

SITE INVESTIGATION REPORT

PARCEL 2 – SENECA STREET BUFFALO, NEW YORK

Prepared For: Hodgson, Russ, Andrews, Woods & Goodyear

> Prepared by: Conestoga-Rovers & Associates

2055 Niagara Falls Blvd. Suite Three Niagara Falls, NY 14304

Office: 716-297-6150 Fax: 716-297-2265

FEBRUARY 2002 REF. NO. 15867 (2) This report is printed on recycled paper.

TABLE OF CONTENTS

1.0	INTRODUCTION1						
	1.1	OBJECTIVE1					
	1.2	ORGANIZATION OF THE REPORT2					
2.0	SITE LO	OCATION AND DESCRIPTION					
	2.1	SITE LOCATION AND DESCRIPTION					
	2.2	SITE DESCRIPTION					
	2.3	SURFACE CHARACTERISTICS4					
	2.4	PROPERTY OWNERSHIP4					
	2.5	UNDERGROUND UTILITIES4					
	2.6	NATURAL RESOURCES					
	2.7	GROUNDWATER USE					
3.0	FIELD ACTIVITIES AND SAMPLE ANALYSES6						
	3.1	SUBSURFACE SOIL SAMPLING6					
	3.2	GROUNDWATER7					
	3.2.1	MONITORING WELL/PIEZOMETER INSTALLATION7					
	3.2.2	WELL AND PIEZOMETER DEVELOPMENT7					
	3.2.3	GROUNDWATER SAMPLING8					
	3.3	HYDRAULIC MONITORING8					
	3.4	HYDRAULIC CONDUCTIVITY TESTING8					
	3.4.1	RECOVERY TESTS9					
	3.4.2	SLUG TESTS9					
	3.5	SITE SURVEY9					
	3.6	WASTE DISPOSAL					
4.0	REGIO	NAL GEOLOGY AND HYDROGEOLOGY11					
	4.1	GEOLOGY11					
	4.1.1	OVERBURDEN11					
	4.1.2	BEDROCK11					
	4.2	HYDROGEOLOGY12					
	4.2.1	OVERBURDEN HYDROGEOLOGY12					
	4.2.2	BEDROCK HYDROGEOLOGY12					
5.0	SITE GEOLOGY AND HYDROGEOLOGY13						
	5.1	GEOLOGY13					
	5.1.1	FILL					
	5.1.2	NATIVE SOIL					
	5.1.3	BEDROCK					
	5.2	HYDROGEOLOGY14					

TABLE OF CONTENTS

	5.2.1	GROUNDWATER LEVEL ELEVATIONS	14
	5.2.1.1	SHALLOW OVERBURDEN	14
	5.2.1.2	DEEP OVERBURDEN	
6.0	NATURE	E AND EXTENT OF CONTAMINATION	16
	6.1	SOIL VAPOR	
	6.1.1	RESULTS	
	6.1.2	SUMMARY	
	6.2	SUBSURFACE SOILS	
	6.2.1	RESULTS	
	6.2.1.1	ORGANIC CHEMICAL COMPOUNDS	
	6.2.1.1.1	VOLATILE ORGANIC COMPOUNDS	
	6.2.1.1.2	SEMI-VOLATILE ORGANIC COMPOUNDS	20
	6.2.1.1.3	METALS	21
	6.2.2	SUMMARY	
	6.3	GROUNDWATER	
	6.3.1	RESULTS	
	6.3.1.1	ORGANIC CHEMICAL COMPOUNDS	
	6.3.1.2	METALS	24
	6.3.2	SUMMARY	
7.0	CONCLU	JSIONS AND RECOMMENDATIONS	25

LIST OF FIGURES (Following Report)

- FIGURE 2.1 SITE LOCATION PLAN
- FIGURE 2.2 SITE PLAN, SURFACE CHARACTERISTICS AND UNDERGROUND UTILITIES
- FIGURE 2.3 BUILDING LOCATIONS
 - FIGURE 5.1 CROSS-SECTION LOCATION PLAN
 - FIGURE 5.2 SUBSURFACE PROFILE A-A'
- FIGURE 5.3 SUBSURFACE PROFILE B-B'
 - FIGURE 5.4 SUBSURFACE PROFILE C-C'
- FIGURE 5.5 SUBSURFACE PROFILE D-D'
- FIGURE 5.6 ISOPACH OF FILL
 - FIGURE 5.7 POTENTIOMETRIC SURFACE CONTOURS, SHALLOW OVERBURDEN
 - FIGURE 5.8 POTENTIOMETRIC SURFACE CONTOURS, DEEP OVERBURDEN
 - FIGURE 6.1 MAXIMUM PCE CONCENTRATIONS IN SITE SOILS
 - FIGURE 6.2 LOCATIONS OF SVOC EXCEEDANCES IN SITE SOIL
 - FIGURE 6.3 PCE CONCENTRATION ISOPLETH, SHALLOW OVERBURDEN GROUNDWATER
- FIGURE 6.4 TCE CONCENTRATION ISOPLETH, SHALLOW OVERBURDEN GROUNDWATER
 - FIGURE 6.5 DCE CONCENTRATION ISOPLETH, SHALLOW OVERBURDEN GROUNDWATER
 - FIGURE 6.6 PCE CONCENTRATION ISOPLETH, DEEP OVERBURDEN GROUNDWATER

LIST OF FIGURES (Following Report)

FIGURE 6.7	TCE CONCENTRATION ISOPLETH, DEEP OVERBURDEN GROUNDWATER
FIGURE 6.8	DCE CONCENTRATION ISOPLETH, DEEP OVERBURDEN GROUNDWATER

LIST OF TABLES (Following Report)

- TABLE 2.1HISTORIC BUSINESS LISTINGS/PROPERTY USE
 - TABLE 2.2PROPERTY OWNERSHIP INFORMATION
 - TABLE 3.1SAMPLE COLLECTION AND ANALYSES SUMMARY
 - TABLE 3.2MONITORING WELL INSTALLATION DETAILS
 - TABLE 3.3WATER LEVEL ELEVATIONS
 - TABLE 3.4WELL RECOVERY INFORMATION
 - TABLE 5.1ESTIMATED HYDRAULIC CONDUCTIVITY VALUES
 - TABLE 5.2
 ESTIMATED HYDRAULIC CONDUCTIVITY VALUES
 - TABLE 6.1GENERIC GROUNDWATER VOLATILIZATION TO INDOOR AIR
INHALATION CRITERIA
 - TABLE 6.2ORGANIC CHEMICAL COMPOUNDS DETECTED IN SOILS
 - TABLE 6.3METALS DETECTED IN SOIL
 - TABLE 6.4
 ORGANIC CHEMICAL COMPOUNDS DETECTED IN GROUNDWATER
 - TABLE 6.5METALS DETECTED IN GROUNDWATER

LIST OF APPENDICES

- APPENDIX A SITE SURVEY MAPS
- APPENDIX B BUFFALO SEWER AUTHORITY SEWER DRAWINGS
- APPENDIX C NATURAL RESOURCE SURVEY REPORT
- APPENDIX D STRATIGRAPHIC AND INSTRUMENTATION LOGS
- APPENDIX E WELL DEVELOPMENT AND PURGING RECORDS
- APPENDIX F WASTE MANIFESTS
- APPENDIX G WASTEWATER DISCHARGE PERMIT
 - APPENDIX H HYDRAULIC CONDUCTIVITY CALCULATIONS
 - APPENDIX I ANALYTICAL DATA AND VALIDATION REPORTS

LIST OF PLANS

PLAN 1 SEWER SYSTEMS PLOT PLAN

1.0 INTRODUCTION

Phase I and Phase II Environmental Site Assessments (ESAs) of the property located at 2137 Seneca Street, Buffalo, New York (Site) were completed between June and August 1999. The Site Assessments were undertaken by The Fourth River Company (FRC) on behalf of a prospective purchaser of the property, Walnut Capital Partners. The Site is owned by Franchise Finance Corporation of America (FFCA).

The results of the ESAs indicated that volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals were present in soil and groundwater on the Site at concentrations which exceeded the relevant New York State standards.

On behalf of FFCA, representatives of Hodgson, Russ, Andrews, Woods & Goodyear (HRAWG) and Conestoga-Rovers & Associates (CRA) met with representatives of the New York State Department of Environmental Conservation (NYSDEC) on April 14, 2000. The parties agreed that additional investigative activities were necessary to determine the nature and extent of chemicals and metals in on-Site soil and groundwater. Subsequently, FFCA voluntarily completed a Preliminary Site Investigation to confirm the data reported in the FRC ESAs and to develop a Site characterization. The results of the Preliminary Site Investigation demonstrated that an area of environmental concern existed in the northern quadrant of the property.

FFCA developed a Work Plan for a Site Investigation/Feasibility Study (SI/FS) as part of a Voluntary Cleanup Agreement under the Voluntary Cleanup Program to further define the conditions in the northern quadrant of the property. The activities associated with the SI were completed with the receipt and validation of the final analytical data in January 2002. Following review of the preliminary results of the SI, FFCA proposed and NYSDEC agreed that the SI Report would be prepared and the site characterization reviewed before undertaking the FS.

1.1 <u>OBJECTIVE</u>

The primary purpose of the SI was to gather the data necessary to:

- i) complete the Site characterization, particularly in the northern quadrant of the Site; and
- ii) gather the data necessary to conduct the FS.

1.2 ORGANIZATION OF THE REPORT

This report presents the results of the Site investigations and is organized as follows:

Section 1 – Introduction: An overview of the history and objective of the Site Investigation is presented in Section 1;

Section 2 - Site Location and Description: The location and physical features of the Site are described in Section 2;

Section 3 - Field Activities and Sample Analyses: A summary of the field activities and procedures associates with the SI is presented in Section 3;

Section 4 - Regional Geology and Hydrogeology: The regional geologic and hydrogeologic characteristics are briefly described in Section 4;

Section 5 - Site Geology and Hydrogeology: The characterization of Site geology and hydrogeology is presented in Section 5;

Section 6 – Nature and Extent of Contamination: The analytical data collected during the SI are presented and discussed in Section 6; and

Section 7 – Summary and Conclusions: A summary of the Site conditions is presented in Section 7. Also presented in Section 7 are the conclusions drawn from the data and the work proposed to be performed to complete the project.

2.0 SITE LOCATION AND DESCRIPTION

The following subsections present descriptions of the Site and its current conditions.

2.1 <u>SITE LOCATION AND DESCRIPTION</u>

The Site is located at 2137 Seneca Street in Buffalo, Erie County, New York, and includes the properties at 2137 through 2153 Seneca Street, excluding 2151 Seneca Street. The location of the Site within the City of Buffalo is shown on Figure 2.1.

2.2 <u>SITE DESCRIPTION</u>

The Site comprises approximately 0.5-acre of relatively flat property located on the southwest corner of Seneca Street and Kingston Place. A site plan is shown on Figure 2.2.

The Site is located in an urban area and is surrounded by commercial and residential properties. Commercial properties are located adjacent to the Site to the north, east, and west and residential/commercial properties are located to the south.

The FRC ESA reports describe the historic uses of the Site as residential dwellings, a pharmacy, a retail tire establishment, automotive service building, offices, and a dry cleaning establishment. Gasoline filling stations were reportedly located in the southeast corner of the Site and on the adjacent property (2157 Seneca Street). Underground storage tanks were believed to have been present at both these locations. The historic locations of on-site buildings are shown on Figure 2.3. A list of the types of businesses which occupied these buildings is presented in Table 2.1.

Sanborn Fire Insurance Maps and City Directory listings for the Site and adjacent properties were received and reviewed during the SI. These records show that two dry cleaning businesses were located within one block of the Site to the northwest; one at the southwest corner of Princeton Place and Seneca Street and one at the southeast corner of Norman Avenue and Seneca Street. A third dry cleaning establishment was located further northwest at the southeast corner of Kamper Avenue and Seneca Street. One or more of these businesses appear in records dated as early as 1940. The locations of these intersections can be seen on Figure 2.1. Other uses of properties in the vicinity of the Site were reported to include a printing facility, a metal fabrication shop, a glass cutting

business, a bank and other retail establishments. Anecdotal evidence indicates that solvents were used at the glass cutting business.

An attempt was made to acquire as-built drawings of buildings which currently or historically occupied the Site. However, such drawings were not located.

2.3 SURFACE CHARACTERISTICS

One building, a former restaurant, is currently located on the Site. The majority of the ground surface surrounding the building is an asphalt paved parking lot. The surface characteristics are shown on Figure 2.2.

2.4 <u>PROPERTY OWNERSHIP</u>

A listing of the current ownership of the properties surrounding the Site is presented in Table 2.2. A property boundary survey was performed most recently in 1985. The boundary survey is shown on the survey plan presented in Appendix A.

2.5 <u>UNDERGROUND UTILITIES</u>

Numerous underground utilities are present adjacent to the Site along both Seneca Street and Kingston Place. These utilities include gas lines (one of which enters the Site from Kingston Place) and sanitary and storm sewers. The locations of the underground utilities are shown on Figure 2.2.

Drawings showing the storm and sanitary sewers in the vicinity of the Site were obtained from the Buffalo Sewer Authority (BSA). The layouts of the sewers shown on the BSA drawings have been compiled onto a single plan, Plan 1 located at the back of this report. Copies of the BSA drawings are presented in Appendix B. Profiles of the sewers are also shown on the BSA drawings. Field measurements were obtained which verified the invert depths shown on the BSA drawings.

The information presented on Plan 1 shows that stormwater in the area is conveyed to Cazenovia Creek via two separate storm sewers. One storm sewer runs from the southwest to northeast along Seneca Street to Kingston Place. At Kingston Place this sewer is connected to the sanitary sewers along Seneca Street by overflow chambers. The storm sewer at Seneca Street and Kingston Place then turns 90 degrees and runs southwest along Kingston Place to the Cazenovia Creek outfall. There is no storm sewer on Seneca Street between Kingston Place and Princeton Place. Storm sewer is again present along Seneca Street from the corner of Princeton Place to Yale Place where it is tied to the sanitary overflow, turns 90 degrees and runs southwest along Yale Place to another outfall at Cazenovia Creek.

2.6 <u>NATURAL RESOURCES</u>

A natural resource field and recovery survey was performed by Mr. Mark Lindberg of Fine Line Technical Services during the Preliminary Site Investigation (November 2000). The survey showed that there are no identified rare, threatened or endangered species, habitats of concern, or freshwater wetlands within a one-half mile radius of the Site. Portions of Cazenovia Creek classified as Classes B and C are located within a one-half mile radius of the Site. The complete natural resource survey report is presented in Appendix C.

2.7 <u>GROUNDWATER USE</u>

The Site is located within the Buffalo Water Authority district and all potable water is supplied through that system. Nonetheless, a survey of groundwater users located within a 0.5-mile radius of the Site was conducted as part of the Site Investigation. The Erie County Department of Health and NYSDEC were contacted during the well survey. According to those Agencies, there are no users of groundwater, either residential or industrial, within a half-mile radius of the Site.

3.0 FIELD ACTIVITIES AND SAMPLE ANALYSES

Field activities, including subsurface soil sampling, groundwater monitoring well installation, groundwater sampling, and hydraulic monitoring and testing have been conducted at the Site. These activities were conducted by FRC in 1999 and CRA in 2000 and 2001. Summaries of the field activities completed are presented in the following subsections. A summary of the samples collected and analyses performed, is presented in Table 3.1.

3.1 <u>SUBSURFACE SOIL SAMPLING</u>

In July 1999, FRC advanced 12 boreholes (SB-1 through SB-10) at the Site using a Geoprobe rig. These boreholes were completed to depths ranging from 1.5 to 20 feet below ground surface (BGS). Soil samples were collected for chemical analysis based on screening of the soil cores with a photoionization detector (PID). Nine soil samples were collected for analysis of Target Compound List (TCL) VOCs and six samples were collected for analysis of Spill Technology and Remediation Series (STARS) SVOCs. All soil samples from these boreholes were collected for below the water table.

In September 2000, CRA advanced 12 additional soil borings (SB-11 through SB-16A and MW-1 through MW-5). Soil samples collected from the unsaturated zone in each borehole were screened with a PID, and portions of each sample were retained for headspace screening. Soil samples for chemical analysis were selected based upon the headspace screening results. Soil samples from 11 of the 12 boreholes advanced were analyzed for TCL VOCs, STARS SVOCs, and/or Target Analyte List (TAL) metals as indicated in Table 3.1.

Following review of the analytical data from the September 2000 sampling, it was determined that additional soil characterization was required. Therefore, samples were collected from twelve additional soil borings (SB-17 through SB-29) in August 2001. Borehole installation and sample collection were conducted in accordance with the procedures contained in the Work Plan with the following exceptions.

- i) The soil borings were installed using a Geoprobe system rather than a drill rig and hollow stem augers.
- The PID used for screening recovered soil samples malfunctioned on August 22, 2001. Therefore, the analytical samples from SB-18, SB-22, and SB-23 were selected based upon physical characteristics and depth relative to the water table rather than soil vapor readings.

iii) Borings SB-26 and SB-27 were installed and sampled for the purpose of delineating the SVOC presence in soils in the area of SB-8 and SB-9. The analytical samples from SB-8 and SB-9 were collected from the 4 to 8 and 0 to 4 foot BGS intervals, respectively. The samples from borings SB-26 and SB-27 were each collected from the interval directly above the water table surface (10 feet to 12 feet BGS).

The locations of the soil borings are shown on Figure 2.2. Stratigraphic logs of the borings are presented in Appendix D.

3.2 **GROUNDWATER**

3.2.1 MONITORING WELL/PIEZOMETER INSTALLATION

In 2000/2001, CRA installed 19 overburden monitoring wells and three piezometers on and adjacent to the Site. Monitoring well and piezometer installation details are presented in Table 3.2, and instrumentation logs are included on the stratigraphic logs contained in Appendix D.

The SI/FS Work Plan stipulated that two piezometers were to be installed on Kingston Street along the alignment of the sewers. Due to overhead and underground utility interferences, PZ-1 was relocated. Upon review of the revised location and the intended use of the data from this well (evaluation of the influence of the sewers on groundwater flow), it was decided that an installation nearer the intended location was required. Therefore, an additional piezometer, PZ-3, was installed.

Overhead utility interferences prevented the use of a drill rig for installation of the boreholes for monitoring wells MW-10 and MW-10A. These boreholes were installed using a geoprobe instead of a drill rig. Due to the small diameter boreholes, wells were constructed of 1-inch outside diameter PVC.

3.2.2 WELL AND PIEZOMETER DEVELOPMENT

All of the monitoring wells and piezometers were developed through a combination of pumping with a peristaltic pump and/or surging with a stainless steel or teflon bailer. A minimum of 10 volumes of groundwater were removed from wells and piezometers which exhibited adequate recharge. The well development records are presented in Appendix E.

3.2.3 <u>GROUNDWATER SAMPLING</u>

During the 1999 investigation, groundwater samples were collected from two soil borings, SB-6 and SB-9. Additional groundwater sampling was conducted in October 2000, September 2001, and November 2001. At least one groundwater sample was collected from each of the 19 Site monitoring wells. The samples were analyzed for TCL VOC, STARS SVOC, and/or TAL metals.

With the exceptions noted below, monitoring wells were purged and sampled in accordance with the procedures contained in the SI/FS Work Plan. The exceptions to the Work Plan procedures were:

- due to slow recharge which would have made full recovery especially long, the minimum of 7 days of recovery between development and sampling specified in the SI/FS Work Plan was not always allowed for wells with poor recovery; and
- ii) the inside diameter of wells MW-10 and MW-10A was too small (1-inch) to allow use of a bailer for purging or sampling. These wells were purged using a peristaltic pump and VOC samples were collected by filling the pump tubing, crimping the tubing shut, releasing the pump vacuum, and draining the tubing into the sample containers.

The groundwater analytical parameters for all the sampling events are summarized in Table 3.1. Well purging records are contained in Appendix E.

3.3 HYDRAULIC MONITORING

Complete rounds of water level measurements have been collected on five occasions in accordance with the procedures contained in the SI/FS Work Plan. The water level measurements were converted to elevation for the evaluation of groundwater flow direction. A summary of the groundwater elevation data is presented in Table 3.3.

3.4 HYDRAULIC CONDUCTIVITY TESTING

The hydraulic conductivity of the monitoring wells was tested using two different methods: well recovery tests and slug tests.

3.4.1 <u>RECOVERY TESTS</u>

Recovery tests following well development or sampling were not routinely performed. However, the field records from well development and purging for sampling include information regarding well yield and recovery. This information is presented in Table 3.4.

3.4.2 <u>SLUG TESTS</u>

Slug tests were performed in each monitoring well except MW-10 and MW-10A to collect the data necessary to calculate estimated hydraulic conductivity (K) values.

At least one rising head test was conducted in each well tested.

The small diameter (1-inch) of wells MW-10 and MW-10A prevented the use of a mechanical slug and pressure transducer; therefore, these wells were not tested.

3.5 <u>SITE SURVEY</u>

With the exception of monitoring wells MW-12 and MW-12A, which were surveyed by CRA personnel, the location and elevation of the monitoring wells and soil borings were surveyed by a licensed land surveyor following installation. Elevations were measured relative to the National Geodetic Vertical Datum. The locations of the monitoring wells and soil borings are shown on the site plan on Figure 2.2. Surface features such as catchbasins, building corners, curb lines, etc. were also surveyed. A copy of the survey plan is contained in Appendix A.

3.6 WASTE DISPOSAL

Both solid and liquid wastes were characterized and disposed in accordance with the appropriate regulations.

Borehole cuttings were characterized as a non-hazardous solid waste. The drummed waste was transported to CWM Chemical Services (CWM) for disposal.

Groundwater and decontamination waters generated in 2000 were also disposed at CWM. Copies of the waste manifests for both the solid and liquid wastes are presented in Appendix F.

Following receipt of the analytical data from the September 2001 sampling program, an application was made to the BSA to discharge the wastewaters generated during the SI directly into the municipal sewer for treatment at the Publically Owned Treatment Works (POTW). A permit was granted and the wastewaters from the September and November 2001 monitoring events were discharged December 20, 2001. A copy of the discharge permit is contained in Appendix G.

4.0 **<u>REGIONAL GEOLOGY AND HYDROGEOLOGY</u>**

4.1 <u>GEOLOGY</u>

4.1.1 <u>OVERBURDEN</u>

Much of Erie County and the Lake Erie Plain exhibit the effects of Wisconsin stage Pleistocene glaciation. The most prominent features are a series of west to east trending end moraines and southwest to northeast trending beach ridges of the late Wisconsin age Lakes Warren and Whittlesey. The Surficial Geologic Map of New York - Niagara Sheet (Cadwell, 1988) and the Quaternary Geology of New York – Niagara Sheet (Muller, 1977) indicate that the unconsolidated materials in the vicinity of the Site consist predominately of generally reddish-brown, generally laminated, lacustrine silt and clay with occasional sand and fine, rounded gravel deposited in these proglacial lakes.

The clays may occasionally be underlain by ablation or lodgement till deposited by the ice sheet. This till may vary from a silty clay to a sandy silt and is moderately to abundantly stony. The lodgement till is comprised of clay, silt, sand, and larger grain sizes transported by and deposited beneath the glacial ice. It is typically poorly sorted, compact and has a low permeability. The till generally overlies bedrock in the region.

Other post-glacial deposition may include minor amounts of alluvium, wetlands deposits (peat), and artificial fill resulting from the areas in proximity to Cazenovia Creek.

4.1.2 <u>BEDROCK</u>

The bedrock geology of the area consists of Upper (Late) Silurian and Lower to Middle Devonian age strata which tend to dip southward at approximately 40 feet per mile and strike approximately east-west.

According to the Geologic Map of Erie County, New York Bedrock Geology (Buehler and Tesmer, 1963), the uppermost bedrock in the area beneath the Site is the Marcellus Formation of the Hamilton Group. The Middle Devonian Marcellus Formation is made up of black calcareous shales and some calcareous concretions. The contact with the underlying Seneca Member of the Onondaga Limestone Formation is gradational.

4.2 <u>HYDROGEOLOGY</u>

4.2.1 OVERBURDEN HYDROGEOLOGY

The overburden materials in the area and under the Site are not important sources of either domestic or industrial water. Groundwater is not extensively utilized in the Buffalo area due to the availability of surface water supplies and the developed municipal water supply system. The overburden of the Lake Erie Basin is primarily glacially derived and consists of till, lake sediments, and sand or gravel deposits. In the area of the Site the overburden consists of varying thicknesses of fill underlain by fine-grained lacustrine and glacial deposits, primarily a silty clay with occasional thin seams of silty or sandy materials. Below this, and directly overlying the bedrock, a compact, poorly sorted, thin glacial till may be present. The lacustrine clay generally exhibits low hydraulic conductivities on the order of 1 x 10-7 cm/sec or less and consequently severely retards groundwater movement. The fill and/or recent alluvium overlying the fine-grained lacustrine deposits sometimes acts as a perched waterbearing zone. The thin silty-sandy seams within the clay are infrequent and usually not laterally extensive but do allow limited horizontal groundwater movement. Horizontal migration of groundwater through the fill/alluvium and through silty/sandy layers and stringers in the lacustrine clay is often disrupted by underground utilities. The utility bedding may act as a preferential pathway for overburden groundwater flow.

4.2.2 <u>BEDROCK HYDROGEOLOGY</u>

The Marcellus Shale is the uppermost bedrock unit in this area. Depth to the bedrock beneath the Site can be over 30 feet. Generally the unit strikes east-west and dips southerly at 40 feet per mile. It is well fractured and jointed. Horizontal pathways, such as fractures and bedding planes control bedrock groundwater flow in this area. Secondary vertical fractures and joints within the formation further connect the horizontal pathways and create flow paths. Generally, the vertical joints in the Marcellus Shale trend north-south, northeast-southwest, and east-west. Conductivity testing in the formation in central western New York yielded a hydraulic conductivity arithmetic average of $5.02 \times 10-3$ cm/sec.

The general direction of upper bedrock groundwater flow in the area of the Site would most likely be toward the southwest and Cazenovia Creek, located less than 1000 feet away.

5.0 SITE GEOLOGY AND HYDROGEOLOGY

5.1 <u>GEOLOGY</u>

Characterization of the Site geology is limited to the overburden regime. The overburden at the Site generally consists of fill overlying fine-grained native soils.

The information used in this characterization was obtained primarily from the boreholes installed by CRA in 2000 and 2001. Cross-sections illustrating the overburden stratigraphy of the Site are presented on Figures 5.2 through 5.5. Figure 5.1 shows the cross-section alignments.

5.1.1 <u>FILL</u>

Fill was encountered at all boreholes installed at the Site. The fill ranged in thickness from 1.5 to 18 feet with the thickest fill encountered off-site to the northwest at well location MW-12/12A. The fill consists of reworked soil, primarily silt and clay with sand and gravel. Red brick, coal, slag, wood, ceramic tile, concrete, and other assorted small building demolition debris were also encountered in the fill.

The fill is generally thickest northwest of the Site. Fill thickness on-site is greatest north of and adjacent to the existing building. An isopach map of the fill thickness is presented on Figure 5.6.

5.1.2 <u>NATIVE SOIL</u>

The native soils underlying the fill generally consist of sand overlying silt and/or clay; however, the soil stratigraphy is highly variable and silt and clay generally underlies the fill in the southeastern area of the Site. With the exception of MW-4/4A where the lowermost interval is sand, the bedrock is overlain by clay.

The hydraulic conductivity (K) of each of the monitoring wells was determined by performing slug tests and using the resultant data to calculate a K value. K values were calculated for an unconfined aquifer by the Bouwer-Rice method using AQTESOLV software. The calculated K values are presented in Table 5.1 and the calculations are presented in Appendix H. The hydraulic conductivity of the shallow overburden, the fill or underlying sand, ranges from $2.36E \times 10^{-3}$ to 3.28×10^{-4} centimeters per second (cm/sec) with a geometric mean of 2.74×10^{-3} cm/sec. The hydraulic conductivity of the

deep overburden overlying the bedrock ranges from 3.64×10^{-4} to 9.79×10^{-6} cm/sec with a geometric mean of 1.41×10^{-5} cm/sec.

5.1.3 <u>BEDROCK</u>

The bedrock at the Site was encountered at three borings, MW-4A, MW-10A, and MW-11A, at depths ranging from 25 feet at MW-10A to 30.0 feet BGS at MW-4A. Based on the data from these borings, the dip of the bedrock appears to be northwest to southeast.

5.2 <u>HYDROGEOLOGY</u>

Groundwater monitoring wells and piezometers at the Site are installed in the shallow overburden (15) and deep overburden, immediately above the bedrock surface (7). These wells and piezometers were installed between September 2000 and November 2001.

5.2.1 <u>GROUNDWATER LEVEL ELEVATIONS</u>

One complete round of hydraulic monitoring has been conducted since the well installation program was completed. The water level elevations measured in the shallow and deep monitoring wells in this round, November 26, 2001, have been plotted on Site plans and potentiometric surface contours have been drawn. These data and contours are presented on Figures 5.7 and 5.8, respectively.

The water elevation database is not sufficient to evaluate seasonal variations in groundwater depth or flow. In addition, the November 2001 water levels were measured shortly after the development of wells MW-12 and MW-12A and it is not known whether the measurements are representative of static conditions in these wells.

5.2.1.1 SHALLOW OVERBURDEN

The current pattern of groundwater flow in the shallow overburden is consistent with that identified during the Preliminary Site Investigation and described in the SI/FS Work Plan. Generally, shallow groundwater flows from southeast to northwest over the southerly portion of the Site, and bends to the west over the northerly portion of the Site in the vicinity of Kingston Place. This flow direction in the northern portion of the Site is believed to reflect the influence of the storm sewer along Kingston Place. The Kingston Place storm sewer was sounded in August 2001 and was found to be dry. The invert elevations of the sewers and groundwater elevations measured November 26, 2001 are shown on the subsurface profiles (Figures 5.2 through 5.5). These further demonstrate that shallow groundwater flowing to the northwest and west is intercepted by the Kingston Place storm sewer.

The hydraulic gradient in the shallow overburden across the Site during the monitoring events has ranged from 0.0030 feet/foot (November 2001) to 0.00912 feet/foot (September 2001). The average gradient is 0.0047 feet/foot.

5.2.1.2 <u>DEEP OVERBURDEN</u>

The deep overburden monitoring wells are located along the north Site boundary and north and northeast of the Site. Only one deep overburden well, MW-4A, has been installed within the Site boundary. Based on the available data, groundwater flow in the deep overburden is from the northwest to southeast and east. This direction is opposite that in the shallow overburden and seems to follow the dip of the bedrock surface. The difference in flow direction between the shallow and deep overburden further substantiates the influence of the storm sewer on Kingston Place on shallow groundwater flow at the Site.

as Distriction of Mar Elementer The Marthan.

6.0 NATURE AND EXTENT OF CONTAMINATION

Samples of environmental media, including soil vapor, soil, and groundwater were collected and analyzed during the Site investigations. The data resulting from the 2000/2001 field activities have been reviewed for quality assurance as laid forth in the SI/FS Work Plan. The following subsections present the analytical results for each media sampled. Laboratory analytical reports or analytical data assessments are contained in Appendix I.

6.1 SOIL VAPOR

Organic vapor readings were collected from soil cores to aid in the selection of soil analytical samples and evaluate the potential for organic vapors to reach indoor air in existing or potential future structures on the Site.

6.1.1 <u>RESULTS</u>

The organic vapor data have been compiled and are presented on the stratigraphic logs in Appendix D.

The range of organic vapor readings was from 0 to >2,000 parts per million (ppm), with the highest readings taken at SB-18, 0 to 2 feet BGS, and SB-19, 6 to 10 feet BGS. The sample from SB-18 was collected immediately beneath the asphalt surface cover and, in all likelihood, the vapor reading reflects residue of the asphalt. SB-19 is located within the area of soils impacted by PCE (see Section 6.2). Excluding these samples, the maximum organic vapor reading in screened unsaturated soil was 161 ppm in soil boring SB-28 at 2 to 4 feet BGS.

Monitoring well MW-2 is located immediately northwest of the existing building. Concern has been raised as to the impact of the VOCs in Site soils and shallow groundwater on indoor air in this or future buildings. The soil vapor readings of samples collected from the boring for MW-2 ranged from 1.7 to 5.5 parts per million (ppm).

Since the organic vapor measurements were not compound-specific, a comparison to risk-based air standards cannot be made.

The groundwater-to-indoor air exposure pathway has been evaluated using the Site data. Several states have developed conservative generic criteria that are protective of the groundwater-to-indoor air exposure pathway for use in screening VOC levels in groundwater. The Michigan Department of Environmental Quality (MDEQ 2000) is one of these states. The MDEQ has developed Generic Groundwater Volatilization to Indoor Air Inhalation Criteria (GVIIC) for residential and industrial/commercial land use. The MDEQ GVIIC are considered to be protective of health effects that may result from chronic inhalation exposure to hazardous substances. The GVIIC are based on the Johnson and Ettinger Model (JEM). The JEM was developed to estimate diffusive and convective transport of chemical vapors from soils/groundwater to indoor air. The JEM is widely used by USEPA, the American Society for Testing and Materials (ASTM), and several other states and international jurisdictions. In general terms, the JEM consists of five fundamental steps:

- i) calculation of the ratio of the soil vapor phase concentration (determined from groundwater concentration assuming equilibrium) to the total concentration at the source;
- calculation of the effective diffusion coefficient of chemical vapor flow through soil and/or groundwater, which occurs through both pore air and pore water spaces;
- iii) calculation of the infiltration rate of chemical vapors into the building;
- iv) calculation of the building vapor concentration to the total groundwater vapor source concentration ratio; and
- v) back calculation to the GVIIC from an acceptable indoor air concentration.

The GVIIC for PCE, TCE, and 1,2-DCE for industrial and residential land use are presented in Table 6.1. The maximum average concentrations of these compounds in on-Site monitoring wells are also presented on Table 6.1. Comparing the GVIIC to the maximum average concentrations of these compounds detected in Site groundwater shows that the detected concentrations are well below the GVIIC. Therefore, it is expected that these VOC levels will not result in any adverse indoor air impact.

6.1.2 <u>SUMMARY</u>

VOCs are present in soil vapors and in Site groundwater. However, the soil vapor concentrations are low (1.7 to 5.5 ppm) and the VOC concentrations in groundwater are lower than the GVIIC.

6.2 <u>SUBSURFACE SOILS</u>

Subsurface soil samples were collected and analyzed during each of the investigative programs. The sample collection and analyses details are summarized in Table 3.1. Surface soils at the Site are not exposed; therefore, separate characterization of the surface soils is not necessary.

6.2.1 <u>RESULTS</u>

Summaries of the compounds detected in the subsurface soil samples collected at the Site are presented in Tables 6.2 and 6.3. The soils analytical data are presented in Appendix I. The data validation reports for the samples collected and analyzed in 2000/2001 are also contained in Appendix I.

Analyte concentrations detected in site soils have been compared to the New York State soil cleanup objectives presented in TAGM 4046. Analyte concentrations exceeding the cleanup objectives are highlighted in Tables 6.2 and 6.3.

6.2.1.1 ORGANIC CHEMICAL COMPOUNDS

Both VOCs and SVOCs were detected in soil samples at concentrations exceeding the TAGM 4046 cleanup objectives. Detailed descriptions of the locations and extent of the exceedances of the TAGM 4046 cleanup objectives for organic chemical compounds are presented in the following subsections.

6.2.1.1.1 VOLATILE ORGANIC COMPOUNDS

The soil samples analyzed in 1999 (from borings SB-1B and SB-3 through SB-10) were collected from intervals within the saturated zone of the borings. Therefore, the analytical data from these samples is reflective of the contribution from groundwater. The subsequent soil sampling programs were designed to provide the data necessary to characterize the unsaturated soils across the Site. Because they are not representative of the unsaturated soils, the data from the borings installed in 1999 are not discussed further in this report.

The VOCs detected in the soil samples at concentrations exceeding the TAGM 4046 cleanup objectives are limited to acetone and PCE. Acetone was detected in one sample (SB-16A, 7.0 to 9.0 feet BGS) at a concentration, $420 \,\mu g/Kg$, which exceeds its TAGM standard of 200 $\mu g/Kg$. The presence of acetone at this concentration in only one location does not present either an environmental or human health concern. Therefore, acetone in Site soils will not be discussed further in this report.

The detected concentrations of PCE in unsaturated soils on-Site range from 1.5J to 29,000 μ g/Kg. The TAGM 4046 cleanup objective for PCE is 1,400 μ g/Kg. All borings in which PCE was detected at concentrations exceeding the cleanup objective are located in the northeast quadrant of the Site. The concentrations of PCE detected in the unsaturated soils have been plotted on a Site plan and the plan is presented on Figure 6.1. The plotted data show that the samples exhibiting PCE presence above the cleanup objective were all collected from borings centered around SB-16A northwest of the existing on-site building.

The data presented on Figure 6.1 further demonstrate that the areal extent of soils containing PCE at elevated concentrations is well defined.

Soil boring SB-17 was installed and sampled to gather data for use in preparing a profile of the PCE concentrations in the area of SB-16A. Review of the soils analytical data presented in Table 6.2 shows that PCE is present throughout the interval between ground surface and the top of the water table, approximately 9 feet BGS. PCE was detected in all samples with concentrations increasing with depth. While PCE is present throughout this regime, only the concentration in the lowermost interval (8 to 10 feet BGS) exceeded the TAGM cleanup objective. The sample exhibiting the exceedance was collected across the water table surface. Therefore, it is difficult to determine whether the concentration, $4,100 \ \mu g/L$, is reflective of chemical presence in soil or groundwater. To present the most conservative scenario for evaluation, it has been assumed that the concentration is reflective of soil. Based on these data, the total thickness of impacted unsaturated soil in the area is assumed to be 9 feet. The thickness of the interval exhibiting the exceedance is assumed to be 2 feet, between 7 and 9 feet BGS.

Based upon the definition of the areal extent of PCE impacted soils and the assumptions regarding depth, the total volume of impacted soil is estimated to be 420 cubic yards and the volume of soil exhibiting exceedances of the PCE standard is estimated to be 90 cubic yards.

Soil samples from borings SB-22 and SB-23 were collected and analyzed to obtain the data necessary to evaluate the presence of VOCs in the bedding of the storm sewer on

Kingston Street. The only VOC detected in the samples from these borings was PCE at low concentrations, 19 and 1.6J μ g/Kg respectively.

6.2.1.1.2 SEMI-VOLATILE ORGANIC COMPOUNDS

Six SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and dibenz(a,h)anthracene) were detected in soil samples at concentrations which exceeded their respective cleanup objectives. The exceedances are highlighted in Table 6.2. The locations at which the exceedances were detected have been plotted on a Site plan and the plan is shown in Figure 6.2.

Exceedances of the TAGM 4046 cleanup objective for benzo(a)anthracene were noted in the samples collected from SB-8 and SB-9 during the ESAs and not in any other samples collected in this area of the Site. The rationale for the selection of the depth intervals for the ESA samples is unknown. However, based on a review of the boring logs contained in Appendix D, the following has been assumed:

- i) the sample from SB-8 was collected from the 4-foot interval just above the saturated zone (4' to 8' BGS); and
- ii) the sample from SB-9 was collected from the 0-4 foot BGS interval to evaluate an "oil or tar-like substance" that was observed 2 feet BGS.

Borings SB-26 and SB-27 were drilled and sampled during the SI to verify that the exceedances of the cleanup objective for benzo(a)anthracene in SB-8 and SB-9 were isolated hotspots and not representative of an area of significant environmental impact. No evidence of chemical presence was observed while drilling either SB-26 or SB-27. The PID readings were not elevated and the soils exhibited no evidence of chemical presence (odor, color, etc.). Therefore, the analytical samples from these borings were collected from the interval immediately above the water table. No SVOCs were detected in the samples from SB-26 and SB-27. These data verify that there are only hot spots in the SB-8/SB-9 area and that the data from these borings do not represent an area of sufficient extent to pose a significant environmental impact. Therefore, no further discussion of SVOCs in this portion of the Site is presented in this report.

SVOCs were detected at concentrations exceeding their respective TAGM cleanup objectives in samples from borings SB-15 and MW-4 located in the northeast quadrant of the Site adjacent to the area in which the PCE-impacted soils were identified. To better define the extent of SVOCs in soils in this area, borings SB-18 and SB-24 were drilled and

sampled. With the exception of dibenz(a,h)anthracene which was detected in MW-4 and not in SB-18, the SVOCs detected at concentrations exceeding their respective cleanup objectives were the same in the samples from SB-18 and MW-4. No SVOCs were detected in the sample from boring SB-24. Examination of Figure 6.2 shows that the area in which the SVOC exceedances are located is well defined. The area is entirely within the northeast quadrant of the Site and is approximately 1,700 ft² in size. The maximum depth of sampling for SVOC analyses in this area was 8 feet BGS in SB-18. The water table surface in this area as indicated by the hydraulic monitoring data from MW-4 is approximately 7.5 feet BGS; therefore, it is assumed that the soils of concern in this area extend from the ground surface to the top of the water table or approximately 8 feet BGS. Based on these assumptions, the volume of SVOC soil exhibiting concentrations of SVOCs in excess of their respective TAGM cleanup objectives is approximately 500 cubic yards.

6.2.1.1.3 <u>METALS</u>

The concentrations of several metals also exceed the TAGM 4046 cleanup objectives; however, the cleanup objectives can be adjusted for Site background. The concentrations of each of the metals in the soil samples are relatively consistent across the Site, indicating that they are representative of background concentrations. The only potentially elevated concentrations which are:

- i) copper (96.6 milligrams per kilogram [mg/kg]) and zinc (1310 mg/kg) in the boring for MW-5;
- ii) arsenic in soil boring SB-12 (12.9 mg/kg); and
- iii) chromium (22.8 mg/kg) in soil boring SB-15.

Similarly to the SVOC exceedances at SB-8 and SB-9, these potentially elevated concentrations of metals in isolated borings represent possible hot spots and not an area or areas of potential significant environmental impact. Therefore, NYSDEC agreed that further investigation of metals in soils at the Site was not required.

6.2.2 <u>SUMMARY</u>

The significant exceedances of TAGM 4046 cleanup objectives were for PCE and several SVOCs in soils in the northern quadrant of the Site. These areas are shown on Figures 6.1 and 6.2, respectively.

The presence of these areas is consistent with previous land use. Laundry and dry cleaners had been located in the area of the PCE exceedances and a tire sales facility in the area of the SVOC exceedances (see Table 6.2).

PCE is not present at significant concentrations in soils along the alignment of the sewers on Kingston Street.

6.3 <u>GROUNDWATER</u>

Groundwater samples have been collected on at least one occasion from each of the Site monitoring wells. The samples have been analyzed for VOCs, SVOCs, and/or metals as indicated in Table 3.1. The following subsections present the analytical data and discuss the nature and extent of chemical presence in Site groundwater.

6.3.1 <u>RESULTS</u>

The groundwater analytical data are presented with the data validation reports for the 2000/2001 sample analyses in Appendix I. Summaries of the compounds detected in the groundwater samples are presented in Tables 6.4 and 6.5.

The concentrations of the analytes detected in the Site groundwater samples have been compared to the New York State (NYS) ambient water quality standards for Class GA (potable) groundwater (Technical and Operation Guidance Standards [TOGS] 1.1.1). The analyte concentrations which exceed the standards are highlighted in Tables 6.4 and 6.5. The groundwater samples collected in July 1999 were collected directly from open boreholes and the sample quality is questionable. The remaining groundwater analytical data are sufficient to characterize the quality of groundwater at the Site; therefore, the groundwater data collected in 1999 are not discussed further in this report.

Sometimes significant variability has been observed in the analytical data from the wells which were sampled more than once. Due to the limited size of the database, it is not possible to determine whether any the data are representative of Site conditions or anomalous. Therefore, the following discussions and characterizations are based upon the average analyte concentrations detected in each of the monitoring wells.

6.3.1.1 ORGANIC CHEMICAL COMPOUNDS

Exceedances of the standards for organic chemical compounds in groundwater were limited to three VOCs; PCE, TCE, and cis-1,2-DCE. No SVOCs were detected in any groundwater sample. The locations at which exceedances were identified are all located in the northeast quadrant of the Site and northwest of the Site, across Kingston Place. No exceedances of standards were detected in the monitoring wells located near the residences southwest of the Site or in the wells northeast of the Site across Seneca Street.

Shallow Overburden Groundwater

The highest average concentration of PCE in the shallow overburden, 7,880 μ g/L, was detected in MW-4 located at the northeast corner of the Site. The average concentration of PCE in MW-11, approximately 20 feet northeast of MW-4 on the northeast corner of Seneca Street and Kingston Place, was 970 μ g/L. The average concentrations of PCE in wells MW-9 and MW-12 located across Kingston Place to the northeast were 6,850 and 6,200 μ g/L, respectively.

The average PCE concentrations in the shallow groundwater decrease from 7,880 μ g/L to 970 μ g/L between wells MW-4 and MW-11 located along the northwest property boundary (the southeast side of Kingston Place). The concentrations then increase to 6,850 and 6,200 μ g/L 30 and 130 feet away at MW-9 and MW-12. Typically, decreases in chemical concentration are observed with increasing distance from the source area. At the Site, the concentrations of PCE at the monitoring points furthest from the Site (MW-9 and MW-12) are substantially higher than those closer and nearly equal to the concentrations of TCE and cis-1,2-DCE are highest at MW-12 and lowest at MW-9. MW-9 is in the flow pathway between MW-4 and MW-12 and, therefore, would not be expected to exhibit the lowest concentrations of these compounds. The average concentrations of PCE, TCE, and cis-1,2-DCE have been plotted on a Site plan and isopleths drawn. The plots are presented on Figures 6.3 through 6.5.

The following physical conditions would limit the migration of groundwater from the Site to wells MW-9 and MW-12:

- i) the presence of the storm sewer along Kingston Place which may intercept the shallow groundwater migrating toward the northwest;
- ii) the direction of shallow groundwater flow, southwest toward Cazenovia Creek; and
- iii) and the absence of a preferential flow pathway, i.e. a storm sewer, along Seneca Street between Kingston Place and MW-12.

Deep Overburden Groundwater

Isopleths of the average PCE, TCE, and cis-1,2-DCE concentrations in the deep overburden groundwater are presented on Figures 6.6 through 6.8. The pattern of chemical presence in this interval is similar to that described for the shallow interval: concentrations of each of these VOCs are higher at MW-12A than at monitoring locations between the Site and MW-12A (MW-9A, MW-11A). Further evidence against this migration pathway from the Site are the relatively poor hydraulic conductivity of the soils in the deep overburden and the apparent direction of groundwater flow at this depth which is from MW-12A southeast.

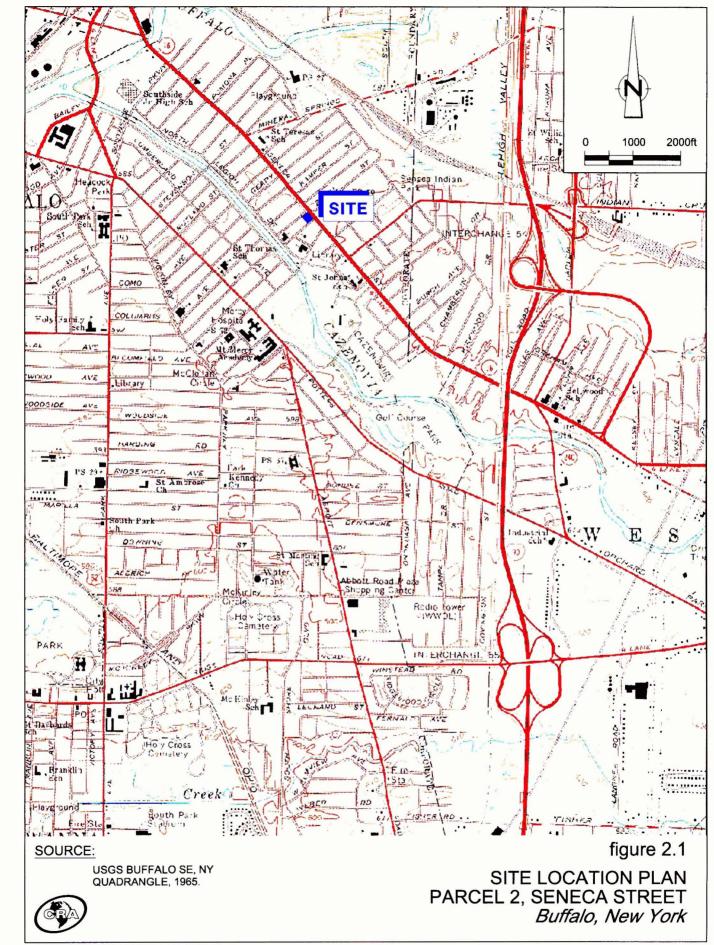
6.3.1.2 <u>METALS</u>

Concentrations of iron, magnesium, manganese, and sodium are present in Site groundwater at concentrations that exceed the groundwater quality standards. Total lead was detected in the samples from SB-1B and SB-6 at concentrations exceeding the standards but was not detected in any of the monitoring well samples at these concentrations. As described previously, the SB-1B and SB-6 groundwater samples were collected directly from an open borehole (no filter pack). The concentrations of lead in these samples were most likely due to the sediment in these unfiltered samples.

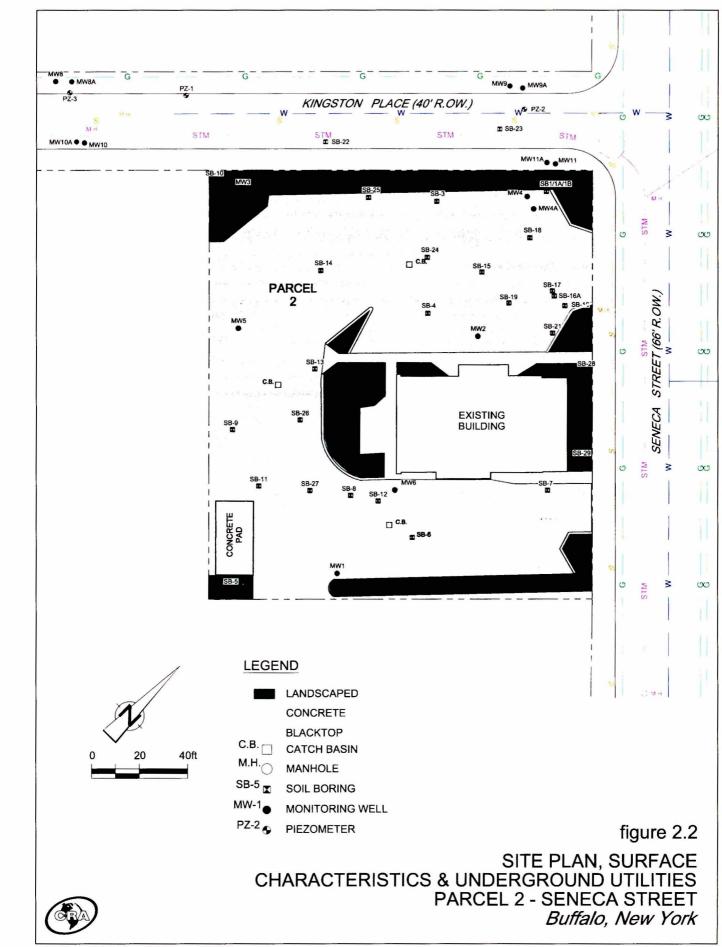
The metals present in Site groundwater at elevated concentrations are ubiquitous and do not present environmental or human health risk.

6.3.2 <u>SUMMARY</u>

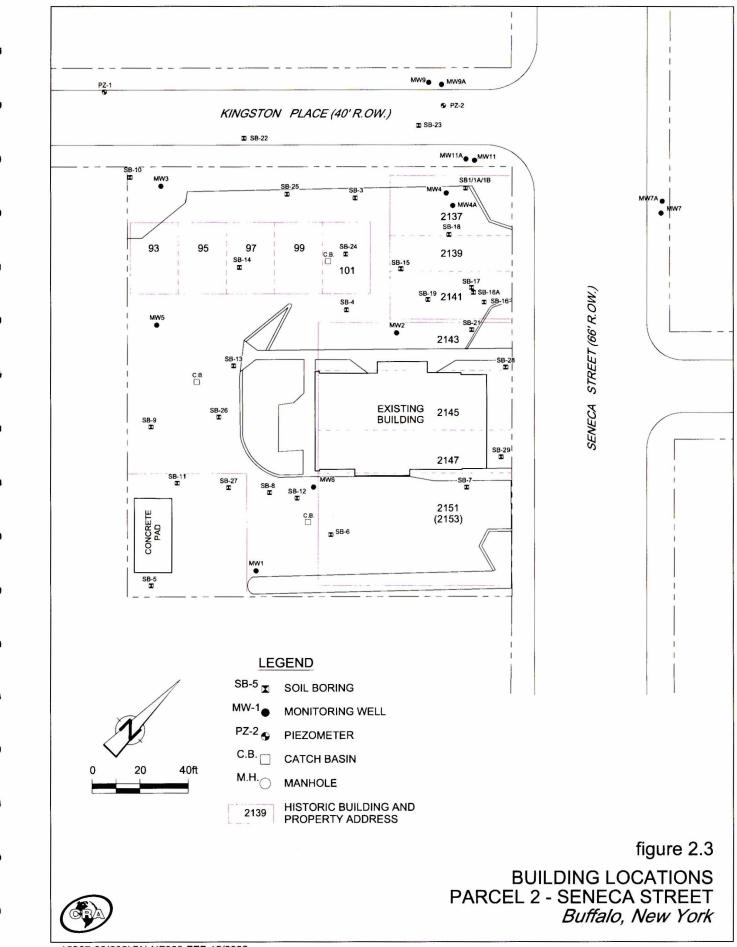
The compounds present in Site groundwater at concentrations which are of potential environmental and/or human health concern are PCE, TCE, and cis-1,2-DCE. The presence of elevated concentrations of these compounds in off-site groundwater does not appear to be attributable to the on-Site source (the PCE impacted soils).


7.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

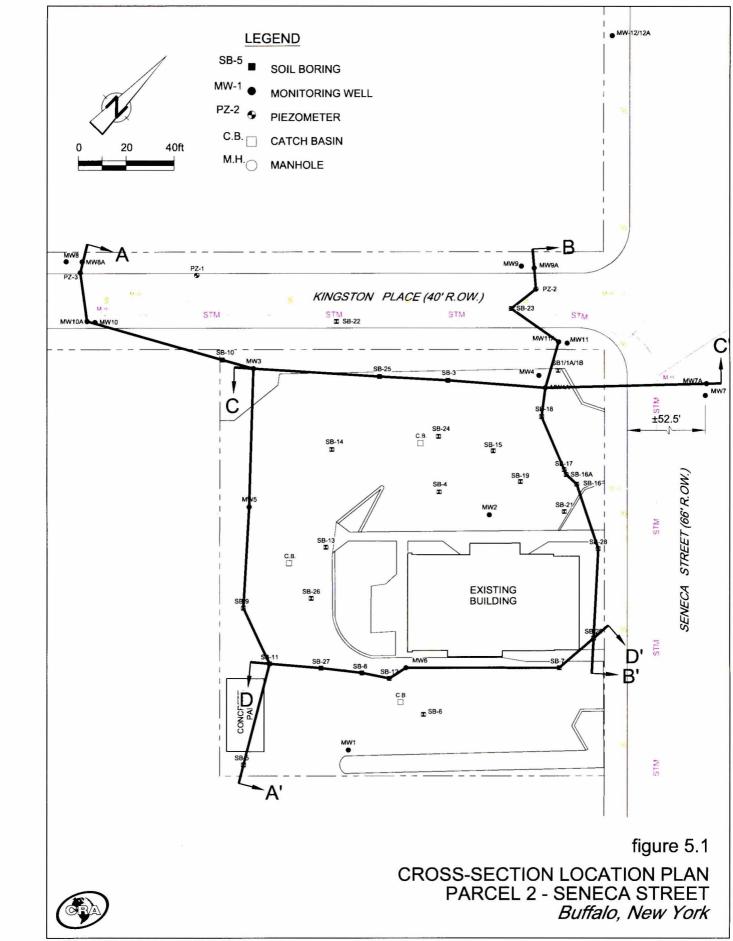
The following conclusions have been drawn regarding the nature and extent of chemical presence in soil vapor, soil, and groundwater:


- 1. VOCs are present in soil vapors and in Site groundwater. However, the soil vapor concentrations are low (1.7 to 5.5 ppm) and the VOC concentrations in groundwater are lower than the GVIIC. Therefore, VOCs in indoor air in on-site or nearby residential or industrial/commercial buildings are not of concern.
- 2. The significant exceedances of TAGM 4046 cleanup objectives for soil are limited to PCE and several SVOCs in soils in the northern quadrant of the Site. This area is also the apparent on-site source of VOCs in groundwater.
- 3. PCE is not present at significant concentrations in soils along the alignment of the sewers on Kingston Street.
- 4. The compounds present in Site groundwater at concentrations which are of potential environmental and/or human health concern are PCE, TCE, and cis-1,2-DCE. The presence of elevated concentrations of these compounds in off-site groundwater may or may not be attributable to the on-Site source (the PCE impacted soils).

The hydraulic and groundwater water quality databases are limited. It is recommended that the hydraulic and water quality monitoring be continued. Monitoring of water level elevations and water quality will be conducted quarterly for six months (March through August 2002) to collect sufficient data to evaluate seasonal trend in groundwater quality and flow direction. In addition, grab samples of water from the Kingston Street storm sewer will be collected during both wet and dry weather conditions. These data will aid in the evaluation of groundwater presence in flow from this sewer.


Following the collection of these supplemental data, the site characterization will be updated and the scope of the FS will be finalized with the concurrence of NYSDEC. At this time, the site characterization indicates that the off-site presence of VOCs in groundwater at concentrations exceeding the relevant standards may not be attributable to the Site. Therefore, the FS will be limited to control of on-Site source(s) and chemical presence and prevention of off-Site migration.

