAL:	\$	0.00	2003000225886

DECLARATION

THIS DECLARATION is made this ______ day of July, 2003, by CDI 21st LIC, LLC, whose address is 525 Northern Boulevard, Suite 300, Great Neck, New York, 11021, hereinafter called the "DECLARANT".

WITNESSETH

WHEREAS, the DECLARANT is the owner of certain real property located in Queens County, City and State of New York, Tax Block 438, Lot Nos. 23 and 26, which real property is described in the Deed attached hereto as "Attachment A" and which real property is hereinafter called the "SUBJECT PROPERTY"; and

WHEREAS, a Voluntary Cleanup Agreement ("VCA") #D2-0023-00-08 is on file with the New York State Department of Environmental Conservation (the "Department"), and the terms used therein shall have the same meaning as used herein; and

WHEREAS, DECLARANT represents and warrants that no restriction of record on the use of the SUBJECT PROPERTY nor any present or presently existing future estate or interest in the SUBJECT PROPERTY nor any lien, obligation, covenant, limitation or encumbrance of any kind precludes, presently or potentially, the imposition of the restrictions, covenants, obligations, easements and agreements of the instant Declaration or the development of the SUBJECT PROPERTY in accordance therewith.

NOW, THEREFORE, DECLARANT does hereby declare that the SUBJECT PROPERTY shall only be held, sold, conveyed and occupied subject to the following restrictions, covenants, and obligations and agreements:

- 1. The instant Declaration may be amended, modified or canceled only with the express written approval and consent of the Commissioner of the Department or the head of the agency succeeding to its jurisdiction. No other approval or consent shall be required or accepted from any public body, private person, or legal entity of any kind.
- 2. The SUBJECT PROPERTY shall not be used for purposes other than the Contemplated Use set forth in the letter modifying the VCA, annexed hereto as Attachment "B", without the express written waiver of such prohibition by the Department or any agency succeeding to its jurisdiction.
- 3. Groundwater underlying the SUBJECT PROPERTY shall not be used without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department, or if at such time the Department shall no longer exist, any New York State department, bureau, or other entity replacing the Department;

- 4. Soil on-site shall not be excavated without a health and safety plan previously approved by the Department and the New York State Department of Health ("NYSDOH") or without prior notification to the Department and NYSDOH. In the event of an emergency, such notification will be made as soon as practicable.
- 5. An annual certification shall be filed with the Department certifying that this deed restriction has not been violated;
- 6. DECLARANT and its successors and assigns shall continue in full force and effect such engineering and institutional controls as the Department has deemed appropriate in accordance with the Remedial Work Plan by the Department on July 3, 2003
- 7. DECLARANT hereby consents on behalf of itself and its successors and assigns, to the enforcement by the Department, or if at such time the Department shall no longer exist, any New York State department, bureau, or other entity replacing the Department, of the prohibitions and restrictions herein recorded, and hereby covenants not to contest such enforcement.

STATE OF NEW YORK, COUNTY OF QUEENS

On the day of why in the year 2003, before me, the undersigned, a Notary Public in and for said State, personally appeared how. D. Bellunck Personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to he within instrument and acknowledged to me that he executed the same in his capacity, and that by his signature on the instrument, the individual or the person upon whose behalf the individual acted, executed the instrument.

EILEEN F. YENGLE
NOTARY PUBLIC, State of New York
No. 80-4732868
Qualified in Newson County
Certificate filed in Newson County
Commission Expires Dec. 31, 32-2006

Notary Public

ATTACHMENT "A"

01 140 107.300

13 100

party of the first part, and CDI 21st LIC, LLC, with offices c/o Bell Realty, 525 Northern Houlevard, Suite 300, Great Neck, New York 11021

party of the second part,

WITNESSETH, that the party of the first part, in consideration of Ten Dollars and other valuable consideration paid by the party of the second part, does hereby gener and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever,

ALL that certain plot, piece or parcel of land, with the buildings and improvements therems erected, situate, lying and being in the

SEE SCHEDULE A ANNEXED HERETO.

BLOCK 438.

LOIS

23

TOGETHER with all right, title and interest, if say, of the party of the first part of, in and to any streets and reads, abutting the above-described premises to the center lines thereof; TOGETHER with the appartenances and all, the center and rights of the party of the first part in and to mid premises; TO HAVE AND TO HOLD the premises herein granted onto the party of the second part, the lairs or successors and tasigns of the juryicol the second part invover.

AND the party of the first part, is compliance with Section 13 of the Lieu Law, covenants that the party of the first part will receive the canaderation for this conveyance and will held the right to receive much consideration as a trust fund to be applied first for the purpose of paying the cost of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the

. Anner for any other purpose.

The word "purpy" shall be countried as if it read "purties" whenever the some of this indenture so requires.

IN WITNESS WHEREOF, the party of the first part has duly executed this dead the day and year first above written.

IN PRESENCE OF:

PREMIER STORAGE SOLUTIONS OF L.I. COTT, ILC

BY: ____

Tennessee COUNTY OF Shelby

On the J/sf day of May , in the year 2002 , before me personally expeared James G. W///ams personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is (are) subscribed to the within instrument and James G. W///essacknowledged to me that he/she/they executed the same in his/her/their capacity(ies) and that by his/her/their signature(s) on the instrument, the individual(s) or the person upon behalf of which the individual accade, executed the instrument and that he cuch individual made such appearant acted, executed the instrument and that by such individual made such appearant before the undersigned in the

My Commission Expires Jan. 15, 2003

STATE OF NEW YORK, COUNTY OF

19 , before me personally came

na, who, being by me duly swers, did depose and my that he resides at No.

be is the

, the corporation described in and which executed the foregoing instrument; that he knows the seal of said corporation; that the seal affixed to said instrument is such corporate seal; that it was so affixed by order of the board of directors of said corporations of said corporations of said corporations. tion, and that he signed h name thereto by like order.

STATE OF NEW YORK, COUNTY OF

On the day of the subscribing witness to the foregoing is whom I am personally acquainted, who, he sworn, did depose and any that he resides

that he knows

described in said who executed the foregoing that he, said subscribing witness, was preat co

Burguin aud Bale Beed WITHULT COVENANT AGAINST GRANTOR'S ACTS

THYLK No. 3601-00306

PROCES SOURCE SOLUTIONS OF LIL. CITY, LIC,

70

CDI 21st LIC, LLC

STANGAGE POLICE HEW YORK BOARD OF TITE UNDER Distributed by

GUARANTEED TITLE DIVISION

SECTION BLOCK

23, 26 wr

COLINITY IN TRIMINO

SETTEN BY MAIL TO:

REGICE, PEDRICE, ESOS.

INC PARK AVENUE

NEW YORK, KEN YORK 15016-0000

Attn.: HITCHIL BERSTEIN, ESC.

Zip Ma.

A Marrier of The Consumed.	Irradir Catalina	 	
E OF BICORDING OFFICE	. •		
RESERVE THIS PPACT FOR LIS			·

Title No.: 3601-00306

LEGAL DESCRIPTION

AS TO LOT 23:

ALL THAT CERTAIN PLOT, PIECE, OR PARCEL OF LAND, SITUATE, LYING, AND BEING IN THE BOROUGH AND COUNTY OF QUEENS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT 79 FEET EASTERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF 21ST STREET (VANALST AVENUE AND EMERALD AVENUE) WHERE IT INTERSECTS WITH THE NORTHERLY SIDE OF 44TH DRIVE (NOTT AVENUE) AND NORTHERLY 27 FEET PARALLEL WITH THE EASTERLY SIDE OF 21ST STREET;

THENCE NORTHERLY AND PARALLEL WITH THE EASTERLY SIDE OF 21ST STREET, 65 PEET; THENCE EASTERLY AND PARALLEL WITH THE NORTHERLY SIDE OF 44TH DRIVE, 57 PEET; THENCE NORTHERLY AND PARALLEL WITH THE EASTERLY SIDE OF 21ST STREET, 8 FEET; THENCE WESTERLY AND PARALLEL WITH THE NORTHERLY SIDE OF 44TH DRIVE, 136 FEET; THENCE SOUTHERLY AND PARALLEL WITH THE RASTERLY SIDE OF 21ST STREET, 73 FEET; THENCE EASTERLY AND PARALLEL WITH THE NORTHERLY SIDE OF 44TH DRIVE, 79 FEET TO THE POINT OF PLACE OF BEGINNING.

FOR INFORMATION ONLY BLOCK: 438 LOT: 23

Title No.: 3601-00306

LEGAL DESCRIPTION

AS TO LOT 26:

ALL THAT CERTAIN PLOT. PIECE, OR PARCEL OF LAND, SITUATE, LYING, AND BEING IN THE BOROUGH AND COUNTY OF QUEENS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE SOUTHERLY SIDE OF 44TH ROAD, FORMERLY 13TH STREET WITH THE EASTERLY SIDE OF 21ST STREET, FORMERLY VAN ALST AVENUE;

RUNNING THENCE SOUTHERLY ALONG THE SAID EASTERLY SIDE OF 21ST STREET, 100 FEET;

THENCE EASTERLY PARALLEL WITH SAID SIDE OF 44TH ROAD, 315 FEET;

THENCE MORTHERLY AND PARALLEL WITH SAID SIDE OF 21ST STREET, 100 FEET TO THE SOUTHERLY SIDE OF 44TH ROAD;

AND THENCE WESTERLY ALONG SAID SIDE OF 44TH ROAD, 315 FEET TO THE CORNER, THE POINT OR PLACE OF BEGINNING.

FOR INFORMATION ONLY BLOCK: 438 LOT: 26

Title No.: 3601-00306

LEGAL DESCRIPTION

BLANKET DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE, OR PARCEL OF LAND, SITUATE, LYING, AND BEING IN THE BOROUGH AND COUNTY OF QUEENS, CITY AND STATE OF NEW YORK, BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE SOUTHERLY SIDE OF 44TH ROAD, FORMERLY 13TH STREET WITH THE EASTERLY SIDE OF 21ST STREET, FORMERLY VAN ALST AVENUE;

THENCE EASTERLY ALONG THE SOUTHERLY SIDE OF 44TH ROAD 315.00 FEET;

THENCE SOUTHERLY AT RIGHT ANGLES TO 44TH ROAD 100.00 FEET;

THENCE WESTERLY AND PARALLEL WITH THE SOUTHERLY SIDE OF 44TH ROAD 179.0 FEET;

THENCE SOUTHERLY AT RIGHT ANGLES WITH THE PRECEDING COURSE 8.0 FEET:

THENCE WESTERLY AND AGAIN PARALLEL WITH THE SOUTHERLY SIDE OF 44TH ROAD 57.0 FEET;

THENCE SOUTHERLY AND PARALLEL WITH THE EASTERLY SIDE OF 21ST STREET 65.0 FEET;

THENCE WESTERLY AND AGAIN PARALLEL WITH THE SOUTHERLY SIDE OF 44TH ROAD 79.0 FEET TO THE EASTERLY SIDE OF 21ST STREET;

THENCE NORTHERLY ALONG THE EASTERLY SIDE OF 21ST STREET 173.0 FEET TO THE SOUTHERLY SIDE OF 44TH ROAD, THE POINT OR PLACE OF BEGINNING.

FOR INFORMATION ONLY: BLOCK 438 LOTS 23 AND 26

ATTACHMENT "B"

TROM HERRICK FEINSTEINLE

41/01/2007 TRIBS 7129678954

(WED) 1. 23' 02 12:14/ST. 12:13 NC. 4260647559 F

LLKEH, PLLC

PART 92

New York State Department of Environmental Conservation

Division of Environmental Enforcement Bureau of State Superfund and Veluntary Cleanup, 525 Broadway, Albany, New York 12233-5550 Phone: (\$18) 402-9521 + FAX: (\$18) 402-8019

Website: www.dec.slate.ny.us

January 11, 2002

Alicia A. Weissmeier, Esq.
Lapetio Lewis Raplan & Weissmeier, PLLC
Attemeys at Law
Suite 310
977. Avanue of the American
New York, New York 10018

Volumissy (Tennup Agreement - 21-16 14th Road Six, Index No. D2-0023-00-08

Des: Ms. Weissmeiel!

Thus letter is forwarded in response to your application to Commissioner Centy to modify the above referenced Agreement dated January 7, 2002. In that application, your client the Volunteer requested a change in the contemplated use of the Site as stated in the Agreement from, "proposed use as a storage thethity and continued use for manufacturing, including but not limited to the current manufacture and distribution of drapery hardware and clothing manufacture" to "Unrestricted Use." By this score, the Department formally accepts such application and in accordance with the series of the Agreement the requested application to modify the Agreement is granted.

All other terms and conditions of the Agreement remain in full force and affect. This letter decinet visibilities a visiver of any rights by the Department regarding said Agreement. Please contact me if you have any questions in this regard.

Vary truly yours.

Microel J. Louer Esq

Michael J. Lesser, Esq. Legal Coordinator, Voluntary Cleanup Program

MJI..mjV44?85 v (

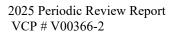
Munteanu-Rameue (R.7)

E. Ammitt

C Costophulus

DECLARATION BY CDI 21, LIC, LLC

TAX BLOCK:


438

LOT NOS.:

23 and 26

July 10, 2003

SIVE, PAGET & RIESEL, P.C. 460 PARK AVENUE NEW YORK, NEW YORK 10022-1906

Appendix B

Annual Inspection Forms

ANNUAL INSPECTION / MONITORING CHECKLIST

Information Technology High School 21-16 44th Drive Long Island City, New York

Sub-Slab Depressurization System Component	<u>Condition</u>	<u>Yes</u>	<u>No</u>	<u>Describe Deficiency</u>	Any Corrective Action Performed? If so, describe
Exhaust Stack	Is air freely flowing out of stack?	x			
Building Floor Slab	Holes, cracks, or other physical deficiencies?		х		
SCDS Bining	Holes, cracks, or other physical deficiencies?		х		
SSDS Piping	Blockages in SSDS piping?		х		
SSDS Blower(s)	Operational?	х			
SSDS Remote Monitoring System	Operational?	x			

				· •			
- 10	an	dα	าท	Si	Ive	rm	aı

Name of Inspector

Signature of Inspector

March 4, 2025

Date of Inspection

Appendix C

Engineering Control and Institutional Control Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Site Details		Box 1	
Sit	e No.	V00366				
Sit	e Name 21	I-16 44th Road , LIC				
City Co			Zip Code: 11101			
Re	porting Peri	iod: April 03, 2023 to Jur	ne 06, 2025			
					YES	NO
1.	Is the infor	rmation above correct?				
	If NO, incl	ude handwritten above o	r on a separate sheet.			
2.		or all of the site property mendment during this Re	v been sold, subdivided, merged, or undergeporting Period?	gone a		
3.		been any change of use CRR 375-1.11(d))?	at the site during this Reporting Period			
4.		federal, state, and/or locate property during this Re	al permits (e.g., building, discharge) been eporting Period?	issued		
			es 2 thru 4, include documentation or evertions or exercification or exercifications.			
5.	Is the site	currently undergoing dev	velopment?			
					Box 2	
					YES	NO
6.		ent site use consistent w -Residential, Commercia	ith the use(s) listed below? ıl, and Industrial			
7.	Are all ICs	in place and functioning	as designed?			
		DO NOT COMPLETE T	R QUESTION 6 OR 7 IS NO, sign and date HE REST OF THIS FORM. Otherwise con	tinue.		
AC	orrective N	vieasures Work Plan mus	st be submitted along with this form to ad	aress tl	nese iss	ues.
 Sia	nature of O	wner, Remedial Party or D	Designated Representative	Date		

SITE NO. V00366 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

438-23 John Belanich/CDI, 21st Street, LIC, LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction

Block 438, Lot 23, represents the court yard and parking lot for the Information Technology High School. The area is paved.

Groundwater at the site must be treated before using it and an approval for using the groundwater must be obtain from the Department before using it.

The remedial system operating on site on Block 438 Lot 26, and consisting of: groundwater pump and treatment system; soil vapor extraction system; soil gas depressurisation system; soil vapor barrier; and capping must be maintained in operation at designed parameters. Any plan to modify the remedial system must be approved by the Department.

The soil beneath the cap at the site must not be disturbed without an approved Health and Safety Plan approved by the Department.

Annual certification must be filled with the Department for the EC/IC which are in place and oprating at designed parameters until the Department will decide it is appropriate to modify them.

438-26 John Belanich/CDI, 21st. Street,LIC, LLC

Building Use Restriction Ground Water Use Restriction Soil Management Plan Landuse Restriction

The site can only be used in accordance with the Deed Restriction. The change in use of the property can be made only with the NYS DEC Commisioner's written approval.

An approval for using the groundwater must be obtained from the Department before using it. The groundwater underlying the site must be treated before using it.

The remedial system consisting of: a groundwater pump and treatment system has been decomissioned with NYSDOH and NYSDEC approval(in April 2014, the groundwater Pump and Treatment System was discontinued with the NYSDEC and NYSDOH approval); soil vapor extraction system(in July 2012, the soil vapor extraction system was discontinued withthe NYSDEC and NYSDOH approval); soil gas/vapor barrier beneath the first and basement slab; and soil gas depressurization system, must be maintained in operation at the designed parameters. The capping of the site must be maintained in the same conditions as it was designed for. Any plan to modify the remedial system must be approved by the Department.

The soil beneath the cap at the site must not be disturbed without a health and safety plan approved by the Department.

Every three (3) years certification must be filed with the Department for the aforementioned engineering and institutional controls which operate in place under the designed parameters. The Engineering and Institutional Controls will be maintained in place and operating at designed parameters until the Department will decide it is appropriate to modify them.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

438-23

Groundwater Treatment System

Vapor Mitigation Subsurface Barriers Cover System Parcel

Engineering Control
Vapor Mitigation

Cover System
Subsurface Barriers

In July 2012 the Soil Vapor Extraction System was dismantled and its opeeration discontinued with the approval of the NYSDEC and NYSDOH.

In April 2014, the groundwater Pump and Treatment System was discontinued with the NYSDEC and NYSDOH approval.

Box 5

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

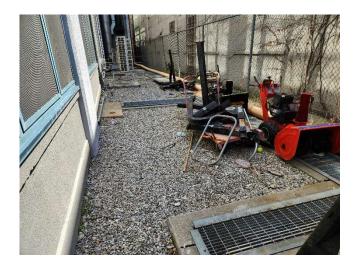
IC CERTIFICATIONS SITE NO. V00366

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name	print business address
am certifying as	(Owner or Remedial Part
for the Site named in the Site Details S	Section of this form.
Swold F. Plem Lag	


EC CERTIFICATIONS

Professional E	Box 7 ngineer Signature
I certify that all information in Boxes 4 and 5 are true punishable as a Class "A" misdemeanor, pursuant to	e. I understand that a false statement made herein i
I at	
print name	print business address
	(Owner or Remedial Party)
1	(Owner of Remedial Party)
Signature of Professional Engineer, for the Owner of Remedial Party, Rendering Certification	Stamp Date (Required for PE)

Appendix D

Photographic Log

Information Technology High School – V00336 2025 PRR – Photograph Log

Former Drum Storage Area

SSDS warping and disassembly - July 12, 2024

Repaired SSDS piping in equipment shed, reattached and online, July 30-31, 2024

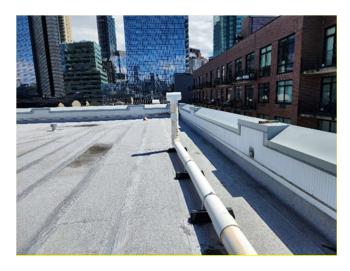
Former Drum Storage Area

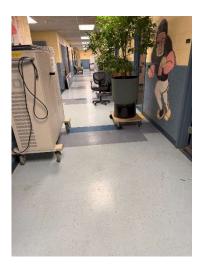
SSDS warping and disassembly - July 12, 2024

Repaired SSDS piping in equipment shed, reattached and online, July 30-31, 2024

SSDS Blower and Legs in Treatment Shed

SSDS Telemetry and System alarm

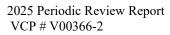

Effluent Stack on Roof


SSDS Blower Electric Panel

Exterior SSDS exhaust and sampling location

Effluent Stack on Roof

Basement Hallway


Basement Electrical Room

Basement Storage Room

Basement Boiler Room

Appendix E

Agency Correspondence

Landon Silverman

From: Allan, Christopher H (DEC) < Christopher. Allan@dec.ny.gov>

Sent: Tuesday, August 06, 2024 9:28 AM

To: Landon Silverman; McLaughlin, Scarlett E (HEALTH)

Cc: JDBelanich@BellRealtyNY.com; cec30@schools.nyc.gov; CQ725@schools.nyc.gov;

Jwoods6@schools.nyc.gov; Joel Kane; Arnold Fleming; ELindse@schools.nyc.gov

Subject: RE: Notification | Information Technology Highschool | Site No. V00366-2 | SSDS

Effluent Pipe Repair

Thank you for the update, I am glad to see that it is up and running again.

Best,

Chris

Christopher H. Allan

he/him/his

Environmental Engineer, Superfund and Brownfield Cleanup Section, Division of Environmental Remediation New York State Department of Environmental Conservation

47-40 21st Street, Long Island City, NY 11101

P: (718) 482-4065 | F: (718) 482-6358 | Christopher.Allan@dec.ny.gov

From: Landon Silverman < Landon@flemingleeshue.com>

Sent: Friday, August 2, 2024 4:51 PM

To: Allan, Christopher H (DEC) < Christopher. Allan@dec.ny.gov>; McLaughlin, Scarlett E (HEALTH)

<scarlett.mclaughlin@health.ny.gov>

Cc: JDBelanich@BellRealtyNY.com; cec30@schools.nyc.gov; CQ725@schools.nyc.gov; Jwoods6@schools.nyc.gov; joel@flemingleeshue.com; arnie@flemingleeshue.com; ELindse@schools.nyc.gov

Subject: RE: Notification | Information Technology Highschool | Site No. V00366-2 | SSDS Effluent Pipe Repair

You don't often get email from landon@flemingleeshue.com. Learn why this is important

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or

All,

This is an update regarding the status of the Sub-Slab Depressurization System (SSDS) at Information Technology High School (Site No. V00366-2).

On July 30th – 31st FLS was able to mobilize to the Site with our environmental contractor and repair the warped and broken sections of piping within the treatment shed. All internal piping was replaced with CPVC which is more heat resistant and durable. This is expected to reduce the likelihood of any similar malfunction in the future. Likewise,

additional support structures were installed to decrease the amount of strain put on pipe connections. Please see the attached photos of the repair work.

On Thursday, August 1st, the SSDS was restarted according to the Start Up Procedures outlined in the SMP. The system was confirmed to be operational, and adequate sub-slab depressurization was restored across the Site. FLS plans to return to the Site in the coming weeks to keep tabs on the repairs and complete our semi-annual operation, monitoring, and maintenance activities (OMM) per the SMP.

At this time, there is no further action required, and the system is now considered functional and remains protective of human health.

Please let me know if you have any questions.

Landon Silverman

Environmental Scientist

Fleming – Lee Shue, Inc. 158 W. 29th St. Fl. 9 New York, NY 10001 P: 212.675.3225 M: 201.679.4973 F: 212.675.3224

landon@flemingleeshue.com www.flemingleeshue.com

From: Benjamin Hess < benjamin@flemingleeshue.com >

Sent: Friday, July 12, 2024 5:09 PM

To: Allan, Christopher H (DEC) < Christopher.Allan@dec.ny.gov">Christopher.Allan@dec.ny.gov; 'McLaughlin, Scarlett E (HEALTH)' < Scarlett.mclaughlin@health.ny.gov>

Cc: 'John Belanich' < <u>JDBelanich@BellRealtyNY.com</u>', 'cec30@schools.nyc.gov' < <u>cec30@schools.nyc.gov</u>', 'Q725 Custodian' < <u>CQ725@schools.nyc.gov</u>', 'Jwoods6@schools.nyc.gov' < <u>Jwoods6@schools.nyc.gov</u>', Joel Kane < <u>ioel@flemingleeshue.com</u>', Arnold Fleming < <u>arnie@flemingleeshue.com</u>', 'ELindse@schools.nyc.gov' < <u>ELindse@schools.nyc.gov</u>

Subject: Notification | Information Technology Highschool | Site No. V00366-2 | SSDS Effluent Pipe Repair

All,

SSDS Effluent Piping Disconnect

On Friday, July 12th, Fleming Lee Shue (FLS) was on-site to conduct the semi-annual SSDS operations, maintenance, and monitoring (OM&M). Upon arriving on Site, staff-observed that the effluent piping within the treatment shed had disconnected. FLS subsequently shut down the SSDS and investigated the piping. See attached photos.

FLS screened the equipment shed and the SSDS effluent with a PID and confirmed VOCs were not present (0.0 ppm confirmed with PID instrumentation) in either. Additionally, FLS screened the indoor air within the basement and first floor of the School and all measurements showed 0.0 ppm.

FLS attempted to repair the SSDS piping, however, the piping materials were too warped and damaged to reassemble.

Actions Forward

The SSDS has been temporarily shut down and a maintenance subcontractor (Brookside Environmental) has been contacted to mobilize to the conduct repairs as soon as possible. Once a date is confirmed, FLS will coordinate with maintenance staff for access. We will continue to update all as the repairs move forward.

Please let me know if you have any questions.

Thanks, **Benjamin Hess, PE**

Staff Engineer

Fleming – Lee Shue 158 W. 29th St. Fl. 9

158 W. 29th St. Fl. 9 New York, NY 10001 P: 212.675.3225

M: 732-272-4992 F: 212.675.3224

benjamin@flemingleeshue.com www.flemingleeshue.com

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 2 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4995 www.dec.ny.gov

November 14, 2024

Saritha Thumma NYC DOE - Division of School Facilities 44-36 Vernon Boulevard Long Island City, NY 11101

Re: Site Management (SM) Periodic Review Report (PRR) Response Letter

21-16 44th Road, LIC Site No.: V00366

Dear Saritha Thumma,

The New York State Department of Environmental Conservation (NYSDEC) has reviewed the Periodic Review Report (PRR) and IC/EC Certification for following period: April 3, 2023 to April 03, 2024.

NYSDEC hereby rejects the PRR and associated Certification for the following reasons:

- The PRR refers to sub-slab soil vapor concentrations monitored through the sampling of the Sub-Slab Depressurization System (SSDS) effluent. This is not an accurate method of monitoring sub-slab soil vapor concentrations. To monitor sub-slab soil vapor concentrations, representative sub-slab soil vapor samples must be collected with Summa canisters at vapor monitoring points located throughout the building.
- The PRR did not include the date of the restart of the SSDS after the effluent piping was re-routed on the roof. Please indicate the date of the system restart. Additionally, add details regarding whether system measurements were within the operating parameters (i.e., completion of pressure field extension testing to check for detectable vacuum across the slab, indoor air sampling completed, manometer checked, etc.).
- It does not appear that indoor air monitoring has occurred in the school building, as required by the Site Management Plan (SMP). Indoor air sampling must be conducted during the 2024-2025 heating season, and annually thereafter, to evaluate the effectiveness of the SSDS. During the annual indoor air sampling, pressure field extension testing must be completed to ensure that the entirety of the slab of the building is depressurized. Lastly, please explain why indoor air sampling and pressure field extension testing has not been conducted in accordance with the SMP.

You are required to submit a Corrective Measures Work Plan (CMWP), including a schedule for completion of the work planned, within 30 days of receipt of this letter. The

cover letter for the CMWP must include a response to each of the comments provided herein.

If you have any questions, please contact me at 718-482-4065 or christopher.allan@dec.ny.gov.

Sincerely,

Christopher Allan Project Manager

Christopher Allan

ec:

- J. O'Connell, C. Maycock NYSDEC
- S. McLaughlin, D. Tucholski NYSDOH
- A. Fleming, M. Hutson Fleming Lee Shue Inc.
- J. Belanich Virginia S. Peterson as Trustee and all Successors

February 7, 2025

Mr. Christopher Allan New York State Department of Environmental Conservation Hunters Point Plaza, 47-40 21st Street Long Island City, NY 11101

Re: Corrective Measures Work Plan
Info Tech High School
21-16 44th Road, Long Island City, NY 11101
NYSDEC VCP Site Number V00366-2

Mr. Allan:

Fleming Lee Shue Environmental Engineering and Geology, D.P.C. (FLS) has prepared this Corrective Measures Work Plan (CAWP) for approval by the New York State Department of Environmental Conservation (NYSDEC) in response to its November 15, 2024 letter, NYSDEC rejected the 2024 Periodic Review Report. The primary purpose of this CMWP is to outline the scope of an indoor air sampling and sub-slab vapor monitoring sampling events to evaluate the efficiency of the sub-slab depressurization system (SSDS) located at the above-referenced property (Site). The Site is currently in Site Management in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan (SMP) dated September 2008 and the subsequent *Site Management Plan Modification Summary* dated June 2017.

1.0 Background

The Site consists of a four-story masonry and stucco structure currently utilized as Information Technology High School. The Site is a former drapery hardware manufacturer and distributor. The eastern portion of the factory was dedicated to cleaning, de-greasing, oil-extracting, powder coating, and painting of metal drapery hardware. Prior to this usage, the Site is believed to have contained a metal plating and finishing facility. Both operations are historically known for utilizing chlorinated degreasers.

Various Remedial investigations conducted by Leggette, Brashears & Graham Inc. (LBG) between 1997 and 2002 revealed the presence of VOCs in soil vapor under the building slab and in the groundwater beneath the Site. The source of VOCs was determined to be a former drum storage

area (outside the footprint of the current school) where localized contaminated soil was identified and removed from the Site. The Site's primary contaminants of concern are tetrachloroethylene (PCE) and trichloroethylene (TCE). Elevated concentrations of lead were also identified in soil beneath dry drains located under the buildings and in the courtyard.

Remedial excavation took place between December 2001 and August 2002 and included the removal of approximately 1,300 cubic yards of contaminated soils and a combination of soil and ash from the former drum area, the basement and first floor levels of the school, basement sumps, and the parking lot area.

Following remediation, LBG developed the SMP in 2008 and outlined five (5) primary engineering controls for the Site. These are: (1) a composite cover system within the building (first floor and basement) consisting of (from bottom to top) 1 foot of gravel, a 40-mil high density polyethylene (HDPE) liner, a protection board layer, and a steel mesh reinforced 8-inch thick concrete slab as well as a spray-on epoxy vapor barrier along the western basement wall adjacent to the first floor; (2) a sub-slab soil depressurization system (SSDS) installed in the gravel layer beneath the HDPE liner; (3) a vertical soil vapor extraction system consisting of four vertical SVE wells installed in the former drum storage area (decommissioned in 2010); (4) a groundwater pump and treat system extracting groundwater from RW-1 located in the former drum storage area (decommissioned in 2014); and (5) a positive-pressure heating ventilation and air conditioning (HVAC) system within the building.

FLS replaced LBG as the lead consultant for the Site in June 2017. The current SSDS is equipped with one (1) 15 HP blower to provide vacuum beneath the building, with a second 15 HP blower to be activated if the current blower fails. Monitoring of the SSDS is conducted on a semi-annual basis, approved by NYSDEC in its letter dated May 31, 2017. Monitoring events are currently conducted in the 1st and 3rd Quarters of each year, as reported in the most recent PRR, submitted to NYSDEC on April 30, 2024.

In its letter, dated November 14, 2024, NYSDEC rejected the PRR due to the following reasons (Attachment 1):

- 1) The PRR refers to sub-slab soil vapor concentrations monitored through the sampling of the Sub-Slab Depressurization System effluent. This is not an accurate method of monitoring sub-slab soil vapor concentrations. To monitor sub-slab soil vapor concentrations, representative sub-slab soil vapor samples must be collected with summa canisters at vapor monitoring points located throughout the building;
- 2) The PRR did not include the date of the restart of the SSDS after the effluent piping was re-routed on the roof. Please indicate the date of the system restart. Additionally, add details regarding whether system measurements were within the operating

- parameters (i.e., completion of pressure field extension testing to check for detectable vacuum across the slab, indoor air sampling completed, manometer checked, etc.); and,
- 3) It does not appear that indoor air monitoring has occurred in the school building, as required by the SMP. Indoor air sampling must be conducted during the 2024-2025 heating season, and annually thereafter, to evaluate the effectiveness of the SSDS. During the annual indoor air sampling, pressure field extension testing must be completed to ensure that the entirety of the slab of the building is depressurized. Lastly, please explain why indoor air sampling and pressure field extension testing has not been conducted in accordance with the SMP.

2.0 Corrective Action

As mentioned above, previous evaluation of the sub-slab vapor concentrations by sampling the post-blower effluent and the lack of indoor air monitoring by NYCDOE was found to be out of compliance with the Operations, Maintenance and Monitoring guidelines outlined in the SMP. To address this, FLS propose to conduct semi-annual sub-slab soil vapor monitoring at the Site. FLS also proposes to replace NYCDOE as the primary lead for annual indoor air monitoring.

1. Semi-Annual Sub-Slab Monitoring

Following a discussion between NYSDEC and NYSDOH on January 14, 2025, it was determined that collection of soil vapor samples from the lateral sampling ports was not necessary to establish efficacy of the SSDS, and that semi-annual inspections of the SSDS should continue without change, per the approved SMP. Semi-Annual sub-slab monitoring events are currently conducted in 1st and 3rd Quarters each year. Per the SMP, and its subsequent revisions, monitoring of the SSDS will consist of a visual inspection of the complete system as currently constructed, including collection of a pressure reading, flow rate, temperature, and screening of sub-slab vapors with a Photoionization Detector (PID) at each individual SSDS lateral sample port. FLS has complied with the monitoring of the SSDS during semi-annual events, as outlined in the SMP. Readings from the 2023 reporting year are presented as Attachment 2. A layout of the SSDS is provided in Figure 1.

In addition to sub-slab monitoring, FLS will continue to collect an effluent sample to monitor emissions from the SSDS. The sample will be collected in a pre-cleaned laboratory certified Summa canister equipped with flow regulator set to collect the sample at a rate not to exceed 0.2 L/min. All sub-slab soil vapor samples will be collected simultaneously for a maximum duration of two (2) hours. Sample will be shipped under proper chain of custody protocol via courier to a New York State ELAP-certified laboratory. The sample will be analyzed for Volatile Organic Compounds (VOCs) via EPA Method TO-15. Following sampling, FLS will report the results of each sampling event in the annual PRR.

2. SSDS System Restart

On August 7, 2023, FLS was notified by the school that the effluent piping of the SSDS was damaged by scaffolding contractors during façade work on the building. On September 5, 2023, FLS conducted oversight of repairs to the SSDS effluent piping located on the roof of the building. The piping was rerouted from the roof parapet to the roof floor to avoid any conflicts with the future scaffolding use. The piping run was ultimately shortened by approximately 30 feet to the east due to observed operable air intakes near the exhaust in the adjacent building. This ensured that the stack emitted the exhaust more than the required 25 feet from operable air intakes. On September 5, 2023, following completion of the repair work to the effluent piping, the system was restarted per the SSDS start up procedure as outlined in Section 4.2.1.1.1 of the SMP.

3. Indoor Air Monitoring

Per the SMP, and its subsequent revisions, indoor air sampling will be conducted by the NYCDOE. In a review of past PRR submittals, FLS found that the NYC School Construction Authority (SCA) and NYCDOE had not conducted indoor air sampling since 2017. FLS has requested indoor air sampling results from SCA in each reporting period since 2020. In this time, SCA has responded only once, in which it indicated that indoor air sampling did not occur (April 2021).

In order to expedite approval of the 2024 PRR and provide a good faith effort to evaluate indoor air concentrations within the Site, FLS will conduct the indoor air sampling during the 1st Quarter of 2025, in compliance with NYSDOH guidance for evaluating indoor air during the heating season. However, the Participant will not be taking over the responsibility for annual indoor air sampling into perpetuity. After this event, responsibility for indoor air sampling will revert to NYCDOE as outlined within the SMP.

Based on the area of the Site, FLS proposes to collect six (6) indoor air samples. Two (2) indoor air samples will be collected at the cellar level of the building, and four (4) samples will be collected on the first floor in the slab on grade area of the building (Figure 2). In addition to indoor air samples, an ambient air sample will be collected as a control sample. All samples will be collected in pre-cleaned laboratory certified Summa canisters equipped with flow regulators set to collect the sample at a rate not to exceed 0.2 L/min. All indoor air and ambient air samples will be collected simultaneously for a maximum duration of eight (8) hours to simulate school hours. All indoor and ambient air samples will be shipped under proper chain of custody protocol via courier to a New York State ELAP-certified laboratory. All samples will be analyzed for Volatile Organic Compounds (VOCs) via EPA Method TO-15.

Upon approval of this work plan, FLS will proceed with coordinating the sampling event to conduct this event during the heating season. Following sampling and receipt of the results, FLS will prepare a Corrective Action Report. Please contact us with any comments or questions.