15867-00(002)GN-NF001 FEB 15/2002



15867-00(002)GN-NF002 FEB 12/2002

15867-00(002)GN-NF003 FEB 12/2002

-

15867-00(002)GN-NF008 FEB 12/2002

SUBSURFACE PROFILE A-A' PARCEL 2 - SENECA STREET Buffalo, New York

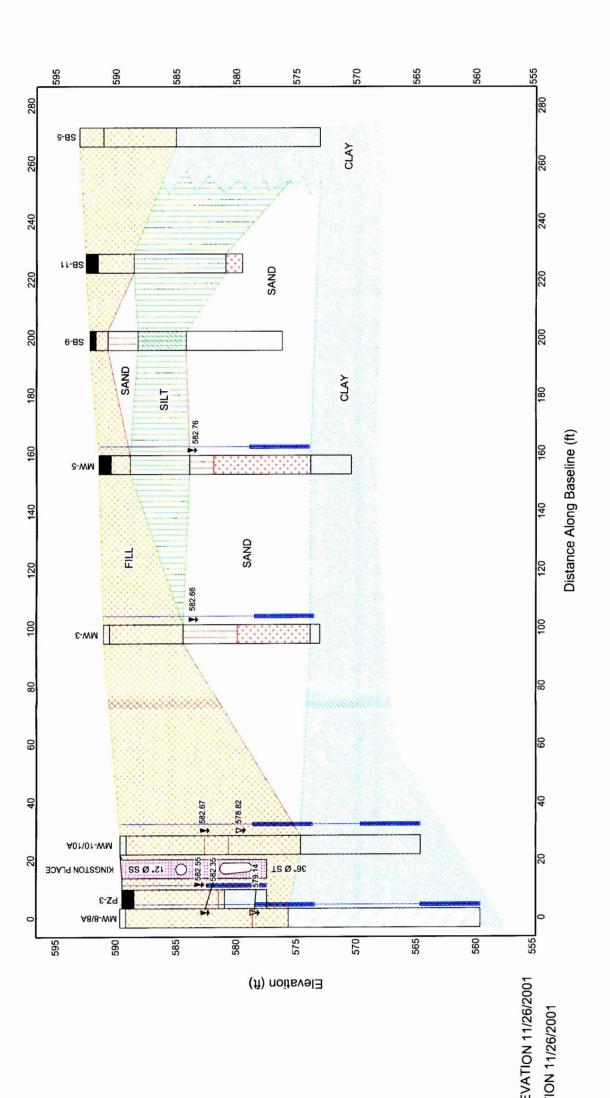
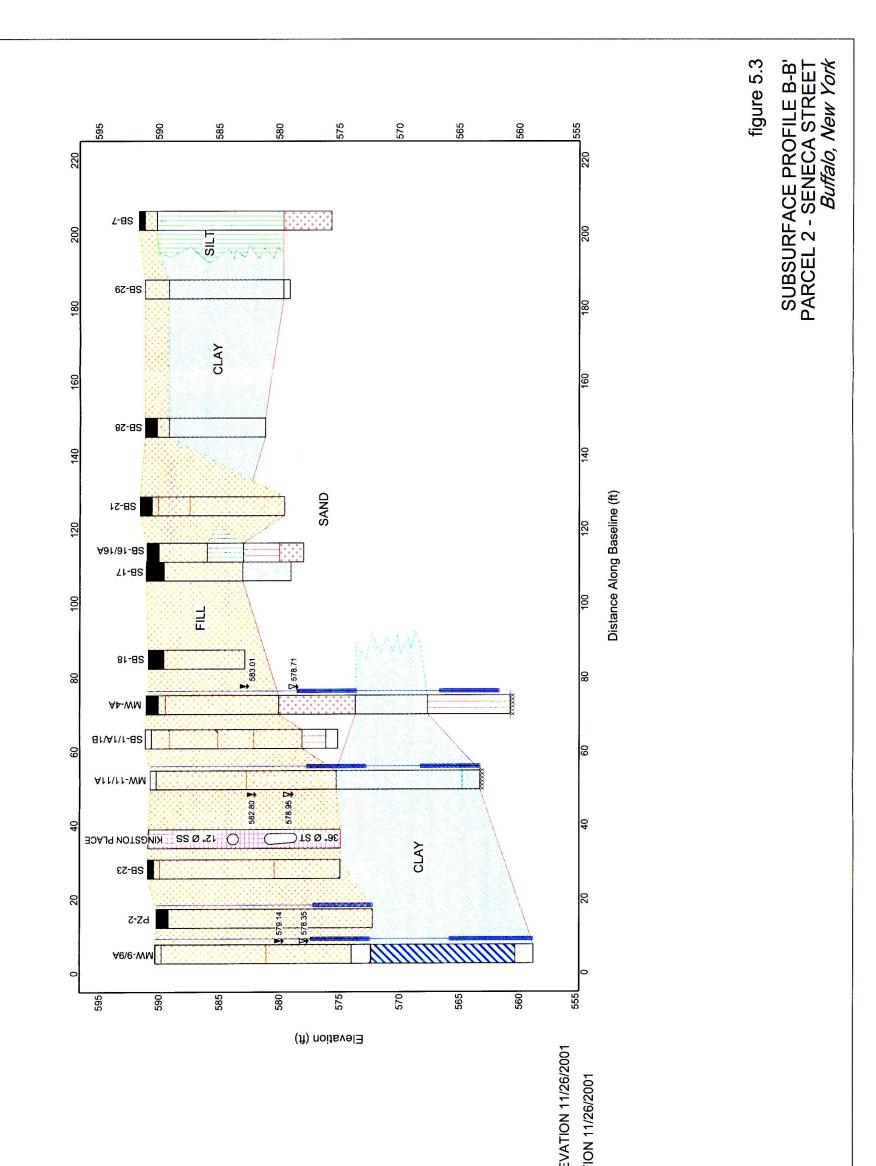
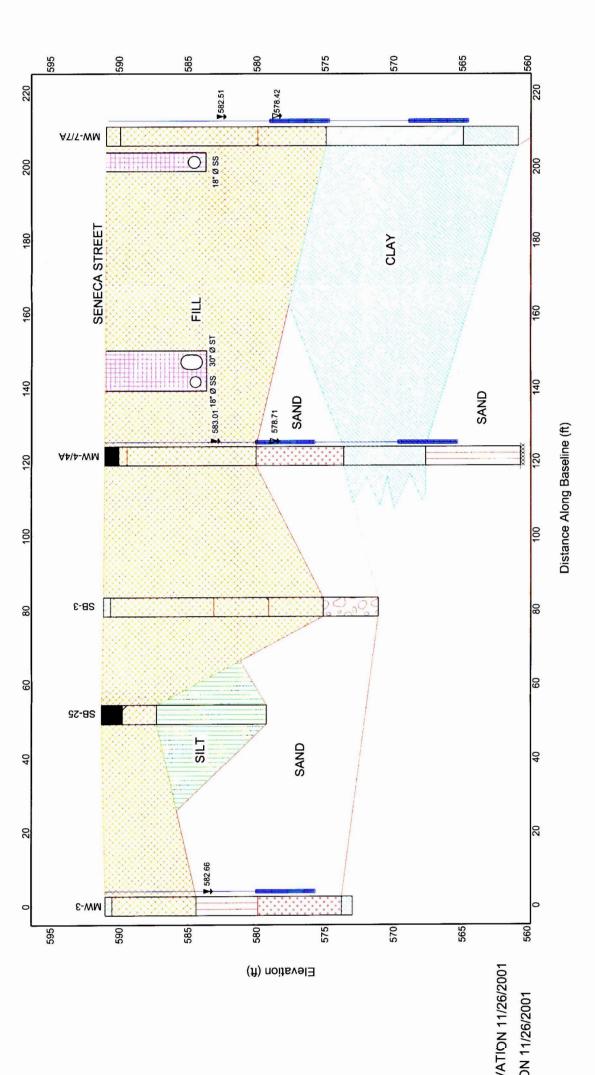



figure 5.2

LEGEND	FILL	NATIVE SAND	NATIVE SILT	NATIVE CLAY	WELL SCREEN	BEDDING/BACKFILL	SANITARY SEWER	STORM SEWER	SHALLOW WATER LEVEL ELEV	DEEP WATER LEVEL ELEVATION	
LEC	\otimes						SS	ST	₽	₽	


15867-00(002)GN-NF019 FEB 12/2002

LEGEND	FILL	NATIVE SAND	NATIVE SILT	NATIVE CLAY	WELL SCREEN	BEDDING/BACKFILL	SANITARY SEWER	STORM SEWER	SHALLOW WATER LEVEL ELEV	DEEP WATER LEVEL ELEVATIO	TOP OF BEDROCK	
Ĕ	\otimes						SS	ST	►	⊳	XXXXX	

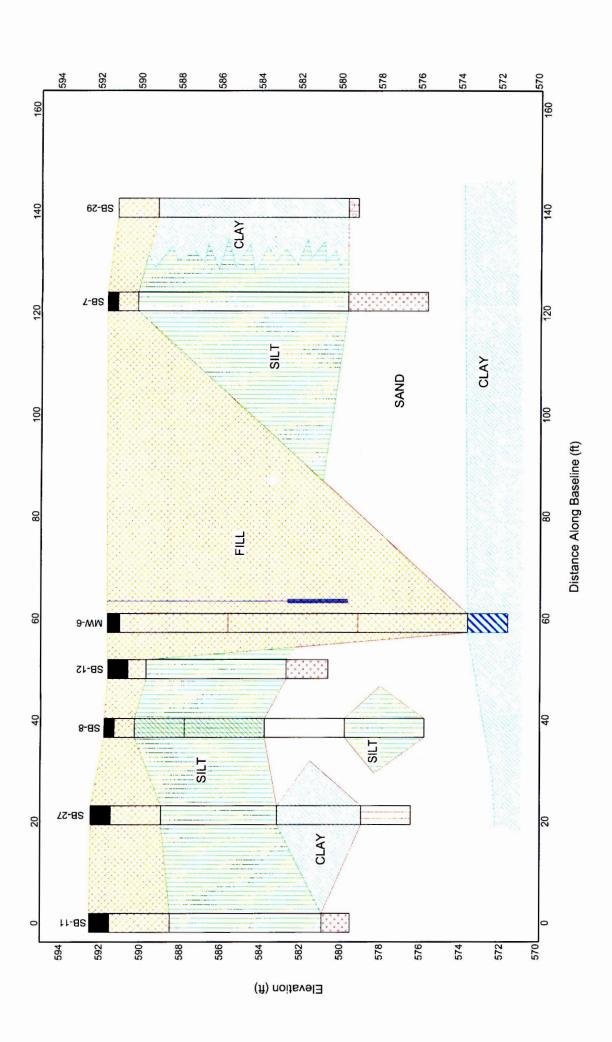
SUBSURFACE PROFILE C-C' PARCEL 2 - SENECA STREET Buffalo, New York

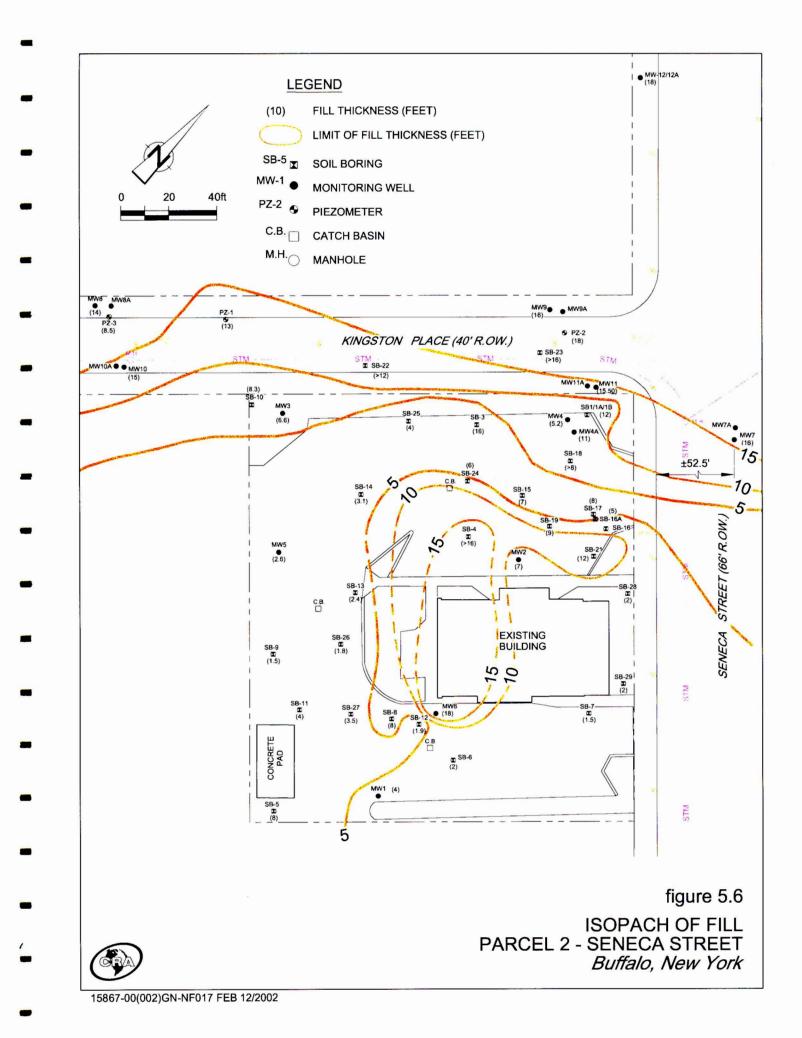
figure 5.4

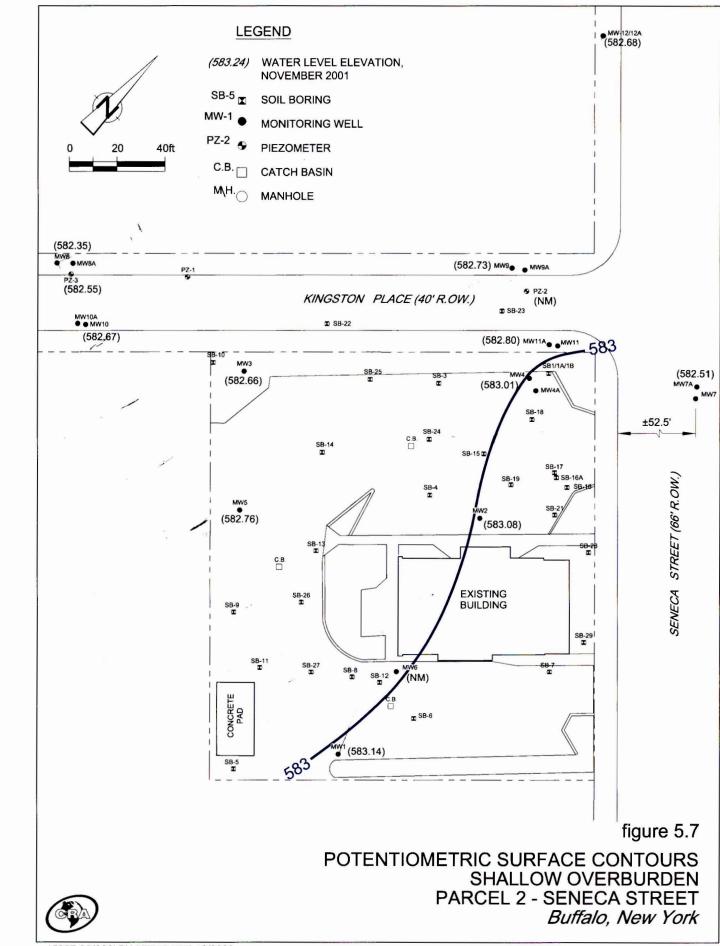
15867-00(002)GN-NF020 FEB 12/2002

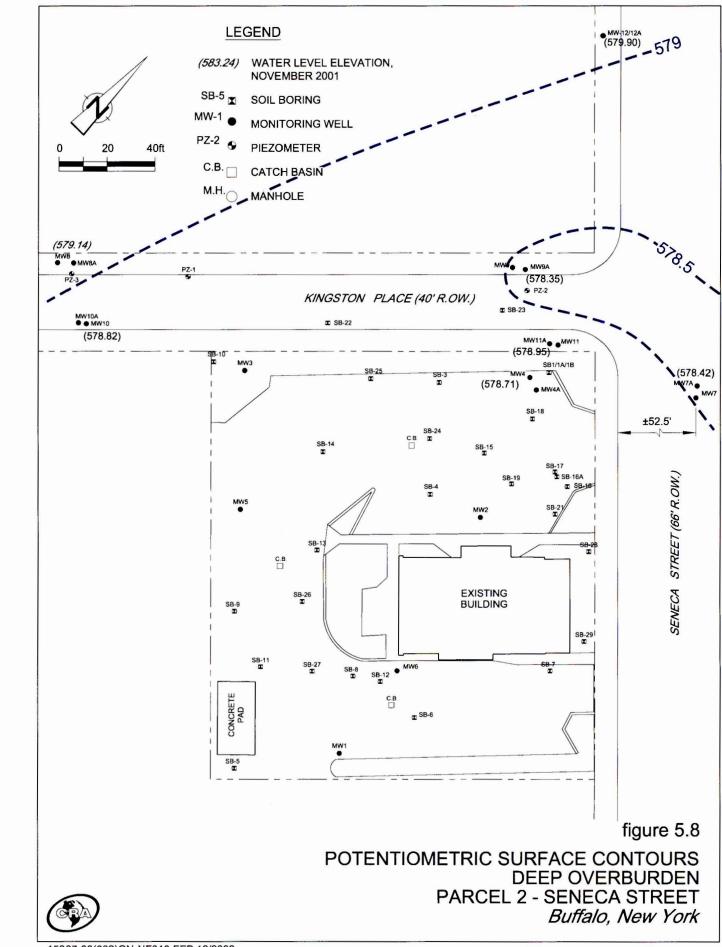
	JEND	FILL	NATIVE SAND	NATIVE SILT	NATIVE CLAY	WELL SCREEN	BEDDING/BACKFILL	SANITARY SEWER	STORM SEWER	SHALLOW WATER LEVEL ELEV	DEEP WATER LEVEL ELEVATIC	TOP OF BEDROCK	
-		$\hat{\otimes}$						SS	ST	Ħ	⊿	XXXXXX	

SUBSURFACE PROFILE D-D' PARCEL 2 - SENECA STREET Buffalo, New York

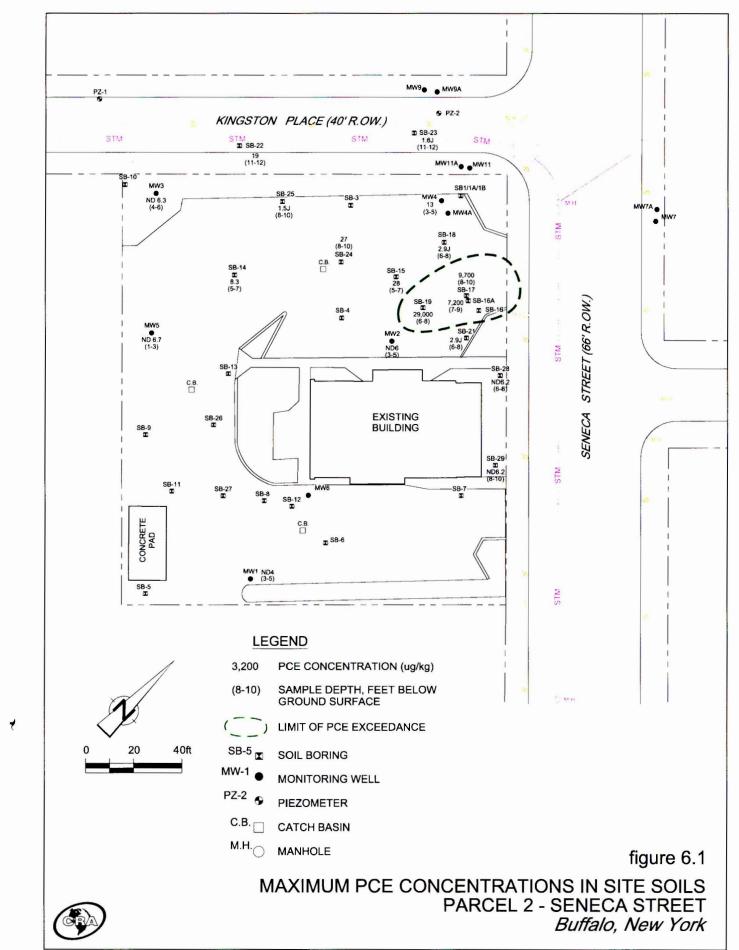


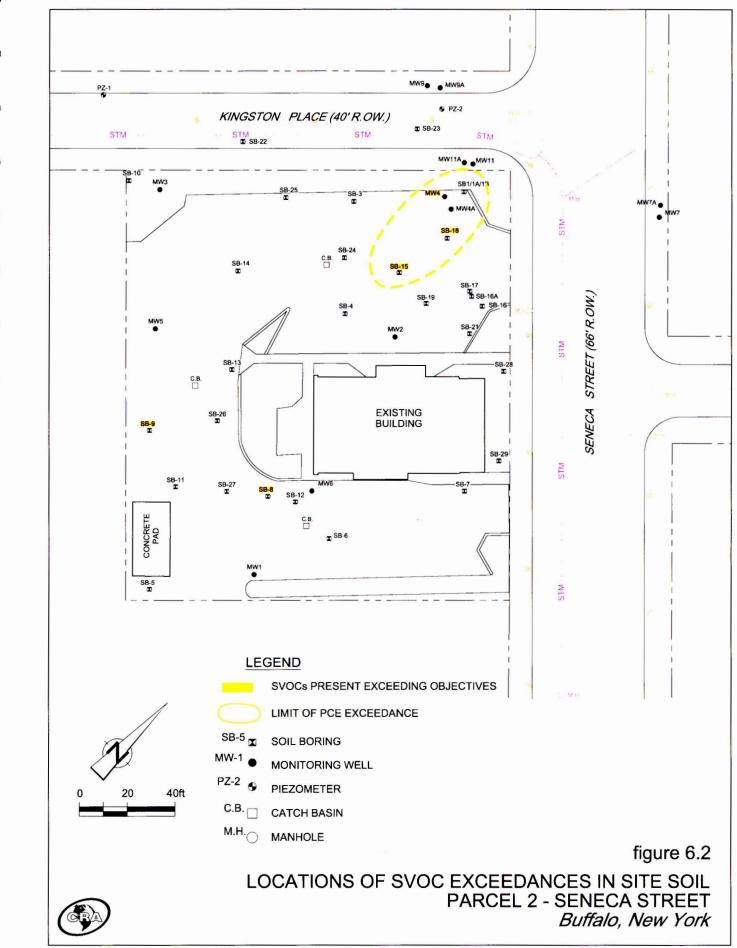

figure 5.5

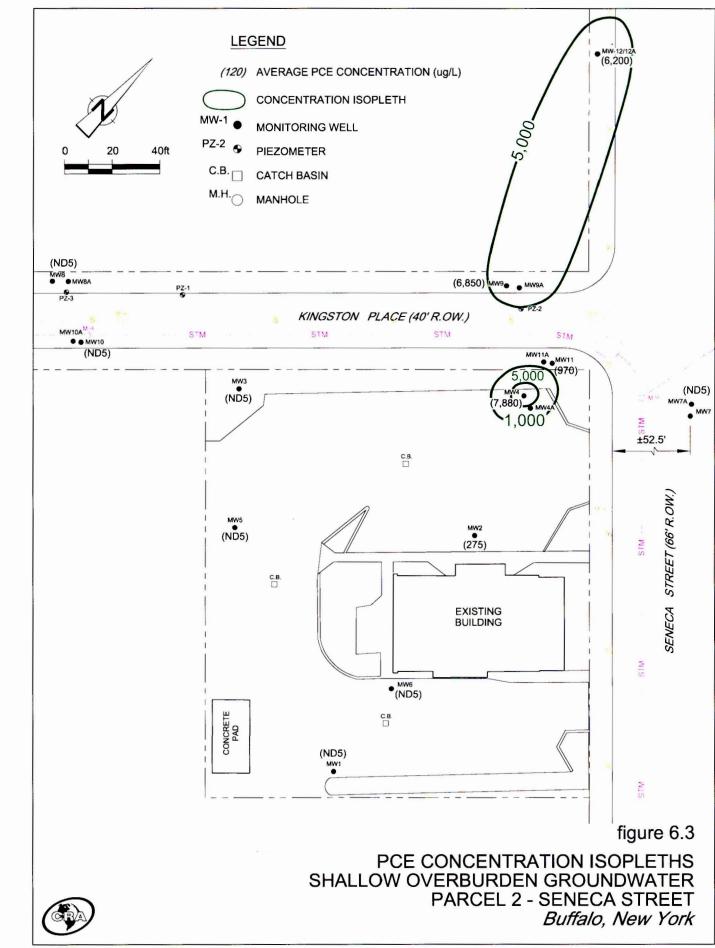

15867-00(002)GN-NF021 FEB 12/2002

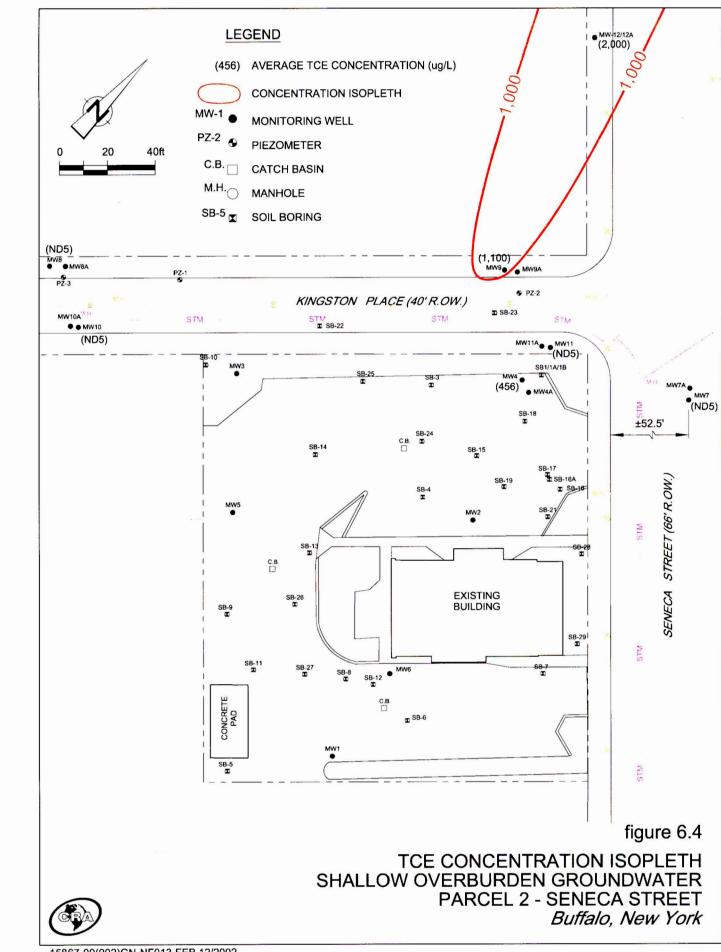

NATIVE SILT NATIVE CLAY WELL SCREEN NATIVE SAND FILL Ś

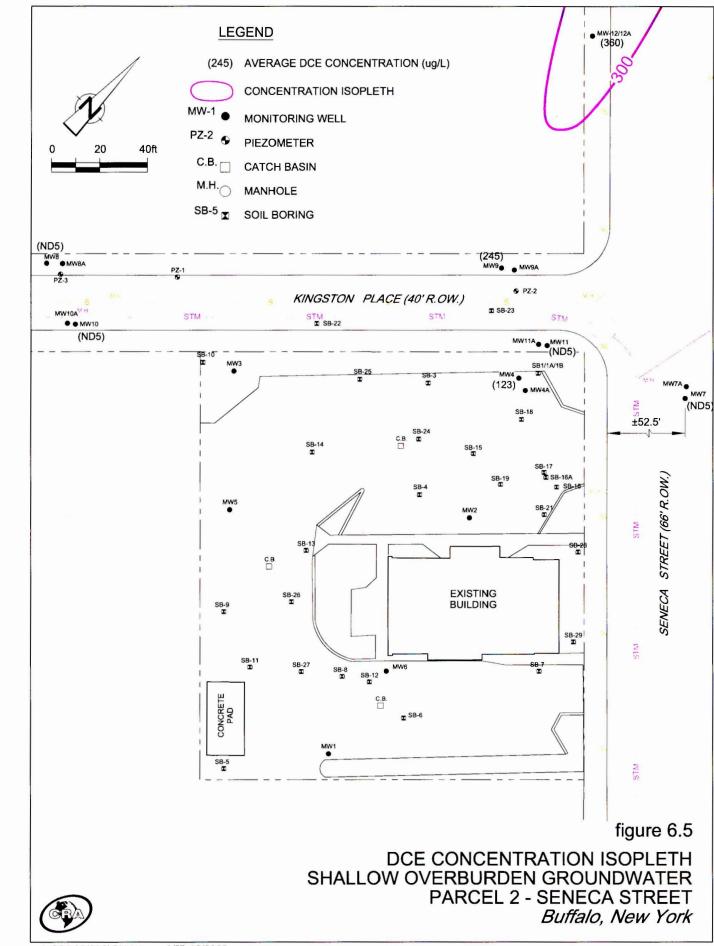
LEGEND



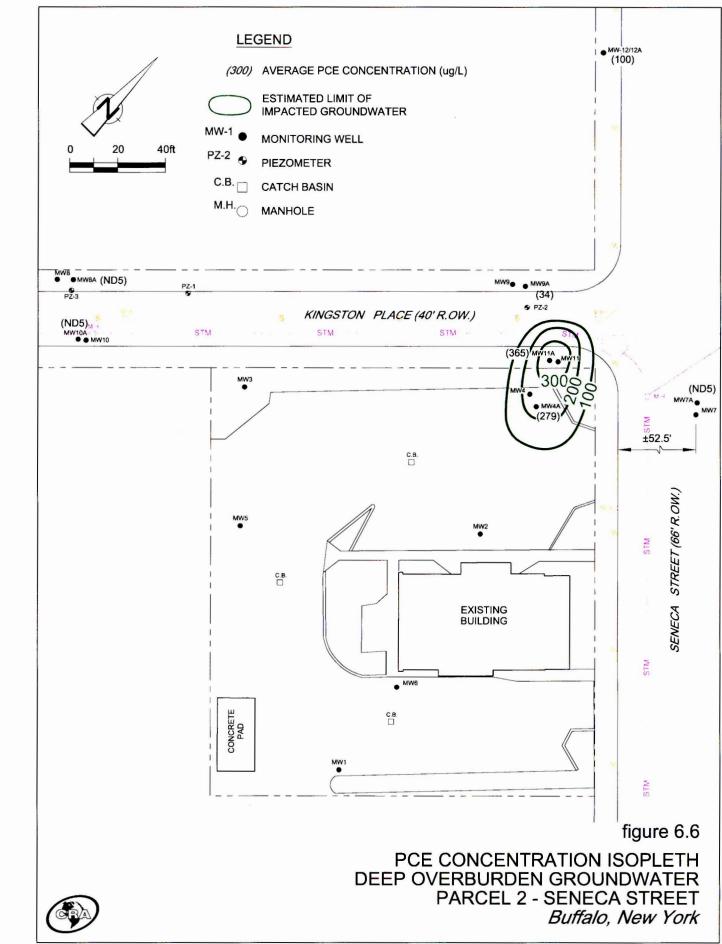

15867-00(002)GN-NF009 FEB 12/2002


15867-00(002)GN-NF010 FEB 12/2002

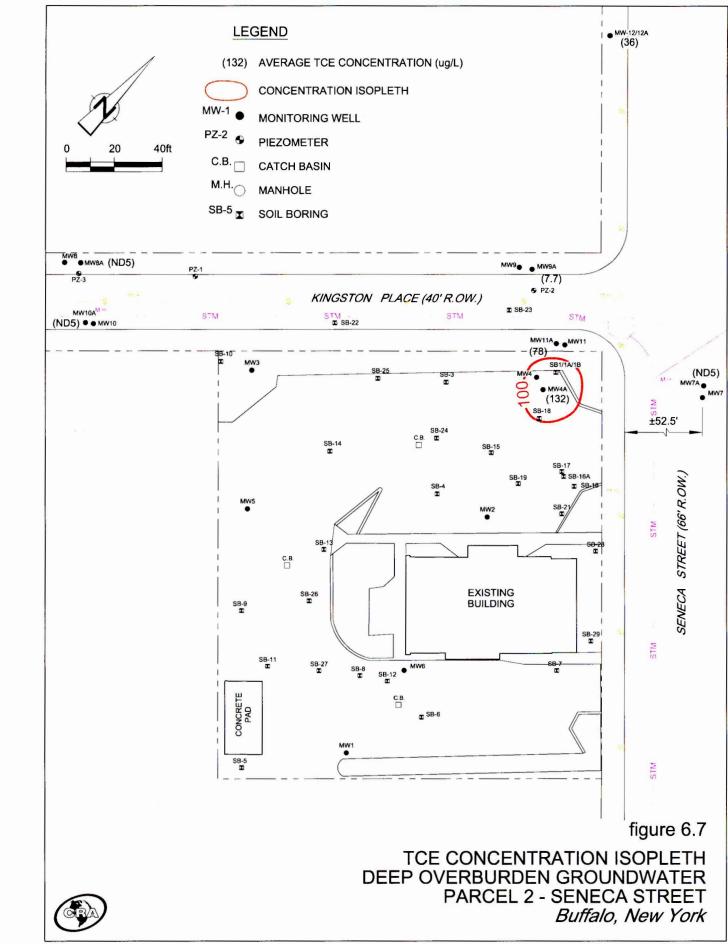

15867-00(002)GN-NF004 JAN 18/2002

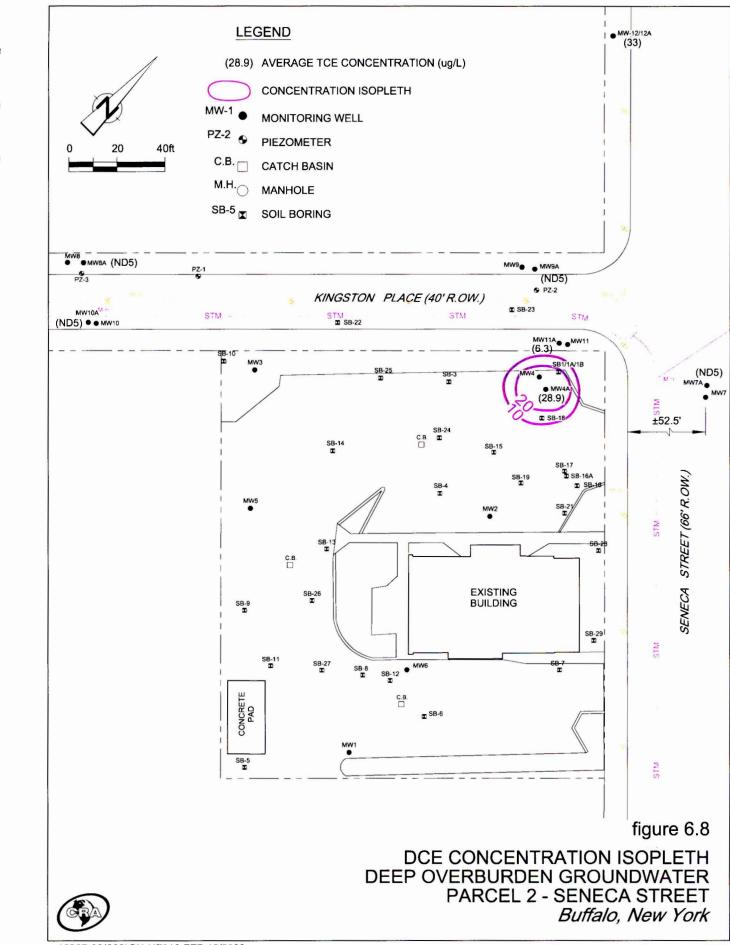

15867-00(002)GN-NF005 FEB 12/2002

15867-00(002)GN-NF007 FEB 12/2002



15867-00(002)GN-NF013 FEB 12/2002


15867-00(002)GN-NF015 FEB 12/2002


15867-00(002)GN-NF012 FEB 12/2002

-

15867-00(002)GN-NF014 FEB 12/2002

-

15867-00(002)GN-NF016 FEB 12/2002

-

TABLE 2.1

HISTORIC BUSINESS LISTINGS/PROPERTY USE SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

1965	Restaurant Laundry Drycleaner Restaurant Food store Restaurant Auto supply Restaurant(?)	Unknown Unknown Unknown Unknown 2001	No buildings No buildings No buildings Vacant No buildings No buildings No buildings	No buildings No buildings No buildings No buildings No buildings
1959	Restaurant Laundry Drycleaner Restaurant Thrift store Restaurant Auto supply Restaurant(?)	Unknown Unknown Unknown Unknown 1998	No buildings No buildings No buildings Restaurant No buildings No buildings Machine shop	No buildings No buildings No buildings No buildings No buildings
1950	Restaurant Restaurant Restaurant Restaurant Undeveloped Restaurant Undeveloped Auto service	Residential Residential Residential Residential 1992	No buildings No buildings No buildings Vacant No buildings No buildings No buildings	No buildings No buildings No buildings No buildings No buildings
1940	Tire sales Tire sales Tire sales Undeveloped Undeveloped Undeveloped Undeveloped Tire warehouse	Residential Residential Residential Residential 1985	Demolished Demolished Demolished Restaurant Demolished Demolished Auto service	Demolished Demolished Demolished Demolished Demolished
1917	Drugstore Drugstore Drugstore Undeveloped Undeveloped Undeveloped Undeveloped	Residential Residential Residential Residential 1977	Book store Unknown Drycleaner Restaurant Vacant Restaurant Aquarium Unknown	Unknown Unknown Unknown Unknown Unknown
1900	Undeveloped Undeveloped Undeveloped Undeveloped Undeveloped Undeveloped Undeveloped Undeveloped	Undeveloped Undeveloped Undeveloped Undeveloped Undeveloped 1971	Restaurant Unknown Drycleaner Restaurant Vacant Restaurant Vacant Vacant	Unknown Unknown Unknown Unknown Unknown
	2137 2139 2141 2143 2145 2147 2151 2153	93 97 101	2137 2139 2141 2143 2145 2145 2151 2151	93 95 99 101
	Seneca Street	Kingston Place	Seneca Street	Kingston Place

CRA 15867 (2)

TABLE 2.2

PROPERTY OWNERSHIP INFORMATION SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET **BUFFALO, NEW YORK**

Parcel Address

Owner Name

2131 Seneca Street	Property Developers Inc.
2140 Seneca Street	Gorenflo, Richard
2134 Seneca Street	Nostrant, Daniel and Gould, Kevin
2132 Seneca Street	Do, Bihn
2137 Seneca Street	Insured Income Properties Inc.
2157 Seneca Street	Key Bank of NY
2161 Seneca Street	Johnson, Michael T.
2158 Seneca Street	2158-2160 Seneca Street, Inc.
2156 Seneca Street	Wagner, Norman and Sue
2152 Seneca Street	Giglia, Joseph and Marie
85 Kingston Place	Armstrong, John and Lanor
87 Kingston Place	Eckam, Douglas
91 Kingston Place	Nowak, John
92 Kingston Place	Cunningham, Francis
88 Kingston Place	City of Buffalo Real Estate Division
90 Kingston Place	Beutler, Richard Sr.

Note:

Information obtained from Erie County Real Property Information, March 2001.

SAMPLE COLLECTION AND ANALYSES SUMMARY SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

				A	naly	sis/l	Para	mete	ers		
L	ocation	Sample Date	TCL VOCs	TCL SVOCs	STARS VOCs	STARS SVOCs	Metals (Filtered)	Metals (Unfiltered)	CN	Lead Only	Comment
	SB-1	07/21/99	x								8.0-12.0'
	SB-3	07/21/99	X								12.0'-16.0'
	SB-4	07/21/99	х								12.0'-16.0'
	SB-5	07/21/99			х	х				х	12.0'-16.0'
	SB-6	07/21/99			Х	Х				Х	8.0'-12.0'
	SB-7	07/21/99			Х	Х				Х	8.0'-12.0'
	SB-8	07/21/99			Х	Х				Х	4.0'-8.0'
	SB-9	07/21/99			Х	Х				Х	0-4.0'
	SB-10	07/21/99			Х	Х				Х	8.0'-12.0'
	SB-11	09/13/00				Х		Х	х		7.0-9.0'
	SB-12	09/13/00				Х		Х	Х		7.0-9.0'
	SB-13	09/13/00				Х		Х	Х		7.0-9.0'
	SB-14	09/13/00	Х			Х		Х	Х		5.0-7.0'
	SB-15	09/13/00	Х			Х		Х	Х		5.0-7.0'
	MW-1	09/14/00	Х			Х		Х	Х		3.0-5.0'
	MW-5	09/14/00	Х			Х		Х	Х		1.0-3.0
	MW-3	09/14/00	Х			Х		Х	Х		0.0-2.0'
	MW-3	09/14/00	Х			Х		Х	Х		4.0-6.0'
	MW-2	09/15/00	Х			Х		Х	Х		3.0-5.0'
	MW-2	09/15/00	Х			Х		Х	Х		7.0-9.0', Duplicate collected
	MW-4	09/16/00	Х			Х		Х	Х		3.0-5.0'
9	5 B-1 6A	09/18/00	Х			Х		Х	Х		7.0-9.0'
	SB-17	08/20/01	Х								2.0-4.0
	SB-17	08/20/01	Х								6.0-8.0'
	SB-17	08/22/01	Х								0-2.0'
	SB-17	08/22/01	Х								4.0-6.0'
	SB-17	08/22/01	Х								8.0-10.0'
	SB-18	08/22/01	Х	Х							6.0-8.0'
	SB-19	08/20/01	Х	Х							6.0-8.0'
	SB-21	08/20/01	Х								6.0-8.0'
	SB-22	08/22/01	Х								11.0-12.0'
	SB-23	08/22/01	Х								11.0-12.0'
	SB-24	08/20/01	Х	Х							8.0-10.0', Duplicate collected
	SB-25	08/20/01	Х								8.0-10.0'
	SB-26	08/20/01		Х							10.0-12.0'
	SB-27	08/20/01		Х							10.0-12.0'
	SB-28	08/20/01	Х								6.0-8.0'
	SB-29	08/20/01	Х								8.0-10.0'

Soils

SAMPLE COLLECTION AND ANALYSES SUMMARY SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

				A	naly	sis/	Para	met	ers		
	Location	Sample Date	TCL VOCs	TCL SVOCs	STARS VOCs	STARS SVOCs	Metals (Filtered)	Metals (Unfiltered)	CN	Lead Only	Comment
Groundwater	SB-1B	07/21/99	х		х	х				х	
	SB-6	07/21/99	Х		X	X				X	
	MW-1	10/04/00	Х			X		х	х		
	MW-1	09/19/01	Х								
	MW-2	10/05/00	Х			Х		Х	х		
	MW-2	09/20/01	х								
	MW-2	11/29/01	Х								
	MW-3	10/04/00	Х			х		х	х		
	MW-3	09/20/01	Х								
	MW-4	10/05/00	Х			Х		х	Х		Duplicate collected
	MW-4	09/24/01	Х								1
	MW-4	11/28/01	Х								Duplicate collected
	MW-4A	10/04/00	х			Х	Х	Х	Х		
	MW-4A	09/24/01	Х								
	MW-4A	11/29/01	Х								
	MW-5	10/04/00	Х			Х		Х	Х		
	MW-5	09/19/01	Х								
	MW-6	09/24/01	Х	Х							Duplicate collected
	MW-7	09/24/01	Х	Х							
	MW-7A	09/20/01	Х								
	MW-8	09/24/01	Х								
	MW-8A	09/20/01	Х								
	MW-9	09/21/01	Х								
	MW-9	11/27/01	Х								
	MW-9A	09/21/01	Х								
	MW-9A	11/28/01	Х								
	MW-10	09/20/01	Х	Х							
	MW-10A	09/20/01	Х	•							
	MW-11	09/20/01	X	Х							
	MW-11	11/28/01	X								
	MW-11A	09/20/01	X								
	MW-11A	11/29/01	X								
	MW-12	11/27/01	X								
	MW-12A	11/30/01	Х								

Notes:

Feet.

CN Chloroacetophenone.

STARS Spill Technology and Remediation.

 ${\small SVOCs \ \ Semi-Volatile \ Organic \ Compounds.}$

TCL Target Compound List.

VOCs Volatile Organic Compounds.

MONITORING WELL INSTALLATION DETAILS SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

	Borehole	Ground												
Well No.	Depth	Elevation			Sandpa	ck Interva	ıl				Screene	d Interva	1	
	(Ft. BGS)	(Ft. NGVD)	(F	t. BG	(S)	(Ft.	NG	VD)	(F	t. BG	S)	(Ft.	NG	VD)
MW-1	21.0	592.6	13.5	to	21.0	579.1	to	571.6	16.0	to	21.0	576.6	to	571.6
MW-2	18.0	591.7	9.0	to	18.0	582.7	to	573.7	12.5	to	17.5	579.2	to	574.2
MW-3	18.0	591.0	9.0	to	18.0	582.0	to	573.0	12.5	to	17.5	578.5	to	573.5
MW-4	18.0	591.2	9.0	to	18.0	582.2	to	573.2	12.5	to	17.5	578.7	to	573.7
MW-4A	30.0	591.0	21.5	to	29.6	569.5	to	561.4	24.4	to	29.4	566.6	to	561.6
MW-5	21.0	591.4	9.5	to	21.0	581.9	to	570.4	12.5	to	17.5	578.9	to	573.9
MW-6	20.0	591.6	23.0	to	20.0	568.6	to	571.6	15.0	to	20.0	576.6	to	571.6
MW-7	18.4	590.9	11.4	to	18.4	579.5	to	572.5	13.4	to	18.4	577.5	to	572.5
MW-7A	30.0	590.9	23.0	to	30.0	567.9	to	560.9	25.0	to	30.0	565.9	to	560.9
MW-8	16.2	589.7	8.0	to	16.2	581.7	to	573.5	11.2	to	16.2	578.5	to	573.5
MW-8A	30.0	589.6	22.0	to	30.0	567.6	to	559.6	25.0	to	30.0	564.6	to	559.6
MW-9	17.9	590.3	11.0	to	17.9	579.3	to	572.4	12.9	to	17.9	577.4	to	572.4
MW-9A	31.5	590.3	24.5	to	31.5	565.8	to	558.8	26.5	to	31.5	563.8	to	558.8
MW-10	16.0	589.4	7.0	to	16.0	582.4	to	573.4	11.0	to	16.0	578.4	to	573.4
MW-10A	25.0	589.6	12.0	to	25.0	577.6	to	564.6	20.0	to	25.0	569.6	to	564.6
MW-11	18.0	590.8	11.0	to	18.0	579.8	to	572.8	13.0	to	18.0	577.8	to	572.8
MW-11A	27.5	590.7	20.5	to	27.5	570.2	to	563.2	22.5	to	27.5	568.2	to	563.2
MW-12	18.0		11.0	to	18.0		to		13.0	to	18.0		to	
MW-12A	30.0		23.0	to	30.0		to		25.0	to	30.0		to	
PZ-1	18.0	589.6	11.0	to	18.0	578.6	to	571.6	13.0	to	18.0	576.6	to	571.6
PZ-2	18.0	590.2	11.0	to	18.0	579.2	to	572.2	13.0	to	18.0	577.2	to	572.2
PZ-3	12.0	589.4	4.0	to	12.0	585.4	to	577.4	7.0	to	12.0	582.4	to	577.4

Notes: Ft. BGS NGVD

Feet Below Ground Surface.National Geodetic Vertical Datum

WATER LEVEL ELEVATIONS SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

	Top of					
Well No.	Casing	27-Sep-00	05-Oct-00	07-Feb-01	28-Sep-01	26-Nov-01
MW-1	592.24	583.13	583.19	583.42	582.16	583.14
MW-2	591.23	583.18	583.13	583.35	582.01	583.08
MW-3	590.33	582.67	582.75	583.00	581.54	582.66
MW-4	590.51	583.09	583.11	583.29	582.02	583.01
MW-4A	590.61	579.36	579.72	579.81	578.09	578.71
MW-5	590.76	582.78	582.81	583.03	580.62	582.76
MW-6	591.47				581.96	NM
MW-7	590.41				581.72	582.51
MW-7A	590.42				577.87	578.42
MW-8	588.88				581.33	582.35
MW-8A	589.04				578.26	579.14
MW-9	589.71				581.92	582.73
MW-9A	589.55				577.99	578.35
MW-10	589.02				581.29	582.67
MW-10A	589.07				578.10	578.82
MW-11	590.40				581.87	582.80
MW-11A	590.20				578.68	578.95
MW-12	590.68					582.68
MW-12A	590.55					579.90
PZ-1	589.36				581.60	NM
PZ-2	590.04				581.86	NM
PZ-3	589.15				581.40	582.55

Notes:

All elevations are relative to National Geodetic Vertical Datum

-- Not installed.

NM Not measured.

TABLE 3.4 WELL RECOVERY INFORMATION SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

Well Number	Description
MW-1	Yield sufficient for purging and sampling
MW-2	Yield sufficient for purging and sampling
MW-3	Yield sufficient for purging and sampling
MW-4	Yield sufficient for purging and sampling
MW-4A	Dry after 1.5 volumes (5 gallons) removed. Same day recovery sufficient for sampling.
MW-5	Yield sufficient for purging and sampling.
MW-6	Yield sufficient for purging and sampling
MW-7	Yield sufficient for purging and sampling
MW-7A	Dry after 3 volumes (8 gallons) removed. Same day recovery sufficient for sampling.
MW-8	Yield sufficient for purging and sampling.
MW-8A	Dry after 2.5 volumes (5 gallons). 24-hour recovery 2.5 gallons.
MW-9	Dry after 4 volumes (5 gallons) removed, full recovery in 15 minutes.
MW-9A	Yield sufficient for purging and sampling.
MW-10	Dry after 4 volumes (1.0 gallon), same day recovery sufficient for sampling.
MW-10A	Yield sufficient for purging and sampling.
MW-11	Yield sufficient for purging and sampling.
MW-11A	Dry after 3 volumes (7.5 gallons) removed, recovery 1.8 gallons in 4 hours.
MW-12	Yield sufficient for purging and sampling.
MW-12A	Dry after 1.5 volumes (4.5 gallons) removed, recovery 3.3 gallons in approximately 48 hours.

TABLE 5.1 ESTIMATED HYDRAULIC CONDUCTIVITY VALUES SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

	Well ID	Falling Head (cm/sec)	Rising Head (cm/sec)	Geometric Mean (cm/sec)
Shallow Overburden	MW-1	2.460E-03 2.375E-03	2.113E-03 2.495E-03	2.356E-03
	MW-2	8.259E-03 1.034E-02	7.132E-03 1.025E-02	8.889E-03
	MW-3	4.548E-03 6.219E-03	5.283E-03 5.406E-03	5.331E-03
	MW-4	5.541E-03 4.998E-03	4.981E-03 5.723E-03	5.301E-03
	MW-5	4.594E-03 4.484E-03	1.608E-03 1.963E-03	2.840E-03
	MW-6	2.586E-03	1.7051-05	2.586E-03
	MW-7	4.646E-03		4.646E-03
	MW-8	1.394E-04		1.394E-04
	MW-9	3.284E-04		3.284E-04
	MW-10		- Not Tested -	
	MW-11	1.145E-02	8.647E-03	9.950E-03
	MW-12	1.189E-02 1.117E-02	7.039E-03 4.638E-03	7.198E-03
Deep Overburden	MW-4A	1.693E-05	1.554E-05	1.622E-05
	MW-7A	1.452E-05	6.603E-06	9.792E-06
	MW-8A	1.932E-05	1.274E-05	1.569E-05
	MW-9A	3.769E-04	3.523E-04	3.644E-04
	MW-10A ???			
	MW-11A ??	2.500E-06		2.500E-06
	MW-12A	3.509E-06		3.509E-06

TABLE 6.1

GENERIC GROUNDWATER VOLATILIZATION TO INDOOR AIR INHALATION CRITERIA SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

		Maximum Average	Residential	Industrial
Compound	Units	Concentration ⁽¹⁾	Criteria ⁽²⁾	Criteria ⁽²⁾
Tetrachloroethene	µg/L	7,880 (MW-4)	25,000	170,000
Trichloroethene	μg/L	456 (MW-4)	15,000	97,000
cis-1,2-Dichloroethene	μg/L	240 (MW-2)	96,000	200,000

Notes:

⁽¹⁾ Maximum of the average groundwater concentration detected in on-Site monitoring wells.

Source: Michigan Department of Environmental Quality, Part 201,
 Operational Memo 18, Attachment A, June 2000.

					TABLE 6.2	4						Page 1 of 3
			ORGA	ORGANIC CHEMICAL COMPOUNDS DETECTED IN SOILS SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	MICAL COMPOUNDS DETEC VESTIGATION/FEASIBILITY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	JIC CHEMICAL COMPOUNDS DETECTED IN SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	UDY UDY					
	San Sample D	Sample Location: Sample Depth (ft BGS): Sample Date:	SB-1B 8.0-12.0 07/21/99	SB-3 12.0-16.0 07/21/99	5 B-4 12.0-16.0 07/21/99	SB-6 8.0-12.0 07/21/99	SB-7 8.0-12.0 07/21/99	SB-8 4.0-8.0 07/21/99	5B-9 0-4.0 07/21/99	SB-10 8.0-12.0 07/21/99	SB-14 5.0-7.0 9/13/2000	SB-15 5.0-7.0 9/13/2000
Parameter	TAGM 4046 Standard	Unit										
Volatiles												
Acetone	200	ug/Kg	100 U	100 U	25	NA	NA	NA	NA	NA	24 U	21 U
2-Butanone	300	ug/Kg	100 U	100 U	100 U	NA	NA	NA	NA	NA	24 U	21UJ
cis-1,2-Dichloroethene	NS	ug/Kg	NA	NA	NA .	NA	NA	NA	NA	NA	6.0 U	5.3 U
Tetrachloroethene	1400	ug/Kg	15	12000	421	NA	NA	NA	NA	NA	8.3	28
Methylene chloride	100	ug/Kg	20	7	3	NA	NA	NA	NA	NA	6.0 U	5.3 U
Trichloroethene	700	ug/Kg	2	54	12	NA	NA	NA	NA	ΝA	6.0 U	5.3 U
Toluene	1500	ug/Kg	3	5 U	5 U	1.5	2.7	7.0	1.9	5.9	6.0 U	5.3 U
Xylenes, total	1200	ug/Kg	7	5 U	5 U	2.8 U	2.8 U	7.5	2.8 U	7.6	6.0 U	5.3 U
Benzene	60	ug/Kg	5 U	5 U	5 U	1U	1 U	5.1	1 U	1 U	6.0 U	5.3 U
Ethylbenzene	5500	ug/Kg	5 U	5 U	5 U	1 U	1 U	1.8	1 U	1 U	6.0 U	5.3 U
Semi-Volatiles												
Acenaphthene	50000	ug/Kg	NA	NA	NA	330 U	330 U	330 U	330 U	330 U	400 U	1800 UJ
Anthracene	50000	ug/Kg	NA	NA	NA	330 U	330 U	164	330 U	330 U	400 U	170 J
Benzo(a)anthracene	224	ug/Kg	NA	NA	NA	89	330 U	450	6340	330 U	400 U	710 J
Benzo(a)pyrene	61	ug/Kg	NA	NA	NA	87	330 U	520	6080	330 U	400 U	720 J
Benzo(b)fluoranthene	1100	ug/Kg	NA	NA	NA	157	330 U	513	6280	330 U	400 U	750 J
Benzo(g,h,i)perylene	50000	ug/Kg	NA	NA	NA	330 U	330 U	328	3420	330 U	400 U	280 J
Benzo(k)fluoranthene	1100	ug/Kg	NA	NA	NA	87	330 U	475	4080	330 U	400 U	730 J
bis(2-Ethylhexyl) phthalat	50000	ug/Kg	NA	NA	NA	330 U	330 U	330 U	330 U	330 U	400 U	1800 UJ
Carbazole	NS	ug/Kg	NA	NA	NA	330 U	330 U	330 U	330 U	330 U	400 U	1800 UJ
Chrysene	400	ug/Kg	NA	NA	NA	129	330 U	514	6670	330 U	400 U	830 J
Dibenzofuran	6200	ug/Kg	NA	NA	NA	330 U	330 U	330 U	330 U	330 U	400 U	1800 UJ
Dibenz(a,h)anthracene	14	ug/Kg	NA	NA	NA	330 U	330 U	330 U	1690	330 U	400 U	1800 UJ
Fluoranthene	50000	ug/Kg	NA	NA	NA	258	330 U	1280	8330	330 U	400 U	1800 J
Fluorene	50000	ug/Kg	NA	NA	NA	330 U	330 U	89	330 U	330 U	400 U	1800 UJ
Indeno(1,2,3-cd)pyrene	3200	ug/Kg	NA	NA	NA	330 U	330 U	275	3180	330 U	400 U	290 J
Naphthalene	13000	ug/Kg	NA	NA	NA	330 U	330 U	330 U	330 U	330 U	400 U	1800 UJ
Phenanthrene	50000	ug/Kg	NA	NA	NA	160	330 U	626	330 U	330 U	400 U	950 J
Pyrene	50000	ug/Kg	NA	NA	NA	242	330 U	1340	12600	330 U	400 U	860 J
2-Methyl naphthalene	35400	ug/Kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

CRA 15867 (2)

					TABLE 6.2	2						Page 2 of 3
			ORGAN	IC CHEMICA SITE INVEST PARO BU	ORGANIC CHEMICAL COMPOUNDS DETECTED IN SOILS SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	IDS DETECTE ASIBILITY ST A STREET Y YORK	UDY D IN SOILS					
	Sam Sample D	Sample Location: Sample Depth (ft BGS): Sample Date:	SB-16A 7.0-9.0 9/18/2000	SB-17 0-2.0 08/22/01	SB-17 2.0-4.0 08/22/01	SB-17 4.0-6.0 08/22/01	SB-17 6.0-8.0 08/22/01	SB-17 8.0-10.0 08/22/01	SB-18 6.0-8.0 08/22/01	SB-19 6.0-8.0 08/20/01	SB-21 6.0-8.0 08/20/01	5B-22 11.0-22.0 08/22/01
Parameter	TAGM 4046 Standard	llmit										
Volatiles												
Acetone	200	ug/Kg	420 J	21 U	21 U	25 U	25 U	24 U	46 U	25 U	24 U	24 U
2-Butanone	300	ug/Kg	1300U	21 U	21 U	25 U	25 U	24 U	8.3 J	25 U	24 U	24 U
cis-1,2-Dichloroethene	NS	ug/Kg	310 U	5.2 U	5.2 U	6.2 U	6.2 U	1.5J	6.1	70	6.0 U	5.9 U
Tetrachloroethene	1400	ug/Kg	7200	13	33	16	140	0026	2.9]	29000	2.9 J	19
Methylene chloride	100	ug/Kg	310 U	5.2 U	5.2 U	6.2 U	6.2 U	6.1 U	5.7 U	6.3 U	6.0 U	5.9 U
Trichloroethene	200	ug/Kg	310 U	5.2 U	5.2 U	6.2 U	6.2 U	13	6.1	25	6.0 U	5.9 U
Toluene	1500	ug/Kg	310 U	5.2 U	5.2 U	6.2 U	6.2 U	6.1 U	5.7 U	6.3 U	6.0 U	5.9 U
Xylenes, total	1200	ug/Kg	310 U	16 U	16 U	19 U	19 U	18 U	17 U	19 U	18 U	18 U
Benzene	60	ug/Kg	310 U	5.2 U	5.2 U	6.2 U	6.2 U	6.1 U	5.7 U	6.3 U	6.0 U	5.9 U
Ethylbenzene	5500	ug/Kg	310 U	5.2 U	5.2 U	6.2 U	6.2 U	6.1 U	5.7 U	6.3 U	6.0 U	5.9 U
Semi-Volatiles												
Acenaphthene	50000	ug/Kg	410 U	NA	NA	NA	NA	NA	1200 J	410 U	NA	NA
Anthracene	50000	ug/Kg		NA	NA	NA	NA	NA	1800 J	410 U	NA	NA
Benzo(a)anthracene	224	ug/Kg		NA	٧N	NA	NA	NA	3200 J	410 U	NA	NA
Benzo(a)pyrene	61	ug/Kg		٨A	NA	NA	NA	NA	2200 J	410 U	NA	NA
Benzo(b)fluoranthene	1100	ug/Kg		NA	ΝA	NA	NA	NA	2000 J	410 U	NA	NA
Benzo(g,h,i)perylene	50000	ug/Kg		NA	NA	NA	NA	NA	1100 J	410 U	NA	NA
Benzo(k)fluoranthene	1100	ug/Kg	410 U	NA	AN	NA	NA	NA	1400]	410 U	NA	NA
bis(2-Ethylhexyl) phthalat	20000	ug/Kg	410 U	NA	NA	NA	NA	NA	3800 U	120 J	NA	NA
Carbazole	NS	ug/Kg	410 U	NA	NA	NA	NA	NA	880 J	410 U	NA	NA
Chrysene	400	ug/Kg	22 J	NA	NA	NA	NA	NA	2900 J	410 U	NA	NA
Dibenzofuran	6200	ug/Kg	410 U	NA	NA	NA	NA	NA	730 J	410 U	NA	NA
Dibenz(a,h)anthracene	14	ug/Kg	410 U	NA	NA	NA	NA	NA	3800 U	410 U	NA	NA
Fluoranthene	50000	ug/Kg	46 J	NA	NA	NA	NA	NA	5900	43 J	NA	NA
Fluorene	50000	ug/Kg	410 U	NA	ΝA	NA	NA	NA	1100 J	410 U	NA	NA
Indeno(1,2,3-cd)pyrene	3200	ug/Kg	410 U	NA	NA	NA	NA	NA	1100 J	410 U	NA	NA
Naphthalene	13000	ug/Kg	410 U	NA	NA	NA	NA	NA	1700 J	410 U	NA	NA
Phenanthrene	5000	ug/Kg	46 J	NA	NA	NA	NA	NA	0069	410 U	NA	NA
Pyrene	50000	ug/Kg	44 J	NA	NA	NA	NA	NA	5800	51 J	NA	NA
2-Methyl naphthalene	35400	ug/Kg	NA	NA	NA	NA	NA	NA	460]	410 U	NA	NA

CRA 15867 (2)

				PARCEL 2 - 5 BUFFALO	PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	PARCEL 2 - SENECA STREET BUFFALO, NEW YORK					
	San Sample D	Sample Location: Sample Depth (ft BGS): Sample Date:	SB-23 11.0-12.0 08/22/01	SB-24 8.0-10.0 08/20/01	SB-25 8.0-10.0 08/20/01	MW-1 3.0-5.0 9/14/2000	MW-2 3.0-5.0 9/15/2000	MW-3 0-2.0 9/14/2000	MW-3 4.0-6.0 9/14/2000	MW -4 3.0-5.0 9/15/2000	MW-5 1.0-3.0 9/14/2000
Parameter	TAGM 4046 Standard	Unit									
Volatiles											
Acetone	200	ug/Kg	24 U	24 U/24 U	24 U	27 J	29 J	25 UJ	28 J	21 U	27 U
2-Butanone	300	ug/Kg	24 U	24 U/24 U	24 U	24 UJ	24 UJ	25 UJ	25 UJ	21 UJ	27 UJ
cis-1,2-Dichloroethene	NS	ug/Kg	5.9 U	6.0 U/6.0 U	6.0 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Tetrachloroethene	1400	ug/Kg	1.6 J	53/9.8	1.5 J	6.0 U	6.0 U	6.2 U	6.3 U	13	6.7 U
Methylene chloride	100	ug/Kg	5.9 U	6.0 U/6.0 U	6.0 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Trichloroethene	700	ug/Kg	5.9 U	6.0 U/6.0 U	6.0 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Toluene	1500	ug/Kg	5.9 U	6.0 U/6.0 U	6.0 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Xylenes, total	1200	ug/Kg	18 U	18 U/18 U	18 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Benzene	60	ug/Kg	5.9 U	6.0 U/6.0 U	6.0 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Ethylbenzene	5500	ug/Kg	5.9 U	6.0 U/6.0 U	6.0 U	6.0 U	6.0 U	6.2 U	6.3 U	5.3 U	6.7 U
Semi-Volatiles											
Acenaphthene	5000	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	670 J	440 U
Anthracene	50000	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	31]	410 U	2100]	30]
Benzo(a)anthracene	224	ug/Kg	NA	400 U/400 U	NA	400 U	150]	160 J	410 U	5700 J	88]
Benzo(a)pyrene	61	ug/Kg	NA	400 U/400 U	NA	22]	2000 U	160 J	410 U	5600	90]
Benzo(b)fluoranthene	1100	ug/Kg	NA	400 U/400 U	NA	30]	190 J	210 J	410 U	6400	78]
Benzo(g,h,i)perylene	50000	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	53 J	410 U	1500 J	50]
Benzo(k)fluoranthene	1100	ug/Kg	NA	400 U/400 U	NA	400 U	170 J	160 J	410 U	5400	70 J
bis(2-Ethylhexyl) phthalat	50000	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	3500 U	440 U
Carbazole	NS	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	3500 U	440 U
Chrysene	400	ug/Kg	NA	400 U/400 U	NA	28 J	190 J	180 J	410 U	6200 J	110]
Dibenzofuran	6200	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	3500 U	440 U
Dibenz(a,h)anthracene	14	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	500 J	440 U
Fluoranthene	50000	ug/Kg	NA	400 U/400 U	NA	55 J	540 J	490	410 U	22000	220]
Fluorene	50000	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	1100 J	440 U
Indeno(1,2,3-cd)pyrene	3200	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	53 J	410 U	1700 J	45 J
Naphthalene	13000	ug/Kg	NA	400 U/400 U	NA	400 U	2000 U	410 U	410 U	3500 U	440 U
Phenanthrene	50000	ug/Kg	NA	400 U/400 U	NA	29 J	260 J	160 J	410 U	11000	140 J
Pyrene	50000	ug/Kg	NA	400 U/400 U	NA	22]	220 J	180 J	410 U	8200 J	120 J
))									

J Estimated.
 NA Not analyzed.
 TAGM Technical and Administrative Guidance Memoranda.
 U Non-detect at associated value.
 Exceeds standard.