Sincerely,

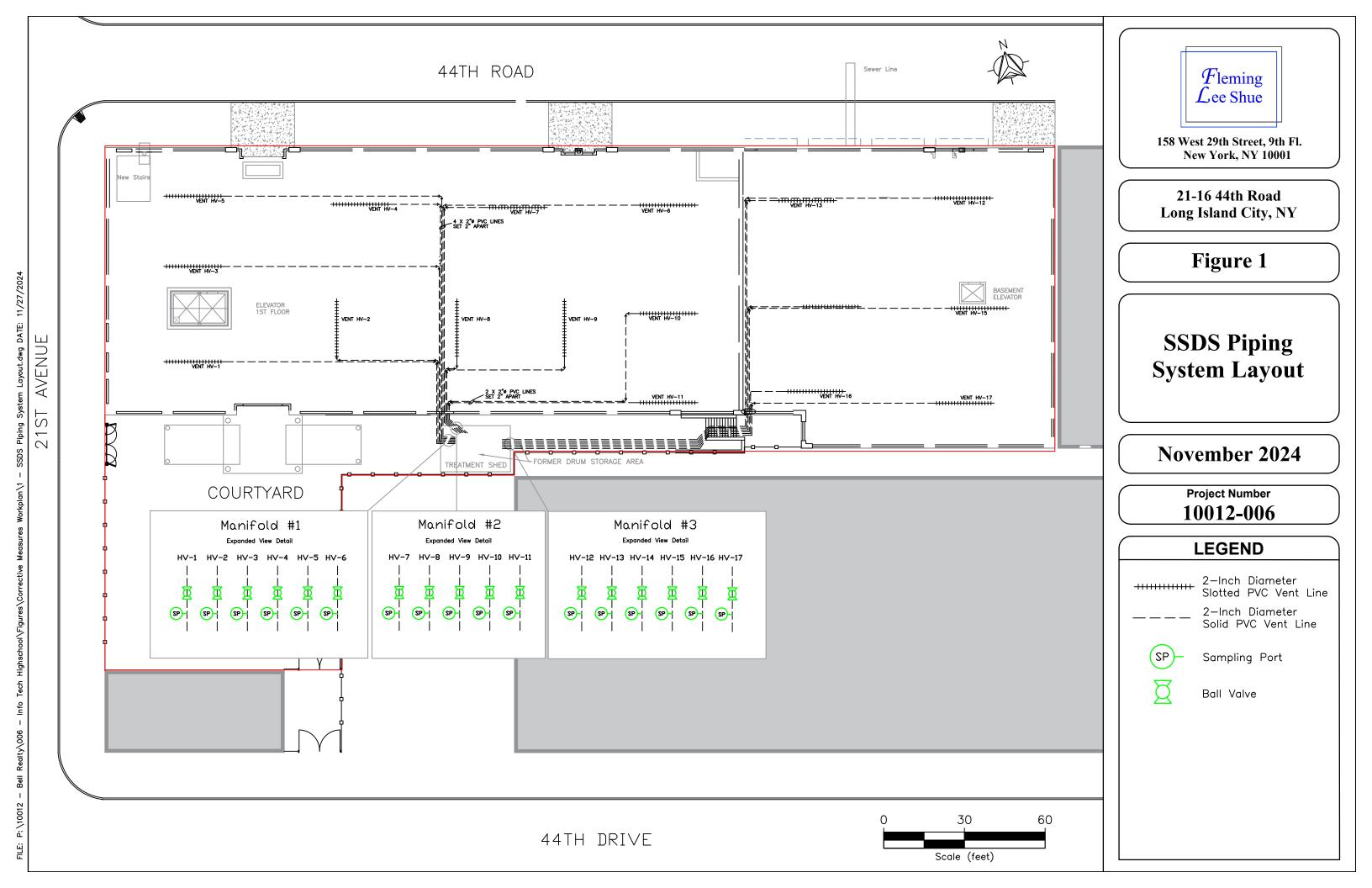
Fleming-Lee Shue, Inc.

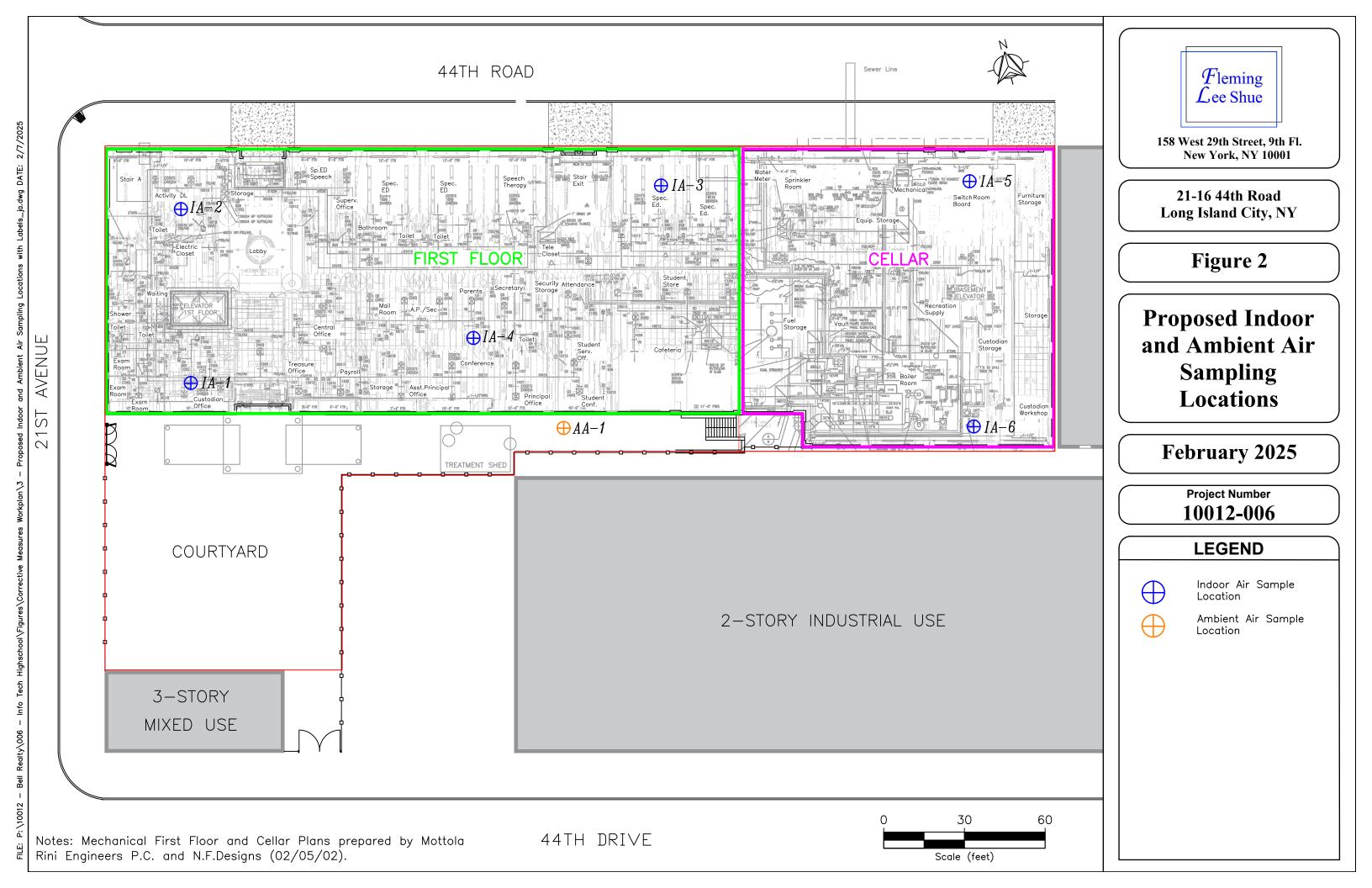
Arnold F. Fleming, P.E.

President

cc: Cris-Sandra Maycock NYSDEC

Jane O'Connell NYSDEC
Scarlett McLaughlin NYSDOH
Daniel Tucholski NYSDOH
John Belanich Bell Realty
Ivan Starcic Ridge Realty


enc: Figure 1 SSDS Piping System Layout


Figure 2 Proposed Indoor and Ambient Air Sampling Locations

Attachment 1 NYSDEC PRR Response Letter

Attachment 2 January 2023 and July 2023 OM&M Logs

FIGURES

Attachment 1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 2 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4995 www.dec.ny.gov

November 14, 2024

Saritha Thumma NYC DOE - Division of School Facilities 44-36 Vernon Boulevard Long Island City, NY 11101

Re: Site Management (SM) Periodic Review Report (PRR) Response Letter

21-16 44th Road, LIC Site No.: V00366

Dear Saritha Thumma,

The New York State Department of Environmental Conservation (NYSDEC) has reviewed the Periodic Review Report (PRR) and IC/EC Certification for following period: April 3, 2023 to April 03, 2024.

NYSDEC hereby rejects the PRR and associated Certification for the following reasons:

- The PRR refers to sub-slab soil vapor concentrations monitored through the sampling of the Sub-Slab Depressurization System (SSDS) effluent. This is not an accurate method of monitoring sub-slab soil vapor concentrations. To monitor sub-slab soil vapor concentrations, representative sub-slab soil vapor samples must be collected with Summa canisters at vapor monitoring points located throughout the building.
- The PRR did not include the date of the restart of the SSDS after the effluent piping was re-routed on the roof. Please indicate the date of the system restart. Additionally, add details regarding whether system measurements were within the operating parameters (i.e., completion of pressure field extension testing to check for detectable vacuum across the slab, indoor air sampling completed, manometer checked, etc.).
- It does not appear that indoor air monitoring has occurred in the school building, as required by the Site Management Plan (SMP). Indoor air sampling must be conducted during the 2024-2025 heating season, and annually thereafter, to evaluate the effectiveness of the SSDS. During the annual indoor air sampling, pressure field extension testing must be completed to ensure that the entirety of the slab of the building is depressurized. Lastly, please explain why indoor air sampling and pressure field extension testing has not been conducted in accordance with the SMP.

You are required to submit a Corrective Measures Work Plan (CMWP), including a schedule for completion of the work planned, within 30 days of receipt of this letter. The

cover letter for the CMWP must include a response to each of the comments provided herein.

If you have any questions, please contact me at 718-482-4065 or christopher.allan@dec.ny.gov.

Sincerely,

Christopher Allan Project Manager

Christopher Allan

ec:

- J. O'Connell, C. Maycock NYSDEC
- S. McLaughlin, D. Tucholski NYSDOH
- A. Fleming, M. Hutson Fleming Lee Shue Inc.
- J. Belanich Virginia S. Peterson as Trustee and all Successors

Attachment 2

Date	1/12/2024	Inspector	LS
Time	10:00		
General		Air Sample Location	PID (ppm)
Weather	cloudy	Calibration	0.0 / 99.8
Temperature (F)	43	Background	0.0
Relative humidity (%)	57	Upwind	0.0
Dew point (F)	29	Treatment Shed	0.0
Barometeric pressure (in Hg)	30.21	Downwind	0.0
Wind speed (mph)	4		
Wind direction	south	System Effluent	
		Flow rate (cfm)	141.17
Alarms triggered?	no	Temperature (F)	132.9
System leaks?	no	Effluent sample time	11:58
		Effluent PID (ppm)	0.0

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-1	-0.138	3.44	53.9	0.0
HV-2	-0.387	7.09	54.3	0.0
HV-3	-0.090	2.71	53.3	0.0
HV-4	-0.211	4.11	53.8	0.0
HV-5	-0.142	2.23	53.4	0.0
HV-6	-0.653	9.09	53.4	0.0
Header	-40.38			0.0

System 2

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-7	-0.444	9.21	55.1	0.0
HV-8	-5.414	17.15	55.2	0.0
HV-9	-5.848	14.65	54.3	0.0
HV-10	-5.853	11.15	54.4	0.0
HV-11	-2.412	15.92	55	0.0
Header	-42.3			0.0

Notes

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-12	-27.74	24.9	54.1	0.0
HV-13	-32.49	21.11	55.8	0.0
HV-14	-26.85	9.34	53.7	0.0
HV-15	-0.051	0.33	53.3	0.0
HV-16	-0.305	4.28	54.5	0.0
HV-17	-0.034	1.15	53.7	0.0
Header	-44.39			0.0

	Blower #4	Blower #2B
Post-blower pressure (psi)	0.977	
Post-blower flow (cfm)	141.17	
Post-blower temperature (F)	132.9	
Post-blower PID (ppm)	0.0	
Water in V.L.S. (gal)	-	
Disconnect operational	Yes	

Semi Annual OMM conducted			

Date	7/25/2023	Inspector	BJH / LS
Time	8:00		
General		Air Sample Location	PID (ppm)
Weather	sunny	Calibration	0.0 / 100.0
Temperature (F)	76-87	Background	0.0
Relative humidity (%)	65.3	Upwind	0.0
Dew point (F)	68	Treatment Shed	0.0
Barometeric pressure (in Hg)	30.09	Downwind	0.0
Wind speed (mph)	5		
Wind direction	NE	System Effluent	
		Flow rate (cfm)	88.31
Alarms triggered?	N	Temperature (F)	135.7
System leaks?	N	Effluent sample time	10:26
		Effluent PID (ppm)	0.0

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-1	-0.018	1.15	84.8	0.0
HV-2	-0.138	6.18	83.4	0.1
HV-3	-20.000	1.74	83.4	0.0
HV-4	-3049	4.49	83.9	0.0
HV-5	-0.028	2.24	83.8	0.0
HV-6	-0.24	8.91	83.5	0.1
Header	-19.76	-	-	0.0

System 2

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-7	-0.422	12.65	83.3	0.0
HV-8	-1.659	26.73	83.1	0.1
HV-9	-1.876	30.67	83.2	0.0
HV-10	-1.882	24.48	83.3	0.0
HV-11	-0.721	20.26	83.5	0.1
Header	-18.24	-	-	0.0

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-12	-3.762	27.89	85.8	0.0
HV-13	-29.62	22.9	88	0.2
HV-14	-0.446	13.7	87.6	0.0
HV-15	-0.036	2.26	88.5	0.1
HV-16	-0.137	6.37	88.7	0.1
HV-17	-0.142	5.99	89.6	0.0
Header	-21.66	-	-	0.1

	Blower #4	Blower #2B
Post-blower pressure ("w.c.)	0.417	-
Post-blower flow (cfm)	88.31	-
Post-blower temperature (F)	135.7	-
Post-blower PID (ppm)	0	-
Water in V.L.S. (gal)	-	-
Disconnect operational	Υ	-

Notes

Semi Annual OMM conducted		

February 21, 2025

John Belanich Virginia S. Peterson as Trustee and all Successors CDI 21st St., LIC, LLC 525 Northern Blvd., Suite 300 Great Neck, NY 11021

Re: Corrective Measures Work Plan (CMWP) Approval Letter

21-16 44th Road, LIC

Queens County, Site No.: V00366

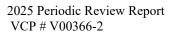
Dear John Belanich,

The New York State Department of Environmental Conservation (NYSDEC) has completed its review of the Corrective Measures Work Plan (CMWP) dated February 2025, which was prepared by Fleming Lee Shue Environmental Engineering and Geology, D.P.C. on behalf of Virginia S. Peterson as Trustee and all Successors (the Certifying Party). The CMWP is hereby approved.

The Certifying Party and its contractors are solely responsible for the safe execution of all invasive and other field work performed under the CMWP. The Certifying Party and its contractors must obtain all local, state, and/or federal permits or approvals that may be required to perform work under the CMWP. Further, the Certifying Party and its contractors are solely responsible for the identification of utilities that might be affected by work under the CMWP and the implementation of all required, appropriate, or necessary health and safety measures during performance of work under the CMWP.

Please notify NYSDEC at least 7 days in advance of commencing fieldwork related to the CMWP. If you have any technical questions regarding this matter, please contact Christopher Allan at (718) 482-4065 or christopher.allan@dec.ny.gov.

Sincerely,


Christopher Allan Project Manager

ristopher allan

ec: J. O'Connell, C. Maycock - NYSDEC

S. McLaughlin, M. Dolan - NYSDOH

A. Fleming, M. Hutson – Fleming - Lee Shue Inc.

Appendix F

SSDS OMM Forms

Date	3/4/2025	Inspector _	LS,SRP
Time	8:20		
General		Air Sample Location	PID (ppm)
Weather	Cloudy	Calibration	0.0/99.8
Temperature (F)	32	Background	0.0
Relative humidity (%)	53	Upwind	0.0
Dew point (F)	42	Treatment Shed	0.0
Barometeric pressure (in Hg)	30.2	Downwind	0.0
Wind speed (mph)	5.1		
Wind direction	SW	System Effluent	
		Flow rate (cfm)	62.1
Alarms triggered?	No	Temperature (F)	119.2
System leaks?	No	Effluent sample time	10:15
		Effluent PID (ppm)	0.0

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-1	-0.041	10.32	46.4	0.0
HV-2	-0.122	21.17	46.7	0.0
HV-3	-0.246	33.96	46.5	0.0
HV-4	-0.055	12.46	45.2	0.0
HV-5	-0.075	11.47	45.7	0.0
HV-6	-0.461	33.79	45.4	0.0
Header	-10.85	-	-	0.3

System 2

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-7	-0.324	24.28	45.4	0.1
HV-8	-1.367	53.61	44.8	0.1
HV-9	-1.653	38.82	44.7	0.0
HV-10	-1.607	53.38	44.9	0.1
HV-11	-0.870	25.81	45.5	0.1
Header	-10.37	-	-	0.0

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-12	-3.911	64.07	48.5	0.0
HV-13	-1.382	71.85	48	0.0
HV-14	-0.43	23.94	49.2	0.0
HV-15	-0.015	7.93	47.7	0.0
HV-16	-0.113	18.24	49.7	0.0
HV-17	-0.079	17.86	50.7	0.0
Header	-6.007	-	-	0

	Blower #4	Blower #2B
Post-blower pressure (psi)	Broken Gauge	-
Post-blower flow (cfm)	62.1	-
Post-blower temperature (F)	160	-
Post-blower PID (ppm)	0	-
Water in V.L.S. (gal)	-	-
Disconnect operational	Yes	-

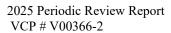
Notes

1. Blower fuses likely need replacement
2. Sensaphone will require repairs as it is not detecting low-vacuum conditions

Date	8.8.2024	Inspector	LS
Time	8:30		
General		Air Sample Location	PID (ppm)
Weather	Overcast/Rain	Calibration	0.0, 100.3
Temperature (F)	67	Background	0.0
Relative humidity (%)	96	Upwind	0.0
Dew point (F)	63	Treatment Shed	0.0
Barometeric pressure (in Hg)	30.08	Downwind	0.0
Wind speed (mph)	1		
Wind direction	North	System Effluent	
		Flow rate (cfm)	177.66
Alarms triggered?	No	Temperature (F)	148.3
System leaks?	HV-17	Effluent sample time	11:02
		Effluent PID (ppm)	0.0

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-1	-0.084	6.44	75.8	2.9
HV-2	-0.210	10.32	76.0	1.2
HV-3	-0.434	8.12	75.9	1.1
HV-4	0.134	7.27	75.8	0.8
HV-5	-0.137	6.67	75.6	0.8
HV-6	-0.700	15.733	75.6	0.7
Header	-15.47			0.0

System 2


Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-7	-0.464	15.3	75.3	0.8
HV-8	-1.86	21.49	75.3	0.8
HV-9	-2.095	12.36	75.2	0.6
HV-10	-2.08	12.59	75.1	1.6
HV-11	-1.543	10.14	75.0	0.6
Header	-13.94			0.1

Monitoring Point	Vacuum (in w.c.)	Flow (cfm)	Temperature (F)	PID (ppm)
HV-12	-2.141	16.53	75.9	0.3
HV-13	-1.803	16.20	76.1	0.3
HV-14	-0.394	16.82	76.3	0.2
HV-15	-0.033	3.24	76.6	0.2
HV-16	-0.119	6.30	76.6	0.3
HV-17	-0.028	4.86	76.9	0.3
Header	-16.33			0.3

	Blower #4	Blower #2B
Post-blower pressure ("w.c.)	0.43	
Post-blower flow (cfm)	177.66	
Post-blower temperature (F)	180	
Post-blower PID (ppm)	0	
Water in V.L.S. (gal)	-	
Disconnect operational	Yes	

NI	ntne
14	ひしせる

HV-17 pipe disconnnected from base of manifold. Will need pipe glue but was reattached as-is.		

Appendix G

Laboratory Analytical Reports

Dayton, NJ 10/30/24

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

Fleming-Lee Shue, Inc.

Info Tech High School, 21-16 44th Road, Long Island City, NY

10012; PO#DPC0184

SGS Job Number: JD99032

Sampling Date: 10/24/24

Fleming-Lee Shue, Inc. 158 West 29th Street 9th Floor New York, NY 10001 joel@FlemingLeeShue.com

ATTN: Steve Panter

Total number of pages in report: 2814

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

David Chastain General Manager

Client Service contact: Tammy McCloskey 732-329-0200
Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV,
AK (UST-103),AZ (AZ0786),PA(68-00408),RI,SC,TX (T104704234),UT,VA,WA,WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

SGS

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	7
4.1: JD99032-1: MW-7 DUP	8
4.2: JD99032-2: MW-7	10
4.3: JD99032-3: BMRW-3	12
4.4: JD99032-4: MW-8	14
4.5: JD99032-5: BRMW-1	16
4.6: JD99032-6: RW-1	18
4.7: JD99032-7: MW-9	20
4.8: JD99032-8: MW-6	22
4.9: JD99032-9: BRMW-2	24
4.10: JD99032-10: FIELD BLANK	26
4.11: JD99032-11: TRIP BLANK	28
Section 5: Misc. Forms	30
5.1: Chain of Custody	
5.2: Sample Tracking Chronicle	33
5.3: Internal Chain of Custody	35
Section 6: MS Volatiles - QC Data Summaries	37
6.1: Method Blank Summary	38
6.2: Blank Spike Summary	44
6.3: Matrix Spike/Matrix Spike Duplicate Summary	50
6.4: Instrument Performance Checks (BFB)	56
6.5: Internal Standard Area Summaries	61
6.6: Surrogate Recovery Summaries	64
6.7: Initial and Continuing Calibration Summaries	65
6.8: Run Sequence Reports	116
Section 7: MS Volatiles - Raw Data	122
7.1: Samples	123
7.2: Method Blanks	182
7.3: Blank Spikes	199
7.4: Matrix Spike/Matrix Spike Duplicates	382
7.5: Instrument Performance Checks (BFB)	746
7.6: Initial and Continuing Calibrations	754
7.7: Instrument Run Logs	2800

G

0;

Sample Summary

Fleming-Lee Shue, Inc.

JD99032 Job No:

Info Tech High School, 21-16 44th Road, Long Island City, NY Project No: 10012; PO#DPC0184

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		llts reported a = Not detecte			cted. The following app L	plies:
JD99032-1	10/24/24	13:08 SRP	10/24/24	AQ	Ground Water	MW-7 DUP
JD99032-2	10/24/24	13:08 SRP	10/24/24	AQ	Ground Water	MW-7
JD99032-3	10/24/24	11:28 SRP	10/24/24	AQ	Ground Water	BMRW-3
JD99032-4	10/24/24	10:11 SRP	10/24/24	AQ	Ground Water	MW-8
JD99032-5	10/24/24	13:55 LS	10/24/24	AQ	Ground Water	BRMW-1
JD99032-6	10/24/24	11:20 LS	10/24/24	AQ	Ground Water	RW-1
JD99032-7	10/24/24	09:55 LS	10/24/24	AQ	Ground Water	MW-9
JD99032-8	10/24/24	12:10 LS	10/24/24	AQ	Ground Water	MW-6
JD99032-9	10/24/24	13:00 LS	10/24/24	AQ	Ground Water	BRMW-2
JD99032-10	10/24/24	14:30 SRP	10/24/24	AQ	Field Blank Water	FIELD BLANK
JD99032-11	10/24/24	14:30	10/24/24	AQ	Trip Blank Water	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Fleming-Lee Shue, Inc. Job No: JD99032

Site: Info Tech High School, 21-16 44th Road, Long Island City, NY Report Date 10/30/2024 4:58:00 P

On 10/24/2024, 9 sample(s), 1 Trip Blank(s), 0 Equip. Blank(s) and 1 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of 5.1 °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of JD99032 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Volatiles By Method SW846 8260D

Matrix: AO Batch ID: V1J490

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD99032-8MS, JD99032-8MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Matrix: AQ Batch ID: V2J490

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD99024-1MS, JD99024-1MSD were used as the QC samples indicated.
- JD99032-9: Dilution required due to high concentration of target compound.
- JD99032-9 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD99032-7 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD99032-5 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Matrix: AO Batch ID: VL11305

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD98744-4MS, JD98744-4MSD were used as the QC samples indicated.
- The matrix spike duplicate (MSD) recovery(s) of 1,4-Dioxane are outside control limits. Outside control limits due to matrix interference
- The matrix spike (MS) recovery(s) of Tetrachloroethene, Trichloroethene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- The RPD(s) for the MS and MSD recoveries of 1,4-Dioxane are outside control limits for sample JD98744-4MSD. Outside control limits due to matrix interference.

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Wednesday, October 30, 2024

Page 1 of 1

Summary of HitsJob Number: JD99032

Account:

Fleming-Lee Shue, Inc. Info Tech High School, 21-16 44th Road, Long Island City, NY 10/24/24 **Project:**

Collected:

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JD99032-1	MW-7 DUP					
cis-1,2-Dichloroe Tetrachloroethene Trichloroethene		1.1 71.7 1.4	1.0 1.0 1.0	0.51 0.56 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JD99032-2	MW-7					
cis-1,2-Dichloroe Tetrachloroethene Trichloroethene		0.82 J 52.5 1.1	1.0 1.0 1.0	0.51 0.56 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JD99032-3	BMRW-3					
cis-1,2-Dichloroe trans-1,2-Dichlor Tetrachloroethene Trichloroethene	oethene	11.1 2.6 439 45.3	1.0 1.0 10 1.0	0.51 0.54 5.6 0.53	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
JD99032-4	MW-8					
Tetrachloroethene Trichloroethene	e	57.1 1.3	1.0 1.0	0.56 0.53	ug/l ug/l	SW846 8260D SW846 8260D
JD99032-5	BRMW-1					
Chlorobenzene cis-1,2-Dichloroe Tetrachloroethene Trichloroethene		2.2 10.7 102 9.7	1.0 1.0 1.0 1.0	0.56 0.51 0.56 0.53	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
JD99032-6	RW-1					
cis-1,2-Dichloroe Tetrachloroethene Trichloroethene		51.6 42.9 0.85 J	1.0 1.0 1.0	0.51 0.56 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JD99032-7	MW-9					
cis-1,2-Dichloroe trans-1,2-Dichlor Tetrachloroethene Trichloroethene	oethene	5.1 0.68 J 178 9.4	1.0 1.0 1.0 1.0	0.51 0.54 0.56 0.53	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D

Summary of Hits

Job Number: JD99032

Account: Fleming-Lee Shue, Inc.

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

Collected: 10/24/24

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD99032-8 MW-6					
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	11.5 532 8.4	1.0 5.0 1.0	0.51 2.8 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JD99032-9 BRMW-2					
cis-1,2-Dichloroethene ^a Tetrachloroethene Trichloroethene ^a	26.4 1240 49.3	5.0 50 5.0	2.5 28 2.6	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D

JD99032-10 FIELD BLANK

No hits reported in this sample.

JD99032-11 TRIP BLANK

No hits reported in this sample.

(a) Dilution required due to high concentration of target compound.

Dayton, NJ

Sample Results	
Report of Analysis	

Report of Analysis

Page 1 of 2

Client Sample ID: MW-7 DUP

Lab Sample ID: JD99032-1 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1J490 Run #1 1J17353.D 1 10/28/24 17:23 NW n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	1.1	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: MW-7 DUP

Lab Sample ID:JD99032-1Date Sampled:10/24/24Matrix:AQ - Ground WaterDate Received:10/24/24Method:SW846 8260DPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	71.7	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	1.4	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	89%		80-1	20 %	
2037-26-5	Toluene-D8	100%		80-1	20 %	
460-00-4	4-Bromofluorobenzene	96%		82-1	14%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-7

Lab Sample ID: JD99032-2 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1J490 Run #1 1J17355.D 1 10/28/24 17:54 NW n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	0.82	1.0	0.51	ug/l	J
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

1

Report of Analysis

Client Sample ID: MW-7

Lab Sample ID: JD99032-2 Date Sampled: 10/24/24

Matrix: AQ - Ground Water Date Received: 10/24/24

Method: SW846 8260D Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	52.5	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	1.1	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	88%		80-12	20%	
2037-26-5	Toluene-D8	101%		80-12	20%	
460-00-4	4-Bromofluorobenzene	99%		82-11	4%	

ND = Not detected MDL = Not MDL

 $MDL = \ Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: BMRW-3

Lab Sample ID: JD99032-3 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	L369373.D	1	10/29/24 12:21	GL	n/a	n/a	VL11305
Run #2	2J17344.D	10	10/28/24 15:01	NW	n/a	n/a	V2J490

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	11.1	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	2.6	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

_

Report of Analysis

Client Sample ID: BMRW-3

Lab Sample ID:JD99032-3Date Sampled:10/24/24Matrix:AQ - Ground WaterDate Received:10/24/24Method:SW846 8260DPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	439 a	10	5.6	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	45.3	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	111%	104%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	105%	95%	80-12	20%	
2037-26-5	Toluene-D8	108%	101%	80-12	20%	
460-00-4	4-Bromofluorobenzene	95%	97%	82-11	14%	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-8

Lab Sample ID: JD99032-4 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1J490 Run #1 1J17357.D 1 10/28/24 18:25 NW n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-8

Lab Sample ID: JD99032-4 Date Sampled: 10/24/24

Matrix: AQ - Ground Water Date Received: 10/24/24

Method: SW846 8260D Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	57.1	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	1.3	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7	Dibromofluoromethane	101%	80-120%			
17060-07-0	1,2-Dichloroethane-D4	90%		80-1	20 %	
2037-26-5	Toluene-D8	100%		80-1	20 %	
460-00-4	4-Bromofluorobenzene	98%	82-114%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 1 of 2

Client Sample ID: BRMW-1

Lab Sample ID: JD99032-5 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V2J490 Run #1 2J17358.D 1 10/28/24 18:41 NW n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	2.2	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	10.7	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: BRMW-1

Lab Sample ID:JD99032-5Date Sampled:10/24/24Matrix:AQ - Ground WaterDate Received:10/24/24Method:SW846 8260DPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	102	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	9.7	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
1868-53-7	Dibromofluoromethane	99%	80-120%			
17060-07-0	1,2-Dichloroethane-D4	91%		80-12	20%	
2037-26-5	Toluene-D8	99%		80-13	20%	
460-00-4	4-Bromofluorobenzene	97%	82-114%			

(a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: RW-1

JD99032-6 Lab Sample ID: **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1J490 Run #1 1J17359.D 1 10/28/24 18:57 NW n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	51.6	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: RW-1

Lab Sample ID: JD99032-6

Matrix: AQ - Ground Water

Method: SW846 8260D

Date Sampled: 10/24/24

Date Received: 10/24/24

Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	RL MDL Units		Q
591-78-6	2-Hexanone	ND	5.0 4.8 ug/l			
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0 0.80 ug/l			
108-87-2	Methylcyclohexane	ND	5.0 0.60 ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	1.0			
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	42.9	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	0.85	1.0	0.53	ug/l	J
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7	Dibromofluoromethane	100%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	88%		80-1	20 %	
2037-26-5	Toluene-D8	99%		80-1	20 %	
460-00-4	4-Bromofluorobenzene	99%	82-114%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-9

Lab Sample ID: JD99032-7 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** V2J490 Run #1 2J17360.D 1 10/28/24 19:13 NW n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	5.1	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	0.68	1.0	0.54	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-9
Lab Sample ID: JD99032-7 Date Sampled: 10/24/24
Matrix: AQ - Ground Water Date Received: 10/24/24
Method: SW846 8260D Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	178	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	9.4	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%	80-120%			
17060-07-0	1,2-Dichloroethane-D4	90%		80-12	20 %	
2037-26-5	Toluene-D8	99%		80-12	20%	
460-00-4	4-Bromofluorobenzene	99%	82-114%			

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-6

Lab Sample ID: JD99032-8 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	L369372.D	1	10/29/24 11:59	GL	n/a	n/a	VL11305
Run #2	1J17351.D	5	10/28/24 16:51	NW	n/a	n/a	V1J490

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	11.5	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: MW-6
Lab Sample ID: JD99032-8
Matrix: AQ - Ground Water Date Received: 10/24/24
Method: SW846 8260D Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	532 a	5.0	2.8	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	8.4	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	108%	103%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	102%	90%	80-12	20%	
2037-26-5	Toluene-D8	111%	102%	80-12	20%	
460-00-4	4-Bromofluorobenzene	93%	98%	82-1	14%	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: BRMW-2

Lab Sample ID: JD99032-9 **Date Sampled:** 10/24/24 Matrix: AQ - Ground Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	2J17366.D	5	10/28/24 20:47	NW	n/a	n/a	V2J490
Run #2	L369369.D	50	10/29/24 10:50	GL	n/a	n/a	VL11305

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^b	ND	50	15	ug/l	
71-43-2	Benzene	ND	2.5	2.1	ug/l	
74-97-5	Bromochloromethane	ND	5.0	2.4	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	2.3	ug/l	
75-25-2	Bromoform	ND	5.0	3.2	ug/l	
74-83-9	Bromomethane	ND	10	8.2	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	14	ug/l	
75-15-0	Carbon disulfide	ND	10	9.0	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	2.8	ug/l	
108-90-7	Chlorobenzene	ND	5.0	2.8	ug/l	
75-00-3	Chloroethane	ND	5.0	3.6	ug/l	
67-66-3	Chloroform	ND	5.0	2.5	ug/l	
74-87-3	Chloromethane	ND	5.0	3.8	ug/l	
110-82-7	Cyclohexane	ND	25	3.9	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	2.6	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	2.8	ug/l	
106-93-4	1,2-Dibromoethane	ND	5.0	2.4	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	2.7	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	2.7	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	2.5	ug/l	
75-71-8	Dichlorodifluoromethane	ND	10	2.8	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	2.8	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	3.0	ug/l	
75-35-4	1,1-Dichloroethene	ND	5.0	3.0	ug/l	
156-59-2	cis-1,2-Dichloroethene	26.4	5.0	2.5	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	2.7	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.5	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	2.4	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	2.2	ug/l	
123-91-1	1,4-Dioxane	ND	630	190	ug/l	
100-41-4	Ethylbenzene	ND	5.0	3.0	ug/l	
76-13-1	Freon 113	ND	25	2.9	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: BRMW-2

Lab Sample ID:JD99032-9Date Sampled:10/24/24Matrix:AQ - Ground WaterDate Received:10/24/24Method:SW846 8260DPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	25	24	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	3.2	ug/l	
79-20-9	Methyl Acetate	ND	25	4.0	ug/l	
108-87-2	Methylcyclohexane	ND	25	3.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	25	24	ug/l	
75-09-2	Methylene chloride	ND	10	5.0	ug/l	
100-42-5	Styrene	ND	5.0	2.4	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	3.3	ug/l	
127-18-4	Tetrachloroethene	1240 ^c	50	28	ug/l	
108-88-3	Toluene	ND	5.0	2.5	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	2.7	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	2.7	ug/l	
79-01-6	Trichloroethene	49.3	5.0	2.6	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	ND	5.0	2.6	ug/l	
	m,p-Xylene	ND	5.0	3.9	ug/l	
95-47-6	o-Xylene	ND	5.0	3.0	ug/l	
1330-20-7	Xylene (total)	ND	5.0	3.0	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	96%	105%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	87%	103%	80-1	20%	
2037-26-5	Toluene-D8	98%	105%	80-1	20%	
460-00-4	4-Bromofluorobenzene	98%	95%	82-1	14%	

- (a) Dilution required due to high concentration of target compound.
- (b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- (c) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: FIELD BLANK

Lab Sample ID: JD99032-10 **Date Sampled:** 10/24/24 Matrix: AQ - Field Blank Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1J490 Run #1 1J17345.D 1 10/28/24 15:17 NW n/a n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 10/24/24

Report of Analysis

Client Sample ID: FIELD BLANK Lab Sample ID: JD99032-10

Matrix: AQ - Field Blank Water Date Received: 10/24/24 Method: SW846 8260D **Percent Solids:**

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	94%		80-1	20 %	
2037-26-5	Toluene-D8	101%		80-1	20 %	
460-00-4	4-Bromofluorobenzene	99%		82-1	14%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID: JD99032-11 **Date Sampled:** 10/24/24 Matrix: AQ - Trip Blank Water Date Received: 10/24/24 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1J490 Run #1 1J17347.D 1 10/28/24 15:48 NW n/a n/a Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: TRIP BLANK

Lab Sample ID:JD99032-11Date Sampled:10/24/24Matrix:AQ - Trip Blank WaterDate Received:10/24/24Method:SW846 8260DPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	105%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	92%		80-12	20%	
2037-26-5	Toluene-D8	101%		80-12	20%	
460-00-4	4-Bromofluorobenzene	96%		82-1	14%	

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

203		TR			35 Rou	rte 130	nerica), Dayto 32-329-0	on, NJ									D-EX Trac	king#				SGS Jo	rder Cont	"°+1	1-1	021	24-41
011 112 11 11		(1)				ww.sg	s.com/e	hsusa								-			31000					JIV	1903	7	Matrix Code
Client / Reporting Information Company Name:	Project Name			t Inform						_						+		Т	T	Analys	sis Req	uested				1	
Fleming Lee Shue DP C	Int	Fo Te	ch l	ligh	S	che	ol		_								_										DW - Drinking W GW - Ground W WW - Water
158 west 29th Street		44th		Billing In	formatio	on (if di	fferent fro	m Report	to)								-										SW - Surface W SO - Soil St - Sludge
tewYork MY 10001		and	State	Company													7										SED-Sedime
rollect Contact J. Kane joel@Herningleesh	Project #	1001	2	Street Add	dress												9										AIR - Air SOL - Other So
1000 # 212 -675 -3225	Client Purchas			City						State				Zip			d								-	-	WP - Wipe FB - Field Blar EB-Equipment B
- Silverman, S. Pashte	Project Manac	er	u	Attention:													8										RB - Rinse Blan TB - Trip Blan
3. 10 10 110	1	- Tos ne	Colle	tion							Number	of Bo	ttles	_	IωΙ		\pm	_		pH Che	ck (Lab U	Jse Only	y)		1	\neg	
sgs ample # Field ID / Point of Collection	MEOH/DI Viel #	Date	Time	Sampled by	Grab (G) Comp (C)	Source Chlorinal ed (Y/N)	Matrix	# of bottles	HG	NaOH	HNO.	H ₂ SO ₂	DI Wate	МЕОН	ENCORE				10.9		100						LAB USE ONL
1 MW-7 DUP		10 24 24	13:08	SRP	G	H	GW	3	4							_	4									\perp	V254
2 MW-7			13:08	SRP	G	H	GW	3	×								7										
3 BMRW-3			11:28	SEP	G		GW	3	Y							,	7										
4 MW-8			10:11		G		GW	3	2							1	X										56
+ BRMW-1			13:55	LS	G	H	GW	3	8							1	ye										
6 RW-1			11.30	LS	G	Н	GW	3	7							,	×										
7 MW-9			1:55	LS	G	N	GW	3	Y					Г		1	×										The same
8 MW-6			12:10	LS	G	N	aw	3	y	3.						1	p										1000
9 BRMW-2			13:00	LS	G	N	GW	3	1							>	٥										79
e Field Blank		1	14:30	SRP	-	-	FB	3	y							4	4										- 1
11 Trip Blank		10 22 24		-	-	-	TB	2	4								y										
							594																				1.5
Turn Around Time (Bu												verat								-					dal Instruct		
10 Business Days	Approved By	(SGS PM) / Date			•		"A" (Lev				_	-	P Categ								401 ES S	RECEI\	VED O	UTSID	OF AC	CEPTA	SED YRIE
5 Business Days							(Level 3)	on 2.j					CP Crit							SAN	MPER	ATURE	RANG	SE. INI	TIALS &	12	
3 Business Days*					Full T	ier I (L	evel 4)					CT R	CP Crit	eria _						"	TO P	ROCE	ED MI	TH AN	ALYSI&		
2 Business Days*						mercial	"C"						Forms														
1 Business Day* Other				L	NJ DI	KQP		ommerci	.ı A	Bassi			Format		Aprille 4	OC Sur	nmarv										
All data available via SGS Engage Ap	proval needed f							Comme															http://	www.sc	s.com/e	n/term:	is-and-condition
mple Custody must be documented below each time sa Relinquished by: Date / Time:	mples change p		iding courie		er	`	50	1	Relin	quishe	By	6	~//	0	10	200	,		Date /	Time:	0/24	Receive	ed By:	Jam	e K	no	~
Relinquished by: Date / Time:	1-1	Received By:	TAN V						Relin	quishe	d By:		- (-			Date /	Tinger:/	0	Receive 4	ed By:	,			
Relinquished by: Date / Time;		Received By:							Custo	ody Se	el #						tact of intact	☐ Abser	it .		Therm See San		ipt Summe	On lo	,	Cooler 1	Temp. °C
HSA-QAC-0023-06 ReviDate:9/																	CO	tiai	Ass	Ses	sm	eni	Br	3/1	0		tom

JD99032: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Date / Time Received: 10/24/2024 4:21:00 PM Delivery Method: SGS COURIER Airbill #'s: Cooler Temps (Raw Measured) °C: Cooler 1: (4.7); Cooler Temps (Corrected) °C: Cooler 1: (5.1); Cooler Security Y or N Sample Integrity - Documentation Y or N	
Cooler Temps (Corrected) °C: Cooler 1: (5.1); Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: 2. Custody Seals Intact: Cooler 1: (5.1); Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 2. Container labeling complete:	
Cooler Security Y or N Y or N Sample Integrity - Documentation Y or N 1. Custody Seals Present: ✓ □ 3. COC Present: ✓ □ □ 4. Smpl Dates/Time OK ✓ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
1. Custody Seals Present: 3. COC Present: 1. Sample labels present on bottles: 2. Custody Seals Intact: 4. Smpl Dates/Time OK 2. Container labeling complete: 2. Container labeling complete:	
2. Custody Seals Intact: 4. Smpl Dates/Time OK 1. Sample labels present on bottles: 2. Container labeling complete:	
2. Container labeling complete:	
Cooler Temperature	
1. Temp criteria achieved: ✓ ✓ ✓ ✓ ✓ Sample Integrity - Condition Y or N	
2. Cooler temp verification: IR-50	
3. Cooler media: lce (Bag) 2. All containers accounted for: □	
4. No. Coolers: 1 3. Condition of sample: Intact	
Quality Control Preservation Y or N N/A Sample Integrity - Instructions Y or N	N/A
1. Trip Blank present / cooler: 1. Analysis requested is clear:	1474
2. Trip Blank listed on COC:	
3. Samples preserved properly: 3. Sufficient volume recvd for analysis: □ 3. Sufficient volume recvd for analysis:	
4. VOCs headspace free:	✓
5. Filtering instructions clear:	✓
Test Strip Lot #s: pH 1-12:231619 pH 12+:203117A Other: (Specify)	
Comments	
SM089-03	

Rev. Date 12/7/17

JD99032: Chain of Custody

Page 2 of 2

5.2

Internal Sample Tracking Chronicle

Fleming-Lee Shue, Inc.

JD99032 Job No:

Info Tech High School, 21-16 44th Road, Long Island City, NY Project No: 10012; PO#DPC0184

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JD99032-1 MW-7 DUP	Collected: 24-OCT-24	13:08 By: SRP	Receiv	red: 24-OCT-	-24 By:	JK
JD99032-1	SW846 8260D	28-OCT-24 17:23	NW			V8260TCL11
JD99032-2 MW-7	Collected: 24-OCT-24	13:08 By: SRP	Receiv	red: 24-OCT-	24 By:	JK
JD99032-2	SW846 8260D	28-OCT-24 17:54	NW			V8260TCL11
JD99032-3 BMRW-3	Collected: 24-OCT-24	11:28 By: SRP	Receiv	red: 24-OCT-	24 By:	JK
	SW846 8260D SW846 8260D	28-OCT-24 15:01 29-OCT-24 12:21				V8260TCL11 V8260TCL11
JD99032-4 MW-8	Collected: 24-OCT-24	10:11 By: SRP	Receiv	red: 24-OCT-	-24 By:	JK
JD99032-4	SW846 8260D	28-OCT-24 18:25	NW			V8260TCL11
JD99032-5 BRMW-1	Collected: 24-OCT-24	13:55 By: LS	Receiv	red: 24-OCT-	-24 By:	JK
JD99032-5	SW846 8260D	28-OCT-24 18:41	NW			V8260TCL11
JD99032-6 RW-1	Collected: 24-OCT-24	11:20 By: LS	Receiv	red: 24-OCT-	24 By:	JK
JD99032-6	SW846 8260D	28-OCT-24 18:57	NW			V8260TCL11
JD99032-7 MW-9	Collected: 24-OCT-24	09:55 By: LS	Receiv	red: 24-OCT-	-24 By:	JK
JD99032-7	SW846 8260D	28-OCT-24 19:13	NW			V8260TCL11
JD99032-8 MW-6	Collected: 24-OCT-24	12:10 By: LS	Receiv	red: 24-OCT-	24 By:	JK
JD99032-8	SW846 8260D	28-OCT-24 16:51	NW			V8260TCL11

Internal Sample Tracking Chronicle

Fleming-Lee Shue, Inc.

JD99032-11 SW846 8260D

Job No: JD99032

V8260TCL11

Info Tech High School, 21-16 44th Road, Long Island City, NY Project No: 10012; PO#DPC0184

JD99032-8 SW846 8260D 29-OCT-24 11:59 GL JD99032-9 Collected: 24-OCT-24 13:00 By: LS Received: 24-OCT-24 EBRMW-2 JD99032-9 SW846 8260D 28-OCT-24 20:47 NW JD99032-9 SW846 8260D 29-OCT-24 10:50 GL JD99032-10 Collected: 24-OCT-24 14:30 By: SRP Received: 24-OCT-24 EFIELD BLANK JD99032-10 SW846 8260D 28-OCT-24 15:17 NW	Test Codes
BRMW-2 JD99032-9 SW846 8260D 28-OCT-24 20:47 NW JD99032-9 SW846 8260D 29-OCT-24 10:50 GL JD99032-10 Collected: 24-OCT-24 14:30 By: SRP Received: 24-OCT-24 FIELD BLANK	V8260TCL11
JD99032-9 SW846 8260D 29-OCT-24 10:50 GL JD99032-10 Collected: 24-OCT-24 14:30 By: SRP Received: 24-OCT-24 EFIELD BLANK	y: JK
FIELD BLANK	V8260TCL11 V8260TCL11
JD99032-10 SW846 8260D 28-OCT-24 15:17 NW	y: JK
	V8260TCL11
JD99032-11 Collected: 24-OCT-24 14:30 By: Received: 24-OCT-24 ETRIP BLANK	y: JK

28-OCT-24 15:48 NW

SGS

SGS Internal Chain of Custody Job Number: JD99032

FLSNYNY Fleming-Lee Shue, Inc. Account:

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

10/24/24 Received:

Number	Sample.Bottle	Transfer	Transfer	D (177	
JD99032-1.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-1.1 Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-2.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-2.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-2.1 Richolas Weigand 10/29/24 14:37 Unload from Instrument JD99032-2.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-2.1 Nicholas Weigand Secured Storage ID99032-2.1 Nicholas Weigand ID99032-3.1 Edward Durner GCMS1J ID99032-3.1 GCMS1J Nicholas Weigand ID99032-3.1 GCMS1J Nicholas Weigand ID99032-3.1 GCMS1J Nicholas Weigand ID99032-3.1 Nicholas Weigand Secured Storage ID99032-3.2 Govanni Lopezhernandez GCMSLJ ID99032-3.2 Giovanni Lopezhernandez ID99032-3.2 ID99032-3.2 Giovanni Lopezhernandez ID99032-4 ID990	Number	FROM	ТО	Date/Time	Reason
JD99032-1.1 GCMS1J Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-1.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-2.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-2.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-2.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-3.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-3.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-3.1 Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-3.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-3.2 Secured Storage Glovanni Lopezhernandez GCMS1J Unload from Instrument JD99032-3.2 Govanni Lopezhernandez GCMSL Glovanni Lopezhernandez 10/29/24 13:09 Retrieve from Storage JD99032-3.2 GCMSL Glovanni Lopezhernandez 10/29/24 13:09 Load on Instrument JD99032-3.2 GCMSL Glovanni Lopezhernandez 10/29/24 13:43 Return to Storage JD99032-3.2 GCMS1J Unload from Instrument JD99032-3.2 GCMS1J Unload from Instrument JD99032-3.2 GCMS1J Unload from Instrument JD99032-4.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-4.1 GCMS1J Unload from Instrument JD99032-4.1 GCMS1J Unload from Instrument JD99032-4.1 GCMS1J Unload from Instrument JD99032-5.1 Edward Durner GCMS1J Unload from Instrument JD99032-5.1 GCMS1J Nicholas Weigand 10/29/24 14:38 Return to Storage JD99032-5.1 Edward Durner GCMS1J Unload from Instrument JD99032-5.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:38 Return to Storage JD99032-7.1	JD99032-1.1		Edward Durner		
JD99032-2.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-2.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-2.1 Nicholas Weigand Secured Storage JD99032-2.1 Nicholas Weigand J0/29/24 14:37 Unload from Instrument JD99032-2.1 Nicholas Weigand J0/29/24 14:35 Return to Storage JD99032-3.1 Edward Durner GCMS1J J0/28/24 14:55 Load on Instrument JD99032-3.1 Edward Durner GCMS1J J0/28/24 14:55 Load on Instrument JD99032-3.1 Nicholas Weigand J0/29/24 14:37 Unload from Instrument JD99032-3.1 Nicholas Weigand J0/29/24 14:37 Unload from Instrument JD99032-3.2 Glovanni Lopezhernandez GCMS1J J0/29/24 13:09 Retrieve from Storage JD99032-3.2 Glovanni Lopezhernandez GCMS1L J0/29/24 13:09 Retrieve from Storage JD99032-3.2 Glovanni Lopezhernandez GCMS1L J0/29/24 13:09 Load on Instrument JD99032-3.2 Glovanni Lopezhernandez GCMS1L J0/29/24 13:09 Load on Instrument JD99032-3.2 Glovanni Lopezhernandez GCMS1L J0/28/24 14:55 Retrieve from Storage JD99032-4.1 Secured Storage Edward Durner J0/30/24 13:43 Return to Storage JD99032-4.1 Nicholas Weigand J0/28/24 14:55 Retrieve from Storage JD99032-4.1 Nicholas Weigand J0/28/24 14:55 Retrieve from Storage JD99032-4.1 Nicholas Weigand J0/29/24 14:37 Unload from Instrument JD99032-5.1 Secured Storage Edward Durner J0/28/24 14:55 Retrieve from Storage JD99032-5.1 Secured Storage Edward Durner J0/28/24 14:55 Load on Instrument JD99032-5.1 Nicholas Weigand J0/29/24 14:37 Unload from Instrument JD99032-6.1 Secured Storage Edward Durner J0/28/24 14:55 Load on Instrument JD99032-6.1 Secured Storage Edward Durner J0/28/24 14:55 Retrieve from Storage JD99032-6.1 Nicholas Weigand J0/29/24 14:37 Unload from Instrument JD99032-7.1 Edward Durner GCMS1J J0/28/24 14:55 Retrieve from Storage JD99032-7.1 Secured Storage Edward Durner	JD99032-1.1	Edward Durner	GCMS1J	10/28/24 14:55	Load on Instrument
D99032-2.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument D99032-2.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument D99032-2.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage D99032-3.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument D99032-3.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument D99032-3.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument D99032-3.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument D99032-3.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage D99032-3.2 Glovanni Lopezhernandez GCMSL 10/29/24 13:09 Load on Instrument D99032-3.2 GGMSL Glovanni Lopezhernandez GCMSL 10/29/24 13:09 Load on Instrument D99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:43 Unload from Instrument D99032-3.2 Giovanni Lopezhernandez CGMSL 10/28/24 14:55 Retrieve from Storage D99032-3.2 Giovanni Lopezhernandez D99032-3.2 Giovanni Lopezhernandez D99032-3.2 Giovanni Lopezhernandez D99032-3.1 Edward Durner GCMS1J D99032-4.1 Edward Durner GCMS1J D99032-4.1 D99032-4.1 D99032-4.1 D99032-4.1 D99032-4.1 Nicholas Weigand D99032-4.1 Nicholas Weigand D99032-4.1 Nicholas Weigand D99032-5.1 Nicholas Weigand D99032-6.1 D99032-6.1 D99032-6.1 D99032-6.1 D99032-6.1 D99032-6.1 D99032-6.1 D99032-7.1 D9903	JD99032-1.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
D99032-2.1 Edward Durner GCMS1J Nicholas Weigand 10/28/24 14:55 Load on Instrument D99032-2.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument D99032-3.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument D99032-3.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument D99032-3.1 Retrieve from Storage D99032-3.1 Nicholas Weigand D99032-3.1 Nicholas Weigand D99032-3.1 Nicholas Weigand D99032-3.2 Secured Storage Giovanni Lopezhernandez GCMSL D99032-3.2 GOMSL Giovanni Lopezhernandez GCMSL D99032-3.2 Giovanni Lopezhernandez GCMSL D99032-3.2 Giovanni Lopezhernandez GCMSL D99032-3.2 Giovanni Lopezhernandez GCMSL D99032-3.2 Giovanni Lopezhernandez Secured Storage D99032-3.2 Giovanni Lopezhernandez GCMSL D99032-3.2 Giovanni Lopezhernandez D99032-4.1 Edward Durner GCMS1J D99032-4.1 GCMSIJ Nicholas Weigand D99032-4.1 D99032-4.1 D99032-4.1 Nicholas Weigand D99032-5.1 D99032-5.1 Edward Durner GCMS1J D99032-5.1 GCMSIJ Nicholas Weigand D99032-5.1 Nicholas Weigand D99032-5.1 Nicholas Weigand D99032-5.1 Nicholas Weigand D99032-6.1 D99032-6.1 GCMSIJ Nicholas Weigand D99032-6.1 Nicholas Weigand D99032-6.1 Nicholas Weigand D99032-6.1 Nicholas Weigand D99032-7.1 Nicholas Weigand D99032-7.1 D99032-7.1 D99032-7.1 D99032-7.1 D99032-7.1 Nicholas Weigand D99032-7.1 Nicholas Weigand D09032-7.1 Nicholas Weigand D0903	JD99032-1.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-2.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-3.1 Nicholas Weigand Secured Storage 10/28/24 14:55 Retrieve from Storage JD99032-3.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-3.1 Nicholas Weigand Secured Storage JD99032-3.1 Nicholas Weigand Secured Storage JD99032-3.1 Nicholas Weigand Secured Storage JD99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:30 Load on Instrument JD99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:43 Unload from Instrument JD99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:43 Unload from Instrument JD99032-3.2 Giovanni Lopezhernandez Secured Storage 10/30/24 13:43 Unload from Instrument JD99032-3.2 Giovanni Lopezhernandez Secured Storage 10/30/24 13:43 Unload from Instrument JD99032-4.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 13:43 Return to Storage JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-5.1 GCMSIJ Nicholas Weigand 10/29/24 14:35 Load on Instrument JD99032-5.1 Retward Durner GCMSIJ 10/28/24 14:55 Retrieve from Storage JD99032-5.1 Retward Durner GCMSIJ 10/28/24 14:55 Load on Instrument JD99032-6.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-6.1 Retward Durner GCMSIJ 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Retward Durner GCMSIJ 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Retward Durner GCMSIJ 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-7.1 Nicholas Weigand Secured Storage JD99032-7.1 Ni	JD99032-2.1	Secured Storage	Edward Durner		
JD99032-2.1 Nicholas Weigand Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-3.1 Edward Durner GCMSIJ 10/28/24 14:55 Load on Instrument JD99032-3.1 Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-3.2 Secured Storage Giovanni Lopezhernandez GCMSL 10/29/24 13:09 Retrieve from Storage JD99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:09 Load on Instrument JD99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:09 Load on Instrument JD99032-3.2 Giovanni Lopezhernandez GCMSL 10/30/24 13:43 Unload from Instrument JD99032-3.2 Giovanni Lopezhernandez Secured Storage 10/30/24 13:43 Unload from Instrument JD99032-3.2 Giovanni Lopezhernandez Secured Storage 10/30/24 13:43 Return to Storage JD99032-4.1 Edward Durner GCMSIJ 10/28/24 14:55 Load on Instrument JD99032-4.1 GCMSIJ Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-4.1 Nicholas Weigand Secured Storage 10/39/24 14:55 Load on Instrument JD99032-5.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-5.1 Edward Durner GCMSIJ 10/28/24 14:55 Load on Instrument JD99032-5.1 GCMSIJ Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:35 Retrieve from Storage JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:35 Retrieve from Storage JD99032-6.1 GCMSIJ Nicholas Weigand 10/29/24 14:35 Load on Instrument JD99032-6.1 GCMSIJ Nicholas Weigand 10/29/24 14:35 Load on Instrument JD99032-6.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:35 Retrieve from Storage JD99032-7.1 Edward Durner GCMSIJ 10/28/24 14:55 Load on Instrument JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-7.1 Nicholas Weigand Secured Storage JD99032-7.1 Nicholas Weigand Secured Storage Edw	JD99032-2.1	Edward Durner	GCMS1J	10/28/24 14:55	Load on Instrument
D99032-3.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument		GCMS1J		10/29/24 14:37	Unload from Instrument
DB9032-3.1 Edward Durner GCMS1J Nicholas Weigand 10/28/24 14:55 Load on Instrument DB9032-3.1 Nicholas Weigand 10/29/24 14:37 Unload from Instrument DB9032-3.2 Secured Storage Giovanni Lopezhernandez 10/29/24 13:09 Retrieve from Storage DB9032-3.2 GCMSL Giovanni Lopezhernandez 10/30/24 13:40 Load on Instrument DB9032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:09 Load on Instrument DB9032-3.2 Giovanni Lopezhernandez Secured Storage 10/30/24 13:43 Unload from Instrument DB9032-3.2 Giovanni Lopezhernandez Secured Storage 10/30/24 13:43 Return to Storage DB9032-4.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument DB9032-4.1 Edward Durner GCMS1J 10/28/24 14:35 Load on Instrument DB9032-4.1 Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-4.1 Nicholas Weigand DC29/24 14:38 Return to Storage DB9032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument DB9032-5.1 CGMS1J Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-5.1 Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-5.1 Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-6.1 Secured Storage Edward Durner DC28/24 14:55 Load on Instrument DB9032-6.1 Edward Durner GCMS1J DC28/24 14:55 Coad on Instrument DB9032-6.1 CCMS1J Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-6.1 Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-6.1 Nicholas Weigand DC29/24 14:37 Unload from Instrument DB9032-7.1 Secured Storage Edward Durner DC28/24 14:55 Load on Instrument DC28/24 14:55	JD99032-2.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-3.1 Scured Storage Giovanni Lopezhernandez GCMSL Giovanni Lopezhernandez Ho/29/24 13:09 Load on Instrument Lopezhernandez Lopezhernan	JD99032-3.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-3.1Nicholas WeigandSecured Storage10/29/24 14:38Return to StorageJD99032-3.2Giovanni LopezhernandezGCMSL10/29/24 13:09Load on InstrumentJD99032-3.2GCMSL10/30/24 13:43Unload from InstrumentJD99032-3.2Giovanni Lopezhernandez10/30/24 13:43Return to StorageJD99032-3.2Giovanni Lopezhernandez10/30/24 13:43Return to StorageJD99032-4.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-4.1Edward DurnerGCMS1J10/28/24 14:55Load on InstrumentJD99032-4.1Nicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-4.1Nicholas Weigand10/29/24 14:38Return to StorageJD99032-5.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-5.1Edward DurnerGCMS1J10/28/24 14:55Load on InstrumentJD99032-5.1Nicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-5.1Nicholas Weigand10/29/24 14:38Return to StorageJD99032-6.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-6.1Secured StorageEdward Durner10/28/24 14:55Load on InstrumentJD99032-6.1Nicholas Weigand10/29/24 14:38Return to StorageJD99032-7.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-7.1Nicholas Weigand10/29/24 14:37 <td< td=""><td>JD99032-3.1</td><td>Edward Durner</td><td>GCMS1J</td><td>10/28/24 14:55</td><td>Load on Instrument</td></td<>	JD99032-3.1	Edward Durner	GCMS1J	10/28/24 14:55	Load on Instrument
DD99032-3.2 Giovanni Lopezhernandez GCMSL 10/29/24 13:09 Load on Instrument	JD99032-3.1	GCMS1J		10/29/24 14:37	Unload from Instrument
JD99032-3.2Giovanni Lopezhernandez GCMSLGCMSL Giovanni Lopezhernandez10/29/24 13:09 10/30/24 13:43Load on Instrument Unload from InstrumentJD99032-3.2Giovanni Lopezhernandez10/30/24 13:43Unload from InstrumentJD99032-4.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-4.1Edward DurnerGCMS1J10/28/24 14:55Load on InstrumentJD99032-4.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-4.1Nicholas WeigandSecured Storage10/29/24 14:38Return to StorageJD99032-5.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-5.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-5.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-6.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-6.1Edward Durner10/28/24 14:55Load on InstrumentJD99032-6.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-6.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-7.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-7.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-8.1Secured StorageEdward Durner10/28/24 14:55Retrieve from Stor	JD99032-3.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-3.2Giovanni Lopezhernandez GCMSLGCMSL Giovanni Lopezhernandez10/29/24 13:09 10/30/24 13:43Load on Instrument Unload from InstrumentJD99032-3.2Giovanni Lopezhernandez10/30/24 13:43Unload from InstrumentJD99032-4.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-4.1Edward DurnerGCMS1J10/28/24 14:55Load on InstrumentJD99032-4.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-4.1Nicholas WeigandSecured Storage10/29/24 14:38Return to StorageJD99032-5.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-5.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-5.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-6.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-6.1Edward Durner10/28/24 14:55Load on InstrumentJD99032-6.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-6.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-7.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-7.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-8.1Secured StorageEdward Durner10/28/24 14:55Retrieve from Stor	JD99032-3.2	Secured Storage	Giovanni Lopezhernandez	10/29/24 13:09	Retrieve from Storage
JD99032-4.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-4.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-4.1 Nicholas Weigand Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Nicholas Weigand 10/29/24 14:38 Return to Storage JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:55 Retrieve from Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:55 Retrieve from Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:55 Retrieve from Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durn	JD99032-3.2				
JD99032-4.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-4.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:35 Retrieve from Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:35 Retrieve from Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Gdward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Gdward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Gdward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GC	JD99032-3.2	GCMSL	Giovanni Lopezhernandez	10/30/24 13:43	Unload from Instrument
JD99032-4.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Instrument JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-3.2	Giovanni Lopezhernandez	Secured Storage	10/30/24 13:43	Return to Storage
JD99032-4.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-4.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-4.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-5.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument	JD99032-4.1		GCMS1J		
JD99032-5.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-4.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
JD99032-5.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-5.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-4.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-5.1 GCMS1J Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-5.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-6.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-5.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-5.1 Nicholas Weigand Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-5.1	Edward Durner	GCMS1J	10/28/24 14:55	Load on Instrument
JD99032-6.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-5.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
JD99032-6.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-6.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-5.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-6.1 GCMS1J Nicholas Weigand Secured Storage Edward Durner GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-6.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-6.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-6.1	Edward Durner		10/28/24 14:55	Load on Instrument
JD99032-7.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner GCMS1J 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-6.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
JD99032-7.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-7.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-6.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-7.1GCMS1JNicholas Weigand10/29/24 14:37Unload from InstrumentJD99032-7.1Nicholas WeigandSecured Storage10/29/24 14:38Return to StorageJD99032-8.1Secured StorageEdward Durner10/28/24 14:55Retrieve from StorageJD99032-8.1Edward DurnerGCMS1J10/28/24 14:55Load on InstrumentJD99032-8.1GCMS1JNicholas Weigand10/29/24 14:37Unload from Instrument	JD99032-7.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-7.1 Nicholas Weigand Secured Storage 10/29/24 14:38 Return to Storage JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-7.1	Edward Durner	GCMS1J	10/28/24 14:55	Load on Instrument
JD99032-8.1 Secured Storage Edward Durner 10/28/24 14:55 Retrieve from Storage JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-7.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-7.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
JD99032-8.1 Edward Durner GCMS1J 10/28/24 14:55 Load on Instrument JD99032-8.1 GCMS1J Nicholas Weigand 10/29/24 14:37 Unload from Instrument	JD99032-8.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
O Company of the comp	JD99032-8.1	· ·	GCMS1J		•
	JD99032-8.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
	JD99032-8.1	Nicholas Weigand		10/29/24 14:38	Return to Storage

SGS Internal Chain of Custody Job Number: JD99032

FLSNYNY Fleming-Lee Shue, Inc. Account:

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

10/24/24 Received:

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JD99032-8.2	Secured Storage	Giovanni Lopezhernandez	10/29/24 13:09	Retrieve from Storage
JD99032-8.2	Giovanni Lopezhernandez	GCMSL		Load on Instrument
JD99032-8.2	GCMSL	Giovanni Lopezhernandez	10/30/24 13:43	Unload from Instrument
JD99032-8.2	Giovanni Lopezhernandez	Secured Storage	10/30/24 13:43	Return to Storage
	•	o o		9
JD99032-9.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-9.1	Edward Durner	GCMS1J		Load on Instrument
JD99032-9.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
JD99032-9.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
	G	S .		9
JD99032-9.2	Secured Storage	Giovanni Lopezhernandez	10/29/24 13:09	Retrieve from Storage
JD99032-9.2	Giovanni Lopezhernandez	GCMSL		Load on Instrument
JD99032-9.2	GCMSL	Giovanni Lopezhernandez	10/30/24 13:43	Unload from Instrument
JD99032-9.2	Giovanni Lopezhernandez	Secured Storage	10/30/24 13:43	Return to Storage
	•	o o		9
JD99032-10.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-10.1	Edward Durner	GCMS1J	10/28/24 14:55	Load on Instrument
JD99032-10.1	GCMS1J	Nicholas Weigand	10/29/24 14:37	Unload from Instrument
JD99032-10.1	Nicholas Weigand	Secured Storage	10/29/24 14:38	Return to Storage
	o .	o .		0
JD99032-11.1	Secured Storage	Edward Durner	10/28/24 14:55	Retrieve from Storage
JD99032-11.1	Edward Durner	GCMS1J		Load on Instrument
JD99032-11.1	GCMS1J	Nicholas Weigand		Unload from Instrument
JD99032-11.1	Nicholas Weigand	Secured Storage		Return to Storage
	U	U		U

Dayton, NJ 03/31/25

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

Fleming-Lee Shue, Inc.

Info Tech High School, 21-16 44th Road, Long Island City, NY 10012/DPC0204

SGS Job Number: JE7962

Sampling Date: 03/21/25

Fleming-Lee Shue, Inc. 158 West 29th Street 9th Floor New York, NY 10001 joel@FlemingLeeShue.com

ATTN: Joel Kane

Total number of pages in report: 3800

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Uya 4. Gonou
Olga Azarian
Technical Director

Client Service contact: Tammy McCloskey 732-329-0200 Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV, AK (UST-103),AZ (AZ0786),PA(68-00408),RI,SC,TX (T104704234),UT,VA,WA,WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

SGS

| '

ω

. . .

ග

Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	
Section 4: Sample Results	
4.1: JE7962-1: MW-1	
4.2: JE7962-2: MW-6	12
4.3: JE7962-3: MW-6 DUP	14
4.4: JE7962-4: MW-7	
4.5: JE7962-5: MW-8	18
4.6: JE7962-6: MW-9	20
4.7: JE7962-7: BRMW-1	22
4.8: JE7962-8: BRMW-2	24
4.9: JE7962-9: BRMW-3	26
4.10: JE7962-10: RW-1	28
4.11: JE7962-11: FB	30
4.12: JE7962-12: TB	32
Section 5: Misc. Forms	34
5.1: Chain of Custody	35
5.2: Sample Tracking Chronicle	37
5.3: Internal Chain of Custody	39
Section 6: MS Volatiles - QC Data Summaries	42
6.1: Method Blank Summary	43
6.2: Blank Spike Summary	51
6.3: Matrix Spike/Matrix Spike Duplicate Summary	59
6.4: Instrument Performance Checks (BFB)	67
6.5: Internal Standard Area Summaries	
6.6: Surrogate Recovery Summaries	81
6.7: Initial and Continuing Calibration Summaries	83
6.8: Run Sequence Reports	164
Section 7: MS Volatiles - Raw Data	172
7.1: Samples	173
7.2: Method Blanks	240
7.3: Blank Spikes	277
7.4: Matrix Spike/Matrix Spike Duplicates	521
7.5: Instrument Performance Checks (BFB)	1012
7.6: Initial and Continuing Calibrations	1028
77. Instrument Pun Logs	3770

Table of Contents

-1-

Sample Summary

Fleming-Lee Shue, Inc.

Job No: JE7962

Info Tech High School, 21-16 44th Road, Long Island City, NY Project No: 10012/DPC0204

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co		lts reported as Not detecte			cted. The following app	plies:
JE7962-1	03/21/25	14:15 LS/SR	03/21/25	AQ	Ground Water	MW-1
JE7962-2	03/21/25	12:15 LS/SR	03/21/25	AQ	Ground Water	MW-6
JE7962-3	03/21/25	12:15 LS/SR	03/21/25	AQ	Ground Water	MW-6 DUP
JE7962-4	03/21/25	12:30 LS/SR	03/21/25	AQ	Ground Water	MW-7
JE7962-5	03/21/25	10:35 LS/SR	03/21/25	AQ	Ground Water	MW-8
JE7962-6	03/21/25	09:30 LS/SR	03/21/25	AQ	Ground Water	MW-9
JE7962-7	03/21/25	13:40 LS/SR	03/21/25	AQ	Ground Water	BRMW-1
JE7962-8	03/21/25	13:20 LS/SR	03/21/25	AQ	Ground Water	BRMW-2
JE7962-9	03/21/25	11:35 LS/SR	03/21/25	AQ	Ground Water	BRMW-3
JE7962-10	03/21/25	11:35 LS/SR	03/21/25	AQ	Ground Water	RW-1
JE7962-11	03/21/25	13:55 LS/SR	03/21/25	AQ	Field Blank Water	FB
JE7962-12	03/21/25	14:15 LS/SR	03/21/25	AQ	Trip Blank Water	ТВ

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Fleming-Lee Shue, Inc. Job No: JE7962

Site: Info Tech High School, 21-16 44th Road, Long Island City, NY Report Date 3/31/2025 4:07:04 PM

On 03/21/2025, 10 sample(s), 1 Trip Blank(s), 0 Equip. Blank(s) and 1 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of 3.1 °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of JE7962 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Volatiles By Method SW846 8260D

Matrix: AO Batch ID: V1F520

- All samples were analyzed within the recommended method holding time.
- Sample(s) JE7820-7MS, JE7820-7MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- The matrix spike duplicate (MSD) recovery(s) of Chloroform are outside control limits. Outside control limits due to matrix interference.
- The RPD(s) for the MS and MSD recoveries of 1,1,1-Trichloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,2-Dibromoethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane, 1,3-Dichlorobenzene, Bromochloromethane, Bromoform, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Chloromethane, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, Dibromochloromethane, Ethylbenzene, m,p-Xylene, Methyl Tert Butyl Ether, Methylene chloride, o-Xylene, Styrene, trans-1,3-Dichloropropene, Xylene (total) are outside control limits. Analytical precision exceeds in-house control limits.
- JE7962-8: Dilution required due to high concentration of target compound.
- JE7962-8 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-4 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- The matrix spike duplicate (MSD) recovery(s) of Toluene, o-Xylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Matrix: AQ Batch ID: V1T459

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JE7962-8MS, JE7962-8MSD were used as the QC samples indicated.
- JE7962-3 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-5 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-3 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-3 for 1,2,3-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-3 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-5 for Acetone: Associated CCV outside of control limits high, sample was ND.
- JE7962-5 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-5 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-5 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-5 for 1,2,3-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Monday, March 31, 2025

Page 1 of 3

MS Volatiles By Method SW846 8260D

Matrix: AQ Batch ID: V1T459

- JE7962-3 for Acetone: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for 1,2,4-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-3 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for Acetone: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for 1,2,3-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-7 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-7 for 1,2,3-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-7 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-10 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-7 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-7 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-7 for Acetone: Associated CCV outside of control limits high, sample was ND.

Matrix: AQ Batch ID: V2F520

- All samples were analyzed within the recommended method holding time.
- Sample(s) JE8102-1MS, JE8102-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- The RPD(s) for the MS and MSD recoveries of Chloromethane are outside control limits. Outside control limits due to matrix interference.
- JE7962-2 for Methyl Acetate: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-2 for 2-Butanone (MEK): Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-2 for Chloroform: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Matrix: AQ Batch ID: V2T459

- All samples were analyzed within the recommended method holding time.
- Sample(s) JE7962-2MS, JE7962-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Monday, March 31, 2025

- JE7962-11 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-12 for 1,2,4-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-11 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-11 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-1 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-6 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-6 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-6 for Chloromethane: Associated CCV outside of control limits high, sample was ND.

SGS

MS Volatiles By Method SW846 8260D

Matrix: AQ Batch ID: V2T459

- JE7962-6 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-9 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-9 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-9 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-9 for 1,2,4-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-12 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-1 for 1,2,4-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-11 for 1,2,4-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-1 for Dichlorodifluoromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-9 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-1 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-12 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-6 for 1,2,4-Trichlorobenzene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-12 for Vinyl chloride: Associated CCV outside of control limits high, sample was ND.
- JE7962-12 for Chloromethane: Associated CCV outside of control limits high, sample was ND.
- JE7962-11 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JE7962-1 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Summary of Hits Job Number: JE7962

Account: Fleming-Lee Shue, Inc.