CRA 15867 (2)

e 3 of 3

				TABLE 6.3	53				Page 1 of 2
			SITE IN	METALS DETECTED IN SOIL VESTIGATION/FEASIBILITY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	METALS DETECTED IN SOIL SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK				
	Sample Location: Sample ID: Sample Depth (ft. BGS): Sample Date:		MW-1 S-091400-KL-007 3.0-5.0 9/14/2000	MW-2 S-091500-KL-012 3.0-50 9/15/2000	MW-2 S-091500-KL-013 7.0-9.0 9/15/2000	MW-2 S-091500-KL-014 7.0-9.0 9/15/2000 Duplicate	MW-3 S-091400-KL-009 0-2.0 9/14/2000	MW-3 S-091400-KL-010 4.0-6.0 09/14/00	MW-4 S-091500-KL-015 3.0-5.0 9/15/2000
	TAGM 4046 Std								
Metais Aluminum	Background mg/Kg	'Kg	11700	15300	9050	0668	9460	12900	9060
Antimony		, Kg	0.80 UJ	0.64 UJ	0.40 UJ	0.88 J	0.81 J	0.54 UJ	0.46 UJ
Arsenic		/Kg	8.5	4.8	7.5	7.0	8.1	10.7	4.6
Barium	300 mg/Kg	Kg	68.7	457	55.1	60.1	76.2	107	129
Cadmium	1 mg/Kg	'Kg	0.60 UJ	0.60 UJ	0.61 UJ	0.62 UJ	0.12 J	0.63 UJ	0.88 J
Calcium	Background mg/Kg	'Kg 	20000	171000	2760	2890	27400	1770	201000
Chromium		/Kg	16.0	12.6	11.9	12.0	14.9	16.9	6.1
Cobalt	30 mg/Kg	'Kg	11.1	8.5	11.2	10.9	10.7	15.9	2.6
Copper	25 mg/Kg	/Kg	16.8	20.6	27.4	26.1	30.2	31.0	11.2
Iron	2000 mg/Kg	/Kg	28500	11700	23600	23200	23100	32400	9310
Lead	Background mg/Kg	'Kg	33.9	25.6	11.3	11.1	87.6	15.8	34.9
Magnesium	Background mg/Kg	'Kg	4740 J	31200 J	3400]	3470 J	f 0626	4830 J	9420 J
Manganese	pun	/Kg 	453	1700	384	365	627	603	413
Nickel	13 mg/Kg	/Kg	23.6	11.3	25.4	26.0	22.2	35.4	7.6
Potassium	Background mg/Kg	/Kg	915	1360	771	691	924	943	931
Selenium	2 mg/Kg	/Kg	0.34	1.2 U	0.61 U	0.62 U	0.62 U	0.63 U	0.53 U
Silver	Background mg/Kg	'Kg	1.2 U	0.19	1.2 U	1.2 U	1.2 U	1.3 U	1.1 U
Sodium	Background mg/Kg	'Kg	343 U	507	142 U	161 U	138 U	79.0 U	358 U
Thallium	Background mg/Kg	/Kg	1.2	3.4	1.4	0.87	1.5	1.1	1.6
Vanadium	150 mg/Kg	/Kg	17.8	13.2	15.7	14.8	18.8	19.6	9.3
Zinc	20 mg/Kg	'Kg	84.3	141	83.2	82.0	121	108	311
Mercury	0.1 mg/Kg	′Kg	0.043	0.068	0.031	0.023	0.11	0.035	0.042
Cyanide (total)	mg/Kg	'Kg	0.60 U	3.8	0.61 U	0.62 U	17.1	0.63 U	0.53 U

CRA 15867 (2)

				TABLE 6.3	6.3				Page 2 of 2
			SITE I	METALS DETECTED IN SOIL SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	TED IN SOIL FASIBILITY STUD ECA STREET W YORK	X			
	Sample Location: Sample ID: Sample Depth (ft. BGS): Sample Date:		MW-5 S-091400-KL-008 1.0-3.0 9/14/2000	5B-11 5-091300-KL-001 7.0-9.0 9/13/2000	SB-12 S-091300-KL-005 7.0-9.0 9/13/2000	SB-13 S-091300-KL-002 7.0-9.0 9/13/2000	5B-14 5-091300-KL-003 5.0-7.0 9/13/2000	SB-15 S-091300-KL-004 5.0-7.0 9/13/2000	SB-16A S-091800-KL-016 7.0-9.0 9/18/2000
	TAGM 4046 Std								
Metals									
Aluminum	Background mg	mg/Kg	14100	14500	14100	10200	10500	4230	11100
Antimony	Background mg	mg/Kg	0.58 UJ	0.70 UJ	0.93 J	0.62 UJ	0.32 UJ	0.46 UJ	0.78 UJ
Arsenic	7.5 mg	mg/Kg	9.7	2'6	12.9	8.6	9.3	4.8	9.6
Barium	300 mg	mg/Kg	85.9	80.2	103	50.8	56.4	71.4	67.9
Cadmium	1 mg	mg/Kg	1.5 J	0.61 UJ	0.62 UJ	0.60 UJ	0.60 UJ	0.48 J	0.63 UJ
Calcium	Background mg	mg/Kg	42600	2020	1450	1840	2190	178000	2100
Chromium		mg/Kg	18.4	18.9	18.6	13.2	12.9	22.8	13.7
Cobalt	30 mg	mg/Kg	15.7	13.2	16.6	11.9	14.8	3.0	16.8
Copper	25 mg	mg/Kg	96.6	30.0	33.7	27.1	31.5	21.0	32.0
Iron	2000 mg	mg/Kg	30800	34000	36100	26300	26900	9270	28000
Lead	Background mg	mg/Kg	44.8	12.6	17.3	11.7	13.7	354	13.9
Magnesium		mg/Kg	11100 J	5360 J	5230 J	3790 J	3730 J	26400 J	3940 J
Manganese	Background mg	mg/Kg	515	459	673	422	668	315	708
Nickel	13 mg	mg/Kg	31.8	37.8	37.5	28.4	31.2	8.7	31.3
Potassium	Background mg	mg/Kg	1620	1090	1030	737	902	585	795
Selenium	2 mg	mg/Kg	0.67 U	1.2 U	0.62 U	0.60 U	0.60 U	0.54 U	0.63 U
Silver	Background mg	mg/Kg	1.4 U	1.2 U	1.2 U	1.2 U	1.2 U	U 1.1	1.3 U
Sodium	Background mg	mg/Kg	151 U	112 U	255 U	156 U	114 U	421	220 U
Thallium	Background mg	mg/Kg	1.5	1.8	1.2	1.4	2.2	0.86	1.4
Vanadium		mg/Kg	21.4	21.0	21.4	17.3	18.2	9.6	17.9
Zinc	20 mg	mg/Kg	1310	102	103	81.0	84.6	186	87.5
Mercury	0.1 mg	mg/Kg	0.091	0.032 U	0.026 U	0.017 U	0.033 U	0.13	0.034
Cyanide (total)	mg	mg/Kg	0.67 U	0.61 U	0.62 U	0.60 U	0.60 U	0.53 U	0.63 U
otes:									

Notes:

Not applicable.
 J Estimated.
 TAGM Technical Administrative Guidance Memoranda.
 U Non-detect at associated value.
 Exceeds standard.

TABLE 6.3

0 J 0 C 0 Dage

				I								
	Sample	Sample Location:	SB-1B	SB-6	I-MW	1-/		MW-2			MW-4	
	Sam	Sample Date: [–]	7/21/99	7/21/99	10/4/2000	10/61/6	10/5/2000	9/20/01	11/29/01	10/5/2000	9/24/01	11/25/01
Parameter	Groundwater Std. ⁽¹⁾	Units										
Volitile Organic Compounds												
1,1,1-Trichloroethane	5	ng/L	5.0 U	5.0 U	5.0 U	5.0 U	25 U	5.0 U	5.0 U	500 U/500 U	5.0 U	150 U/250 U
1,1-Dichloroethane	5	ng/L	5.0 U	5.0 U	5.0 U	5.0 U	25 U	5.0 U	5.0 U	500 U/500 U	5.0 U	150 U/250 U
1,1-Dichloroethene	5	ng/L	5.0 U	5.0 U	5.0 U	5.0 U	25 U	5.0 U	5.0 U	500 U/500 U	5.0 U	150 U/250 U
Acetone	50	ng/L	100 U	100 U	3.7 J	20 U	100 U	20 U	20 U	R	20 U	600 U/1000 U
Carbon disulfide	5	ng/L	5.0 U	5.0 U	5.0 UJ	5.0 U	25 UJ	5.0 U	5.0 U	500 UJ/500 UJ	5.0 U	150 U/250 U
cis-1,2-Dichloroethene	ŝ	ng/L	NA	٧V	5.0 U	5.0 U	400	180	140	250 J/220 J	3.8 J	100 J/160 J
Tetrachloroethene	5	ng/L	12600	5.0 U	5.0 U	5.0 U	(069	50	85	17000 J/15000 J	41	5800/9400
trans-1,2-Dichloroethene	5	ng/L	2.0	5.0 U	5.0 U	5.0 U	25 U	5.0 U	5.0 U	500 U/500 U	5.0 U	150 U/250 U
Trichloroethene	5	ng/L	537	5.0 U	5.0 U	5.0 U	350	210	140	940 /840	6.5	360/580
Vinyl chloride	5	ng/L	10 U	10 U	10 U	10 U	50 U	4.5]	5.0 J	500 U/500 U	10 U	300 U/500 U
Ethylbenzene	5	ng/L	7.1	2.8 U	5.0 U	5.0 U	25 U	5.0 U	5.0 U	500 U/500 U	5.0 U	150 U/250 U
Methyl Tert Butyl Ether			NA	NA	NA	5.0 U	NA	5.0 U	5.0 U	NA/NA	5.0 U	150 U/250 U
Xylenes, Totał	S	ng/L	4.6	2.8U	5.0 U	15.0 U	25 U	15.0 U	15.0 U	500 U/500 U	15.0 U	450 U/750 U
Semi-Volatile Organic Compounds	nds											
Caprolactum		ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

ORGANIC CHEMICAL COMPOUNDS DETECTED IN GROUNDWATER SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

TABLE 6.4

Page 1 of 3

CRA 15867 (2)

			11/28/01			5.0 U	5.0 U	5.0 U	20 U	5.0 U	2.0 J	41	5.0 U	7.7	10 U	5.0 U	5.0 U	15.0 U	NA
Page 2 of 3		MW-9A	9/21/01 11			5.0 U	5.0 U	5.0 U	20 U	5.0 U	5.0 U	27	3.7]	5.0 U	10 U	5.0 U	5.0 U	15.0 U	VN
		6	11/27/01			250 U	250 U	250 U	1000 U	250 U	260	9500	250 U	1000	250 U	250 U	250 U	750 U	VN
		MW-9	9/21/01			5.0 U	5.0 U	2.0 J	20 U	5.0 U	230 J	12000	2.2]	1200	2.7]	5.0 U	5.0 U	15.0 U	V N
		MW-8A	9/20/01			5.0 U	5.0 U	5.0 U	13 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U	15.0 U	N N
		7-WM	9/24/01			5.0 U	5.0 U	5.0 U	20 U	1.1]	5.0 U	5.0 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U	15.0 U	1600
	UNDWATER	9-MW	9/24/01			5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	20 U/20 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	10 U/10 U	5.0 U/5.0 U	5.0 U/5.0 U	15U/15U	5100/4000
	CTED IN GRO ILITY STUDY REET RK	MW-5	10/61/6			5.0 U	5.0 U	5.0 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U	15.0 U	NA
TABLE 6.4	L COMPOUNDS DETECTED VESTIGATIONFEASIBILITY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	М	10/4/2000			2.8 J	1.5]	5.0 U	4.3]	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U	10 U	5.0 U	ΝA	5.0 U	VN
-	HEMICAL COMPOUNDS DETECTED IN GRO SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK		11/29/01			5.0 U	5.0 U	5.0 U	20 U	5.0 U	46	32	5.0 U	95	10 U	5.0 U	5.0 U	15.0 U	NA
	ORGANIC CHEMICAL COMPOUNDS DETECTED IN GROUNDWATER SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	MW-4A	9/24/01			5.0 U	5.0 U	5.0 U	20 U	5.0 U	33	65	5.0 U	270	10 U	5.0 U	5.0 U	15.0 U	VN
	Ő		10/4/2000			5.0 U	5.0 U	5.0 U	17 J	5.0 UJ	7.6	730	5.0 U	30	10 U	5.0 U	NA	5.0 U	NA
		Sample Location:	Sample Date:	(1) Units		ug/L	ug/L	ug/L	ng/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	1/gu	n/J/Bu
		Sam		Groundwater Std. ⁽¹⁾		ъ	5	5	50	5	5	5	5	5	5	5		5	spu
				Parameter	Volitile Organic Compounds	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Acetone	Carbon disulfide	cis-1,2-Dichloroethene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride	Ethylbenzene	Methyl Tert Butyl Ether	Xylenes, Total	Semi-Volatile Organic Compounds Caprolactum

CRA 15867 (2)

TABLE 6.4

ORGANIC CHEMICAL COMPOUNDS DETECTED IN GROUNDWATER SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK

	Sample	Location:	MW-10	MW-10A	ММ	II-MW	MW	MW-11A	MW-12	MW-12A
	San	Sample Date:	9/20/01	9/20/01	9/21/01	11/28/01	9/20/01	11/29/01	11/27/01	11/30/01
Parameter	Groundwater Std. ⁽¹⁾	Units								
Volitile Organic Compounds	S									
1,1,1-Trichloroethane	5	ug/L	5.0 U	5.0 U	10 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U
1,1-Dichloroethane	5	ng/L	5.0 U	5.0 U	10 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U
1,1-Dichloroethene	5	ug/L	5.0 U	5.0 U	10 U	5.0 U	5.0 U	10 U	3.2 J	5.0 U
Acetone	50	ug/L	20 U	5.7 J	40 U	20 U	20 U	40 U	20 U	5.6 J
Carbon disulfide	5	ug/L	5.0 U	5.0 U	10 U	5.0 U	1.5 J	10 U	5.0 U	2.7 J
cis-1,2-Dichloroethene	5	ug/L	5.0 U	5.0 U	4.3]	29	5.5	7.1]	360	33
Tetrachloroethene	5	ng/L	5.0 U	5.0 U	240	1700	480	240	6200	100
trans-1,2-Dichloroethene	5	ug/L	5.0 U	5.0 U	10 U	5.0 U	5.0 U	10 U	3.0 J	5.0 U
Trichloroethene	5	ug/L	5.0 U	5.0 U	12	84	75	80	2000	36
Vinyl chloride	5	ug/L	10 U	10 U	20 U	10 U	10 U	20 U	3.3 J	10 U
Ethylbenzene	5	ng/L	5.0 U	5.0 U	10 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U
Methyl Tert Bulyl Ether		ng/L	2.9]	5.0 U	10 U	5.0 U	5.0 U	10 U	5.0 U	5.0 U
Xylenes, Total	5	ng/L	15.0 U	15.0 U	30 U	15.0 U	15.0 U	30 U	15.0 U	15.0 U
Semi-Volatile Organic Compounds	uds									
Caprolactum		ng/L	10 U	NA	10 U	NA	NA	NA	NA	NA

Notes:

Ē

New York State Ambient Water Quality Standards, Class GA Groundwater, Technical and Operation

Guidance Standards (TOGS) 1.1.1. Not analyzed.

Estimated. NA I

Rejected. К

Non-detect at associated value.

D

Exceeds standard. 100/10 Results of duplicate analyses

Page 3 of 3

	Sample San	Sample Location: Sample Date:	SB-1B 7/21/99	SB-6 7/21/99	MW-1 10/4/2000	MW-2 10/5/2000	MW-3 10/5/2000	MW- 4 10/5/2000	MW-4 10/5/2000 Dunlicate	MW-4A 10/4/2000	MW-5 10/4/2000
Parameter	Groundwater Std. ⁽¹⁾	Units									
Aluminum		ug/L	NA	NA	153	86.0	105	394	44 0	1290/200U	53.1
Arsenic	25	ug/L	NA	NA	10.0 U	4.1	10.0 U	10.0 U	10.0 U	10.0 U/10.0U	10.0U
Barium	1,000	ug/L	NA	NA	181	137	61.4	111	112	164/154	88.1
Calcium		ug/L	NA	NA	153000	143000	112000	129000	130000	74700/62700	104000
Chromium	50	ug/L	NA	NA	2.2 U	1.6	1.9 U	1.7	1.2	3.8 U/10.0U	1.8U
Copper	200	ug/L	NA	NA	25.0 U	0.9 U	25.0 U	5.3 U	5.8 U	8.2 U	25.0U
ron	300	ug/L	NA	NA	6820	1010	587	1060	1110	8130/164	1750
ead	25	ng/L	2280	1820	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.5/3.0U	3.0U
Aagnesium	35,000	ug/L	NA	NA	42500	24100	21000	25900	26100	21600/18800	12300
Aanganese	300	ug/L	NA	NA	2270	1940	289	823	822	135/62.0	1380
Vickel	100	ug/L	NA	NA	7.5	6.4	11.9	9.3	14.8	18.7/9.9	11.6
otassium		ng/L	NA	NA	1760	7640	8720	5010	5270	2150/1310	3670
Selenium	10	ug/L	NA	NA	2.4	5.0 U	2.3	5.0 U	5.0 U	5.0 U/5.0U	2.2
odium	20,000	ug/L	NA	NA	168000	204000	82500	161000	162000	33400/30400	55200
Zinc	2,000	ug/L	NA	NA	20.0 U	11.0	20.0 U	9.4	9.5	17.6/20.0U	5.3

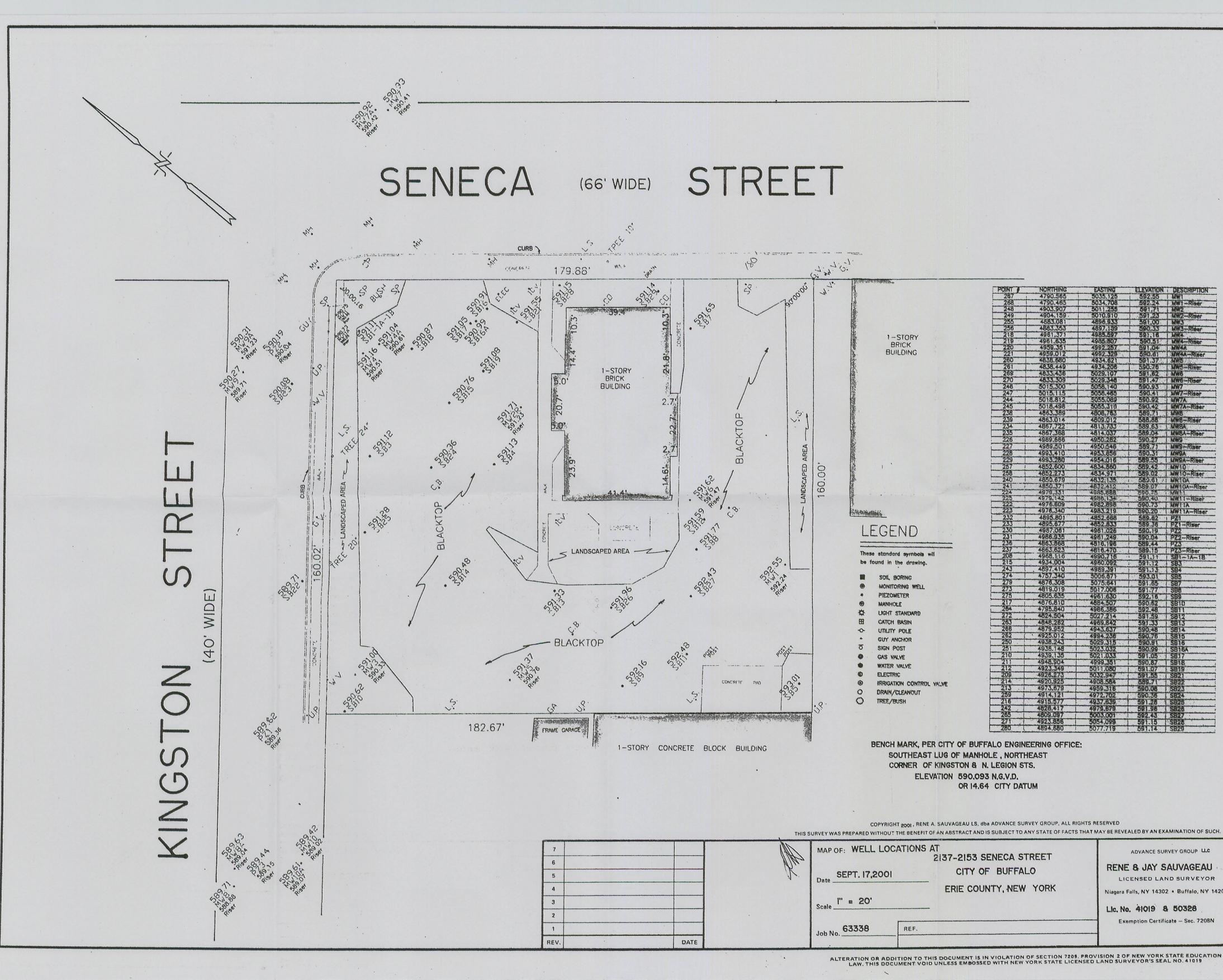
Notes: (1)

New York State Ambient Water Quality Standards, Class GA Groundwater, Technical and Operation Guidance Standards (TOGS) 1.1.1. Non-detect at associated value. Not analyzed. NA N

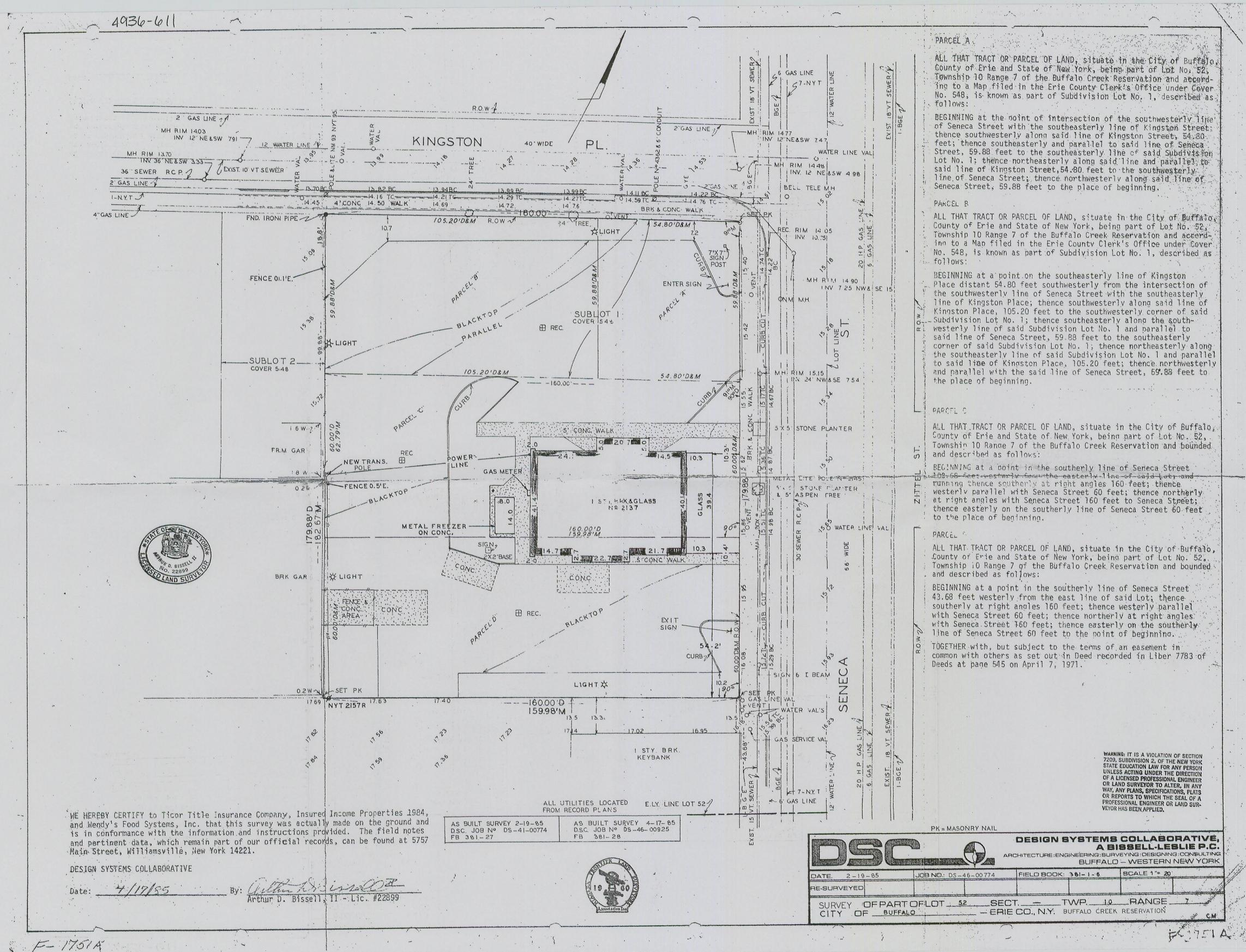
CRA 15867 (2)

TABLE 6.5

METALS DETECTED IN GROUNDWATER SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET

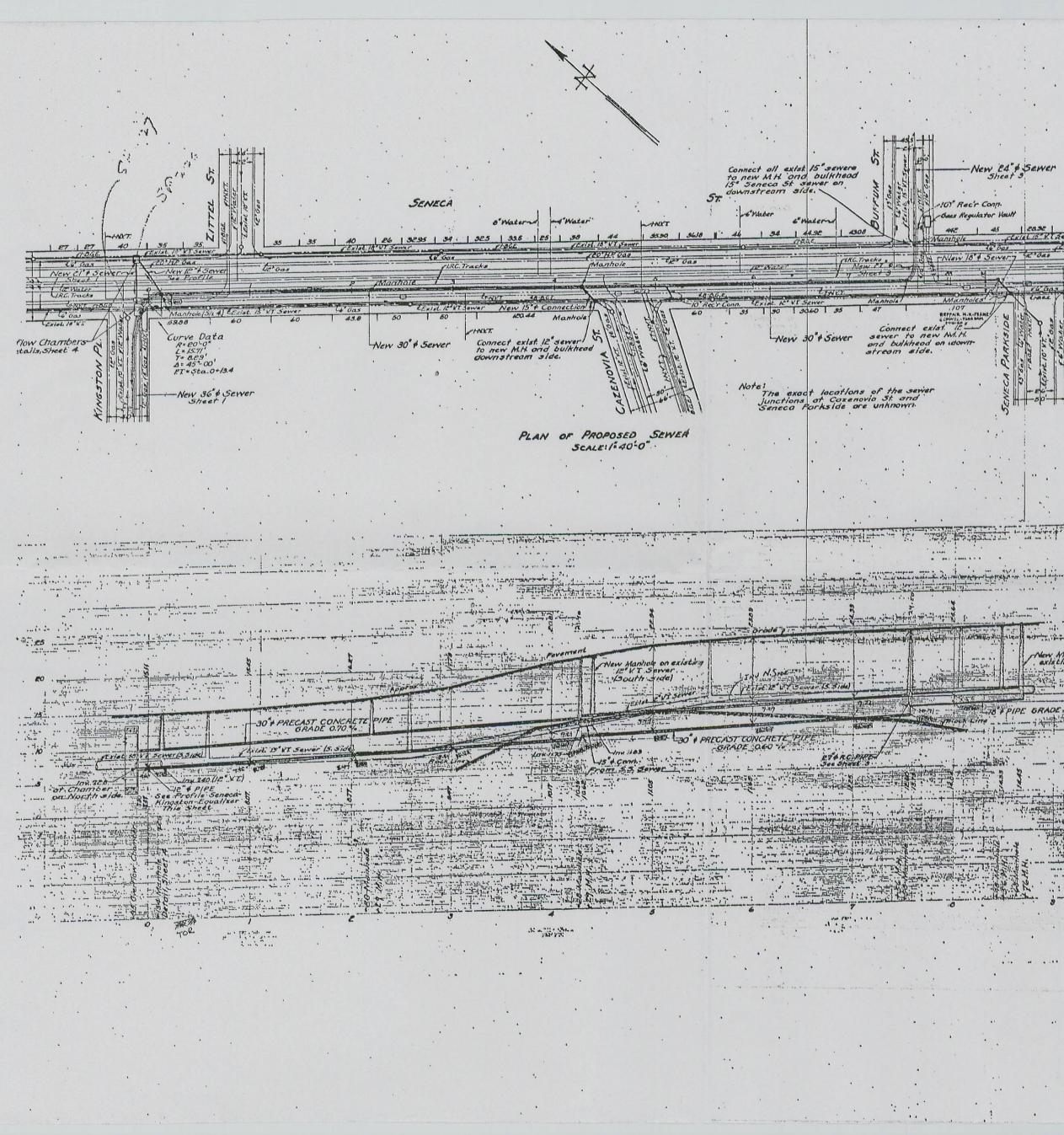

Exceeds standard.

Total concentration/dissolved concentration 100/10


APPENDIX A

SITE SURVEY MAPS

í.



	N.	Date		LICENSED LAND SURVEYOR
			ERIE COUNTY, NEW YORK	Niagara Falls, NY 14302 • Buffalo, NY 14202
		Scale = 20'		Lic. No. 41019 8 50328
		Job No. 63338	REF.	Exemption Certificate - Sec. 7208N
DATE				
		ALTERATION OR A	DDITION TO THIS DOCUMENT IS IN VIOLATION OF SECTION 720	9. PROVISION 2 OF NEW YORK STATE EDUCATION

APPENDIX B

BUFFALO SEWER AUTHORITY SEWER DRAWINGS

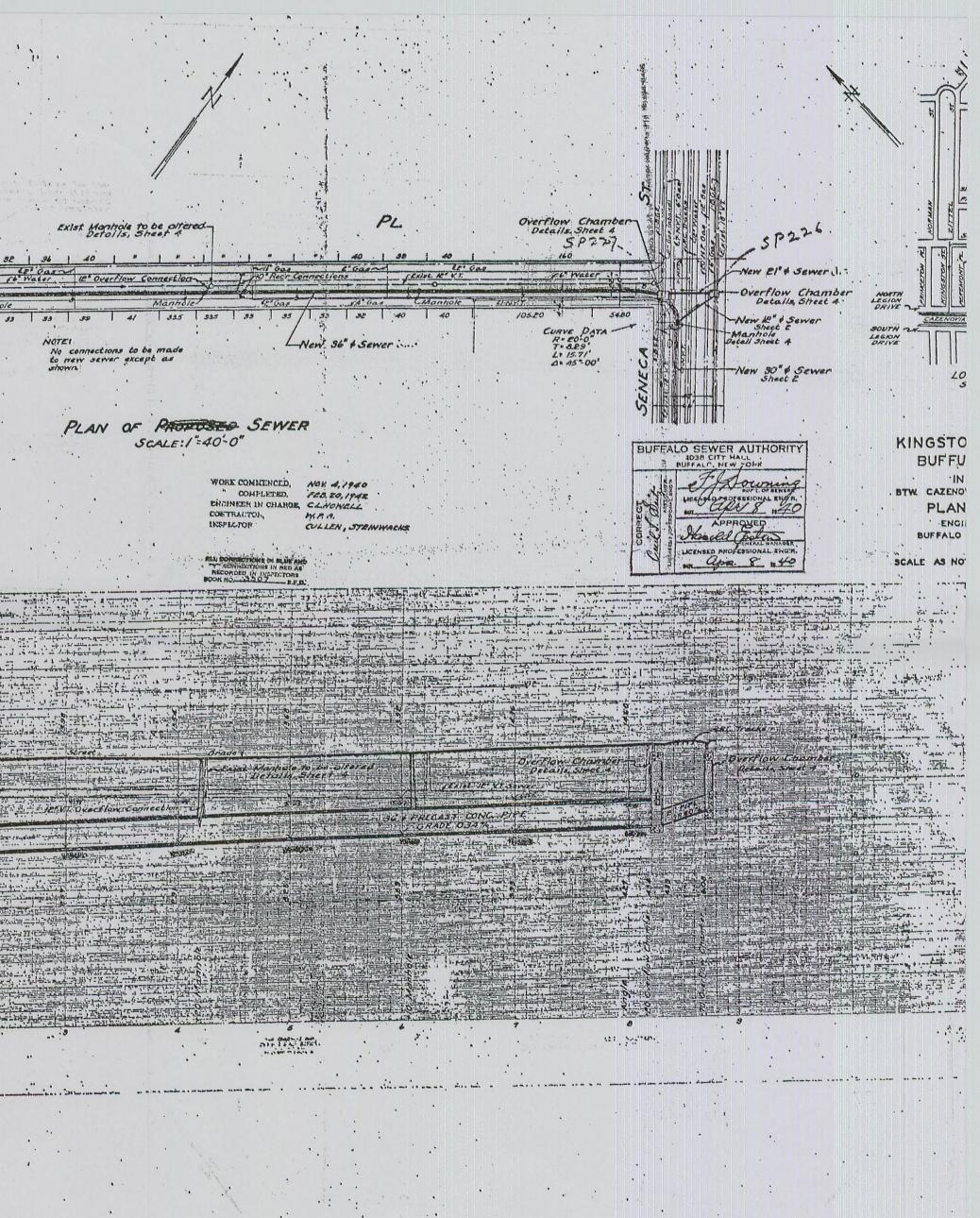
KINGSTON, SENEC BUFFUM STS. SE IN SENECA ST

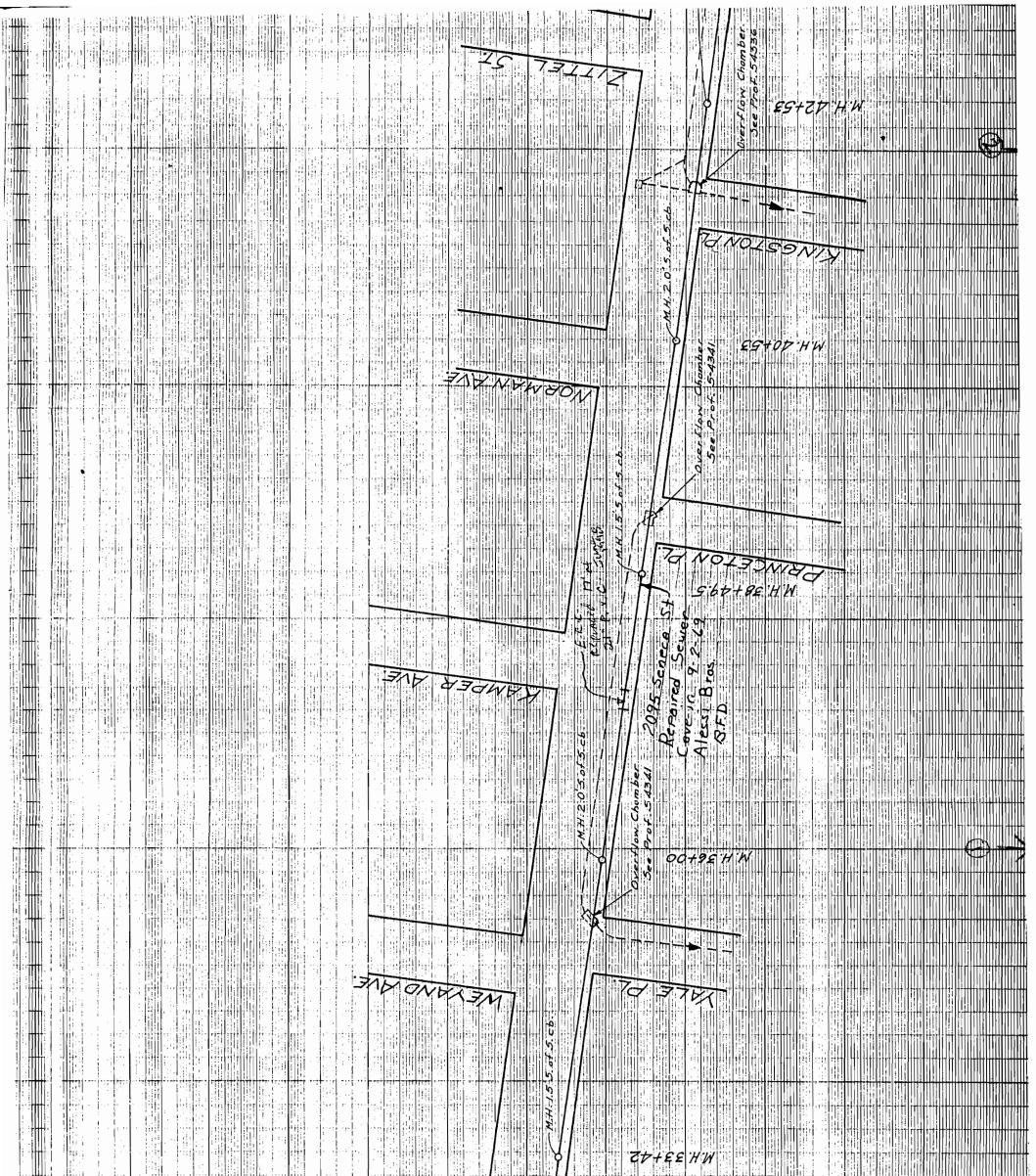
TW. KINGSTON PL AND SENE PLAN AND PRO ENGINEERING DIVIS FALO SEWER AU UFFALO, N.Y.

EWER GRADE DAG

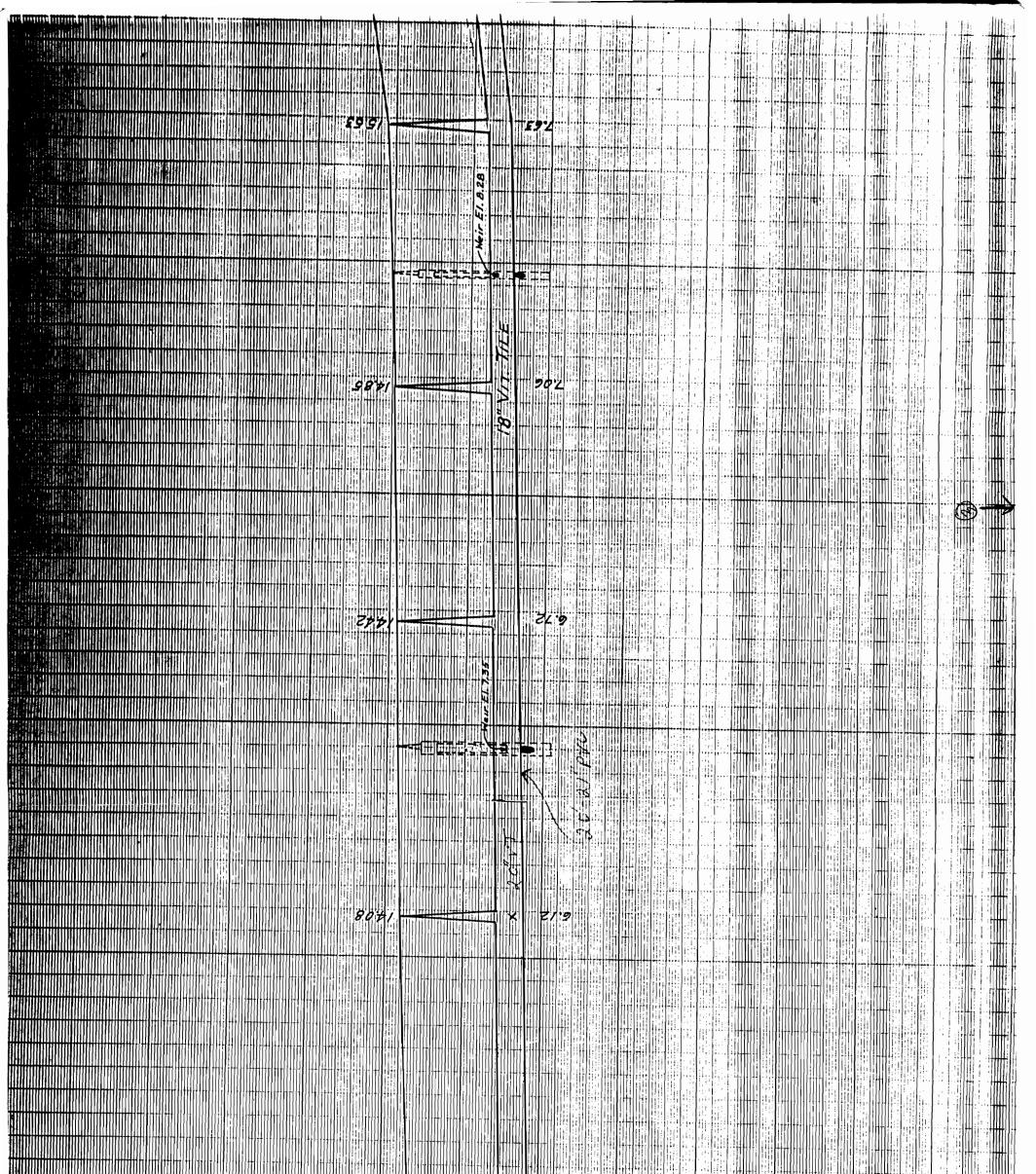
1 . Alta in An TREAS CARTING C. Erist Selver and Dutlet Wall See Prog. No 54331

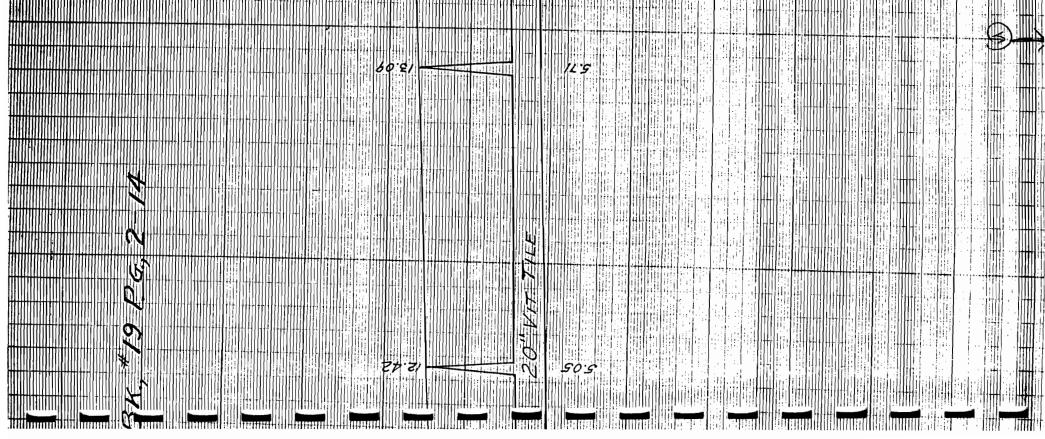
XILL F. HW.S.


-


EGION Exist. 34 6-

151.EO


KINGSTON


-New 36'

	457	
		XXV35
		Olson Eltie HW

APPENDIX C

NATURAL RESOURCE SURVEY REPORT

Site Description

The Parcel 2, Seneca Street Site (Site) consists of approximately 0.6 acres of developed urban land located at the corner of Seneca and Kingston Streets in the Village of West Seneca, City of Buffalo, Erie County, New York. The Site locale is within an urbanized area dominated by retail businesses, and single and multi-family residences. Development of the Site includes one vacant building, paved driveways and parking areas. Observations of Site conditions conducted by Fine Line Technical Services during November 2000 indicated that the Site and immediate vicinity are "culturally developed". No undisturbed natural resource elements occur on the Site. The location of the Site is shown on Figure 1. Site Location Plan.

Natural Resources within a One-half Mile Radius of the Site

The presence and identification of natural resources with a one-half mile radius of the Site was determined by direct observation and by review of existing agency resource information for the Site area. Agency information reviewed included maps and data provided by the New York State Department of Environmental Conservation (NYSDEC) Divisions of Water Resources, Regulatory Affairs, and Fish, Wildlife, and Marine Resources, and the U.S. Fish and Wildlife Service. Natural resource elements investigated in the area within a one-half mile radius of the Site are identified below.

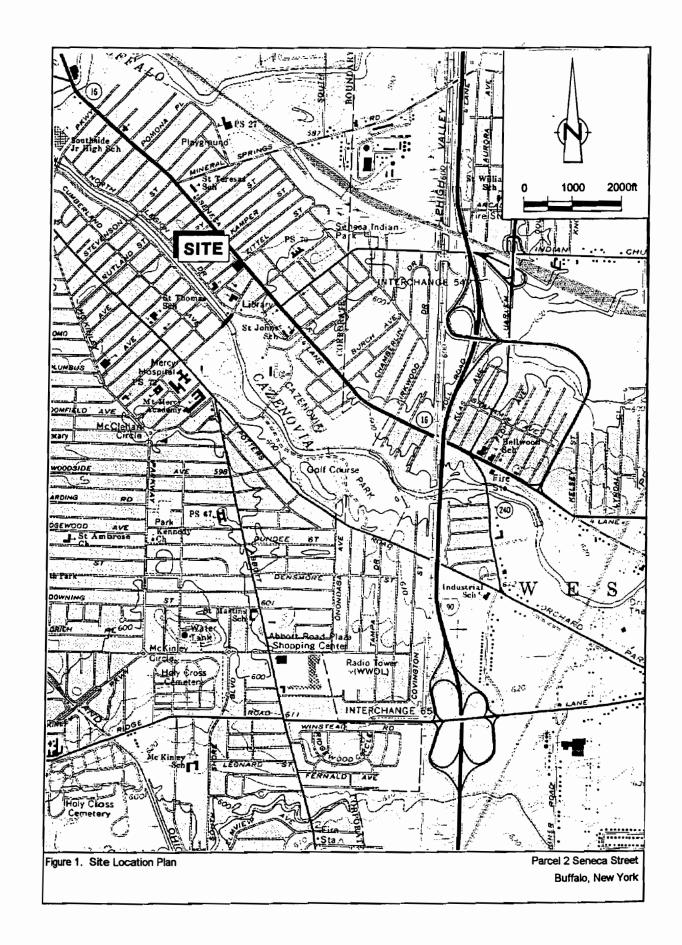
"Rare Threatened and Endangered Species"

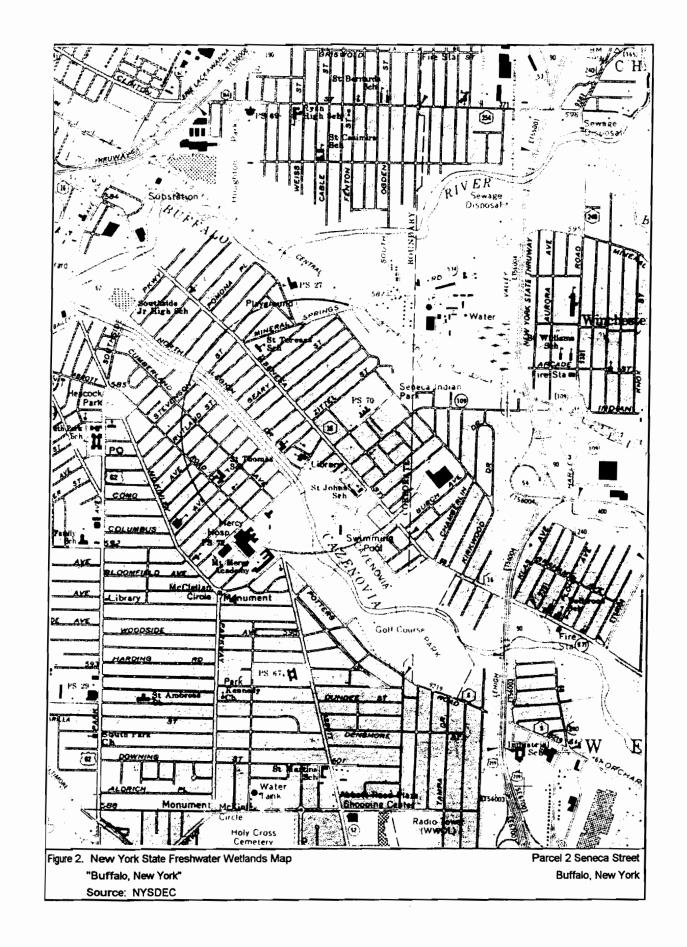
Review of NYSDEC New York State Natural Heritage Program files indicate that there are no known occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of the Site. Correspondence from NYSDEC Division of Fish, Wildlife and Marine Resources, Wildlife Resources Center and the NYSDEC Regional Wildlife Manager (Region 9) are contained in Attachment A.

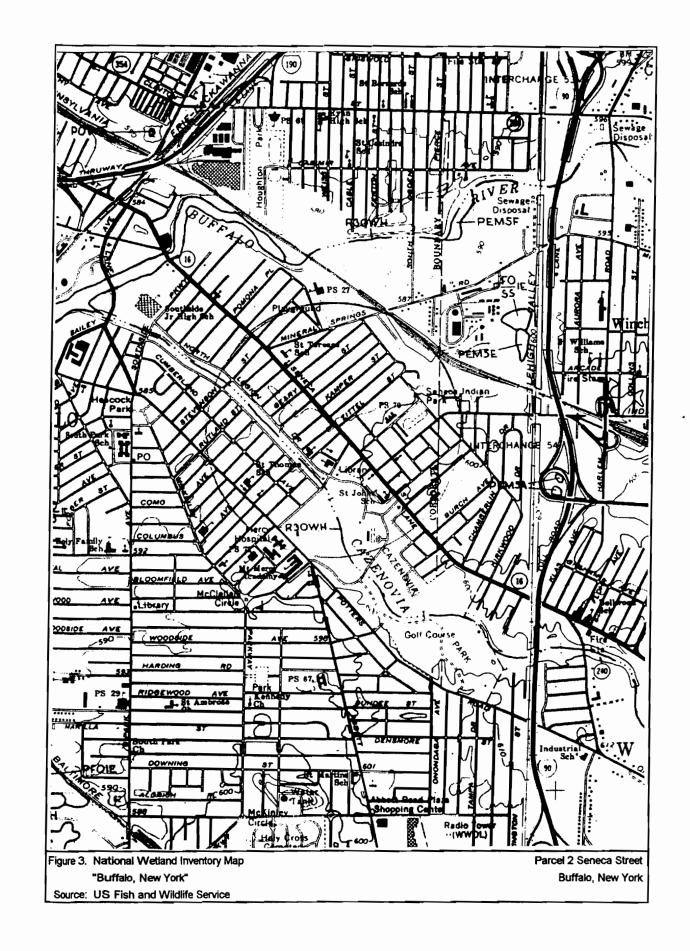
Freshwater Wetlands

Review of the NYSDEC Freshwater Wetlands Map titled "Buffalo, New York" indicate that no State regulated wetlands occur on the site or within one- half mile of the Site. The closest New York State wetlands in the vicinity of the Site are identified as BU-1 and BU-16. BU-1 is located approximately two miles west of the Site. BU-16 is located approximately two miles to the southeast. The portion of the New York State Wetland map showing the Site and its vicinity is presented in Figure 2. New York State Freshwater Wetlands Map.

The U.S. Fish and Wildlife Service, National Wetland Inventory Map titled "Buffalo, New York" indicates that no federally regulated wetlands occur on the Site. A portion of Cazenovia Creek located within one-half mile of the Site includes a federally regulated wetland classified as "R3OWH". This wetland is a riverine habitat that consists of continuously flowing water contained in natural and artificial channels. The system is characterized by high gradient and fast water velocity. The substrate consists of rock, cobbles and gravel with patches of sand. There is very little or no floodplain development. The portion of the National Wetland Inventory Map showing this area is presented as Figure 3. National Wetland Inventory Map.

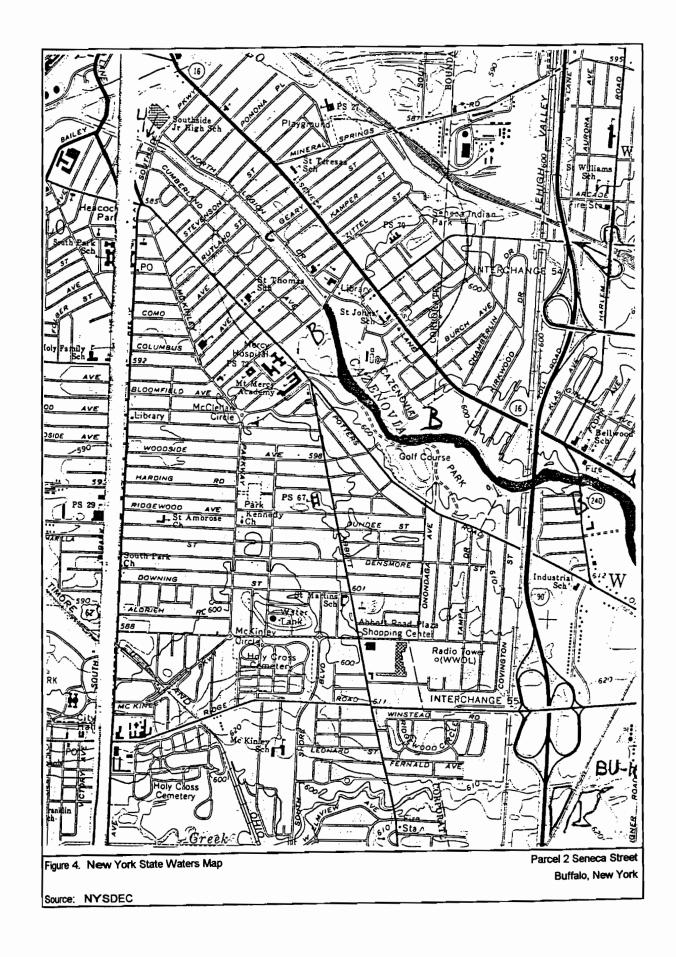

Regulated Open Waters


No regulated open water areas occur on the Site. Portions of Cazenovia Creek occur in the area within onehalf mile of the Site. The segments of the Creek in this area are included as items 139 and 140 of Chapter 10 of the New York State Waters Index and are identified as Waters Index Number W-1-4 (portion as described) "Enters Buffalo River from southeast approximately 6.14 miles above mouth. From mouth to Cazenovia street Bridge, City of Buffalo", and as Waters Index Number E-1-4 (portion as described) "From Cazenovia street Bridge, City of Buffalo, to junction of East Branch Cazenovia Creek and West Branch of Cazenovia Creek". These stream segments are classified as Class C and Class B waters respectively These areas are located southwest of the Site and are shown on Figure 4. New York State Waters.


New York State waters are classified by "best usage" and are defined as follows:

- Class B-The best usages of Class B waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.
- Class C-The best usages of Class C waters is fishing. These waters shall be suitable for. primary and secondary contact recreation, although other factors may limit the use for these purposes.

Figures



-

-

Attachment

New York State Department of Environmental Conservation Division of Fish, Wildlife and Marine Resources. Region 9 270 Michigan Avenue, Buffalo, New York, 14203-2999 Phone: (716) 851-7010 • FAX: (716) 851-7005 Website: www.dec.state.ny.us

November 28, 2000

Mr. Mark Lindberg Fine Line Technical Services 12492 Smith Road Medina, NY 14103

Dear Mr. Lindberg:

Site Investigation, Parcel 2 Seneca Street, Buffalo, NY

I have reviewed the Natural Heritage Data Files in regards to the above-mentioned project as marked on the map provided by you. According to the files, no known species of special management concern including threatened or endangered status and no known habitat of special concern were found on the project site or in the immediate vicinity of the project site.

Please be advised that the absence of data does not necessarily mean that rare or endangered elements, natural communities or other significant habitats do not exist on or adjacent to the proposed site, but rather that our files do not contain any information that indicates the presence of these. Our files are continually growing as new habitats and occurrences of rare species and communities are discovered. In most cases, site-specific or comprehensive surveys for plant and animal occurrences have not been conducted. For these cases, we cannot provide a definitive statement on the presence or absence of species, habitats or communities. Nothing in this letter can be substituted for on-site surveys that may be required for environmental assessment.

If I can be of any further assistance, please call me at (716) 851-7010.

Sincerely,

Grey A. Ecker

Greg G. Ecker Wildlife Technician II

GGE:dcg ecker\lindberg.ltr

Mr. Russ Biss, Regional Wildlife Manager cc:

New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources Wildlife Resources Center - New York Natural Heritage Program 700 Troy-Schenectady Road, Latham, New York 12110-2400 Phone: (518) 783-3932 FAX: (518) 783-3916

December 5, 2000

Mark A Lindberg Fine Line Technical Services 12492 Smith Rd Medina, NY 14103

Dear Mr. Lindberg:

In response to your recent request, we have reviewed the New York Natural Heritage Program databases with respect to the proposed Investigation of "Parcel 2 Seneca Street", site as indicated on the map you provided, including one-half mile radius, located in the City of Buffalo, Erie County.

> We have no records of known occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of your site.

The absence of data does not mean, however, that rare or state-listed species, natural communities or other significant habitats do not exist on or adjacent to the proposed site, but rather that our files currently do not contain any information which indicates their presence. For most sites, comprehensive field surveys have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of rare or state-listed species, or of significant natural communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

This response applies only to known occurrences of rare or state-listed animals, and plants, significant natural communities, and other significant habitats. For information regarding regulated areas or permits that may be required under state law (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, at the enclosed address.

Sincerely,

Audi

Heidi J. Krahling, Information Services NY Natural Heritage Program

Enc. cc: Reg. 9, Wildlife Mgr.

CHAPTER X DIVISION OF WATER RESOURCES

§ 837.4

ltem No.	Waters Index Number	Name	Description	Map Ref. No.	Class	Standards
139	W-1-4 portion as described	Cazenovia Creek	Enters Buffalo River from southeast approximately 6.14 miles above mouth. From mouth to Cazenovia Street Bridge, City of Buffalo.	6	С	с
140	E-1-4 portion as described	Cazenovia Creek	From Cazenovia Street Bridge, City of Buffalo, to junction of East Branch Cazenovia Creek and West Branch Cazenovia Creek.	6,7	В	В
141	E-1-4-1, 2, 3, 4, 5 and 6 and tribs. as shown on reference map	Tribs. of Cazenovia Creek	Enter from cast and south between mouth and Spring Brook.	6, 7	C	С
142	E-1-4-7 and trib.	Spring Brook	Enters Cazenovia Creek from east at Spring Brook.	7	С	C(T)
143	E-1-4-8, 9, 10, 11, 12, 13	Tribs. of Cazenovia Creek	Enter from east and south between Spring Brook and junction of East Branch Cazenovia Creek, and West Branch Cazenovia Creek.	7	С	С
144	E-1-4-14 portion as described	East Branch Cazenovia Creek	Enters Cazenovia Creek from south approximately 0.5 mile west of East Aurora village linc. Mouth to hamlet of Holland.	7, 11	В	В
145	E-1-4-14 portion as described	East Branch Cazenovia Creek (Protection Creek above trib. 26)	From hamlet of Holland to source.	11, 12	C	C(T)
146	E-1-4-14-1, 2, 3 and trib.	Tribs of East Branch Cazenovia Creek	Enter from north and south at approximately 0.4, 0.6 and 1.2 miles, respectively, above mouth.	7, 11	С	С
147	E-1-4-14-4 and tribs.	Tannery Brook	Enters East Branch Cazenovia Creek from northeast approximately 1.8 miles above mouth.	7	С	С
148	E-1-4-14-5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and tribs.	Tribs. of East Branch Cazenovia Creek	h Enter from east and west between 7, 1 Tannery Brook and hamlet of Holland.		В	В
149	E-1-4-14-22, 23 and tribs.	Tribs. of East Branch Cazenovia Creek	Enter from south at hamlet of Holland and approximately 0.5 mile above hamlet of Holland, respectively.	11	В	В
150	E-1-4-14-24 and trib.	Trib. of East Branch Cazenovia Creek	Enters from east approximately 1.5 miles above hamlet of Holland.	11	С	C(T)
151	E-1-4-14-25	Trib. of East Branch Cazenovia Creek	Enters from west approximately 1.6 miles above hamlet of Holland.	11	С	С
152	E-1-4-14-26	Trib. of East Branch Cazenovia Creek	Enters from south approximately 2.1 miles above hamlet of Holland.	11	С	C(T)
153	E-1-4-14-26-1, 2, 3, 4, 5 and trib.	Subtribs. of East Branch Cazenovia Creek		11	С	С
154	E-1-4-14-27	Trib. of East Branch Cazenovia Creek	Enters from east approximately 2.5 miles above hamlet of Holland.	11	В	В

10/31/97

CA THE AND AND A

÷,

14,243 Conservation

APPENDIX D

STRATIGRAPHIC AND INSTRUMENTATION LOGS

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-1 DATE COMPLETED: September 14, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH	STRATIGRAPHIC DESCRIPTI	ON & REMARKS	ELEV.	MONITOR INSTALLATION			SAM	PLE	
ft BGS	NORTHING: 4790.47	GROUND SURFACE TOP OF RISER	AMSL 592.55		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	EASTING: 5034.71		552.24		ž	Ż	<u>ш</u>	Ž	Ē
- - - - 2	ASPHALT, gravel sub-base GRAVEL (Fill), some silt, little san grey, moist	nd, brown and	591.55		1SS	X	2.0	15	0.2
	ML-SILT, little fine sand, grey and	brown, dry to	588.55	BENTONITE GROUT	255	\mathbb{X}	2.0	6	0.1
6	moist, medium stiff, laminated				355	\square	2.0	10	0
	SM-SAND, little silt, fine grained, to wet	brown, moist	584.95	2"0 PVC WELL CASING	4 S S	\square	2.0	10	0.1
_ 10	- some silt, soft, moist			BOREHOLE	588	\bigtriangledown	2.0	4	0.2
	 trace silt, mottled, loose, dark be wet 	rown, moist to		BENTONITE	6SS	\bigtriangledown	2.0	4	0.5
- - - 14	 trace silt, fine grained, dark grey wet, root at 14.5ft BGS, intermit 	r, moist to tant thin silt		BENTONTE	755	\bigtriangledown	2.0	2	0
- 16	SW-SAND, some fine to medium coarse grained, rounded, grey, w	gravel, fine to	577.35	SAND PACK	855	\bigtriangledown	2.0	2	0
- 18					955	\square	2.0	2	0
			572.15		1055	\bigtriangledown	2.0	2	0.1
- 22	ML-SILT, some clay, little fine sat subangular gravel, grey, soft, stic END OF BOREHOLE @ 21.0ft B	ky	571.55	WELL DETAILS Screened interval:					
- - - 24				576.55 to 571.55ft AMSL Length: 5ft Diameter: 2in					
- - -				Slot Size: 10 Material: Stainless Steel Seal:					
26				581.05 to 579.05ft AMSL Material: Bentonite Sand Pack:					
105.470 1				579.05 to 571.55ft AMSL Material: Silica Sand					
0 30									
32 									
	WATER FOUND ♀ 09/14/0		EFER TO	CURRENT ELEVATION TABLE	<u> </u>			_	
<u> </u>	CHEMICAL ANALYSIS	/							

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-2 DATE COMPLETED: September 15, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH		ELEV.	MONITOR INSTALLATION			SAMF	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL 591.71		NUMBER	NTËRVAL	c (ft)	N' VALUE	PID (ppm)
	EASTING: 5010.91 TOP OF RISER	591.23		NUN	INTE	REC (, N' , V	Old
-	ASPHALT, gravel sub-base							
2	GRAVEL (Fill), some sand, grey, dry SILT (Fill), little fine sand, dark grey, dry to moist, slight odour, medium stiff, trace red	590.71 590.21		1SS	\mathbf{X}	2.0	9	2.5
- - 4	brick, ceramic pieces, thin red flakes (above conrete @ 3.5ft BGS)		CEMENT/ BENTONITE GROUT	255	\bigtriangledown	2.0	50	1.7
- - - - 6			2"0 PVC WELL CASING	355	\bigcirc	2.0	7	
	SW-SAND, some round and subangular	584.71 584.21 583.71	BENTONITE	455	\bigotimes	2.0	8	1.9
- 8	- moist to wet sandy silt layer from 7.8 to 8.0ft	565.71		\$20	\bigcirc	2.0	0	1.9
10 	CL-CLAY, some silt, little sand, brown, moist SW-SAND, little fine gravel, trace silt (in thin lenses), fine to coarse grained, subround, dark		SAND PACK	5SS	\bigtriangleup	2.0	2	4.5
- 12 	grey, wet, trace wood tree root)		8"0	6SS	Д	2.0	З	5.0
- 14 			8°0 BOREHOLE WELL SCREEN	7S	Х	2.0	2	2.8
			WELL SCREEN	BSS	\mathbf{X}	2.0	5	1.8
- - 	CL-CLAY, little silt, grey, moist, soft, sticky	574.21		9SS	\bigtriangledown	2.0	3	5.5
20	END OF BOREHOLE @ 19.0ft BGS	572.71	WELL DETAILS Screened interval: 579.21 to 574.21ft AMSL					
-			Length: 5ft Diameter: 2in Slot Size: 10					
22 			Material: Stainless Steel Seal: 585.71 to 582.71ft AMSL					1
24 			Material: Bentonite Sand Pack: 582.71 to 573.71ft AMSL					
- 			Material: Silica Sand					
28 								
- - - - - - - - - - - - - - - - - - -								
								, ,
3 — 34 z —								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND Q 09/15/00	EFER TO	CURRENT ELEVATION TABLE					
ว์	CHEMICAL ANALYSIS							

STRATIGRAPHIC A	ND INSTRUMENTATION LOG
(OV	/ERBURDEN)

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

an

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-3 DATE COMPLETED: September 14, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

IT BOS STRAINERAPPIC DESCRIPTION & TEDANKS ANSL MONTOP INSTALLATION NOPTI-HIG: 4883.35 GROUND SUFFACE 91.00 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.92 92.92 16 0.2 -2 Institution: 409.13 TOP OF INSERTION 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - - 10 - 10 <	DEPTH		ELEV.			:	SAM	PLE	
CL-CLEAY (CAM (TORSOL), brown, dry to molits activity of the saind, brewn, dry to molits activity of the saind, brewn, dry to the molits activity of the saind brewn, dry to molits, medium stiff 500.50 CONCRETE SS 2.0 16 0.2 6 SM-SAND, liftle silt, fine grained, brown, dry to molits, medium stiff 584.40 584.40 585 2.0 6 1.8 7 b. cocress of M, molit to wet 575.50		STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL		ШШ	VAL	(ft)	LUE	(mď
Image: Apply sequences Image: Apply sequences<		EASTING: 4897.19 TOP OF RISER			NUME	INTER	REC	'N' VA	d) OI4
-2 to molds, stiff, laminated, trace glossy blue slag 20 15 0.1 -4 -4 -6 -6 -6 -6 -7<	-	SILT (Fill), little clay and fine sand, brown, dry	590.50		155	\mathbf{X}	2.0	16	0.2
6 SM-SAND, liftle sitt, fine grained, brown, dry to moist, medium stift 584.40 20 6 1.8 8 -becomes soft, moist to wet 573.00 573.00 585 2.0 2 0.2 10 -intermittant thin silty and day lenses 573.00 570.00 570.00 </td <td></td> <td>to moist, stiff, laminated, trace glossy blue slag</td> <td></td> <td>CEMENT/ BENTONITE</td> <td>255</td> <td>X</td> <td>2.0</td> <td>15</td> <td>0.1</td>		to moist, stiff, laminated, trace glossy blue slag		CEMENT/ BENTONITE	255	X	2.0	15	0.1
SM-SAND, little silt, fine grained, brown, dry to moist, medium silt - becomes soft, moist to wet - intermittant thin silty and clay lenses SM-SAND, fine to coarse grained, trace fine tounded gravel, brown and grey, wetl, few roots (above 13.2h BGS) CL-CLAY, trace silt, grey and red-brown, moist, soft END OF BOREHOLE @ 18.0h BGS -20 -22 -24 -26 -30 -30 -30 -30 -30 -30 -30 -30				WELL	355	Х	2.0	6	1.8
0 - Decomes soli, molisitio vert 10 - intermittant thin silty and clay lenses 12 SW-SAND, fine to coarse grained, trace fine founded gravel, brown and grey, weit, few roots (above 13.2tt BGS) 573.90 14 573.90 16 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 18 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 20 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 20 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 20 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 20 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 20 CL-CLAY, trace silt, grey and red-brown, moist, soft 573.90 20 Status Sold Sold Sold Sold Sold Sold Sold Sold		moist, medium stiff	584.40		4SS	\ge	2.0	9	0
10 - Interfinitiant unit sity and day enses 12 SW-SAND, fine to coarse grained, trace fine founded greet, brown and grey, well, few roots (above 13.2tt BGS) 579.90 14 -14 -16 573.80 16 -12 -12 -12 16 -12 -12 -12 16 -14 -16 -16 16 -16 -12 SCREEN 18 -11 SCREEN 955 20 -20 -20 -20 20 -21 -20 -20 20 -22 -20 -20 20 -22 -20 -20 20 -22 -20 -20 20 -22 -20 -20 21 -24 -26 -27 22 -28 -28 -26 30 -30 -30 -30	-				5SS	\boxtimes	2.0	3	0.2
(above 13.2ft BGS) (above 13.2ft BGS) 2.0 2 0.3 14 -16 -16 -16 -17 -18 SCREEN 855 2.0 1 - 18 -20 -20 -20 -20 -20 573.80 573.60 573.60 573.50 to 573.50 to 73.50 to 73.50 to AMSL sst 2.0 2 0 -20 -22 -24 -24 -26 -26 -26 -26 -26 -27 -28	- 10 -	SW-SAND, fine to coarse grained, trace fine	579.90		6SS	\mathbf{X}	2.0	2	0.8
16 573.80 18 CL-CLAY, trace silt, grey and red-brown, moist, soft 18 SPCIN 20 WELL DETAILS 20 WELL DETAILS 20 Statistical Statistical Statistical Steel 22 Sector 10 24 Sector 10 26 Statistical Statistical Steel 30 Sector 10	12 	founded gravel, brown and grey, wet, few roots (above 13.2ft BGS)		8"0 BOREHOLE	7SS	X	2.0	2	0.3
CL-CLAY, trace silt, grey and red-brown, moist, 573.80 573.80 \$9500N 18 END OF BOREHOLE @ 18.0tt BGS 573.00 WELL DETAILS Screened interval: 578.50 to 573.50t AMSL Length: 5ft \$95 2.0 2 0 20 22 22 573.80 \$73.00 SPLIT \$95 2.0 2 0 220 20 573.80 573.80 \$73.00 \$900N \$95 2.0 2 0 220 20 573.00 \$900N \$95 \$900N \$95 \$900N \$95 \$900N \$95 <	- 14 -				8 SS	\mathbf{X}	2.0	1	-
18 Soft SPOON END OF BOREHOLE @ 18.0ft BGS Streened interval: 20 Streened interval: 20 Streened interval: 20 Streened interval: 21 Streened interval: 22 Streened interval: 23 Streened interval: 24 Streened interval: 24 Streened interval: 25 Streened interval: 24 Streened interval: 25 Streened interval: 26 Streened interval: 28 Streened interval: 28 Streened interval: 28 Streened interval: 29 Streened interval: 29 Streened interval: 20 Streened interval: 21 Streened interval: 22 Streened interval: 24 Streened interval: 25 Streened interval: 26 Streened interval: 27 Streened interval: 28 Streened interval: 29 Streeneeeeeeeeeeeeeeeeeeeeeee			573.80		9SS	\bigtriangledown	2.0	2	0
20 Length: 5ft -22 Diameter: 2in -24 Statilizes Steel -24 Seal: -26 Seal: -26 Material: Silica Sand	- 18 -	soft	573.00	WELL DETAILS SPOON					
-22 -24 -24 -26 -28 -30 -32 -32 -22 -28 -28 -28 -32 -28 -32 -28 -28 -28 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -28 -32 -32 -28 -32 -32 -32 -28 -32 -32 -32 -28 -32 -32 -32 -32 -32 -32 -32 -32	- 20			578.50 to 573.50ft AMSL Length: 5ft					
-24 -24 -26 -28 -30 -30	- 22			Material: Stainless Steel					
Material: Silica Sand	- 24			584.00 to 582.00ft AMSL Material: Bentonite Sand Pack:					
	28								
	4 COH								
	10 ra92								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♀ 09/14/00 CHEMICAL ANALYSIS ◯									
WATER FOUND ♀ 09/14/00 CHEMICAL ANALYSIS			EFER TO	CURRENT ELEVATION TABLE					
	RBUF								
	OVE								

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-4 DATE COMPLETED: September 15, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

GRA)

Page 1 of 2

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-4A DATE COMPLETED: September 18, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH		ELEV.	MONITOR INSTALLATION			SAM	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	MONITOR INSTALLATION	ш	AL	t)	JE	Ê
	NORTHING: 4959.01 GROUND SURFACE	591.04		NUMBER	NTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	EASTING: 4992.33 TOP OF RISER	590.61		D Z	NTE	BE	ź	DIA
	ASPHALT, gravel sub-base				_		-	
-		590.04			$ \rightarrow $			
-	GRAVEL (Fill), some sand, angular, grey and brown, dry	589.44		155	$\mathbf{\nabla}$	2.0	9	0.1
-2	SAND (Fill), some gravel, trace red brick and				$/ \setminus$			
F	concrete, moist				\setminus			
4				2SS	X	2.0	10	0.1
F					$\left(\rightarrow \right)$			
F-6				35S	Х	2.0	19	0.3
E			BENTONITE GROUT		$\left(\rightarrow \right)$			
F.				45S	$\mathbf{\nabla}$	2.0	10	0
- 8					$/ \setminus$			-
-					\sum			
10			8"0 BOREHOLE	5SS		2.0	4	1.0
-	SW-SAND, some fine rounded gravel, trace	580.04			$\left(\rightarrow \right)$			
-12	silt, small roots, moist, wet			6SS	Х	2.0	4	0.9
-					\leftrightarrow			
- 14			2"0	7SS	$ \mathbf{Y} $	2.0	4	
- 14			STAINLESS STEEL WELL		$\angle ightarrow$			
F	- becomes wet below 15ft BGS		CASING		\searrow	~ ~	~	10
- 16				8SS	\wedge	2.0	3	1.6
-		573.64			$\left(\right)$			
-18	CL-CLAY, little silt, grey and red-brown, moist, soft, sticky			9SS	Х	2.0	4	2.6
E .	Son, sucky				\leftrightarrow			
-20	- trace gravel		BENTONITE	10SS	$ \mathbf{V} $	2.0		0
- 20					$\angle $			
				1155	\bigvee	2.0	1	0
- 22				1155	\wedge	2.0	'	0
Ł		567.64						
24	SM-SAND, some silt and rounded gravel, fine to medium, dense, grey, moist		SAND PACK	12SS	Х	2.0	9	0
F					\leftrightarrow			
- 26				13SS	Х	2.0	7	0.1
	- dry to moist below 27ft BGS				\leftrightarrow			
1/22/02				14SS		2.0	30	0
1 - 28 8 -			SCREEN		$/ \setminus$			-
	- spoon refusal @ 29.6ft BGS			15SS	\times	0.6	>50	0
⁰ − 30	- auger refusal @ 30.3ft BGS	560.74	BENTONITE					
E-	END OF BOREHOLE @ 30.3ft BGS		WELL DETAILS					
20- 32			Screened interval: 566.64 to 561.64ft AMSL					
967			Length: 5ft					
5			Diameter: 2in Slot Size: 10					
Ğ <u></u> −34			Material: Stainless Steel					
ОVЕНВИИРЕН LOG 15867. GPJ CRA_COHP.GDT 30 30 34 34 34 34 34 34 34 34 34	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE					
BUF	STATIC WATER L							
OVE								

Page 2 of 2

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-4A DATE COMPLETED: September 18, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR INSTALLATION			SAM		
ft BGS		AMSL		ER	VAL	(#)	'N' VALUE	Ed
				NUMBER	INTERVAL	REC (ft)	I' VAI	PID (ppm)
				~			~	<u> </u>
- 36			Seal: 573.04 to 569.54ft AMSL					
-			Material: Bentonite Sand Pack:					
38			569.54 to 561.44ft AMSL Material: Silica Sand			ĺ		
-								
- 40 -								
- 42								'
- 42								l f
- 44								
								,
-46								
-								'
48								f
50								
- 52								
- 54								Ī
- 34								
- 56								
F								ĺ
- 58								1
E								f
60								
62								
64								f
66								
- 68								
- I								
								ľ
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F STATIC WATER L		UNRENT ELEVATION TABLE					
		_						

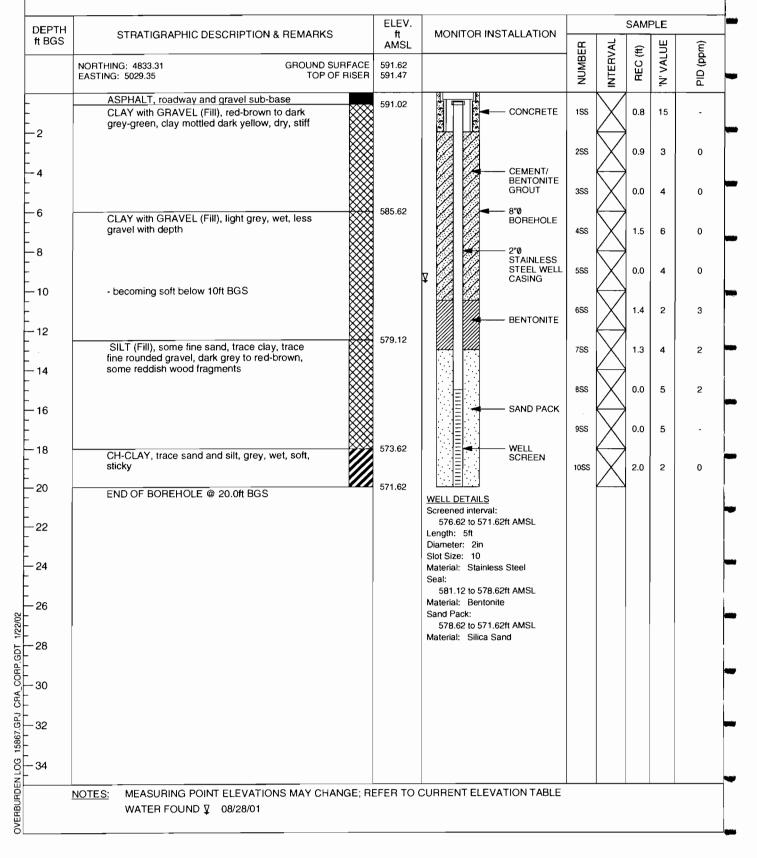
Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-5 DATE COMPLETED: September 14, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELÉV. ft	MONITOR INSTALLATION			SAM		
ft BGS	NORTHING: 4838.45 GROUND SURFACE			NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)
	ASPHALT, gravel sub-base	330.70		z	Z	<u> </u>	Ž	ā
	GRAVEL (Fill), some sand, grey and brown,	590.37		100	\bigtriangledown	2.0	10	ο
-2	ML-SILT, grey, dry to moist, medium stiff	× 588.77	CEMENT/	1SS	\square	2.0	10	U
- 4	- becomes brown below 5.0ft BGS		BENTONITE GROUT 2*0 PVC	2SS	X	2.0	15	0
-6	- Decomes brown below 5.0h Data		WELL CASING	355	X	2.0	6	0
- 8	SM-SAND, little silt, fine grained, brown, dry to moist, loose - medium grained sand lens from 7.9 to 8.1	583.87	BENTONITE	4SS	X	2.0	7	0
- 10	and 8.2 to 8.4ft BGS SW-SAND, little fine to medium gravel, fine to coarse grained, rounded, trace silt in thin	581.87		5SS	$\left \right\rangle$	2.0	5	0
- 12	lenses, brown, wet			6SS	X	2.0	3	0
- 14		•	■ 8°0 BOREHOLE	7 S S	\square	2.0	3	0
-16		•		855	\ge	2.0	4	0
- 18	CL-CLAY, little silt, trace fine sand, light grey, moist, soft, sticky	573.77		9SS	\square	2.0	4	0
-20		570.37	SPLIT SPOON	10SS	\boxtimes	2.0	0	1.0
- 22	END OF BOREHOLE @ 21.0ft BGS		WELL_DETAILS Screened interval: 578.87 to 573.87ft AMSL					
-24			Length: 5ft Diameter: 3in Slot Size: 10 Material: Stainless Steel					
-26			Seal: 583.87 to 581.87ft AMSL Material: Bentonite					
- 28			Sand Pack: 581.87 to 570.37ft AMSL Material: Silica Sand					
- 30								
- 32								
- 34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE					

Page 1 of 1


PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-6 DATE COMPLETED: August 28, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

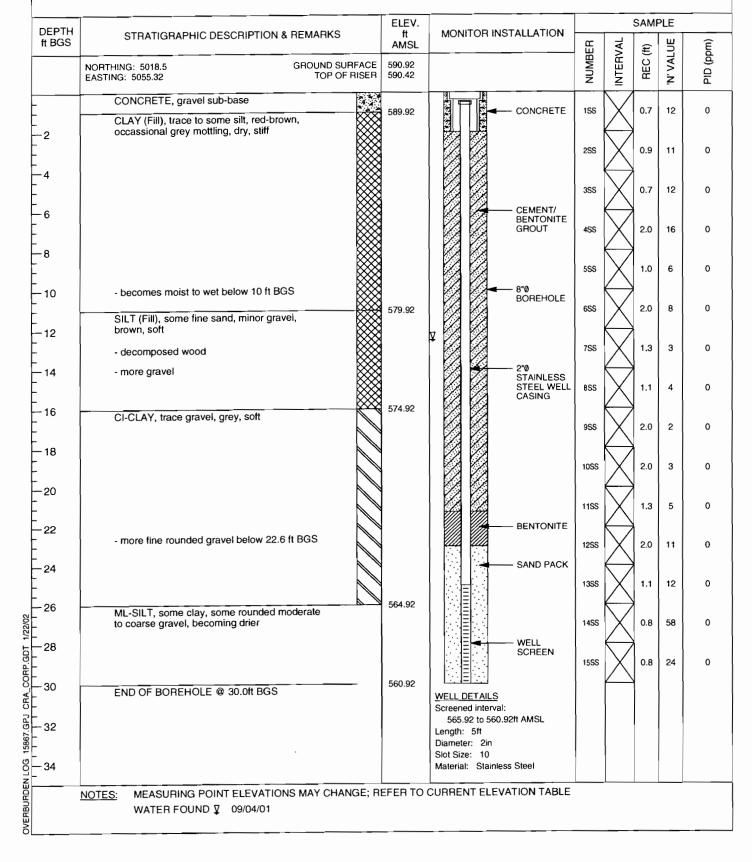
Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-7 DATE COMPLETED: September 4, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR INSTALLATION			SAM	SAMPLE				
ft BGS	NORTHING: 5015.11 GROUND SURFACE EASTING: 5058.47 TOP OF RISER	AMSL 590.93		NUMBER	INTERVAL	REC (ft)	'N' VALUE				
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34	OVERBURDEN (see overburden stratigraphy for well MW-7A)	572.53	CONCRETE CEMENT/ BENTONITE GROUT BOREHOLE BOREHOLE STAINLESS STEEL WELL CASING BENTONITE SAND PACK SAND PACK SCREEN WELL DETAILS Screened interval: 577.53 to 572.53ft AMSL Length: 5ft Diameter: 2in Slot Size: 10 Material: Stainless Steel Seal: 581.93 to 579.53ft AMSL Material: Bentonite Sand Pack: 579.53 to 572.53ft AMSL Material: Stainless Steel Seal: 581.93 to 579.53ft AMSL Material: Bentonite Sand Pack: 579.53 to 572.53ft AMSL Material: Silica Sand								


Page 1 of 2

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-7A DATE COMPLETED: September 4, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

Page 2 of 2

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-7A
DATE COMPLETED: September 4, 2001
DRILLING METHOD: HSA
FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION	SAMPLE			ΡLΕ	
ft BGS		ft AMSL	MONTOR INSTALLATION	E.	/AL	(t)	UE	(j
				NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
				ž	IN	æ	ž	ă 🖷
			Seal:					
36			569.72 to 567.92ft AMSL Material: Bentonite					
F			Sand Pack: 567.92 to 560.92ft AMSL					
			Material: Silica Sand					
F				ļ				
40 								[
F								
- 42								
F								
- 44								
F								
- 46								
E								
48								
F								
50								
_								
- 52								
F								
- 54								
E								
- 56								
58								
-								-
60								
								1
0 7 7 7 7 7 7 7 7 7 7 7 7 62								
5								
8								
₩ - 66								
68								I L
 8 -								
OVERBURDEN LOG 15867.GPJ CRA_CORP.GDT 1/22/02 8 9 9 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								_
BURC	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND ♀ 09/04/01	EFER TO (CURRENT ELEVATION TABLE					
VER								
0		_						

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-8 DATE COMPLETED: August 31, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR INSTALLATION			SAM		
ft BGS	NORTHING: 4863.01 GROUND SURFACE	AMSL 589.71		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	EASTING: 4809.01 TOP OF RISER	588.88		NUN	INTE	RE	'N'	
-2 -4 -6 -8 -10 -12 -14 -16 -22 -24 -24 -26 -28 -30 -32	OVERBURDEN (see overburden stratigraphy for well MW-8A) END OF BOREHOLE @ 16.2ft BGS NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE WATER FOUND ♀ 08/31/01	573.51	CONCRETE CEMENT/ BENTONITE GROUT 2°0 STAINLESS STEEL WELL CASING BENTONITE BENTONITE BENTONITE BENTONITE SCREEN WELL SCREEN WELL SCREEN WELL SCREEN WELL SCREEN WELL SCREEN WELL SCREEN Sto to 573.51ft AMSL Length: 5ft Diameter: 2in Stot Size: 10 Material: Stainless Steel Seal: S83.71 to 501.71ft AMSL Material: Bentonite Sand Pack: 581.71 to 573.51ft AMSL Material: Silica Sand					

Page 1 of 2

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-8A DATE COMPLETED: August 31, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARK	s	ELEV.	MONITOR INSTALLATION			SAMI	1	
11 003	NORTHING: 4867.37 GROUND	SURFACE	AMSL 589.63		NUMBER	NTERVAL	REC (ft)	'N' VALUE	PID (ppm)
		OFRISER	589.04	(3) 121	Z	Ξ	æ	Ż	PIC
	TOPSOIL, grass root mat SILT (Fill), some clay, little fine sand,		589.13		155		1.3	12	0
2	orange-brown to brown to red-brown, dry, stiff					()			
					255	X	1.7	20	0
4						\mapsto			
					355	X	1.4	11	0
6				CEMENT/ BENTONITE		\vdash			
				GROUT	4SS	X	2.0	9	0
- 8						$\langle \rangle$			
	- becomes wet below 9.2ft BGS - more sand below 9.3ft BGS				5SS		1.7	4	0
10	- more sand below 9.3it BGS - decomposed reddish wood @ 10ft BGS		570.00	BOREHOLE	655	\bigtriangledown		_	0
10	SAND (Fill), some silt, some gravel, grey to red-brown, wet, soft		578.63		655	\bigtriangleup	1.7	5	0
12					755	\mathbb{N}	0.3	7	0
14			575.63	2"0		\square			
	CI-CLAY, little silt, grey, soft			STAINLESS STEEL WELL	855	\mathbf{X}	1.5	17	0
16				CASING		\leftrightarrow			
					9 SS	X	1.8	3	0
18						\leftrightarrow			
					10SS	X	2.0	2	0
·20						\bigtriangledown			
	and the trace first sounded around below 20th			BENTONITE	11SS	\wedge	1.9	2	0
22	 more silt, trace fine rounded gravel below 22ft BGS 				12SS	\bigvee	0.7	4	0
24				SAND PACK		\bigtriangleup			
					13SS	\mathbf{X}	1.2	22	0
26						$\left(\rightarrow \right)$			
				WELL SCREEN	14SS	X	0.8	32	0
28	 increasing rounded moderately coarse gravel, drier below 28ft BGS 					$\left(\right)$			
					15SS	Х	0.8	57	0
30	END OF BOREHOLE @ 30.0ft BGS		559.63	WELL DETAILS					
20				Screened interval: 564.63 to 559.63ft AMSL					
32				Length: 5ft Diameter: 2in					
-34				Slot Size: 10 Material: Stainless Steel					
	NOTES: MEASURING POINT ELEVATIONS MAY CI WATER FOUND ♀ 08/31/01	HANGE; RI	EFERIO	CURRENT ELEVATION TABLE					
	·								

Page 2 of 2

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-8A DATE COMPLETED: August 31, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR INSTALLATION					
ft BGS		AMSL		E	VAL	(¥	.UE	Ê
				NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
				ž_	ż		ź	<u> </u>
- 36			Seal: 569.63 to 567.63ft AMSL					
- -			Material: Bentonite	ļ				
			Sand Pack: 567.63 to 559.63ft AMSL					İ İ
-			Material: Silica Sand					
Ę								
- 								
E T								
- 44								
-								
- 46]				
- -								
-								
50								
-								
- 54				ļ				_
-								
- 56								
-								
- 58							Í	
-								-
60								
-								
62								
E								
64								
F								
- 66							ĺ	
F								
- 68								
F								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI WATER FOUND ♀ 08/31/01		JUNNENT ELEVATION TABLE					
	·····							

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-9 DATE COMPLETED: August 29, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

	DEPTH		ELEV.		SAN		SAMF	PLE	
	ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	MONITOR INSTALLATION	NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)
		NORTHING: 4989.5 GROUND SURFACE EASTING: 4950.55 TOP OF RISER			MUN	INTEI	REC	'N.) dia
		CONCRETE, gravel sub-base CLAY (Fill), some silt, little sand, dark green to light brown to dark red-brown, stiff	589.77		1SS	X	0. 9	7	35
	-2			CEMENT/	2SS	X	2.0	19	60
	-6			BENTONITE GROUT	355	X	1.5	8	20
	-8	- becomes very moist and soft below 8 ft BGS		BOREHOLE 2'0 STAINLESS STEEL WELL	4SS	$\left\langle \right\rangle$	1.6	13	30
	- 10	SAND (Fill), some silt, some angular gravel red-brown to grey, wet, soft	581.07	CASING BENTONITE	5SS	\bigotimes	1.8	3	6
-	- 12	- wood fragments @ 12 ft BGS			6SS	\bigotimes	1.5	2	15
	- 14			SAND PACK	7 S S	\bigotimes	2.0	2	10
	- 16	- increasing gravel @ 15.5 ft BGS	573.97	WELL SCREEN	8SS	$\left\langle \right\rangle$	0.0	13	
E		CI-CLAY, trace sand and fine gravel, red-brown, wet, soft			9SS	Х	1.7	5	2
	- 18	END OF BOREHOLE @ 17.9ft BGS	572.37	WELL DETAILS Screened interval:					
	-20			577.37 to 572.37ft AMSL Length: 5ft Diameter: 2in Slot Size: 10					
	- 22			Material: Stainless Steel Seal: 582.27 to 579.27ft AMSL					
	-24			Material: Bertonite Sand Pack: 579.27 to 572.37ft AMSL Material: Silica Sand					
22/02	-26								
AP.GDT 1	-28								
15867.GPJ CHA_COHP.GDT 1/22/02	- 30								
867.GPJ	- 32								
1100	- 34								
		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	EFER TO	CURRENT ELEVATION TABLE		<u> </u>			
OVER					_				

Page 1 of 2

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-9A DATE COMPLETED: August 29, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION		1	SAM	PLE	
ft BGS	NORTHING: 4993.28 GROUND SURFACE EASTING: 4954.02 TOP OF RISER			NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (nnm)
-2 -4 -6 -8 -10 -12 -14 -16	OVERBURDEN (see overburden stratigraphy for well MW-9)		CEMENT/ BENTONITE GROUT BOREHOLE 2°0 STAINLESS STEEL WELL CASING					
- 18 - 20	CH-CLAY, trace silt, grey to tan-grey, wet, soft	572.31		1SS	X	2.0	4	0
22 24	- increasing fine rounded gravel @ 24 ft BGS		BENTONITE	255 355	X	2.0 2.0	6 2	c
26			Sand Pack	4SS 5SS	\bigotimes	1.6 2.0	16 105	c
28	- gravel becoming coarser, less clay @ 28 ft BGS		WELL SCREEN	655	\bigcirc	1.1	37	(
30	GC-GRAVEL, some sand, trace clay, grey, wet	560.31		7SS	\bigtriangledown	1.7	47	(
32	END OF BOREHOLE @ 31.5ft BGS	4 558.81	WELL DETAILS Screened interval: 565.81 to 558.81ft AMSL Length: 7ft Diameter: 2in					

Page 2 of 2

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-9A DATE COMPLETED: August 29, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR INSTALLATION	SAMPLE					
ft BGS		AMSL		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	
				NUN	INTE	RE('N' V) OIA	
- 36			Slot Size: 10 Material: Stainless Steel						
			Seal: 567.81 to 565.81ft AMSL						
- 38			Material: Bentonite Sand Pack:						
			565.81 to 558.81ft AMSL Material: Silica Sand						
- 40									
- 42									
- 44				ļ					
- 46									
40									
- 48									
-50									
- 52									
- 54									
-56									
00									
- 58									
- 60									
- 62									
- 64									
- 66									
-									
68									
NOT		REFER TO (CURRENT ELEVATION TABLE				I		
	WATER FOUND ♀ 08/29/01								

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-10 DATE COMPLETED: August 30, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	MONITOR INSTALLATION			SAM	PLE	
ft BGS		AMSL		ER .	VAL	(£	LUE	
	NORTHING: 4852.6 GROUND SURFACE EASTING: 4834.86 TOP OF RISER	589.42 589.02		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
-2 -4 -6 -10 -12 -14 -16 -12 -14 -16 -22 -22 -24 -24 -26 -28 -30 -32 -34	OVERBURDEN (see overburden stratigraphy for well MW-10A)	573.42	CUBBENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-10A DATE COMPLETED: August 30, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEP		ELEV.	MONITOR INSTALLATION		_	SAMF	۳LE	
ft BO	NORTHING: 4850.37 GROUND SURFACE	AMSL 589.61		NUMBER	NTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	EASTING: 4832.41 TOP OF RISER	589.07) Ž	INTE	H	<u>z</u>	DIA
2	CLAY (Fill), some silt, brown, dry	589.11		1		4.0		-
- - - - - - 6	- roots, woody debris @ 5 ft BGS - becomes moist below 6.0ft BGS		CEMENT/ BENTONITE GROUT 2.5*0 BOREHOLE	2	$\left \right\rangle$	3.5		-
- 8	SAND with SILT and GRAVEL (Fill), trace clay, dark brown, moist, clay content increases with depth CLAY with SAND (Fill), some silt, dark brown,	582.61 580.61			$\left \right\rangle$			
- 	occassional black mottling or thin layers			3	\square	4.0		-
- - 14 -	- increasing fine to coarse gravel 12.5ft BGS - woody debris @ 14 ft BGS	574.61	1"0 PVC	4		2.6		-
- 	CL-CLAY with SILT, minor fine rounded gravel, grey to brown-grey, wet - decreasing moisture @ 18 ft BGS		WELL CASING	5	\bigcirc	4.0		
-20	- decreasing moisture @ 16 it BGS		SAND PACK	5	$\left \right\rangle$	4.0		
-22 	- more sand and fine rounded gravel below 22.5ft BGS		WELL SCREEN	6	\land	4.0		-
		564.61			$\backslash /$			
- 26 20/22/1 20/22/1 28	END OF BOREHOLE @ 25.0tt BGS		WELL DETAILS Screened interval: 569.61 to 564.61ft AMSL Length: 5ft Diameter: 1in	7	\wedge	1.4		-
			Slot Size: 10 Material: SCH 80 PVC Seal: 581.11 to 577.61ft AMSL					-
15867.GPJ CRA_CORP.GDT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Material: Bentonite Sand Pack: 577.61 to 564.61ft AMSL Material: Silica Sand					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI WATER FOUND ♀ 08/30/01	EFER TO (CURRENT ELEVATION TABLE					

G	

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-11 DATE COMPLETED: August 30, 2011 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

-2 -4 -6	NORTHING: 4979.14 EASTING: 4986.13 OVERBURDEN (see overburden stratigraph	GROUND SURFACE TOP OF RISER	AMSL 590.75 590.40		NUMBER	INTERVAL	REC (ft)	N' VALUE	
- 4	OVERBURDEN (see overburden stratigraph	y for well MW-11A)			<u> </u>			<u> </u>	1
- 8 - 10 - 12 - 14 - 16 - 18 - 20 - 22 - 24 - 26 - 28 - 30 - 32	END OF BOREHOLE @ 18	.off BGS	572.75	CONCRETE CEMENT/ BENTONITE GROUT 2.5% BOREHOLE 2% STAINLESS STELL WELL CASING BENTONITE BENTONITE SAND PACK WELL SCREEN WELL DETAILS Screened interval: 577.75 to 572.75ft AMSL Length: 5ft Diameter: 2in Slot Size: 10 Material: Stainless Steel Seal: 581.75 to 579.75ft AMSL Material: Bentonite Sand Pack: 579.75 to 572.75ft AMSL Material: Silica Sand					
- 34	IOTES: MEASURING POINT E	LEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE					

Page 1 of 2

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-11A DATE COMPLETED: August 30, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft	MONITOR INSTALLATION			SAM		
ft BGS	NORTHING: 4976.34 GROUND SI		AMSL 590.73 590.20		NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)
	OL-SILT (TOPSOIL), little clay, brown	- <u></u>	590.23		~			ŗ	<u> </u>
2	SILT (Fill), some clay, trace sand, brown to dark brown, dry, friable, occassional grey mottling				1SS	\bigotimes	1.2	16	-
4					255	\bigotimes	1.4	20	-
6	- more clay below 6.0 ft BGS			CEMENT/ BENTONITE GROUT	3SS 4SS	\bigotimes	1.8 2.0	17 14	
8	CLAY (Fill), some silt, little sand, dark grey, wet, minor black mottling		582.73		5SS	\bigtriangledown	1.6	4	-
10 12	- minor reddish decomposed wood @ 11.2 ft BGS			▼ 8°0 BOREHOLE	6SS	\square	2.0	3	
12	- abundant fine gravel below 12.7 ft BGS				7 S S	Х	1.4	2	-
14	- increasing coarser gravel @ 15 ft BGS		575.23	2"0 STAINLESS STEEL WELL CASING	8SS	\mathbf{X}	0.6	4	-
16	CL-CLAY, some silt, minor fine gravel, dark red-brown, wet, soft				9SS	\bigtriangledown	1.5	2	-
18	- less sand and gravel, soft below 18 ft BGS			BENTONITE	10SS	\bigtriangledown	1.6	2	
20	- decreasing gravel @ 21.5 ft BGS				1 1 SS	\bigtriangledown	2.0	2	-
22				SAND PACK	1255	\bigtriangledown	1.1	3	
24					1355	\mathbf{X}	0.8	6	-
26	CL-CLAY with GRAVEL (TILL), coarse rounded gravel, grey, dry, stiff		564.73 563.23		14SS	\mathbf{X}	0.3	65	
28	ÉND OF BOREHOLE @ 27.5ft BGS			WELL DETAILS Screened interval: 568.23 to 563.23ft AMSL					
30				Length: 5ft Diameter: 2in Slot Size: 10					
32				Material: Stainless Steel Seal: 572.23 to 570.23ft AMSL Material: Bentonite					
34				Sand Pack: 570.23 to 563.23ft AMSL					

Page 2 of 2

-

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION	i: MW-11A
DATE COMPLETED:	August 30, 2001
DRILLING METHOD:	HSA
FIELD PERSONNEL:	F. Garbe

DEPTH		ELEV.	MONITOR INSTALLATION			SAM	PLE	
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	MONTOR INSTALLATION	EB	VAL	(ft)	.UE	(mo
				NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
				z	Z	ш.	Ž	<u> </u>
- 			Material: Silica Sand					
_	· ·							
-								
- 40								
-								
- 44								
_								
-								
- 48		ĺ		[
-								
- 50								
-		ĺ		[[[
_ 54								
		[
56					ĺ			
-								
- 58								
-								
- 60								
- 1		[
- 62 - 64 - 66 - 68								
:								
- 64								
-								
- 66								
- 68								
-								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	URRENT ELEVATION TABLE	1	1			
-	WATER FOUND ♀ 08/30/01							

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-12 DATE COMPLETED: October 30, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: J. Pietraszek

DEPTH It BGS STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH It BGS MONITOR INSTALLATION TOP OF RISER 590.09 OVERBURDEN (not sampled) (see overburden stratigraphy for well MW-12A) 590.09 2 CEMENT/ BENTONITE GROUT 4 CEMENT/ BENTONITE GROUT 6 STANLESS STANLESS BOREHOLE 10 SAND PACK 11 SAND PACK 18 END OF BOREHOLE @ 18.0ft BGS	th BGS STITUTION IN THE DESCRIPTION OF RELATING th BGS Method Matching Matching th BGS TOP OF RISER 590.09 CONCRETE Employed Employed Employed Employed -2 (see overburden stratigraphy for well MW-12A) -4 CEMENT/regrammation Employed Emplo
OVERBURDEN (not sampled) (see overburden stratigraphy for well MW-12A) -2 -4 -4 -6 -8 -10 -12 -18 END OF BOREHOLE @ 18.0ft BGS -8 -10 -18 END OF BOREHOLE @ 18.0ft BGS -8 -10 -12 -14 -16 -18 END OF BOREHOLE @ 18.0ft BGS -8 -18 END OF BOREHOLE @ 18.0ft BGS -8 -18 -10 -12 -14 -16 -18 -18 END OF BOREHOLE @ 18.0ft BGS -18 -10 -12 -14 -16 -18 -18 -10 -18 -10 -18 -10 -12 -14 -16 -18 -18 -18 -10 -12 -14 -16 -18 -18 -18 -18 -18 -19 -19 -19 -18	OVERBURDEN (not sampled) (see overburden stratigraphy for well MW-12A) CONCRETE -2 -4 -4 -6 -7 -8 -10 -12 -14 -16 -18 END OF BOREHOLE @ 18.0ft BGS 18 END OF BOREHOLE @ 18.0ft BGS 18 -22 -23 -24 -24 -25
(see overburden stratigraphy for well MW-12A) -2 -4 -6 -8 -10 -12 -18 END OF BOREHOLE @ 18.0ft BGS 16.00 (see overburden stratigraphy for well MW-12A) -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	(see ovarburden stratigraphy for well MW-12A) (see ovarburden strati
	-34

Page 1 of 2

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY HOLE DESIGNATION: MW-12A DATE COMPLETED: October 29, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: J. Pietraszek

ft BGS	TOP OF					1 14				
2		RISER	589.96			NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
2	SOIL (Fill), brown, slightly moist	***				SS1	\bigtriangledown	0.1	5	0
							(••••		·
-					CEMENT/ BENTONITE	SS2	Х	0.2	12	0
4 –	SILTY CLAY (Fill), some woody debris (roots), brown with grey mottling, slightly moist		4.00		GROUT	SS3	\bigtriangledown	1.2	14	0
6	blown with grey mouting, orginal motor						\bigcirc	1.2	14	0
					2"0 STAINLESS	SS4	Х	1.3	19	0
8					STEEL WELL CASING 8°0 BOREHOLE	SS5	\square	1.4	9	0
10	- increasing clay below 10 ft BGS			¥			$\left(\right)$			
12	- becoming grey with red mottling		12.00			SS6	\bigtriangleup	2.0	10	0
	CLAYEY SILT (Fill), brown with grey mottling SANDY SILT (Fill), some clay, grey, very moist		13.00			SS7	X	0.8	6	0
14 -	GRAVELLY SAND (Fill), fine grained rounded gravel, very wet		14.00			SSB	\bigtriangledown	0.4	5	0
16	- gravel becomes angular, fine to medium grained below 16 ft BGS					SS9	\ominus	0.8	7	0
18 -	CL-CLAY, some silt, very moist, dark grey		18.00			339	\bigcirc	0.8		0
						SS10	Х	2.0	4	0
20	- becomes gravelly below 21 ft BGS					SS11	\mathbf{X}	2.0	5	0
22	CL-CLAY, dark brown, some red mottling, moist		22.00 22.50 22.70		BENTONITE	SS12	\bigtriangledown	1.8	2	0
24	SP-SILTY SAND, little fine gravel, dark grey CL-CLAY, grey, moist, some red mottling				SAND PACK		\leftrightarrow			
			00.00			SS13	Х	2.0	3	0
26 —	SP-SANDY SILT with FINE GRAVEL, moist, dark grey - clay inclusions @ 27.0 ft BGS		26.00		WELL SCREEN	SS14	X	1.9	3	0
28						SS15	\mathbf{X}	1.8	5	0
30	END OF BOREHOLE @ 30.0ft BGS	1.525	30.00	WELL DE Screened						
32					to 30.00ft BGS 5ft					
34				Slot Size:						
<u>N</u> (OTES: MEASURING POINT ELEVATIONS MAY CHAI WATER FOUND	NGE; RI	EFER TO	CURRENT	ELEVATION TABLE					

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: MW-12A DATE COMPLETED: October 29, 2001 DRILLING METHOD: HSA FIELD PERSONNEL: J. Pietraszek

DEPTH		DEPTH	MONITOR INSTALLATION			SAM	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft BGS		ш	/AL	ft)	UE	(m
				NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
				ž	N.	œ	ž	PIC
- 26			Seal:					7
- 36 -			21.00 to 23.00ft BGS Material: Bentonite					,
F			Sand Pack:					
38 			23.00 to 30.00ft BGS Material: Silica Sand	ļ				1
-					1			. 1
40								
E .								•
42								, r
E				[
- 44								i
F								, i
-46								
F								
- 48]						
F								
50								
- 52		1)				
- 52						1		
		[ľ
54 -								
F]			
- 56								
					ļ			
-								
60								
È.								
62		1						
								1
1								
66								
5-								[·
- 68								
66	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE					
Ĩ	WATER FOUND 2 9/29/01							
j								

Page 2 of 2

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: PZ-1 DATE COMPLETED: August 22, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH		ELEV.	MONITOR INSTALLATION			SAM		
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	MONITOR INSTALLATION	ER	'AL	ft)	UЕ	m)
	NORTHING: 4895.68 GROUND SURFACE EASTING: 4852.83 TOP OF RISER	589.62 589.36		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
L	ASPHALT, roadway and gravel sub-base				\wedge			
-2	CLAY (Fill), some silt, little sand, dark brown, dry, occassional grey mottling	588.62		1	X	2.7		
-4 	- increasing sand @ 6 ft BGS		BENTONITE 2.5°0 BOREHOLE	2		3.5		
- 	SAND (Fill), some silt and clay, trace gravel, brown - gravel inclusions	580.42	1"0 PVC WELL CASING	3		3.9		
12	CI-CLAY with SILT, grey to dark grey to brown,	576.72			$\left(\right)$			
- 14	soft		SAND PACK	4		4.0		-
- 16 - -			SCREEN		$ / \rangle$			
- 18	END OF BOREHOLE @ 18.0ft BGS	571.62	WELL DETAILS		<u> </u>			
- 			Screened interval: 576.62 to 571.62ft AMSL Length: 5ft Diameter: 1in					
- 22 			Slot Size: 10 Material: SCH 80 PVC Seal: 587.62 to 578.62ft AMSL					
24 			Material: Bentonite Sand Pack: 578.62 to 571.62ft AMSL Material: Silica Sand					
26								
CRA_CORP.GDT 1/22/02 05 85 86								
0 - 30 								
12867.GPJ								
90 34								
90 — 34	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND ♀ 08/22/01	EFER TO	CURRENT ELEVATION TABLE					

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: PZ-2 DATE COMPLETED: August 22, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

Page 1 of 1

DEPTH	STRATIGRAPHIC DESC	RIPTION & REMARKS	ELEV.	ft MONITOR INSTALLATIO					MPLE	
ft BGS	NORTHING: 4986.94	GROUND SURFACE	AMSL 590.19		UMBER	TERVAL	REC (ft)	' VALUE	(mqq) (I	
tt BGS 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34		GROUND SURFACE TOP OF RISER	AMSL 590.19	CONCRETE BENTONITE BENTONITE BOREHOLE CASING WELL CASING WELL CASING WELL CASING WELL SCREEN SCREEN WELL SCREEN SC	I NUMBER	INTERVAL	(I) OH 1.8 4.0 4.0 2.3	-I.V. VALUE	(mqq) OI d	

|--|

_

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: PZ-3 DATE COMPLETED: August 30, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION			SAM	PLE	
ft BGS	NORTHING: 4863.62 GROUND SURFACE	AMSL 589.44		NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)
	EASTING: 4816.47 TOP OF RISER	589.15		NUN	INTE	盟	, N.	DID
	ASPHALT, roadway and gravel sub-base	588.44			Λ /	1		
-2	CLAY with SILT (Fill), light brown to brown, dry			1	X	4.0		
			BENTONITE		$ / \setminus$			
4					$\left(\right)$			
6	increasing sand content below 5.0ft BGS increasing moisture content below 6.0ft BGS		2.5*0 BOREHOLE 1*0 PVC	2	V	4.0		
-			WELL CASING					
8	- wood fragments @ 8.3ft BGS	581.44 580.94			$\left(- \right)$			
	SAND (Fill), some gravel, black				V			
	mottling		SAND PACK	3	$ \wedge $	0.8		
- 12	END OF BOREHOLE @ 12.0ft BGS	577.44	SCREEN					
			WELL DETAILS Screened interval:					
			582.44 to 577.44ft AMSL Length: 5ft Diameter: 1in					
-16			Slot Size: 10 Material: SCH 80 PVC					
Ē			Seal: 587.44 to 585.44ft AMSL					
- 18			Material: Bentonite Sand Pack:					
-20			585.44 to 577.44ft AMSL Material: Silica Sand					
-								
-22								
- 24								
26								
28								
5-30								
5 ⊢ 32								
≦ 3 34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO	CURRENT ELEVATION TABLE					
- 28 - 30 - 32 - 32 - 34 - 1 - 34	WATER FOUND ¥ 08/30/01							
s								

•		I The Four	Boring Lo th River		ny	Project No:	1240	
Client: Driller: Method:	Client: Walnut Capital Driller: Zebra Environmental Method: Geoprobe		Lo En Ele	ocation:	Buffalo, NY jch n/a ground n/a TOC/TOR	Boring No: Page No: Date Begun: Date Finished: Well Installed:	SB - 1 1 / 1 07/21/99 07/21/99 no	•
Sample Number	Recovery	Blows per 6-inch	HNu (ppm)	Depth	Classification	•	Notes	
™umber	(in) 0	6-inch	(ppm)	Jepin 1 2 3 4 5 6 7 8 9 10 11 12	brown SILT, some Clay (1 Grass, trace Sand refusal @ 2' on suspected	TOPSOIL), little		
				13 14 15 16 17 18 19 20				

			Boring Lo	-			1240
		The Four	th River	Compa	ny	Project No:	1240
						Boring No:	SB - IA
Client:	Walnut	Capital	Lo	cation:	Buffalo, NY	Page No:	1 / 1
Driller:	Zehra Env	ironmental		gineer:	jch	Date Begun:	07/21/99
Method:	Geor	probe		vation:	nia ground	Date Finished:	07/21/99
Diameter:					n/a TOC/TOR	Well Installed:	no
Sample	Recovery	Blows per	HNu .				
Number	(in)	6-inch	(pp m)	Depth	Classification		Notes
	((11))				ASPHALT		
	0				grey SAND, GRAVEL and	SLAG (FILL)	
	2		•		· .		
				2	refusal @ 1_5' on suspecie	ed concrete	
				3			
				4	4		
				5	-		
				6	-		100 C
				-			
				7	-		
				8	4		· · · · ·
				9			
				°—	-		
				10			
				/ <i>"</i> —	-		
				. 11			· ·
				''	4		
				12			
				"—	1		
				13	<u> </u>		├── ──
					1		
				14			
					1		
				15			
				16			
				17			
				18			
					1		
				19			
				20			
				20			

		The Four	oring Lo th River		ny	Project No:	1240
Client: Driller: Method: Diameter:	Walnut Zebra Env Geop	Capital ir önmental ir obe	Lo En Ele		Buffalo, NY jch n/a ground n/a TOC/TOR	Boring No: Page No: Date Begun: Date Finished: Well Installed:	SB - 1B 1 / 1 07/21/99 07/21/99 no
Sample	Recovery	Blows per 6-inch	HNu (pp m)	Depth	Classification	•	Notes
Number	(in) 42	0-111Cu	0.5	12	brown SILT, some Clay, lit brown f SAND and CLAY	EY SILT	
				3 	brown and grey SILTY CL	АY 	<u></u>
	48		0.5	5 6 7	brown CLAYEY SILT and	f SAND	
				8			damp @ 8'
SB-1B, 3	46		0.5	9 10 11	brown SAND and SILT, so fragments, some Wood	ome Rock	wei @ 10'
	· · · · · · · · · · · · · · · · · · ·			12			
	42		0.5	13 14 15	brown SAND and SILT, so grey SAND and GRAVEL,		wet
				16]		
			•	17 18	boring terminated @ 16' SB-1B GW sampled		
				19	_		

. •

•

.

. •

.

	-	The Four	Project No:	1240			
Client:		Capital	Buffalo, NY	Boring No: Page No:	<u>SB - 2</u> <u>1 / 1</u> 07/21/09		
Driller:	Zebra Envi	ironmental	En	gineer:	jch	Date Begun: Date Finished:	07/21/99 07/21/99
Method:	Geop	probe		vation:	n/a ground n/a TOC/TOR	Well Installed:	n0
)iameter:	2	"	Ele	vation:	n/a TOC/TOR	-	
			TIN.				
Sample	Recovery	Blows per	HNu (ppm)	Depth	Classification		Notes
Number	<u>(in)</u>	6-inch	(ppm)		ASPHALT		
				1			
	0.				grey SLAG, SAND and G	RAVEL (FILL)	
· · ·	•			2			
					refusal @ 2' on suspecied	concreie	
				3	-		
				*	·		
				5			
				· · -	1		
				6			
]		
				7	`		
				8	-		
				9			
					4		
				10			
· .				<i>™</i> −	1		
				. <u>11 _</u> .			
				12			
					-		
				14			
				· "-	-		
				15			
					1		
				16			
				17	-		
				18	-		
				19	-		
				20		· · ·	

.....

		The Four	loring La th River		nv	Project No:	1240
		and rout				Boring No:	SB - 3
		a :	1.	ocation:	Buffalo, NY	Page No:	
Client:	Walnut	Capital			jch	Date Begun:	
Driller:	Zebra Env			ngineer: evation:	n/a ground	Date Finished:	
Method:	Geop			evation:	n/a TOC/TOR	Well Installed:	
Diameter:	2		E	evation			
	_		HNu			•	
Sample	Recovery	Blows per		Denth	Classification		Notes
Number	<u>(in)</u>	6-inch	(pp m)	Depth		, some Grass (TOPSOIL)	
				ł ,	brown SILI, some Ciay	, some 0123 (101 5012)	
		1		1 '-	brown SILTY CLAY, se	ome (Sand	l ·
					brown SILII CLAI, S	ome j Suna	
	42		0	2_			
·							tree root @ 3
				3_	-1		
				4			
					brown SILTY CLAY, s	ome (Sand trace	
		1 1		_ ⁵			1
					Roots		
	48		0.5	6-	- I .		
				7			
				·	-1		
				8			
				9	brown f SAND, some S	Silt, trace Gravel,	
				´-	rock fragments		
	42		0.5	10			wet @ 10'
	42				-1		
		1 1		11			
		· ·			-		
				12			
				+			
				/3	brown f SAND and GI	RAVEL, trace	
					rock fragments		
SB-3, 4	18		6	14			wei
JD-J, 4	10		-		7		
				15			
					1		
				16			
				17	brown c SAND and G	RAVEL, trace Silt	
					7		
	36		2	18			wet
	50				- · ·		
				19			
				-	-1		1

boring terminated @ 20'

· .

	-	E The Four	Boring Lo	-	nV	Project No:	1240
		Ine rour		Compa	ny	Boring No:	
		Control	L	cation:	Buffalo, NY	Page No:	1/1
Client:	Walnut Zebra Envi	Capital		gineer:	jch	Date Begun:	07/21/99
Driller:		probe		evation:	n/a ground	Date Finished:	07/21/99
Method:		<i>"</i>		evation:	Na TOC/TOR	Well Installed:	no
Diameter:							
Sample	Recovery	Blows per	HNu				
Number	(in)	6-in ch	(pp m)	Depth	Classification		Notes
Itunitei	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ASPHALT		
				1			
					grey SLAG, GRAVEL and	I SAND (FILL)	
	42		0.5	2			
					brown SILTY CLAY		
				3_			
				4			
				_	brown SILTY CLAY, som	Clown Silt trace	
				5	Sand, trace Gravel, trace	Wood @ 8'	
					Sand, trace Gravel, trace	n ood (g o	
	42		0.5	6	4		
				-			
				7	-		
				8			damp @ 8'
				9	brown c SAND, some Gro	ivel, some brown	
		1		-	to grey Silt, trace Clay		
	48		0.5	10			wet @ 10'
	40		0.0		1		
				11			
					1		
				12		· · · · · · · · · · · · · · · · · · ·	
· .				13_	brown c SAND and GRA	EL, some brown	
					to grey Silt, trace Wood		
SB - 4, 4	24		1.5	14	_		wet
				15_	-		
				16			<u> </u>
					boring terminated @ 16'		
				17	4		
			·				
				18			
				19			
				20			

.

-

-		The Fou	Boring I	-	1 1 1 1	Project No.	12.00
Client: Driller: Method:	Walnul Zebra Em	Capital Vironmental	L E	location: ngineer:	Buffalo, NY jch n/a ground	Project No: Boring No: Page No: Date Begun: Date Finished:	SB - 5 1 / 1 07/21/99
P'ameter: Sample		2"	E HNu	levation:	n/a TOC/TOR	Well Installed:	no
Number	(in)	6-inch	(pp m)	Depth	Classification		Notes
•	42		0.5	12	grey SLAG and SAND, son	ne Mulch	
	·			3 4	brown to grey SILTY CLA	r 	
	48		0.5	5 6 7	brown w/light grey mottling trace Slag	g SILTY CLAY,	· ·
	48		0.5	8 9 10	brown w/light grey SILTY (Sand and Gravel	CLAY, trace	
				11 12			
B - 5, 4	48		0.5	<u>13</u> 14	brown SILTY CLAY, some g trace Gravel	rey mf San d ,	damp
,				15 16			wet @ 16'
	48		0.5		grey SILTY CLAY, some f Sa Gravel		πει ι <u>μ</u> 10
				19 20			

boring terminated at 20'

.

	-		Boring Lo rth River		ny	Project No:	1240
Client: Driller: Method: Diameter:	Walnut Zebra Env Geop	Capital	Lo En Ele	cation: gineer: vation:	Buffalo, NY jch n/a ground n/a TOC/TOR	Boring No: Page No: Date Begun: Date Finished: Well Installed:	SB - 6 1 / 1 07/21/99 07/21/99 no
Sample Number	Recov ery (in)	Blows per 6-inch	НNu (рр m)	Depth	Classification		Notes
Number	42		0.5	1 2	brown MULCH, some Sai Gravel (FILL)		
				³	brown SILT and CLAY, tr	ace Gravel	
	48		0.5	5 6 7	brown SILT and CLAY, so trace Gravel	ome Clayey Silt,	
SB - 6, 3	48		0.5	9 10	brown SILT and CLAY, s trace Gravel	ome Clayey Silt,	
				///			wes @ 12'
	48		0.5	13 14 15 16	brown to grey SILTY CL and Gravel, trace Wood		wet
				17 18	boring terminated @ 16 SB-7 GW sampled		
				19 20	-		

•

.

.

-			Boring Lo	-					
-	•	The Four	rth River	Compa	ny			Project No:	
								Boring No:	
Clinet	Walnut	Capital	Lo	cation:	Buffalo,	NY	•	Page No:	
Client:	Zahro Emi	ironmental		gineer:	jch		-	Date Begun:	
Driller:	Geop			vation:	n/a	ground		Date Finished:	
Method: ameter:		"		vation:	n/a	TOC/TOR	•	Well Installed:	no
ameter.			,			•			
Sample	Recovery	Blows per	HNu				-		
umber	(in)	6-inch	(pp m)	Depth	Classi	fication			Notes
					ASPHA	ILT			4 1
-				1					1
			•		grey Sl	AG. SAND and	d G <u>RAVE</u>	L (FILL)	4 [
	44		0.5	2				_	
•					brown	to black SILT a	and CLAY		
				3	4				
				•					
-				4					
							Fand an	- Sile	
				.5		SILT, some mf	sana, soi	ne suly	
•					Clay				
	48		0.5	6	4				· · ·
				-					, ·
•				7	4				
									1 1
				8					
				9	hrown	SILT, some mf	Sand so	ne Siltv	
-				'		race Gravel			1 1
			0.5	10					wet @ 10'
SB - 7, 3	48		0.5	"	-				
-				11					
					-				
				12					
				- 13	grey m	to c SAND, so	me Silt, 1	race	<u>├</u>
					Gravel	, trace Clay, tra	ace Wo o d	i	
	48		0.5	14		-			wet
	40				1				
				15					4
					1				
				16					
					boring	terminated @	16'		
				17					
				18					
					1				
				19	· ·				
					1				
				20					· · ·

•

		The Four	th River	Compa	ny		Project No:	1240
							Boring No:	SB - 8
Clinet	Walnut	Capit al	Lo	cation:	Buffalo	, NY	Page No:	
Client:		ironmental		gineer:	jch		Date Begun:	
Driller: Method:		probe		vation:	n/a	ground	Date Finished:	
Diameter:				vation:	n/a	TOC/TOR	Well Installed:	no
Jameter.						-		
Sample	Recovery	Blows per	HNu					
Number	(in)	6-inch	(pp m)	Depth	Class	sification		Notes
	(111)	T			ASPH	IALT		
				1				
		· · · .			grey S	SLAG. SAND and G	RAVEL (FILL)	
	42		0.5	2				
					brown	n to gr ey SILT and (CLAY, trace Sand	
				3_				
				4				
							22 4 V	
				5		n to grey SILT and (LAI, some Sa na	
					and G	iravel (FILL)		
SB - 8, 2	48		1	6	-			
				-				
				7	-			
				8				damp @ 8'
					+			
				9	brow	n m SAND, some Gr	avel, some brown	
				· · ·		ry Silt and Clay		
	24		0.5	10		,		damp to wet
	24		0.2		1			
				11				
	•				1			
				12				
		t						
				<u> </u>		n to grey SILT, som	Sand and	
					Grave	el, trac e Cl a y		
	24		0.5	14				wet
		1					•	
				15	·.			
				16	+			
					borin	g terminated @ 16'		
		,		17	-			
				18	-			
				¹⁹	-			
				20				

.

· · · .

-

	,	The Four	th River	Compa	ny		Project No:	1240
							Boring No:	
Client:	Walnut	Capital	L	ocation:	Buffalo	, NY	Page No:	
Driller:		ironmental	Er	igineer:	jch		Date Begun:	
Method:		probe		evation:	n/a	ground	Date Finished:	
)iameter:) //	Ele	evation:	n/a	TOC/TOR	Well Installed:	no
///////////////////////////////////////								
Sample	Recovery	Blows per	HNu				•	
Number	(in)	6-in ch	(թթ m)	Depth		ification		Notes
					ASPH	ALT		1
				'		AND, GRAVEL an	d SLAG (FILL)	
			1.5	. 2	grey S			oil or tar-li ke
SB - 9, 1	44		1.5	1	-			substance @ 2'
				· 3	dark b	rown SILT and SA	D	_
				-				
•				4				· ·
				5_		and grey SILT and	l CLAY, trace	
					Sand a	and Gravel		
	48		0.5	6	4			
				-				
				7_	-			
				8				
	<u> </u>			<u> </u>		-		
				9	brown	mf SAND, some Si	ilt, some Gravel,	
					Irace	Clay		1
	24		0.5	10				
								wet @ bottom
				<i>II II II</i>	-			
				12				
				13-	brown	to grey m SAND, s	rome Silt and	
					Clav	some Gravel, trace	Wood @ 14'	
	48		0.5]4			_	wet
	40						•	
				15				
				16				
					boring	terminated @ 16'		
				17_	-			
			•					
				18				
		·						
				19	-			
				20				

.