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

Collected: 03/21/25

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JE7962-1	MW-1					
Chloroethane cis-1,2-Dichloroetrans-1,2-Dichlor Tetrachloroethen Trichloroethene	oethene	1.2 94.2 0.68 J 491 12.6	1.0 1.0 1.0 10 1.0	0.73 0.51 0.54 5.6 0.53	ug/l ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D SW846 8260D
JE7962-2	MW-6					
cis-1,2-Dichloroe Tetrachloroethen Trichloroethene		1.9 160 3.4	1.0 5.0 1.0	0.51 2.8 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JE7962-3	MW-6 DUP					
cis-1,2-Dichloroe Tetrachloroethen Trichloroethene		2.2 177 3.5	1.0 1.0 1.0	0.51 0.56 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JE7962-4	MW-7					
Tetrachloroethen Trichloroethene	e	60.0 1.0	1.0 1.0	0.56 0.53	ug/l ug/l	SW846 8260D SW846 8260D
JE7962-5	MW-8					
cis-1,2-Dichloroe Tetrachloroethen Trichloroethene		0.53 J 22.8 1.2	1.0 1.0 1.0	0.51 0.56 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D
JE7962-6	MW-9					
cis-1,2-Dichloroe trans-1,2-Dichlor Tetrachloroethen Trichloroethene	oethene	14.2 0.88 J 111 25.1	1.0 1.0 1.0 1.0	0.51 0.54 0.56 0.53	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
JE7962-7	BRMW-1					
Chlorobenzene cis-1,2-Dichlorod Tetrachloroethen Trichloroethene		2.2 19.0 190 14.6	1.0 1.0 1.0 1.0	0.56 0.51 0.56 0.53	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D

Summary of Hits Job Number: JE7962

Account: Fleming-Lee Shue, Inc.

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

Collected: 03/21/25

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JE7962-8 BRMW-2					
cis-1,2-Dichloroethene ^a trans-1,2-Dichloroethene ^a Tetrachloroethene Trichloroethene ^a	33.5 2.6 J 1040 56.5	4.0 4.0 10 4.0	2.0 2.1 5.6 2.1	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
JE7962-9 BRMW-3					
cis-1,2-Dichloroethene trans-1,2-Dichloroethene Tetrachloroethene Trichloroethene	14.7 2.7 555 56.8	1.0 1.0 10 1.0	0.51 0.54 5.6 0.53	ug/l ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D SW846 8260D
JE7962-10 RW-1					
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	34.8 208 8.7	1.0 10 1.0	0.51 5.6 0.53	ug/l ug/l ug/l	SW846 8260D SW846 8260D SW846 8260D

JE7962-11 FB

No hits reported in this sample.

JE7962-12 TB

No hits reported in this sample.

(a) Dilution required due to high concentration of target compound.

Dayton, NJ

Section 4

Sample Results
eport of Analysis

Page 1 of 2

SGS North America Inc.

Report of Analysis

Client Sample ID: MW-1 Lab Sample ID: JE7962-1 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2T18237.D	1	03/25/25 17:21	CF	n/a	n/a	V2T459
Run #2	2F17158.D	10	03/26/25 13:21	NW	n/a	n/a	V2F520

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	1.2	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane b	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	94.2	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	0.68	1.0	0.54	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: MW-1 Lab Sample ID: JE7962-1

 Lab Sample ID:
 JE7962-1
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	491 ^c	10	5.6	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	12.6	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^b	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	108%	94%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	95%	88%	80-12	20%	
2037-26-5	Toluene-D8	99%	90%	80-12	20%	
460-00-4	4-Bromofluorobenzene	91%	93%	82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Associated CCV outside of control limits high, sample was ND.

⁽c) Result is from Run# 2

Report of Analysis

Client Sample ID: MW-6

Lab Sample ID: JE7962-2 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2F17156.D	1	03/26/25 12:49	NW	n/a	n/a	V2F520
Run #2	2T18231.D	5	03/25/25 15:59	CF	n/a	n/a	V2T459

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform ^a	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	1.9	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-6

 Lab Sample ID:
 JE7962-2
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	160 b	5.0	2.8	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	3.4	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m, p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%	107%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	88%	98%	80-12	20%	
2037-26-5	Toluene-D8	92%	100%	80-12	20%	
460-00-4	4-Bromofluorobenzene	92%	92%	82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

⁽b) Result is from Run# 2

Report of Analysis

Client Sample ID: MW-6 DUP Lab Sample ID: JE7962-3

SGS North America Inc.

Date Sampled: 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1T459 Run #1 1T18238.D 1 03/25/25 17:34 CF n/an/a

Run #2

Purge Volume

5.0 ml Run #1

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	2.2	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: MW-6 DUP

 Lab Sample ID:
 JE7962-3
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	177	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^b	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	3.5	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^a	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
1868-53-7	Dibromofluoromethane	109%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	96%		80-12	20%	
2037-26-5	Toluene-D8	99%		80-12	20%	
460-00-4	4-Bromofluorobenzene	91%		82-11	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

 $ND = Not detected \qquad MDL = M$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Page 1 of 2

Report of Analysis

Client Sample ID: MW-7 Lab Sample ID: JE7962-4

Date Sampled: 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1F520 Run #1 1F17155.D 1 03/26/25 12:32 NW n/an/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane a	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: MW-7 Lab Sample ID: JE7962-

 Lab Sample ID:
 JE7962-4
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	60.0	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	1.0	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	92%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	86%		80-12	20%	
2037-26-5	Toluene-D8	91%		80-12	20%	
460-00-4	4-Bromofluorobenzene	90%		82-11	14%	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

Report of Analysis

Page 1 of 2

Client Sample ID: MW-8

Lab Sample ID: JE7962-5 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: **Percent Solids:** SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1T18240.D	1	03/25/25 18:02	CF	n/a	n/a	V1T459

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane ^a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	0.53	1.0	0.51	ug/l	J
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: MW-8 Lab Sample ID: JE7962-5

 Lab Sample ID:
 JE7962-5
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	22.8	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^b	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	1.2	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^a	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	112%		80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	97%		80-1	20%	
2037-26-5	Toluene-D8	100%		80-1	20%	
460-00-4	4-Bromofluorobenzene	93%		82-1	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Report of Analysis

Client Sample ID: MW-9 Lab Sample ID: JE7962-6 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: **Percent Solids:** SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2T18241.D	1	03/25/25 18:15	CF	n/a	n/a	V2T459
Run #2							

Purge Volume Run #1 5.0 ml

VOA TCL List (SOM0 1.1)

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane b	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	14.2	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	0.88	1.0	0.54	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

1

Report of Analysis

Client Sample ID: MW-9

 Lab Sample ID:
 JE7962-6
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	111	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	25.1	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^b	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	110%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	102%		80-12	20%	
2037-26-5	Toluene-D8	98%		80-12	20%	
460-00-4	4-Bromofluorobenzene	91%		82-1	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Associated CCV outside of control limits high, sample was ND.

Report of Analysis

Page 1 of 2

Client Sample ID: BRMW-1

Lab Sample ID: JE7962-7 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V1T459 Run #1 1T18242.D 1 03/25/25 18:29 CF n/a n/aRun #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

Compound	Result	RL	MDL	Units Q)
Acetone ^a	ND	10	3.1	ug/l	
Benzene	ND	0.50	0.43	-	
Bromochloromethane	ND	1.0	0.48	ug/l	
Bromodichloromethane	ND	1.0	0.45	ug/l	
Bromoform	ND	1.0	0.63	ug/l	
Bromomethane b	ND	2.0	1.6	ug/l	
2-Butanone (MEK)	ND	10	2.7	ug/l	
Carbon disulfide	ND	2.0	1.8	ug/l	
Carbon tetrachloride	ND	1.0	0.55	ug/l	
Chlorobenzene	2.2	1.0	0.56	ug/l	
Chloroethane	ND	1.0	0.73	ug/l	
Chloroform	ND	1.0	0.50	ug/l	
Chloromethane ^a	ND	1.0	0.76	ug/l	
Cyclohexane	ND	5.0	0.78	ug/l	
1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
Dibromochloromethane	ND	1.0	0.56	ug/l	
1,2-Dibromoethane	ND	1.0	0.48	ug/l	
1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
Dichlorodifluoromethane a	ND	2.0	0.56	ug/l	
	ND	1.0	0.57	ug/l	
		1.0	0.60	ug/l	
*	ND	1.0		-	
	19.0	1.0		-	
	ND	1.0		ug/l	
	ND	1.0		ug/l	
	ND	1.0	0.47	ug/l	
		1.0	0.43	-	
1,4-Dioxane	ND			ug/l	
•	ND	1.0	0.60	ug/l	
Freon 113	ND	5.0	0.58	ug/l	
	Acetone a Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane b 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane a Cyclohexane 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropene trans-1,3-Dichloropropene	Acetone a ND Benzene ND Bromochloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane b ND 2-Butanone (MEK) ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene 2.2 Chloroethane ND Chloroform ND Chloromethane a ND Cyclohexane ND 1,2-Dibromo-3-chloropropane ND Dibromochloromethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichlorotenane ND 1,1-Dichlorotehane ND	Acetone a ND 10 Benzene ND 0.50 Bromochloromethane ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane b ND 1.0 Bromomethane b ND 1.0 Bromomethane b ND 1.0 Carbon disulfide ND 2.0 Carbon tetrachloride ND 1.0 Chlorobenzene 2.2 1.0 Chloroethane ND 1.0 Chloromethane a ND 1.0 Chloromethane a ND 1.0 Cyclohexane ND 5.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichlorotenane ND 1.0 1,1-Dichlorotenane ND 1.0 1,1-Dichlorotethane ND 1.0 1,2-Dichlorotethane ND 1.0 1,2-Dichlorotethane ND 1.0 1,1-Dichlorotethane ND 1.0 1,2-Dichlorotethane ND 1.0 1,2-Dichlorotethene ND 1.0 trans-1,2-Dichlorotethene ND 1.0 trans-1,3-Dichloropropene ND 1.0	Acetone a ND 10 3.1 Benzene ND 0.50 0.43 Bromochloromethane ND 1.0 0.48 Bromodichloromethane ND 1.0 0.45 Bromoform ND 1.0 0.63 Bromomethane b ND 2.0 1.6 2-Butanone (MEK) ND 10 2.7 Carbon disulfide ND 2.0 1.8 Carbon tetrachloride ND 1.0 0.55 Chlorobenzene 2.2 1.0 0.56 Chloroethane ND 1.0 0.73 Chloroform ND 1.0 0.73 Chloromethane a ND 1.0 0.76 Cyclohexane ND 1.0 0.76 Cyclohexane ND 1.0 0.78 1,2-Dibromo-3-chloropropane ND 2.0 0.53 Dibromochloromethane ND 1.0 0.56 1,2-Dibromoethane ND 1.0 0.53 1,3-Dichlorobenzene ND 1.0 0.54 1,4-Dichlorobenzene ND 1.0 0.51 Dichlorodifluoromethane ND 1.0 0.55 1,1-Dichloroethane ND 1.0 0.55 1,1-Dichloroethane ND 1.0 0.55 1,2-Dichloroethane ND 1.0 0.55 1,1-Dichloroethane ND 1.0 0.55 1,1-Dichloroethane ND 1.0 0.55 1,1-Dichloroethane ND 1.0 0.55 1,2-Dichloroethane ND 1.0 0.55 1,2-Dichloroethane ND 1.0 0.55 1,2-Dichloroethane ND 1.0 0.55 1,2-Dichloroethene ND 1.0 0.55 1,2-Dichloroethene ND 1.0 0.59 cis-1,2-Dichloroethene ND 1.0 0.59 cis-1,2-Dichloroethene ND 1.0 0.51 trans-1,2-Dichloroethene ND 1.0 0.51 trans-1,2-Dichloropropene ND 1.0 0.51 trans-1,3-Dichloropropene ND 1.0 0.43 1,4-Dioxane ND 1.0 0.43 1,4-Dioxane ND 1.0 0.60 Ethylbenzene ND 1.0 0.43 1,4-Dioxane ND 1.0 0.60	Acetone a ND 10 3.1 ug/l Benzene ND 0.50 0.43 ug/l Bromochloromethane ND 1.0 0.48 ug/l Bromochloromethane ND 1.0 0.45 ug/l Bromoform ND 1.0 0.63 ug/l Bromomethane b ND 1.0 0.63 ug/l Bromomethane b ND 1.0 0.63 ug/l Bromomethane b ND 2.0 1.6 ug/l 2-Butanone (MEK) ND 10 2.7 ug/l Carbon disulfide ND 2.0 1.8 ug/l Carbon disulfide ND 1.0 0.55 ug/l Chlorobenzene 2.2 1.0 0.56 ug/l Chlorobenzene ND 1.0 0.55 ug/l Chloroethane ND 1.0 0.56 ug/l Chloroethane ND 1.0 0.73 ug/l Chloromethane ND 1.0 0.73 ug/l Chloromethane a ND 1.0 0.76 ug/l Cyclohexane ND 1.0 0.76 ug/l Cyclohexane ND 1.0 0.56 ug/l 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 1,2-Dibromoethane ND 1.0 0.56 ug/l 1,2-Dibromoethane ND 1.0 0.56 ug/l 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 1,3-Dichlorobenzene ND 1.0 0.53 ug/l 1,3-Dichlorobenzene ND 1.0 0.51 ug/l 1,4-Dichloroethane ND 1.0 0.51 ug/l 1,1-Dichloroethane ND 1.0 0.57 ug/l 1,1-Dichloroethane ND 1.0 0.57 ug/l 1,1-Dichloroethane ND 1.0 0.59 ug/l 1,1-Dichloroethane ND 1.0 0.59 ug/l 1,1-Dichloroethene ND 1.0 0.59 ug/l trans-1,2-Dichloroethene ND 1.0 0.51 ug/l trans-1,2-Dichloropene ND 1.0 0.51 ug/l trans-1,3-Dichloropropene ND 1.0 0.54 ug/l trans-1,3-Dichloropropene ND 1.0 0.43 ug/l trans-1,3-Dichloropropene ND 1.0 0.44 ug/l trans-1,3-Dichloropropene ND 1.0 0.43 ug/l trans-1,3-Dichloropropene ND 1.0 0.44 ug/l trans-1,3-Dichloropropene ND 1.0 0.43 ug/l trans-1,3-Dichloropropene ND 1.0 0.44 ug/l trans-1,3-Dichloropropene ND 1.0 0.60 ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: BRMW-1

 Lab Sample ID:
 JE7962-7
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	190	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^b	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	14.6	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^a	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	111%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	93%		80-12	20%	
2037-26-5	Toluene-D8	101%		80-12	20%	
460-00-4	4-Bromofluorobenzene	91%		82-11	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Report of Analysis

Page 1 of 2

Client Sample ID: BRMW-2 Lab Sample ID:

JE7962-8 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: **Percent Solids:** SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1F17157.D	4	03/26/25 13:05	NW	n/a	n/a	V1F520
Run #2	1T18232.D	10	03/25/25 16:13	CF	n/a	n/a	V1T459

	D 17.1
	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	40	12	ug/l	
71-43-2	Benzene	ND	2.0	1.7	ug/l	
74-97-5	Bromochloromethane	ND	4.0	1.9	ug/l	
75-27-4	Bromodichloromethane	ND	4.0	1.8	ug/l	
75-25-2	Bromoform	ND	4.0	2.5	ug/l	
74-83-9	Bromomethane	ND	8.0	6.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	40	11	ug/l	
75-15-0	Carbon disulfide	ND	8.0	7.2	ug/l	
56-23-5	Carbon tetrachloride	ND	4.0	2.2	ug/l	
108-90-7	Chlorobenzene	ND	4.0	2.2	ug/l	
75-00-3	Chloroethane b	ND	4.0	2.9	ug/l	
67-66-3	Chloroform	ND	4.0	2.0	ug/l	
74-87-3	Chloromethane	ND	4.0	3.0	ug/l	
110-82-7	Cyclohexane	ND	20	3.1	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	8.0	2.1	ug/l	
124-48-1	Dibromochloromethane	ND	4.0	2.2	ug/l	
106-93-4	1,2-Dibromoethane	ND	4.0	1.9	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	4.0	2.1	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	4.0	2.2	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	4.0	2.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	8.0	2.2	ug/l	
75-34-3	1,1-Dichloroethane	ND	4.0	2.3	ug/l	
107-06-2	1,2-Dichloroethane	ND	4.0	2.4	ug/l	
75-35-4	1,1-Dichloroethene	ND	4.0	2.4	ug/l	
156-59-2	cis-1,2-Dichloroethene	33.5	4.0	2.0	ug/l	
156-60-5	trans-1,2-Dichloroethene	2.6	4.0	2.1	ug/l	J
78-87-5	1,2-Dichloropropane	ND	4.0	2.0	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	4.0	1.9	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	4.0	1.7	ug/l	
123-91-1	1,4-Dioxane	ND	500	160	ug/l	
100-41-4	Ethylbenzene	ND	4.0	2.4	ug/l	
76-13-1	Freon 113	ND	20	2.3	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: BRMW-2 Lab Sample ID: JE7962-8

 Lab Sample ID:
 JE7962-8
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	20	19	ug/l	
98-82-8	Isopropylbenzene	ND	4.0	2.6	ug/l	
79-20-9	Methyl Acetate	ND	20	3.2	ug/l	
108-87-2	Methylcyclohexane	ND	20	2.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	4.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	20	19	ug/l	
75-09-2	Methylene chloride	ND	8.0	4.0	ug/l	
100-42-5	Styrene	ND	4.0	1.9	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.0	2.6	ug/l	
127-18-4	Tetrachloroethene	1040 ^c	10	5.6	ug/l	
108-88-3	Toluene	ND	4.0	2.0	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	4.0	2.0	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	4.0	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	4.0	2.1	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	4.0	2.1	ug/l	
79-01-6	Trichloroethene	56.5	4.0	2.1	ug/l	
75-69-4	Trichlorofluoromethane	ND	8.0	1.6	ug/l	
75-01-4	Vinyl chloride	ND	4.0	2.1	ug/l	
	m, p-Xylene	ND	4.0	3.1	ug/l	
95-47-6	o-Xylene	ND	4.0	2.4	ug/l	
1330-20-7	Xylene (total)	ND	4.0	2.4	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	94%	109%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	91%	96%	80-12	20%	
2037-26-5	Toluene-D8	90%	99%	80-12	20%	
460-00-4	4-Bromofluorobenzene	91%	94%	82-1	14%	

- (a) Dilution required due to high concentration of target compound.
- (b) Associated CCV outside of control limits high, sample was ND.
- (c) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 2

Client Sample ID: BRMW-3 Lab Sample ID: JE7962-9

Date Sampled: 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2T18243.D	1	03/25/25 18:43	CF	n/a	n/a	V2T459
Run #2	1F17159.D	10	03/26/25 13:38	NW	n/a	n/a	V1F520

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane b	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	14.7	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	2.7	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

1

Report of Analysis

Client Sample ID: BRMW-3

 Lab Sample ID:
 JE7962-9
 Date Sampled:
 03/21/25

 Matrix:
 AQ - Ground Water
 Date Received:
 03/21/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	555 ^c	10	5.6	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	56.8	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^b	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	110%	95%	80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	96%	91%	80-12	20%	
2037-26-5	Toluene-D8	100%	91%	80-12	20%	
460-00-4	4-Bromofluorobenzene	89%	92%	82-11	14%	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

⁽b) Associated CCV outside of control limits high, sample was ND.

⁽c) Result is from Run# 2

Report of Analysis

Page 1 of 2

Client Sample ID: RW-1

Lab Sample ID: JE7962-10 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1T18244.D	1	03/25/25 18:56	CF	n/a	n/a	V1T459
Run #2	2F17160.D	10	03/26/25 13:54	NW	n/a	n/a	V2F520

Purge Volume
5.0 ml
5.0 ml

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^b	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane a	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	34.8	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: RW-1 Lab Sample ID: JE7962-10 **Date Sampled:** 03/21/25 Matrix: AQ - Ground Water **Date Received:** 03/21/25 Method: SW846 8260D **Percent Solids:**

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	208 ^c	10	5.6	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene ^b	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene b	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	8.7	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^a	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	111%	95%	80-1	20%	
17060-07-0	1,2-Dichloroethane-D4	96%	89%	80-1	20%	
2037-26-5	Toluene-D8	99%	91%	80-1	20%	
460-00-4	4-Bromofluorobenzene	90%	92%	82-1	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) Result is from Run# 2

Report of Analysis

Page 1 of 2

Client Sample ID: FB

Lab Sample ID: JE7962-11 **Date Sampled:** 03/21/25 Matrix: AQ - Field Blank Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V2T459 Run #1 2T18213.D 1 03/25/25 11:54 CF n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane b	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: FB

Lab Sample ID:JE7962-11Date Sampled:03/21/25Matrix:AQ - Field Blank WaterDate Received:03/21/25Method:SW846 8260DPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene ^a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^b	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
1868-53-7	Dibromofluoromethane	111%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	97%		80-12	20%	
2037-26-5	Toluene-D8	101%		80-12	20%	
460-00-4	4-Bromofluorobenzene	91%	82-114%			

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

⁽b) Associated CCV outside of control limits high, sample was ND.

Report of Analysis

Page 1 of 2

Client Sample ID: TB

Lab Sample ID: JE7962-12 **Date Sampled:** 03/21/25 Matrix: AQ - Trip Blank Water **Date Received:** 03/21/25 Method: Percent Solids: n/a SW846 8260D

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V2T459 Run #1 2T18215.D 1 03/25/25 12:21 CF n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane b	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane b	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	130	39	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB

Lab Sample ID: JE7962-12 **Date Sampled:** 03/21/25 Matrix: AQ - Trip Blank Water **Date Received:** 03/21/25 Method: SW846 8260D Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	No. Compound		RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene a	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride ^b	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
1868-53-7	Dibromofluoromethane	110%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	98%		80-12	20%	
2037-26-5	Toluene-D8	102%		80-12	20%	
460-00-4	4-Bromofluorobenzene	91%	82-114%			

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

⁽b) Associated CCV outside of control limits high, sample was ND.

Misc. Forms

Dayton, NJ

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

SGS	GW BB BB	CHAIN OF CUS SGS North America Inc. 2235 Routo 130, Dayton, N TEL. 732-329-0200 Www.sgs.com/ehsu	Dayton NJ 08810	Y			JE FED-EX Track	7968	3		ge <u>1</u> of <u>1</u>	
Client / Reporting Information	Project Name:	Project Information							Analysis R			
Fleming Lee Shue	Info Tech	High School							Alialysis R	equested		Matrix Code
158 W, 29th street # 9							 		1.			DW - Drinking Wa GW - Ground Wa WW - Water
City State 200 1	LIC NY, 111	State Company Name	portibl				- 등		1 1			SW - Surface Wa SO - Soil SL- Studge
Project Contact E-mail	Project#	Street Address			_		15			1	.	SED-Sedimen
J'Arey jordan & fleminglees		City	State		4		0		1 1	1		LIQ - Other Liqu AIR - Air
212 - 675 - 325 Sampler(s) Name(s) Phone #	DPC 02 04		Date	•		Zip	7		1	1 1 1		SOL - Other Sol WP - Wipe
L. Silverman, S. Pashte	Tammy Mcclosk	Attention:					%		1			FB - Fleid Blan EB-Equipment Blan RB - Rinse Blan
		Collection		Number of	Bottles		"jūže, š	ريء فيورون	pH Check (Lat	Use Only)	_ <u> </u>	TB - Trip Blank
Sarper # Field ID / Point of Collection		Semplod Crab (G) Chlorest Matrix # of Comp (C) ed (YN)	of ID HO	HNO, H ₂ SO,	NONE DI Water	MEDH	典	W. A.	£ (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	is ally
1 MW-1	03/श/२५ । १	:15 LS G N GW 3	ષ				4	14 500 15		 		LAB USE ONL
2 MW-6 DUP	०५१२११५५ ।३	:15 LS G N GW 3					ス			 		4 7 2 3 4
		2:15 LS G N GW 3					7			+++		3.4
4 Mw-7		30 SRP G- N GW 3					1			1-1-1		#
5 MW-8 6 MW-9	03/21/25 10						7					7 2 2
7 BRMW-1		30 SRP G N GW 3					7					
8 BRMW-2		HOSRP G N GW 3		-,-	- -		1					1.3
9 BRMW-3	03 21 25 13 03 21 25 11			73K		$\sqcup \sqcup$	1					1
10 RW-1	०३ ग्रांश्ट ।।		1 - 1 - 1				1					7
II FB	03/21/5/13		1		- -		4					3 9
12 TB	03/19/25 06		- -	$ \vdash$ \vdash		-	٧					14
Turn Around Time (Bu	siness Days)	-00 - - - 18 2		Delivera	ble		1					4 1 3
10 Business Days	Approved By (SGS PM) / Date:	Commercial "A" (Level 1) Commercial "B" (Level 2)			SP Catego					Comments	/ Special Instructions	
5 Business Days 3 Business Days*		NJ Reduced (Level 3)		_	ICP Criter	-						
2 Business Days*		Full Tier I (Level 4) Commercial "C"		=	CP Crite	ia						
1 Business Day		NJ DKQP		_	Forms Format _		••	•				
Other All data evallable via SGS Engage	proval needed for 1-3 BD FAT	Commerci	lai "A" = Result	s only: Comm	nercial "B"	= Results + QC	Summary	ĺ				
Sample Custody must be documented below each time sa	mples change possession, including	courier delivery.	nercial "C" = Re	suits + QC S	ımmary + i	ertial Raw data				http://www	v.sqs.com/en/terms	s-and-conditions
1 State Stat		I Sfac	RellyGyfaned	Sert	4	\$1°C,		3141	F 19:40	Received By:	minn	
Relinquished by: 3	Gacylve By:	Centil -	Melinquished	By:	- (<i>f</i>		Date / Tim		Received By:		
Relinquished by: Date / Time;	Received By:		Custody Seat		7		Intact	 	Therm II	4 D: 0	n ice Cooler To	Amo 10 -
		, ,					Not intact []	bsent	See Semp			emp. °C 2.7°C
EHSA-QAC-0023-06 Rev.Date:9/	24/2024	4	-	_								
•		5	5(4)	C .	4) [F		→ lia'	al As	sessme	<u> بلا حمد</u>) ا ال	
•		•						Lai	oel Ve	rificatio	en <u>'(4331</u> on	

JE7962: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number: JE7962	Client: FLEMING	ent: FLEMING-LEE SHUE, INC.		Project: INFO TECH HIG	GH SCHO	OL, 21-16 4	4TH R
Date / Time Received: 3/21/2025 7:40	Delivery	ery Method: IMP		Airbill #'s:			
Cooler Temps (Raw Measured) °C: Co	ooler 1: (2.7);						
Cooler Temps (Corrected) °C: C	ooler 1: (3.1);						
Cooler Security Y or N		Y or N	Sample Integrit	ty - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:	3. COC Present:		1. Sample labels	present on bottles:	•		
2. Custody Seals Intact:	4. Smpl Dates/Time OK		2. Container labe	eling complete:	✓		
Cooler Temperature Y or	<u>N</u>		3. Sample contai	ner label / COC agree:	•		
1. Temp criteria achieved:			Sample Integri	ity - Condition	<u>Y</u>	or N	
· · · · · · · · · · · · · · · · · · ·	-50		Sample recvd	-	•		
	(Bag)		2. All containers	accounted for:	~		
4. No. Coolers:	1		3. Condition of sa	ample:		ntact	
Quality Control Preservation Y o	r N N/A		Sample Integri	ity - Instructions	Υ	or N	N/A
1. Trip Blank present / cooler:			Analysis requ	-	<u>. </u>		
2. Trip Blank listed on COC:			, ,	ed for unspecified tests		✓	
3. Samples preserved properly:			3. Sufficient volu	ume recvd for analysis:			
4. VOCs headspace free: ✓			4. Compositing i	instructions clear:			✓
			5. Filtering instru	uctions clear:			✓
Test Strip Lot #s: pH 1-12:	231619	pH 12+:	203117A	Other: (Specify)			
Comments							

SM089-03 Rev. Date 12/7/17

JE7962: Chain of Custody

Page 2 of 2

Technical Report

prepared for:

Fleming, Lee Shue Env Engineering & Geology D.P.C.

158 West 29th Street New York NY, 10001 Attention: Joel Kane

Report Date: 08/14/2024

Client Project ID: 10012-006 ITHS SSDS Effluent Sampling

York Project (SDG) No.: 24H0551

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600 Report Date: 08/14/2024

Client Project ID: 10012-006 ITHS SSDS Effluent Sampling

York Project (SDG) No.: 24H0551

Fleming, Lee Shue Env Engineering & Geology D.P.C.

158 West 29th Street New York NY, 10001 Attention: Joel Kane

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on August 08, 2024 and listed below. The project was identified as your project: 10012-006 ITHS SSDS Effluent Sampling.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
24H0551-01	SSDS Effluent	Soil Vapor	08/08/2024	08/08/2024

General Notes for York Project (SDG) No.: 24H0551

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Och I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager

08/14/2024

Date:

Client Sample ID: SSDS Effluent 24H0551-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24H055110012-006 ITHS SSDS Effluent SamplingSoil VaporAugust 8, 2024 11:02 am08/08/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.1	1.671	EPA TO-15 Certifications:		08/13/2024 12:00	08/14/2024 14:20	YR
71-55-6	1,1,1-Trichloroethane	2.2	TO-CC	ug/m³	0.91	1.671	EPA TO-15		08/13/2024 12:00	08/14/2024 14:20	YR
			V, TO-LC S-H				Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.1	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03/	08/14/2024 14:20 7	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.3	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.91	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03/	08/14/2024 14:20 7	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.68	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.17	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 712058,NJDEP-NY03	08/14/2024 14:20 7	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.2	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 712058,NJDEP-NY03	08/14/2024 14:20 7	YR
95-63-6	1,2,4-Trimethylbenzene	2.3		ug/m³	0.82	1.671	EPA TO-15 Certifications:	NELAC-N	08/13/2024 12:00 Y12058,NJDEP-NY03	08/14/2024 14:20 7	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.3	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.0	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.68	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03/	08/14/2024 14:20 7	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.77	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03/	08/14/2024 14:20 7	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.2	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 712058,NJDEP-NY03	08/14/2024 14:20 7	YR
108-67-8	1,3,5-Trimethylbenzene	0.90		ug/m³	0.82	1.671	EPA TO-15		08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03		
106-99-0	1,3-Butadiene	ND		ug/m³	1.1	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03		YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.0	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.77	1.671	EPA TO-15 Certifications:		08/13/2024 12:00	08/14/2024 14:20	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.0	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
123-91-1	1,4-Dioxane	ND	ICVE	ug/m³	1.2	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 /12058,NJDEP-NY03	08/14/2024 14:20 7	YR
540-84-1	* 2,2,4-Trimethylpentane	1.1		ug/m³	0.39	1.671	EPA TO-15		08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications:				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 3 of 14

Client Sample ID: SSDS Effluent

York Sample ID: 24H0551-01

York Project (SDG) No.Client Project ID24H055110012-006 ITHS SSDS Effluent Sampling

<u>Matrix</u> <u>Collection Date/Time</u>
Soil Vapor August 8, 2024 11:02 am

Date Received 08/08/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA TO15 PREP									
CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time I Prepared	Date/Time Analyzed	Analyst
78-93-3	2-Butanone	5.8	В	ug/m³	0.49	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	-NY12058,NJDEP-NY03	7	
591-78-6	* 2-Hexanone	1.6		ug/m³	1.4	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications:			
107-05-1	3-Chloropropene	ND		ug/m³	2.6	1.671	EPA TO-15 Certifications: NELAC	08/13/2024 12:00 -NY12058,NJDEP-NY037	08/14/2024 14:20	YR
108-10-1	4-Methyl-2-pentanone	1.8		ug/m³	0.68	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	-NY12058,NJDEP-NY03	7	
67-64-1	Acetone	25	В	ug/m³	0.79	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
								-NY12058,NJDEP-NY03	7	
107-13-1	Acrylonitrile	0.62		ug/m³	0.36	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
	•	0.02						-NY12058,NJDEP-NY03	7	
71-43-2	Benzene	1.7		ug/m³	0.53	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	-NY12058,NJDEP-NY03	7	
100-44-7	Benzyl chloride	ND		ug/m^3	0.87	1.671	EPA TO-15 Certifications: NELAC	08/13/2024 12:00 NY12058,NJDEP-NY037	08/14/2024 14:20	YR
75-27-4	Bromodichloromethane	ND		ug/m³	1.1	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
13-21-4	Bromodicinoromethane	ND		ug/III	1.1	1.071		NY12058,NJDEP-NY037		TK
75-25-2	Bromoform	ND		ug/m³	1.7	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	NY12058,NJDEP-NY037	7	
74-83-9	Bromomethane	ND		ug/m³	0.65	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	NY12058,NJDEP-NY037		
75-15-0	Carbon disulfide	ND		ug/m³	0.52	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
	Cook on Astro-klorida		ma aa					-NY12058,NJDEP-NY037		
56-23-5	Carbon tetrachloride	0.95	TO-CC V,	ug/m³	0.26	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
			TO-LC				Certifications: NELAC	2-NY12058,NJDEP-NY03	/	
			S-H							
108-90-7	Chlorobenzene	ND		ug/m³	0.77	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	-NY12058,NJDEP-NY037	7	
75-00-3	Chloroethane	ND		ug/m^3	0.44	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
								NY12058,NJDEP-NY037	7	
67-66-3	Chloroform	ND		ug/m³	0.82	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
74.07.2	Chloromethane	0.66		/ 3	0.25			-NY12058,NJDEP-NY037	08/14/2024 14:20	YR
74-87-3	Cinoromethane	0.66		ug/m³	0.35	1.671	EPA TO-15 Certifications: NELAC	08/13/2024 12:00 -NY12058,NJDEP-NY03		I K
156 50 0	' 10 D' 11	N.D.		/ 2	0.17	1.671				17D
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.17	1.671	EPA TO-15 Certifications: NELAC	08/13/2024 12:00 NY12058,NJDEP-NY037	08/14/2024 14:20	YR
10061-01-5	ais 1.2 Diablaranranylana	ND		ug/m³	0.76	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
10001-01-3	cis-1,3-Dichloropropylene	ND		ug/111	0.70	1.0/1		-NY12058,NJDEP-NY037		1 K
110-82-7	Cyclohexane	1.3		ug/m³	0.58	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
							Certifications: NELAC	-NY12058,NJDEP-NY03	7	
124-48-1	Dibromochloromethane	ND		ug/m³	1.4	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
				-			Certifications: NELAC	-NY12058,NJDEP-NY037	7	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 14

Log-in Notes:

Client Sample ID: SSDS Effluent **York Sample ID:** 24H0551-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

24H0551

10012-006 ITHS SSDS Effluent Sampling

Soil Vapor

August 8, 2024 11:02 am

Sample Notes:

08/08/2024

Volatile Organics, EPA TO15 Full List

Sample Prepar	ed by Method: EPA TO15 PREP									
CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	4.0	TO-CC V, TO-LC S-H	ug/m³	0.83	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20 37	YR
141-78-6	* Ethyl acetate	ND		ug/m³	1.2	1.671	EPA TO-15 Certifications:	08/13/2024 12:00	08/14/2024 14:20	YR
100-41-4	Ethyl Benzene	4.7		ug/m³	0.73	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20 37	YR
87-68-3	Hexachlorobutadiene	ND		ug/m³	1.8	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 LAC-NY12058,NJDEP-NY03	08/14/2024 14:20 7	YR
67-63-0	Isopropanol	2.1	В	ug/m³	0.82	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20 37	YR
80-62-6	Methyl Methacrylate	ND		ug/m³	0.68	1.671	EPA TO-15	08/13/2024 12:00 LAC-NY12058,NJDEP-NY03	08/14/2024 14:20	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.60	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 LAC-NY12058,NJDEP-NY03	08/14/2024 14:20 7	YR
75-09-2	Methylene chloride	1.6		ug/m³	1.2	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20 37	YR
91-20-3	* Naphthalene	2.5	TO-CC V, TO-LC S-H	ug/m³	1.8	1.671	EPA TO-15	08/13/2024 12:00 DEP-NY037	08/14/2024 14:20	YR
142-82-5	n-Heptane	1.8		ug/m³	0.68	1.671	EPA TO-15	08/13/2024 12:00	08/14/2024 14:20	YR
110-54-3	n-Hexane	2.5		ug/m³	0.59	1.671	EPA TO-15	ELAC-NY12058,NJDEP-NY03 08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20	YR
95-47-6	o-Xylene	5.3		ug/m³	0.73	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20 37	YR
179601-23-1	p- & m- Xylenes	13		ug/m³	1.5	1.671	EPA TO-15 Certifications: NE	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20 37	YR
622-96-8	* p-Ethyltoluene	2.3		ug/m³	0.82	1.671	EPA TO-15 Certifications:	08/13/2024 12:00	08/14/2024 14:20	YR
115-07-1	* Propylene	1.2		ug/m³	0.29	1.671	EPA TO-15 Certifications:	08/13/2024 12:00	08/14/2024 14:20	YR
100-42-5	Styrene	3.5		ug/m³	0.71	1.671	EPA TO-15	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20	YR
127-18-4	Tetrachloroethylene	5.3		ug/m³	1.1	1.671	EPA TO-15	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20	YR
109-99-9	* Tetrahydrofuran	6.9		ug/m³	0.99	1.671	EPA TO-15 Certifications:	08/13/2024 12:00	08/14/2024 14:20	YR
108-88-3	Toluene	7.6		ug/m³	0.63	1.671	EPA TO-15	08/13/2024 12:00 ELAC-NY12058,NJDEP-NY03	08/14/2024 14:20	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.66	1.671	EPA TO-15	08/13/2024 12:00 LAC-NY12058,NJDEP-NY03	08/14/2024 14:20	YR