,

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-11
DATE COMPLETED: September 1, 2000
DRILLING METHOD: HSA
FIELD PERSONNEL: K. Lynch

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	SOIL BORING INSTALLATION	SAMPLE					
ft BGS	STHATIGHAPHIC DESCHIPTION & HEWARKS	AMSL	SOIL BORING INSTALLATION		AL	ft)	ЧE	(m	
	NORTHING: 4795.84 GROUND SURFACE EASTING: 4986.39	592.48		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	
-	ASPHALT, gravel sub-base		ASPHALT						
- 2	GRAVEL (Fill), some sand, fine, angular, grey, dry to moist	591.48		155	X	2.0	8	O	
-4	ML-SILT, little fine sand and clay, trace fine gravel, grey and brown, dry to moist, mottled,	× * 588.48	BOREHOLE	2SS	X	2.0	4	0	
- 6	laminated, stiff			355	Х	2.0	8	0	
8			BENTONITE GROUT	455	\boxtimes	2.0	9	0	
- 			¥ ////	5SS	\boxtimes	2.0	5	о	
- 	SW-SAND, little silt, fine to medium grained, rounded and subrounded, grey, dry to moist	580.88 579.48		6SS	X	2.0	7	о	
- 	END OF BOREHOLE @ 13.0ft BGS								
- 									
L 									
- 20									
-22									
_ _ 24									
- - - 26									
22/02									
11 - 28 									
00									
) [1] 32									
151 501 NOTN									
OVERBURDEN LOG 15867.GPU CRA_CORP.GDT 1/22/02 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F WATER FOUND \$ 09/01/00	EFER TO	CURRENT ELEVATION TABLE						
8					_				

(

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-12 DATE COMPLETED: September 13, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH		ELEV.		SAMPLE					
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	SOIL BORING INSTALLATION		VAL	(ft)	LUE	(md	
	NORTHING: 4824.5 GROUND SURFACE EASTING: 5027.21	591.59		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	
-	asphalt		ASPHALT						
-	GRAVEL (Fill), some sand, grey, dry	590.59			∇				
2	ML-SILT, little sand, brown and grey, dry to moist, laminated, stiff	589.69		1 S S	$\left \right\rangle$	2.0	8	0.1	
- 4			- 8°0 BOREHOLE	288	\square	2.0	12	0	
			CEMENT/ BENTONITE GROUT	3 S S	Х	2.0	16	0.3	
- - - 8 -				455	\square	2.0	7	0.6	
- 10	SW-SAND, trace fine rounded gravel, brown, wet	582.69	¥ ///	5 S S	\bigtriangledown	2.0	2	o	
- - 12	END OF BOREHOLE @ 11.0ft BGS	580.59			\sim				
-								•	
14 									
- 16								•	
18									
-20									
-22									
-24								-	
26									
-28									
- 30									
- 32								-	
- 34									
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	URRENT ELEVATION TABLE						
1	WATER FOUND ♀ 09/13/00								

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-13 DATE COMPLETED: September 13, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	SOIL BORING INSTALLATION			SAMF		
ft BGS	NORTHING: 4848.26 GROUND SURFACE EASTING: 4969.84	AMSL 591.33		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	ASPHALT, gravel sub-base		ASPHALT		-			
-2	GRAVEL (Fill), some sand, trace iron slag, brown and grey, dry to moist	590.33		tSS	\bigtriangledown	2.0	14	0
	ML-SILT, trace sand, grey, dry to moist, laminated, medium stiffness	588.93		255	\bigotimes	2.0	12	0
- 4				200	\bigcirc	2.0	12	0
- 6			CEMENT/ BENTONITE GROUT	3SS	\square	2.0	9	0.2
- 8		582.63		455	X	2.0	4	0
- 10	SM-SAND, trace silt, fine grained, moist to wet, loose	582.03		5SS	\bigtriangledown	2.0	1	1.1
	END OF BOREHOLE @ 11.0ft BGS	580.33						
12								
14								
16								
- 18								
-20								
-22								
-24								
-26								
- 28								
-30								
- 32								
- 34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	EFER TO	CURRENT ELEVATION TABLE					

)
ヽレ	
)

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-14 DATE COMPLETED: September 13, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH It BGS STRATIGRAPHIC DESCRIPTION & REMARKS ELEV. It SOIL BORING INSTALLATION SAMPLE	2
	5
ft BGS ONTHING: 4879.95 GROUND SURFACE 590.48 OTH MONTHING: 4879.95 Image: Control of the control of the	PID (ppm)
_ ASPHALT, gravel sub-base ASPHALT	
GRAVEL (Fill), some sand, grey, dry	o 🖕
	0.1
	0.3
	0.3
END OF BOREHOLE @ 9.0ft BGS	-
	-
	-
28 28 30 30 32 33 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ¥ 08/13/00 CHEMICAL ANALYSIS	-
g34	
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE	
WATER FOUND ♀ 08/13/00 CHEMICAL ANALYSIS	

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-15 DATE COMPLETED: September 13, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	SOIL BORING INSTALLATION			SAMI	PLE	
ft BGS		AMSL			IVAL	(ft)	ΓΩΕ	(mq
	NORTHING: 4925.01 GROUND SURFACE EASTING: 4994.24	590.76		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
-	ASPHALT, gravel sub-base	500 70	ASPHALT					
2	GRAVEL (Fill), some sand, grey and brown, dry	589.76		1SS	\bigtriangledown	2.0	24	0.3
-	RUBBLE FILL, concerete, red-brick, metallic slag, coal, silt (lumpy), dry	588.36			\leftrightarrow			
4 4			8.0 BOREHOLE	2SS	Х	2.0	28	0.1
- - 6				355	\square	2.0	18	0.1
-	- hard concrete slab from 6.6 to 7.0ft BGS SM-SAND, little silt, fine to medium grained, gray and brown, wet, strong chemical odor	583.76			\leftrightarrow			
- 8	gray and brown, wet, strong chemical odor		GROUT	4SS	\bowtie	2.0	5	
- 10				5SS	Х	2.0	2	0.6
- 12	- roots below 12.5ft BGS			6SS	\mathbb{X}	2.0	1	43
- - 14	END OF BOREHOLE @ 13.0ft BGS	577.76						
-								
16 								
- - - 18								
-								
- 22								
- 								
-								
- 26								
- 28								
-								
30 								
- 28 - 30 - 32								
- 34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE					
	WATER FOUND ♀ 08/13/00 CHEMICAL ANALYSIS							

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-16/16A DATE COMPLETED: September 18, 2000 DRILLING METHOD: HSA FIELD PERSONNEL: K. Lynch

DEPTH		ELEV.				SAM	PLE		T
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	SOIL BORING INSTALLATION		IVAL	(#)	LUE	(mq	٦
	NORTHING: 4938.15 GROUND SURFACE EASTING: 5023.03	590.99		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	ſ
_	ASPHALT, gravel sub-base		ASPHALT						٦
- 2 	GRAVEL (Fill), some sand, trace coal, concrete and red brick, dry - sprinkler wires and tubing	589.99		1SS	X	2.0	20	-	Ĩ
- 4	- split spoon advances through void from 3.5 to 5.0ft BGS - auger to 5.0ft BGS, moved to SB-16A		- 8'0 BOREHOLE	255	\mathbf{X}	2.0	0	-	-
- 	ML-SILT, dark brown with tan and black discoloration, dry to moist, medium stiff, laminated	585.99		355	\square	2.0	8	0	ł
- 	SM-SAND, little silt, brown, moist to wet	582.99	CEMENT/ BENTONITE GROUT	455	\mathbf{X}	2.0	6	5	
	- wet, grey			555	\square	2.0	2	0.9	T
- 12 	SW-SAND, little fine rounded gravel, fine to coarse grained, grey, wet, slight sceptic odor	579.99		655	\square	2.0	5	0.9	
	END OF BOREHOLE @ 13.0ft BGS	577.99							
- 									
- 22 									
- 									•
- 26 									4
- 30									
32									
- 34 									
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F WATER FOUND ¥ 09/18/00 CHEMICAL ANALYSIS	EFER TO	CURRENT ELEVATION TABLE						

Page 1 of 1

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY HOLE DESIGNATION: SB-17 DATE COMPLETED: August 22, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	SOIL BORING INSTALLATION	æ		SAM		7
	NORTHING: 4939.14 GROUND SURFACE EASTING: 5021.03	591.05		NUMBER	INTERVAL	REC (ft)	'N' VALUE	(mac) 010
	ASPHALT, roadway and gravel sub-base		ASPHALT	1	\bigtriangledown	2.0		
-2	CLAY (Fill), some silt and angular gravel, tan to brown	589.55		2	\bigcirc	2.0		
	- more sand below 4.0ft BGS			3	\bigcirc	2.0		
- 6	- wood, brick and coal fragments @ 6.0ft BGS			4	$\overline{\mathbb{X}}$	2.0		
- 8	CL-SILTY CLAY, dark brown to green-brown	583.05	⊈ GROUT	5	$\overline{\mathbf{X}}$	2.0		
- 10				6	\mathbf{X}	2.0		
12 	END OF BOREHOLE @ 12.0h BGS	579.05						
- 14								
- 16								
- 18								
- 20								
- 22								
-24								
-26								
- 28 								
- 30 -								
- 34								

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-18 DATE COMPLETED: August 22, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	SOIL BORING INSTALLATION			SAM	PLE		-
ft BGS	NORTHING: 4948.9 GROUND SURFACE	ft AMSL 590.87		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	
	EASTING: 4999.35 ASPHALT, roadway and gravel sub-base			ž	Ξ	<u>ш</u>	ž	IId III	-
E		589.57	H ASPHALT	1	Х	2.0		>2000	
-2	SAND with SILT (Fill), black				$\left\{ \right\}$				-
È,			2.5"0 BOREHOLE	2	\wedge	2.0		-	
- 4	- brick fragments @ 5.0ft BGS		CEMENT/ BENTONITE GROUT	3	\bigtriangledown	2.0			-
-6	- moist with wood fragments @ 6.0ft BGS		GROUT		$\left(\right)$				
				4	Х	2.0		-	
8	END OF BOREHOLE @ 8.0tt BGS	582.87							
10									
- 12									
Ē									-
- 14									
- 16									
-									
- 18									
-									
20									
- 22									-
- -									
24									-
-									
26									-
28 10 10 10 10 10 10 10 10 10 10 10 10 10									
HP.GC									
0 ≰-30									
- C									
10. 									
୫୮ ଅ଼⊢34									
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	FERTO							-
ОVERBURDEN LOG 15867.GPJ CRA_CORP.GDT 1/22/02	TTO TES. MERSONING FORT ELEVATIONS MAT CHANGE, H								
Ň									

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-19 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH		ELEV.	SOIL BORING INSTALLATION			SAM	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	SOIL BORING INSTALLATION		'AL	ft)	ΠE	(m
	NORTHING: 4923.35 GROUND SURFACE EASTING: 5011.08	591.07		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
-	ASPHALT, roadway and gravel sub-base		ASPHALT	1	$\mathbf{\nabla}$	2.0		
2	GRAVEL (Fill), some sand, red brick fragments, dry	589.57 588.07		2	\bigotimes	2.0		1079
4	CLAY (Fill), some silt, some angular gravel and wood fragments, trace brick	566.07	- 2.5°0 BOREHOLE		\bigotimes			1079
6	- moist with more sand @ 6.0ft BGS			3	\bigotimes	2.0		. 0000
- 8	- wood fragments @ 8.0 ft BGS		BENTONITE GROUT	4	\bigotimes	2.0		>2000
- - 	ML-SILT, some clay and sand, trace gravel, dark brown to tan, occassional yellow and black clay mottling, wet	582.07		5	\bigotimes	2.0		
		579.07		6	igwedge	2.0		>2000
- 12 -	END OF BOREHOLE @ 12.0ft BGS	575.07						
-14								
-								
- 16 -								
F 10								
- 18								
E								
-22								
-								
24 								
- 26								
28 271 109: 28								
ал сон 1 - 1 - 30 - 20								
1.1-1-32								
G 1586								
00 - 34 z								
оvеявиярем Log 15867.0PJ Сяд. Сояр. GDT 1/22/02 К К К ОС В В В В В В В В В В В В В В В В В В	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND ♀ 08/20/01	EFER TO (CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION	:: SB-21
DATE COMPLETED:	August 20, 2001
DRILLING METHOD:	Direct Push
FIELD PERSONNEL:	F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	SOIL BORING INSTALLATION			SAM	PLE	
ft BGS	NORTHING: 4926.27 GROUND SURFACE	AMSL		NUMBER	INTERVAL	REC (ft)	'N' VALUE	(mqq) Ol9
	EASTING: 5032.95			N	INT	Ē	ż	II.
-	ASPHALT, roadway and gravel sub-base	500 55	ASPHALT		\bigtriangledown			>2000
	GRAVEL (Fill), some sand	590.55 590.05		1	\wedge	2.0		>2000
-2 - -	CLAY (Fill), some silt, dark brown, dry, stiff		2.5"0	2	\mathbf{X}	2.0		>2000
-4 -	SILT (Fill), some gravel, dark brown, dry	587.45	BOREHOLE	3	\bigtriangledown	2.0		>2000
- 6	- more sand below 5.5ft BGS		CEMENT/ BENTONITE	4	\bigcirc	2.0		>2000
			GROUT		\bigcirc			•
-	- wet with more angular gravel below 9.5ft BGS			5		2.0		>2000
10 	- more tan brown sand with yellow mottling below 10.5ft BGS			6	\mathbf{X}	2.0		>2000
- 12 -	END OF BOREHOLE @ 12.0ft BGS	579.55						-
- 								
- 16								-
18 -								-
20								
- 								-
- 								
- 28								
- 30 								
- 32								
L	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F WATER FOUND ♀ 08/20/2001	EFER TO	CURRENT ELEVATION TABLE					

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-22 DATE COMPLETED: August 22, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH		ELEV.	SOIL BORING INSTALLATION		SAM		PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	SUL BURING INSTALLATION		AL	t)	Ъ	я́ш
	NORTHING: 4920.93 GROUND SURFACE	589.71		NUMBER	NTERVAL	REC (ft)	N' VALUE	PID (ppm)
	EASTING: 4908.58			N	NT	H	ź	DIA
	ASPHALT, roadway and gravel sub-base	589.11	ASPHALT		Κ7			
F	CLAY (Fill), some silt, some sand, trace gravel,	569.11		1	X	2.0		-
-2	brown to yellowish brown to tan, dry				\mapsto			
E		Š		2		2.0		-
		3	■ 2.5"0 BOREHOLE		$\angle \setminus$			
-4		\$			\mathbb{N}			
-		3		3	$ \mathcal{N} $	2.0		-
-6	- wood fragments @ 6.0ft BGS	3	CEMENT/		$ \longleftrightarrow $			
_			BENTONITE GROUT	4	X	2.0		
	- becomes very moist and soft with more silt		☑ /////		\mapsto			
-	below 8.0ft BGS	3		5	$ \vee $	2.0		-
-				Ť	$\vee \setminus$	2.0		
- 10	 becomes wet with more fine rounded gravel and silt below 10ft BGS 	1			∇			
-	- wet with more coarse sand below 11.5ft BGS	3		6	$ \mathcal{N} $	2.0		-
- 12	END OF BOREHOLE @ 12.0ft BGS	577.71			<u>۲</u>			
-								
-								
- 10								
- 16 -								
- 18								ļ
+								
-20		ļ						
E								
- 22								
F								
- 24								ļ
26								
1								
÷⊢ ⊨⊢28								
								ļ
ō —30 ⊈-								
15867.GPJ CRA_CORP.GDT 1/2205 1 1 1 1 1 1 1 1 1 205 C								
ö. — 32								
1586								
8-34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	EFER TO	CURRENT ELEVATION TABLE					
ERB	WATER FOUND ♀ 08/22/2001							
ó		_		_				

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-23 DATE COMPLETED: August 22, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH		ELEV.	SOIL BORING INSTALLATION			SAM	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	SOIL BORING INSTALLATION		/AL	ft)	UE	(j
	NORTHING: 4973.68 GROUND SURFACE EASTING: 4959.32	590.91		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
-	ASPHALT, roadway and gravel sub-base SAND with GRAVEL (Fill), yellowish brown CLAY with SILT (Fill), some gravel, dark brown	590.41 589.91	ASPHALT	1	X	2.0		-
-2	to black, dry, stiff			2	\square	2.0		-
-4	- less sand and gravel below 6.0ft BGS			3	\square	2.0		-
6 				4	\mathbb{X}	2.0		-
	- moist to wet and soft with less clay below 8.0ft BGS		CEMENT/ BENTONITE GROUT	5	\mathbf{X}	2.0		
	GRAVEL with COARSE SAND (Fill), some silt, dark brown to black, wet	580.41		6	\square	2.0		
— 12 - -	- more silt and clay below 12.5ft BGS			7	\square	2.0		
				8	\square	2.0		-
— 16 	END OF BOREHOLE @ 16.0ft BGS	574.91						
- 18								
-20								
22								
-24								
-26								-
-28								
- 32								
- 34 								
<u> </u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND ♀ 08/22/01	EFER TO	CURRENT ELEVATION TABLE					

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-24 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	SOIL BORING INSTALLATION			SAM	PLE	
ft BGS		AMSL			VAL	ŧ	LUE	(mq
	NORTHING: 4914.12 GROUND SURFACE EASTING: 4972.7	590.36		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
-	ASPHALT, roadway and gravel sub-base		ASPHALT		\bigtriangledown			
2	SILT with SAND and GRAVEL (Fill), dark brown to black	589.36		1	\bigcirc	2.0 2.0		0
- 4	SAND (Fill), some gravel, dry SILT with SAND and GRAVEL (Fill), light grey,	586.36 585.56	- 2.5°0 BOREHOLE	3	\bigcirc	2.0		-
6	CL-CLAY, some silt, light brown with yellow mottling	584.36	CEMENT/ BENTONITE GROUT	4	\bigotimes	2.0		0
-8		581.36	x 2	5	\bigotimes	2.0		0
- 10 	END OF BOREHOLE @ 9.0ft BGS		¥	6	\bigotimes	2.0		0.3
- 					\sim			
- 								
- 								
- 18								
- 22								
-24								
- 26								
28								
HO2 - 30								
1- 					*			
2012 - 34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND ♀ 08/20/01	EFER TO	CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-25 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH		ELEV.		SAMPLE					
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	SOIL BORING INSTALLATION	3ER	VAL	(ft)	LUE	(mq	
	NORTHING: 4915.58 GROUND SURFACE EASTING: 4937.64	591.28		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	
	ASPHALT, roadway and gravel sub-base		HALT	1	\bigvee	2.0		-	
- 2	SILT (Fill), some gravel and sand, light tan to tan-yellow, grading to brown, dry, stiff	589.78		2	\bigotimes	2.0		o	
- 4	ML-SILT, some clay, light brown to tan, dry	587.28	← 2.5°0 BOREHOLE	3	\bigotimes	2.0		0	
- 6			CEMENT/ BENTONITE GROUT	4	\bigotimes	2.0		0	
	- wet below 9.0 ft BGS		GROUT	5	\bigotimes	2.0		0	
- 10 				6	\bigotimes	2.0		-	
- 12 	END OF BOREHOLE @ 12.0ft BGS	579.28			\square			, i	
- 14 									
- 									
- - 18 -								1	
20								l	
- 24 									
- 									
- 28									
- 									
- - 34								ļ	
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♀ 08/20/01									

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-26 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	SOIL BORING INSTALLATION			SAM		
ft BGS		AMSL	SOLE DOMING INSTALLATION		VAL	(‡	.UE	(m
	NORTHING: 4828.42 GROUND SURFACE EASTING: 4979.68	591.96		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
-	ASPHALT, roadway and gravel sub-base		ASPHALT		$\overline{\nabla}$			•
	GRAVEL (Fill), some sand, dry	590.96 590.16	9.5.5.5.5.5	1		2.0		0
2 2 	CL-CLAY, some silt, dark brown to black, occassional green mottling, stiff	000.10	2.5"0	2	\square	2.0		0.8
- 4 - - 6			2.5°0 BOREHOLE	3	\square	2.0		0
- 8	- moist with more sand and silt below 6.5ft BGS			4	X	2.0		0
-		582.46	CEMENT/ BENTONITE	5	Х	2.0		0
- 10 -	ML-SILT, some sand and clay, trace gravel, very moist - wet with more sand below 11.0ft BGS		GROUT	6	\bigtriangledown	2.0		0
- 	SM-SAND with SILT and CLAY, some gravel, wet	579.96		7	\bigtriangledown	2.0		-
- 14 				8	\bigtriangledown	2.0		
- 16	END OF BOREHOLE @ 16.0ft BGS	575.96			\sim			
-								
- - -								
- 20 -								
- 22								
-								
24								
15867.GPJ CRA_CORP.GDT 1/22/02 CDT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
- COH								
32								
₩ 50 2								
ОЛЕНВИВОЕN LOG	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R WATER FOUND ♀ 08/20/01	EFER TO	CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2

PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-27 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	SOIL BORING INSTALLATION	SAMPLE				
ft BGS		AMSL		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	NORTHING: 4809.1 GROUND SURFACE EASTING: 5003	592.43		NUM	INTER	REC	N' VA	DID (I
E	ASPHALT, roadway and gravel sub-base	591.43	ASPHALT	1	\bigvee	2.0		1.4
- 2	GRAVEL (Fill), some sand, dry	551.45			\bigtriangleup	2.0		1.4
F		588.93		2	\mathbb{X}	2.0		0
-4	ML-SILT, some clay, trace sand, occassional black and yellow mottling, dry	588.93	2.5°0 BOREHOLE		\leftrightarrow			L
-				3	Х	2.0		0
6 	- more sand below 6.0ft BGS			4	\bigtriangledown	2.0		0
- 8					()	2.0		
~ - -	CL-CLAY with SILT and SAND, trace gravel,	583.13	CEMENT/ BENTONITE GROUT	5	Х	2.0		0
- 10 -	grey, wet		GHOUT		$\left(\right)$			
- 				6	igtriangleup	2.0		0
-		570.00		7	\mathbb{N}	2.0		0
- 14	SM-SAND, some silt, trace clay, trace wood, dark brown to black, wet	578.93			$\left(\rightarrow \right)$			
		570.10		8	Х	2.0		0
	END OF BOREHOLE @ 16.0ft BGS	576.43						
- 18								
								Γ
-20								
-								
-24								-
								-
- 28								
								-
5 - 30 -								
- 								
- 34								
28 - 30 - 32 - 32 - 34 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♀ 08/20/01								
	WATER FOUND ♀ 08/20/01							

|--|

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867 CLIENT: Confidential LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-28 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	SOIL BORING INSTALLATION			SAM		
il DGO	NORTHING: 4923.86 GROUND SURFACE EASTING: 5054.1	AMSL 591.15		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
	ASPHALT, roadway and gravel sub-base		ASPHALT		=		-	
	GRAVEL (Fill), some sand	590.15		1	X	2.0		-
-2	CL-CLAY, some sand and silt, yellow-tan-brown, dry	589.15		2	\bigtriangledown	2.0		16
- 4			- 2.5°0 BOREHOLE	3	\bigotimes	2.0		93
6	- moist below 6.5ft BGS		CEMENT/ BENTONITE GROUT	4	\bigotimes	2.0		58
8	- tan, wet, with more clay below 8.0ft BGS			5	\bigotimes	2.0		
10	END OF BOREHOLE @ 10.0ft BGS	581.15						
12								
14								
16								
18								
20								
22								
·24								
26								
28								
30								
32								
•34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFERTO	JURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Seneca St. Parcel #2 PROJECT NUMBER: 15867

CLIENT: Confidential

LOCATION: Buffalo, NY

HOLE DESIGNATION: SB-29 DATE COMPLETED: August 20, 2001 DRILLING METHOD: Direct Push FIELD PERSONNEL: F. Garbe

DEPTH	STRATIGRAPHIC DESCRIPTION & REI	MARKS	ELEV.	SOIL BORING INSTALLATION			SAM	PLE		
ft BGS			ft AMSL			VAL	(£	Щ	(md	
	NORTHING: 4894.68 GR EASTING: 5077.72	OUND SURFACE	591.14		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)	-
	SILT and CLAY (Fill), some gravel, light bro	own			1	X	2.0		0	1
2 	CL-CLAY, some silt, dark brown, dry		589.14	25*0	2	\square	2.0		0	-
-4 				2.5°0 BOREHOLE	3	\bigotimes	2.0		0	
6				CEMENT/ BENTONITE GROUT	4	\bigotimes	2.0		0	
- 8	- wet below 8.0 ft BGS			v ///	5	\bigotimes	2.0		0	
- 10						\bigcirc				-
_ 12	GM-GRAVEL with SILT, some clay, wet	0M(579.64 579.14		6	igarproduct	2.0		0	
	END OF BOREHOLE @ 12.0ft BGS									
14 -										
- 16 -										
- 18 										-
- 20										
- 22										
- 24										-
										-
- 28										
32										-
	NOTES: MEASURING POINT ELEVATIONS MA WATER FOUND ♀ 08/20/01	AY CHANGE; RE	EFER TO (CURRENT ELEVATION TABLE						_
										-

APPENDIX E

WELL DEVELOPMENT AND PURGING RECORDS

WELL DEVELOPMENT LOGS

1092 16.5° Shered Tenpe Connected leaved seds 17.2° cloudy prochamat 1'LI h Eb 942 16.6° Clean nople on Teffon Thing 6,37 947 16,9° Ebuery, d 988 17.1° Charged learing 950 ILS Stelling fump auth Jame 10000 9.02 × 16= 1.44 Cal/whe Sette G move tubind to top of WATER 16.80 16.9° 2" & well Finel Water Level = 12.1' \$TOC 6,52.957 825 Development 900 Surge with bailer 5 dedien A. Curel Surge well with boules 6,51 6.64 - 1-6.53 18.9 6 -48 6.40 (6) بي ا μġ 300 Pille Guls 9.0 8.08 jas, 17.10 3.0 7.5 is Ϋ́́ 0.2 e a Well Start 11,20 perintalli К End 121 10 ' Volume 6 9-11-6 1 Anthon ہ NW-5 Dept *Jm L L 5 1.2 S. C. Cleaning Brown Cleans Cierry Clear, SI. Cluy No ora elouity Temp clemm Olewing CLEANN with sentential is dedicated to the CLANER 1.93 gol/w Seevel derine -141.15 0 00 1 191, 14.90 14 15.5° 15.5° Barley 15.70 15.5" 15.7 Asy. 15.80 15.8° .8.5 16.70 15.7 * 15.9° Method - Sylinge with bailer, and the second MW+1 Well Development * such well with 17.60 1840 1780 2.06 × 1.16 = 0281 OHL っしし 1790 well 1810 0170 Cend 02.61 065 K. Lynch ohui BTDC Contraction of the second BTOC Final W/L = 13,1' BTOC. 7,00 6 : : : 1,00 (, 8 0 6,94 6.94 6.99 6.9.0 6 8 6,89 21,2 6,91 + , H · fulping. Gab Start 10:00) inter 2 9-2-12-60 22 g 60:) 24 3 Dupte 3 Volume Shd : 1

Seme Pt Bin Cleaning Cond Tonge Comment am 800 7. 15. 7° Security Cleaner 16.0° SCIONAN Lane 16.0° Same No. BTBC × 16 = 1:47 9 21 / volv Peristablie Pump with 5 vol to Clear PH Refer 11.005 16.0 15.70 16,2% 16.13 15.7 Develophent 9-21-00 2" ø well Let Qove m 1650 1630 690 OHL. tubling **B** 30 800 610 2 / 2 180 625 end 7 io 4 6.87 600 H0 6 2 6.84 Jog -6,89 6.8 6.89 9 17.4 8.2 うら 2.0 15.0 9.0 1.5 10.5 6.0 3.0 4.5 S. 2-MW > + + + 1530 Det -Volume Not the 0 Elevery Blown to ochior 42,000 St clan Punp 3 lector PINAMEN Cleann 'He while Dear A W (may) S S road 30 9-21-00 Cloud × 16= 1,48 Gel /vol 000 .80 Q well 14, zto IH. Ho ò 0 14,3° 0 ٥ 15.0° catos Ν. 4 Terre <u>)</u> -, Ţ <u>5.1</u> 5 6 30 Bailer to scuge 786 986 980 920 92 j 980 Cend 980 996 980 939 860 820 920 990 ğ Bevelophens 630 BLOC with serietablic and まとろ 6.87 6.67 76 6.53 6.05 6.0,0 6,69 6 35 6.90 3 6.60 6,90 6,41 ň 12 20 ĭ 1200 si yance 1225 8 is 3.0 6. h7 21,0 Start: 1330 Gals Suldat Huttel: Deet Volume (parked Je Je

17,30 Sh day BIOD VEN Clar. clearing Eroudy SJ. Clar Bailes & Perisheltic Pemp with Cleaning -Burd Source Clearing Clearing Leve 16.90 Very Temp Comment 1.38 × 16 = 1.50 pellon 1520 9/22/ Proc m/r 0244 16.9° 17, 3° 17.30 17,3° 16.90 + 4A=11.12' izedicated Totlon Tubing L'evelopenint 21603 6720 642 6.95 Bal 700 Lbh 654 242 537 6.82 774 phi chind .12, 631 581 7.671' 17.05 6,85 1 = 4 -6.75 6.90 10 × 15.0 b.79 Find w(C 10.50' 13,5 6,83 165 6 76 12 18,0 6.73 6.83 12.27 100 Kiture Start- 1435 1.5 * 9.0 * 1 Seer - o M 4 = 11.32' 12.0 1.11d - 4 Get. 10.5 ithed -Š Legel A N IN -Sturt purger worker fin MW-9 - Use Buder Fhispelli Dang - 12 + Volumen remond 4 - Use Bude & hichelic Start WW -41 - Nall goes in peringed ~ 3 Cal Mr. longer pump - bail ~ 2 man Blidge Alternat 1 set 4 heles have ducen - computer to no workelle Served - Disite - picked up during I - Dre - pick up Secure phump - vvv Loave site Comes on why pert droved 1)(r frit 9/22/00 100 1435 1530ff 20 1380 1400 1610

Punge Weld Duy - Install Xducer KL to N.F. John bad Xduren - Ht Method Periodaldie Pump & Baules - to water cevel pound and slig tests. isset Tey) & #764 (1453?) (No (risset Tey) & #7687 (c-03000) . (cot - F1. Hed - both 20 PSI Far 6 - 46 ' water . Kain over وسمعكا عدركم over and 45°F KPU (6) キ ポッシュ Slugs used are 1.5" & X 36" Long Velume = 0,27\$ Gallons an 0.03 Decon both Xdneena + Cables. Solid PVC w/ Blunt ends. 1.30 J. Putrezert insite うびょ W/L BTOC Begin Wister levels 6.64 21.8 6-74 7.26 1 MW-1 Slugterst VOI Gal PH Cond Temp C WR WW -2 0535 1 3 7:42 2300 16:10 WW -4 0539 Pumped 3 year 12 Reached 223 WW -4 0840 Pail 6 71:46 16 20 15.8° Sone Slogs 0500 a. Well Dy - W/C2 28.73 Broc. Solid PVC ሪ ዲዲ LE\$0 12 0835 WW-4A Davelopment 9-22 po 27 2/26/00 - MW NN-S MN-3 130 Kell 200 25 12 18,3\$ ×.16 = 2,936 ilze isso funded 4 God - No readings w/ sailed - Well Dry. [ushell X-duces to manitor seconey. 29.45 600 TH DAY RC 存

Mw-6

WELL DEVELOPMENT AND STABILIZATION FORM

11/20/01 F.Garber Feld Fle

H/5001

Project Name:	Parcel 2 - Server St. RFI	Project No.:	15867
DATE OF WELL DEVELOPMENT:	9/11/01		
DEVELOPMENT CREW MEMBERS:	F. Garbe		4 14
Purging Method:	tefler bailer / declicated	tubing \$	peristaltic
SAMPLE NO.:		U U	pomp
Sample Time:			

MW-6 2"\$ Stainless Steel rim\$ 10.35.ft.belawrim 19.60 ft below rim 9.25' 5' 1.48 Gals (~1/2 Gals)

ELEVATION:	_581.12
ELEVATION:	571.87

Volume Purged (volume/total volume): Field pH: Field Temperature: Field Conductivity: Clarity/Turbidity Values: Color: Odor: Comments:

WELL INFORMATION

STATIC WATER DEPTH:

WATER COLUMN LENGTH:

SCREENED INTERVAL:

WELL TYPE (diameter/material)

MEASURING POINT ELEVATION:

Note: For 2-inch diameter well:

WELL NUMBER:

Воттом Depth:

WELL VOLUME:

COPIES TO:

_File

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

volumes 1 fhrough 7: No parameters measured water very turbid, brown, silty

	V							
UNITS	8 X	9 X	10 X	1\ ¥	12 ¥	13	14	ی ا
	1/26.15	1/2 6 15	1 42 6 V	1426.1	142	142	112	142
Gals.	126.15	131/2	15 Gals	1672	186915	191/2	21	22Y2
-	6.02	6.09	6.15	6.21	6.11	6.26	6.20	6.18
°F	67.1	65.1	65.1	65.3	64.40	63.3°	62.6	63.0
umhas/ cm	1650	1700	1690	1730	1610	1460	1420	1480
NTUS	1024	930	920	996	108	43.8	74.3	44.6
1	Lt. brown	Lt. Brown	L+ Brown	Lt. Brown	mod.Lt. Brown	Brinn	clear	clear
1	NC	200	No	No	NC	Nº	20	No
-	turbid	turbid	fundid	turbid	clear-	clear	clear	CLEAF

Total: > + 5 volumes purgec

22/2 Gals to NTU 2 50

CRA 1001 (29) Rev. 6, September 13, 1999, Form SP-09

MW - 7

Project Name: Date of Well Development: Development Crew Members:	Parcel Z - Senea St. RF7 9/13/01 F. Garbe	Project No.: 15867
PURGING METHOD:	peristaltic pump & tubing	
SAMPLE NO.:		
SAMPLE TIME:		
WELL INFORMATION		
WELL NUMBER:	<u>MW-7</u>	
WELL TYPE (diameter/material)	2" & stainless steet	
MEASURING POINT ELEVATION:	(=	
STATIC WATER DEPTH:	9-27 St. Below Tor	ELEVATION: 581.14
Воттом Depth:	17.95 ft. Below TUC	ELEVATION: 572.46
WATER COLUMN LENGTH:	8.68 ft	
SCREENED INTERVAL:	5 St.	•
WELL VOLUME:	1.39 Gals (=1×G1)	
		-

Note: For 2-inch diameter well:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

			1	T	T -		TOTAL/
	UNITS	1	2	3	4	5	AVERAGE
N	Gals	1/2	11/2	1/2	1/2	11/2	
VOLUME PURGED (volume/total volume):	Gals	1/2	3	442	6	742	-
FIELD pH:	~	NA	NA	6.36	6.51	6.53	
FIELD TEMPERATURE:	٥F	NA	NA	62.2°	62.50	62, Z	
FIELD CONDUCTIVITY:	unhay Cm	NA	NA	2520	1480	2080	
CLARITY/TURBIDITY VALUES:	NTUS	NA	NA	262	73	26	
COLOR:	-	N. C lade- Bin	Lt: Brown	Lt tan tint	vit tan	clear	
Odor:	-	NO	No	NC	tint No	No	
COMMENTS:	-	very turbid	inod: turbid	med. turbid	clear	clear	
Copies To: File	L			reged Z	5 1315	(7720	Gals).
	- Purged 3 vols (7Y2 Gals). to NTU 2 50						

	Project Name:	Parcel 2 - Serve a StRFI	PROJECT NO.: 15867
-	DATE OF WELL DEVELOPMENT:	9/13/01 \$9/17/01	
	DEVELOPMENT CREW MEMBERS:	F.Garbe	
-	Purging Method:	teflow bailer	
	SAMPLE NO.:		
-	Sample Time:		
	WELL INFORMATION		
-	Well Number:	MW-7A	
	WELL TYPE (diameter/material)	2" & Stainless Steel	
-	MEASURING POINT ELEVATION:	=	
	STATIC WATER DEPTH:	12.60 St below TUC	ELEVATION: 577.82
	Воттом Depth:	29.48 ft bolow TUC	ELEVATION: 560.94
	WATER COLUMN LENGTH:	16.88 ft.	
	SCREENED INTERVAL:	<u> </u>	alistol Purged 3 rols to dryness, No Field
-	WELL VOLUME:	2-7 Gals (223/4 Gals)	dryness, No Field parameters, very Turbid

Note: For 2-inch diameter well:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters alin loi Purge vois 4-6 to drywess

	UNITS	Y X	S X	× س	×	×	Total/ Average
	Gals	23/4	23/4	234			
VOLUME PURGED (volume/total volume):	6915	11	133/4	1612*			
Field pH:	~	6.78	6.62	6.54			
FIELD TEMPERATURE:	۶F	60.30	59. 2°	59.40			
FIELD CONDUCTIVITY:	Unhos (m	1800	1790	1880			
CLARITY/TURBIDITY VALUES:	NTUS	>2000	>2000	>2000			
COLOR:	-	tan-Brn	tan-Bin	tan BrN			
Odor:	-	Nc	NC	No			
Comments:	-	very turbid	Very turbid	very turbid *Dryness			
COPIES TO: Fle		Pur	jed 6		16/2	6915)+	o drywa turbic
		tw	ice. N	HZZUTI	>sc	o (very	turbie

PROJECT NAME: Date of Well Development: Development Crew Members: Purging Method: Sample no.:	Parcel2 - Serveu St. RFI 9/13/01 F. Garbe Peristaltic pump & tubing	Project No.: 15867	•
SAMPLE TIME:			
WELL INFORMATION			
Well Number:	MW-8		
WELL TYPE (diameter/material)	2"& stainless steel		
MEASURING POINT ELEVATION:	nm (=		
STATIC WATER DEPTH:	8-21 Bt below TOC	ELEVATION: 580.67	,
Воттом Depth:	15.73 6t. below TUC	ELEVATION: 573-15	
WATER COLUMN LENGTH:	7.52 ft		
SCREENED INTERVAL:	sit		
WELL VOLUME:	1.2 Gals (~1/4 Eals)		
Note: For 2-inch diameter well:	1 foot = 0.14 gallons (imp) or 0.16 gallons (u 1 meter = 2 liters	ıs)	•

							Total/
	UNITS	1	2	3	4	5	AVERAGE
	6415	14	114	174	144	1 / 4	
VOLUME PURGED (volume/total volume):	Gals	1/4	242	33/4	5	644	
Field pH:	~	NA	NA	6.87	6.84	6.63	
Field Temperature:	°F	NA	NA	59.20	59.60	58.1"	
FIELD CONDUCTIVITY:	umhas/ cm	NA	NA	1560	1380	1460	
CLARITY/TURBIDITY VALUES:	NTUS	NA	NA	217	78	40	
COLOR:	~	black	Brown	W tan tint, Clear	clear w/ vilt tan	clear	
Odor:	-	No	No	No	tint NO	No	
COMMENTS:	~	N. forbid	mod. turbid	clear	clear	Clear	
-1							
COPIES TO: File			Purg	ed 5v	ols (6	Yy Gals)
	- Purged 5 vols (6446als) to NTU (50						

PROJECT NAME: DATE OF WELL DEVELOPMENT: DEVELOPMENT CREW MEMBERS: **PURGING METHOD:** SAMPLE NO.: SAMPLE TIME: WELL INFORMATION WELL NUMBER: WELL TYPE (diameter/material) MEASURING POINT ELEVATION: STATIC WATER DEPTH: Воттом Depth: WATER COLUMN LENGTH: SCREENED INTERVAL: WELL VOLUME:

Note: For 2-inch diameter well:

a/13/61 # 4/17/01 F. Garbe teflow bailer

MW-8A 2"& stainless steel in (= 9.48 St below TOC 29.04 It below Toc 19.56ft 5 Kt 3.13 Gals (-3/4 Gals)

ELEVATION: 579.56 ELEVATION: 560.00

5

PROJECT NO.: 15867

9/13/01 Purge vols 1-2 to dryness. No Field Parameters. Very pallylos turbid, brown. 4/17/01 Purge vols 4-9 to dryness (1vol= 2/26.

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

۹ ×

272

12/4*

6.42

58.0

720

1330

Lt tan Brn

Nú

* Drye

3/464

UNITS

Gals

Gals

OF

umhos/

cm

NTUS

-

2 1/2

19/2

6.51

57.7

680

1403

Lt tan

BON

NO

3

4

- Purgel vol. to dy mass (# : no purameters - turbid.

Total/

AVERAGE

VOLUME PURGED (volume/total volume): FIELD pH: FIELD TEMPERATURE: **FIELD CONDUCTIVITY:** CLARITY/TURBIDITY VALUES: COLOR: ODOR: COMMENTS:

COPIES TO:

(3/10 vei)

END Development @ 4 vols Purged - To dryness twice with NTUS>50.

Parcel 2 - Serveca St.

PROJECT NAME:	Parcel	2 - Sen	ieca St.	RFI	PROJE	CT NO.: _	5867	
DATE OF WELL DEVELOPMENT:	9/12/01							
DEVELOPMENT CREW MEMBERS:	F.Ga	rbe						
PURGING METHOD:	Polyto	bing & p	<u>enista</u>	Itic pum	ρ			
SAMPLE NO.:		Ũ						
SAMPLE TIME:								
WELL INFORMATION								
WELL NUMBER:	NN	- 9						
WELL TYPE (diameter/material)	2*\$	staint	est ster	ι				
MEASURING POINT ELEVATION:	nim	(=						
STATIC WATER DEPTH:	8	.24 ft	below-	7υς	ELEVA	гіон: <u>5</u>	81.42	_ +++
Воттом Depth:	15.	is ft	below 7	σC	ELEVA	гіон: <u>S</u>	574.56	_
WATER COLUMN LENGTH:	6.	86 Rt						
SCREENED INTERVAL:	5	12.						_
WELL VOLUME:	= 1.0	9 Gals	(=	1/4 Gals) 91	12/01 Pu	nged 4 vol field para	s ,
Note: For 2-inch diameter well:	1 foot = (1 meter =).14 gallons = 2 liters	; (imp) or 0	.16 gallons		V. 10 T co	field para brown, v. to ts of Sedia Ntinued y at 4th vol	nent
	U NITS	S X	6 X	7	8 X	9 X	Total/ Average	
	Gals	174	1 4	1/4	144	14	TIVERAGE	
VOLUME PURGED (volume/total volume):	Gals	674	7Y2*	88/4	9	1044		
FIELD pH:		6.36	6.36	6.56	6.50	6.54		
FIELD TEMPERATURE:	OF	65.0	65.3°	65.20	65.0°	65.10		
FIELD CONDUCTIVITY:	Umhos/ CM	1600	1430	1450	1420	1390		
CLARITY/TURBIDITY VALUES:	NTU'S	326	325	148	180	170		-
COLOR:	-	L+ Brown	Lt. Brown	L+yellow tint	Lt-yellar tint	Lt. Yellow		
Odor:	-	F	NU	NO	NC	No		-
Comments:	-	Slightly turbid	Slightly turbid * Ormes	mod- turkid	mod. turbid	mod. tankid		

COPIES TO:

MW-9

P6 🛈

Contron PG(2) -> Dry e 4th vol. & 6th vol. returns w/in 10 mins

mw-9 P6 0

WELL DEVELOPMENT AND STABILIZATION FORM

	Project Name:	Parcel 2 - Sinera StRFI	PROJECT NO.:	15867
	DATE OF WELL DEVELOPMENT:	9/12/01		
_	DEVELOPMENT CREW MEMBERS:	F. Garbe		
	PURGING METHOD:	peristaltic pump & poly tubi	Ng	
	SAMPLE NO.:			
)	SAMPLE TIME:			
	WELL INFORMATION			
	Well Number:	MW-9		
	WELL TYPE (diameter/material)	2" & stainless steel		
	MEASURING POINT ELEVATION:			
	STATIC WATER DEPTH:	8.29 St below Toe	ELEVATION:	581.42
	Воттом Depth:	15.15 St. Gelow Tor	ELEVATION:	574.56
	WATER COLUMN LENGTH:	6.86 pt		
ļ	SCREENED INTERVAL:	<u>5 ft.</u>		
	WELL VOLUME:	= 1.09 Gals (~14 Gals)		

For 2-inch diameter well: Note:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

11

144

123/4

6.62

65.20

1220

148

NG

mild y

Ltyellow Brn tint

X

10 ¥

144

11/2

6.70

66.0'

1320

Ltyellow Brn tint

132

NU mildty

turbid

UNITS

12

X

14

6.84

65.0

1180

118

No

mildly

Lt. yellow

14

13

174

ISYY

6.73

65.30

1200

67

clar

no

clear

¥

	VOLUME PURGED (volume/total volume):	Gals Gals
	FIELD pH:	-
	FIELD TEMPERATURE:	°F
	FIELD CONDUCTIVITY:	unhors/
	CLARITY/TURBIDITY VALUES:	NN
	COLOR:	~
	Odor:	-
	COMMENTS:	
-	COPIES TO: File	

_			_

tO NTU (SO

-> Durged 14 vols

17 *

174

16/2

6.74

12.40

33

clear

N٢

clear

(17/2 Gals)

TOTAL/

AVERAGE

MW-9A

WELL DEVELOPMENT AND STABILIZATION FORM

	Parcelz	- 5-04	e	RET	Prou		15867	
PROJECT NAME:		01 \$ 9			- FROJE		13001	
DATE OF WELL DEVELOPMENT:		arbe	11100		-			
DEVELOPMENT CREW MEMBERS:								
PURGING METHOD:	+e+10	~ bailer	- ¥ pay	1 Cord				
SAMPLE NO.:					•			
SAMPLE TIME:								
WELL INFORMATION								-
Well Number:		w- 9A						
WELL TYPE (diameter/material)	2'	d sta	inter	steel				
MEASURING POINT ELEVATION:	<u>in</u>	(=						-
STATIC WATER DEPTH:	12.83	s ft bu	alow Te	x	ELEVA	TION: 5	576.72	
BOTTOM DEPTH:	29.0	<u>2</u> <i>5</i> 4 i	elow -	TOL	ELEVA	TION:	560.53	_
WATER COLUMN LENGTH:	16.11	tF					2101 Purge	
SCREENED INTERVAL:	5_	let_				/	7 w/No Fiel	
WELL VOLUME:		96415	(=2	12 6als).	P.	rgevels 8-i	0
Note: For 2-inch diameter well: 1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters $= \frac{9 12 01}{2} = \frac{9 12 01}{2}$								
	UNITS	X	9	10	11	12	13	-
_	6.15	21/2	272	21/2	2 7 4	234	23/24	
VOLUME PURGED (volume/total volume):	Gals	20	221/2	25	2734	301/2	3344	
FIELD pH:		6.89	6.92	7.20	7-64	7.56	7.12	
FIELD TEMPERATURE:	٥F	61.30	61.00	60:70	61.90	62.5*	61.0"	
FIELD CONDUCTIVITY:	umhas/ cm	400	420	470	630	580	520	
CLARITY/TURBIDITY VALUES:	NTUS	1146	1220	1470	>2000	>2000	1455	
COLOR:	~	Lt ten Birn	it ten SNWN	Lt tan Braun	ten-	Lt. grey	Ltsrey	
Odor:	-	NO	NO	ド バン	Nic	N0	ريان	
Comments:		turbid	firb.J	turbid	turbid	turbid	turbid	
	-							
COPIES TO: File		> Pure Wl	red 13	vols	(33/4	6(15)		
		wl	NTUS	チミン	50			

CRA 1001 (29) Rev. 6, September 13, 1999, Form SP-09

•

Project Name:	Parcel 2-Serve ca St.	Project No	.: 15867
DATE OF WELL DEVELOPMENT:	9/13/01		
DEVELOPMENT CREW MEMBERS:	F-Garbe		
PURGING METHOD:	Peristeltic pump + tubin	მ	
Sample no.:			
Sample Time:			
WELL INFORMATION			
WELL NUMBER:	MW-10		
WELL TYPE (diameter/material)	1" & PNC		
MEASURING POINT ELEVATION:	rim (=		
STATIC WATER DEPTH:	8.41 St below Toc	ELEVATION:	580-61
Bottom Depth:	15.33 At belaw Toc	ELEVATION:	573.80
WATER COLUMN LENGTH:	6.92 St	9/13/01	Purge 4 vols (1-4) to
Screened Interval:	<u> </u>		Purge 4 vels (1-4) to dryneess. No Field Para-
Well Volume:	0.28 Gals (= 14 Gal)		meters. V. Brig turbid
		9/20/01	Purged voists-15, sampled later that
Note: For 2-inch diameter well:	1 foot = 0.14 gallons (imp) or 0.16 gallons (us 1 meter = 2 liters		day. Tookappron alternate volume readings i below)

Ġ

Ж

Ýч

11/2

7.05 61.30

830

>2000

Red-Brn

No

v. turbid

	64
VOLUME PURGED (volume/total volume):	Gal
Field pH:	
FIELD TEMPERATURE:	٥F
FIELD CONDUCTIVITY:	unhos/
CLARITY/TURBIDITY VALUES:	NTUS
Color:	-
Odor:	-
Comments:	-

COPIES TO:

File

17

х

44

31/2

6.41

60.90

940

792

in

purbid

Grey-Brn

Total/

AVERAGE

13

Yu

344

6,55

60.8"

970

974

NO

turbid

Bri

9

K

Yy

244

6.60

59.80

940

>2000

Grey

NC

furbid

8 x

Yy

2

6.80

59.5"

920

949

Grey

No

mod ; turbid,

Project Name:	Pance	12-5	enera	St RFI	Projec	ст No.:	15867	-
DATE OF WELL DEVELOPMENT:	9/13/01							
DEVELOPMENT CREW MEMBERS:	F.6.	rbe						-
PURGING METHOD:	Peris	stallic	pump	\$ tubi	NG			
SAMPLE NO.:	·		、 ,		Ū			-
SAMPLE TIME:								_
WELL INFORMATION								-
WELL NUMBER:	MN	1-10A	\					
WELL TYPE (diameter/material)	1ª Ø	PVC						
MEASURING POINT ELEVATION:	rim	(=						
STATIC WATER DEPTH:	11.0	s St 6	eelow "	701	ELEVAT		578.02	
Воттом Depth:	28-0	2 ft 1	belolow	70c	ELEVAT	TION:	561.05	
WATER COLUMN LENGTH:	16.9	77 ft						/
Screened Interval:	<u> </u>	Ł.			9[13101 Vel 011	- Field Durged WI	ter
WELL VOLUME:	.70	Gals	(~ 3/	4 6als)		Ve	s 1-3 purged wi Frield parami ry bru very tu, brown, mod. tur	(,
Note: For 2-inch diameter well:	1 foot = (1 meter =	0.14 gallons = 2 liters	s (imp) or 0	0.16 gallons	લ (us)	20101 Pu H	rge vists 4-*8 (zen sample). Belo	
	UNITS	Ч ¥	S B	6	7	8	Total/ Average	**
** · · · · · · · · · · · · · · · · · ·	6913	3/4	3/4	3/4	3/4	3/4		
VOLUME PURGED (volume/total volume):	Gals	3	33/4	442	544	6		-
FIELD pH:	-	7.15	7.08	7.23	7.17	7.20		
FIELD TEMPERATURE:	٥F	60.0	60.00	S8:3°	57.2"	56.7"		-
FIELD CONDUCTIVITY:	unhos/ cm	640	.740	700	630	650		
CLARITY/TURBIDITY VALUES:	NTUS	706	>2000	820	1054	1520		-
COLOR:	~	BrN	BrN	Brn	BrN	BEN		
Odor:	-	NC	NO	NO	NC	No		-
COMMENTS:	-	turbid	turbid	turbd	turbd	turbid		
	-							

CRA 1001 (29) Rev. 6, September 13, 1999, Form SP-09

•

MW-11 PG ()

WELL DEVELOPMENT AND STABILIZATION FORM

Project Name:	Parcel 2 - Seneca St. RFI	Project No.: 15867
DATE OF WELL DEVELOPMENT:	9/11/01	
DEVELOPMENT CREW MEMBERS:	F. Garbe	
PURGING METHOD:	tetlow bailor / tubing & peris	teltic pump
SAMPLE NO.:		
SAMPLE TIME:		
WELL INFORMATION		
Well Number:	<u>MW-11</u>	
WELL TYPE (diameter/material)	2" & stainless steel	
MEASURING POINT ELEVATION:	rim (=	_
STATIC WATER DEPTH:	9-18 ft below Toc	ELEVATION: 581.22
Воттом Depth:	17-52 pt. below Toc	ELEVATION: 572.88
WATER COLUMN LENGTH:	<u>8.34 ft.</u>	
SCREENED INTERVAL:	<u></u>	
WELL VOLUME:	1.33 Gals (~1 1/3 Gals)	

Note: For 2-inch diameter well:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

	UNITS	1	2	3	4	5	TOTAL/ Average
	6915	1/3	173	173	173	173	TITLICIOL
VOLUME PURGED (volume/total volume):	6215	1 1/3	2 2/3	4	5 /3	62/3	
FIELD pH:	-	NA	NA	7.04	6.72	6.70	
FIELD TEMPERATURE:	°F	NA	AM	63.6"	64.2"	62.90	
FIELD CONDUCTIVITY:	umhos/ cm	NA	AN	770	830	810	Q
CLARITY/TURBIDITY VALU	JES: NTUS	NA	AM	587	395	92	<u></u>
COLOR:	-	Brown	Lt. Browd	Lt, Brown	Lt. yellar Brown	Lt yellow tint	d
ODOR:	-	NO	No	NC	No	23	<u>ک</u>
COMMENTS:	-	vory	turbid	turbid, cleaning	mod. turbid	clear (v.ltly turbid)	Ö

CRA 1001 (29) Rev. 6, September 13, 1999, Form SP-09

MW-11 P62

WELL DEVELOPMENT AND STABILIZATION FORM

Project Name: Date of Well Development: Development Crew Members: Purging Method:	Parcel 2 - Seneca St. RFI 9/11/01 F. Garbe tetlon bailer/ Peristaltic pu	PROJECT NO .: 15867
SAMPLE NO.:		· · · · · · · · · · · · · · · · · · ·
Sample Time:		-
WELL INFORMATION		•
WELL NUMBER:	MW-11	
WELL TYPE (diameter/material)	2" & stainless steel	-
MEASURING POINT ELEVATION:	rim (=	
STATIC WATER DEPTH:	9.18 6t. below Toc	ELEVATION: 581.22
Воттом Depth:	17.52 Al. below TOC	ELEVATION: 572-88
WATER COLUMN LENGTH:	8.34 ft.	_
SCREENED INTERVAL:	5'	-
WELL VOLUME:	1.33 Gals (21/3 Gals)	_

Note: For 2-inch diameter well:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

	UNITS	Ğ	7 ¥	a Maria	۲ ۲	10 X	TOTAL/ Average
	6.15	173	173	1 1/3	143	1/3	
VOLUME PURGED (volume/total volume):	Gals	8	9/3	10 2/3	12	13/3	137261
FIELD pH:		6.67	6.68	6.65	6.69	6.57	-
FIELD TEMPERATURE:	°F	62.6'	62.7	63.1°	62.6"	63.1°	-
FIELD CONDUCTIVITY:	inhas/ cm	700	808	814	867	866	~
CLARITY/TURBIDITY VALUES:	NTUS	86	134	76	62	46	-
COLOR:	-	Ltyellow Bin that	Ct. yellow tint	Et-yellow tint	ct. zellow time	clear	-
Odor:	-	20	NC	20	Nu	Ne	-
COMMENTS:	-	clear	clear	clear	clear	clear	~
COPIES TO: File				Р	uraed	10 vol	unes
					- · g · c.	(13)	$\frac{1}{2} Gals$ NTU \leq
						to	NTU/ S

PROJECT NAME:	Parcel	2 - Se	inera b	St.RFI	Proje	ст No.:	15867	
DATE OF WELL DEVELOPMENT:	9/11	101 -	9/17/0	1	_			_
DEVELOPMENT CREW MEMBERS:	F.G	arbe			_			
Purging Method:	tetlon	bouler	· loeris	taltic p	ump &	fuling		
SAMPLENO.:					-			
SAMPLE TIME:					-			
WELL INFORMATION								
Well Number:	Mu	111-L			_			
WELL TYPE (diameter/material)	_Z*4	stain	N Less S	steel_	_			
MEASURING POINT ELEVATION:	rim	(=			-			
STATIC WATER DEPTH:		obt 6	elow To	<u>50</u>	ELEVA	rion:	578-60	_
BOTTOM DEPTH:	27.	00 xt	below 7	TUC	ELEVAT	rion:	563.20	_
WATER COLUMN LENGTH:		5.40 1						
Screened Interval:	5							
Well Volume:	2.4	16 Gals	(=2)	12 Gals)		a/11/01	Ivol. purged v. turbid	9
		7	8	9		-	dry at 3rd 1 volto dry TOTAL	1 vol 147e]
	UNITS	2 ¥ 2 ¥2	12	8	×	<u>×</u>	AVERAGE	
Volume Purged	Gals		212	272				
(volume/total volume):	6a)s	17.5	20	22.5		-		
Field pH:	-	6.30	6.37	6.32				
FIELD TEMPERATURE:	OF umhis/	62.6°	62.50	62.6"				
FIELD CONDUCTIVITY:	unhis/ cm	940	660	690				
CLARITY/TURBIDITY VALUES:	NTUS	1227	1119	1190 Lt.				
COLOR:		Brown	Sere we	سزن، دم ک				
Odor:		NO	No turbid	Wo turbid				
COMMENTS:	-	101000	wron	+ Proite				
COPIES TO: File		Purg	ed 9 val	S	J	4/14/01	2 vols pung	e d
		(22.	-5 6-15	s)to imes shill >9			(to dry)	
		dry	Ness 34	ines	-	1 1	No parané V. turbid	1
CRA 1001 (29) Rev. 6, September 13, 1999, Form SP-09		wl	NTU	SHIL >	20	9/17/0/	·3vols to	dry

Project Name:	2137 Seneca St	Project No.: 15867
DATE OF WELL DEVELOPMENT:	11-27-01	-
DEVELOPMENT CREW MEMBERS:	J. Pietraszelk	
PURGING METHOD:	Teflon Bailor / Peristaltic Ru	т р
SAMPLE NO.:	6W-112701-JP-001	,
SAMPLE TIME:	1315	-
WELL INFORMATION		
WELL NUMBER:	_MW12	-
WELL TYPE (diameter/material)		
MEASURING POINT ELEVATION:		-
STATIC WATER DEPTH:	8.0' tor	ELEVATION:
BOTTOM DEPTH:	16.55 tor	· Elevation:
WATER COLUMN LENGTH:	8.55	
SCREENED INTERVAL:	13'-18' bgs	-
WELL VOLUME:	<u>1.5 gal</u>	

Note: For 2-inch diameter well:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

	IINTE	1	2	2		5	TOTAL/]
	UNITS	1	2	3	4	5	AVERAGE	-
VOLUME PURGED (volume/total volume):	90.1/Ft							
FIELD pH:		6.50	6.54	6.81	6.59	6.61		
Field Temperature:	°F	60.8	60.4	60.6	60.8	60,4		
FIELD CONDUCTIVITY:	um hos Cm	1910	1880	1900	1810	1830		
CLARITY/TURBIDITY VALUES:	NTU	1000+	1000+	1000+	741	736		(01
Color:		DK.Brn	- 11	<u> </u>	n	11		
Odor:		none	11		14	1		
COMMENTS:								
	-							-

COPIES TO:

)

	Project Name:	2137 Senecust - Parcel 2 Site	PROJECT NO.: 15867
	DATE OF WELL DEVELOPMENT:	11/27/01, 11/20/01	
	DEVELOPMENT CREW MEMBERS:	J. Pietraszek	
	PURGING METHOD:	Teflon Bailer Herist	
	SAMPLE NO.:	6W-113001-JP-010	
	Sample Time:	6830	
	WELL INFORMATION		
	WELL NUMBER:	MW-12A	
	WELL TYPE (diameter/material)	2"&PVL	
	MEASURING POINT ELEVATION:		
	STATIC WATER DEPTH:		ELEVATION:
	Воттом Depth:	29.35' (tr)	ELEVATION:
	WATER COLUMN LENGTH:	18.70'	
	SCREENED INTERVAL:	25'-30' bgs	
-	Well Volume:	3.0 gal	

Note: For 2-inch diameter well:

1 foot = 0.14 gallons (imp) or 0.16 gallons (us) 1 meter = 2 liters

	UNITS	1	2	3	_4	5	Total/ Average
VOLUME PURGED (volume/total volume):		3.0%	6.0 gal				
FIELD pH:		6.68	8,13				
Field Temperature:	۰F	58.5	56.4				
FIELD CONDUCTIVITY:	1mhos cm	2210	1940				
CLARITY/TURBIDITY VALUES:	NTU	898	999				
Color:		dK. brni Jurbid	dk brin, turbid				
ODOR:		-	1				
COMMENTS:		Dry e 4.5 gal	Dry & 3.334				

COPIES TO:

-

.

WELL PURGING RECORDS

ilear, colorlera, no sheen, no solur, no sel Time: 1315 Crew: K. Lynck Nethod - Perustatter for Metals, CU, SVOCS . Tetlon Barler for VOCS Toth. DRT 15 T- 200436 Inst. Control # Hazes , 4/Kenel # 14263 Sample ID W-100400-KL-0DL Sumple containing 2X 40ml VOC of HCI 2×12 SVOC, 1×.52 WEADE W/HNO3, 1×500 W W/NODH For CN. с 0 tori. py Cond Teup 16.100 Col C# N-0472 10/4/00 Sampling Reed 6.86 Z26 Date Crew Start 1300 Start 1300 Vol Gal PH Cond Jone Tuib. Vol Gal PH Cond Jone Tuib. Cloudy brown, w cder, Sture Seden, no skeen Cloudy brown, w cder, Sture Seden, no skeen 22 4.0 6.75 2.25 16.10 48 51. Cldy, tan, no oder, no skeen fin sels 3. Cldy, color less & U. Tan, no V. S. Cldy, color less & U. Tan, no V. S. Cldy, color less & U. Tan, no 2. Lear, no oder, and the lo Velle MW-1 Date : 10/4/00 Jew KPC Nethol Echofelde Rump - Teflon Julin 6.88 1.858 16.10 1.3 Clear Colaribas, no shear, no cebe 10 Top of water colomn 21.20 was Recard 8,0 212 1 July Dept. i hafal Crew Dute Nello

Clear, colarless, No share, NO odry, NU Heribe - Hrzco # 14263 KPL Paris/ettic - Succe, metalo, cn Surple ID w-100500-KL-005 Surple Container 2×40ml Voc-HCl ZXTR SVOC JX 52 Metrels -HN03 IX55 CM - NapH per-15-12-21-4 T-00436 Cond Temp Turb 16.306 13 Bulles Teffen - VOCS N- OUT3 Sample Record new WW-Z DUE 10/5/00 2090 (o1.5 Secto. いよっ テ (kst. #s μĻ Muthed C m 2 111 July 1 Vol Struct Struct ond Temp Turk Turk 1 1.5 6.67 1.073 17.6 16.0 51. Clay, Sl. yellaw, no suem sl sulfineder 2 3.0 6.93 1.48 16.8 60 51. Clouby-HBaun Truce Sedu no steen sulfin 0950 Strutt - 9, 30 ×.16 = 1.49 puller Clear no oddr no steer spirallew follos 7.01 2.070 16.7 المعالية المراجعة المعالمة المعالمة 1003 End C CAR pulped. 17.40 0|5/00 Purez Leyeral 8,10) J Jubike Nithe Wark Depth ್ ಕ್ರ ألاما الم كليلك

Sample ID W- 100400-KL-004 +MS+MSI Peristalti Pung (succe + cNT Metal) Baulen Jeflan (VOCS) Sample Contanene 3×500ml + 5×12+ (VOC; SVOC, Metalo, CN) H Cond Temp Turb. Clear, coorless, no sheen, no odar, no sers 1.03 Turbidity - Tboy36 Horiba H/cond Hazee 19263 6.82 0.466 15.4° JCHO-N Sample Recard 2014/01 E. MW 1530 LPU Cef C# Wellood Inst.# Poto trip S II NLU Cler Clearch, SI green brown colon no oden no sho 3 4.5 6.73 0.790 15.3° 6.8 V. SI, Cldy, SI. mean ber. colon no stemen od et 6.0° 6.68 0.527 15.3° 4.6 Clear, colorleas to SI green-brown , no oder 101 6al 04 Courd Tampe Tria 1 1.5 6.94 2.090 15.6° 16.3 51. cldy - Blown, ap sheer, no odd 2. 3.0 6.81 1.610 15.4° 13.3 9.34' × . 16 = 1, 49 car /10 MW 3 10/4/00 KPC Feristalte Punp 7.66 tures Read NO Shear Crew Nater Vol Date

Clear, colonless, no sheen, no odan, no Battas - each sat: 2x40ml VOCS+HU 2x12 SNOCS; 1× SOMI metale - HNOS W-100500-KL-006 + Puplicide as W-100 500-KL-007@ 1300 -SUCCS, Metals, CN) Harild - Hazco 14263 0,93 Turbidity - T-0436 Turk Teffor Bailer - Vocs 17.00 Juna] N-20473 1× 500 ml CN. NaOH Sedumento ample Record Peristellic 10/5/00 1100 Sumple Dute: RC 2130 Cono Cof C# : Sample ID 1 st. # Mr.H.ad C.e. 16.2 メニ Ha 30 Uell 1 1.5 7.45 0.863 17.70 12.1 V. SI. 6104, 51 4166 no star, no ada 2 3.0 7.15 19510 17.5° 74,8 Oldy, Gt. brown, Lew Seck, no stran, no oder V. SI. Cidy, i vellow, no stran, no oder V. SI. Stran, no oder V. SI. Cidy, i vellow, no stran, no oder V. SI. Stran, no oder V. SI. Stran, no oder V. SI. Stran, no oder V. SI. Stran, no oder V. SI. Stran, stran, no oder V. SI. Stran, stran, no oder V. SI. Stran, stran, no oder V. SI. Stran, stran, stran, no oder V. SI. Stran, str fit (and temp" Turs 9.65 × 16= 1.54 6 (1/10) Peristration Pourp dechicated Clear, V. Sl. yellow | NO Shepr, no adar End 1051 7.0 602 pulged Ron Tubing 17.05 05-6 Purlys Record mw - 4 re Ke ارد ک 500 ちっち barten Water Decott للمعراب inel afre 201

ZXIL SVOC; IN 500 MI MERELD-HNOS IX 500 MI CN-NOOH, IX 500 ml STAT MERELO FILT. - HNOS AH Cand Temp Temp Temb Sample Centerners 2X 40 ml VOC-HCI (azco 14 26) 7-00436 SI. Cldy I brown, no sheen, no oden, (.79 1.881 #13.8° 12.75 Sample No W - 100400-KL.003 DRT-15 Haribe Method - Tefler Bailer W/L= 13,5' BTOC Col Cat N-0472 few sedemonth Semple Rocard instrument # 5 bate 10/4/00 1440 LPC Mello Tune Wer Vel Cals SU MS/m ~ ~ wrv Vel Cals PH Cond Temp Torb. Cloudy · Geon-gray color, Ew gray sales 5.0 gel - Dry - 26 werten mull 29.45' 11.25' ×.16= 2.91 6.0 Tau coler, very cloudy, no adar . Lots of sede Tellon Baller Start Tune: 09 #0 Purge Recald 20/4/01 K C Method Dert Dete كللعك こ m/r

Semple lintamen 2×40ml TCL VOC w/141 2×1 & STARS SVOGS, 1×500 ml TAL MARE W/HNO3, 1×500 ml Method Poishaltic pung & Tellan Tubing (Metallo, CN, SWECS) Bailer tellan he Vors Turb 0,31 Clear, colorlead, no sher 1 no odor Sample ID W-100400-KL-002 14.8° Temp Cole# N-0472 121 C 66 1.687 10/4/00 Sample Record Cone NES SJ Well # Tune μĢ Start 1273 Xel Cree 2H Card Tens Turk 2 1 1.5 17.01 1.201 17.9° 5.14 51 cldy, wellow trace sells, no polar, ro show 2 3.0 6.81 1.302 17.6° 10.0 2 3 4.5 6.72 2.020 16.8° 1.45 Clear, colonless, 10 shear, no colon Perindallie pump w/ dedie ask 9.12 ' X. 16 = 1,46 gal 4 Pure Record ,01.L1 ,82.L 10/4/02 (u la funzy KPL Start 1355 tellen Mathe Deoth Water quart Lete

-			O	Feld File
WELL PURGING	FIELD INFO	RMATION I	FORM	JOB# 1 5 8 6 7
SITE/PROJECT N	IAME: <u>Parce</u>	el 2 - Serveca	SE.RFI	WELL# M W - I
01911901 PURGE DATE (MM DD YY)	(MM DD	DATE YY)	WATER VOL. IN CASIN (LITRES GALLONS)	G ACTUAL VOLUME PURGED
PURGING EQUIPMENTDEDI	<u> </u>	ING AND SAMPLIN		MPLING EQIPMENTDEDICATED () N (CIRCLE ONE)
PURGING DEVICE G SAMPLING DEVICE G	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		XPURGING OTHER (SPECIFY) X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SPI	D - POLYPROPYLENE E - POLYETHYLENE ECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLE	SAMPLING OTHER (SPECIFY) X- PURGING OTHER (SPECIFY) ENE X- SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABL	E B - PRESSURE	C - VACUUM	
WELL ELEVATION	59224 111102	(m (ti)	GROUNDWATER ELEVATION WELL DEPTH	<u>58122</u> (mCD)
	URBIDITY $\frac{1411}{141}$ (ntu) $\frac{16131}{141}$ (ntu)	$\frac{117120}{117120}$	(μπ/cm) Α7-25°C (μπ/cm)	SAMPLE TEMPERATURE 6 43 = F 6 43 = F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{ 5 2}$ (ntu) $\frac{1}{ 5 2}$ (ntu) $\frac{1}{ 3 2}$ (ntu)	11770 11760	AT-25°C (µm/cm) AT-25°C (µm/cm) AT-25°C (µm/cm) AT-25°C	648 × °F
SAMPLE APPEARANCE:	ODOR:		TS Light color: Grey precipitation Gals) via te	+
Sampled 3x4 for TCL Vol	to al VOA VIG		dedicated	
CRA <u>9/19/01</u> DATE	MPLING PROCEDURES WERE IN Frank Gar PRINT		PLICABLE CRA PROTOCO	anh

	<u> </u>			
WELL PURGING	FIELD INFOR	RMATION F	FORM	JOB# 15867
SITE/PROJECT NA	AME: Paro	cel 2 - Server	n St. RFI	well# Mw - 2
0 9 2 0 0 1 PURGE DATE (MM DD YY)	SAMPLE D (MM DD)	DATE	WATER VOL. IN CASING (LITRES/GALLONS)	
PURGING EQUIPMENTDEDIC	ATED ON ICIRCLE ONE)		SAN	MPLING EQIPMENTDEDICATED (N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY) X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SP	D - POLYPROPYLENE E - POLYETHYLENE ECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLE	SAMPLING OTHER (SPECIFY) X- PURGING OTHER (SPECIFY) NE X- SAMPLING OTHER (SPECIFY)
656 (std) 20 682 (std) 20 698 (std) 4 6994 (std) 2		FIELD MEASUREN (m.41) (m.41) (m.41) CONDUCTIVITY 2200 2200 2200 200 200 200 200	GROUNDWATER ELEVATION WELL DEPTH	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		FIELD COMMEN	NTS	
pecific comments <u>P.</u> <u>bailer from 13</u>	for 3x 40mi	<u>ines (674)</u> 15:20 Pm.	NU PRECIPITATIO	<u>-grien</u> TURBIDITY: <u>turbid</u> NYROUTLOOK <u>cloudy/64°F</u> edicated tef <i>lon</i> <u>ul dedicated bailer</u>) o Sample Id
$\frac{1 \text{ CERTIFY THAT SAI}}{CRA} = \frac{9/20}{101}$	MPLING PROCEDURES WERE II Frank Ga PRINT		PPLICAPLE CRA PROTOCO Manue Signature	nts

WELL PURG		JOB # 1 5 8 6 7 - 1 $WELL # 1 0 0 2$
UN DD YY)	SAMPLE DATE WATER VOL. IN CASING (MM DD YY) (LITRES/GALLONS)	ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENT	DEDICATED N SAMPLING EQUIPMENT (CIRCLE ONE)	PLING EQIPMENTDEDICATED
PURGING DEVICE SAMPLING DEVICE	B A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® G- C - BLADDER PUMP F - DIPPER BOTTLE	X- PURGING OTHER (SPECIFY) X- SAMPLING OTHER (SPECIFY)
PURGING DEVICE SAMPLING DEVICE	C A - TEFLON D - PVC B - STAINLESS STEEL E - POLYETHYLENE C - POLYPROPYLENE	X PURGING OTHER (SPECIFY) X
PURGING DEVICE SAMPLING DEVICE	A - TEFLON D - POLYPROPYLENE F - SILICONE B - TYGON E - POLYETHYLENE G - COMBINATION C - ROPE x	E X- SAMPLING OTHER (SPECIFY) FURGING OTHER (SPECIFY) SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM FIELD MEASUREMENTS	
WELL ELEVATION DEPTH TO WATER pH (std) 93 (std) 93 (std)	GROUNDWATER (m/ft) GROUNDWATER (m/ft) ELEVATION TURBIDITY CONDUCTIVITY l 3 (ntu) l 9 4 0 (um/cm) l 3 (ntu) 2 l 6 0 (um/cm) l 3 (ntu) 2 l 6 0 (um/cm)	(m/ft) $($
(std)	(ntu) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C	
SAMPLE APPEARANCE: WEATHER CONDITIONS: SPECIFIC COMMENTS	FIELD COMMENTS ODOR:COLOR: WIND SPEEDDIRECTIONPRECIPITATION Sample ID: GW-112401-JP-009 (3)	TURBIDITY: <u>ckar</u> DN OUTLOOK <u>rain</u> X40m1Voc)
· · · · · · · · · · · · · · · · · · ·		
$CRA = \frac{2/6}{DATE}$	HAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE CEAPHOTOCOLS 2 JPietraszek PRINT 9IGNATURE	

WELL PURG	ING FIELD INFO	ORMATION F	FORM	јов# 1	586	7	- -
SITE/PROJEC	CT NAME: <u>P</u> a	rcel 2 - Serve can	St RFI	WELL#		Mw-	- 3
D 9 2 0 C PURGE DATE (MM DD YY)		WELL PURGING INFO	WATER VOL. IN CASIN (LITRESFGALLONS)		TUAL VOLUN (LITRES/GAT		
URGING EQUIPMENT	~	GING AND SAMPLIN	~	MPLING EQIPME	NTDED		
JRGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP	D - GAS LIFT PUMP E - PURGE PUMP	G - BAILER H - WATERRA®	x	PURGING O		
AMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE		×	SAMPLING C		
JRGING DEVICE	A - TEFLON B - STAINLESS STEEL	D - PVC E - POLYETHYLENE		x	PURGING O	THER (SPEC	IFY)
MPLING DEVICE	C - POLYPROPYLENE			x	SAMPLING	THER (SPEC	IFY)
JRGING DEVICE	A - TEFLON B - TYGON C - ROPE x-	D - POLYPROPYLENE E - POLYETHYLENE	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLI	×	PURGING O	THER (SPEC)	IFY)
TERING DEVICES 0.45	A - IN-LINE DISPOS	(SPECIFY) ABLE B - PRESSURE	C - VACUUM	~ <u> </u>	SAMPLING C	THER (SPEC	IFY)
WELL ELEVATION DEPTH TO WATER PH 6668 (std) 667 (std) 6658 (std) 6657 (std) 6577 (std) 6	$ \begin{array}{c cccc} \hline & & & & & & & \\ \hline & & & & & \\ \hline & & & &$	FIELD COMMEN FIELD COMMEN FIELD COMMEN R: <u>NCNE</u> JIRECTION <u>from</u> UTRES (G.0)	GROUNDWATER ELEVATION WELL DEPTH $(\mu m/cm)$ $AT-25^{\circ}C$ $(\mu m/cm)$ $AT25^{\circ}C$ $(\mu m/cm)$ $(\mu $		7 0 ETEMPERAT 6 2 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 10 1 <	S (m URE G (m) G (m) S (F F
	fetton builder 1 pol.	TCL VOCS)	pled at 11's	20 Am wi	1 baile	r for	1123
CRA 4/2c/	THAT SAMPLING PROCEDURES WEF		Sente	DLS			
DATE	PRINT		SIGNATURE				

	DUFORMATION	TOPM	
WELL PURGING FIEL		2	3# 1 5867 -
SITE/PROJECT NAME	Parcel 2 - Seni	east. RFI W	ell# MW-4
DATE PURGE DATE (MM DD YY)	WELL PURGING INF	WATER VOL. IN CASING (LITRES GALLONS)	ACTUAL VOLUME PURGED
PURGING EQUIPMENTDEDICATED	•		G EQIPMENTDEDICATED () N (CIRCLE ONE)
PURGING DEVICE	BMERSIBLE PUMP D - GAS LIFT PUMP USTALTIC PUMP E - PURGE PUMP	G - BAILER H - WATERRA®	X
	ADDER PUMP F - DIPPER BOTTLE		x
	INLESS STEEL E - POLYETHYLENE		X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	LYPROPYLENE - tubins		XSAMPLING OTHER (SPECIFY)
PURGING DEVICE A - TEF B - TYC SAMPLING DEVICE C - ROI	ON E - POLYETHYLENE	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLENE	X PURGING OTHER (SPECIFY) X-
	(SPECIFY) - IN-LINE DISPOSABLE B - PRESSUI	RE C-VACUUM	SAMPLING OTHER (SPECIFY)
	FIELD MEASURE	MENTS	
WELL ELEVATION	$\frac{19051}{(m/ft)}$	GROUNDWATER ELEVATION WELL DEPTH	5 8 / 13 (m/ft) 170 5 (m/ft)
pH TURBIDIT 6 8 6 (std) 1 5 4	Y CONDUCTIVITY	() (µm/cm)	SAMPLE TEMPERATURE
6 8 7 (std) 35		(µm/cm) 1 17 25 C	LIGS 3 00 F
	(ntu) <u> </u> ↓ (ntu)	(µm/cm) A1 25°C (µm/cm)	
(std)		→ AT 25°C (µm/cm) → AT 25°C	
	FIELD COMMI	ENTS	
SAMPLE APPEARANCE: WEATHER CONDITIONS: WIND SPEED SPECIFIC COMMENTS <u>Purge</u> <u>peristallic pump & do</u> <u>furbid then clauring A</u> <u>(1st volume hud 1955</u> <u>Gailer for 3 x 40 m</u>	dirated & poly tu upidly to tight grey odor). Sampled a	& Elear by	TURBIDITY: DUTLOOK 1040 to 1100 by Une brown color & end of 1st value. Licated teflon W-092401-F6-MW
CRA	ROCEDURES WERE IN ACCORDANCE WITH Frysk Garte	APPLICABLE CRA PROTOCOLS JUNK SIGNATURE	×

WELL PURGI	NG FIELD INFOI	RMATION I	FORM J	OB# 1 5 8 6 7 -
SITE/PROJEC	T NAME:			Well# $\mathcal{H} \mathcal{W} \mathcal{H}$
PURGE DATE (MM DD YY)	ן בון איז איז איז איז איז איז איז איז איז איז	YY)	WATER VOL. IN CASING	ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENT	~	ING AND SAMPLIN	-	LING EQIPMENTDEDICATED Y N (CIRCLE ONE)
PURGING DEVICE	B - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL A C - POLYPROPYLENE - Ha	D-PVC E-POLYETHYLENE		SAMPLING OTHER (SPECIFY) X PURGING OTHER (SPECIFY) X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X	D - POLYPROPYLENE E - POLYETHYLENE	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLENE	SAMPLING OTHER (SPECIFY) X PURGING OTHER (SPECIFY) X
FILTERING DEVICES 0.45	(SF			SAMPLING OTHER (SPECIFY)
WELL ELEVATION DEPTH TO WATER		FIELD MEASUREN (m/ft) (m(ft))	GROUNDWATER ELEVATION WELL DEPTH	(m/ft)
pH $104 (std)$ $107 (std)$ $114 (std)$ $115 (std)$ $115 (std)$ $115 (std)$ $115 (std)$ $115 (std)$	TURBIDITY 4 1		(μm/cm) AT 25°C (μm/cm) AT 25°C	SAMPLE TEMPERATURE 604960F 615760F 615760F 615760F 618760F 61760F
		FIELD COMMEN		
SPECIFIC COMMENTS	ODOR: VIND SPEED 	cate sample	precipitation (Y	sizell, Sample ID:
,				
$\frac{2/6/02}{DATE}$	HAT SAMPLING PROCEDURES WERE I J. Pietrasze (C PRINT		PPLICABLE CRA PROTOCOLS	

			FORM	
SITE/PROJEC	ING FIELD IN.			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		Parcel2-Sene	<u>(a St. Kt</u>	WELL# MW - 4/
DI 9240 PURGE DATE (MM DD YY)	54 (WELL PURGING INI	WATER VOL. IN CASING (LITRES/GALLONS)	G ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENT			-	MPLING EQIPMENTDEDICATED (CIRCLE ONE
PURGING DEVICE	A - SUBMERSIBLE P		G - BAILER	x
SAMPLING DEVICE	B - PERISTALTIC PU		H - WATERRA®	PURGING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON	D - PVC		SAMPLING OTHER (SPECIFY)
SAMPLING DEVICE	B - STAINLESS STEE C - POLYPROPYLEN			PURGING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON	D - POLYPROPYLENE	F - SILICONE	SAMPLING OTHER (SPECIFY)
SAMPLING DEVICE	B - TYGON C - ROPE x-	E - POLYETHYLENE	G - COMBINATION TEFLON/POLYPROPYLE	PURGING OTHER (SPECIFY) NE X-
FILTERING DEVICES 0.45	A - IN-LINE DI	(SPECIFY) SPOSABLE B - PRESSU	RE C - VACUUM	SAMPLING OTHER (SPECIFY)
		FIELD MEASURI	EMENTS	
WELL ELEVATION			GROUNDWATER ELEVATION	[578]10 (m@)
DEPTH TO WATER pH			WELL DEPTH	SAMPLE TEMPERATURE
	2951 (ntu)	694	(µm/cm) AT 25°C	SAME FEMERATORE
753 (std)	2000 (ntu)	17181	•	587 # °F
(std)	(ntu)		(μm/cm) —• AT 25°C	(°C)
(std)	(ntu)		(μm/cm) Φ AT 25°C	(°C)
(std)	(ntu)		(μm/cm) ΑΤ 25°C	(°C)
		FIELD COMMI		``````````````````````````````````````
SAMPLE APPEARANCE:		DOR: NONC	COLOR: CLA	
SPECIFIC COMMENTS	WIND SPEED None Purged 1924		.75 Gallons)	VY OUTLOOK <u>cloudy, 68°F</u> to dryness with
dark grey, tu 1120 to 11:55 teflow bail	er for TCL	then dry (at recharge inti VO('s ('3x	1 12:30. Su 40 ml VOA u	(1215). Sumple id
W-09240	1-FG-MWY1	A. Sample u	ias clean.	·
. \	HAT SAMPLING PROCEDURES		APPLICABLE CRA PEOTOCO FMM SIGNATURE	N I -

WELL PURGE	NG FIELD INFOF	RMATION I	FORM	JOB# 1 5 8 6 7 -
SITE/PROJEC	T NAME:			WELL# $\mathcal{M} \omega \mathcal{A}$
PURGE DATE (MM DD YY)			WATER VOL. IN CASING (LITRES/GALLONS)	ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENT	~	NG AND SAMPLIN		PLING EQIPMENTDEDICATED 🕢 N (CIRCLE ONE)
PURGING DEVICE	B A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP G C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	C A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE - 44	D-PVC E-POLYETHYLENE		X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SP	D - POLYPROPYLENE E - POLYETHYLENE ECIFY)	F - SILICONE G - COMBINATION TEFLON / POLYPROPYLEN	X PURGING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABI	LE B - PRESSURE	C - VACUUM	
WELL ELEVATION DEPTH TO WATER pH 1 0 9 (std) 1 9 0 (std) 1 (std) 1 (std) 1 (std) 1 (std) 1 (std)	I I <td>CONDUCTIVITY</td> <td>GROUNDWATER ELEVATION WELL DEPTH (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C</td> <td>(m/ft) (m/ft) (m/ft) $SAMPLE TEMPERATURE$ (m/ft) /td>	CONDUCTIVITY	GROUNDWATER ELEVATION WELL DEPTH (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C	(m/ft) (m/ft) (m/ft) $SAMPLE TEMPERATURE$ (m/ft)
	vind speed ODOR: Sample_ID: Gw-1	_DIRECTION	_COLOR: <u>Sl. Clou</u> PRECIPITATION	9) онтьоок <u>(ain</u> o c)
$CRA \xrightarrow{\frac{2}{6}}_{DATE}$	HAT SAMPLING PROCEDURES WERE I 2 J. Pietraszc PRINT		PPLICABLE CRA PROJOCOLS SIGNATURE	

	•		•	
WELL PURG	ING FIELD INFO	ORMATION	FORM	JOB# 1 5 8 6 7
SITE/PROJEC	CT NAME: Pa	rcel 2 - Server	st RFI	WELL# MW-5
U 9 1 9 C PURGE DATE (MM DD YY)	SAMI (MM	WELL PURGING INF	WATER VOL. IN CASING (LITRES/GALLONS)	G ACTUAL VOLUME PURGED
PURGING EQUIPMENT	•	RGING AND SAMPLII	~	MPLING EQIPMENTDEDICATED N (CIRCLE ONE)
PURGING DEVICE	G A - SUBMERSIBLE PUM B - PERISTALTIC PUMP G C - BLADDER PUMP		G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE SAMPLING DEVICE	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE x	D - POLYPROPYLENE E - POLYETHYLENE (SPECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLE	X PURGING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPO	SABLE B - PRESSUR		
WELL ELEVATION DEPTH TO WATER			GROUNDWATER ELEVATION WELL DEPTH	58081 (m/f) 5809 (m/f) SAMPLE TEMPERATURE
PH 6472 (std) 6335 (std)	TURBIDITY			664 er °F
6,37 (std) 6,36 (std) 6,472 (std)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 8 0 7 1 0 9 2 0) (µm/cm) → AT 25°C) (µm/cm) → →T-25°C) (µm/cm)	662 0°F
SAMPLE APPEARANCE:	Som ned scaliments WIND SPEED None Purged Svalu ely Cord, Sam W-OLAOI-FR	FIELD COMME	<pre> AT25°C NTS COLOR: ved: PRECIPITATION S) via declid (12:10 fm) </pre>	NY ROUTLOOK Yes/expected
	TCL UOAS			LS
CRA $\frac{q}{19}$	101 trank Ga PRINT	rbe (JM	inte Sche SIGNATURE	

				FDU	PLICATE
WELL PURG	ING FIELD INFO	DRMATION	FORM	јов# / 5	867.
SITE/PROJE	CT NAME:	arue 12 - Serve	ca St. RFI	WELL#	mw-6
		WELL PURGING INF	ORMATION	ι	MW-15"
09240	$p_1(1) = p_1(2)$	1410111		51 1	1 1 1/131
PURGE DATE			WATER VOL. IN CASI		UAL VOLUME PURGED
(MM DD YY)	(MM	DD YY)	(LITRES/GALLONS		LITRES/GALLONS
	PUI	RGING AND SAMPLIN	NG EQUIPMENT		
PURGING EQUIPMENT	DEDICATED 🕜 🛛 N		S	AMPLING EQIPMEN	TDEDICATED (Y) N
	(CIRCLE ONE)				(CIRCLE ONE)
PURGING DEVICE	G A - SUBMERSIBLE PUM	D - GAS LIFT PUMP	G - BAILER	x	
	B - PERISTALTIC PUMP	E - PURGE PUMP	H - WATERRA®		PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE		x	
					SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL	D - PVC E - POLYETHYLENE		x	PURGING OTHER (SPECIFY)
SAMPLING DEVICE	A C - POLYPROPYLENE	E TOETEITTEERE		x-	FORGING OTHER (SPECIFT)
					SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON	D - POLYPROPYLENE	F - SILICONE	x-	
	B - TYGON	E - POLYETHYLENE	G - COMBINATION		PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - ROPE x-		TEFLON/POLYPROPY	LENE X-	
		(SPECIFY)		S	SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPO	SABLE B - PRESSUR	E C - VACUUM		
		FIELD MEASURE	MENTS		
	1 1 15191/14	171	GROUNDWATER	1 1 1518	n_{19141}
WELL ELEVATION			ELEVATION		0 7 7 (m(ft)
DEPTH TO WATE		5 (m.(ff))	WELL DEPTH		960 (mQft)
pH	TURBIDITY	CONDUCTIVITY		SAMPLE	TEMPERATURE
6.79 (std)	219 (ntu)	1640	(µm/cm) AT-25°C		64800
650 (std)	356 (ntu)	1660) (µm/cm)		6417 00 OF
6658 (std)	322 (ntu)	1/641	→ AT-25°C C (um/cm)		\mathcal{L} \mathcal{L}
			- AT 25°C		
6,47 (std)	286 (ntu)	1614) (µm/cm) -● AT 25° C		692 (000
6,56 (std)	3 1 7 (ntu)	1630	(μm/cm)		639 00F
		FIELD COMME	NTS		
				Grey <u>من Grey</u> TURBIDIT	modito lightly
SAMPLE APPEARANCE: * WEATHER CONDITIONS:	WIND SPEED NONC	R: <u>Norve</u> DIRECTION NI	•	ION CAN OUTLOOK	cloudy/min occ., 6
SPECIFIC COMMENTS	\circ		ton Gailer		
6 volumes		inge water the			- srey med.
turbid through		wi dedicate			
	F6-MWE) and		UPLICATE		I-FG- MWIS
at "14:30"					to grey
Both Orig		had TCL VOA	, ,	VOA vials) &	TLL SUDE'S
(2x1 life	r ander slass bot	they) collecte	:de		
1 CERTIF	Y THAT SAMPLING PROCEDURES WE	RE IN ACCORDANCE WITH	APPLICABLE CRA PROTO	A Y	
CRA $\frac{q/2}{DATP}$		Garbe	Manle	Darte	
DATE	PRINT		SIGNATURE		

WELL PURGIN	IG FIELD	RMATION F	ORM IO	DB# 1 5 8 6 7 .
SITE/PROJECT			a Street RFI W	
09290101 PURGE DATE (MM DD YY)	SAMPLE D (MM DD	рате YY)	WATER VOL. IN CASING	ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENTD		NG AND SAMPLING	-	NG EQIPMENTDEDICATED () N (CIRCLE ONE)
PURGING DEVICE	B - SUBMERSIBLE PUMP B - PERISTALTIC PUMP	D - GAS LIFT PUMP E - PURGE PUMP	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE		XSAMPLING OTHER (SPECIFY)
SAMPLING DEVICE	B - STAINLESS STEEL C - POLYPROPYLENE - +-	E-POLYETHYLENE		PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE x	D - POLYPROPYLENE E - POLYETHYLENE	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLENE	X PURGING OTHER (SPECIFY) X
FILTERING DEVICES 0.45	(SP	ECIFY) LE B - PRESSURE	C - VACUUM	SAMPLING OTHER (SPECIFY)
WELL ELEVATION DEPTH TO WATER PH	L 59041 L 1939	FIELD MEASUREM	GROUNDWATER ELEVATION WELL DEPTH	Sample temperature
6,7 <u>7</u> (std) 6,6 <u>7</u> (std)	$\begin{array}{ $		(µm/cm) A 7 23°C (µm/cm) A 7 23°C (µm/cm)	$\begin{bmatrix} 6 1 7 \\ 7 0 \\ 6 2 \\ 7 0 \\ $
(std)	(ntu)		AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C	
SAMPLE APPEARANCE:	> ODOR:	FIELD COMMEN		TURBIDITY: CLEAN
	ND SPEED None Purged 3 volu tubing from turbid vapidly	DIRECTION NA Unio (4.0 15:45 to /6 Recening cle	Gals) with p 130. Bull A are Sample	vournook ea.min/cloudy/68° seistattic pump & ust dry - purge
SNOCS (2	x (- Liter on ber	gluss). Su		
$CRA = \frac{\frac{1}{24/2}}{\frac{1}{24/2}}$	NT SAMPLING PROCEDURES WERE IN 01 Frank 6 PRINT		PLICABLE CRA PROTOCOLS	Inle

			EOPM	100 / 1 / 1 / 1
		FORMATION		JOB# 5867
SITE/PROJEC		Parcel 2 - Seno	zcu StRFI	Well# $ MW - 7 A $
09121010	1 0.9	Well purging inf 2 O O	ORMATION	71 111714
PURGE DATE (MM DD YY)		MPLE DATE MM DD YY)	WATER VOL. IN CASH (LITRES/BALLONS	
PURGING EQUIPMENT	^	PURGING AND SAMPLI Æ)		AMPLING EQIPMENTDEDICATED () N (CIRCLE ONE)
PURGING DEVICE	G A - SUBMERSIBLE P	UMP D - GAS LIFT PUMP	G - BAILER	x
SAMPLING DEVICE	B - PERISTALTIC PU		H - WATERRA®	PURGING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON	D - PVC		SAMPLING OTHER (SPECIFY)
SAMPLING DEVICE	B - STAINLESS STEE C - POLYPROPYLEN			PURGING OTHER (SPECIFY)
	A - TEFLON	D - POLYPROPYLENE	F - SILICONE	SAMPLING OTHER (SPECIFY)
	B - TYGON	E - POLYETHYLENE	G - COMBINATION TEFLON/POLYPROPYL	PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C-ROPE x	(SPECIFY)		SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DI	SPOSABLE B - PRESSUI	RE C - VACUUM	
	1 1 1519101		E MENTS GROUNDWATER	5 7 7 9 7 (m/Th
WELL ELEVATION DEPTH TO WATER		4 <u>ζ</u> (m.Φ) 4 5 (m.Φ)	ELEVATION WELL DEPTH	$ 2 9 4 8 (m \oplus)$
pH	TURBIDITY	CONDUCTIVITY		SAMPLE TEMPERATURE
6 1 8 (std)	969 (ntu)		AT-25°C	606 m°F
681 (std)	639 (ntu)		(μm/cm) Α Τ-25° C	
(std)	/ 6 / (ntu)	<u> / 3 8r</u>	↓ (µm/cm) ▲ AT-25°C	
(std)	(ntu)		(μm/cm) —• AT 25°C	(°C)
(std)	(ntu)		(μm/cm) —• AT 25°C	(°C)
		FIELD COMME		
	Clear (VIND SPEED Malgust	DOR: <u>NONE</u> S DIRECTION Grou	_COLOR: <u>Clean</u> <u>~ Niw</u> PRECIPITATIO	
PECIFIC COMMENTS			1015 + 2.0 G	als (74 Gals tot.) to
dry via de Sample id	W-092001- E	_ ` ▲		x 40 ml ver vials
(for Telve		m VOA vials	for NYSDE	
		K Garbe	APPLICABLE CRA PROFOC	
CRA DATE	PRINT		SIGNATURE	

1	ING FIELD INFC			JOB# 1 5 8 6 7 -
SITE/PROJEC	$T NAME: \underline{P}_{i}$	arcel Z-Sen	ecast.	Well# $MW - \delta$
O 9 2 YO PURGE DATE		Well PURGING INFO $ \mathcal{U} \mathcal{O} $	ORMATION	ACTUAL VOLUME PURGED
(MM DD YY)		DD YY) GING AND SAMPLIN		(LITRES/CALLONS)
PURGING EQUIPMENT			~	IPLING EQIPMENTDEDICATED 🕥 N (CIRCLE ONE)
PURGING DEVICE	B A - SUBMERSIBLE PUMP	D - GAS LIFT PUMP	G - BAILER	x
SAMPLING DEVICE	B - PERISTALTIC PUMP	E - PURGE PUMP F - DIPPER BOTTLE	H - WATERRA®	PURGING OTHER (SPECIFY)
				SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - POLYPROPYLENE -			X
1				SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON	D - POLYPROPYLENE E - POLYETHYLENE	F - SILICONE G - COMBINATION	X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - ROPE x	(SPECIFY)	TEFLON/POLYPROPYLE	SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOS		E C - VACUUM	
		FIELD MEASURE	MENTS	
WELL ELEVATION	5888	8 (m <i>(</i> ff)	GROUNDWATER ELEVATION	58046 (m(ft)
DEPTH TO WATER	1841	2_ (m / (m)	WELL DEPTH	[]][5]7]3 (m(ti)
pH	TURBIDITY $ 7 2 $ (ntu)	CONDUCTIVITY		sample temperature
7118 (std)	35 (ntu)	1/15/2/2) (µm/cm)	S 9 4 + + + + + + + + + + + + + + + + + +
707 (std)	4 0 (ntu)	11590	→ AT 25°C	602 0F
(std)	(ntu)		μm/cm) AT 25°C	(°C)
(std)	(ntu)		(μm/cm) 	(°C)
		FIELD COMME	NTS	
SAMPLE APPEARANCE:		R: NONe	_ COLOR: <u>clear</u>	
	WIND SPEED None	DIRECTION NA		VEN OUTLOOK Clardy/Hain,68
SPECIFIC COMMENTS		peristatic pr 3-75 Gels), 4	i il id have	etra poly, tubing from purge water clear / Less
then SC NTI		t 13:00 W	NI 1 12 1	
	for TLL VOC'S	(3×40 ml	VUA Vials).	Sample id w-092401-
EG-MW8.	Sample clear	¢		• • • • • • • • • • • • • • • • • • •
I CERTIFY	THAT SAMPLING PROCEDURES WER	RE IN ACCORDANCE WITH A	APPLICABLE CEA PROTOCO	LS 0
CRA $\frac{q 2q}{parts}$		Garbe	Frend	course
DATE	PRINT		SIGNATURE	

WELL PURGI	NG FIELD INFO	RMATION	FORM	JOB# 15867
SITE/PROJEC	TNAME: $\rho_{\alpha,r\alpha}$	el 2 - Senc	<u>.ca St.R</u> FI	Well#
DIG 20 D PURGE DATE (MM DD YY)	I Q920 SAMPLET (MM DD	YY)	WATER VOL. IN CASH	
PURGING EQUIPMENT	•	ING AND SAMPLI		MPLING EQIPMENTDEDICATED 🌚 N (CIRCLE ONE
PURGING DEVICE	G A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP G C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SI	D - POLYPROPYLENE E - POLYETHYLENE PECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYL	X PURGING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSAB	BLE B - PRESSUR	E C - VACUUM	
WELL ELEVATION DEPTH TO WATER pH 7.38 (std) NA (std) (std) (std)	S 8 9 0 9 TURBIDITY 6 2 9 (ntu) N A (ntu) (ntu) (ntu) (ntu) (ntu) (ntu) (ntu) (ntu) (ntu) (ntu) (ntu)		GROUNDWATER ELEVATION WELL DEPTH (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C	SAMPLE TEMPERATURE $SAMPLE TEMPERATURE$ $SAMPLE$
AMPLE APPEARANCE: VEATHER CONDITIONS: V PECIFIC COMMENTS Tr Myness 3 x 40 ml	-> ODOR: VIND SPEED <u>Modigusts</u> <u>Purged I vol 4</u> Sampled with VOA vials (70)	2 Gals (4.8 dedicated	color: <u>Light</u> <u>NW</u> PRECIPITATION Gals) Vin d bailer at	Brewn TURBIDITY: <u>turbîd</u> DN Y&DOUTLOOK <u>cloudy/64°F</u> <u>edicated teflon bailer</u> 13:20. Sampled W-092001-F6-MW&A
$CRA = \frac{9/20}{DATE}$	HAT SAMPLING PROCEDURES WERE I		APPLICAPLE CRA PROTOCO	ts lintu

WELL PURGING FIELD INFORMATION FORM JOB# 1 5 8 6 7 -	4.
SITE/PROJECT NAME: <u>Parcel 2 - Sevece St.</u> Well# MW-	- 0
WELL PURGING INFORMATION PURGE DATE (MM DD YY) (MM DD YY)	
PURGING AND SAMPLING EQUIPMENT	
PURGING EQUIPMENTDEDICATED (Y) N SAMPLING EQIPMENTDEDICATED (Y) (CIRCLE ONE)) e on
PURGING DEVICE B - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER x- B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING OTHER (SPECI SAMPLING DEVICE G - BLADDER PUMP F - DIPPER BOTTLE x-	IFY)
PURGING DEVICE C A-TEFLON D-PVC X-	IFY)
B - STAINLESS STEEL E - POLYETHYLENE PURGING OTHER (SPECI SAMPLING DEVICE A C - POLYPROPYLENE x-	,
PURGING DEVICE A - TEFLON D - POLYPROPYLENE F - SILICONE X- B - TYGON E - POLYETHYLENE G - COMBINATION PURGING OTHER (SPECI	
SAMPLING DEVICE C - ROPE x	
FILTERING DEVICES 0.45 A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM	
DEPTH TO WATER 861 (m/L) WELL DEPTH 1515 (m/L) pH TURBIDITY CONDUCTIVITY SAMPLE TEMPERATURE 685 (std) 534 (ntu) 1660 (µm/cm) 4725° C 696 (std) 427 (ntu) $1/520$ (µm/cm) 696 (std) 62 (ntu) $1/380$ (µm/cm) 639 (std) 62 (ntu) $1/380$ (µm/cm) 639 (std) 62 (ntu) $1/380$ (µm/cm) 639 (std) 62 (ntu) $1/380$ (µm/cm) 639 (std) 62 (ntu) $1/380$ (µm/cm) 639 (std) 62 (ntu) $1/380$ (µm/cm) 639 (std) 62 (ntu) $1/380$ (µm/cm) 638 (std) 639 (std) 638 (std) 638 (m/L)	= 6 =
FIELD COMMENTS MAMPLE APPEARANCE: <u>clear</u> odor: <u>None</u> color: <u>clear</u> turbidity: <u>clear(Sou</u> veather conditions: wind speed <u>None</u> direction <u>NA</u> precipitation y/ isoutlook <u>sinny</u> / 68° specific comments <u>funged 5 volumes (544 69)</u> w/ peristaltic pump # dodicated Tubing from 1430 to 1445 Sampled w/ declicated tetlon bailer at 14:50 for 3 x 40 ml VCA visits (TCL VOAs) (Sumple id wt092101-F6-MW9	۶۶ <u>ا</u> ک
I CERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS	
CRA <u>92101</u> Frank Garba <u>Frank</u> Jahr	

WELL PURGI	NG FIELD INFOI	RMATION I	FORM JC	DB# 1 5 8 6 7 -
SITE/PROJEC	T NAME: 213	7 Senecal St	Parcel 25 ite V	VELL# $M \omega q$
L 2 7 0 PURGE DATE (MM DD YY)		DATE YY)	WATER VOL. IN CASING (LITRES/GALLONS)	ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENT	~ ~ ~	ING AND SAMPLIN		NG EQIPMENTDEDICATED Y N (CIRCLE ONE)
PURGING DEVICE	B A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP G C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY) X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE x(SI	D - POLYPROPYLENE E - POLYETHYLENE PECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLENE	SAMPLING OTHER (SPECIFY) X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSAB	LE B - PRESSURE		
WELL ELEVATION DEPTH TO WATER pH	L 6 9 5 L 6 9 5	FIELD MEASUREN	GROUNDWATER ELEVATION WELL DEPTH	(m/ft) SAMPLE TEMPERATURE
6 4 (std) 6 6 (std) 6 7 (std)	43 (ntu) 316 (ntu) 66 (ntu)	2 5 C	(μm/cm) AT 25°C	627 gor
666 (std)	$ \begin{vmatrix} \mathbf{S} & \mathbf{F} \\ \mathbf{S} & \mathbf{F} \end{vmatrix} $ (ntu)	1 4 9 0	(μπ/cm) AT 25°C (μπ/cm) AT 25°C	6 1 7 (%)°F
SPECIFIC COMMENTS	ClearODOR: VIND SPEED Had to put p out cloudy; but ww- 112701 - JP-00	cleased up	_color: <u>Clear</u> precipitation(?) a low speed to	TURBIDITY: <u>min.tonone</u> NOUTLOOK <u>It. Pain</u> Sallow for recharge.
CRA LI 27	HAT SAMPLING PROCEDURES WERE F 01 Jane Pietro PRINT		PPLICABLE CRA PROTOCOLS	

	NG FIELD INFORMATION FORM JOB# 1 5867.	
SITE/PROJEC	TNAME: Parcel 2 - Seneca St. RFI WELL# MW-9	ŀ
09210 PURGE DATE	SAMPLE DATE WATER VOL. IN CASING ACTUAL VOLUME PURGED	
(MM DD YY)	(MM DD YY) (LITRES/GALLONS) (LITRES/GALLONS) PURGING AND SAMPLING EQUIPMENT	
PURGING EQUIPMENT		
PURGING DEVICE	G A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X- B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING OTHER (SPECIFIC)	·Y)
SAMPLING DEVICE	<u>G</u> C - BLADDER PUMP F - DIPPER BOTTLE X- SAMPLING OTHER (SPECI	
PURGING DEVICE	A - TEFLON D - PVC X- B - STAINLESS STEEL E - POLYETHYLENE PURGING OTHER (SPECIF	
SAMPLING DEVICE	A C - POLYPROPYLENE X	FY)
PURGING DEVICE	A - TEFLON D - POLYPROPYLENE F - SILICONE X~ B - TYGON E - POLYETHYLENE G - COMBINATION PURGING OTHER (SPECIF C - POPE X - TEFLON/POLYPROPYLENE X -	·Y)
SAMPLING DEVICE	(SPECIFY) SAMPLING OTHER (SPECI	FY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B - PRESSURE C - VACUUM	
WELL ELEVATION DEPTH TO WATER PH 7,443 (std) 7,60 (std) 7,86 (std) (std) (std)	FIELD MEASUREMENTS GROUNDWATER ELEVATION S8955 (m/ft) B1017 (m/ft) CONDUCTIVITY SAMPLE TEMPERATURE S1211 (ntu) 4180 (µm/cm) AT25°C 870 (ntu) 41970 (µm/cm) AT25°C 870 (ntu) 9870 (µm/cm) AT25°C 9870 (ntu) 9870 (µm/cm) AT25°C 9870 (ntu) 9870 (m/cm) AT25°C 9870 (m/cm) AT25°C 9870 (m/cm) AT25°C 9870 (m/cm) AT25°C 9870 (m/cm) AT25°C	۳ ۲
PECIFIC COMMENTS	<u>Acc</u> FG ODOR: <u>NONE</u> COLOR: <u>tan-gray</u> TURBIDITY: <u>turbid</u> <u>JINDSPEED</u> <u>NOAR</u> DIRECTION <u>NA</u> PRECIPITATION Y SDOUTLOOK <u>SUNNY/686</u> <u>Purged 3 volumes (9.0 Gals) w/ dedicated tetton</u> <u>(ord from 15'.(5 to 16:00 (Well did Not clear during</u> <u>(ord from 15'.(5 to 16:00 (Well did Not clear during</u> <u>it).</u> <u>Sampled with dedicated tetton barler at 16:10</u> <u>m(VOA vigle (T(L VOCs)</u> <u>Sample id w-092101-F6-M</u>	
$CRA = \frac{\frac{1}{2}}{\frac{1}{2}}$	HAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS Frank Garbe PRINT SIGNATURE	

WELL PURGI	NG FIELD INFOR	MATION I	FORM J	OB# [5 8 6 7 -
SITE/PROJEC	T NAME:			WELL#
2 ジ O PURGE DATE (MM DD YY)	SAMPLE D. (MM DD Y	 ΑΤΕ Υ)	WATER VOL. IN CASING (LITRES/GALLONS)	ACTUAL VOLUME PURGED
PURGING EQUIPMENT		NG AND SAMPLIN	-	LING EQIPMENTDEDICATED Y N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL A C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY) X
· PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SPE	D - POLYPROPYLENE E - POLYETHYLENE CIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLENE	SAMPLING OTHER (SPECIFY) X- PURGING OTHER (SPECIFY) X- SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45 WELL ELEVATION DEPTH TO WATER		FIELD MEASUREN		(m/ft)
pH (std) (std) (std) (std) (std) (std) (std) (std)	TURBIDITY 7 0 3 7 (ntu) 1 4 (ntu) 1 4 4 4 8 (ntu) 1 4 8 1 1 1 1 4 8 1	CONDUCTIVITY	● AT 25°C (μm/αn) ● AT 25°C	SAMPLE TEMPERATURE 5555 (x) $cf561$ (x) $cf5555$ (x) $cf560$ (x) cf
AMPLE APPEARANCE:	wind speed ODOR: Sample ID: Gi		ITS _COLOR:Clec PRECIPITATION (WW OUTLOOK St. rain
$CRA \frac{2 6 07}{DATE}$	HAT SAMPLING PROCEDURES WERE IN J. Pietras 2 PRINT		PPLICABLE CRAFROTOCOLS	

				
WELL PURG	ING FIELD INFO	ORMATION	FORM	JOB# 1 5 8 6 7
SITE/PROJEC	CT NAME: $\rho_{\underline{\alpha}}$	rcel 2 - Serve ca	STRFI	WELL# M W - 1 O
		WELL PURGING INFO	ORMATION	
1 1019121010		0 0		
PURGE DATE (MM DD YY)		PLE DATE DD YY)	WATER VOL. IN CASI (LITRES/GALLONS	
		RGING AND SAMPLIN	-	
PURGING EQUIPMENT	(CIRCLE ONE)		5/	AMPLING EQIPMENTDEDICATED 🕥 N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUM B - PERISTALTIC PUMP		G - BAILER H - WATERRA®	
SAMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE	H - WATERRAG	purging other (specify) x- <u>Peristaltic tubing</u>
				SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - POLYPROPYLENE	tubing		x
				SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON	D - POLYPROPYLENE E - POLYETHYLENE	F - SILICONE G - COMBINATION	X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - ROPE x-		TEFLON/POLYPROPY	A-
FILTERING DEVICES 0.45	A - IN-LINE DISPO	(SPECIFY) SABLE B - PRESSUR	E C - VACUUM	SAMPLING OTHER (SPECIFY)
		FIELD MEASURE		
WELL ELEVATION	1 1 15181910	_	GROUNDWATER	58360 met
DEPTH TO WATER			ELEVATION WELL DEPTH	
рН	TURBIDITY	CONDUCTIVITY		SAMPLE TEMPERATURE
7.05 (std)	> 2 00 (ntu)	830) (μm/cm) Α Τ-25 °C	GI3 m°F
Ge & O (std)	949 (ntu)	92K	(µm/cm) ▲∓25°C	S?S & F
660 (std)	>200 (ntu)	940	μm/cm) - • ΑΤ 25° C	S98 m°F
GJSS (std)	974 (ntu)	970	(μm/cm) AT 25°C	GP 8 mor
6 4 1 (std)	792 (ntu)	940	μm/cm) Α τ-25° C	60 9 ceroF
		FIELD COMME	NTS	
SAMPLE APPEARANCE:			COLOR: bro.	
WEATHER CONDITIONS: SPECIFIC COMMENTS	WIND SPEED moderation	ts direction from	NW PRECIPITATI	ON YADOUTLOOK NONE
	volumes (4 Gals) w/ peristalt	cprmp (d	edicated polypropylene
	rged From OAn	\ . \		USING ONLY polypropylen
TALS (TEL	4 SUCTION LIFT	er amber slass	14:30 Pm. (for TCL S	vacs) also collected
		rsdiec sout	Sample id	EGOM 112
	THAT SAMPLING PROCEDURES WI	ERE IN ACCORDANCE WITH	APPLICABLE CRA PROTOC	COLS
0120			+ 1 1	
CRA <u>q</u> 22 DATE	PRINT		SIGNATURE	

			•	
WELL PURGIN	G FIELD INFO	RMATION	FORM	JOB# 1 5 8 6 7
SITE/PROJECT	NAME: <u>Par</u>	riel 2 - Seve	ca St RFI	WELL# $MW - I O A$
		ELL PURGING INF	ORMATION	
092001 PURGE DATE (MM DD YY)	SAMPLE I (MM DD	DATE	WATER VOL. IN CASIN (LITRES CALLONS)	
PURGING EQUIPME NT DI		ING AND SAMPLIN		MPLING EQIPMENTDEDICATED Y N (CIRCLE ONE)
PURGING DEVICE	B - SUBMERSIBLE PUMP B - PERISTALTIC PUMP	D - GAS LIFT PUMP E - PURGE PUMP	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE		x- <u>Peristaltic tubing</u> SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - POLYPROPYLENE	obing		XSAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON	D - POLYPROPYLENE E - POLYETHYLENE	F - SILICONE G - COMBINATION	X PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - ROPE X(S)	PECIFY)	TEFLON/POLYPROPYL	SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSAB	BLE B - PRESSUR	E C - VACUUM	
WELL ELEVATION DEPTH TO WATER		FIELD MEASURE (m(ft)) (m(ft))	MENTS GROUNDWATER ELEVATION WELL DEPTH	57805 (math)
pH 7↓ <i>i</i> _ S _(std)	TURBIDITY $ 7 0 6$ (ntu)			SAMPLE TEMPERATURE $ G O O F$
708 (std) >	2000 (ntu)	1740	μm/cm) Α Τ-25° C	60000
7,23 (std)	& 2 O (ntu) & 5 4 (ntu)	6 30	(μm/cm) ΑΤ-26°C (μm/cm)	583 00°F
(std)	520 (ntu)	6 Sp	-● AT-25°C (μm/cm) -● AT-25°C	SG740F
		FIELD COMME	NTS	
SAMPLE APPEARANCE:	odor: DSPEED <u>mod.gusts</u> Purged 5 volum			un TURBIDITY: <u>turbid</u> DN Y (GOUTLOOK <u>Nique expected</u> istaltic pump and
	12:20 Pm vsing	e). Purged + periestatic +	whing poly pro	m to 12:15 Pm.
Sample id	device. Collect w-092001.	ed 3x 10	mI VOA J.	als for TCL VOCS
$\frac{1 \text{ CERTIFY THAY}}{\text{CRA}} = \frac{9/26}{26}$	T SAMPLING PROCEDURES WERE		Franke X	mh
DATE T	PRINT		SIGNATURE	

	•								
WELL PURGING	FIELD INFOR	MATION F	FORM	JOB#	1 5	86	7-	-	-
SITE/PROJECT N	AME: Parce	12 - Seneca S	STRFI	WELI	_#	M	w -	-1	1
092101 PURGE DATE (MM DD YY)	O A 2 Í SAMPLE D. (MM DD Y)	(Y)	WATER VOL. IN CASING (LITRES/GALLONS)			JAL VOLU LITRES/G/	ME PURG		
PURGING EQUIPME NT DEDIC		NG AND SAMPLIN	~	MPLING EQ	IPMENT	ſDE		CLE ON	NE
PURGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®		x		OTHER (S	PECIFY)	
PURGING DEVICE C	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE – + الم	D-PVC E-POLYETHYLENE			x	PURGING	OTHER (SI	PECIFY)	
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SPE	D - POLYPROPYLENE E - POLYETHYLENE CIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLE	NE	x	PURGING	OTHER (SI	PECIFY)	
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABL		C - VACUUM						
	5 9 0 4 0 9 2 9 JRBIDITY 3 7] (ntu)		GROUNDWATER ELEVATION WELL DEPTH			111 75 Empera 64		(m) (m) (m) (m))
686 (std) 678 (std) 690 (std)	83 (ntu) 20 (ntu) 80 (ntu)	7 3p 7 2 0 7 0p	(µm/cm) + AT 25° C (µm/cm) AT 25° C (µm/cm) A T 25 °C (µm/cm)			63 63 63			
SAMPLE APPEARANCE:		FIELD COMMEN	• AT 25°C	<u>ιν tint</u> π			<u>e</u> ur	•	
weather conditions: wind sp specific comments <u>p</u>	EED <u>None</u> Jrgrd S Jolun 12: Solm to 13 130 pm Bir	DIRECTION NA <u>NA</u> (G.76) Silopa Sc Gx 40, nl va	precipitation (15) w/ perils ampled w/ ampled w/ am	N Y& OUTI Staltic f Ledi	.00K Cump Cate	<u>su</u> <u>F</u> d dto and	edic flun inclu	ia tec ided	
$\frac{2}{CRA} = \frac{9}{2} \frac{1}{6}$	MPLING PROCEDURES WERE IN Frank Garba	accordance with ap							

WELL PURGI	NG FIELD INFOI	RMATION I	FORM JO	OB# 1 5 8 6 7 -
SITE/PROJEC	T NAME:			WELL#
U U Z 8 0 PURGE DATE (MM DD YY)		YY)	WATER VOL. IN CASING	ACTUAL VOLUME PURGED
PURGING EQUIPMENT	22	ING AND SAMPLIN		ING EQIPMENTDEDICATED Y N (CIRCLE ONE)
PURGING DEVICE SAMPLING DEVICE	B A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP G C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X- PURGING OTHER (SPECIFY) X- SAMPLING OTHER (SPECIFY)
PURGING DEVICE	C A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY) X
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SF	D - POLYPROPYLENE E - POLYETHYLENE PECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLENE	SAMPLING OTHER (SPECIFY) X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSAB	LE B - PRESSURE	C - VACUUM	
WELL ELEVATION DEPTH TO WATER pH 107 (std)	$\begin{array}{ } \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	FIELD MEASUREN (m/ft) (m.(tt) CONDUCTIVITY (950 (050)	GROUNDWATER ELEVATION WELL DEPTH	(m/ft) (m/ft) $SAMPLE TEMPERATURE$ $[S 9 7 6]^{\circ}F$ $[S 9 5 6]^{\circ}F$
(std)	(ntu)		(μπ/cm) AT 25°C (μπ/cm) AT 25°C (μπ/cm) AT 25°C	(°C)
		FIELD COMMEN		
	VIND SPEEDODOR: Sanple ID: 6w talin at this well	Clean DIRECTION - 11280/-JP- C3X40m1voc	PRECIPITATION	DI OUTLOOK Strain
I CERTIFY T	HAT SAMPLING PROCEDURES WERE II	N ACCORDANCE WITH AI	PPLICABLE CRA PROTOCOLS	
	PRINT		SIGNATURE	

····			•	
WELL PURGING	FIELD INFO	RMATION I	FORM	JOB# 1 5 867
SITE/PROJECT N	IAME: <u>Pa</u>	rcel 2 - Serve ca	St.RFI	WELL# M - A
PURGE DATE (MM DD YY)	O92 SAMPLE (MM D	D YY)	WATER VOL. IN CASING (LITRES/GALLONS)	G ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPMENTDEDI		GING AND SAMPLIN		MPLING EQIPMENTDEDICATED 🍄 N (CIRCLE ONE)
PURGING DEVICE G	B - PERISTALTIC PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X	D - POLYPROPYLENE E - POLYETHYLENE SPECIFY) BLE B - PRESSURE	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLE C - VACUUM	X PURGING OTHER (SPECIFY)
6.96 (std)	1 5 9 2 0 1 9 2 0 7 (ntu) 0 7 (ntu) 1 1 9 1 0 7 (ntu) 1 1 1 1 1 1 1 1 1 1 1 1 1 (ntu) (ntu) 1 1 (ntu)	FIELD MEASUREN	GROUNDWATER ELEVATION WELL DEPTH (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C	57829 (m(F)) SAMPLE TEMPERATURE 634 € 0°F 599 0°F 599 0°F (°C) (°C)
(6.5 Gc/s) to d Sample at 15: w-092001-F6	15ed dedicated Myncss Brom 15 Pm for 3 x	DIRECTION from L tofion ba 13:45 pm to 40 ml VoA U	NW PRECIPITATION Lev to pur 14!05 USe inli (7CL V	d didicated bailer to OCS). Semple id

WELL PURGI	NG FIELD INFOI	RMATION I	FORM	JOB# 5 8 6 7 -
SITE/PROJEC	T NAME:			WELL# $\mu \omega \iota \iota A$
PURGE DATE (MM DD YY)	SAMPLE I (MM DD	YY)	WATER VOL. IN CASING (LITRES GALLONS)	ACTUAL VOLUME PURGED (LITRES/GALLONS)
PURGING EQUIPME NT	~	ING AND SAMPLIN		PLING EQIPMENTDEDICATED Y N (CIRCLE ONE)
PURGING DEVICE	G A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP G C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G - BAILER H - WATERRA®	X PURGING OTHER (SPECIFY) X SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - STAINLESS STEEL A C - POLYPROPYLENE	D - PVC E - POLYETHYLENE		X- PURGING OTHER (SPECIFY) X- SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON B - TYGON C - ROPE X(SI	D - POLYPROPYLENE E - POLYETHYLENE PECIFY)	F - SILICONE G - COMBINATION TEFLON/POLYPROPYLEN	X PURGING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSAB			
WELL ELEVATION DEPTH TO WATER pH (O S (std) 8 7 (std) (std) (std) (std)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		GROUNDWATER ELEVATION WELL DEPTH (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C (µm/cm) AT 25°C	(m/ft) $($
SAMPLE APPEARANCE:	ODOR:	FIELD COMME		TURBIDITY: Cloudey
-	VIND SPEEDOLON	DIRECTION	PRECIPITATION	DN OUTLOOK Ken
$\frac{2/4}{DATE}$	HAT SAMPLING PROCEDURES WERE I 2 JPictrasz PRINT		PPLICABLE CRA-PROTOCOL	\sim

APPENDIX F

WASTE MANIFESTS

	-			$\widehat{\mathcal{A}}$	1				CWMJ			
	ar on for o The show the state of the story of the state			I								
	NON-HAZARDOUS WASTE MANIFEST	1. Generatar's U N. Y. R. O. O	JS EPA ID №. .0.0.9.6.1.3	Manifest Document N	No. of	-	andre andre S		1999-1997 (No. 1997) 1999-1997 (No. 1997) 1997 (No. 1997)			
	3. Generator's Name and Mailing Address FRANCHISE FINANCE CORP 2137 SENECA ST BUFFALO 4. Generator's Phone (716) 297-615	GF AMER NY 14210	-2366	<u> </u>	-							
	5. Mansporter 1 Company Name						A. Transporter's Phone 800 208 9089					
	7. Transporter 2 Company Name	y Name 8. US EPA ID Number				B. Transporter's Phone						
	9. Designated Facility Name and Site Address 10. US EPA ID Number C. Facility's Phone CWM CHEMICAL SERVICES, LLC. 1550 BALMER RD. MODEL CITY NY 14107 NY DO 4.9 8.3 6.6 7.9							(716)754	-823			
	MUDEL CITY NY 14107 N Y D 0 4 9 8 3 6 6 7 9 11. Woste Shipping Name and Description					12. Containers 13. Total						
	•. NON REGULATED MATERIAL					No.		Tyrllow 35 grllow	W1/Vol 458. 165			
GENE	B. NON REGULATED MATERIA				-04	3	DM	2700/ls	9016 Dr			
R A T O	c.)										
Ř	d.					<u> · ·</u>	•	· · <u>· ·</u>				
	-							. <u></u> .				
ľ	D. Additional Descriptions for Materials Listed Above a. CR7602 7 b. CR7603 7 15. Special Handling Instructions and Additional Information CHEMTREC Emergency Response Number (800)424-9300 MML Contract.											
CHEMTREC Emergency Response Number (800)424-9300 WM1 Contract SERVICE REQUEST #												
	16. GENERATOR'S CERTIFICATION: I certify the m	ateriols described ob	ove an this manifest are	not subject to federa	l regulations	for reporting	proper di	sposal of Hazardous	Waste.			
Y	Printed/Typed Name GARY D. Laliber		Signature	Jang D	· da	terty	>	Month Day	Year 0 . /			
TRANSPORTER	17. Tronsporter 1 Acknowledgement of Receipt of / Printed/Typed Name PAVID Foust	Materials	Signature	1 Fort				Month Day	Year bi			
	18. Transporter 2 Acknowledgement of Receipt of / Printed/Typed Name	Naterials	Signature	· · ·				Month Day	Year			
19. Discrepancy Indication Space												
F A												
Y	Printed/Typed Nome JONATHAN SCHEARER		Signature	an Sked	ne		11.5	Month Day 0.5 0.9	Year 01			
		ORIGINAL -	RETURN TO GE	NERATOR								

	RDOUS WASTE MAN 0x 12820, Albany, New Yor				(Hazardous Was	te Manifest			
WASTE MANIFEST		nifest Doc. No.	2. Page 1 of		n within heavy uired by Federa				
3. Generator's Name and Mailing Address FRANCHISE FINANCE CORP. OF AN 2137 SENECA ST	NER				B9543519				
AUPFALO 4. Generator's Telephone Number (716) 297-615 5. Transporter 1 (Company Name)	4210-2366 0 6. US EPA ID Number				B. Generator's ID				
7. Transporter 2 (Company Name)	8. US EPA ID Number	5724	C. State Transporter's ID						
9. Designated Facility Name and Site Address	10. US EPA ID Number		F. Transport G. State Fac	er's Telephone ility ID	e ()				
CWM CHEMICAL SERVICES, LLC. 1550 BALMER RD. MODEL CITY NY 14107	H. Facility Telephone () 716 754-6231								
11. US DOT Description (Including Proper Shipping Name, Haz	zard Class and ID Number)	12. Conta Number		•	4. Unit Vť/Vol I. Wa	aste No.			
^a RO, HAZARDOUS WASTE, LIQUID NA3082,111,(D039, D040)), R.O.S.9.	(002 (001	DF 6	Sgirtles &		9			
ANA 30P2 III (DO39, DU40)	10, N. D. S, 9, - Cd		Q.A.	434	P EPA Do STATE	39			
C					EPA STATE				
d					EPA STATE				
J. Additional Descriptions for Materials listed Above a. CR7604 D040 and a contract of the second se	•	ا چ ا	K. Handling Co a.		es Listed Above				
b. CR7604 Duro da		:	b.		d.				
15. Special Handling Instructions and Additional Information CHENTREC Emergency Response A SERVICE REQUEST	Yumber (800)424-9	300 WMI	Contri	80 5					
16. GENERATOR'S CERTIFICATION: 1 hereby declare that classified, packed, marked and labeled, and are in all respects in r and state laws and regulations. ² If I am large quantity generator. I certify that I have a program in practicable and that I have selected the practicable method of trea and the environment; OR if I am a smaller generator, I have made to me and that I can afford.	proper condition for transport by highway place to reduce the volume and toxicity prient, storage, or disposal currently avai	according to appl of waste generat	icable internation ted to the degree minimizes the plan	nal and nationa e I have deterr resent and futu	al government re mined to be eco ure threat to hum	egulations nomically an health			
Printed/Typed Name GMAY D. LALIBARTY	Signature	The The The	las. A		Mo. Da	y Yea 9,9			
17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	signature for	0			Mo. Da	y Yea			
18. Transporter 2 Kcknowledgement of Receipt of Materials Printed/Typed Name	Signature				Mo. Da	y Yea			
19. Discrepancy Indication Space 12 - Split drums up without putting	Linea - 13 \$ 14, 62 on next lower line	ka,	5=7		÷				
20. Facility Owner or Operator: Certification of receipt of hazardou Printed/Typed Name			in Item 19.		Mo. Day	v Yea			
JONATHAN SCHEARER	Jonathan St	A				, ica			

		(S)											
	NON-HAZARDOUS WASTE MANIFEST	1. Generotor's		5 4 3 4	Manifest Document No.	2. Page of g							
	3. Generator's Name and Mailing Address FRANCHISE FINANCE CORP 2137 SENECA ST BUFFALO. 4. Generator's Phone (716)297-61		•										
	5. Transporter 1 Compony Name FRAMKS UACWEMT 7. Transporter 2 Company Nome	6, US EPA ID Number					A. Transporter's Phone 7/12542/32 B. Transporter's Phone						
	9. Designated Facility Name and Site Address CWM CHEMICAL SERVICES, 1550 BALMER ROAD MODEL CITY NY 14107	L.L.C.	10. NYDC	US EPA ID N		C, Foci	lity's Phone		(716)754-	8231			
	11. Waste Shipping Nome and Description					12. Containers 13. 14 Total Ur No, Type Quantity W1/							
	• NON REGULATED MATERIAL					୨୫	.1.5	D M	1.0.5.0.0				
A T C R	c.						<u> </u>						
	d.								· · · ·				
	D. Additional Descriptions for Materials listed . B. CR7602	oteriols listed Above					E. Handling Codes for Wastes Listed Above						
	15. Special Hondling Instructions and Additional Information CHE MTREC Emergency Response Number (800)424-9300 WMI Contract SERVICE REQUEST # 16. GENERATOR'S CERTIFICATION: 1 carify the materials described above on this manifest are not subject to federal regulations for reporting proper disposal Printed/Typed Name Signature												
									lisposal of Hazardow Month Day	Waste. Year			
	Frank Garbe JAUNE Darks								0.2				
TRANSPORTER	Printed/Typed Name LEE BOEHRINGE	R .	Sigr	de la	Boch	ria	e		Month Day	<u>č</u> čj			
RTE	18. Transporter 2 Adknowledgement of Receipt Printed/Typed Name		Sign	iciure					Month Day	Year			
	19. Discrepancy Indication Space												
FACILITY	20. Focility Owner or Operator: Certification of	ion of receipt of woste materials covered by this manifest except as noted in Item 19.											
	Printed/Typed Name JUNAT HAN SCITEARIE	R	Sign	anathe	-Ale		-		Month Day 0.1 3.0				
		DRIGIN			EDATOR				· · · · · · · · · · ·				

APPENDIX G

WASTEWATER DISCHARGE PERMIT

Permit No.: 01-12-TP081

Expiration Date: December 31, 2002 Date Paid: November 29, 2001

BUFFALO SEWER AUTHORITY

TEMPORARY DISCHARGE PERMIT

Permittee: CONESTOGA-ROVERS ASSOCIATES

Location Address: 2055 Niagara Falls Blvd. Niagara Falls, New York 14304

The above named Permittee is hereby approved to discharge Groundwater only, from

GE CAPITAL FRANCHISE FINANCE CORP. 2137 SENECA STREET, BUFFALO, NEW YORK

to the Buffalo Sewer Authority facilities in accordance with the Buffalo Sewer Authority Regulations, Article VI, Section 14, and subject to the following conditions:

ARTICLE 1 CONDITIONS OF ACCEPTANCE

The discharge of the approved waste by the Permittee shall be subject to the following conditions:

a. <u>Times, Location & Rate</u>

The following location is designated for discharge during the hours listed and subject to the limit for rate of discharge specified:

Location: (see attached map)

Time Discharge is Permitted: 7:00am to 7:00pm

Limit on Rate of Discharge: 300 gals per day during dry weather only

b. <u>Operations</u>

The Permittee shall maintain cleanliness, minimize odors and protect the Buffalo Sewer Authority facilities during the permittee's operations. The Permittee shall not permit any condition to arise which may pose a threat to public health, safety or welfare.

Permit No.: 01-12-TP081

c. <u>Samples and Analyses</u>

The Buffalo Sewer Authority may from time to time, require the Permittee to sample and analyze its waste discharges. Such sampling and analyses shall be performed and results submitted by a New York State Dept. of Health certified laboratory. The analyses required shall be as specified by the Buffalo Sewer Authority, which also reserves the right, at its convenience, to sample wastes discharged by the Permittee.

d. <u>Refusal to Discharge</u>

The Buffalo Sewer Authority may refuse the Permittee permission to discharge wastes at any time and for any reason whatsoever, for the protection of sewer facilities against damage or flooding; to assure the proper operation and maintenance of said facilities; or to protect public health, safety or welfare.

e. <u>Local Limits</u>

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes for the Clean Water Act.

ARTICLE 2 REGULATIONS

The Permittee must conform to all Buffalo Sewer Authority regulations and appropriate Federal, State and County Statutes, rules, mandates, directives, and orders concerning the collection, transportation, treatment and disposal of wastewaters.

ARTICLE 3 INSURANCE AND INDEMNIFICATION

The Permittee, agrees to indemnify and hold harmless the Buffalo Sewer Authority and its agents and employees against any and all claims resulting from work performed under this permit. The permittee shall be solely responsible for any and all injury or damage to its employees or property arising from use of Buffalo Sewer Authority facilities under this permit.

In the event of any alteration, non-renewal or cancellation of these policies, at least (45) forty-five days advance notice shall be given to the Industrial Waste Section, Bird Island Treatment Plant, 90 West Ferry Street, Buffalo, New York 14213 - before such change shall be effective.

Permit No.: 01-12-TP081

ARTICLE 4 TERMINATION FOR VIOLATION OF AGREEMENT

In the event of a violation of any of the terms and conditions of this permit by the Permittee or upon the failure to pay the charges herein specified, the Buffalo Sewer Authority shall terminate the permit by service of notice of termination by registered mail at the Permittee's office address as set forth above.