120 RESEARCH DRIVE

10061-02-6

STRATFORD, CT 06615

132-02 89th AVENUE

0.76

RICHMOND HILL, NY 11418

08/14/2024 14:20

YR

Page 5 of 14

FAX (203) 357-0166

1.671 EPA TO-15

Certifications:

www.YORKLAB.com (203) 325-1371

trans-1,3-Dichloropropylene

ClientServices@

08/13/2024 12:00

NELAC-NY12058,NJDEP-NY037

Client Sample ID: SSDS Effluent York Sample ID: 24H0551-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24H055110012-006 ITHS SSDS Effluent SamplingSoil VaporAugust 8, 2024 11:02 am08/08/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-01-6	Trichloroethylene	1.5		ug/m³	0.22	1.671	EPA TO-15 Certifications:	NELAC-N	08/13/2024 12:00 Y12058,NJDEP-NY03	08/14/2024 14:20 7	YR
75-69-4	Trichlorofluoromethane (Freon 11)	2.3	TO-CC V, TO-LC S-H	ug/m³	0.94	1.671	EPA TO-15 Certifications:	NELAC-N	08/13/2024 12:00 Y12058,NJDEP-NY03	08/14/2024 14:20 7	YR
108-05-4	Vinyl acetate	ND		ug/m³	0.59	1.671	EPA TO-15 Certifications:	NELAC-N	08/13/2024 12:00 Y12058,NJDEP-NY037	08/14/2024 14:20	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.73	1.671	EPA TO-15 Certifications:	NELAC-NY	08/13/2024 12:00 Y12058,NJDEP-NY037	08/14/2024 14:20	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.21	1.671	EPA TO-15 Certifications:	NELAC-N	08/13/2024 12:00 Y12058,NJDEP-NY037	08/14/2024 14:20	YR

Analytical Batch Summary

Batch ID: BH40934 Preparation Method: EPA TO15 PREP Prepared By: YR	Batch ID:	BH40934	Preparation Method:	EPA TO15 PREP	Prepared By:	YR
--	-----------	---------	----------------------------	---------------	--------------	----

YORK Sample ID	Client Sample ID	Preparation Date
24H0551-01	SSDS Effluent	08/13/24
BH40934-BLK1	Blank	08/13/24
BH40934-BS1	LCS	08/13/24

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories	s, Inc Stratford
------------------------------	------------------

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH40934	- EPA	TO15	PREP

Blank (BH40934-BLK1)				Prepared & Analyzed: 08/1
1,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
1,1,1-Trichloroethane	ND	0.55	"	
1,1,2,2-Tetrachloroethane	ND	0.69	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.77	"	
13)				
,1,2-Trichloroethane	ND	0.55	"	
,1-Dichloroethane	ND	0.40	"	
,1-Dichloroethylene	ND	0.099	"	
,2,4-Trichlorobenzene	ND	0.74	"	
,2,4-Trimethylbenzene	ND	0.49	"	
,2-Dibromoethane	ND	0.77	"	
,2-Dichlorobenzene	ND	0.60	"	
2-Dichloroethane	ND	0.40	"	
2-Dichloropropane	ND	0.46	"	
2-Dichlorotetrafluoroethane	ND	0.70	"	
3,5-Trimethylbenzene	ND	0.49	"	
3-Butadiene	ND	0.66	"	
3-Dichlorobenzene	ND	0.60	"	
3-Dichloropropane	ND	0.46	"	
4-Dichlorobenzene	ND	0.60	"	
4-Dioxane	ND	0.72	"	
2,4-Trimethylpentane	ND	0.23	"	
Butanone	0.59	0.29	"	
Hexanone	ND	0.82	"	
Chloropropene	ND	1.6	"	
Methyl-2-pentanone	ND	0.41	"	
eetone	0.69	0.48	"	
erylonitrile	ND	0.22	"	
enzene	ND	0.32	"	
enzyl chloride	ND	0.52	"	
romodichloromethane	ND	0.67	"	
romoform	ND	1.0	"	
romomethane	ND	0.39	"	
arbon disulfide	ND	0.31	"	
arbon tetrachloride	ND	0.16	"	
hlorobenzene	ND	0.46	"	
hloroethane	ND	0.26	"	
hloroform	ND	0.49	"	
hloromethane	ND	0.21	"	
s-1,2-Dichloroethylene	ND	0.099	"	
s-1,3-Dichloropropylene	ND	0.45	"	
yclohexane	ND	0.34	"	
ibromochloromethane	ND	0.85	"	
ichlorodifluoromethane	ND	0.49	"	
thyl acetate	ND	0.72	"	
thyl Benzene	ND	0.43	"	
Hexachlorobutadiene	ND	1.1	"	
sopropanol	0.57	0.49	"	
Methyl Methacrylate	ND	0.41	"	
Methyl tert-butyl ether (MTBE)	ND	0.36	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 14

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BH40934 - EPA TO15 PREP											
Blank (BH40934-BLK1)							Pre	pared & Anal	yzed: 08/13/	2024	
Methylene chloride	ND	0.69	ug/m³								
Naphthalene	ND	1.0	"								
n-Heptane	ND	0.41	"								
n-Hexane	ND	0.35	"								
o-Xylene	ND	0.43	"								
p- & m- Xylenes	ND	0.87	"								
p-Ethyltoluene	ND	0.49	"								
Propylene	ND	0.17	"								
Styrene	ND	0.43	"								
Tetrachloroethylene	ND	0.68	"								
Tetrahydrofuran	ND	0.59	"								
Toluene	ND	0.38	"								
trans-1,2-Dichloroethylene	ND	0.40	"								
trans-1,3-Dichloropropylene	ND	0.45	,,								
Trichloroethylene	ND	0.43	,,								
Trichlorofluoromethane (Freon 11)	ND ND	0.13	,,								
Vinyl acetate	ND	0.35	,,								
Vinyl acctate Vinyl bromide	ND ND	0.33	,,								
Vinyl Chloride	ND ND	0.13	,,								
•	ND	0.13									
LCS (BH40934-BS1)								pared & Anal	yzed: 08/13/	2024	
1,1,1,2-Tetrachloroethane	12.1		ppbv	10.0		121	70-130				
1,1,1-Trichloroethane	17.9		"	10.0		179	70-130	High Bias			
1,1,2,2-Tetrachloroethane	9.39		"	10.0		93.9	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	13.5		"	10.0		135	70-130	High Bias			
1,1,2-Trichloroethane	11.0		"	10.0		110	70-130				
1,1-Dichloroethane	12.2		"	10.0		122	70-130				
1,1-Dichloroethylene	13.4		"	10.0		134	70-130	High Bias			
1,2,4-Trichlorobenzene	11.1		"	10.0		111	70-130				
1,2,4-Trimethylbenzene	11.7		"	10.0		117	70-130				
1,2-Dibromoethane	11.8		"	10.0		118	70-130				
1,2-Dichlorobenzene	11.9		"	10.0		119	70-130				
1,2-Dichloroethane	13.8		"	10.0		138	70-130	High Bias			
1,2-Dichloropropane	9.32		"	10.0		93.2	70-130				
1,2-Dichlorotetrafluoroethane	13.3		"	10.0		133	70-130	High Bias			
1,3,5-Trimethylbenzene	11.4		"	10.0		114	70-130				
1,3-Butadiene	10.4		"	10.0		104	70-130				
1,3-Dichlorobenzene	11.9		"	10.0		119	70-130				
1,3-Dichloropropane	10.3		"	10.0		103	70-130				
1,4-Dichlorobenzene	12.1		"	10.0		121	70-130				
1,4-Dioxane	10.3		"	10.0		103	70-130				
2,2,4-Trimethylpentane	11.6		"	10.0		116	70-130				
2-Butanone	10.3		"	10.0		103	70-130				
2-Hexanone	9.60		"	10.0		96.0	70-130				
3-Chloropropene	10.2		"	10.0		102	70-130				
4-Methyl-2-pentanone	8.96		"	10.0		89.6	70-130				
Acetone	10.3		"	10.0		103	70-130				
Acrylonitrile	11.1		"	10.0		111	70-130				
Benzene	11.2		"	10.0		112	70-130				
D 1 11 '1	40.0						70 120				

120 RESEARCH DRIVE www.YORKLAB.com

Benzyl chloride

Bromodichloromethane

13.0 STRATFORD, CT 06615

(203) 325-1371

10.3

132-02 89th AVENUE

10.0

10.0

RICHMOND HILL, NY 11418

FAX (203) 357-0166

103

130

70-130

70-130

ClientServices@ Page 9 of 14

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH40934 -	EPA 7	TO15	PREP

LCS (BH40934-BS1)					Prep	pared & Analyzed: 08/13/2024
Bromoform	13.7	ppbv	10.0	137	70-130	High Bias
Bromomethane	11.4	"	10.0	114	70-130	
Carbon disulfide	11.0	"	10.0	110	70-130	
Carbon tetrachloride	19.6	"	10.0	196	70-130	High Bias
Chlorobenzene	10.0	"	10.0	100	70-130	
Chloroethane	10.6	"	10.0	106	70-130	
Chloroform	14.8	"	10.0	148	70-130	High Bias
Chloromethane	7.55	"	10.0	75.5	70-130	
cis-1,2-Dichloroethylene	12.1	"	10.0	121	70-130	
sis-1,3-Dichloropropylene	10.6	"	10.0	106	70-130	
Cyclohexane	11.6	"	10.0	116	70-130	
Dibromochloromethane	13.9	"	10.0	139	70-130	High Bias
Dichlorodifluoromethane	16.1	"	10.0	161	70-130	High Bias
Ethyl acetate	10.5	"	10.0	105	70-130	
Ethyl Benzene	10.4	"	10.0	104	70-130	
Hexachlorobutadiene	15.2	"	10.0	152	70-130	High Bias
sopropanol	11.0	"	10.0	110	70-130	
Methyl Methacrylate	9.79	"	10.0	97.9	70-130	
Methyl tert-butyl ether (MTBE)	13.9	"	10.0	139	70-130	High Bias
Methylene chloride	9.38	"	10.0	93.8	70-130	
Naphthalene	13.6	"	10.0	136	70-130	High Bias
n-Heptane	10.3	"	10.0	103	70-130	
n-Hexane	11.6	"	10.0	116	70-130	
p-Xylene	11.0	"	10.0	110	70-130	
- & m- Xylenes	21.8	"	20.0	109	70-130	
-Ethyltoluene	11.2	"	10.0	112	70-130	
Propylene	8.69	"	10.0	86.9	70-130	
Styrene	10.7	"	10.0	107	70-130	
Cetrachloroethylene	12.8	"	10.0	128	70-130	
Tetrahydrofuran	9.98	"	10.0	99.8	70-130	
Coluene	10.2	"	10.0	102	70-130	
rans-1,2-Dichloroethylene	12.8	"	10.0	128	70-130	
rans-1,3-Dichloropropylene	11.9	"	10.0	119	70-130	
richloroethylene	11.4	"	10.0	114	70-130	
Crichlorofluoromethane (Freon 11)	18.1	"	10.0	181	70-130	High Bias
Vinyl acetate	10.3	"	10.0	103	70-130	
/inyl bromide	11.5	"	10.0	115	70-130	
Vinyl Chloride						

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 14

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-LCS-H The result reported for this compound may be biased high due to its behavior in the analysis batch LCS where it recovered greater

than 130% of the expected value.

TO-CCV The value reported is ESTIMATED for this compound due to its behavior during continuing calibration verification (>30%)

Difference from initial calibration).

ICVE The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery

exceeded 30% of expected value).

B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the

lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

STRATFORD, CT 06615

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 12 of 14

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 13 of 14

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

clientservices@yorklab.com

120 Research Drive 132-02 89th Ave Queens, Stratford, CT 06615 NY 11418

Field Chain-of-Custody Record - AIR

YORK Project No. SYHOSS

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document this document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.

Turn-Around Time YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) of Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Four Day RUSH - Two Day Analysis Requested Reporting Units: ug/m³ 🗶 ppbv 21-07 ITHS SSDS Effer Standard Excel EDD NJDEP SRP HazSite Sampling EQuIS (Standard) YOUR Project Number YOUR Project Name NYSDEC EQUIS DPC0176 700-21001 Report / EDD Type (circle selections) Flow Cont. ID NJDEP Reduced Deliv 19409 YOUR PO#: CT RCP DQA/DUE NJDKQP Canister ID Please enter the following REQUIRED Field Data 37400 NY ASP B Package NY ASP A Package Summary Report Canister Vacuum After Sampling (in Hg) Invoice To: QA Report 0 Other: Samples From Canister Vacuum Before Sampling (in Hg) Pennsylvania Connecticut New Jersey 30.0 New York Other Address. Al - Indoor Ambient Air AO - Outdoor Amb. Air AS - Soil Vapor/Sub-Slab Air Matrix Codes AE - Vapor Extraction Well/ Process Gas/Effluent Air Matrix BS Report To: Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. 10:11/42-80-80 Date/Time Sampled (bove and sign below) Individual www.yorklab.com Landon Silverman Certified Canisters: Batch Pleningle Shuc DPC NY 10001 Sample Identification YOUR Information SSDS Efficent Samples Collected by: しょいらしょ JOB KARR 128 W LA 3

Sampling Media

6 Liter Canister

NYSDEC V1 Limits X

Routine Surv

≤ 1 ug/m

Detection Limits Required

Tedlar Bag

CSSC Date/Time

1530

Samples Received in LAB by

Date/Time

Samples Received by / Compan

0

01:10

12.80.80

Londen Silverra

Page 14 of 14

Comments:

23

Technical Report

prepared for:

Fleming, Lee Shue Env Engineering & Geology D.P.C.

158 West 29th Street New York NY, 10001 Attention: Jordan Arey

Report Date: 03/24/2025

Client Project ID: 10012 Info Tech High School

York Project (SDG) No.: 25C0160

Revision No. 1.0

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600 Report Date: 03/24/2025

Client Project ID: 10012 Info Tech High School

York Project (SDG) No.: 25C0160

Fleming, Lee Shue Env Engineering & Geology D.P.C.

158 West 29th Street New York NY, 10001 Attention: Jordan Arey

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 04, 2025 and listed below. The project was identified as your project: 10012 Info Tech High School.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
25C0160-01	IA-1	Indoor Ambient Air	03/04/2025	03/04/2025
25C0160-02	AA-1	Indoor Ambient Air	03/04/2025	03/04/2025
25C0160-03	IA-2	Indoor Ambient Air	03/04/2025	03/04/2025
25C0160-05	IA-4	Indoor Ambient Air	03/04/2025	03/04/2025
25C0160-06	IA-5	Indoor Ambient Air	03/04/2025	03/04/2025
25C0160-07	IA-6	Indoor Ambient Air	03/04/2025	03/04/2025
25C0160-08	SSDS Effluent	Soil Vapor	03/04/2025	03/04/2025

General Notes for York Project (SDG) No.: 25C0160

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Och I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 03/24/2025

Client Sample ID: York Sample ID: 25C0160-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received25C016010012 Info Tech High SchoolIndoor Ambient AirMarch 4, 2025 3:52 pm03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	<u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.582	0.848	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 19:46	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.463	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.582	0.848	EPA TO-15 Certifications:	NELAC-N'	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.650	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.463	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.343	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.168	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, TO-CC V, TO-LC S-L	ug/m³	0.629	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
95-63-6	1,2,4-Trimethylbenzene	1.58		ug/m³	0.417	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 JY12058,NJDEP-NY03	03/16/2025 19:46	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.652	0.848	EPA TO-15		03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.510	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.343	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.392	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.593	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
08-67-8	1,3,5-Trimethylbenzene	0.459		ug/m³	0.417	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 IY12058,NJDEP-NY037	03/16/2025 19:46 7	YR
106-99-0	1,3-Butadiene	ND		ug/m³	0.563	0.848	EPA TO-15 Certifications:	NELAC-N'	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.510	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
142-28-9 *	* 1,3-Dichloropropane	ND		ug/m³	0.392	0.848	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 19:46	YR
106-46-7	1,4-Dichlorobenzene	ND	CAL-E	ug/m³	0.510	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
123-91-1	1,4-Dioxane	ND		ug/m³	0.611	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 19:46	YR
540-84-1	* 2,2,4-Trimethylpentane	1.31		ug/m³	0.198	0.848	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 19:46	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 39

Client Sample ID: IA-1

York Sample ID:

25C0160-01

York Project (SDG) No. 25C0160 <u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 3:52 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-93-3	2-Butanone	3.68		ug/m³	0.250	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
91-78-6	* 2-Hexanone	0.834	TO-CC	ug/m³	0.695	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
			V				Certifications:				
07-05-1	3-Chloropropene	ND		ug/m^3	1.33	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
08-10-1	4-Methyl-2-pentanone	4.06	TO-CC	ug/m^3	0.347	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
			V, TO-LC S-H				Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
7-64-1	Acetone	28.7		ug/m³	1.61	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
07-13-1	Acrylonitrile	ND		ug/m³	2.39	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
-43-2	Benzene	1.68		ug/m^3	0.271	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
00-44-7	Benzyl chloride	ND		ug/m³	0.439	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 19:46	YR
5-27-4	Bromodichloromethane	ND		ug/m³	0.568	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
5-25-2	Bromoform	ND		ug/m^3	0.877	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
4-83-9	Bromomethane	ND		ug/m^3	0.329	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
5-15-0	Carbon disulfide	ND		ug/m³	0.264	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 19:46	YR
5-23-5	Carbon tetrachloride	0.854		ug/m³	0.133	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
08-90-7	Chlorobenzene	ND		ug/m³	0.390	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
5-00-3	Chloroethane	ND		ug/m^3	0.224	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
7-66-3	Chloroform	0.538		ug/m^3	0.414	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
1-87-3	Chloromethane	1.49		ug/m^3	0.175	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
56-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.168	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 19:46	YR
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.385	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 19:46	YR
0-82-7	Cyclohexane	0.613		ug/m³	0.292	0.848	EPA TO-15		03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03		
24-48-1	Dibromochloromethane	ND		ug/m³	0.722	0.848	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037		YR
5-71-8	Dichlorodifluoromethane	2.35		ug/m³	0.419	0.848	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 19:46 7	YR
120 RES	EARCH DRIVE	STRATFORD, C	T 06615		132	-02 89th A	WENLIE		RICHMOND HILL	NV 11/18	

Log-in Notes:

Client Sample ID: IA-1 **York Sample ID:**

25C0160-01

York Project (SDG) No. 25C0160

Client Project ID 10012 Info Tech High School

Matrix Indoor Ambient Air

Collection Date/Time March 4, 2025 3:52 pm Date Received 03/04/2025

VOA, TO15 MASTER

Sample Notes:

Sample Frepare	ed by Method: EPA TO15 PREP				D (1)			Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho		Analyzed	Analyst
141-78-6	* Ethyl acetate	7.43		ug/m³	0.611	0.848	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 19:46	YR
100-41-4	Ethyl Benzene	1.47		ug/m³	0.368	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
87-68-3	Hexachlorobutadiene	ND		ug/m³	0.904	0.848	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 19:46 7	YR
67-63-0	Isopropanol	53.7		ug/m³	1.25	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
80-62-6	Methyl Methacrylate	0.729		ug/m³	0.347	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.306	0.848	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 19:46 7	YR
75-09-2	Methylene chloride	2.71		ug/m³	1.77	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
91-20-3	* Naphthalene	1.33		ug/m^3	0.889	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NJDE	P-NY037		
142-82-5	n-Heptane	4.14		ug/m³	0.348	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
110-54-3	n-Hexane	1.94		ug/m³	0.299	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
95-47-6	o-Xylene	1.80		ug/m³	0.368	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
179601-23-1	p- & m- Xylenes	5.63	ICVE	ug/m³	0.736	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
622-96-8	* p-Ethyltoluene	1.33		ug/m³	0.417	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:			
115-07-1	* Propylene	ND		ug/m³	0.146	0.848	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 19:46	YR
100-42-5	Styrene	ND		ug/m³	0.361	0.848	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 19:46 7	YR
127-18-4	Tetrachloroethylene	6.73		ug/m^3	0.575	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
109-99-9	* Tetrahydrofuran	2.80		ug/m³	0.500	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications:			
108-88-3	Toluene	17.0		ug/m³	0.320	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
156-60-5	trans-1,2-Dichloroethylene	4.64		ug/m³	0.336	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.385	0.848	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 19:46 7	YR
79-01-6	Trichloroethylene	1.96		ug/m³	0.114	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR
							Certifications: NELA	AC-NY12058,NJDEP-NY03	37	
75-69-4	Trichlorofluoromethane (Freon 11)	1.43		ug/m³	0.476	0.848	EPA TO-15	03/16/2025 06:10	03/16/2025 19:46	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

NELAC-NY12058,NJDEP-NY037

ClientServices@ Page 6 of 39

FAX (203) 357-0166

Certifications:

Client Sample ID: IA-1 York Sample ID: 25C0160-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received25C016010012 Info Tech High SchoolIndoor Ambient AirMarch 4, 2025 3:52 pm03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS N	lo. Parameter	Result	Flag	Units	Reported to LOQ Dil	lution	Reference Metho	Date/Time d Prepared	Date/Time Analyzed	Analyst
108-05-4	Vinyl acetate	ND	TO-LC S-L, ICVE	ug/m³	0.299		EPA TO-15 Certifications: NELAG	03/16/2025 06:10 C-NY12058,NJDEP-NY037	03/16/2025 19:46	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.371		EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY037	03/16/2025 19:46	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.108		EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY037	03/16/2025 19:46	YR

Sample Information

Client Sample ID: 4A-1 25C0160-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received25C016010012 Info Tech High SchoolIndoor Ambient AirMarch 4, 2025 4:20 pm03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Date/Time Method Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.511	0.744	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 20:32	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.406	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 337	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.511	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 337	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.570	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 37	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.406	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 337	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.301	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 37	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.147	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 37	YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, TO-CC V, TO-LC S-L	ug/m³	0.552	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 337	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.366	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 37	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.572	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 37	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.447	0.744	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 20:32 37	YR

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 7 of 39

Client Sample ID: AA-1 **York Sample ID:**

25C0160-02

York Project (SDG) No. 25C0160

Client Project ID 10012 Info Tech High School

Matrix Indoor Ambient Air

Collection Date/Time March 4, 2025 4:20 pm Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

CAS No.	Danamatan	Dagult	Flor	Unite	Reported to		Reference	Mathad	Date/Time	Date/Time	A nal
		Result	Flag	Units	LOQ	Dilution 0.744		Method	Prepared	Analyzed	Analys
07-06-2	1,2-Dichloroethane	ND		ug/m³	0.301		EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
8-87-5	1,2-Dichloropropane	ND		ug/m³	0.344	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
6-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.520	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
08-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.366	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
06-99-0	1,3-Butadiene	ND		ug/m³	0.494	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
41-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.447	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
42-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.344	0.744	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 20:32	YR
06-46-7	1,4-Dichlorobenzene	ND	CAL-E	ug/m³	0.447	0.744	EPA TO-15 Certifications:	NEL AC N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
23-91-1	1,4-Dioxane	ND		ug/m³	0.536	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
40-84-1	* 2,2,4-Trimethylpentane	0.521		ug/m³	0.174	0.744	Certifications: EPA TO-15	NELAC-N	Y12058,NJDEP-NY037 03/16/2025 06:10	03/16/2025 20:32	YR
		****					Certifications:				
3-93-3	2-Butanone	0.856		ug/m^3	0.219	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	,	
91-78-6	* 2-Hexanone	ND		ug/m³	0.610	0.744	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 20:32	YR
07-05-1	3-Chloropropene	ND		ug/m³	1.16	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
8-10-1	4-Methyl-2-pentanone	0.579	TO-CC	ug/m^3	0.305	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
			V, TO-LC S-H				Certifications:	NELAC-N	Y12058,NJDEP-NY037	,	
'-64-1	Acetone	8.18	511	ug/m³	1.41	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	,	
07-13-1	Acrylonitrile	ND		ug/m³	2.10	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
-43-2	Benzene	0.761		ug/m³	0.238	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	,	
00-44-7	Benzyl chloride	ND		ug/m³	0.385	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
5-27-4	Bromodichloromethane	ND		ug/m³	0.498	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
5-25-2	Bromoform	ND		ug/m³	0.769	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
4-83-9	Bromomethane	ND		ug/m³	0.289	0.744	EPA TO-15 Certifications:		03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 20:32	YR
5-15-0	Carbon disulfide	ND		ug/m³	0.232	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 39

Client Sample ID: AA-1

York Sample ID:

25C0160-02

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:20 pm

Date Received 03/04/2025

VOA, TO15 MASTER

www.YORKLAB.com

(203) 325-1371

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
56-23-5	Carbon tetrachloride	0.374	ug/m³	0.117	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	12058,NJDEP-NY03	7	
108-90-7	Chlorobenzene	ND	ug/m³	0.343	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
75-00-3	Chloroethane	ND	ug/m³	0.196	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
67-66-3	Chloroform	ND	ug/m³	0.363	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
74-87-3	Chloromethane	1.04	ug/m³	0.154	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	12058,NJDEP-NY03	7	
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.147	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.338	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
110-82-7	Cyclohexane	ND	ug/m³	0.256	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
124-48-1	Dibromochloromethane	ND	ug/m³	0.634	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
75-71-8	Dichlorodifluoromethane	2.02	ug/m³	0.368	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	12058,NJDEP-NY03	7	
41-78-6	* Ethyl acetate	2.36	ug/m³	0.536	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:				
00-41-4	Ethyl Benzene	0.355	ug/m³	0.323	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	'12058,NJDEP-NY03'	7	
37-68-3	Hexachlorobutadiene	ND	ug/m³	0.793	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
67-63-0	Isopropanol	3.51	ug/m³	1.10	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	'12058,NJDEP-NY03'	7	
30-62-6	Methyl Methacrylate	ND	ug/m³	0.305	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.268	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
75-09-2	Methylene chloride	ND	ug/m³	1.55	0.744	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 20:32	YR
91-20-3	* Naphthalene	ND	ug/m³	0.780	0.744	EPA TO-15 Certifications:	NJDEP-NY0	03/16/2025 06:10 37	03/16/2025 20:32	YR
142-82-5	n-Heptane	0.366	ug/m³	0.305	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	12058,NJDEP-NY03	7	
10-54-3	n-Hexane	0.839	ug/m³	0.262	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	12058,NJDEP-NY03	7	
95-47-6	o-Xylene	0.452	ug/m³	0.323	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	'12058,NJDEP-NY03'		
79601-23-1	p- & m- Xylenes	1.26 ICVE	ug/m³	0.646	0.744	EPA TO-15		03/16/2025 06:10	03/16/2025 20:32	YR
						Certifications:	NELAC-NY	'12058,NJDEP-NY03'		
622-96-8	* p-Ethyltoluene	ND	ug/m³	0.366	0.744	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 20:32	YR
120 RES	EARCH DRIVE	STRATFORD, CT 06615		132	-02 89th A	AVENUE	R	ICHMOND HILL	., NY 11418	

FAX (203) 357-0166

ClientServices@

Page 9 of 39

Client Sample ID: AA-1 **York Sample ID:** 25C0160-02

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 10012 Info Tech High School 25C0160 Indoor Ambient Air March 4, 2025 4:20 pm 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference Me	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
115-07-1	* Propylene	ND		ug/m³	0.128	0.744	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 20:32	YR
100-42-5	Styrene	ND		ug/m³	0.317	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR
127-18-4	Tetrachloroethylene	0.908		ug/m³	0.505	0.744	EPA TO-15 Certifications: N	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY03	03/16/2025 20:32 7	YR
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.439	0.744	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 20:32	YR
108-88-3	Toluene	2.19		ug/m³	0.280	0.744	EPA TO-15 Certifications: N	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY03	03/16/2025 20:32 7	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.295	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.338	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.100	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.13		ug/m³	0.418	0.744	EPA TO-15 Certifications: N	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY03	03/16/2025 20:32 7	YR
108-05-4	Vinyl acetate	ND	ICVE, TO-LC S-L		0.262	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.325	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.0951	0.744	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY037	03/16/2025 20:32	YR

Sample Information

Client Sample ID: York Sample ID: 25C0160-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 25C0160 10012 Info Tech High School Indoor Ambient Air March 4, 2025 4:02 pm 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

_	Log	-in	N	otes:	

Sample Notes:

CAS N	No. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND	ug/m³	0.540	0.786	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 21:18	YR
71-55-6	1,1,1-Trichloroethane	ND	ug/m³	0.429	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 21:18 37	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/m³	0.540	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 21:18	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/m³	0.602	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY0	03/16/2025 21:18 37	YR
120 DE	SEVECH DEIVE	STRATEORD CI	06615	132 (02 80th A	VENITE	RICHMOND HII	I NV 11/11	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418**

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 10 of 39

Client Sample ID: IA-2

York Sample ID:

25C0160-03

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:02 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Time Method Prepared	Date/Time Analyzed	Analyst
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.429	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.318	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.156	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, TO-CC V, TO-LC S-L	ug/m³	0.583	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
95-63-6	1,2,4-Trimethylbenzene	0.773	3-L	ug/m³	0.386	0.786	EPA TO-15	03/16/2025 06:10	03/16/2025 21:18	YR
							Certifications:	NELAC-NY12058,NJDEP-NY	7037	
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.604	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.473	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.318	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
78-87-5	1,2-Dichloropropane	ND		ug/m^3	0.363	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.549	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.386	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
106-99-0	1,3-Butadiene	ND		ug/m³	0.522	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.473	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.363	0.786	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 21:18	YR
106-46-7	1,4-Dichlorobenzene	ND	CAL-E	ug/m³	0.473	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
123-91-1	1,4-Dioxane	ND		ug/m³	0.566	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
540-84-1	* 2,2,4-Trimethylpentane	0.918		ug/m³	0.184	0.786	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 21:18	YR
78-93-3	2-Butanone	1.65		ug/m³	0.232	0.786	EPA TO-15	03/16/2025 06:10	03/16/2025 21:18	YR
		1.00		5	0.232	0.700		NELAC-NY12058,NJDEP-NY		
591-78-6	* 2-Hexanone	ND		ug/m³	0.644	0.786	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 21:18	YR
107-05-1	3-Chloropropene	ND		ug/m³	1.23	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 NELAC-NY12058,NJDEP-NY		YR
108-10-1	4-Methyl-2-pentanone	1.16	TO-CC	ug/m³	0.322	0.786	EPA TO-15	03/16/2025 06:10	03/16/2025 21:18	YR
			V, TO-LC S-H				Certifications:	NELAC-NY12058,NJDEP-NY	(037	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 39

Client Sample ID: IA-2

York Sample ID:

25C0160-03

York Project (SDG) No. 25C0160

Client Project ID 10012 Info Tech High School

Matrix Indoor Ambient Air

Collection Date/Time March 4, 2025 4:02 pm Date Received 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

CAS No	. Parameter	Result Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7-64-1	Acetone	17.2	ug/m³	1.49	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
7-13-1	Acrylonitrile	ND	ug/m³	2.22	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 21:18	YR
-43-2	Benzene	1.16	ug/m³	0.251	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
0-44-7	Benzyl chloride	ND	ug/m³	0.407	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 21:18	YR
-27-4	Bromodichloromethane	ND	ug/m³	0.527	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-25-2	Bromoform	ND	ug/m³	0.812	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
1-83-9	Bromomethane	ND	ug/m³	0.305	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-15-0	Carbon disulfide	ND	ug/m³	0.245	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-23-5	Carbon tetrachloride	0.396	ug/m³	0.124	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
08-90-7	Chlorobenzene	ND	ug/m³	0.362	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
i-00-3	Chloroethane	ND	ug/m³	0.207	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-66-3	Chloroform	ND	ug/m³	0.384	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-87-3	Chloromethane	1.18	ug/m³	0.162	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
6-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.156	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.357	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
0-82-7	Cyclohexane	0.379	ug/m³	0.271	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
4-48-1	Dibromochloromethane	ND	ug/m³	0.670	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-71-8	Dichlorodifluoromethane	2.06	ug/m³	0.389	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
1-78-6	* Ethyl acetate	16.9	ug/m³	0.566	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:				
0-41-4	Ethyl Benzene	0.717	ug/m³	0.341	0.786	EPA TO-15	NEV LC N	03/16/2025 06:10	03/16/2025 21:18	YR
co. 2				0.000	0.707	Certifications:	NELAC-N	Y12058,NJDEP-NY03		
-68-3	Hexachlorobutadiene	ND	ug/m³	0.838	0.786	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY037	03/16/2025 21:18	YR
-63-0	Isopropanol	22.1	ug/m³	1.16	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
-62-6	Methyl Methacrylate	0.386	ug/m³	0.322	0.786	EPA TO-15		03/16/2025 06:10	03/16/2025 21:18	YR
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
120 RES	EARCH DRIVE	STRATFORD, CT 0661	 5	132 -	-02 89th <i>A</i>	WENUE	F	RICHMOND HILI	NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 12 of 39

Client Sample ID: IA-2 **York Sample ID:**

25C0160-03

York Project (SDG) No. 25C0160

Client Project ID 10012 Info Tech High School

Matrix Indoor Ambient Air

Collection Date/Time March 4, 2025 4:02 pm Date Received 03/04/2025

VOA, TO	015 MASTER				Log-in Notes:		Sample Notes:				
Sample Prepar	ed by Method: EPA TO15 PREP										
CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.283	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 21:18	YR
75-09-2	Methylene chloride	ND		ug/m³	1.64	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 21:18	YR
91-20-3	* Naphthalene	ND		ug/m³	0.824	0.786	EPA TO-15 Certifications:	NJDEP-NY	03/16/2025 06:10 7037	03/16/2025 21:18	YR
142-82-5	n-Heptane	2.03		ug/m³	0.322	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 IY12058,NJDEP-NY03	03/16/2025 21:18 7	YR
110-54-3	n-Hexane	1.14		ug/m³	0.277	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 JY12058,NJDEP-NY03	03/16/2025 21:18 7	YR
95-47-6	o-Xylene	0.853		ug/m³	0.341	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 IY12058,NJDEP-NY03	03/16/2025 21:18 7	YR
179601-23-1	p- & m- Xylenes	2.63	ICVE	ug/m³	0.683	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 IY12058,NJDEP-NY03	03/16/2025 21:18 7	YR
622-96-8	* p-Ethyltoluene	0.657		ug/m³	0.386	0.786	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 21:18	YR
115-07-1	* Propylene	ND		ug/m³	0.135	0.786	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 21:18	YR
100-42-5	Styrene	ND		ug/m³	0.335	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 21:18	YR
127-18-4	Tetrachloroethylene	1.07		ug/m³	0.533	0.786	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 IY12058,NJDEP-NY03	03/16/2025 21:18 7	YR
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.464	0.786	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 21:18	YR

0.296

0.312

0.357

0.106

0.442

0.277

0 344

0.786

0.786

0.786

0.786

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

0.786 EPA TO-15

Certifications:

Certifications:

ug/m³

ug/m³

ug/m3

ug/m3

ug/m³

 ug/m^3

ICVE, ug/m³

TO-LC

S-L

						Certifications:	NELAC-NY12058,NJDEP-NY037	
75-01-4	Vinyl Chloride	ND	ug/m³	0.100	0.786	EPA TO-15 Certifications:	03/16/2025 06:10 03/16/2025 21:18 NELAC-NY12058,NJDEP-NY037	YR

Toluene

trans-1,2-Dichloroethylene

trans-1,3-Dichloropropylene

Trichlorofluoromethane (Freon 11)

Trichloroethylene

Vinyl acetate

Vinyl bromide

108-88-3

156-60-5

10061-02-6

79-01-6

75-69-4

108-05-4

593-60-2

6.10

ND

ND

ND

1.10

ND

ND

03/16/2025 21:18

NELAC-NY12058,NJDEP-NY037

NELAC-NY12058,NJDEP-NY037

NELAC-NY12058,NJDEP-NY037

NELAC-NY12058,NJDEP-NY037

NELAC-NY12058,NJDEP-NY037

NELAC-NY12058,NJDEP-NY037

03/16/2025 06:10

YR

YR

YR

YR

YR

YR

YR

Client Sample ID: IA-4

York Sample ID:

25C0160-05

York Project (SDG) No. 25C0160 <u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:00 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

Sample Prepared	by Method: EPA TO15 PREP										
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.670	0.976	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:04	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.533	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.670	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.748	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.533	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.395	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.193	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, TO-CC V, TO-LC S-L	ug/m³	0.724	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
95-63-6	1,2,4-Trimethylbenzene	0.720		ug/m³	0.480	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 IY12058,NJDEP-NY03	03/16/2025 22:04	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.750	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.587	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.395	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.451	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.682	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.480	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
106-99-0	1,3-Butadiene	ND		ug/m³	0.648	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.587	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.451	0.976	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:04	YR
106-46-7	1,4-Dichlorobenzene	ND	CAL-E	ug/m³	0.587	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
23-91-1	1,4-Dioxane	ND		ug/m³	0.703	0.976	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
540-84-1	* 2,2,4-Trimethylpentane	0.866		ug/m³	0.228	0.976	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:04	YR
78-93-3	2-Butanone	1.21		ug/m³	0.288	0.976	EPA TO-15		03/16/2025 06:10	03/16/2025 22:04	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 14 of 39

Client Sample ID: IA-4

York Sample ID:

25C0160-05

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:00 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho	Date/Time d Prepared	Date/Time Analyzed	Analys
91-78-6	* 2-Hexanone	ND		ug/m³	0.800	0.976	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 22:04	YR
07-05-1	3-Chloropropene	ND		ug/m³	1.53	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 2-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
08-10-1	4-Methyl-2-pentanone	0.960	TO-CC V, TO-LC S-H	ug/m³	0.400	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
7-64-1	Acetone	14.7		ug/m³	1.85	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
07-13-1	Acrylonitrile	11.1		ug/m³	2.75	0.976	EPA TO-15	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
1-43-2	Benzene	1.06		ug/m³	0.312	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
00-44-7	Benzyl chloride	ND		ug/m^3	0.505	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
5-27-4	Bromodichloromethane	ND		ug/m^3	0.654	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
5-25-2	Bromoform	ND		ug/m³	1.01	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
1-83-9	Bromomethane	ND		ug/m^3	0.379	0.976	EPA TO-15 Certifications: NELAG	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
5-15-0	Carbon disulfide	ND		ug/m³	0.304	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
5-23-5	Carbon tetrachloride	0.430		ug/m³	0.154	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
08-90-7	Chlorobenzene	ND		ug/m³	0.449	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
5-00-3	Chloroethane	ND		ug/m³	0.258	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
7-66-3	Chloroform	ND		ug/m³	0.477	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
4-87-3	Chloromethane	1.13		ug/m³	0.202	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
56-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.193	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.443	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 -NY12058,NJDEP-NY03	03/16/2025 22:04	YR
10-82-7	Cyclohexane	0.370		ug/m³	0.336	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
24-48-1	Dibromochloromethane	ND		ug/m^3	0.831	0.976	EPA TO-15 Certifications: NELAC	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
5-71-8	Dichlorodifluoromethane	2.17		ug/m³	0.483	0.976	EPA TO-15 Certifications: NELA	03/16/2025 06:10 C-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
11-78-6	* Ethyl acetate	2.64		ug/m³	0.703	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 39

Client Sample ID: IA-4

York Sample ID:

25C0160-05

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:00 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	0.636		ug/m³	0.424	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY0	03/16/2025 22:04	YR
87-68-3	Hexachlorobutadiene	ND		ug/m³	1.04	0.976	EPA TO-15	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04	YR
67-63-0	Isopropanol	25.2		ug/m³	1.44	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
							Certifications: NE	ELAC-NY12058,NJDEP-NY0	37	
30-62-6	Methyl Methacrylate	ND		ug/m³	0.400	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.352	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
75-09-2	Methylene chloride	ND		ug/m³	2.03	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
91-20-3	* Naphthalene	ND		ug/m³	1.02	0.976	EPA TO-15 Certifications: NJI	03/16/2025 06:10 DEP-NY037	03/16/2025 22:04	YR
42-82-5	n-Heptane	3.72		ug/m³	0.400	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
10.54.2	. П			/ 3				ELAC-NY12058,NJDEP-NY0		MD
110-54-3	n-Hexane	1.07		ug/m³	0.344	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 ELAC-NY12058,NJDEP-NY0	03/16/2025 22:04 37	YR
95-47-6	o-Xylene	0.720		ug/m³	0.424	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
							Certifications: NE	ELAC-NY12058,NJDEP-NY0	37	
79601-23-1	p- & m- Xylenes	2.08	ICVE	ug/m³	0.848	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
22-96-8	* p-Ethyltoluene	0.624		ug/m³	0.480	0.976	Certifications: NE EPA TO-15	ELAC-NY12058,NJDEP-NY0: 03/16/2025 06:10	03/16/2025 22:04	YR
22 70 0	p Ethykolucie	0.024		ug/iii	0.480	0.970	Certifications:	03, 10,2023 00.10	03/10/2020 22:01	T K
15-07-1	* Propylene	ND		ug/m³	0.168	0.976	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 22:04	YR
00-42-5	Styrene	ND		ug/m³	0.416	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
127-18-4	Tetrachloroethylene	0.993		ug/m³	0.662	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
								ELAC-NY12058,NJDEP-NY0		
09-99-9	* Tetrahydrofuran	ND		ug/m³	0.576	0.976	EPA TO-15 Certifications:	03/16/2025 06:10	03/16/2025 22:04	YR
08-88-3	Toluene	5.11		ug/m³	0.368	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
								ELAC-NY12058,NJDEP-NY0		
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.387	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.443	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.131	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR
5-69-4	Trichlorofluoromethane (Freon 11)	1.04		ug/m³	0.548	0.976	EPA TO-15	03/16/2025 06:10	03/16/2025 22:04	YR
							Certifications: NE	ELAC-NY12058,NJDEP-NY0	37	
108-05-4	Vinyl acetate	ND	ICVE, TO-LC S-L	ug/m³	0.344	0.976	EPA TO-15 Certifications: NE	03/16/2025 06:10 LAC-NY12058,NJDEP-NY03	03/16/2025 22:04 7	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 16 of 39

Client Sample ID: IA-4

York Sample ID:

25C0160-05

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School Matrix Indoor Ambient Air Collection Date/Time
March 4, 2025 4:00 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS N	0.	Parameter Res	ult Flag I	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
593-60-2	Vinyl bromide	ND	u	ng/m³	0.427	0.976	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR
75-01-4	Vinyl Chloride	ND	u	ng/m³	0.125	0.976	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:04	YR

Sample Information

Client Sample ID: IA-5

out in its

York Sample ID:

25C0160-06

York Project (SDG) No. 25C0160

Client Project ID
10012 Info Tech High School

<u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:14 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.610	0.888	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.485	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.610	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.681	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.485	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.359	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.176	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, TO-CC V, TO-LC S-L	ug/m³	0.659	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
95-63-6	1,2,4-Trimethylbenzene	0.829		ug/m³	0.437	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03'	03/16/2025 22:50	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.682	0.888	EPA TO-15 Certifications:		03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.534	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.359	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.410	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
120 RES	SEARCH DRIVE	STRATFORD. C	CT 06615		1 32	-02 89th <i>A</i>	AVENUE		RICHMOND HILL	NY 11418	

Client Sample ID: IA-5

York Sample ID:

25C0160-06

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 4:14 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

					Reported to				Date/Time	Date/Time	
CAS No	. Parameter	Result	Flag	Units	LOQ	Dilution	Reference N	Aethod	Prepared	Analyzed	Analyst
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.621	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.437	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
106-99-0	1,3-Butadiene	ND		ug/m³	0.589	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.534	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.410	0.888	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
106-46-7	1,4-Dichlorobenzene	ND	CAL-E	ug/m³	0.534	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
123-91-1	1,4-Dioxane	ND		ug/m^3	0.640	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
540-84-1	* 2,2,4-Trimethylpentane	0.705		ug/m³	0.207	0.888	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
78-93-3	2-Butanone	2.41		ug/m³	0.262	0.888	EPA TO-15 Certifications:	NEL AC N		03/16/2025 22:50	YR
591-78-6	* 2-Hexanone	ND		ug/m³	0.728	0.888	EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-NY037 03/16/2025 06:10	03/16/2025 22:50	YR
107-05-1	3-Chloropropene	ND		ug/m³	1.39	0.888	EPA TO-15	NEL AC NIV		03/16/2025 22:50	YR
108-10-1	4-Methyl-2-pentanone	1.02	TO-CC	ug/m³	0.364	0.888	EPA TO-15	NELAC-N I	12058,NJDEP-NY037 03/16/2025 06:10	03/16/2025 22:50	YR
		1.02	V, TO-LC S-H	5	0.501	0.000		NELAC-NY	Y12058,NJDEP-NY037		
67-64-1	Acetone	81.7		ug/m³	1.69	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
107-13-1	Acrylonitrile	ND		ug/m³	2.51	0.888	EPA TO-15			03/16/2025 22:50	YR
71-43-2	Benzene	1.02		ug/m³	0.284	0.888	EPA TO-15		03/16/2025 06:10	03/16/2025 22:50	YR
100-44-7	Benzyl chloride	ND		ug/m³	0.460	0.888	EPA TO-15			03/16/2025 22:50	YR
75-27-4	Bromodichloromethane	ND		ug/m³	0.595	0.888	EPA TO-15			03/16/2025 22:50	YR
75-25-2	Bromoform	ND		ug/m³	0.918	0.888	EPA TO-15		12058,NJDEP-NY037 03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 22:50	YR
74-83-9	Bromomethane	ND		ug/m³	0.345	0.888	EPA TO-15			03/16/2025 22:50	YR
75-15-0	Carbon disulfide	ND		ug/m³	0.277	0.888	EPA TO-15			03/16/2025 22:50	YR
56-23-5	Carbon tetrachloride	0.559		ug/m³	0.140	0.888	EPA TO-15		03/16/2025 06:10	03/16/2025 22:50	YR
108-90-7	Chlorobenzene	ND		ug/m³	0.409	0.888	Certifications: EPA TO-15	NELAC-NY	Y12058,NJDEP-NY037 03/16/2025 06:10	03/16/2025 22:50	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 18 of 39

Client Sample ID: IA-5 **York Sample ID:**

25C0160-06

York Project (SDG) No. 25C0160

Client Project ID 10012 Info Tech High School

Matrix Indoor Ambient Air

Collection Date/Time March 4, 2025 4:14 pm Date Received 03/04/2025

VOA. TO15 MASTER

Log-in Notes:

Sample Notes:

TOA,	1013	IVITAD	ILIX

Sample Prepared by	Method: EPA	TO15 PREP

CAS N	o. Parameter	Result	Flag U	nits	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-00-3	Chloroethane	ND	ug/	m³	0.234	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR
67-66-3	Chloroform	ND	ug/	$/m^3$	0.434	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR
74-87-3	Chloromethane	1.28	ug/	/m³	0.183	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
156-59-2	cis-1,2-Dichloroethylene	ND	ug/	m^3	0.176	0.888	EPA TO-15 Certifications:		03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/	/m³	0.403	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR
110-82-7	Cyclohexane	1.38	ug/	/m³	0.306	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
124-48-1	Dibromochloromethane	ND	ug/	/m³	0.756	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 (12058,NJDEP-NY03)	03/16/2025 22:50	YR
75-71-8	Dichlorodifluoromethane	2.06	ug/	$/m^3$	0.439	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
141-78-6	* Ethyl acetate	2.18	ug/	/m³	0.640	0.888	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
100-41-4	Ethyl Benzene	1.43	ug/	/m³	0.386	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
87-68-3	Hexachlorobutadiene	ND	ug/	$/m^3$	0.947	0.888	EPA TO-15 Certifications:		03/16/2025 06:10 (12058,NJDEP-NY03)	03/16/2025 22:50	YR
67-63-0	Isopropanol	17.1	ug/	/m³	1.31	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
80-62-6	Methyl Methacrylate	ND	ug/	m^3	0.364	0.888	EPA TO-15 Certifications:		03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/	/m³	0.320	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 (12058,NJDEP-NY03)	03/16/2025 22:50	YR
75-09-2	Methylene chloride	ND	ug/	m^3	1.85	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR
91-20-3	* Naphthalene	ND	ug/	m^3	0.931	0.888	EPA TO-15 Certifications:	NJDEP-NY	03/16/2025 06:10 037	03/16/2025 22:50	YR
142-82-5	n-Heptane	2.40	ug/	/m³	0.364	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
110-54-3	n-Hexane	1.19	ug/	$/m^3$	0.313	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
95-47-6	o-Xylene	1.50	ug/	/m³	0.386	0.888	EPA TO-15 Certifications:		03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
179601-23-1	p- & m- Xylenes	5.13	ICVE ug/	$/m^3$	0.771	0.888	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
622-96-8	* p-Ethyltoluene	0.742	ug/	$/m^3$	0.437	0.888	EPA TO-15	NELAC-N	Y12058,NJDEP-NY03 03/16/2025 06:10	03/16/2025 22:50	YR
115-07-1	* Propylene	ND	ug/	/m³	0.153	0.888	Certifications: EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
100-42-5	Styrene	ND	ug/	m^3	0.378	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 22:50	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 19 of 39

Client Sample ID: IA-5

York Sample ID:

25C0160-06

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School Matrix Indoor Ambient Air Collection Date/Time
March 4, 2025 4:14 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	0.843		ug/m³	0.602	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50	YR
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.524	0.888	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 22:50	YR
108-88-3	Toluene	3.61		ug/m³	0.335	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50 7	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.352	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.403	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.119	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
75-69-4	Trichlorofluoromethane (Freon 11)	0.998		ug/m³	0.499	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 22:50 7	YR
108-05-4	Vinyl acetate	ND	ICVE, TO-LC S-L	-	0.313	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.388	0.888	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.113	0.888	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 22:50	YR

Sample Information

Client Sample ID: IA-6 York Sample ID: 25C0160-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received25C016010012 Info Tech High SchoolIndoor Ambient AirMarch 4, 20253:25 pm03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

Sami	nle	Pre	nared	bv	Method:	EPA	TO15	PREP

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ Dil	lution Reference	Date/Time e Method Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND	ug/m³	0.603	0.879 EPA TO-15 Certifications:	03/15/2025 06:10	03/16/2025 10:14	YR
71-55-6	1,1,1-Trichloroethane	ND	ug/m³	0.480	0.879 EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY03	03/16/2025 10:14	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/m³	0.603	0.879 EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY03	03/16/2025 10:14	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/m³	0.674	0.879 EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY03	03/16/2025 10:14	YR
79-00-5	1,1,2-Trichloroethane	ND	ug/m³	0.480	0.879 EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY03	03/16/2025 10:14	YR
75-34-3	1,1-Dichloroethane	ND	ug/m³	0.356	0.879 EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY03	03/16/2025 10:14 7	YR
400 DEG	DEADOLL DDIVE	OTDATEODD OT	20045	_ 400.00	OOU AVENUE	DIGUINOND LIII	ND/ 44.440	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Pag

Page 20 of 39

Client Sample ID: IA-6

York Sample ID:

25C0160-07

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School

STRATFORD, CT 06615

(203) 325-1371

<u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 3:25 pm

Date Received 03/04/2025

VOA, TO15 MASTER

120 RESEARCH DRIVE

www.YORKLAB.com

Log-in Notes:

Sample Notes:

	d by Method: EPA TO15 PREP	Dogult	Flog	Unita	Reported to		Dofowanaa	Mathad	Date/Time	Date/Time	Analyss
CAS No		Result	Flag	Units	0.174	Dilution 0.879	Reference EPA TO-15	Method	Prepared	Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.174	0.879	Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
120-82-1	1,2,4-Trichlorobenzene	ND	TO-CC V, TO-LC S-L	ug/m³	0.652	0.879	EPA TO-15 Certifications:	NELAC-N'	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
95-63-6	1,2,4-Trimethylbenzene	1.21		ug/m^3	0.432	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
106-93-4	1,2-Dibromoethane	ND		ug/m^3	0.675	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m^3	0.528	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
107-06-2	1,2-Dichloroethane	ND		ug/m^3	0.356	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.406	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.614	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.432	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
106-99-0	1,3-Butadiene	ND		ug/m³	0.583	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.528	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.406	0.879	EPA TO-15 Certifications:		03/15/2025 06:10	03/16/2025 10:14	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.528	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
123-91-1	1,4-Dioxane	ND		ug/m³	0.633	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
540-84-1	* 2,2,4-Trimethylpentane	0.945		ug/m³	0.205	0.879	EPA TO-15 Certifications:		03/15/2025 06:10	03/16/2025 10:14	YR
78-93-3	2-Butanone	3.08		ug/m³	0.259	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
591-78-6	* 2-Hexanone	ND		ug/m³	0.720	0.879	Certifications: EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-NY037 03/15/2025 06:10	03/16/2025 10:14	YR
107-05-1	3-Chloropropene	ND		ug/m³	1.38	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
08-10-1	4-Methyl-2-pentanone	1.22		ug/m³	0.360	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY037		
57-64-1	Acetone	774		ug/m³	31.4	16.5	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 [Y12058,NJDEP-NY037	03/16/2025 17:08	YR
07-13-1	Acrylonitrile	3.11		ug/m³	2.48	0.879	EPA TO-15			03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	,	
1-43-2	Benzene	1.07		ug/m^3	0.281	0.879	EPA TO-15			03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	1	

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 21 of 39

ClientServices@

Client Sample ID: IA-6

York Sample ID:

25C0160-07

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 4, 2025 3:25 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
100-44-7	Benzyl chloride	ND		ug/m³	0.455	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
75-27-4	Bromodichloromethane	ND		ug/m³	0.589	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
75-25-2	Bromoform	ND		ug/m³	0.909	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
74-83-9	Bromomethane	ND		ug/m³	0.341	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
75-15-0	Carbon disulfide	ND		ug/m³	0.274	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
56-23-5	Carbon tetrachloride	0.553		ug/m³	0.138	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
108-90-7	Chlorobenzene	ND		ug/m³	0.405	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
75-00-3	Chloroethane	ND		ug/m³	0.232	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
67-66-3	Chloroform	ND		ug/m³	0.429	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
74-87-3	Chloromethane	1.18		ug/m³	0.182	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.174	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.399	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
110-82-7	Cyclohexane	10.4		ug/m³	0.303	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
124-48-1	Dibromochloromethane	ND		ug/m³	0.749	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
75-71-8	Dichlorodifluoromethane	2.09		ug/m³	0.435	0.879	EPA TO-15 Certifications:	03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
141-78-6	* Ethyl acetate	5.32		ug/m³	0.633	0.879	EPA TO-15 Certifications:		03/16/2025 10:14	YR
100-41-4	Ethyl Benzene	10.2		ug/m³	0.382	0.879	EPA TO-15		03/16/2025 10:14	YR
87-68-3	Hexachlorobutadiene	ND		ug/m³	0.937	0.879	Certifications: EPA TO-15 Certifications:	NELAC-NY12058,NJDEP-NY037 03/15/2025 06:10 NELAC-NY12058,NJDEP-NY037	03/16/2025 10:14	YR
67-63-0	Isopropanol	19.3		ug/m³	1.30	0.879	EPA TO-15	03/15/2025 06:10	03/16/2025 10:14	YR
80-62-6	Methyl Methacrylate	ND		ug/m³	0.360	0.879	Certifications:		03/16/2025 10:14	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.317	0.879	Certifications:		03/16/2025 10:14	YR
75-09-2	Methylene chloride	ND		ug/m³	1.83	0.879	Certifications:		03/16/2025 10:14	YR
91-20-3	* Naphthalene	ND		ug/m³	0.922	0.879	Certifications: EPA TO-15 Certifications:	NELAC-NY12058,NJDEP-NY037 03/15/2025 06:10	03/16/2025 10:14	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 22 of 39

Client Sample ID: IA-6

York Sample ID:

25C0160-07

York Project (SDG) No. 25C0160

<u>Client Project ID</u> 10012 Info Tech High School Matrix Indoor Ambient Air Collection Date/Time
March 4, 2025 3:25 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
142-82-5	n-Heptane	2.52	ι	ug/m³	0.360	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
110-54-3	n-Hexane	1.52	ι	ug/m³	0.310	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
95-47-6	o-Xylene	8.89	ι	ug/m³	0.382	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
179601-23-1	p- & m- Xylenes	37.9	ι	ug/m³	0.763	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
622-96-8	* p-Ethyltoluene	1.17	ι	ug/m³	0.432	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:				
115-07-1	* Propylene	ND	ι	ug/m³	0.151	0.879	EPA TO-15 Certifications:		03/15/2025 06:10	03/16/2025 10:14	YR
100-42-5	Styrene	ND	ι	ug/m³	0.374	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
127-18-4	Tetrachloroethylene	0.954	ι	ug/m³	0.596	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
109-99-9	* Tetrahydrofuran	0.933	ι	ug/m³	0.518	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:				
108-88-3	Toluene	4.54	ι	ug/m³	0.331	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
156-60-5	trans-1,2-Dichloroethylene	ND	ι	ug/m³	0.349	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
10061-02-6	trans-1,3-Dichloropropylene	ND	ι	ug/m³	0.399	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
79-01-6	Trichloroethylene	ND	ι	ug/m³	0.118	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.09	ι	ug/m³	0.494	0.879	EPA TO-15		03/15/2025 06:10	03/16/2025 10:14	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
108-05-4	Vinyl acetate	ND	TO-LC v	ug/m³	0.310	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
593-60-2	Vinyl bromide	ND	ι	ug/m³	0.384	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR
75-01-4	Vinyl Chloride	ND	ι	ug/m³	0.112	0.879	EPA TO-15 Certifications:	NELAC-N	03/15/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 10:14	YR

Sample Information

Client Sample ID: SSDS Effluent 25C0160-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received25C016010012 Info Tech High SchoolSoil VaporMarch 4, 2025 3:25 pm03/04/2025

VOA, TO15 MASTER Log-in Notes: Sample Notes:

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 23 of 39

Client Sample ID: SSDS Effluent

York Sample ID: 25C0160-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received25C016010012 Info Tech High SchoolSoil VaporMarch 4, 2025 3:25 pm03/04/2025

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.07	1.557	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 23:36	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.850	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m^3	1.07	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.19	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.850	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.630	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.309	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, TO-CC V, TO-LC S-L	ug/m³	1.16	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m^3	0.765	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.20	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.936	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.630	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.719	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.09	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.765	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
106-99-0	1,3-Butadiene	ND		ug/m³	1.03	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.936	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.720	1.557	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 23:36	YR
106-46-7	1,4-Dichlorobenzene	ND	CAL-E	ug/m^3	0.936	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
123-91-1	1,4-Dioxane	ND		ug/m^3	1.12	1.557	EPA TO-15 Certifications:	NELAC-N	03/16/2025 06:10 Y12058,NJDEP-NY037	03/16/2025 23:36	YR
540-84-1	* 2,2,4-Trimethylpentane	1.45		ug/m^3	0.364	1.557	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 23:36	YR
78-93-3	2-Butanone	2.57		ug/m³	0.459	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
591-78-6	* 2-Hexanone	ND		ug/m³	1.28	1.557	Certifications: EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-NY03 03/16/2025 06:10	7 03/16/2025 23:36	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 24 of 39

Client Sample ID: SSDS Effluent

York Sample ID: 25C0160-08

York Project (SDG) No.Client Project ID25C016010012 Info Tech High School

MatrixCollection Date/TimeSoil VaporMarch 4, 2025 3:25 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in 1	Notes:	Sample No	tes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-05-1	3-Chloropropene	ND		ug/m³	2.44	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
108-10-1	4-Methyl-2-pentanone	2.74	TO-CC V, TO-LC S-H	ug/m³	0.638	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36 7	YR
57-64-1	Acetone	61.9		ug/m³	2.96	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36 7	YR
107-13-1	Acrylonitrile	ND		ug/m^3	4.39	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
1-43-2	Benzene	1.69		ug/m³	0.497	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY03	03/16/2025 23:36 7	YR
100-44-7	Benzyl chloride	ND		ug/m^3	0.806	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
75-27-4	Bromodichloromethane	ND		ug/m³	1.04	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
75-25-2	Bromoform	ND		ug/m³	1.61	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
74-83-9	Bromomethane	ND		ug/m³	0.605	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
5-15-0	Carbon disulfide	ND		ug/m³	0.485	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
6-23-5	Carbon tetrachloride	0.294		ug/m³	0.245	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY03	03/16/2025 23:36 7	YR
08-90-7	Chlorobenzene	ND		ug/m³	0.717	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
75-00-3	Chloroethane	ND		ug/m³	0.411	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
7-66-3	Chloroform	ND		ug/m^3	0.760	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
4-87-3	Chloromethane	0.965		ug/m³	0.322	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36 7	YR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.309	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/m^3	0.707	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
10-82-7	Cyclohexane	0.750		ug/m^3	0.536	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY03	03/16/2025 23:36	YR
24-48-1	Dibromochloromethane	ND		ug/m³	1.33	1.557	EPA TO-15 Certifications:		03/16/2025 06:10 12058,NJDEP-NY037	03/16/2025 23:36	YR
75-71-8	Dichlorodifluoromethane	2.16		ug/m³	0.770	1.557	EPA TO-15 Certifications:		03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36	YR
41-78-6	* Ethyl acetate	16.6		ug/m^3	1.12	1.557	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 23:36	YR
.00-41-4	Ethyl Benzene	0.811		ug/m^3	0.676	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 25 of 39

Client Sample ID: SSDS Effluent

York Sample ID: 25C0160-08

York Project (SDG) No. 25C0160 <u>Client Project ID</u> 10012 Info Tech High School <u>Matrix</u> Soil Vapor Collection Date/Time
March 4, 2025 3:25 pm

Date Received 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/m³	1.66	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36	YR
67-63-0	Isopropanol	16.7		ug/m³	2.30	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
80-62-6	Methyl Methacrylate	0.637		ug/m³	0.637	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.561	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY03	03/16/2025 23:36	YR
75-09-2	Methylene chloride	ND		ug/m³	3.25	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36	YR
91-20-3	* Naphthalene	ND		ug/m³	1.63	1.557	EPA TO-15 Certifications:	NJDEP-NY	03/16/2025 06:10 037	03/16/2025 23:36	YR
142-82-5	n-Heptane	1.40		ug/m³	0.638	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
110-54-3	n-Hexane	3.62		ug/m³	0.549	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
95-47-6	o-Xylene	0.946		ug/m³	0.676	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
179601-23-1	p- & m- Xylenes	2.91	ICVE	ug/m³	1.35	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
522-96-8	* p-Ethyltoluene	ND		ug/m³	0.765	1.557	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 23:36	YR
115-07-1	* Propylene	ND		ug/m³	0.268	1.557	EPA TO-15 Certifications:		03/16/2025 06:10	03/16/2025 23:36	YR
100-42-5	Styrene	ND		ug/m³	0.663	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36	YR
127-18-4	Tetrachloroethylene	ND		ug/m³	1.06	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 12058,NJDEP-NY03	03/16/2025 23:36	YR
109-99-9	* Tetrahydrofuran	1.47		ug/m³	0.918	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:				
08-88-3	Toluene	6.40		ug/m³	0.587	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.617	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY03	03/16/2025 23:36	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.707	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 /12058,NJDEP-NY03	03/16/2025 23:36	YR
9-01-6	Trichloroethylene	0.251		ug/m³	0.209	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
5-69-4	Trichlorofluoromethane (Freon 11)	1.05		ug/m³	0.875	1.557	EPA TO-15		03/16/2025 06:10	03/16/2025 23:36	YR
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
08-05-4	Vinyl acetate	ND	ICVE, TO-LC S-L	ug/m³	0.548	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 Y12058,NJDEP-NY03	03/16/2025 23:36	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.681	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 23:36	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 26 of 39

Client Sample ID: SSDS Effluent **York Sample ID:** 25C0160-08

York Project (SDG) No. 25C0160

Client Project ID 10012 Info Tech High School

Matrix Soil Vapor

Collection Date/Time March 4, 2025 3:25 pm Date Received 03/04/2025

VOA, TO15 MASTER

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	0.	Parameter R	esult Fla	ag Uı	nits	Reported to	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	NI)	ug/	m^3	0.199	1.557	EPA TO-15 Certifications:	NELAC-NY	03/16/2025 06:10 712058,NJDEP-NY037	03/16/2025 23:36	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 27 of 39

ClientServices@

Analytical Batch Summary

Batch ID: BC51266	Preparation Method:	EPA TO15 PREP	Prepared By:	BMC	
YORK Sample ID	Client Sample ID	Preparation Date			
25C0160-07	IA-6	03/15/25			
BC51266-BLK1	Blank	03/15/25			
BC51266-BS1	LCS	03/15/25			
Batch ID: BC51267	Preparation Method:	EPA TO15 PREP	Prepared By:	BMC	
YORK Sample ID	Client Sample ID	Preparation Date			
YORK Sample ID 25C0160-01	Client Sample ID IA-1	Preparation Date 03/16/25			
		•			
25C0160-01	IA-1	03/16/25			
25C0160-01 25C0160-02	IA-1 AA-1	03/16/25 03/16/25			
25C0160-01 25C0160-02 25C0160-03	IA-1 AA-1 IA-2	03/16/25 03/16/25 03/16/25			
25C0160-01 25C0160-02 25C0160-03 25C0160-05	IA-1 AA-1 IA-2 IA-4	03/16/25 03/16/25 03/16/25 03/16/25			
25C0160-01 25C0160-02 25C0160-03 25C0160-05 25C0160-06	IA-1 AA-1 IA-2 IA-4 IA-5	03/16/25 03/16/25 03/16/25 03/16/25 03/16/25			

03/16/25

BC51267-BS1

LCS

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD		1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC51266 - EPA TO15 PREP											
Blank (BC51266-BLK1)							Prep	ared & Anal	yzed: 03/15/	2025	
1,1,1,2-Tetrachloroethane	ND	0.687	ug/m³								
1,1,1-Trichloroethane	ND	0.546	"								
1,1,2,2-Tetrachloroethane	ND	0.687	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.766	"								
113)											
1,1,2-Trichloroethane	ND	0.546	"								
1,1-Dichloroethane	ND	0.405	"								
1,1-Dichloroethylene	ND	0.198	"								
1,2,4-Trichlorobenzene	ND	0.742	"								
1,2,4-Trimethylbenzene	ND	0.492	"								
1,2-Dibromoethane	ND	0.768	"								
1,2-Dichlorobenzene	ND	0.601	"								
1,2-Dichloroethane	ND	0.405	"								
1,2-Dichloropropane	ND	0.462	"								
1,2-Dichlorotetrafluoroethane	ND	0.699	"								
1,3,5-Trimethylbenzene	ND	0.492	"								
1,3-Butadiene	ND	0.664	"								
1,3-Dichlorobenzene	ND	0.601	"								
1,3-Dichloropropane	ND	0.462	"								
1,4-Dichlorobenzene	ND	0.601	"								
1,4-Dioxane	ND	0.721	"								
2,2,4-Trimethylpentane	ND	0.234	"								
2-Butanone	ND	0.295	"								
2-Hexanone	ND	0.819	"								
3-Chloropropene	ND	1.57	"								
4-Methyl-2-pentanone	ND	0.410	"								
Acetone	ND	1.90	"								
Acrylonitrile	ND	2.82	"								
Benzene	ND	0.319	"								
Benzyl chloride	ND	0.518	"								
Bromodichloromethane	ND	0.670	"								
Bromoform	ND	1.03	"								
Bromomethane	ND	0.388	"								
Carbon disulfide	ND	0.311	"								
Carbon tetrachloride	ND	0.157	"								
Chlorobenzene	ND	0.460	"								
Chloroethane	ND	0.264	"								
Chloroform	ND	0.488	"								
Chloromethane	ND	0.207	"								
cis-1,2-Dichloroethylene	ND	0.198	"								
cis-1,3-Dichloropropylene	ND	0.454	"								
Cyclohexane	ND	0.344	"								
Dibromochloromethane	ND	0.852	"								
Dichlorodifluoromethane	ND	0.495	"								
Ethyl acetate	ND	0.721	"								
Ethyl Benzene	ND	0.434	"								
Hexachlorobutadiene	ND	1.07	"								
Isopropanol	ND	1.47	"								
Methyl Methacrylate	ND	0.409	"								
Methyl tert-butyl ether (MTBE)	ND	0.361	"								
, , , , , , , , , , , , , , , , , , , ,	1112	0.501									

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 29 of 39

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BC51266 - EPA TO15 PREP											
Blank (BC51266-BLK1)							Prep	ared & Analy	zed: 03/15/	2025	
Methylene chloride	ND	2.08	ug/m³								
Naphthalene	ND	1.05	"								
n-Heptane	ND	0.410	"								
n-Hexane	ND	0.352	"								
o-Xylene	ND	0.434	"								
o- & m- Xylenes	ND	0.868	"								
p-Ethyltoluene	ND	0.492	"								
Propylene	ND	0.172	"								
Styrene	ND	0.426	"								
Tetrachloroethylene	ND	0.678	"								
Tetrahydrofuran	ND	0.590	"								
Toluene	ND	0.377	"								
rans-1,2-Dichloroethylene	ND	0.396	"								
rans-1,3-Dichloropropylene	ND	0.454	"								
Trichloroethylene	ND	0.134	"								
Frichlorofluoromethane (Freon 11)	ND	0.562	"								
/inyl acetate	ND	0.352	"								
/inyl bromide	ND	0.437	"								
/inyl Chloride	ND	0.128	"								
LCS (BC51266-BS1)							Prep	ared & Analy	zed: 03/15/	2025	
,1,1,2-Tetrachloroethane	10.8		ppbv	10.0		108	70-130				
,1,1-Trichloroethane	9.41		"	10.0		94.1	70-130				
,1,2,2-Tetrachloroethane	11.2		"	10.0		112	70-130				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.91		"	10.0		89.1	70-130				
13) ,1,2-Trichloroethane	10.4		"	10.0		104	70-130				
1,1-Dichloroethane	9.52		"	10.0		95.2	70-130				
,1-Dichloroethylene	9.77		"	10.0		97.7	70-130				
,2,4-Trichlorobenzene	6.04		"	10.0		60.4	70-130	Low Bias			
,2,4-Trimethylbenzene	11.4		"	10.0		114	70-130				
,2-Dibromoethane	10.2		"	10.0		102	70-130				
,2-Dichlorobenzene	10.6		"	10.0		106	70-130				
,2-Dichloroethane	11.1		"	10.0		111	70-130				
,2-Dichloropropane	11.6		"	10.0		116	70-130				
,2-Dichlorotetrafluoroethane	8.63		"	10.0		86.3	70-130				
,3,5-Trimethylbenzene	11.3		"	10.0		113	70-130				
,3-Butadiene	9.76		"	10.0		97.6	70-130				
,3-Dichlorobenzene	11.1		"	10.0		111	70-130				
,3-Dichloropropane	11.3		"	10.0		113	70-130				
1,4-Dichlorobenzene	11.3		"	10.0		113	70-130				
,4-Dioxane	10.9		"	10.0		109	70-130				
2,2,4-Trimethylpentane	10.5		"	10.0		105	70-130				
2-Butanone	10.2		"	10.0		102	70-130				
2-Hexanone	12.4		"	10.0		124	70-130				
3-Chloropropene	10.8		"	10.0		108	70-130				
I-Methyl-2-pentanone	12.5		"	10.0		125	70-130				
Acetone	9.79		"	10.0		97.9	70-130				
Acrylonitrile	8.99		"	10.0		89.9	70-130				
Benzene	9.20		"	10.0		92.0	70-130				
Benzyl chloride	8.08		"	10.0		80.8	70-130				
Bromodichloromethane	11.2		"	10.0		112	70-130				
120 DESEADON DRIVE	STRATEORD OT 066	215		12	2_02 80th A\	/ENITE		RICHMOND	LIII L NIV	11110	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 30 of 39

RPD

%REC

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RC512	266 -	EPA	TO15	PREP

LCS (BC51266-BS1)					Prep	pared & Analyzed: 03/15/2025
Bromoform	12.8	ppbv	10.0	128	70-130	
Bromomethane	8.85	"	10.0	88.5	70-130	
Carbon disulfide	9.11	"	10.0	91.1	70-130	
Carbon tetrachloride	9.45	"	10.0	94.5	70-130	
Chlorobenzene	10.8	"	10.0	108	70-130	
Chloroethane	10.1	"	10.0	101	70-130	
Chloroform	9.19	"	10.0	91.9	70-130	
Chloromethane	10.4	"	10.0	104	70-130	
cis-1,2-Dichloroethylene	9.87	"	10.0	98.7	70-130	
eis-1,3-Dichloropropylene	11.8	"	10.0	118	70-130	
Cyclohexane	9.91	"	10.0	99.1	70-130	
Dibromochloromethane	11.0	"	10.0	110	70-130	
Dichlorodifluoromethane	9.53	"	10.0	95.3	70-130	
Ethyl acetate	12.4	"	10.0	124	70-130	
Ethyl Benzene	11.4	"	10.0	114	70-130	
Hexachlorobutadiene	15.3	"	10.0	153	70-130	High Bias
sopropanol	8.05	"	10.0	80.5	70-130	
Methyl Methacrylate	11.1	"	10.0	111	70-130	
Methyl tert-butyl ether (MTBE)	10.1	"	10.0	101	70-130	
Methylene chloride	9.94	"	10.0	99.4	70-130	
Japhthalene	9.19	"	10.0	91.9	70-130	
-Heptane	10.9	"	10.0	109	70-130	
n-Hexane	9.96	"	10.0	99.6	70-130	
-Xylene	11.7	"	10.0	117	70-130	
- & m- Xylenes	23.2	"	20.0	116	70-130	
p-Ethyltoluene	11.8	"	10.0	118	70-130	
Propylene	10.3	"	10.0	103	70-130	
Styrene	11.7	"	10.0	117	70-130	
Tetrachloroethylene	11.1	"	10.0	111	70-130	
Cetrahydrofuran	10.4	"	10.0	104	70-130	
Coluene	10.6	"	10.0	106	70-130	
rans-1,2-Dichloroethylene	9.79	"	10.0	97.9	70-130	
rans-1,3-Dichloropropylene	11.7	"	10.0	117	70-130	
richloroethylene	10.6	"	10.0	106	70-130	
Crichlorofluoromethane (Freon 11)	9.29	"	10.0	92.9	70-130	
Vinyl acetate	4.41	"	10.0	44.1	70-130	Low Bias
/inyl bromide	9.03	"	10.0	90.3	70-130	

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 31 of 39

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BC51267-BLK1)				Prepared & Analyzed: 03/16/2025
,1,1,2-Tetrachloroethane	ND	0.687	ug/m³	
,1,1-Trichloroethane	ND	0.546	"	
,1,2,2-Tetrachloroethane	ND	0.687	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.766	"	
13) ,1,2-Trichloroethane	ND	0.546	"	
,1-Dichloroethane	ND	0.405		
,1-Dichloroethylene	ND	0.198	"	
,2,4-Trichlorobenzene	ND	0.742	u .	
,2,4-Trimethylbenzene	ND	0.492	"	
,2-Dibromoethane	ND	0.768	"	
,2-Dichlorobenzene	ND	0.601		
,2-Dichloroethane	ND	0.405	"	
,2-Dichloropropane	ND	0.462	"	
,2-Dichlorotetrafluoroethane	ND	0.699		
,3,5-Trimethylbenzene	ND	0.492	"	
,3-Butadiene	ND	0.664	"	
,3-Dichlorobenzene	ND	0.601	u .	
,3-Dichloropropane	ND	0.462	u .	
,4-Dichlorobenzene	ND	0.601	"	
,4-Dioxane	ND	0.721	u .	
,2,4-Trimethylpentane	ND	0.234	u .	
-Butanone	ND	0.295	"	
-Hexanone	ND	0.819	"	
Chloropropene	ND	1.57	u .	
Methyl-2-pentanone	ND	0.410	u .	
cetone	ND	1.90	u .	
crylonitrile	ND	2.82	u .	
enzene	ND	0.319	u .	
enzyl chloride	ND	0.518	"	
romodichloromethane	ND	0.670	"	
romoform	ND	1.03	"	
romomethane	ND	0.388	"	
arbon disulfide	ND	0.311	"	
Carbon tetrachloride	ND	0.157	"	
Chlorobenzene	ND	0.460	"	
Chloroethane	ND	0.264	11	
hloroform	ND	0.488	n .	
hloromethane	ND	0.207	"	
is-1,2-Dichloroethylene	ND	0.198	"	
is-1,3-Dichloropropylene	ND	0.454	"	
Cyclohexane	ND	0.344	"	
Dibromochloromethane	ND	0.852	"	
pichlorodifluoromethane	ND	0.495	11	
thyl acetate	ND	0.721	"	
thyl Benzene	ND	0.434	"	
Jexachlorobutadiene	ND	1.07	"	
sopropanol	ND	1.47	11	
Methyl Methacrylate	ND	0.409	"	
Methyl tert-butyl ether (MTBE)	ND	0.361	11	
Methylene chloride	ND	2.08	"	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 39

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC51267 - EPA TO15 PREP											
Blank (BC51267-BLK1)							Prep	ared & Analy	zed: 03/16/	2025	
Naphthalene	ND	1.05	ug/m³								
n-Heptane	ND	0.410	"								
n-Hexane	ND	0.352	"								
o-Xylene	ND	0.434	"								
p- & m- Xylenes	ND	0.868	"								
p-Ethyltoluene	ND	0.492	"								
Propylene	ND	0.172	"								
Styrene	ND	0.426	"								
Tetrachloroethylene	ND	0.678	"								
Tetrahydrofuran	ND	0.590	"								
Toluene	ND	0.377	"								
trans-1,2-Dichloroethylene	ND	0.396	"								
trans-1,3-Dichloropropylene	ND	0.454	"								
Trichloroethylene	ND ND	0.134									
Trichlorofluoromethane (Freon 11)	ND	0.562	,,								
Vinyl acetate	ND	0.352	"								
Vinyl bromide	ND	0.437	"								
Vinyl Chloride	ND	0.128	,,								
viny Cinoriae	ND	0.128									
LCS (BC51267-BS1)								ared & Analy	zed: 03/16/	2025	
1,1,1,2-Tetrachloroethane	11.0		ppbv	10.0		110	70-130				
1,1,1-Trichloroethane	9.86		"	10.0		98.6	70-130				
1,1,2,2-Tetrachloroethane	11.3		"	10.0		113	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.38		"	10.0		93.8	70-130				
1,1,2-Trichloroethane	11.0		"	10.0		110	70-130				
1,1-Dichloroethane	9.95		"	10.0		99.5	70-130				
1,1-Dichloroethylene	10.2		"	10.0		102	70-130				
1,2,4-Trichlorobenzene	5.75		"	10.0		57.5	70-130	Low Bias			
1,2,4-Trimethylbenzene	11.6		"	10.0		116	70-130				
1,2-Dibromoethane	10.8		"	10.0		108	70-130				
1,2-Dichlorobenzene	10.7		"	10.0		107	70-130				
1,2-Dichloroethane	11.6		"	10.0		116	70-130				
1,2-Dichloropropane	12.2		"	10.0		122	70-130				
1,2-Dichlorotetrafluoroethane	8.54		"	10.0		85.4	70-130				
1,3,5-Trimethylbenzene	11.5		"	10.0		115	70-130				
1,3-Butadiene	10.2		"	10.0		102	70-130				
1,3-Dichlorobenzene	11.3		"	10.0		113	70-130				
1,3-Dichloropropane	11.8		"	10.0		118	70-130				
1,4-Dichlorobenzene	11.4		"	10.0		114	70-130				
1,4-Dioxane	11.5		"	10.0		115	70-130				
2,2,4-Trimethylpentane	10.9		"	10.0		109	70-130				
2-Butanone	10.6		"	10.0		106	70-130				
2-Hexanone	13.0		"	10.0		130	70-130				
3-Chloropropene	11.3		"	10.0		113	70-130				
4-Methyl-2-pentanone	13.0		"	10.0		130	70-130				
Acetone	10.2		"	10.0		102	70-130				
Acrylonitrile	9.41		"	10.0		94.1	70-130				
Benzene	9.65		"	10.0		96.5	70-130				
Benzyl chloride	8.19		"	10.0		81.9	70-130				
Bromodichloromethane	11.8		"	10.0		118	70-130				
Bromoform	13.0		"	10.0		130	70-130				

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 33 of 39

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RC51267 - EPA TO15 PREP

LCS (BC51267-BS1)					Prep	pared & Analyzed: 03/16/2025
Bromomethane	9.32	ppbv	10.0	93.2	70-130	
Carbon disulfide	9.53	"	10.0	95.3	70-130	
Carbon tetrachloride	9.92	"	10.0	99.2	70-130	
Chlorobenzene	11.1	"	10.0	111	70-130	
Chloroethane	10.5	"	10.0	105	70-130	
Chloroform	9.62	"	10.0	96.2	70-130	
Chloromethane	8.92	"	10.0	89.2	70-130	
cis-1,2-Dichloroethylene	10.1	"	10.0	101	70-130	
cis-1,3-Dichloropropylene	12.5	"	10.0	125	70-130	
Cyclohexane	10.3	"	10.0	103	70-130	
Dibromochloromethane	11.6	"	10.0	116	70-130	
Dichlorodifluoromethane	9.98	"	10.0	99.8	70-130	
Ethyl acetate	13.0	"	10.0	130	70-130	
Ethyl Benzene	11.6	"	10.0	116	70-130	
Hexachlorobutadiene	15.7	"	10.0	157	70-130	High Bias
Isopropanol	8.52	"	10.0	85.2	70-130	
Methyl Methacrylate	11.7	"	10.0	117	70-130	
Methyl tert-butyl ether (MTBE)	10.6	"	10.0	106	70-130	
Methylene chloride	10.4	"	10.0	104	70-130	
Naphthalene	9.10	"	10.0	91.0	70-130	
n-Heptane	11.3	"	10.0	113	70-130	
n-Hexane	10.4	"	10.0	104	70-130	
o-Xylene	11.9	"	10.0	119	70-130	
p- & m- Xylenes	23.6	"	20.0	118	70-130	
p-Ethyltoluene	12.0	"	10.0	120	70-130	
Propylene	10.7	"	10.0	107	70-130	
Styrene	11.9	"	10.0	119	70-130	
Tetrachloroethylene	11.6	"	10.0	116	70-130	
Tetrahydrofuran	10.9	"	10.0	109	70-130	
Toluene	11.1	"	10.0	111	70-130	
trans-1,2-Dichloroethylene	10.2	"	10.0	102	70-130	
trans-1,3-Dichloropropylene	12.3	"	10.0	123	70-130	
Trichloroethylene	11.2	"	10.0	112	70-130	
Trichlorofluoromethane (Freon 11)	9.74	"	10.0	97.4	70-130	
Vinyl acetate	4.32	"	10.0	43.2	70-130	Low Bias
Vinyl bromide	9.51	"	10.0	95.1	70-130	
Vinyl Chloride	9.61	,,	10.0	96.1	70-130	

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-LCS-L	The result reported for this compound may be biased low due to its behavior in the analysis batch LCS where it recovered less 70% of the expected value.
TO-LCS-H	The result reported for this compound may be biased high due to its behavior in the analysis batch LCS where it recovered greater than 130% of the expected value.
TO-CCV	The value reported is ESTIMATED for this compound due to its behavior during continuing calibration verification (>30% Difference from initial calibration).
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery

The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%) **Definitions and Other Explanations**

*	Applyte is not cortified or the state of the samples origination does not offer cortification for the Applyte

NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL) RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located Reported to above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

120 RESEARCH DRIVE

CAL-E

ND

LOD

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

exceeded 30% of expected value).

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is Non-Dir. outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

STRATFORD, CT 06615

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 36 of 39

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Revision Description: This report has been revised to include Naphthalene and 2,2,4 Trimethylpentane for all samples.

ClientServices@

York Analytical Laboratories, Inc.

120 Research Drive 132-02 89th Ave Queens, Stratford, CT 06615

NY 11418

Field Chain-of-Custody Record - AIR

Page | of 2

clientservices@yorklab.com www.yorklab.com

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.

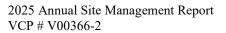
200	-	111
1	11	0160
(4)		010

Your

AMERICA RECORD CONTROL			oigi.i.	atare biride yearte rere	are otalidata formo a c	orialitionio.		
YOUR Information	Repor	t To:		Invoice To:	nvoice To:		YOUR Project Number	
Company: Fleming Lee Shue	Company: N	11	Company: 11		11	10012		RUSH - Next Day
158 West, 29th Street,#9	Address:	((Address:		11			RUSH - Two Day
Hew York NY 10001					YOUR Project Name		RUSH - Three Day	
Phone: 212-675-3225	Phone.:	١١	Phone.:		11	Info Tech High School		RUSH - Four Day
J. Arey	Contact:	(1	Contact:		11		3	Standard (5-7 Day)
sord an Oftening leesh us com	E-mail: i	11	E-mail: \\		M	YOUR PO#:	PC 0202	
Please print clearly and legibly. All information munot be logged in and the turn-around-time clock wiquestions by YORK are resolved.	st be complete. Samples will ill not begin until any	Air Matrix Codes	Samples From	m	Report / ED	D Type (circle sel	ections)	YORK Reg. Comp.
200		Al - Indoor Ambient Air	New York	Summary Rep	port CTRC	P	Standard Excel EDD	Compared to the following Regulation(s): (please fill in)
Sanskruti Pas	shte	AO - Outdoor Amb. Air	New Jersey	QA Report	CTRC	P DQA/DUE	EQuIS (Standard)	() ()
Samples Collected by: (print your name a	above and sign below)	AE - Vapor Extraction Well/	Connecticut	NY ASP A Pa	ckage NJDEF	Reduced Deliv.	NYSDEC EQuIS	
Spashte		Process Gas/Effluent	Pennsylvania	NY ASP B Pa	ckage NJDK0	QP	NJDEP SRP HazSite	
		AS - Soil Vapor/Sub-Slab	Other	Other:				
Certified Canisters: Batch	Individual		Please enter the f		RED Field Data		Reporting Units: ug/m³ 😾	ppbv ppmv
Sample Identification	Date/Time Sampled	Air Matrix	Canister Vacuum Before Sampling (in Hg)	Canister Vacuum After Sampling (in Hg)	Canister ID	Flow Cont. ID	Analysis I	Requested
IA-1	3/4/25 15:52	AI	30	5	50378	19415	To -	15
TA -1	314/25 16:20	AO	31	14	24254	7087	TO -	15
IA-2	3/4/25 16:02	AI	30	+ 3	24128	7423	TO-1	5
IA-3	314/25 15:56	AI	30	5	24113	20955	To-	15
IA-4	314/25 16:00	AI	31	8	48316	6861	to-	15
IA-5	3/4/25 16:14	AI	30	+7	49993	5612	TO-	15
IA-6	31425 15:25	AI	29	_5	48294	17989	TO-	15
Comments:					0	etection Limits F	Required	Sampling Media
					≤ 1 ug/m	NYSDE	C V1 Limits	6 Liter Canister
					Routine S	3 (Other	Tedlar Bag
Samples Relinquished by / Company	Date/Time	Samples Received by / Compar		Date/Time		Samples Relinquished by	/ Company	Date/Time
Spande	03/04/29 17:2	A. Husan	3/4/23 17	2)		Azher Husom	3/4/25	k-4
Samples Received by / Company	Date/Time	Samples Relinquished by / Con		Date/Time		Samples Received by / Co		Date/Time
Samples Relinquished by / Company	Date/Time	Samples Received by / Compar	ny	Date/Time		Samples Received in LAB	3 by	Date/Time
						MA	3/4/25	19:03
		L						

York Analytical Laboratories, Inc.

Stratford, CT 06615


120 Research Drive 132-02 89th Ave Queens, NY 11418

Field Chain-of-Custody Record - AIR

YORK Project No. 25C0160

clientservices@vorklah.com

AND RESIDENCE TO SERVICE AND ADDRESS OF THE PERSON OF THE	w.yorklab.com	This document serves a	s your written authorization	n for YORK to procee re binds you to YORk	ed with the analyses red K's Standard Terms & C	quested below. conditions.	Your	Page 1 of <)
YOUR Information	Repor	t To:		Invoice To:		YOUR Project Number		Turn-Around Tin	ne
Fleming Lee Shve	Company: 1	V	Company:		1/	10	012	RUSH - Next Day	
58 W, 29th Street # 9	Address:	. 1	Address:		11	1	1 2	RUSH - Two Day	
NY NY 10001	'\	V J	· ·		A)		Project Name	RUSH - Three Day	
none::2 - 675 - 3225	Phone.: \\	1 (Phone.:		11	Info To	ech High	RUSH - Four Day	
ontact: 5. Arey	Contact:	()	Contact:		1 (School		Standard (5-7 Day)	K
-mail:	E-mail:	11	E-mail:		\	YOUR PO#: 1	PC 0202		
lease print clearly and legibly. All information of be logged in and the turn-around-time clocustions by YORK are resolved.	must be complete. Samples will k will not begin until any	Air Matrix Codes	Samples From		Report / ED	D Type (circle sele	ections)	YORK Reg. Com	p.
		Al - Indoor Ambient Air	New York	Summary Rep	oort \ CTRC	P	Standard Excel EDD	Compared to the follow Regulation(s): (please fill it	
Sanskruti Pa	ishte	AO - Outdoor Amb. Air	New Jersey	QA Report	CT RC	P DQA/DUE	EQuIS (Standard)	regulation(s). (please iiii i	1)
Samples Collected by: (print your na	ame above and sign below)	AE - Vapor Extraction Well/	Connecticut	NY ASP A Pac	ckage NJDEF	Reduced Deliv.	NYSDEC EQuIS		
00 obje		Process Gas/Effluent	Pennsylvania	NY ASP B Pac	ckage NJDK0	QΡ	NJDEP SRP HazSite		
Spashte		AS - Soil Vapor/Sub-Slab	Other	Other:					
Certified Canisters: Batch_	Individual		Please enter the fol	lowing REQUIR	RED Field Data		Reporting Units: ug/m³ 1/2/	ppbv ppmv	
Sample Identification	Date/Time Sampled	Air Matrix	Canister Vacuum Before Sampling (in Hg)	Canister Vacuum After Sampling (in Hg)	Canister ID	Flow Cont. ID	Analysis	Requested	
SSDS Effluent	3/4/25 10:15	AS	31	4	17359	20927	To-15	>	
									
Comments:					E	etection Limits F	Required	Sampling Media	
Note: - 2L Can for	r SSDS Efflue	nt			≤ 1 ug/m	NYSDE	C V1 Limits	6 Liter Canister	
1,00=.							other	Tedlar Bag	
amples Relinquished by / Company	Date/Time	Samples Received by / Compar	ny	Date/Time		Samples Relinquished by	/ Company	Date/Time	
Sposhote	17:21 Bloyles 17:21	A. Husown	3/4/25 17:	2/		A. Hugarn	3/4/25		
amples Received by / Company	Date/Time	Samples Relinquished by / Con	pany	Date/Time		Samples Received by / Co	ompany	Date/Time	_
amples Relinquished by / Company	Date/Time	Samples Received by / Compar	ny	Date/Time		Samples Received in LAB	V 1	Date/Time	
		1		1		MAR	3/4/25	19103	

Appendix H

Waste Disposal Documentation

January 30, 2025

Mr. Henry Wilkie New York City Department of Environmental Protection Division of Environmental Remediation 625 Broadway Albany, NY 12233-7015

Re: Info Tech High School

21-16 44th Road, Long Island City, NY 11101 NYSDEC VCP Site Number V00366-2 Non-Hazardous Purge Water Determination

Dear Mr. Wilkie.

On behalf of CDI 21st St LIC, LLC (Bell Realty), Fleming, Lee Shue, Environmental Engineering & Geology D.P.C. (FLS) have prepared this letter for obtaining a non-hazardous groundwater determination for the purge water generated as a part of semi-annual groundwater sampling at the Site referenced above.

Site Description

The Site located at 21-16 44th Road in Long Island City, New York. The legal definition of the Site is Block 438, Lots 6 and 23 in Queens, NY. The Site was enrolled in the Voluntary Cleanup Program (VCP) as Site Number V00366-2 in September 2000.

Findings presented in the 2002 Remedial Investigation Report by LBG revealed high concentrations of volatile organic compounds (VOC), primarily tetrachloroethylene (PCE) and other chlorinated solvents, in soil, groundwater and soil vapor. Concentrations of chlorinated solvents are attributed to the degreasing operation formerly located along the interior south wall as well as the solvent storage area located immediately outside the building adjacent to the degreasing machine.

The remedial actions, outlined in the Remedial Action Work Plan included the removal of contaminated soil, basement ash, and sediment. Engineering controls installed include a vapor barrier, sub-slab depressurization system (SSDS), groundwater pump and treat system, and soil vapor extraction (SVE) system. The SVE system was shut down and associated monitoring discontinued in October 2010 due to consistently low and/or non-detect VOC concentrations. The groundwater pump and treat system was disabled on April

28, 2014 and monitoring was discontinued in the second quarter of 2014 due to reduced concentrations of VOCs in groundwater and as per approval provided by NYSDEC on April 24, 2014. Groundwater monitoring continues on-Site on a semi-annual basis.

Contained-In Determination Request

Semi-annual sampling generated two (2) 55-gallon drums from 2022 to 2024. FLS requests a Contained-In Determination to manage the liquid waste as a non-hazardous waste. On January 17, 2025, FLS collected a grab sample from the two (2) waste drums to be analyzed TCL VOCs, TCL SVOCs, RCRA metals, Pesticides, PCBs, and RCRA characteristics by SGS Accutest Laboratories, a National Environmental Laboratory Accredited Program. Sample results and the analytical data report are attached for the Department's review.

A disposal facility will be selected and facility information provided to NYSDEC following this determination.

If there are any questions, please contact me at <u>joel@flemingleeshue.com</u> or at (212) 675-3225.

Sincerely,

Joel Kane

Project Manager

Enc:

Table 1 – Summarized Sampling Results of Purged Groundwater Stored in Drums Attachment 1 – Analytical Lab Report

cc: John Belanich – CDI 21st St LIC, LLC

Christopher Allan – NYSDEC

A. Fleming, P.E. – Fleming-Lee Shue

SGS Engage - Group Crosstab

Job Number:				JE4364
Client:				Fleming-Lee Shue, Inc. (New York, NY)
Project Description:				Info Tech High School, 21-16 44th Road,
				Long Island City, NY
Job Reference:				10012
Client Sample ID:				PURGE WATER
Lab Sample ID:				JE4364-1
Location:				
Date Sampled:				1/17/2025 8:30 AM
Matrix:				Ground Water
Analyte	CAS#	Type	Unit	
(GC/LC Semi-volatiles (SW846 8081B))				
Aldrin	309-00-2	REG	ug/l	ND
alpha-BHC	319-84-6	REG	ug/l	ND
beta-BHC	319-85-7	REG	ug/l	ND ND
delta-BHC	319-86-8	REG	ug/l	ND ND
gamma-BHC (Lindane)	58-89-9	REG	ug/l	ND ND
alpha-Chlordane	5103-71-9 5103-74-2	REG REG	ug/l	ND ND
gamma-Chlordane Dieldrin	60-57-1	REG	ug/l	ND
4,4'-DDD	72-54-8	REG	ug/l ug/l	ND
4,4'-DDE	72-54-6	REG	ug/l ug/l	ND ND
4,4'-DDE 4,4'-DDT	50-29-3	REG	ug/l	ND ND
Endrin	72-20-8	REG	ug/l	ND ND
Endosulfan sulfate	1031-07-8	REG	ug/l	ND ND
Endrin aldehyde	7421-93-4	REG	ug/l	ND
Endrin ketone	53494-70-5	REG	ug/l	ND
Endosulfan-l	959-98-8	REG	ug/l	ND
Endosulfan-II	33213-65-9	REG	ug/l	ND
Heptachlor	76-44-8	REG	ug/l	ND
Heptachlor epoxide	1024-57-3	REG	ug/l	ND
Methoxychlor	72-43-5	REG	ug/l	ND
Toxaphene	8001-35-2	REG	ug/l	ND
(GC/LC Semi-volatiles (SW846 8082A))				
Aroclor 1016	12674-11-2	REG	ug/l	ND
Aroclor 1221	11104-28-2	REG	ug/l	ND
Aroclor 1232	11141-16-5	REG	ug/l	ND
Aroclor 1242	53469-21-9	REG	ug/l	ND
Aroclor 1248	12672-29-6	REG	ug/l	ND
Aroclor 1254	11097-69-1	REG	ug/l	ND ND
Aroclor 1260	11096-82-5	REG	ug/l	ND
Aroclor 1268	11100-14-4	REG	ug/l	ND ND
Aroclor 1262	37324-23-5	REG	ug/l	ND
(GC/LC Semi-volatiles (SW846 8151A))	04.75.7	DEC	/!	ND 8
2,4-D 2,4,5-TP (Silvex)	94-75-7 93-72-1	REG REG	ug/l ug/l	ND ^a
2.4.5-T	93-76-5	REG	ug/l	ND ^a
(General Chemistry (SW846 1010B/ASTM D93))	93-70-3	KLG	ug/i	ND
Ignitability (Flashpoint)	IGNITABILITY	REG	Deg. F	>200
(General Chemistry (SW846 9040C))	TOTALINE	1120	Dog. 1	200
Corrosivity as pH	CORROSIVITY	REG	su	6.73 NC
(General Chemistry (SW846 CHAP7/9012B))	001410011111	1120	54	00110
Cyanide Reactivity	CYANIDE REACTIVITY	REG	mg/l	<10
(General Chemistry (SW846 CHAP7/9034))			J.	
Sulfide Reactivity	SULFIDE REACTIVITY	REG	mg/l	<100
(Metals Analysis (EPA 200.7))				
Arsenic	7440-38-2	REG	ug/l	<3.0
Barium	7440-39-3	REG	ug/l	<200
Cadmium	7440-43-9	REG	ug/l	<3.0
Chromium	7440-47-3	REG	ug/l	<10
Lead	7439-92-1	REG	ug/l	<3.0
Selenium	7782-49-2	REG	ug/l	<10
Silver	7440-22-4	REG	ug/l	<10
(Metals Analysis (EPA 245.1))				
Mercury	7439-97-6	REG	ug/l	<0.20

(MS Semi-volatiles (SW846 8270E))				
2-Chlorophenol	95-57-8	REG	ug/l	ND
4-Chloro-3-methyl phenol	59-50-7	REG	ug/l	ND ND
2,4-Dichlorophenol	120-83-2	REG	ug/l	ND
2,4-Dimethylphenol	105-67-9	REG	ug/l	ND
2,4-Dinitrophenol	51-28-5	REG	ug/l	ND
4,6-Dinitro-o-cresol	534-52-1	REG	ug/l	ND
2-Methylphenol	95-48-7	REG	ug/l	ND
3&4-Methylphenol	M+P-CRESOLS	REG	ug/l	ND
2-Nitrophenol	88-75-5	REG	ug/l	ND
4-Nitrophenol	100-02-7	REG	ug/l	ND ^a
Pentachlorophenol	87-86-5	REG	ug/l	ND
Phenol	108-95-2	REG	ug/l	ND
2,3,4,6-Tetrachlorophenol	58-90-2	REG	ug/l	ND
2,4,5-Trichlorophenol	95-95-4	REG	ug/l	ND
2,4,6-Trichlorophenol	88-06-2	REG	ug/l	ND
Acenaphthene	83-32-9	REG	ug/l	ND ND
Acenaphthylene	208-96-8	REG	ug/l	ND ND
Acetophenone	98-86-2	REG	ug/l	ND ND
Anthracene Atrazine	120-12-7 1912-24-9	REG REG	ug/l	ND ND
Benzaldehyde	100-52-7	REG	ug/l	ND ND
Benzo(a)anthracene	56-55-3	REG	ug/l ug/l	ND ND
Benzo(a)pyrene	50-32-8	REG	ug/l	ND ND
Benzo(b)fluoranthene	205-99-2	REG	ug/l	ND ND
Benzo(g,h,i)perylene	191-24-2	REG	ug/l	ND ND
Benzo(k)fluoranthene	207-08-9	REG	ug/l	ND ND
4-Bromophenyl phenyl ether	101-55-3	REG	ug/l	ND ND
Butyl benzyl phthalate	85-68-7	REG	ug/l	ND
1,1'-Biphenyl	92-52-4	REG	ug/l	ND
2-Chloronaphthalene	91-58-7	REG	ug/l	ND
4-Chloroaniline	106-47-8	REG	ug/l	ND
Carbazole	86-74-8	REG	ug/l	ND
Caprolactam	105-60-2	REG	ug/l	ND
Chrysene	218-01-9	REG	ug/l	ND
bis(2-Chloroethoxy)methane	111-91-1	REG	ug/l	ND
bis(2-Chloroethyl)ether	111-44-4	REG	ug/l	ND
2,2'-Oxybis(1-chloropropane)	108-60-1	REG	ug/l	ND
4-Chlorophenyl phenyl ether	7005-72-3	REG	ug/l	ND
2,4-Dinitrotoluene	121-14-2	REG	ug/l	ND ^a
2,6-Dinitrotoluene	606-20-2	REG	ug/l	ND ^a
3,3'-Dichlorobenzidine	91-94-1	REG	ug/l	ND ND
Dibenzo(a,h)anthracene	53-70-3	REG	ug/l	ND ND
Dibenzofuran	132-64-9	REG	ug/l	ND ND
Di-n-butyl phthalate	84-74-2 117-84-0	REG REG	ug/l	ND ND
Di-n-octyl phthalate Diethyl phthalate	84-66-2	REG	ug/l	ND ND
Dimethyl phthalate	131-11-3	REG	ug/l ug/l	ND ND
bis(2-Ethylhexyl)phthalate	117-81-7	REG	ug/l	ND ND
Fluoranthene	206-44-0	REG	ug/l	ND ND
Fluorene	86-73-7	REG	ug/l	ND ND
Hexachlorobenzene	118-74-1	REG	ug/l	ND ND
Hexachlorobutadiene	87-68-3	REG	ug/l	ND
Hexachlorocyclopentadiene	77-47-4	REG	ug/l	ND ^a
Hexachloroethane	67-72-1	REG	ug/l	ND ND
Indeno(1,2,3-cd)pyrene	193-39-5	REG	ug/l	ND
Isophorone	78-59-1	REG	ug/l	ND
2-Methylnaphthalene	91-57-6	REG	ug/l	ND
2-Nitroaniline	88-74-4	REG	ug/l	ND
3-Nitroaniline	99-09-2	REG	ug/l	ND ^a
4-Nitroaniline	100-01-6	REG	ug/l	ND
Naphthalene	91-20-3	REG	ug/l	ND
Nitrobenzene	98-95-3	REG	ug/l	ND
N-Nitroso-di-n-propylamine	621-64-7	REG	ug/l	ND ND
N-Nitrosodiphenylamine	86-30-6	REG	ug/l	ND ND
Phenanthrene	85-01-8	REG	ug/l	ND ND
Pyrene	129-00-0	REG	ug/l	ND ND
1,2,4,5-Tetrachlorobenzene	95-94-3	REG	ug/l	ND

(MS Volatiles (SW846 8260D))				
Acetone	67-64-1	REG	ug/l	ND °
Benzene	71-43-2	REG	ug/l	ND
Bromochloromethane	74-97-5	REG	ug/l	ND
Bromodichloromethane	75-27-4	REG	ug/l	ND
Bromoform	75-25-2	REG	ug/l	ND
Bromomethane	74-83-9	REG	ug/l	ND
2-Butanone (MEK)	78-93-3	REG	ug/l	ND
Carbon disulfide	75-15-0	REG	ug/l	ND
Carbon tetrachloride	56-23-5	REG	ug/l	ND
Chlorobenzene	108-90-7	REG	ug/l	ND
Chloroethane	75-00-3	REG	ug/l	ND
Chloroform	67-66-3	REG	ug/l	ND
Chloromethane	74-87-3	REG	ug/l	ND
Cyclohexane	110-82-7	REG	ug/l	ND
1,2-Dibromo-3-chloropropane	96-12-8	REG	ug/l	ND
Dibromochloromethane	124-48-1	REG	ug/l	ND
1,2-Dibromoethane	106-93-4	REG	ug/l	ND
1,2-Dichlorobenzene	95-50-1	REG	ug/l	ND
1,3-Dichlorobenzene	541-73-1	REG	ug/l	ND
1,4-Dichlorobenzene	106-46-7	REG	ug/l	ND
Dichlorodifluoromethane	75-71-8	REG	ug/l	ND
1,1-Dichloroethane	75-34-3	REG	ug/l	ND
1,2-Dichloroethane	107-06-2	REG	ug/l	ND
1,1-Dichloroethene	75-35-4	REG	ug/l	ND
cis-1,2-Dichloroethene	156-59-2	REG	ug/l	ND
trans-1,2-Dichloroethene	156-60-5	REG	ug/l	ND
1,2-Dichloropropane	78-87-5	REG	ug/l	ND
cis-1,3-Dichloropropene	10061-01-5	REG	ug/l	ND
trans-1,3-Dichloropropene	10061-02-6	REG	ug/l	ND
1,4-Dioxane	123-91-1	REG	ug/l	ND ^a
Ethylbenzene	100-41-4	REG	ug/l	ND
Freon 113	76-13-1	REG	ug/l	ND
2-Hexanone	591-78-6	REG	ug/l	ND
Isopropylbenzene	98-82-8	REG	ug/l	ND
Methyl Acetate	79-20-9	REG	ug/l	ND
Methylcyclohexane	108-87-2	REG	ug/l	ND
Methyl Tert Butyl Ether	1634-04-4	REG	ug/l	ND
4-Methyl-2-pentanone(MIBK)	108-10-1	REG	ug/l	ND
Methylene chloride	75-09-2	REG	ug/l	ND
Styrene	100-42-5	REG	ug/l	ND
1,1,2,2-Tetrachloroethane	79-34-5	REG	ug/l	ND
Tetrachloroethene	127-18-4	REG	ug/l	0.83 J
Toluene	108-88-3	REG	ug/l	ND
1,2,3-Trichlorobenzene	87-61-6	REG	ug/l	ND
1,2,4-Trichlorobenzene	120-82-1	REG	ug/l	ND
1,1,1-Trichloroethane	71-55-6	REG	ug/l	ND
1,1,2-Trichloroethane	79-00-5	REG	ug/l	ND
Trichloroethene	79-01-6	REG	ug/l	ND
Trichlorofluoromethane	75-69-4	REG	ug/l	ND
Vinyl chloride	75-01-4	REG	ug/l	ND
m,p-Xylene	M,P-XYLENE	REG	ug/l	ND
o-Xylene	95-47-6	REG	ug/l	ND
Xylene (total)	1330-20-7	REG	ug/l	ND

Footnote	Comments
а	Associated CCV outside of control limits high, sample was ND.
b	Outside of in house control limits.
С	Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

Dayton, NJ 01/28/25

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Fleming-Lee Shue, Inc.

Info Tech High School, 21-16 44th Road, Long Island City, NY

10012

SGS Job Number: JE4364

Sampling Date: 01/17/25

Fleming-Lee Shue, Inc. 158 West 29th Street 9th Floor New York, NY 10001 joel@FlemingLeeShue.com

ATTN: Joel Kane

Total number of pages in report: 2731

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Uga 4. agonan Olga Azarian **Technical Director**

Client Service contact: Tammy McCloskey 732-329-0200 Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV, AK (UST-103), AZ (AZ0786), PA(68-00408), RI, SC, TX (T104704234), UT, VA, WA, WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

. .

C

∞

_

=

N

14

7

Ta	hl	6	of	Co	mí	ten	ts
14			VI				

-1-

Section 1: Sample Summary	5
Section 2: Case Narrative/Conformance Summary	6
Section 3: Summary of Hits	9
Section 4: Sample Results	10
4.1: JE4364-1: PURGE WATER	11
Section 5: Misc. Forms	21
5.1: Certification Exceptions	22
5.2: Chain of Custody	23
5.3: Sample Tracking Chronicle	25
5.4: Internal Chain of Custody	26
Section 6: MS Volatiles - QC Data Summaries	28
6.1: Method Blank Summary	29
6.2: Blank Spike Summary	31
6.3: Matrix Spike/Matrix Spike Duplicate Summary	
6.4: Instrument Performance Checks (BFB)	35
6.5: Internal Standard Area Summaries	36
6.6: Surrogate Recovery Summaries	37
6.7: Initial and Continuing Calibration Summaries	38
6.8: Run Sequence Reports	55
Section 7: MS Volatiles - Raw Data	57
7.1: Samples	58
7.2: Method Blanks	61
7.3: Blank Spikes	63
7.4: Matrix Spike/Matrix Spike Duplicates	124
7.5: Instrument Performance Checks (BFB)	246
7.6: Initial and Continuing Calibrations	248
7.7: Instrument Run Logs	949
Section 8: MS Semi-volatiles - QC Data Summaries	
8.1: Method Blank Summary	953
8.2: Blank Spike Summary	956
8.3: Matrix Spike/Matrix Spike Duplicate Summary	959
8.4: Instrument Performance Checks (DFTPP)	962
8.5: Internal Standard Area Summaries	965
8.6: Surrogate Recovery Summaries	966
8.7: Initial and Continuing Calibration Summaries	967
8.8: Run Sequence Reports	982
Section 9: MS Semi-volatiles - Raw Data	985
9.1: Samples	986
9.2: Method Blanks	989
9.3: Blank Spikes	991
9.4: Matrix Spike/Matrix Spike Duplicates	1041
9.5: Instrument Performance Checks (DFTPP)	1141

G.

G

00

ဖ

0

12

<u>ω</u>

Table	of	Contents

-2-

9.6: Initial and Continuing Calibrations	1154
9.7: Instrument Run Logs	
9.8: Sample Prep Logs	
Section 10: GC/LC Semi-volatiles - QC Data Summaries	1734
10.1: Method Blank Summary	
10.2: Blank Spike/Blank Spike Duplicate Summary	1738
10.3: Internal Standard Area Summaries	1741
10.4: DDT/Endrin Breakdown Checks	1742
10.5: GC Identification Summaries (Hits)	1744
10.6: Surrogate Recovery Summaries	1752
10.7: GC Surrogate Retention Time Summaries	1755
10.8: Initial and Continuing Calibration Summaries	1758
10.9: Run Sequence Reports	1808
Section 11: GC/LC Semi-volatiles - Raw Data	1817
11.1: Samples	1818
11.2: Method Blanks	1840
11.3: Blank Spike/Blank Spike Duplicates	1857
11.4: DDT/Endrin Breakdown Checks	1972
11.5: Initial and Continuing Calibrations	1998
11.6: Instrument Run Logs	2425
11.7: Sample Prep Logs	2434
Section 12: Metals Analysis - QC Data Summaries	2437
12.1: Inst QC MA57722: Hg	2438
12.2: Inst QC MA57728: As,Ba,Cd,Cr,Pb,Se,Ag	2444
12.3: Inst QC MA57735: As,Ba,Cd,Cr,Pb,Se,Ag	2480
12.4: Prep QC MP52273: As,Ba,Cd,Cr,Pb,Se,Ag	2513
12.5: Prep QC MP52295: Hg	2523
12.6: IDL and Linear Range Summaries	2527
Section 13: Metals Analysis - Raw Data	2531
13.1: Raw Data MA57722	2532
13.2: Raw Data MA57728	2534
13.3: Raw Data MA57735	2592
13.4: Sample Prep Logs	2639
Section 14: General Chemistry - QC Data Summaries	2644
14.1: Method Blank and Spike Results Summary	2645
14.2: Duplicate Results Summary	2646
14.3: Matrix Spike Results Summary	2647
14.4: Inst QC GN64323: Cyanide Reactivity	2648
Section 15: General Chemistry - Raw Data	2652
15.1: Raw Data GN64308: Corrosivity as pH	2653
15.2: Raw Data GN64317: Ignitability (Flashpoint)	2656
15.3: Raw Data GN64323: Cyanide Reactivity	

Sections:

Table of Contents

-3-

15.4: Raw Data GN64324: Sulfide Reactivity	2728
100 10 11 10 10 10 10 10 10 10 10 10 10	_,

 ∞

_

ည

4

SGS North America Inc.

Sample Summary

Fleming-Lee Shue, Inc.

Job No: **JE4364**

Info Tech High School, 21-16 44th Road, Long Island City, NY Project No: 10012

Collected Sample Matrix Client Number Sample ID Date Time By Received Code Type

This report contains results reported as ND = Not detected. The following applies:

Organics ND = Not detected above the MDL

JE4364-1 01/17/25 08:30 JA 01/17/25 AQ Ground Water **PURGE WATER**

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Fleming-Lee Shue, Inc. Job No: JE4364

Site: Info Tech High School, 21-16 44th Road, Long Island City, NY Report Date 1/28/2025 8:55:55 AM

On 01/17/2025, 1 sample(s), 0 Trip Blank(s), 0 Equip. Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of 1.7 °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of JE4364 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Volatiles By Method SW846 8260D

Matrix: AQ Batch ID: V4D6228

- All samples were analyzed within the recommended method holding time.
- Sample(s) JE4342-1MS, JE4342-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- The matrix spike (MS) recovery(s) of Acetone are outside control limits. Outside control limits due to matrix interference.
- The matrix spike duplicate (MSD) recovery(s) of Bromochloromethane are outside control limits. Outside control limits due to matrix interference.
- The matrix spike (MS) recovery(s) of Chloroform are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- JE4364-1 for 1,4-Dioxane: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

MS Semi-volatiles By Method SW846 8270E

Matrix: AQ Batch ID: OP60916

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) JE4195-9FMS, JE4195-9FMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Tuesday, January 28, 2025

- The RPD(s) for the MS and MSD recoveries of 3,3'-Dichlorobenzidine are outside control limits for sample OP60916-MSD. Analytical precision exceeds in-house control limits.
- JE4364-1 for 3-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for 2,6-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: AQ Batch ID: OP61096

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- OP61096-BS1 for Endosulfan sulfate: Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP61096-BSD for Endosulfan sulfate: Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JE4364-1 for Decachlorobiphenyl: Outside of in house control limits.

GC/LC Semi-volatiles By Method SW846 8082A

Batch ID: OP61002 Matrix: AQ

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8151A

Batch ID: OP61055 Matrix: AQ

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- JE4364-1 for 2,4,5-T: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for 2,4-D: Associated CCV outside of control limits high, sample was ND.
- JE4364-1 for 2,4,5-TP (Silvex): Associated CCV outside of control limits high, sample was ND.

Metals Analysis By Method EPA 200.7

Matrix: AO Batch ID: MP52273

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JE4340-1MS, JE4340-1MSD, JE4340-1SDL were used as the QC samples for the metals analysis.
- The RPD(s) for the MS and MSD recoveries of Silver are outside control limits for sample MP52273-S2. Outside of in house limits, but within reasonable method limits.
- The serial dilution RPD(s) for Lead, Arsenic, Chromium are outside control limits for sample MP52273-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- MP52273-SD1 for Barium: Serial dilution indicates possible matrix interference.

Metals Analysis By Method EPA 245.1

Tuesday, January 28, 2025

Matrix: AQ Batch ID: MP52295

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JE4332-1MS, JE4332-1MSD were used as the QC samples for the metals analysis.

General Chemistry By Method SW846 1010B/ASTM D93

Matrix: AQ Batch ID: GN64317

Sample(s) JE4276-1DUP were used as the QC samples for the Ignitability (Flashpoint) analysis.

General Chemistry By Method SW846 9040C

Matrix: AQ Batch ID: GN64308

Sample(s) LB10610-1DUP were used as the QC samples for the Corrosivity as pH analysis.

General Chemistry By Method SW846 CHAP7/9012B

Matrix: AQ Batch ID: GP58890

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JE4364-1DUP were used as the QC samples for the Cyanide Reactivity analysis.

General Chemistry By Method SW846 CHAP7/9034

Matrix: AQ

Tuesday, January 28, 2025

Batch ID: GP58889

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JE4364-1DUP, JE4364-1MS were used as the QC samples for the Sulfide Reactivity analysis.

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Page 1 of 1

Summary of Hits Job Number: JE4364

Account: Fleming-Lee Shue, Inc.

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

Collected: 01/17/25

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JE4364-1 PURGE WATER					
Tetrachloroethene Corrosivity as pH Ignitability (Flashpoint)	0.83 J 6.73 NC > 200	1.0	0.56	ug/l su Deg. F	SW846 8260D SW846 9040C SW846 1010B/ASTM D93

Sample Results

Dayton, NJ

Report of Analysis

SGS North America Inc.

Report of Analysis

Page 1 of 2

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25 Matrix:** AQ - Ground Water Date Received: 01/17/25 Method: SW846 8260D Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V4D6228 Run #1 4D141568.D 1 01/20/25 20:55 JH n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM0 1.1)

67-64-1 Acetone a	CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 Benzene ND 0.50 0.43 ug/l 74-97-5 Bromochloromethane ND 1.0 0.48 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.45 ug/l 75-25-2 Bromoform ND 1.0 0.63 ug/l 78-93-3 2-Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 66-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloromethane ND 1.0 0.73 ug/l 110-82-7 Cyclohexane ND 1.0 0.76 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 55-1-1 1,2-Dichlorobenzene ND	67-64-1	Acetone a	ND	10	3.1	ug/l	
74-97-5 Bromochloromethane ND 1.0 0.48 ug/l 75-27-4 Bromodichloromethane ND 1.0 0.45 ug/l 75-25-2 Bromoform ND 1.0 0.63 ug/l 74-83-9 Bromomethane ND 2.0 1.6 ug/l 78-93-3 2-Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chlorotehane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 1.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 95-50-1 1,2-Dichlorobenzene ND	71-43-2	Benzene	ND	0.50	0.43		
75-25-2 Bromoform ND 1.0 0.63 ug/l 74-83-9 Bromomethane ND 2.0 1.6 ug/l 78-93-3 2-Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 1.0 0.55 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.76 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 106-82-7 Cyclohexane ND 5.0 0.78 ug/l 106-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.54 ug/l 106-93-4 1,2-Dichlorobenzene ND <t< td=""><td>74-97-5</td><td>Bromochloromethane</td><td>ND</td><td>1.0</td><td>0.48</td><td></td><td></td></t<>	74-97-5	Bromochloromethane	ND	1.0	0.48		
74-83-9 Bromomethane ND 2.0 1.6 ug/l 78-93-3 2-Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 2.0 1.8 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND	75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
78-93-3 2-Butanone (MEK) ND 10 2.7 ug/l 75-15-0 Carbon disulfide ND 2.0 1.8 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroform ND 1.0 0.73 ug/l 67-66-3 Chloromethane ND 1.0 0.50 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene <	75-25-2	Bromoform	ND	1.0	0.63	ug/l	
75-15-0 Carbon disulfide ND 2.0 1.8 ug/l 56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloromethane ND 1.0 0.50 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromochloromethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane	74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
56-23-5 Carbon tetrachloride ND 1.0 0.55 ug/l 108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.76 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 1.0 0.57 ug/l 75-34-3 1,1-Dichloroethane	78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
108-90-7 Chlorobenzene ND 1.0 0.56 ug/l 75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane ND 1.0 0.51 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 75-35-4 1,1-Dichloroethene	75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
75-00-3 Chloroethane ND 1.0 0.73 ug/l 67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane ND 1.0 0.51 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene	56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
67-66-3 Chloroform ND 1.0 0.50 ug/l 74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 75-71-8 Dichlorodifluoromethane ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 1.0 0.57 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dic	108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
74-87-3 Chloromethane ND 1.0 0.76 ug/l 110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethene ND 1.0 0.59 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.51 ug/l 156-69-5 trans	75-00-3		ND	1.0	0.73	ug/l	
110-82-7 Cyclohexane ND 5.0 0.78 ug/l 96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.51 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5	67-66-3	Chloroform	ND	1.0	0.50	ug/l	
96-12-8 1,2-Dibromo-3-chloropropane ND 2.0 0.53 ug/l 124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-02-6 <td>74-87-3</td> <td>Chloromethane</td> <td>ND</td> <td>1.0</td> <td>0.76</td> <td>ug/l</td> <td></td>	74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
124-48-1 Dibromochloromethane ND 1.0 0.56 ug/l 106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6	110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
106-93-4 1,2-Dibromoethane ND 1.0 0.48 ug/l 95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1<	96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
95-50-1 1,2-Dichlorobenzene ND 1.0 0.53 ug/l 541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.47 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4	124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
541-73-1 1,3-Dichlorobenzene ND 1.0 0.54 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
106-46-7 1,4-Dichlorobenzene ND 1.0 0.51 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 102-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
75-71-8 Dichlorodifluoromethane ND 2.0 0.56 ug/l 75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
75-34-3 1,1-Dichloroethane ND 1.0 0.57 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
107-06-2 1,2-Dichloroethane ND 1.0 0.60 ug/l 75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-35-4 1,1-Dichloroethene ND 1.0 0.59 ug/l 156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
156-59-2 cis-1,2-Dichloroethene ND 1.0 0.51 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
156-60-5 trans-1,2-Dichloroethene ND 1.0 0.54 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
78-87-5 1,2-Dichloropropane ND 1.0 0.51 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.47 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.43 ug/l 123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	78-87-5		ND	1.0	0.51	ug/l	
123-91-1 1,4-Dioxane b ND 130 39 ug/l 100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
100-41-4 Ethylbenzene ND 1.0 0.60 ug/l	10061-02-6		ND	1.0	0.43	ug/l	
y o		•	ND	130	39	ug/l	
76-13-1 Freon 113 ND 5.0 0.58 ug/l	100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
	76-13-1	Freon 113	ND	5.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25 Matrix:** AQ - Ground Water Date Received: 01/17/25 Method: SW846 8260D **Percent Solids:**

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

VOA TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l		
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	0.83	1.0	0.56	ug/l	J	
108-88-3	Toluene	ND	1.0	0.49	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits				
1868-53-7	Dibromofluoromethane	106%	80-120%				
17060-07-0	1,2-Dichloroethane-D4	98%	80-120%				
2037-26-5	Toluene-D8	93%	80-120%				
460-00-4	4-Bromofluorobenzene	95%	82-114%				

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND.

Page 1 of 3

SGS North America Inc.

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25 Matrix:** AQ - Ground Water Date Received: 01/17/25 Method: SW846 8270E SW846 3510C Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP60916 E3H171 Run #1 3H2770.D 1 01/21/25 14:30 KH 01/20/25 11:00

Run #2

Final Volume Initial Volume

Run #1 250 ml 1.0 ml

Run #2

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	4.0	0.37	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	4.0	0.53	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	0.52	ug/l	
105-67-9	2,4-Dimethylphenol	ND	4.0	0.67	ug/l	
51-28-5	2,4-Dinitrophenol	ND	4.0	1.9	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	4.0	1.5	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.47	ug/l	
	3&4-Methylphenol	ND	2.0	1.5	ug/l	
88-75-5	2-Nitrophenol	ND	4.0	0.40	ug/l	
100-02-7	4-Nitrophenol ^a	ND	8.0	0.45	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.2	ug/l	
108-95-2	Phenol	ND	2.0	0.26	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.0	0.64	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	4.0	0.49	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	4.0	0.59	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.61	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.42	ug/l	
98-86-2	Acetophenone	ND	2.0	0.52	ug/l	
120-12-7	Anthracene	ND	1.0	0.56	ug/l	
1912-24-9	Atrazine	ND	2.0	0.72	ug/l	
100-52-7	Benzaldehyde	ND	4.0	0.44	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.51	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.63	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.57	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.48	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.55	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.86	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.59	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.43	ug/l	
106-47-8	4-Chloroaniline	ND	4.0	0.53	ug/l	
86-74-8	Carbazole	ND	1.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID:JE4364-1Date Sampled:01/17/25Matrix:AQ - Ground WaterDate Received:01/17/25Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.35	ug/l	
218-01-9	Chrysene	ND	1.0	0.52	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.46	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.50	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.60	ug/l	
121-14-2	2,4-Dinitrotoluene ^a	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene ^a	ND	1.0	0.56	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	1.1	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.50	ug/l	
132-64-9	Dibenzofuran	ND	4.0	0.73	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	1.6	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.58	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.55	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.3	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.58	ug/l	
86-73-7	Fluorene	ND	1.0	0.59	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.54	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.35	ug/l	
77-47-4	Hexachlorocyclopentadiene a	ND	8.0	0.98	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.64	ug/l	
78-59-1	Isophorone	ND	2.0	0.39	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.64	ug/l	
88-74-4	2-Nitroaniline	ND	4.0	0.62	ug/l	
99-09-2	3-Nitroaniline ^a	ND	4.0	0.64	ug/l	
100-01-6	4-Nitroaniline	ND	4.0	0.75	ug/l	
91-20-3	Naphthalene	ND	1.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.65	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.0	0.42	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.48	ug/l	
129-00-0	Pyrene	ND	1.0	0.50	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.48	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	21%	10-69%			
4165-62-2	Phenol-d5	14%		10-4	7%	

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID:JE4364-1Date Sampled:01/17/25Matrix:AQ - Ground WaterDate Received:01/17/25Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

ABN TCL List (SOM0 1.1)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	47%		17-144%
4165-60-0	Nitrobenzene-d5	36 %		17-126 %
321-60-8	2-Fluorobiphenyl	42%		23-124%
1718-51-0	Terphenyl-d14	43%		13-135%

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS North America Inc.

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25** Matrix: AQ - Ground Water Date Received: 01/17/25 Method: SW846 8151A SW846 3510C **Percent Solids:**

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	9G22700.D	1	01/23/25 13:18	KC	01/22/25 09:00	OP61055	G9G868
Run #2							

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7	2,4-D ^a	ND	0.40	0.19	ug/l	
93-72-1	2,4,5-TP (Silvex) ^a	ND ND	0.080	0.050	ug/l	
93-76-5	2,4,5-T ^a	ND	0.080	0.043	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9	2,4-DCAA	92%		10-1	75 %	
19719-28-9	2,4-DCAA	92%		10-1	75 %	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS North America Inc.

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25** Matrix: AQ - Ground Water Date Received: 01/17/25 Method: SW846 8081B SW846 3511 Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** 8G63233.D OP61096 G8G2722 Run #1 1 01/24/25 20:27 KC 01/23/25 13:30

Run #2

Initial Volume Final Volume

Run #1 54.6 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0037	0.0017	ug/l	
319-84-6	alpha-BHC	ND	0.0037	0.0017	ug/l	
319-85-7	beta-BHC	ND	0.0037	0.0028	ug/l	
319-86-8	delta-BHC	ND	0.0037	0.00081		
58-89-9	gamma-BHC (Lindane)	ND	0.0037	0.0022	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0037	0.0014	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0037	0.0012	ug/l	
60-57-1	Dieldrin	ND	0.0037	0.0027	ug/l	
72-54-8	4,4'-DDD	ND	0.0037	0.0015	ug/l	
72-55-9	4,4'-DDE	ND	0.0037	0.00095		
50-29-3	4,4'-DDT	ND	0.0037	0.0022	ug/l	
72-20-8	Endrin	ND	0.0037	0.0019	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0037	0.00047		
7421-93-4	Endrin aldehyde	ND	0.0037	0.0018	ug/l	
53494-70-5	Endrin ketone	ND	0.0037	0.0026	ug/l	
959-98-8	Endosulfan-I	ND	0.0037	0.0022	ug/l	
33213-65-9	Endosulfan-II	ND	0.0037	0.0013	ug/l	
76-44-8	Heptachlor	ND	0.0037	0.0022	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0037	0.0017	ug/l	
72-43-5	Methoxychlor	ND	0.0073	0.0042	ug/l	
8001-35-2	Toxaphene	ND	0.092	0.062	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	127%		50-15	60 %	
877-09-8	Tetrachloro-m-xylene	87%		50-1 5	60 %	
2051-24-3	Decachlorobiphenyl	60%		50-1 5	60 %	
2051-24-3	Decachlorobiphenyl	39% a		50-1 5	60 %	

(a) Outside of in house control limits.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS North America Inc.

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25** Matrix: AQ - Ground Water Date Received: 01/17/25 Method: SW846 8082A SW846 3511 Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP61002 **GRL603** Run #1 RL25042.D 1 01/21/25 19:44 MLC 01/21/25 08:40

Run #2

Final Volume Initial Volume Run #1 54.0 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.19	0.051	ug/l	
11104-28-2	Aroclor 1221	ND	0.19	0.097	ug/l	
11141-16-5	Aroclor 1232	ND	0.19	0.071	ug/l	
53469-21-9	Aroclor 1242	ND	0.19	0.040	ug/l	
12672-29-6	Aroclor 1248	ND	0.19	0.036	ug/l	
11097-69-1	Aroclor 1254	ND	0.19	0.069	ug/l	
11096-82-5	Aroclor 1260	ND	0.19	0.11	ug/l	
11100-14-4	Aroclor 1268	ND	0.19	0.063	ug/l	
37324-23-5	Aroclor 1262	ND	0.19	0.040	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	89%		50-1	50 %	
877-09-8	Tetrachloro-m-xylene	92%		50-1	50 %	
2051-24-3	Decachlorobiphenyl	91%		50-1	50 %	
2051-24-3	Decachlorobiphenyl	97%		50-1	50 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 Date Sampled: 01/17/25
Matrix: AQ - Ground Water Date Received: 01/17/25
Percent Solids: n/a

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 3.0	3.0	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³
Barium	< 200	200	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³
Cadmium	< 3.0	3.0	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³
Chromium	< 10	10	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³
Lead	< 3.0	3.0	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³
Mercury	< 0.20	0.20	ug/l	1	01/20/25	01/20/25 CM	EPA 245.1 ¹	EPA 245.1 ⁴
Selenium	< 10	10	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³
Silver	< 10	10	ug/l	1	01/18/25	01/21/25 MM	EPA 200.7 ²	EPA 200.7 ³

(1) Instrument QC Batch: MA57722
(2) Instrument QC Batch: MA57735
(3) Prep QC Batch: MP52273
(4) Prep QC Batch: MP52295

Report of Analysis

Client Sample ID: PURGE WATER

Lab Sample ID: JE4364-1 **Date Sampled: 01/17/25** Matrix: AQ - Ground Water Date Received: 01/17/25 Percent Solids: n/a

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Corrosivity as pH	6.73 NC		su	1	01/20/25 17:38	DB	SW846 9040C
Cyanide Reactivity	< 10	10	mg/l	1	01/20/25 20:14	JD	SW846 CHAP7/9012B
Ignitability (Flashpoint)	> 200		Deg. F	1	01/20/25 18:01	MM	SW846 1010B/ASTM D93
Sulfide Reactivity	< 100	100	mg/l	1	01/20/25 21:46	MP	SW846 CHAP7/9034

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

Parameter Certification Exceptions

Job Number: JE4364

Account: FLSNYNY Fleming-Lee Shue, Inc.

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

The following parameters included in this report are exceptions to NELAC certification.

The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Cyanide Reactivity Sulfide Reactivity		SW846 CHAP7/9012B SW846 CHAP7/9034	AQ AQ	SGS is not certified for this parameter. ^a SGS is not certified for this parameter. ^a

(a) Reactivity analyzed following SW846 Chapter 7 is no longer recognized by regulatory agencies. Use of results should be verified through the program to which the data is being submitted.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.

_	SGS	GV	V ,			SG	S Nort 35 Rou	h An te 130	F Clarica lo, Dayto 32-329-	inc D on, NJ 0 0200	ayt	on .	1 1		•				D-EX	Tracking	1#			4		rder Corr	[^{ρ]#} τ	_ of _ ~ ~ 0 136	(625	- 173
Compo	Client / Reporting Information	١	Deliver 1		Projec	t Inform																,								Matrix Codes
1-16	my Name: uning Lee Shive		Project Name:	Info	Te	eh '	416	Jh.	Scl	000	l										11								DW GV	- Drinking Water - Ground Water
158	w 29th Street	2	21- 16t	n 44t	Bond	Billing in	formatio	n (if dif	ferent fro	n Report	to)	_	F1				.,	=		11	JJ10		4	å						WW - Water - Surface Water SO - Soil
NY City	New York 100	ا ا	LIC		State	Company	Name						į							7	70		4	1-	l	*				SL- Sludge SED-Sediment
Designat	Control F I		Project #		47	Street Ad	dress						L . 1	_					CLAS	7	3		1,3	i)						OI - Oil Q - Other Liquid
J.A.	rey jardan Ofteni	mlee	100																7	Ö	8		1	51	1			- 1	1	AIR - Air OL - Other Solid
DID.	-675-3225 Shue	·‱.	Client Purchas	e Order#		City						State	Ŋ.			Zφ			ăΙ	560.	1	8	dd	1		,			- 1	WP - Wipe B - Field Blank
Sample	r(s) Name(s) P	hone#	Project Manag	er		Attention:													RCP D	∽	48LV	¥	8	± 8		'			EB-	Equipment Blank B - Rinse Blank
ΙĐ	rey		JAN	<u>w</u>	Colle	ction					_		Number	of P-	Hlor					>	ᄕ		` `		Use Only	<u></u>			— Դ	TB - Trip Blank
	*				ÇOILE			Source	!						k	T.	W.	- to		- pr		No.	µn une	v (rap		1			1	*
SGS Sample #	Field ID / Point of Collection		MEOH/DI Vial#	Date	Time	Sampléd by	Grab (G) Comp (C)	Chlorinat ed (Y/N)	Matrix	of bottles	ξ	NaOH	NO.	De la	NUNE DI Water	MEOH	ENCORE	1			1 69	1112		f	1,12				- ['.	AB USE ONLY
1	Purge water	•		1/17/2	8:30	J/A	G	И	Gw	71	3	\Box	1	13		1	-		Z	A	4	×	X	X	12.7.20					
		_												Т		\top													$\neg \vdash$	
											П	\exists	\neg	_	╅	+	-							-					_	
			(+	╅	✝	\vdash		\neg	_				-						, ,
		 i						\neg	\neg					\top	+	+	+		\neg				·	1			_			
						\vdash					Н	\dashv	_	┪	+	+			一					i				-		
	*****					\vdash	-1		\neg	_	-	-	+		╁	╁	\vdash	-	-				-	·	-		_		\dashv	
\Box					<u> </u>			\neg			-	\dashv		- -	╁	╁	+						 		-				-	
	3				-		-			_	\exists	十	\dashv	+	+	+	-		\dashv		_	 	-		\vdash	 			-	$\overline{}$
					 			\dashv	\dashv	_	\dashv	-	+	+	+	╫	\vdash	-	-		-	-		-			_	-+	+	
-					 		-				\dashv	\dashv	-	╬	+	+	-		\dashv			<u> </u>			├─				+	
-											\dashv	\dashv		╬	╬	╁	╁┤		-			-				_				
	Turn Around T	ime (Busir	ness Days)					,				;	Deliv	/erab	le		Ш	L_					 	Щ.	L	Commer	ts / Sper	ial Instructió	òns	
		-	Approved By (SGS PM) / Date	1;				'A" (Leve			i	اسباء		P Categ		ž	-						- 2	× 23					
•	10 Business Days 5 Business Days					▎╠			'B" (Level Level 3)	2)					P Categ CP Crit					,								, •		
	3 Business Days*					l⊨	Full Tie	_					<u>, — </u>		P Crit														-	
	2 Business Days*						Comm	-1					恒:	State f	Foirms								l							ŀ
	1 Business Day* Other	-		equit;	•	=	NJ DK	QP ÷	_		•••	_	Ψ,		ormat	_				- 11	7iti.	al /	\SS	es	sm	eni	B	LZA	··	1
	All data available via SGS Engage		roval needed fe	or 1-3 BD TAT						nmercial Commerc									mary	L	ah	eL۱	/er	ific	atic	http://v	ww.sg	s.com/en	/terms-a	nd-conditions
Sample Rejine	Custody must be documented below eac	:h time sam ate / Time:	ples cirange p	ossession, incl Received By:	, ,	7		-			Relie	uished	By	_	_	7			c ·	~ ~		Date / T		· no	Receive		7 /	-		
1/1		-17-2	23/12:19		ر، / ا	135	1	511				<u> </u>		<u> ၂</u>	17	12	- 5		ָ כ	5 5		Jau / 1			2		V JE			
Reline 3	quished by: Da	ate / Time:	`	Received By:	1						Relino	ulshed	Ву:	-1								Date / T	lme:		Receive	d By	7			
	guished by: Da	ate / Time:		Received By:						14	Custo	dy Seal	1	_						_				Therm			Dn lce	1-3	Cooler Yem	p. *C
5				5								-					[] No	intact		Absent			See San	pie Recei	ot Summa	<u>محر</u> _y		ROD	
	EHSA-QAC-0023-05 Rev.Date:8/5	/22										Ì	,															لا_	.,,,,,,	

JE4364: Chain of Custody

Page 1 of 2

SGS Sample Receipt Summary

Job Number:	JE4364 Client	: FLEMING-LEE SHUE	, INC.	Project: INFO TECH I	HIGH SCHOOL, 21-16 44TH
Date / Time Received:	1/17/2025 3:53:00 PM	Delivery Method:	SGS COURIER	Airbill #'s:	
Cooler Temps (Raw Mea	sured) °C: Cooler 1: (1.3 rected) °C: Cooler 1: (1.7				
Cooler Temps (Corrections) Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control Preserv 1. Trip Blank present / cool 2. Trip Blank listed on COC 3. Samples preserved prop 4. VOCs headspace free: Test Strip Lot #s:	Y or N ✓ □ 3. COC ✓ □ 4. Smpl Da Y or N ✓ □ IR-50 Ice (Bag) 1 ratio Y or N N/ er: ✓ □ □ ∴ □ □ ∴ □ □ □ ∴ □ □ □ ∴ □ □ □ □	Present:	1. Sample label 2. Container lab 3. Sample conta Sample Integ 1. Sample recvo 2. All containers 3. Condition of s Sample Integ 1. Analysis req 2. Bottles recei 3. Sufficient vo 4. Compositing 5. Filtering inst	ainer label / COC agree: rity - Condition d within HT: s accounted for: sample: rity - Instructions uested is clear: ved for unspecified tests lume recvd for analysis: g instructions clear: ructions clear:	Y or N Y O N Y O N Y O N Intact Y O N N/A Y O N N/A Y O N N/A Y O O O O O O O O O O O O O O O O O O

SM089-03 Rev. Date 12/7/17

JE4364: Chain of Custody

Page 2 of 2

Internal Sample Tracking Chronicle

Fleming-Lee Shue, Inc.

JE4364 Job No:

Info Tech High School, 21-16 44th Road, Long Island City, NY Project No: 10012

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JE4364-1	Collected: 17-JAN-25 0	08:30 By: JA	Receiv	ed: 17-JAN-	25 By:	: AT
PURGE W.	AIEK					
JE4364-1 JE4364-1	EPA 245.1 SW846 9040C	20-JAN-25 14:06 20-JAN-25 17:38	CM DB	20-JAN-25	CM	HG CORR
JE4364-1	SW846 1010B/ASTM I	D 96 -JAN-25 18:01	MM			IGN
JE4364-1 JE4364-1	SW846 CHAP7/9012B SW846 8260D	20-JAN-25 20:14 20-JAN-25 20:55	JD JH	19-JAN-25	RB	CREAC V8260TCL11
JE4364-1	SW846 CHAP7/9034	20-JAN-25 21:46	MP	19-JAN-25	RB	SREAC
JE4364-1	SW846 8270E	21-JAN-25 14:30	KH	20-JAN-25	GA	ABLV8270TCL11
JE4364-1	EPA 200.7	21-JAN-25 15:26	$\mathbf{M}\mathbf{M}$	18-JAN-25	SK	AG,AS,BA,CD,CR,PB,SE
JE4364-1	SW846 8082A	21-JAN-25 19:44	MLC	21-JAN-25	BA	P8082PCB11AO
JE4364-1	SW846 8151A	23-JAN-25 13:18	KC	22-JAN-25	GA	H8151STD
JE4364-1	SW846 8081B	24-JAN-25 20:27	KC	23-JAN-25	BA	P8081PESTTCL

SGS Internal Chain of Custody

Job Number: JE4364

Account: FLSNYNY Fleming-Lee Shue, Inc.

Project: Info Tech High School, 21-16 44th Road, Long Island City, NY

Received: 01/17/25

Sample.Bottle	Transfer	Transfer		_
Number	FROM	ТО	Date/Time	Reason
JE4364-1.1	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.1	Secured Storage	Ayse Yilmaz	01/22/25 07:44	Retrieve from Storage
JE4364-1.1	Ayse Yilmaz	·	01/22/25 09:09	Depleted
JE4364-1.1.1	Ayse Yilmaz	Organics Prep	01/22/25 07:44	Extract from JE4364-1.1
JE4364-1.1.1	Organics Prep	George Aymes	01/23/25 00:28	Extract from JE4364-1.1
JE4364-1.1.1	George Aymes	Extract Storage	01/23/25 00:28	Return to Storage
JE4364-1.1.1	Extract Storage	Kyra Conover		Retrieve from Storage
JE4364-1.1.1	Kyra Conover	GC9G	01/23/25 10:11	Load on Instrument
JE4364-1.2	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.2	Secured Storage	Bhavin Amin		Retrieve from Storage
JE4364-1.2	Bhavin Amin	Secured Storage		Return to Storage
JE4364-1.2	Secured Storage	Bhavin Amin		Retrieve from Storage
JE4364-1.2	Bhavin Amin	Secured Storage		Return to Storage
JE4364-1.2.1	Bhavin Amin	Organics Prep	01/21/25 07:17	Extract from JE4364-1.2
JE4364-1.2.1	Organics Prep	Bhavin Amin	01/21/25 10:53	Extract from JE4364-1.2
JE4364-1.2.1	Bhavin Amin	Extract Storage		Return to Storage
JE4364-1.2.1	Extract Storage	Christine Phillips		Retrieve from Storage
JE4364-1.2.1	Christine Phillips	GC8G		Load on Instrument
JE4364-1.2.2	Bhavin Amin	Organics Prep	01/21/25 07:18	Extract from JE4364-1.2
JE4364-1.2.2	Organics Prep	Bhavin Amin		Extract from JE4364-1.2
JE4364-1.2.2	Bhavin Amin	Extract Storage		Return to Storage
JE4364-1.2.3	Bhavin Amin	Organics Prep	01/21/25 08:21	Extract from JE4364-1.2
JE4364-1.2.3	Organics Prep	Bhavin Amin		Extract from JE4364-1.2
JE4364-1.2.3	Bhavin Amin	Extract Storage		Return to Storage
JE4364-1.2.3	Extract Storage	Christine Phillips		Retrieve from Storage
JE4364-1.2.3	Christine Phillips	GC8G		Load on Instrument
JE4364-1.2.4	Bhavin Amin	Organics Prep	01/23/25 12:02	Extract from JE4364-1.2
JE4364-1.2.4	Organics Prep	Bhavin Amin		Extract from JE4364-1.2
JE4364-1.2.4	Bhavin Amin	Extract Storage		Return to Storage
JE4364-1.3	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.4	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.5	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.5	Secured Storage	Jessica Lambert		Retrieve from Storage
	Jessica Lambert		01/20/25 14:06	

SGS Internal Chain of Custody Job Number: JE4364

FLSNYNY Fleming-Lee Shue, Inc. Account:

Info Tech High School, 21-16 44th Road, Long Island City, NY **Project:**

01/17/25 Received:

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JE4364-1.5.1	Jessica Lambert	Organics Prep	01/20/25 09:41	Extract from JE4364-1.5
JE4364-1.5.1	Organics Prep	George Aymes	01/21/25 02:48	Extract from JE4364-1.5
JE4364-1.5.1	George Aymes	Extract Storage	01/21/25 02:48	Return to Storage
JE4364-1.6	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.7	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.7	Secured Storage	Dave Hunkele	01/18/25 10:12	Retrieve from Storage
JE4364-1.7	Dave Hunkele	Secured Staging Area		Return to Storage
JE4364-1.7	Secured Staging Area	Sena Kim		Retrieve from Storage
JE4364-1.7	Sena Kim	Brianna Perez	01/20/25 06:55	Custody Transfer
JE4364-1.7	Brianna Perez	Secured Storage		Return to Storage
JE4364-1.8	Nis Patel	Secured Storage	01/17/25 19:40	Return to Storage
JE4364-1.8	Secured Storage	Riley Braun		Retrieve from Storage
JE4364-1.8	Riley Braun	Secured Storage		Return to Storage
JE4364-1.8	Secured Storage	Todd Shoemaker		Retrieve from Storage
JE4364-1.8	Todd Shoemaker	Secured Staging Area		Return to Storage
JE4364-1.8	Secured Staging Area	Daniel Broche		Retrieve from Storage
JE4364-1.8	Daniel Broche	Secured Storage		Return to Storage

February 4, 2025

Sent via e-mail, no hard copy to follow

Joel Kane Fleming – Lee Shue Project Manager 158 West 29th St, Fl. 9th New York, NY 10001

Re: Info Tech High School

21-16 44th Rd, Long Island City, NY 11101 NYSDEC VCP Site Number V00366-2 Non-Hazardous Purge Water Determination

Dear Mr. Kane:

The New York State Department of Environmental Conservation (DEC) has reviewed your letter dated November 13, 2025 and additional information on January 3, 2025, requesting a "contained-in" determination for purge water generated a part of semi-annual groundwater sampling at the Site referenced above.

Evaluation

Concentrations (Lab Sample ID: JD99032-2, JD99032-3, JD99032-4, JD99032-5, JD99032-6, JD99032-7, JD99032-8, JE4364-1) detected for individual volatile organic compounds (VOCs), were all less than their current NYSDEC "contained in" water action levels and Land Disposal Restriction concentrations.

Concentrations (Lab Sample ID: JD99032-2, JD99032-3, JD99032-4, JD99032-5, JD99032-6, JD99032-7, JD99032-8, JE4364-1) detected for tetrachloroethene and trichloroethene were all less than their current NYSDEC "contained in" water action levels and Land Disposal Restriction concentrations. Therefore, two (2) 55-gallon drums, containing purge water generated during the semi-annual groundwater sampling event at the above Site, do not have to be managed as hazardous waste and can be transported off-site to permitted solid waste facility or POTW for proper disposal as non-hazardous. Please provide DEC the name and location of the facility.

Should you have any questions regarding the content of this letter, please do not hesitate to contact me at (518) 402-9594 or email me at contained-

on Eglen

inrequest@dec.ny.gov.

Sincerely,

Alison Egbon

Professional Engineer I

Hazardous Waste Compliance and Technical Support Section

ec: C. Allan, DEC

	1/							
1	WASTE MANIFEST Not required 1 631	rgency Response Phone -608-8810	4. Waste Tracking Number 2 6 0 2 -	41625				
	5. Generator's Name and Mailing Address CDI 21st LIC, LLC 525 Northern Boulevard, Suite 300 Great Neck NY 11021 Generator's Site Address (if different than mailing address) Information Technology H.S. 21-16 44th Road Long Island City NY 11101							
	Generator's Phone: 6. Transporter 1 Company Name U.S. EPA ID Number							
	Brookside Environmental, Inc.	NYR000081661						
	7. Transporter 2 Company Name U.S. EPA ID Number							
	8. Designated Facility Name and Site Address Date Transfer Corp. 129 Date Street West Babylon NY 11704 Facility's Phone: 631 393-2882							
	Tability 5 Floring.	10. Containers	11. Total 12. Unit					
	Waste Shipping Name and Description	No. Type	Quantity Wt./Vol.					
GENERATOR -	Non-RCRA, non-DOT waste, liquid (groundwater)	0 0 2 DM	00110 G					
- GENE	2.							
	3.							
	4.							
	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. Generator's/Offeror's Printed/Typed Name Signature Month Day Year							
Sanskruti Pashte on behalf of CDIZISTLIGUE Stashte								
INT'L	Transporter Signature (for exports only): Import to U.S. Export from U.S. Port of entry/exit:							
TER	16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Day Year							
POF	Deep Patel	7 2 8 A		4 16 25				
TRANSPORTER	Transporter 2 Printed/Typed Name Signature			Month Day Year				
1	17. Discrepancy 17a. Discrepancy Indication Space		_					
	LJ Quantity LJ Type L	Residue	Partial Rejection	Full Rejection				
LITY	17b. Alternate Facility (or Generator) U.S. EPA ID Number							
D FAC	Facility's Phone: 17c. Signature of Alternate Facility (or Generator)			Month Day Year				
DESIGNATED FACILITY								
- DES								
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a							
+	Printed/Typed Name Pomando Sanchez Signature	US)		Month Day Year W 2825				
169	9-BLC-O 5 11977 (Rev. 9/09)	DESI	GNATED FACILITY	TO GENERATOR				