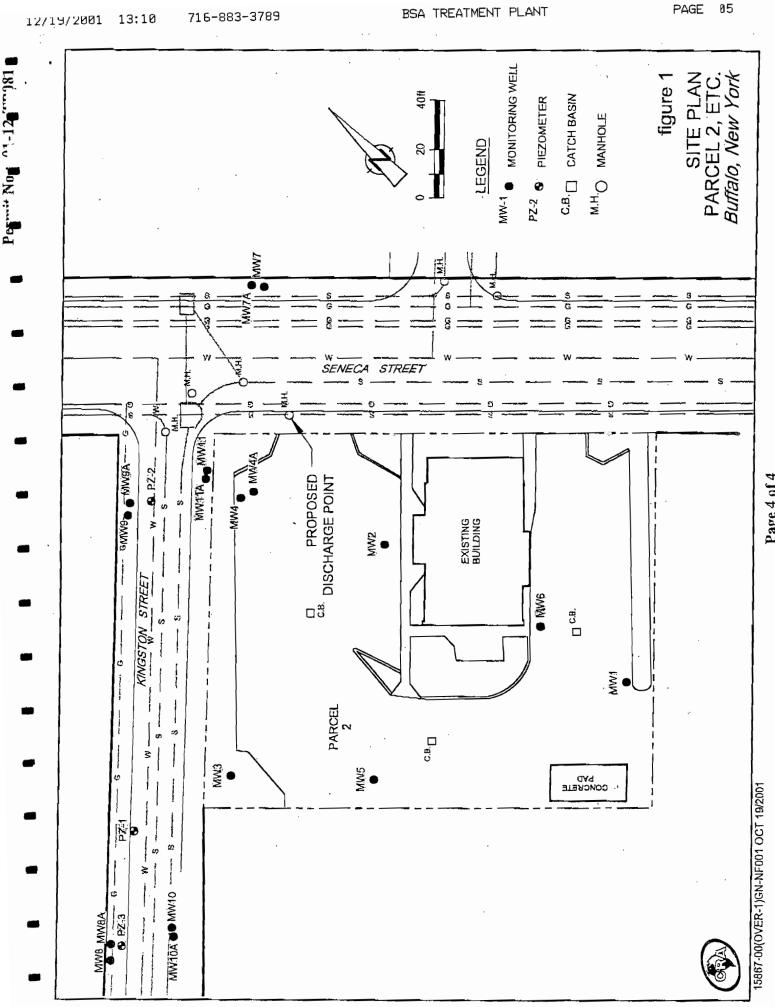
ARTICLE 5 PERMITTEE APPROVAL

Official Signature

1 KGOHS UM Title

ARTICLE 6 BUFFALO SEWER AUTHORITY APPROVAL

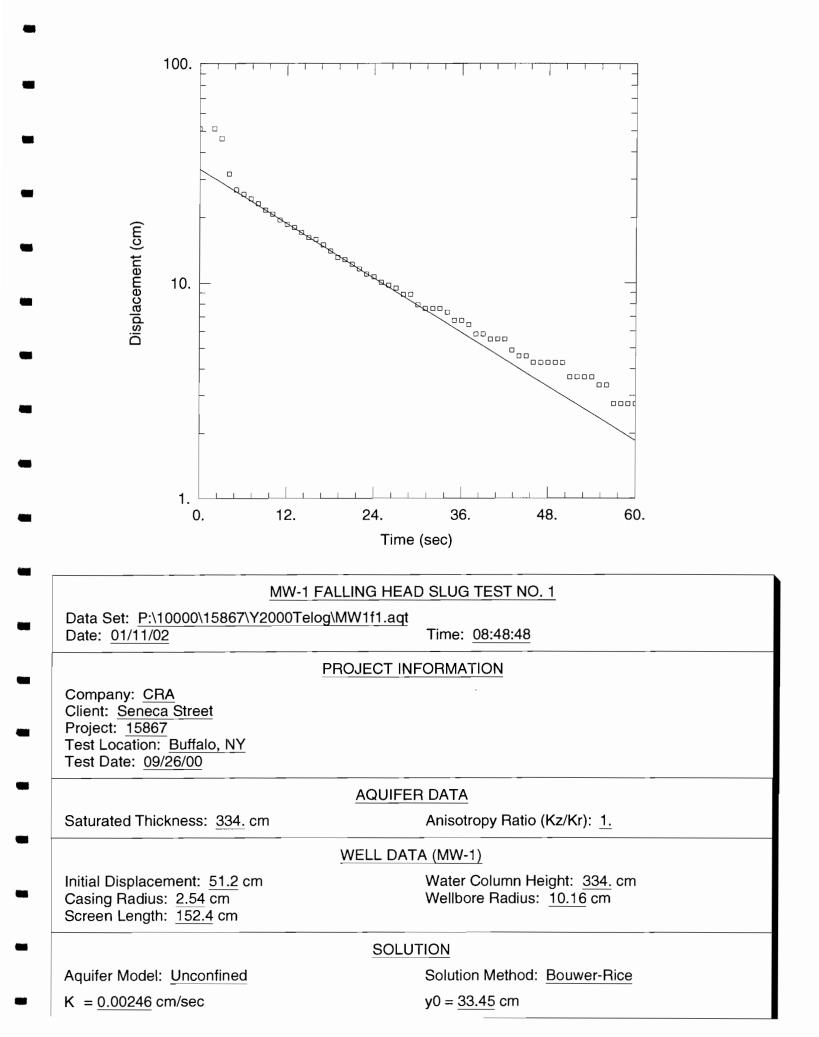
Approved as to Content:

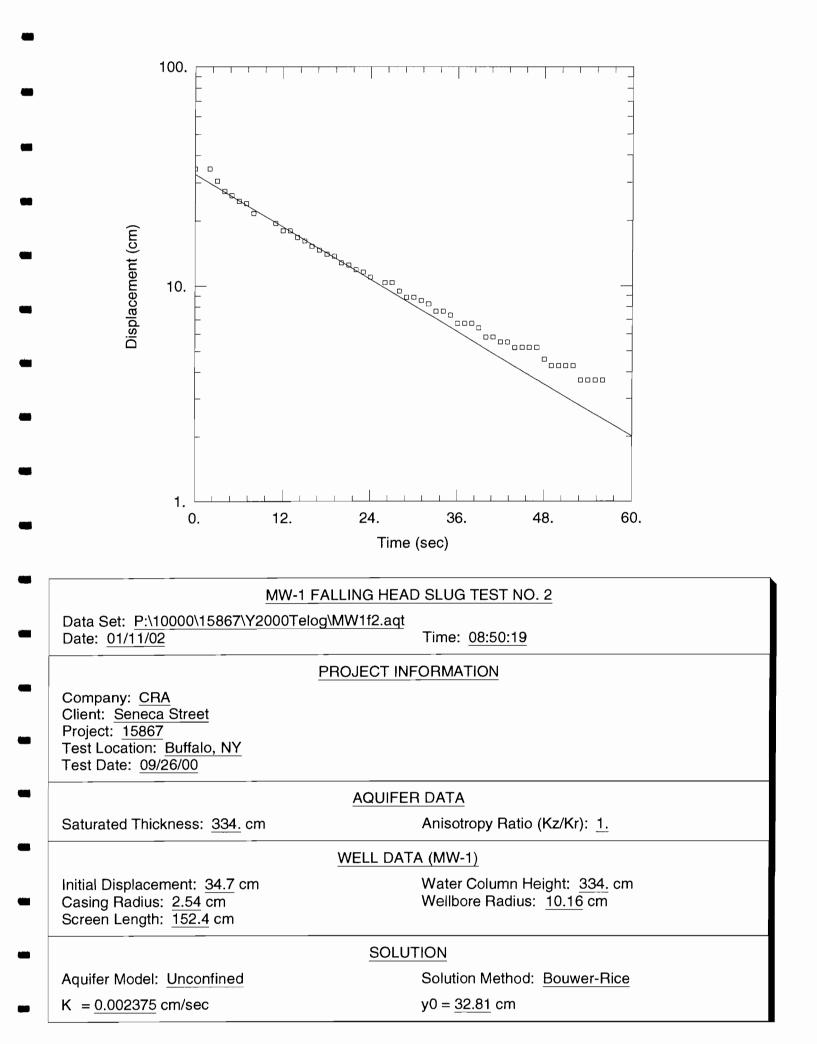

Signature dministrator

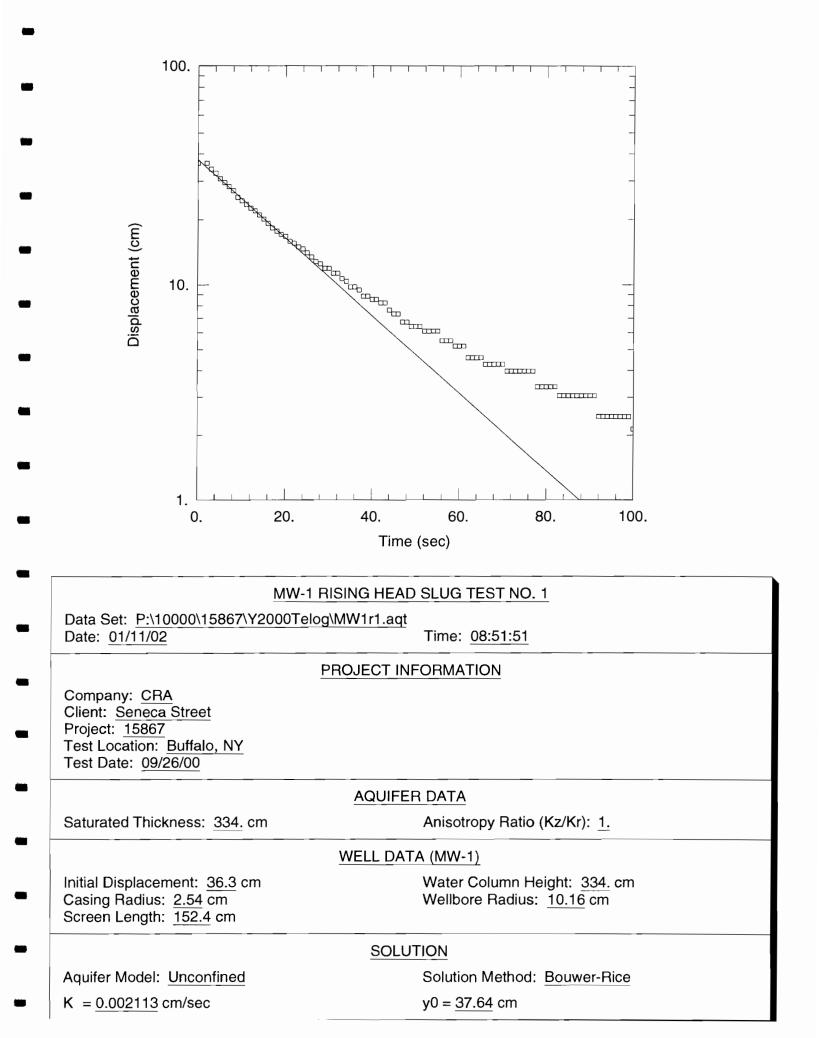
Date 12 19 01

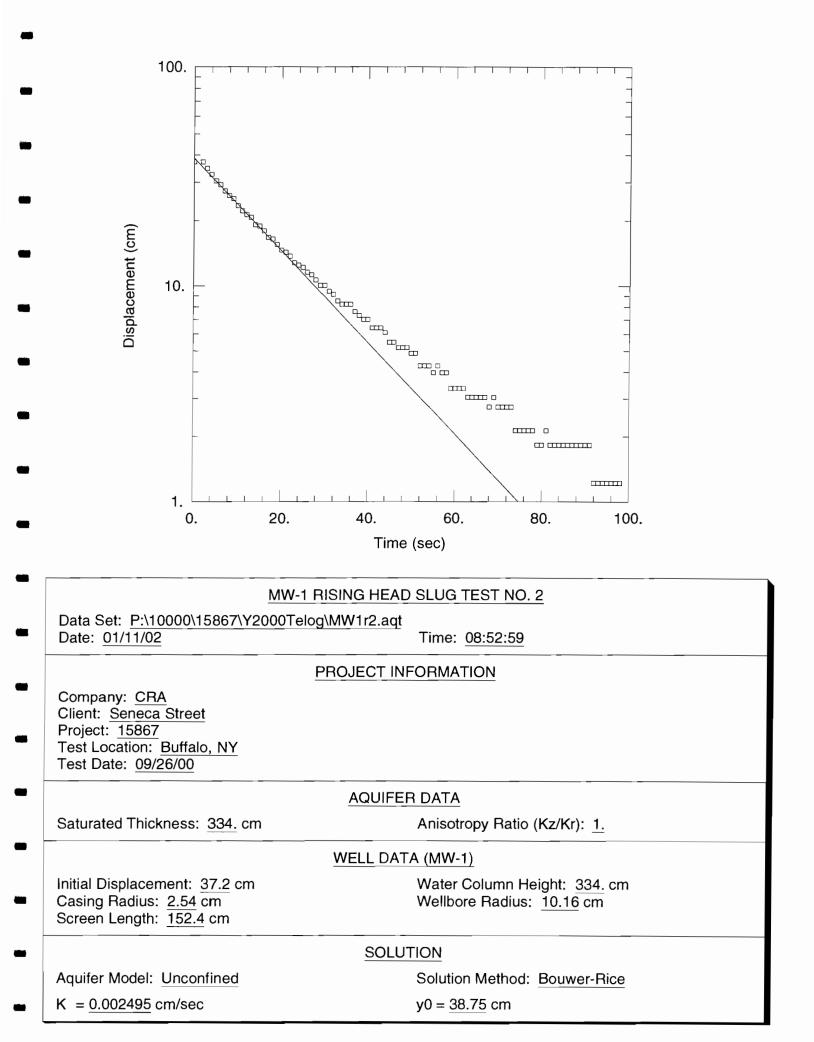
Date

18 day of Effective this General Manager

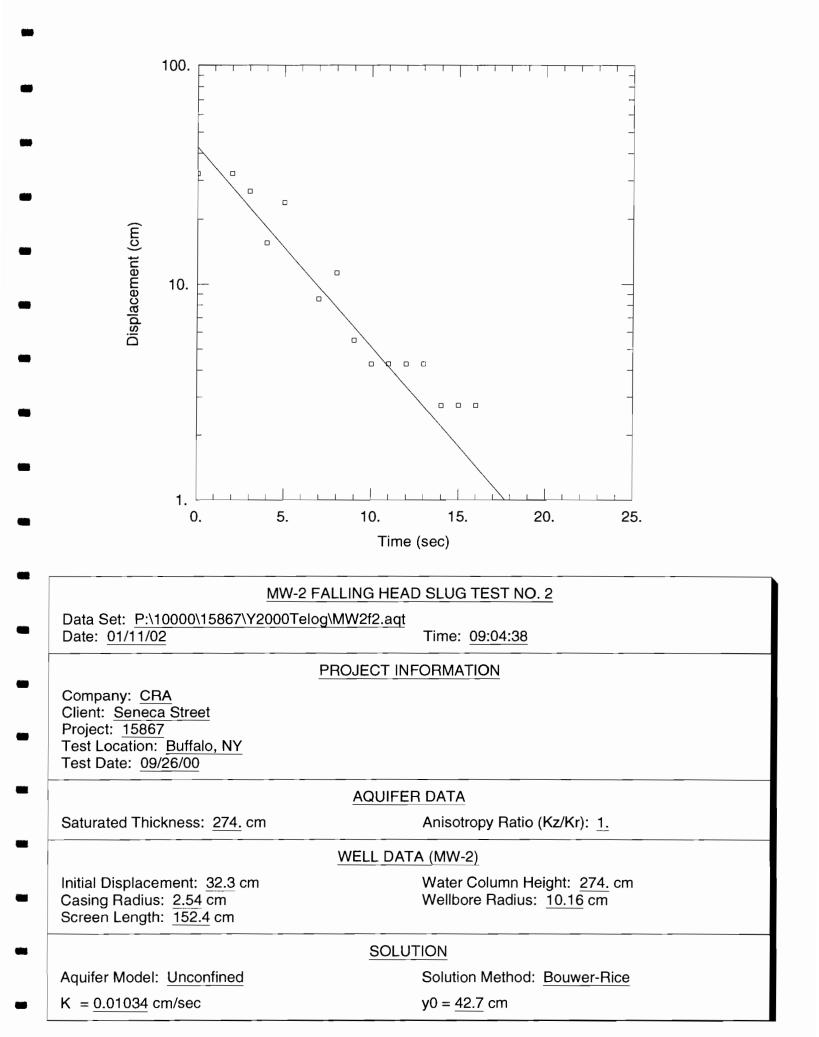

Buffalo Sewer Authority

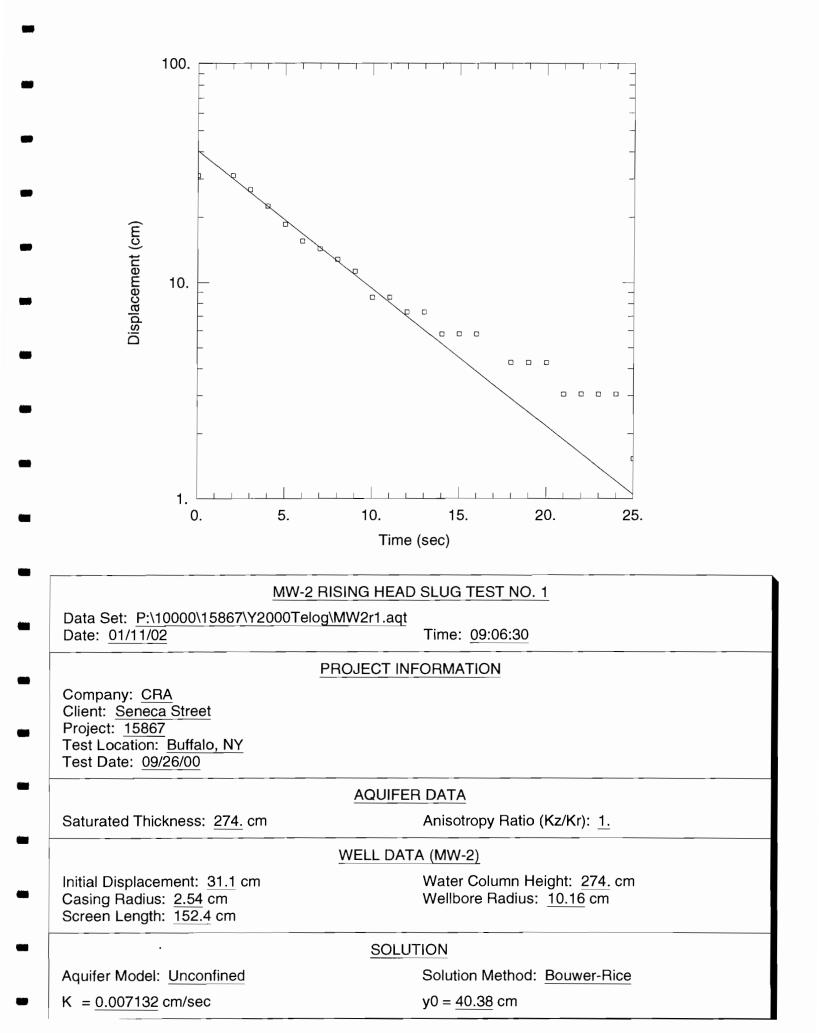


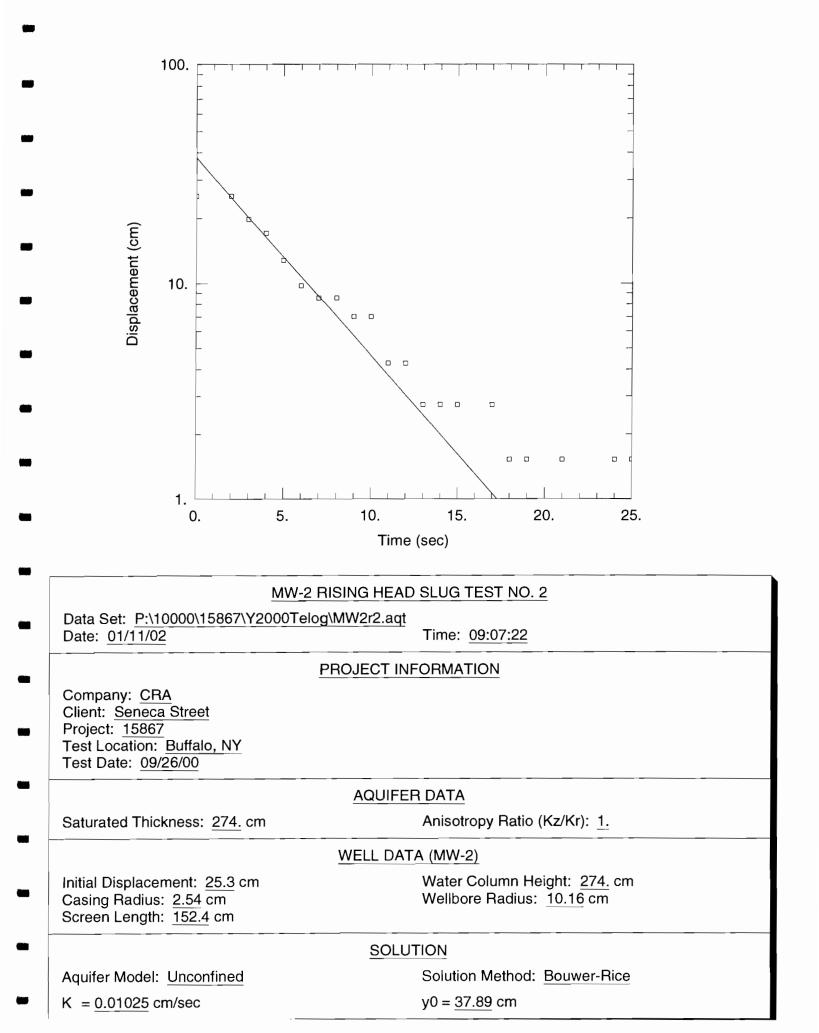

Page 4 of 4

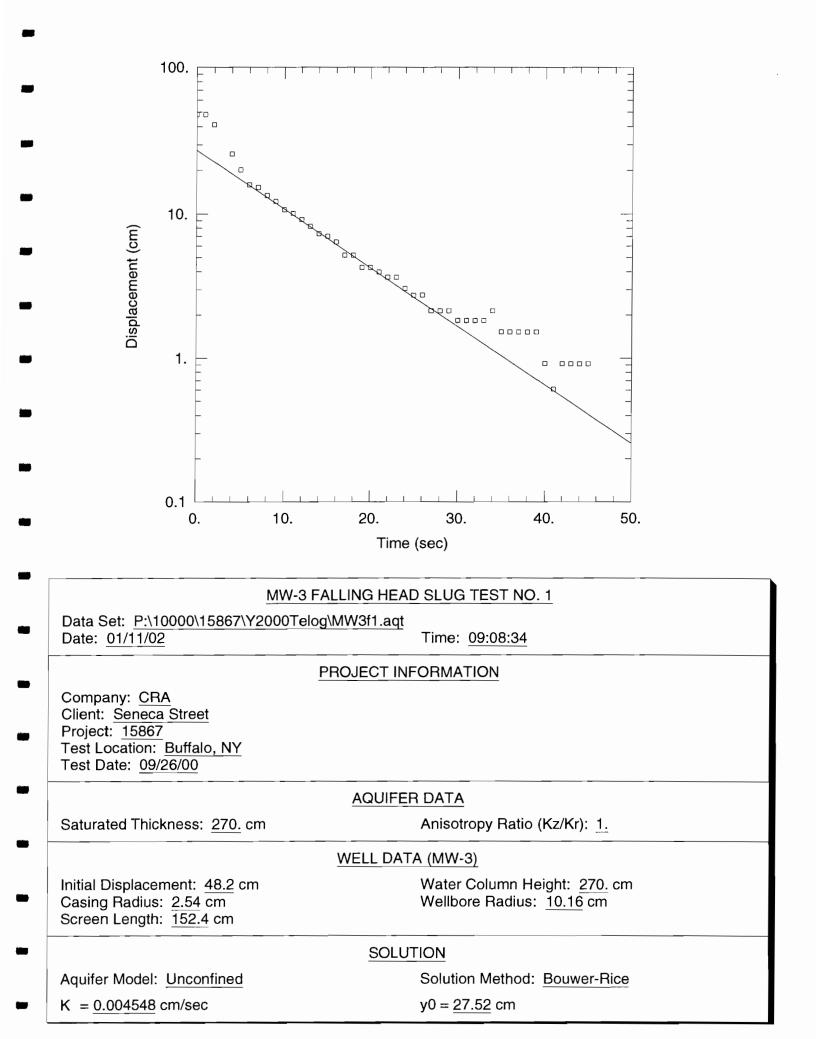

APPENDIX H

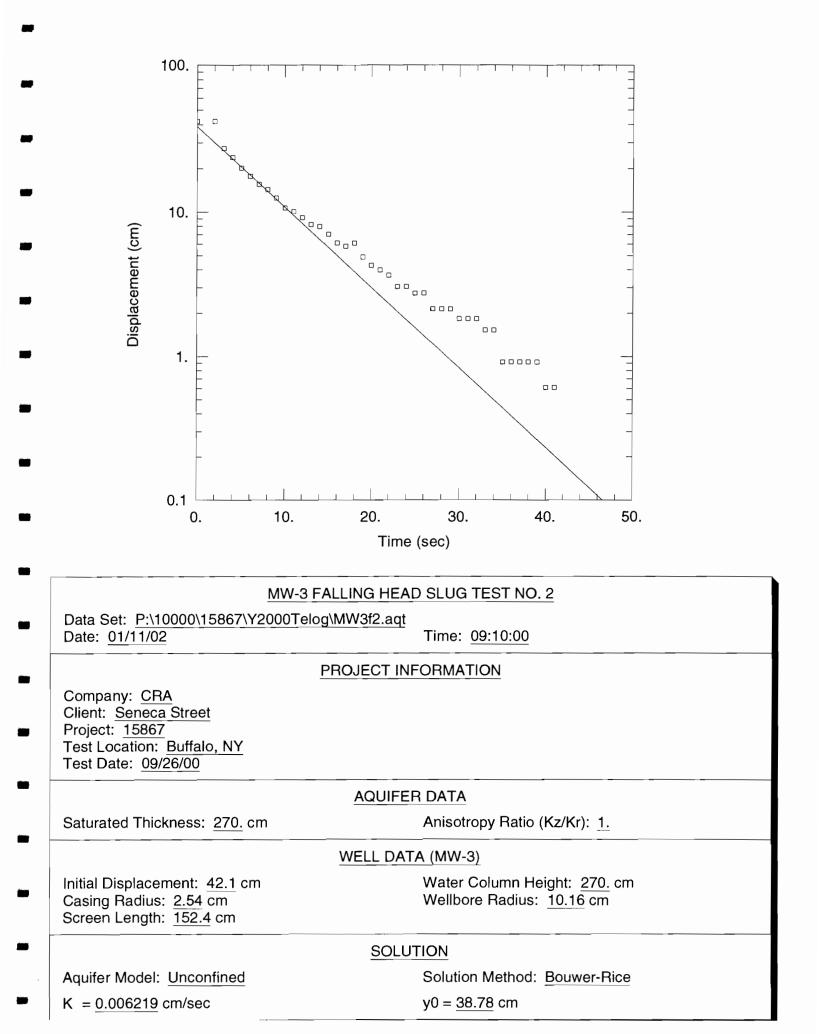
HYDRAULIC CONDUCTIVITY CALCULATIONS

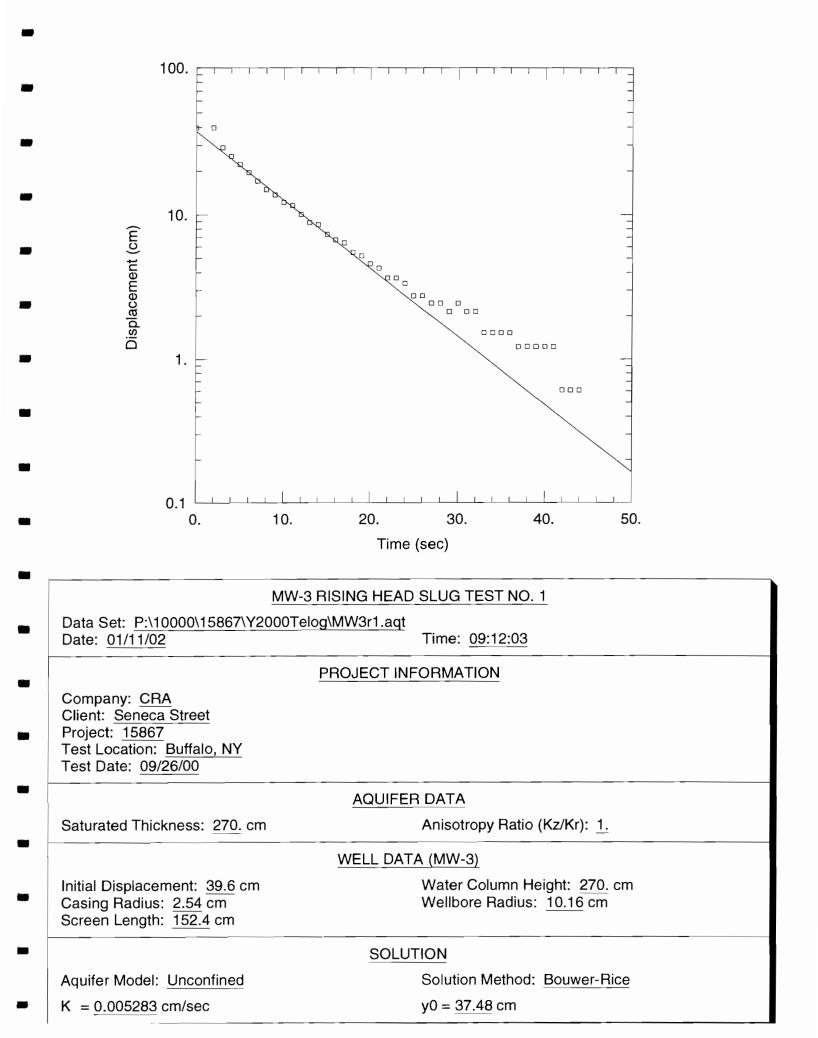


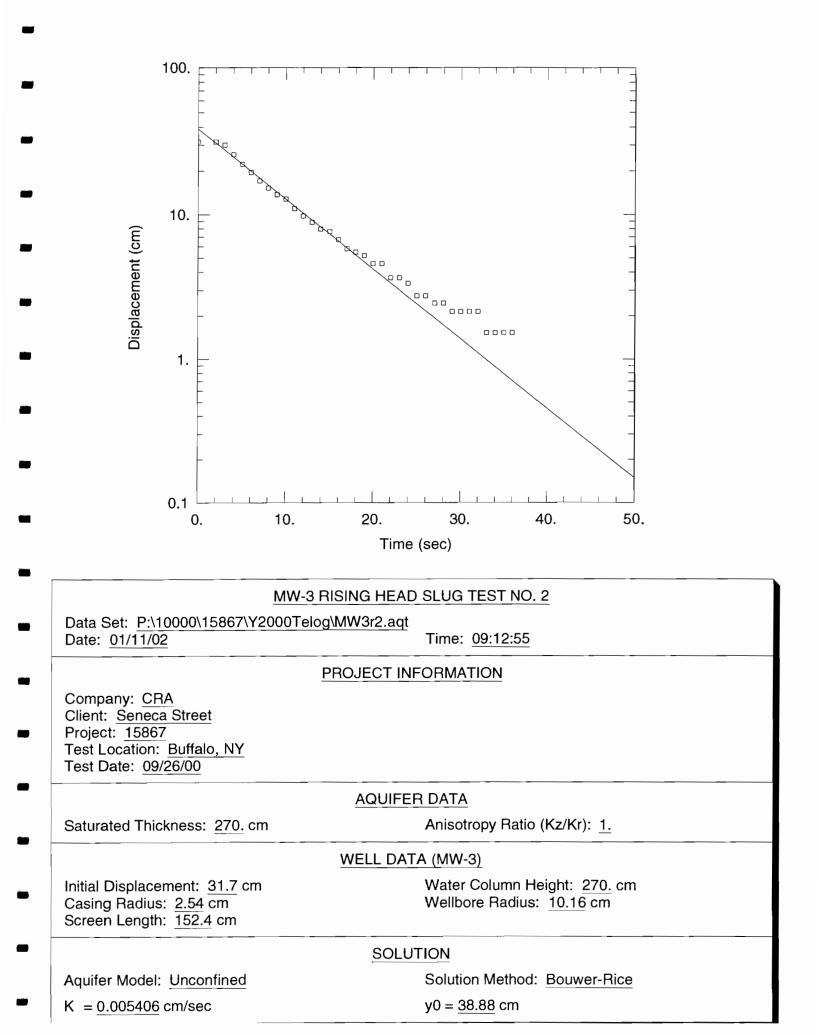


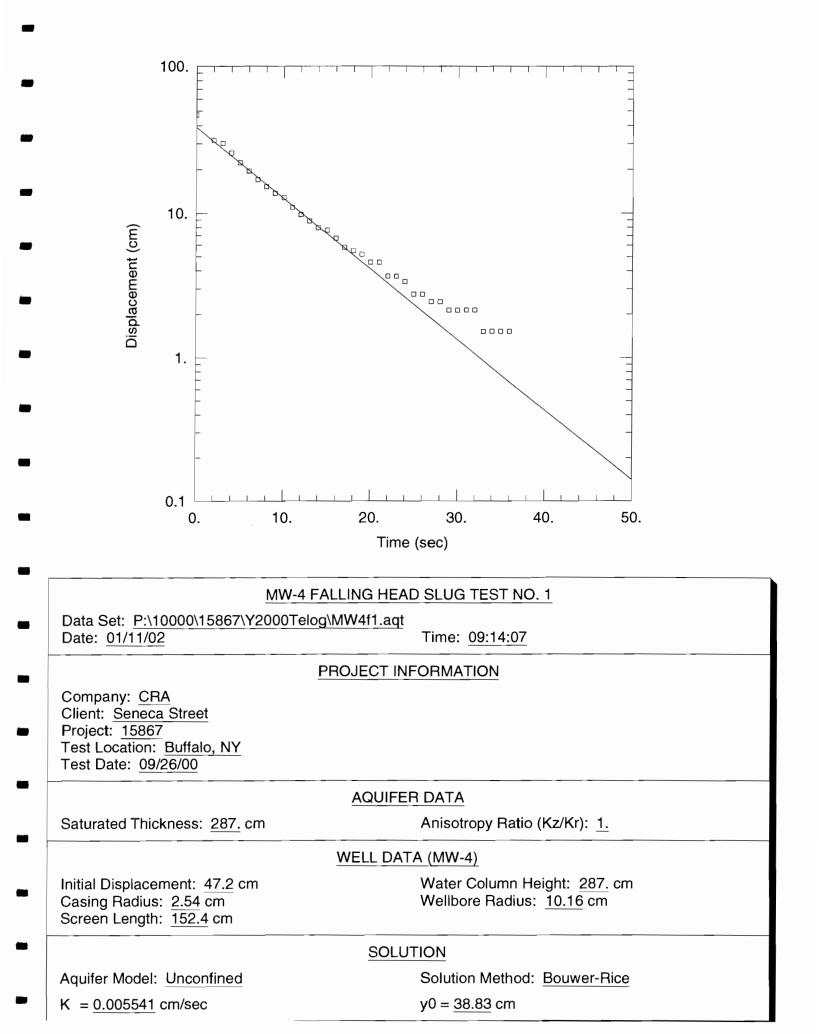


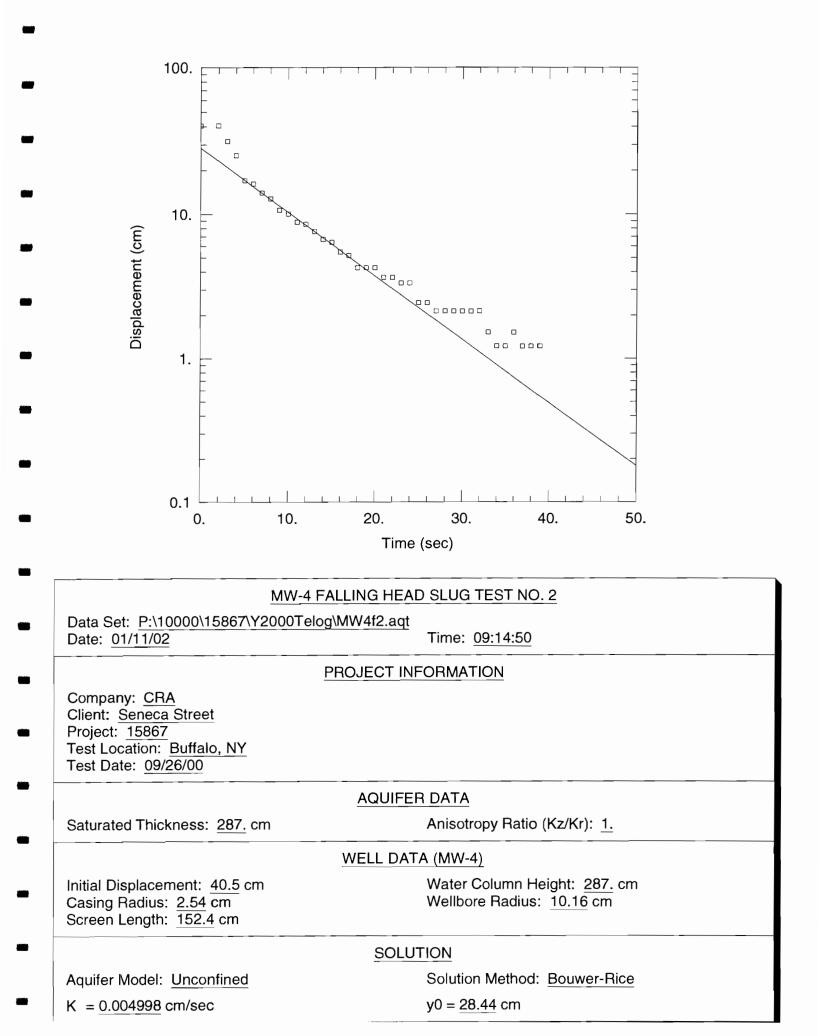


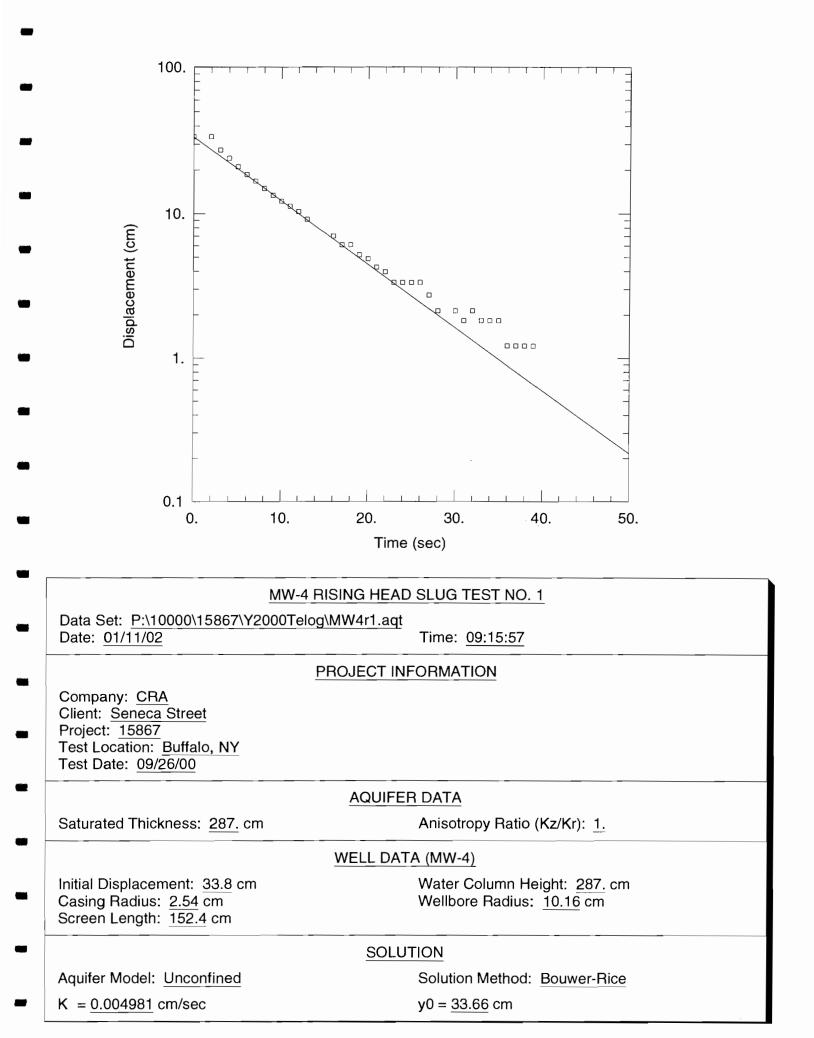


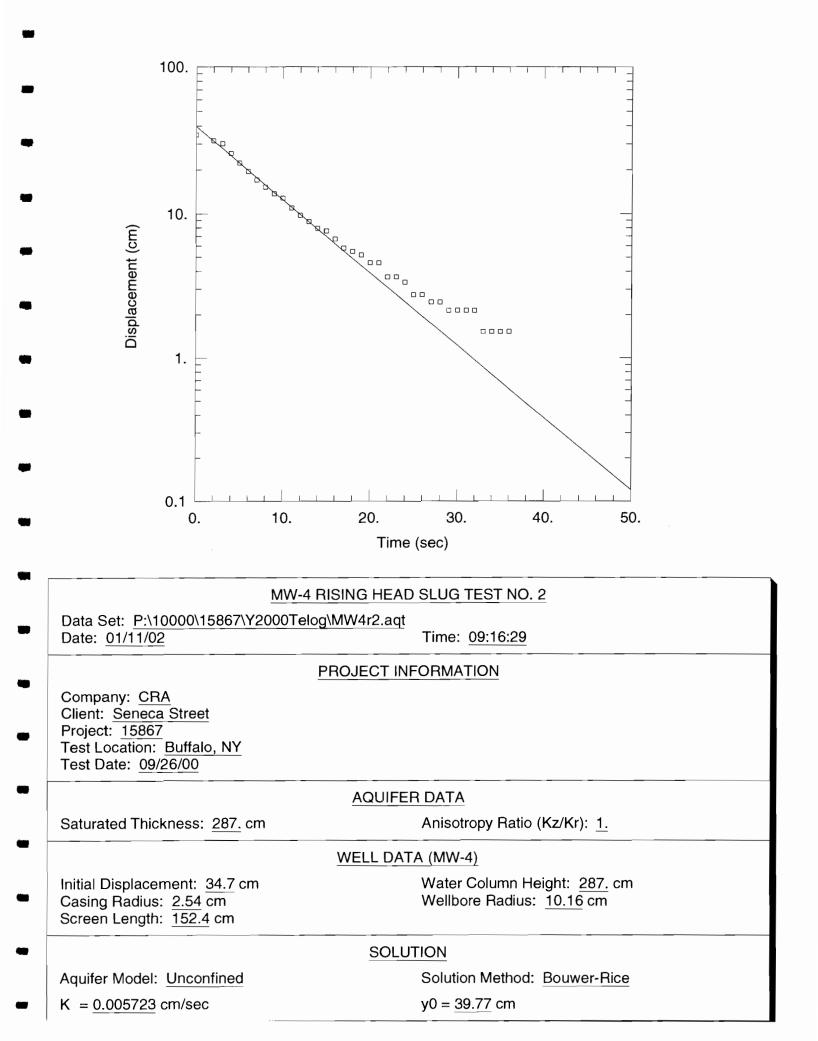


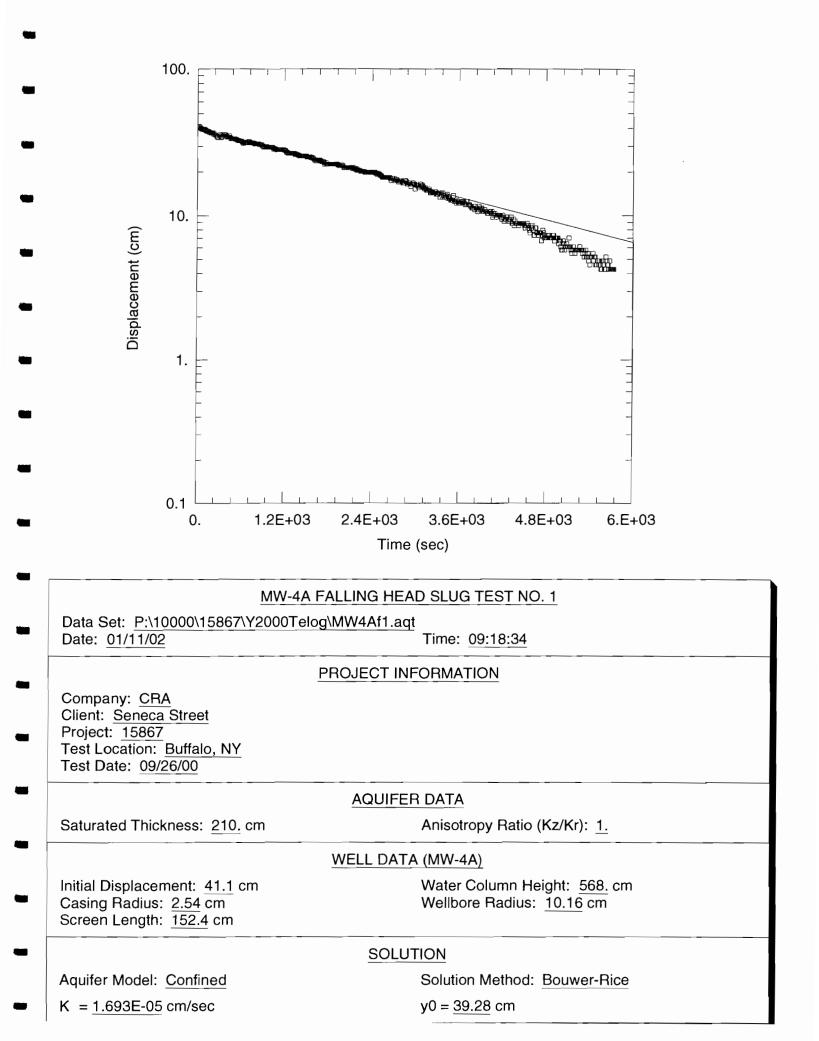


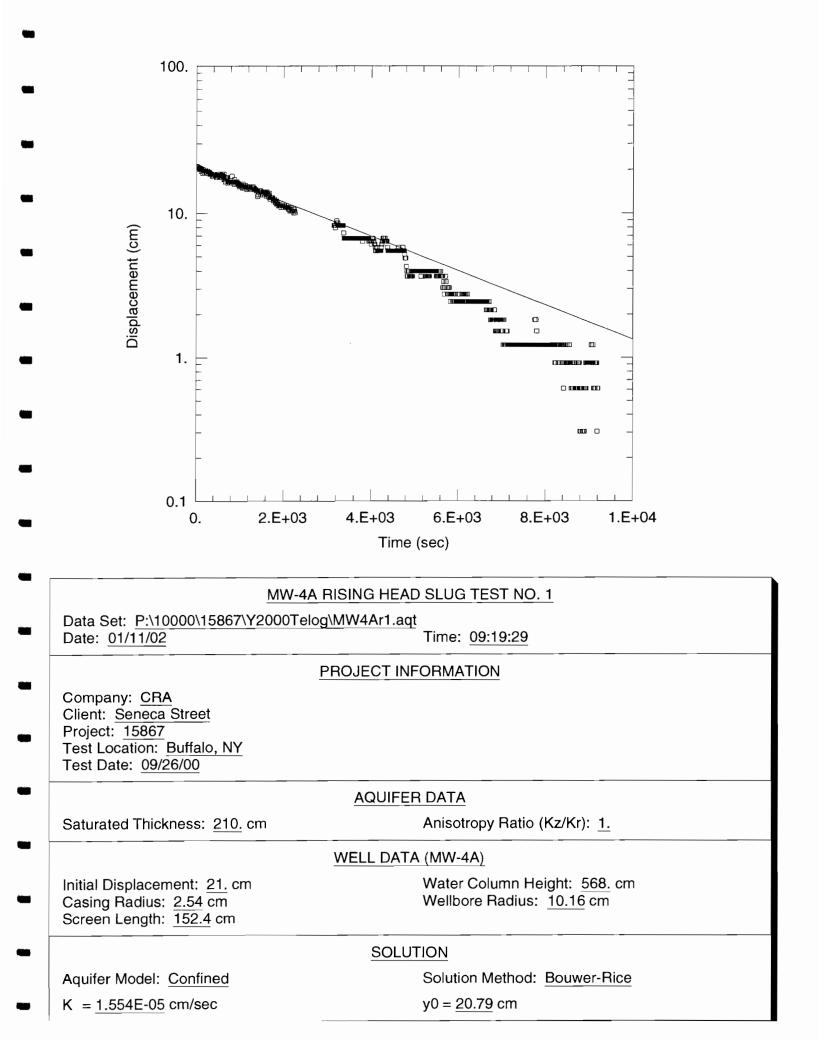


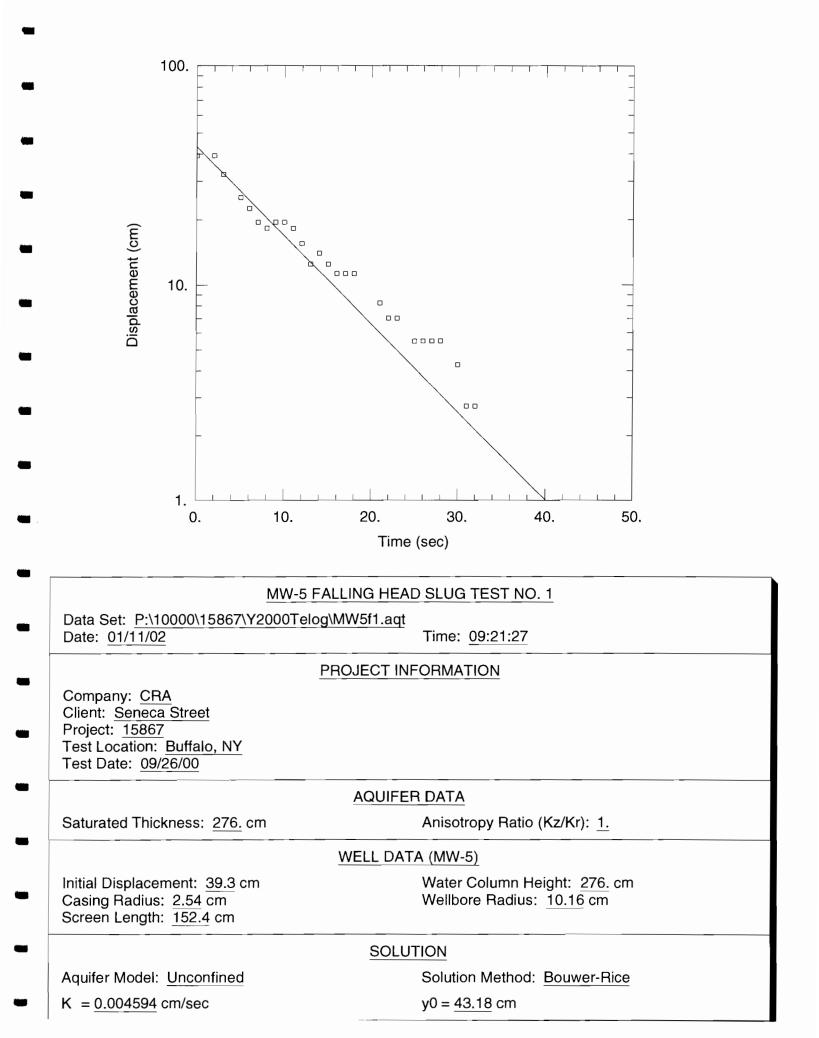


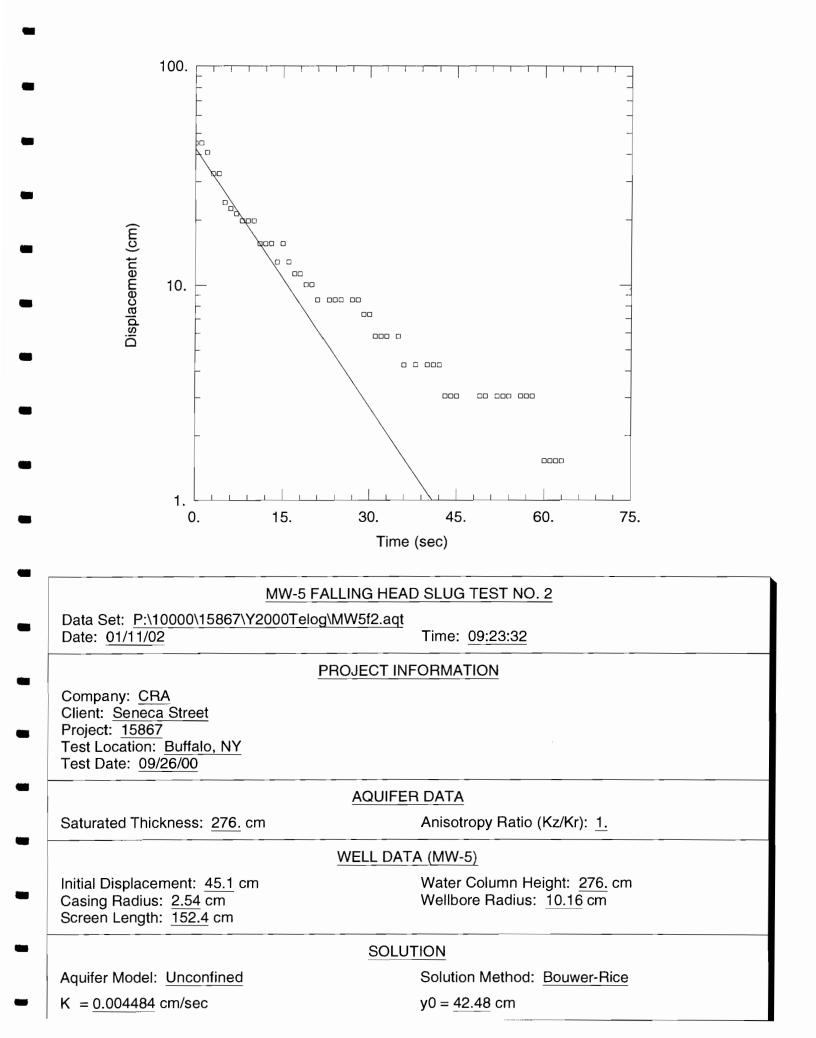


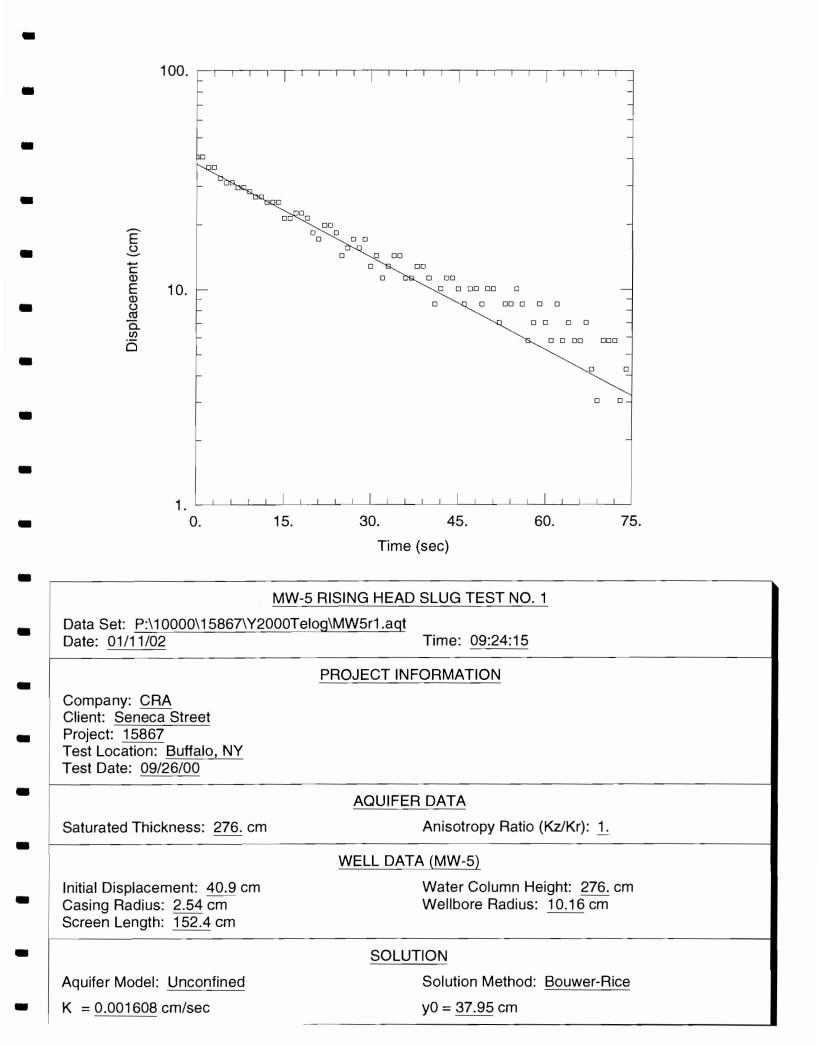




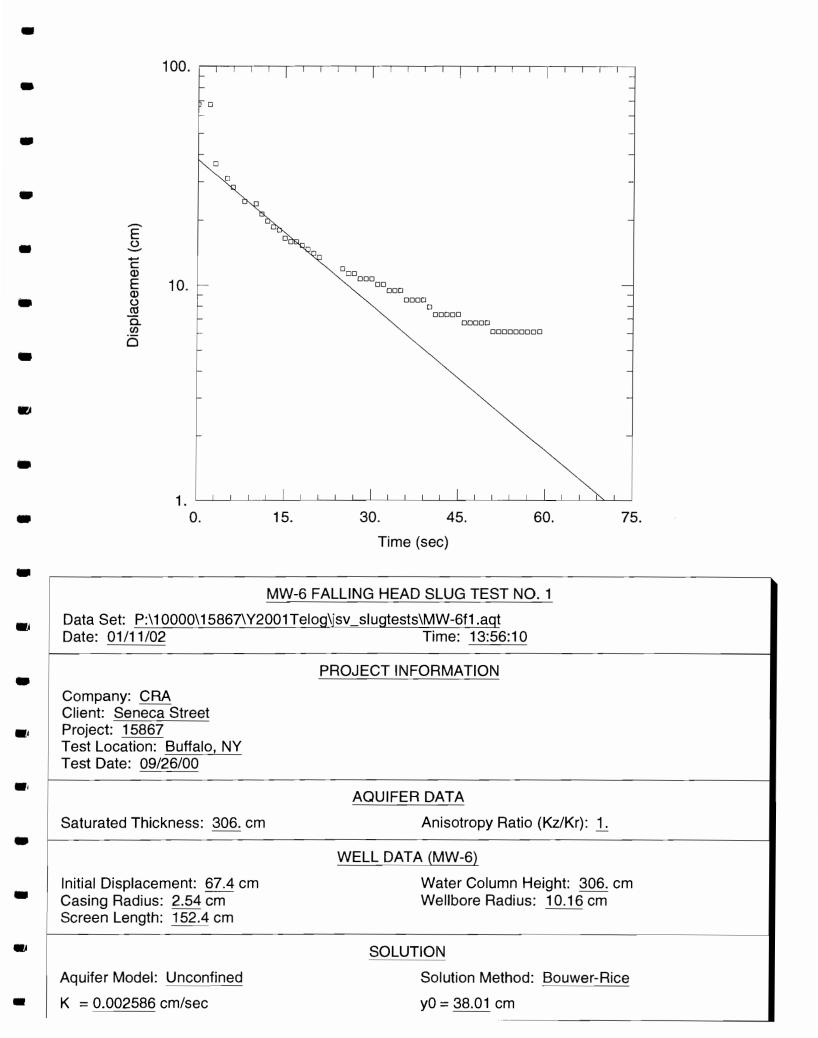


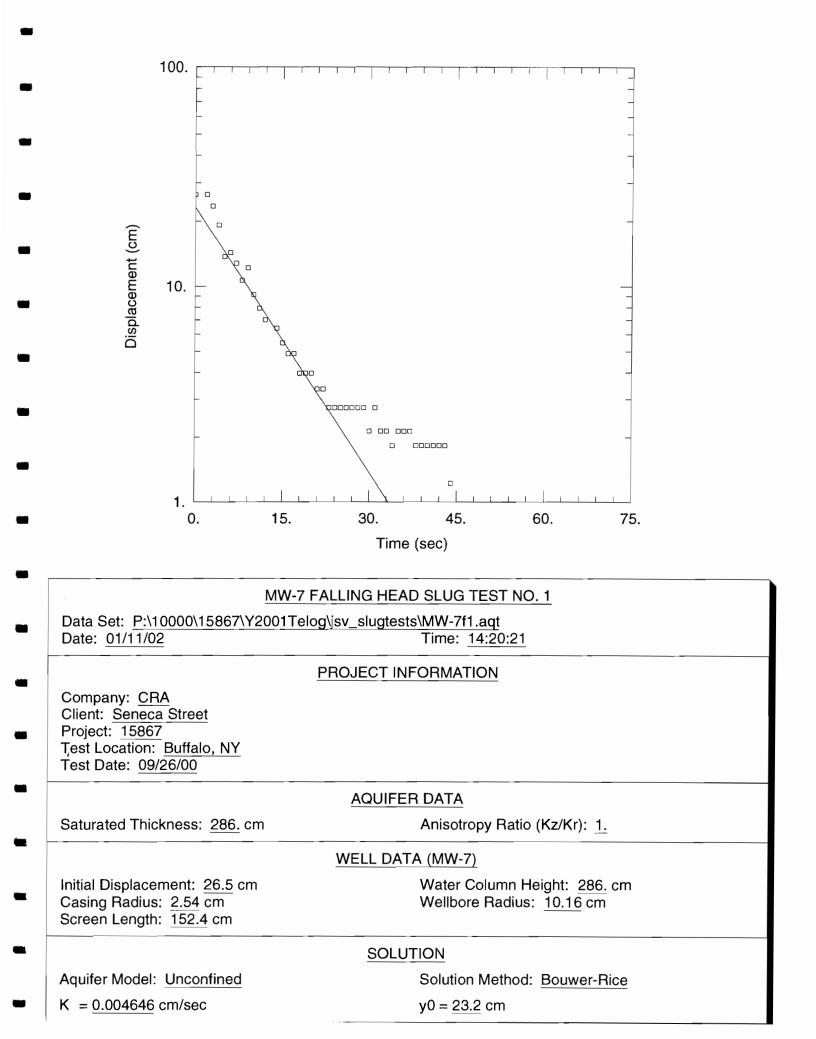


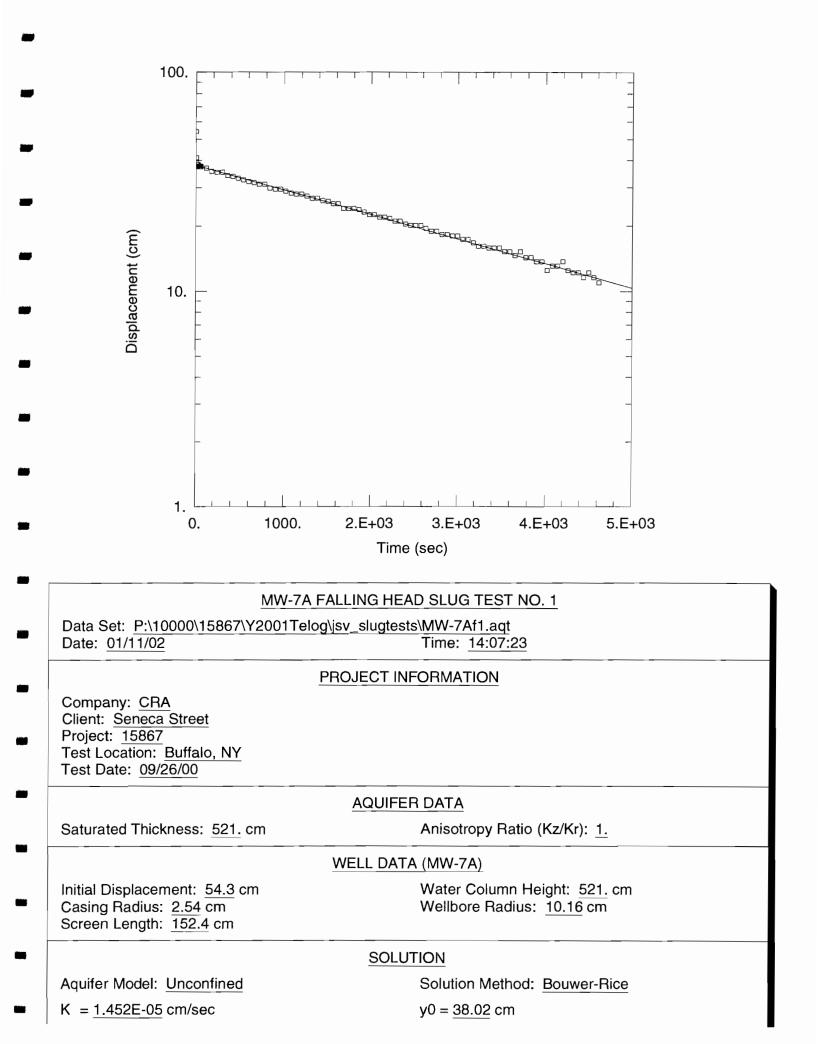


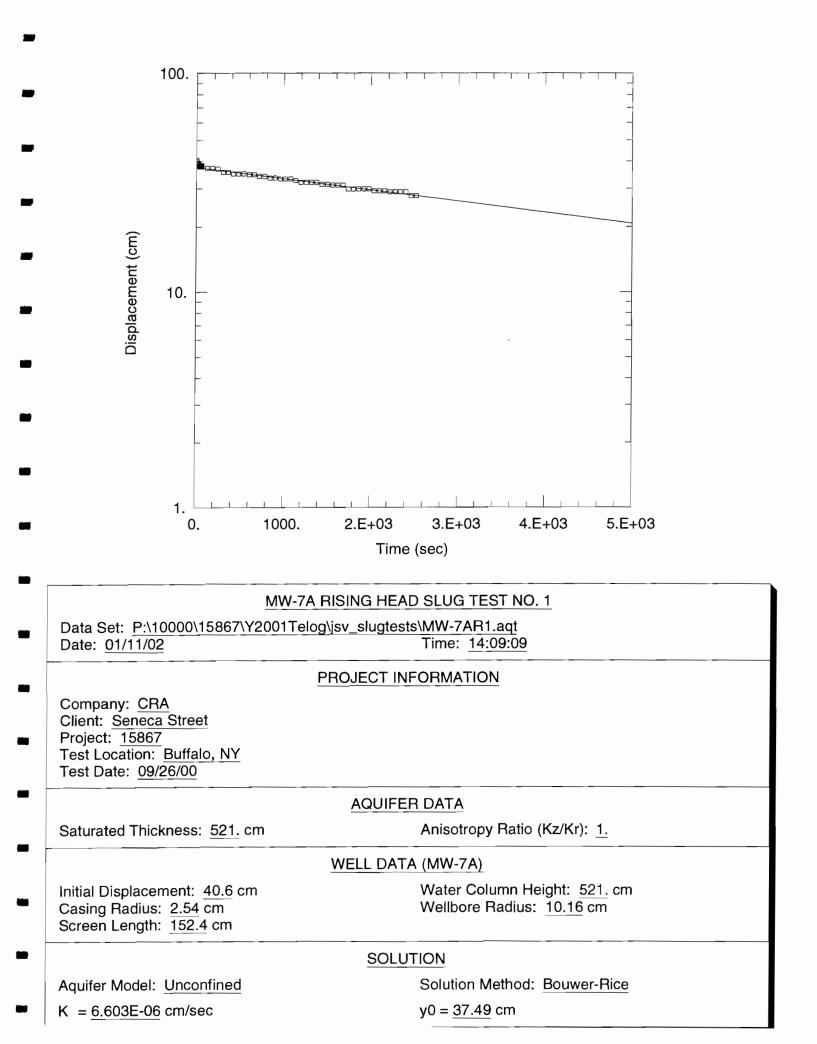


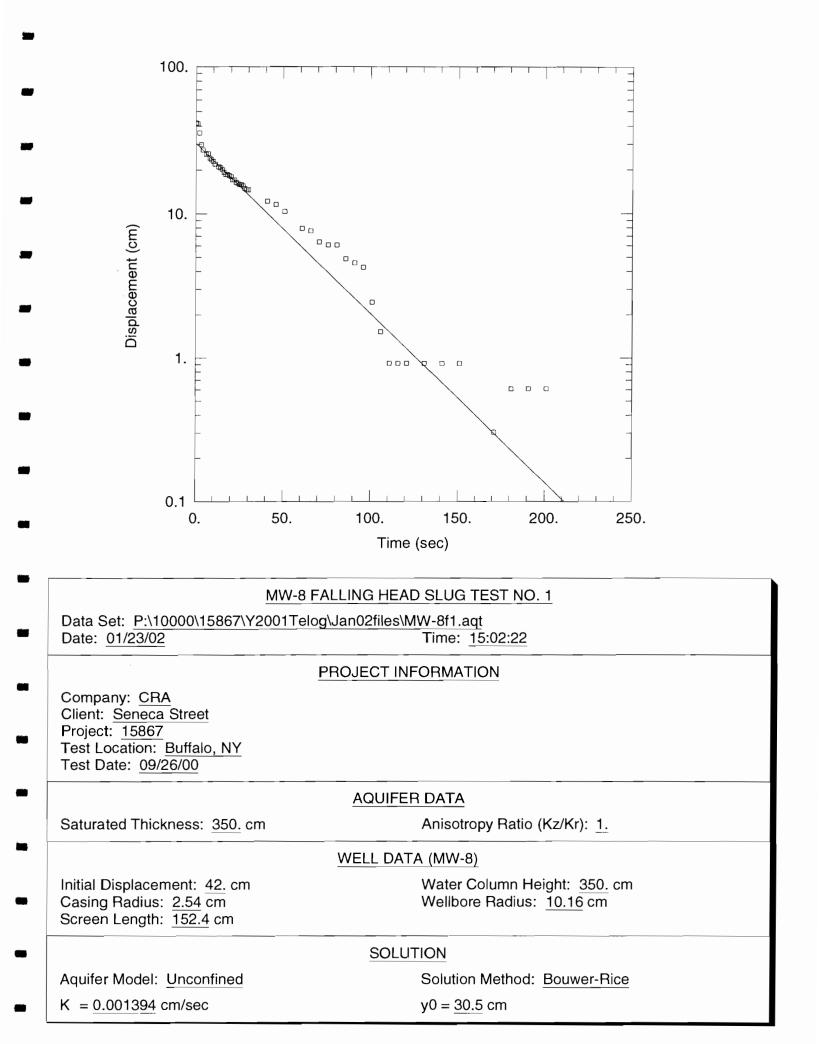


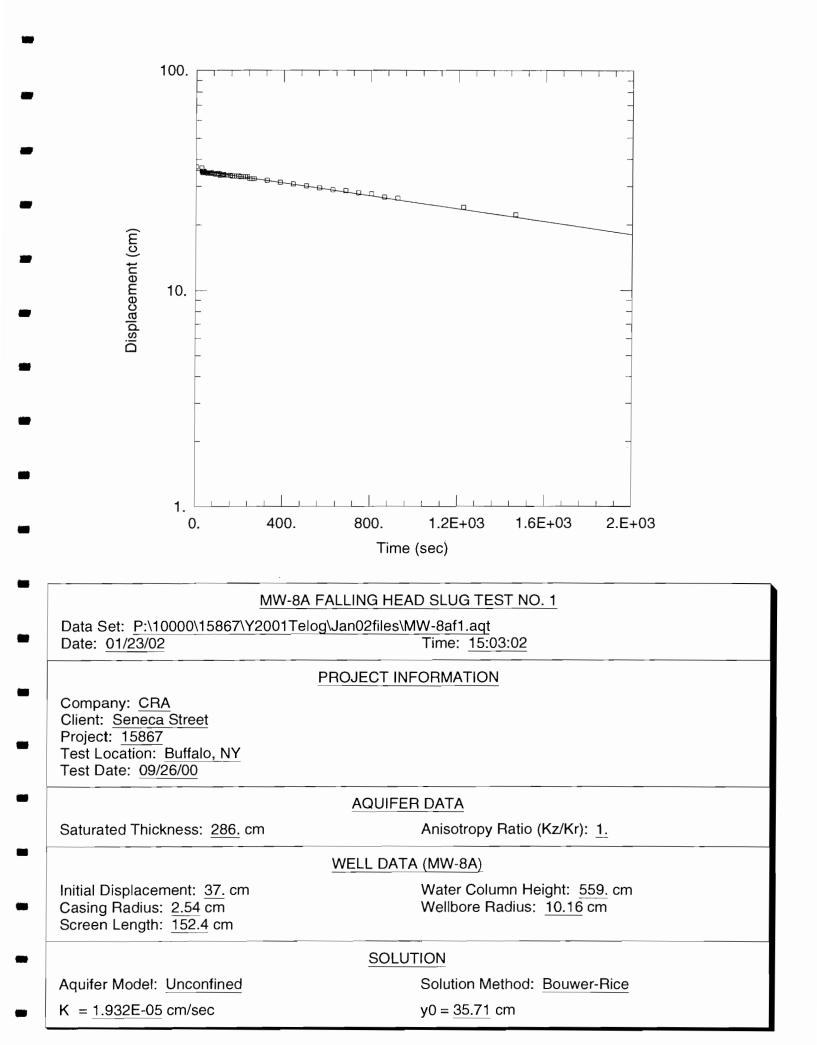


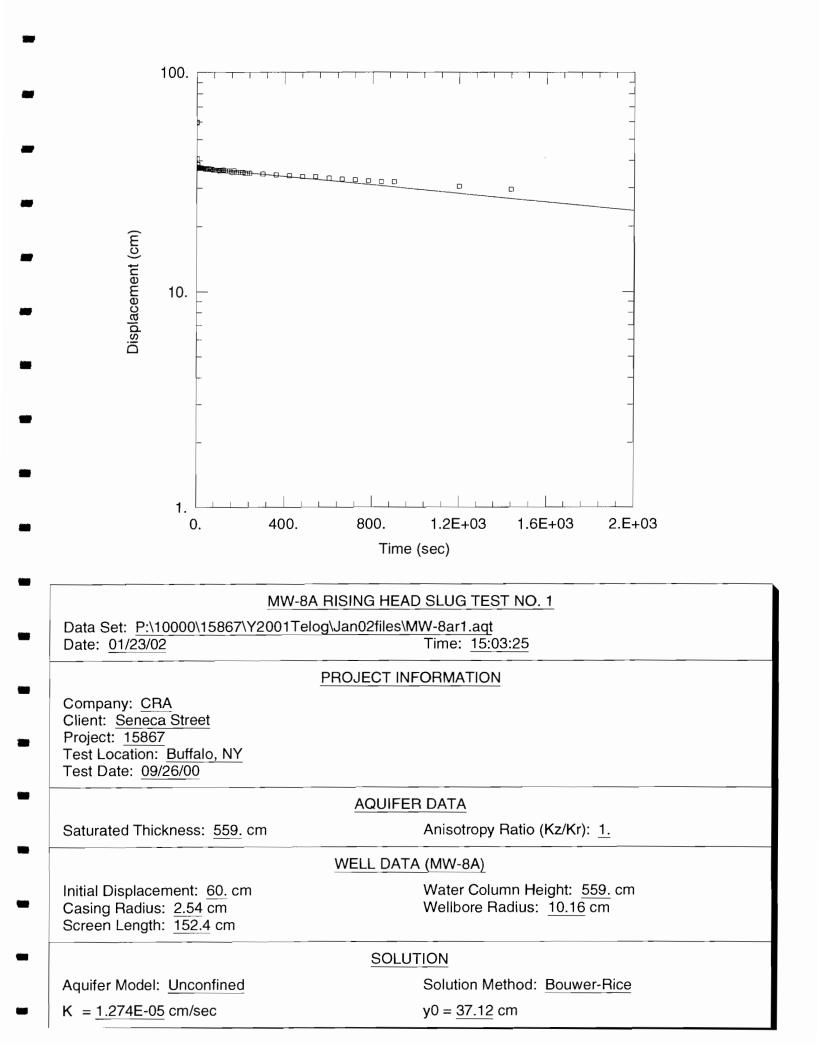


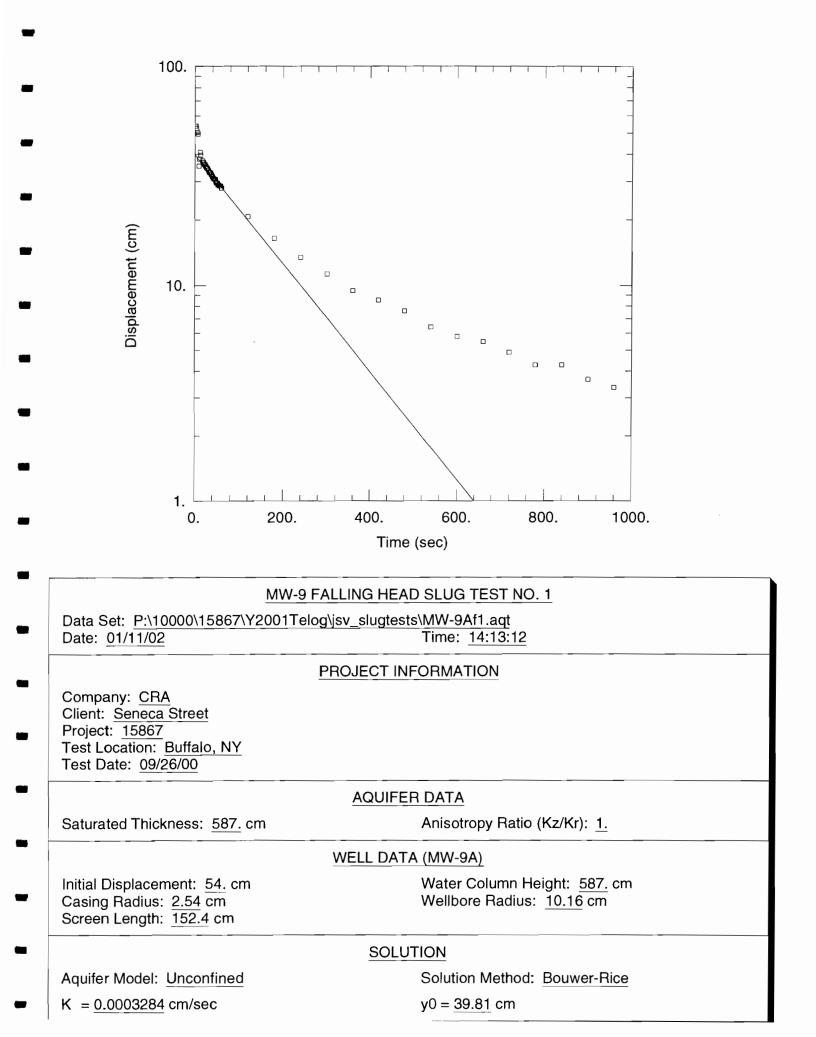


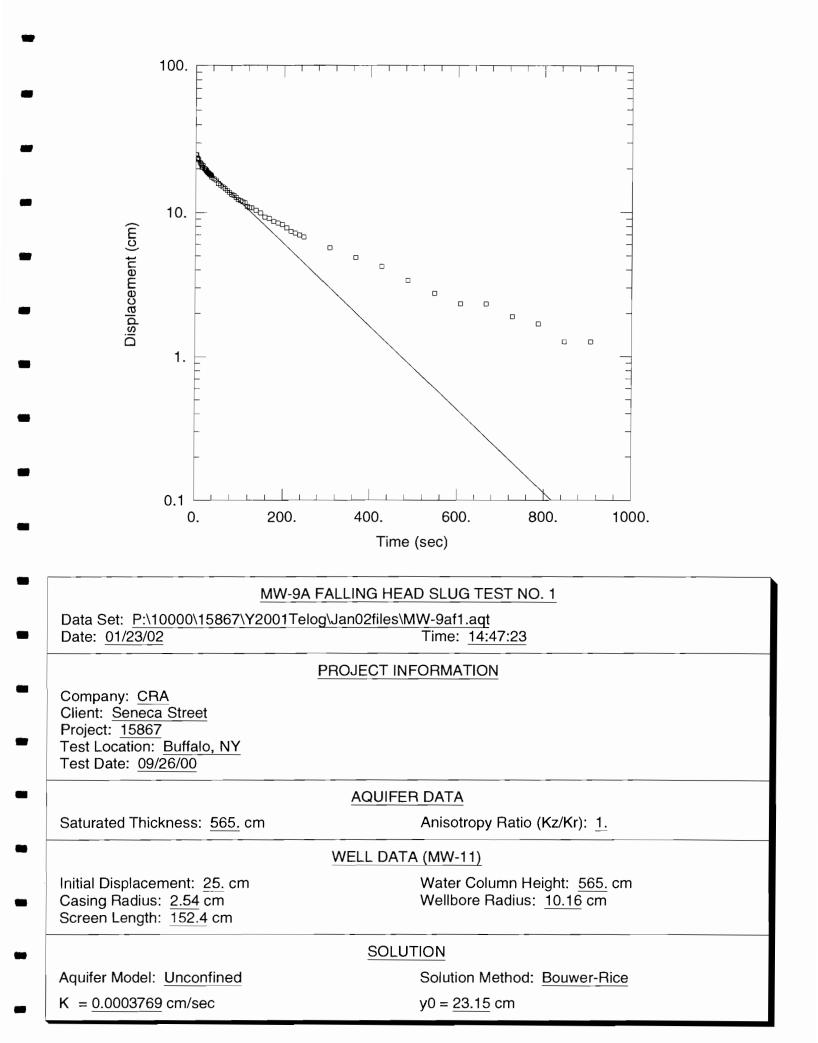


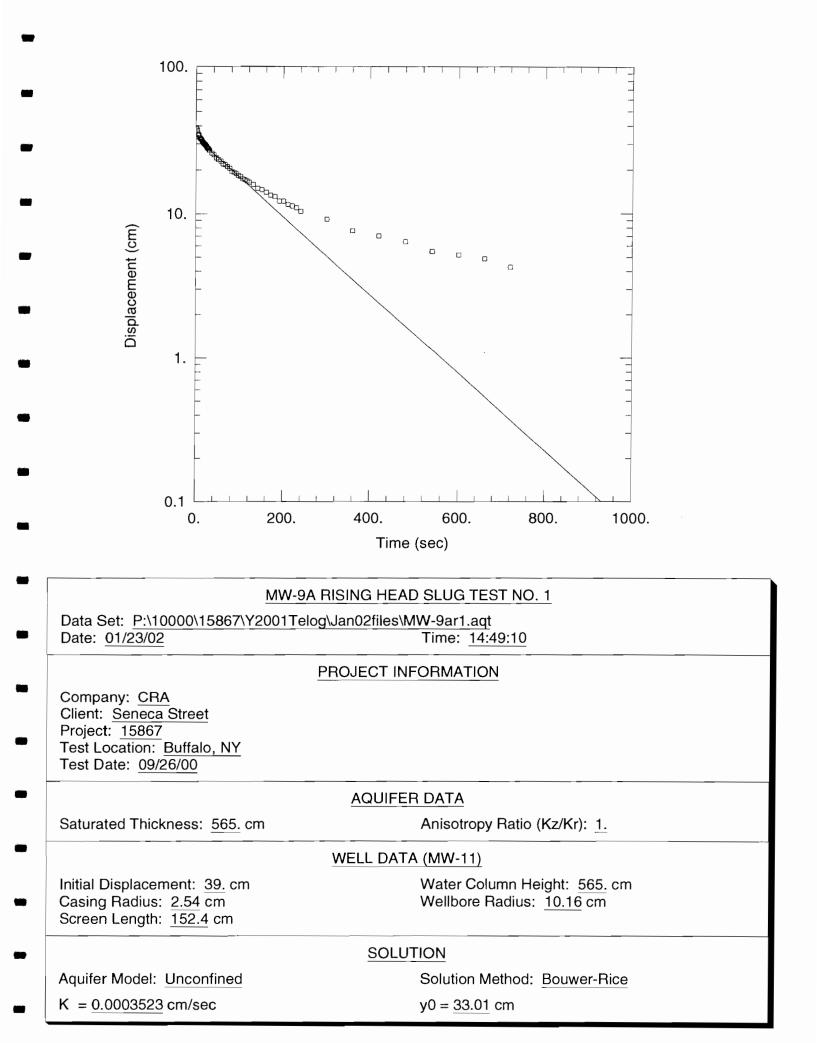


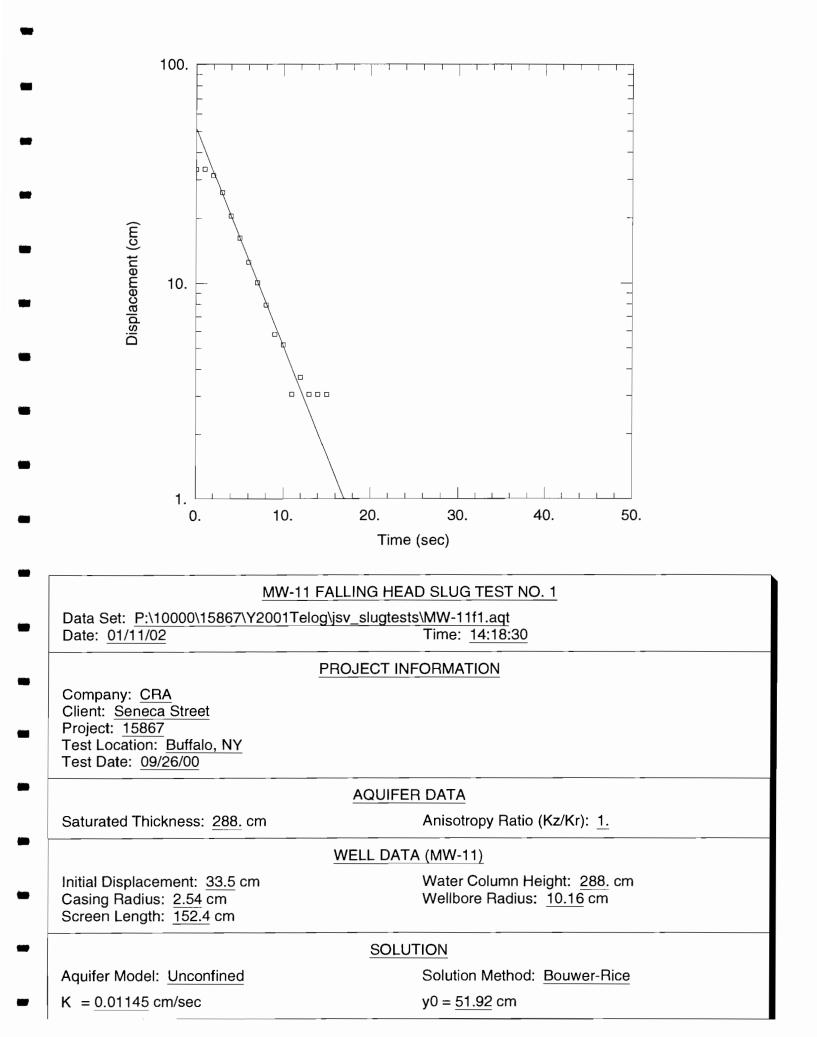


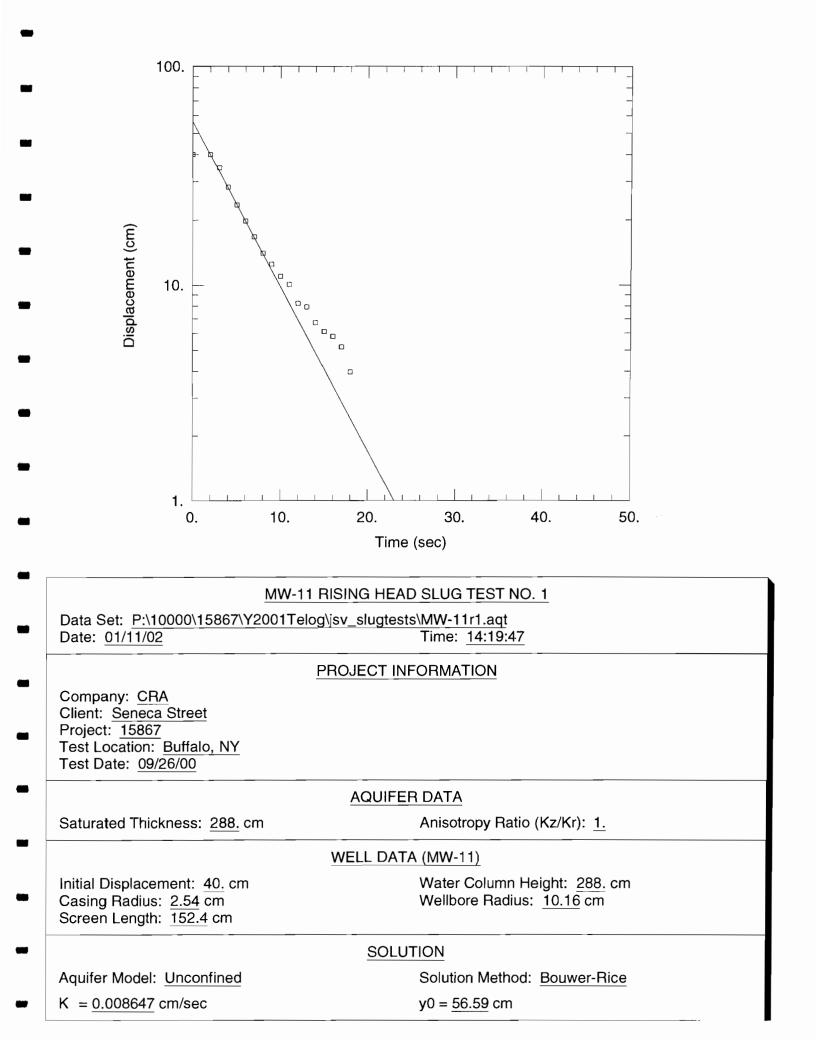


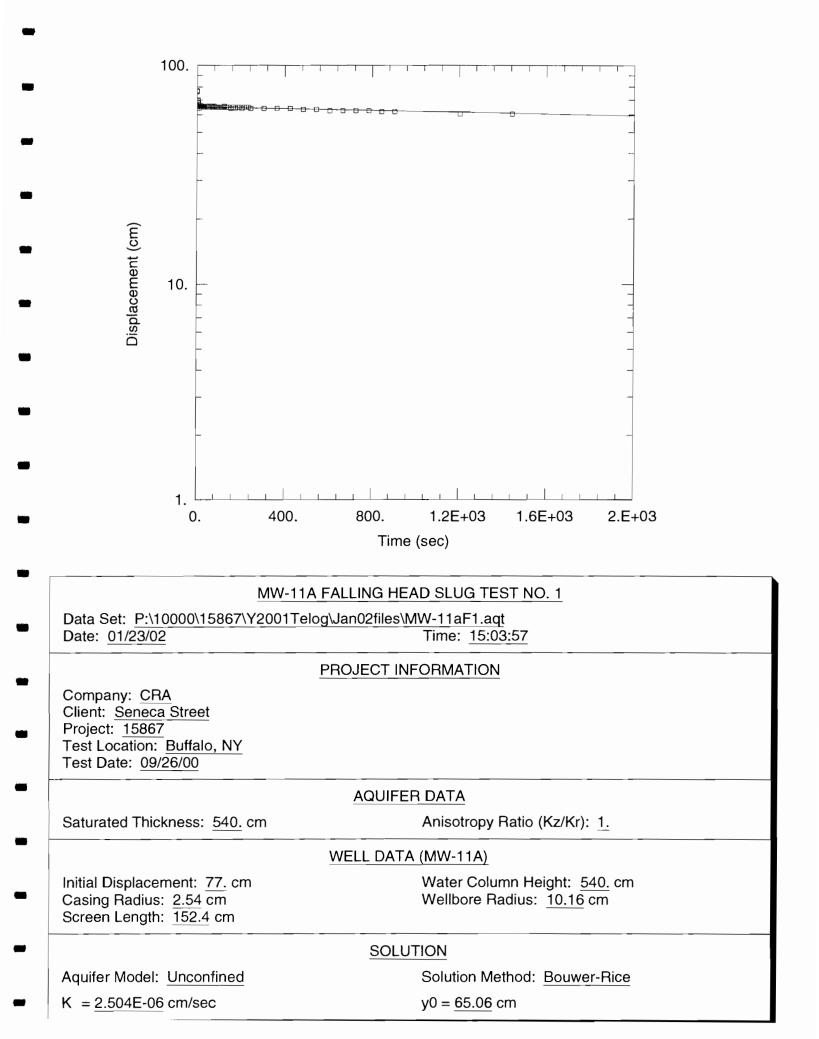


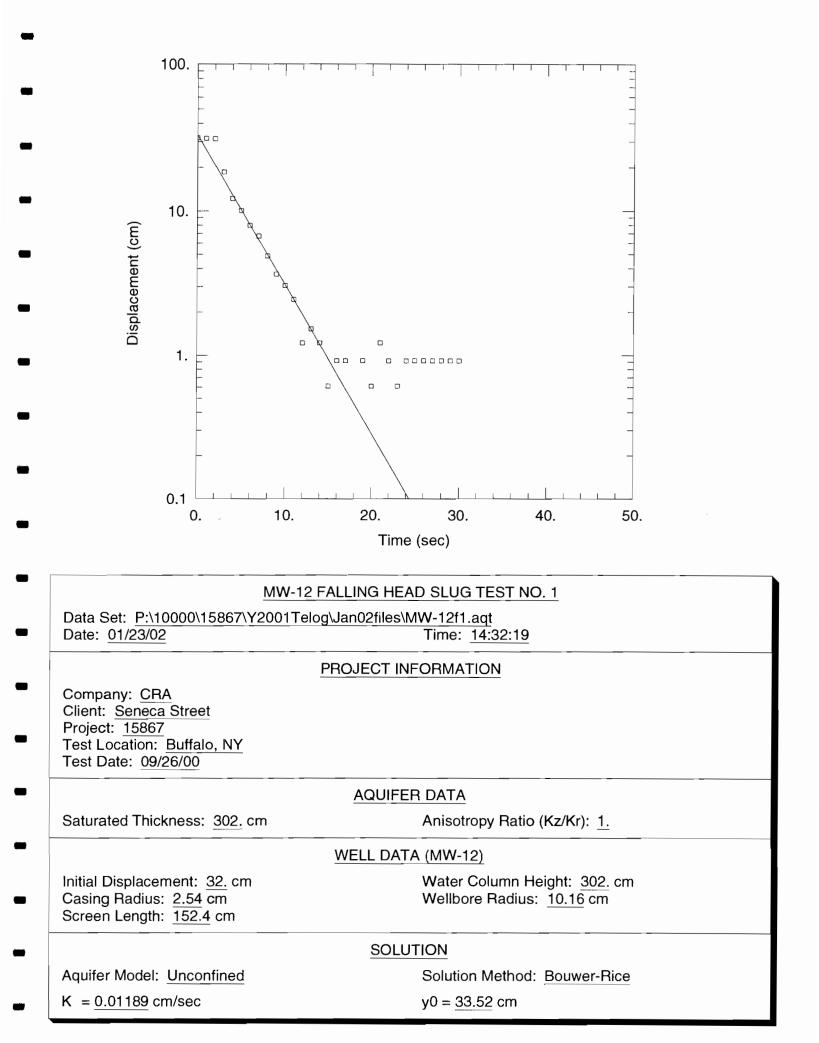


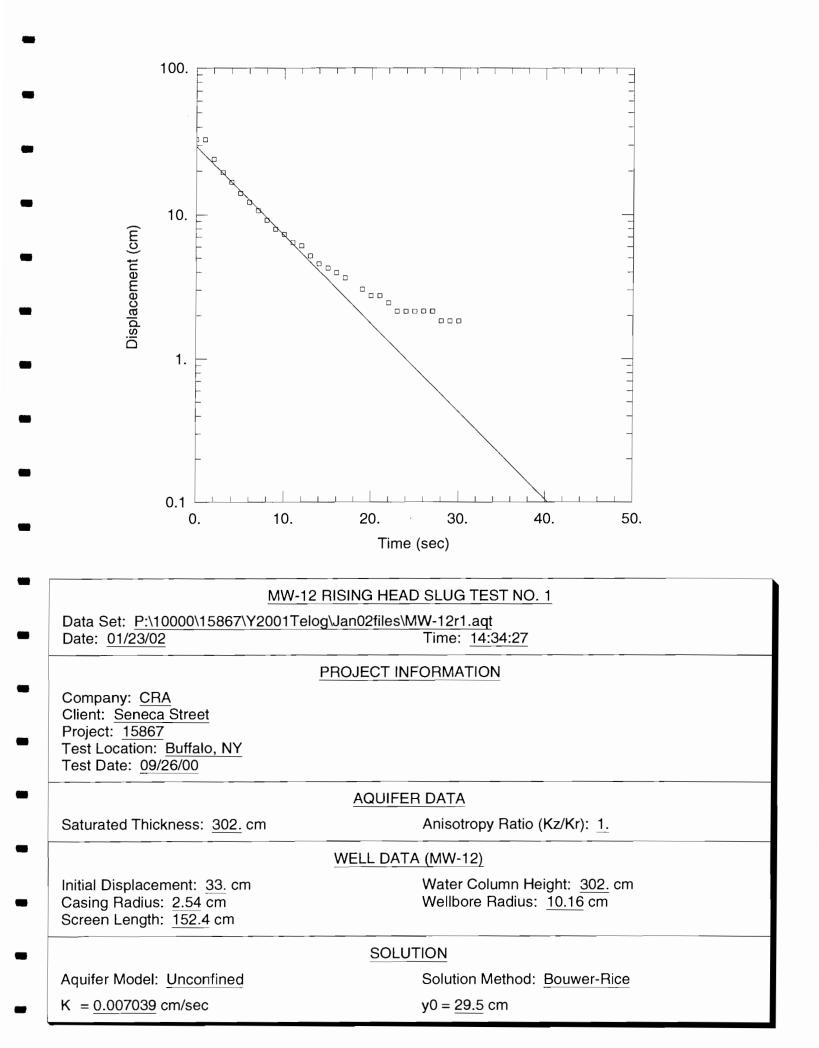


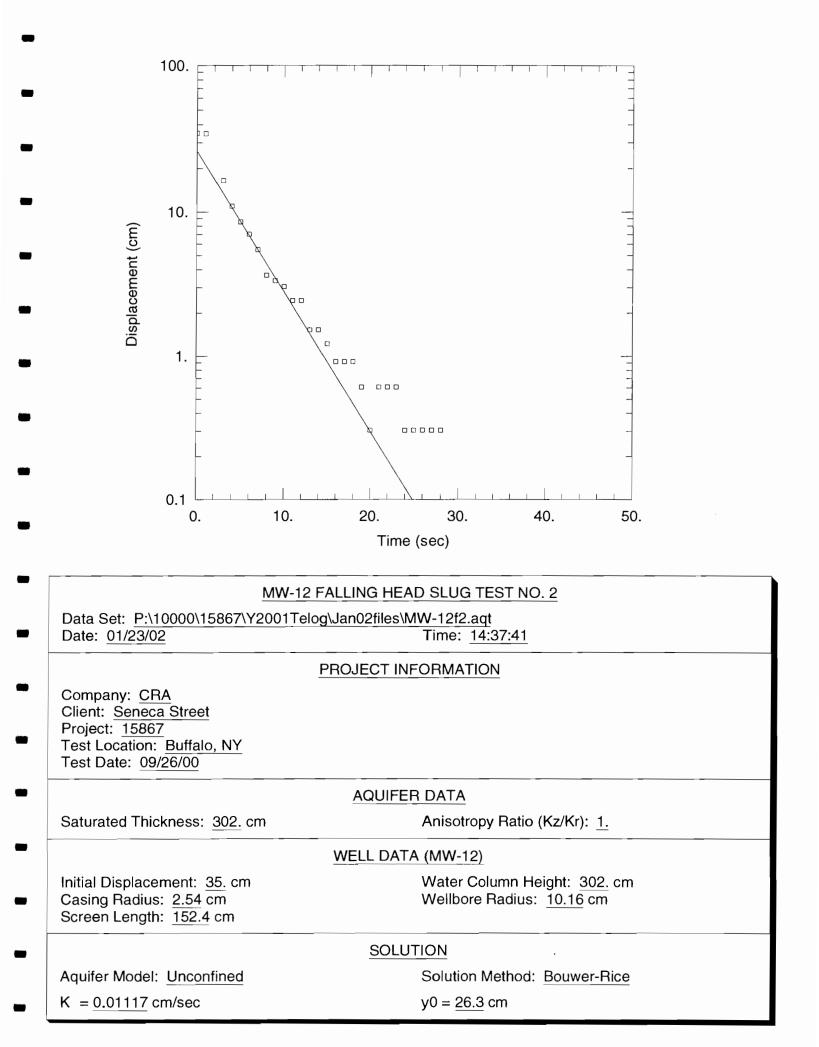


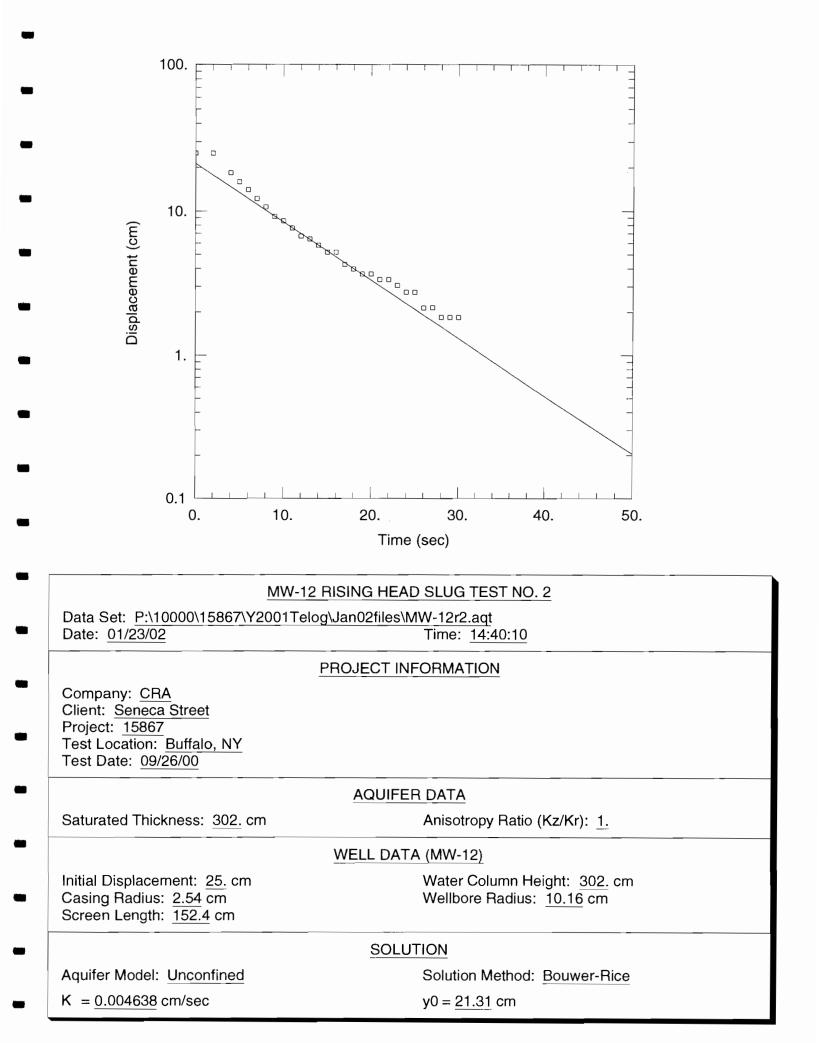


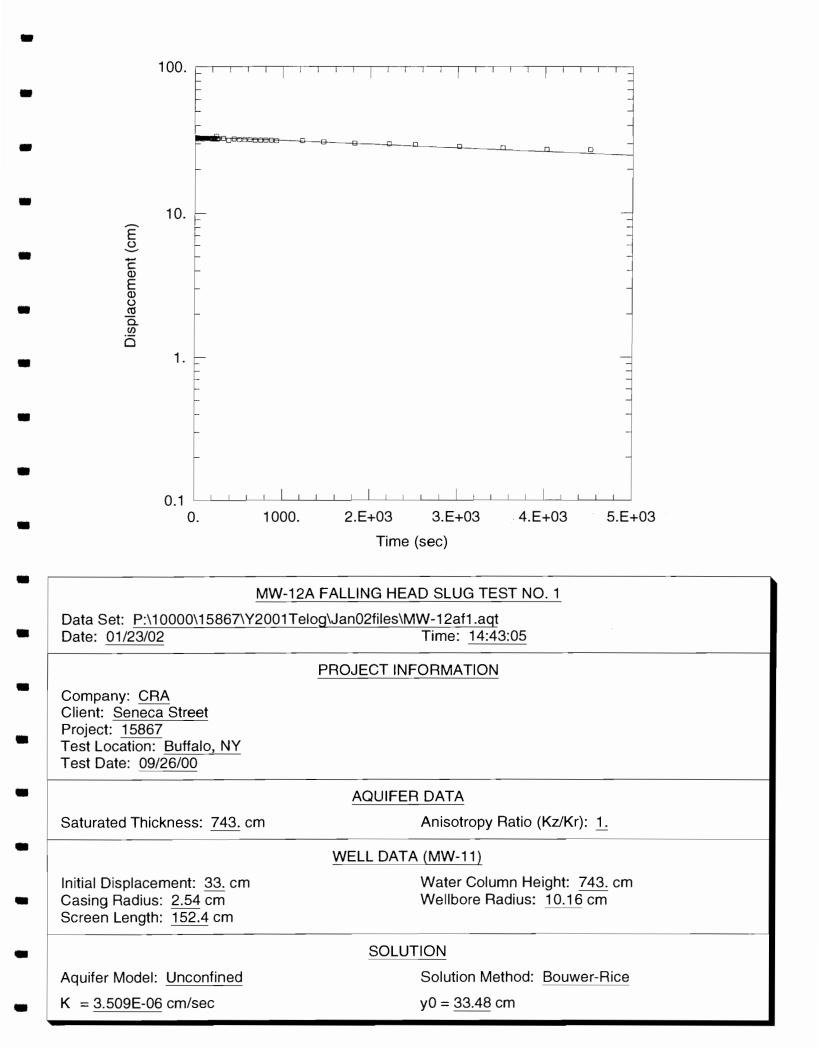












APPENDIX I

ANALYTICAL DATA AND VALIDATION REPORTS

Table 1

Analytical Results for USEPA Target Compound List VOCs

Seneca Street at Kingston Place

Buffalo, New York

FRC Project number 1240

	_Sample	SB-1B,3	S <u>B-3,4</u>	SB-4,4	Sample	SB1B-GW	SB6-GV
	Depth (ft.)	8 to 12	12 to 16	12 to 16	Depth (ft.)	10	12
	Medium	soil	soil	soil	Medium	water	water
Compound	Units	7/21/99	7/21/99	7/21/99	Units	7/21/99	7/21/99
Volatiles SW-846							
Chloromethane	ug/Kg	<10	<10	<10	ug/L	<10	<
Bromomethane	ug/Kg	<10	<10	<10	ug/L	<10	<
Vinyl chloride	ug/Kg	<10	<10	<10	ug/L	<10	`<
Chloroethane	ug/Kg	<10	<10	<10	ug/L	<10	· · · · · · · · · · · · · · · · · · ·
Methylene chloride	ug/Kg	20	7	3	ug/L	<5	
Acetone	ug/Kg	<100	<100	25	ug/L	<100	<1
Carbon disulfide	ug/Kg	<5	<5	<5	ug/L	<5	
1,1-Dichloroethene	ug/Kg	<5	<5	<5	ug/L	<5	
1,1-Dichloroethane	ug/Kg	<5	<5	<5	ug/L	<5	-
Trans-1,2-dichloroethene	ug/Kg	<5	<5	<5	ug/L	2	
Chloroform	ug/Kg	<5	<5	<5	ug/L	<5	
2-butanone	ug/Kg	<100	<100	<100	ug/L	<100	~ 1(
1,2-Dichloroethane	ug/Kg	<5	<5	<5	ug/L	<5	
1,1,1-Trichloroethane	ug/Kg	<5	<5	.<5	ug/L	<5	
Carbon tetrachloride	ug/Kg	<5	<5	<5	ug/L	<5	
Vinyl acetate	ug/Kg	<50	<50	<50	ug/L	<50	<
Bromodichloromethane	ug/Kg	<5	<5	<5	ug/L	<5	· · · · ·
1,2-dichloropropane	ug/Kg	<5	<5	<5	ug/L	<5	<u> </u>
cis-1,3-dichloropropene	ug/Kg	<5	<5	<5	ug/L	<5	· <
Tricholorethene	ug/Kg	2	54	12	ug/L	537	-1* <
Benzene	ug/Kg	<5	<5	<5	ug/L	<5	<
Dibromochloromethane	ug/Kg	<5	<5	<5	ug/L	<5	<
rans-1,3-dichloropropene	ug/Kg	<5	<5	<5	ug/L	<5	
,1,2-trichloroethane	ug/Kg	<5	<5	<5	ug/L	<5	<
-chloroethylvinyl ether	ug/Kg	<10	<10	<10	ug/L	<10	<1
Bromoform	ug/Kg	<5	<5	<5	ug/L	<5	<
-methyl-2-pentanone	ug/Kg	<50	<50	<50	ug/L	<50	<5
-hexanone	ug/Kg	<50	<50	<50	ug/L	<50	
etrachloroethene	ug/Kg	15	12000	421	ug/L	12600	<
,1,2,2-tetrachloroethane	ug/Kg	<5	<5	<5	ug/L	<5	<
oluene	ug/Kg	3	<5	<5	ug/L	<5	<
hlorobenzene	ug/Kg	<5	<5	<5	ug/L	<5	<
thylbenzene	ug/Kg	<5	<5	<5	ug/L	<5	<
tyrene	ug/Kg	<5	<5	<5	ug/L	<5	<
,p-xylene	ug/Kg	2	<5	<5	ug/L	<5	<
xylene	ug/Kg	<5	<5	<5	ug/L	<5	<

Values in bold indicate the presence of the compound above the method detection limit.

Table 2 ...

Anaiytical Results for NYSDEC Petroleum-Contaminated Solf Guldance Policy VOCs, SVOCs and Lead Seneca Street at Kingston Place

Buffalo, New York FRC Project number 1240

•.

.

	Sample	SB-5.4	SB-6.3	SB-7.3	SB-8.2	SB-9.1	SB-10.3	Sample	SB1B-GW	
	Depth (ft.)	12 to 18	8 to 12	8 to 12	4 to 8	0 to 4	8 to 12	Depth (ft.)		
	Medium	soll	soil	soil	soil	soil	soil	Medlum	water	water
Compound	Units	7/21/99	7/21/99	7/21/99	7/21/99	7/21/99	7/21/99	Units	7/21/99	7/21/99
Volatiles - TCLP B021 - NYDEC										
Methyl-t-butylether	ug/Kg	<5.0	<5.0	<5.0	<5.0	<5.0	·	1/6n	<5.0	<5.0
Benzene	ug/Kg	<1.0	<1.0	<1.0	5.1	<1.0	2.7		<0.7	<0.7
Toluene	ug/Kg	<1.0	1.5	2.7	1	1.9			<1.0	<1.0
Ethylbenzene	ug/Kg	<1.3	C.1>	<1.3	1.8	<1.3	6.15		7.1	6.1 2
m.p-xylene	ug/Kg	<2.8	<2.8	<2.8	7.5	<2.8	7.6		5.3	
o-xylene	03/Kg	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7		2.3	
isopropyibenzene	ng/Kg	<1.8	<1.8	<1.6	<1.6	<1.8	<1.8		<1.8	<1.6
n-propylbenzěne	ug/Kg	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	ηθη	<1.7	<1.7
1,3,5-trimethylbenzene	ug/Kg	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7		<1.7	<1.7
tert-butytbenzene	ng/Kg	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6		<3.6	<3.6
1,2,4-trimethylbenzene	ug/Kg	<1.4	<1.4	<1.4	<1.4	<1.1	<1.4	ηĝη	<1.4 <1.4	41.4
sec-butylbenzene	ug/Kg	<2.2		<2.2	<2.2	<2.2	<2.2		<2.2	<2.
p-isopropyitoluene	ng/Kg	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8 <1.8		<1.8	<1.8
n-butylbenzene	ug/Kg	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8		<2.8	<2.8
Naphthalene	ug/Kg	<1.8	<1.6	<1.6	<1.6	<1.8	<1.8		<1.6	<1.8
•			-							
Metals										
Lead	mg/Kg	10.6	- 16	14.3	13.2	488	11.9	yðu i	2.28	1.82
									_	
ICLP 82/0 - NYDEC BN LISI										
Anthracene	ng/Kg	<330			164	<330		l ug/L	<10	<10
Fluorene	ug/Kg	<330	•		68	<330			<10	<10
Phenanthrene	ug/Kg	<330			619			, ng/L	<10	<10
Pyrene	ug/Kg	<330			1340	12600			<10	<10
Acenaphthene	ug/Kg	<330	<330		v		<330	ע עםער	<10	<10
Benzo(a)anthracene	ug/Kg	<330			_				<10	<10
Fluoranthene	ug/Kg	<330		<330			<330		<10	<10
Benzo(b)fluoranthene	ug/Kg	<330	157	<330	513		<330		<10	<10
Benzo(k)fluoranthene	ug/Kg	<330							<10	1 ×10
Benzo(a)pyrene	g/kg	<330				-			×10	1 <10
Dibenzo(a,h)anthracene	ug/Kg	<330			•			0 ng/L	<10	01 < <10
Benzo(g,h,i)perylene	ug/Kg	<330							<10	<10
3-cd)py	ug/Kg	<330				3180	•		<10	1 <10
Napthalene	ug/Kg	<330	0 <330		v				<10	0 <10
Chreane	- 20	0001	100							ĺ

.

Values in bold indicate the presence of the compound above the method detection limit

.

	MEMORANDUM		
TO:	Carol Dunnigan	REF. NO.:	15867
FROM:	Susan Scrocchi/amd/1	DATE:	December 15, 2000
RE:	Data Usability Summary Report Site Investigation Parcel #2 – Seneca Street Buffalo, New York		
INTROD	UCTION		
Pittsburg	wing details an evaluation of results reported by Severn Trent I h, Pennsylvania, for 7 groundwater samples and 14 soil sample Site located in Buffalo, New York.		
The samp	oles were analyzed for the following:		
	Parameters	Μ	ethodology
0	ompound List (TCL), Volatile Organic Compounds (VOCs) emi-Volatile Organic Compounds (SVOCs) als	SV SW-846	V-846 8260 ¹ V-846 8270 ¹ 6010/7470/7471 ¹ 7-846 9012A ¹
A summa	ary of the analytical results is presented in Tables 1A and 1B.		
outlined	lity Assurance/Quality Control (QA/QC) criteria by which the in the analytical methods, the "USEPA Contract Laboratory Pro es for Organic Data Review" (February 1994, EPA 540/R-94/01)	gram Nationa	l Functional
Laborato	ry Program National Function Guidelines for Inorganic Data Re /R-94-013).		
QA/QC	REVIEW		
<u>Deliverat</u>	bles		
	package was complete as defined under the requirements for A B deliverables.	nalytical Serv	ices Protocol (ASP)

Methods referenced from:

¹ "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," USEPA SW-846, 3rd Edition (w/rev.)

Holding Times

Based on the methods, all required holding times were met.

Gas Chromatograph/Mass Spectrometer (GC/MS) Tuning - VOCs and SVOCs

Bromofluorobenzene (BFB) and decafluorotriphenylphosphine (DFTPP) were analyzed at the beginning of each 12-hour calibration period and all tuning criteria were met.

Initial Calibration - VOCs and SVOCs

- Initial multi-point calibrations were established for all compounds of interest as required. Acceptable instrument sensitivity (relative response factors (RRF) \geq 0.05) was demonstrated for all compounds of interest, with the exception of bromomethane (0.045) and chloroethane (0.040). All associated positive
- results were qualified as estimated, and all non-detect results were rejected. Acceptable instrument linearity (percent relative standard deviation (%RSD) ≤ 30 percent) was demonstrated for all compounds of interest except 2-butanone, acetone, and 4-methyl-2-pentanone. All associated positive results were qualified as estimated, and all non-detect results were judged to be acceptable based on acceptable sensitivity.

Continuing Calibration – VOCs and SVOCs

Continuing calibration standards were analyzed and compared to the initial calibration curve every twelve hours. All continuing calibration RRFs were ≥ 0.05 with the exception of some acetone and bromomethane standards. All associated positive data were qualified as estimated, and all non-detect data were rejected due to poor analyte sensitivity. All percent differences (%D) were ≤ 25 percent, with the exception of slight increases and decreases in various VOC responses. All associated data were qualified as estimated to reflect the implied variability.

Initial and Continuing Calibration – Inorganic Parameters

Initial and continuing calibration verification (CCV) standards were analyzed at the proper frequency for
 the analyses of TAL metals and cyanide. All recoveries were acceptable.

<u>Blanks</u>

Method blanks were analyzed on a daily basis and were non-detect for the compounds of interest with the exception of low level concentrations of acetone and various metals. All associated results similar in concentration to the blanks were qualified as non-detect.

Two trip blanks and one rinse blank were collected with the samples and submitted for analyses. All trip blank results were non-detect for the VOCs of interest. Acetone, 2-butanone, and various metals were present in the rinse blank at low levels. Acetone results were previously qualified as non-detect due to the method blanks. All samples were non-detect for 2-butanone. All metals (except mercury) results were significantly greater than the rinse blank concentrations and would not have been affected. Some low level mercury results were qualified as non-detect.

Surrogate Spike Recoveries - VOCs and SVOCs

All samples blanks and QC samples were spiked with the proper surrogate compounds prior to sample

preparation and analysis. All surrogate recoveries met the method criteria indicating acceptable analytical efficiency, with the exception of low SVOC surrogate recoveries for sample SB-15. The associated results were qualified as estimated to reflect the implied low bias.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD analyses were performed at the proper frequency for all parameters. All results were acceptable
indicating good analytical accuracy and precision, with the exception of some outlying metal results. All
antimony, cadmium, and magnesium results for the soil samples were qualified as estimated.

Internal Standards (IS) Performance – VOCs and SVOCs

- All results were calculated correctly using the IS responses. Retention times for all ISs were within the specified window of ±30 seconds of the continuing calibration IS retention time. All IS areas were within the specified acceptance limit of 0.5 to 2 times the area of the continuing calibration standard, with the exception of some high SVOC IS recoveries. The associated positive results for samples MW-1, MW-3, and MW-4 were qualified as estimated. The associated non-detect results would not have been impacted.
- Blank Spike (BS) Analyses

BSs were analyzed at the required frequency for all parameters and all recoveries were acceptable indicating adequate analytical efficiency.

Field Duplicate Analyses

Samples were collected in duplicate and submitted "blind" to the laboratory for analysis. The analytical results were comparable, demonstrating acceptable sampling and analytical precision for this study.

Target Compound Identification and Quantitation

All compound identifications were reviewed and were acceptable. Ion relative abundances of mass spectra for the reported compounds were checked against library reference spectra and were found to be acceptable. Spectra were provided for all reported positive identifications. Quantitation calculations were verified by random recalculation from the raw data.

OVERALL ASSESSMENT

All deliverables required by the project were present and the data package was complete. Based on the preceding evaluation, the data were acceptable for use with the qualifications and exceptions noted.

ATICAL RESULTS SUMMARY GATION/FEASIBILITY STUDY EL 2- SENECA STREET FALO, NEW YORK MW-2 MW-2 FALO, NEW YORK MW-2 MW-2 O12 S-091500-KL-013 S-091500-KL-014 97322000 97322000 Duplicate 012 S-091500-KL-013 S-091500-KL-014 013 S-091500-KL-013 S-091500-KL-014 014 S-091500-KL-013 S-091500-KL-014 012 S-091500-KL-013 S-091500-KL-014 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621 621 611 621	SANALYTICAL RESULTS SUMMARY BUFFALO, NEW YORK BUFFALO, NEW YORK BUFFALO, NEW YORK MW3 MW3 MW3 MW3 MW3 MW3 MW3 MW3 MW3 MW3 Sension XL-412 Sension XL-413 Sension XL-414 Sension XL-412 Sension XL-414 Sension XL-414 Sension XL-413 Sension XL-414 Sension XL-414 Sension XL-414 Sension XL-414 Sension XL-414 <
Sample Locations Sample Locations MV2 - 912600-KL-073 MV2 - 501500-KL-073 MV2 - 50150	MW-2 MW-3 MU-3 MU-3 <thmu-3< th=""> MU-3 MU-3 <thm< th=""></thm<></thmu-3<>
Lint Lint ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 5.0 U 6.0 U 6.0 U 6.1 U ug/kq 2.4 U 2.4 U 2.4 U 2.4 U ug/kq 2.4 U 2.4 U 2.4 U 2.4 U ug/kq 6.0 U 6.0 U 6.0 U 6.0 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U 6.1 U ug/kq 6.0 U 6.0 U 6.0 U	6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U
ww/ke 60U 60U 60U 61U ww/ke 60U 60U 60U 61U ww/ke 60U 60U 61U 61U ww/ke 60U 60U 61U 61U ww/ke 60U 60U 60U 61U ww/ke 60U 60U 61U 61U ww/ke </td <td>61U 62U 61U 62U 62U 62U 62U 62U 62U 62U 61U 62U 61U 62U 62U 62U 62U 6</td>	61U 62U 62U 62U 62U 62U 62U 62U 61U 62U 61U 62U 62U 62U 62U 6
www.kk 600 601 601 611 www.kk 600 600 611 611 www.kk 600 600 600 611 www.kk 600 600 600 611 www.kk 600 600 600 611 www.kk 600 600 610 611 www.kk 600 600 610 610 www.kk 600 610 610 610	6.10 6.20 6.20 6.11 6.20
www.ks 600 600 600 www.ks 600 600 600 www.ks 600 600 600 www.ks 500 600 600 www.ks 600 600 <	6.1U 6.2U 6.2U 6.2U 6.1U 6.2U
www.ks 600 600 600 600 www.ks 600 600 600 600 www.ks 500 600 600 610 www.ks 600 600 600 610 www.ks 600 600 600 610 www.ks 600 600 610 610 wwwws 600 </td <td>610 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 6</td>	610 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 6
ww/kg 600 600 600 ww/kg 340 240 240 ww/kg 340 240 240 ww/kg 340 240 240 ww/kg 240 240 240 ww/kg 240 240 240 ww/kg 600 600 600 ww/kg 600 600 600 <td>610 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 6</td>	610 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 611 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 6
wg/Ks 6.0U 6.0U <t< td=""><td>61U 62U 61U 62U 61U 62U 61U 52U 24U 25U 24U 25U 24U 25U 24U 25U 61U 62U 60U 62U 60U 62U 60U 62U 60U 62U 60U 6</td></t<>	61U 62U 61U 62U 61U 62U 61U 52U 24U 25U 24U 25U 24U 25U 24U 25U 61U 62U 60U 62U 60U 62U 60U 62U 60U 62U 60U 6
wg/kg 6.0U 6.0U <t< td=""><td>610 620 2403 250 2403 250 2404 250 2404 250 2404 250 2404 250 2404 250 2404 250 2404 250 2404 250 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 620 620 620 620 620 620 620 620 620 620 620 620 620 620 620</td></t<>	610 620 2403 250 2403 250 2404 250 2404 250 2404 250 2404 250 2404 250 2404 250 2404 250 2404 250 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 610 620 620 620 620 620 620 620 620 620 620 620 620 620 620 620 620
www.ks 24Uj <	24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 25 Uj 24 Uj 52 Uj 61 U 62 Uj 62 U 62 Uj 61 U 62 Uj 62 Uj 62 Uj 62 Uj 62 Uj 62 Uj 62 Uj 60 Uj 62 Uj 60 Uj
wg/kg 24U 24U </td <td>24Uj 25Uj 24Uj 25Uj 24Uj 25Uj 61U 62U 62U 62U 61U 62U 62U 62U 61U 62U 60U 62U 60U 62U 60U 62U 61U</td>	24Uj 25Uj 24Uj 25Uj 24Uj 25Uj 61U 62U 62U 62U 61U 62U 62U 62U 61U 62U 60U 62U 60U 62U 60U 62U 61U
ug/Kg 24U 24U </td <td>240 250 250 810 620 620 610 620 620 600 620 620 600 620 620</td>	240 250 250 810 620 620 600 620 620 600 620 620
ug/Kg Z7) 29) 240 ug/Kg 6.00 6.00 6.00 6.00 ug/Kg 6.00 6.00 6.00 6.00 <t< td=""><td>34 U $25 U$ $25 U$ $61 U$ $62 U$ $62 U$ $60 U$ $62 U$ $62 U$</td></t<>	34 U $25 U$ $25 U$ $61 U$ $62 U$ $62 U$ $60 U$ $62 U$ $62 U$
ug/Xg 600 610 610 ug/Xg 600 600 610 610 ug/Xg 600 600 600 610 ug/Xg 600 600 610 610 ug/Xg 600 600 610 610 ug/Xg 600 600 600	610 620 611 620 620 620 610 620 620 620 620 6
neg/kg 6.0 U 6.0 U <t< td=""><td>6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.0 U 6.2 U 6.2 U 6.0 U 6.1 U 6.2 U</td></t<>	6.1 U 6.2 U 6.2 U 6.0 U 6.2 U 6.2 U 6.0 U 6.2 U 6.2 U 6.0 U 6.1 U 6.2 U
wg/kg k00 6.00	R R
ug/kg 6.00 6.00 6.00 ug/kg 6.00 6.00 6.00 ug/kg 6.00 6.00 6.00 ug/kg 6.00 6.00 6.00 ug/kg 6.00 6.00 6.00 ug/kg 120 120 120 ug/kg 6.00 6.00 6.00 ug/kg <	6.1 U 6.2 U 6.2 U 6.0 U 4.0 U 6.2 U 6.0 U 4.0 U 3.1 U 6.0 U 4.10 U 5.1
ww/kg 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.10 6.00 6.10 <t< td=""><td>61U 62U 62U 61U 62U 62U 60U 410U 62U 60U 410U 62U 60U 410U 31 60U 61U 31 60U 61U 31 60U 61U 31 60U 61U 31</td></t<>	61U 62U 62U 60U 410U 62U 60U 410U 62U 60U 410U 31 60U 61U 31 60U 61U 31 60U 61U 31 60U 61U 31
ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 12 U 12 U 12 U ug/Kg 12 U 12 U 12 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.0 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 1.2 U 1.2 U 1.2 U ug/Kg 6.0 U 6.0 U 6.1 U ug/Kg 6.0 U <td>6.1 U 6.2 U 6.2 U 6.2 U 12 U 12 U 12 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.0 U 400 U 410 U 6.2 U 6.2 U 400 U 410 U 6.2 U 6.2 U 6.2 U 6.0 U <t< td=""></t<></td>	6.1 U 6.2 U 6.2 U 6.2 U 12 U 12 U 12 U 6.2 U 6.1 U 6.2 U 6.2 U 6.2 U 6.0 U 400 U 410 U 6.2 U 6.2 U 400 U 410 U 6.2 U 6.2 U 6.2 U 6.0 U <t< td=""></t<>
ug/Kg 12U 12U 12U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.1U 12U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 1.2U 1.2U 1.2U 1.2U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U	12U 12U 12U 61U 62U 62U 60U 410U 62U 400U 410U 31 400U 410U 31 400U 410U 31 400U 410U 31
ug/Kg 6.00 6.00 6.00 6.00 6.10 0.01 0.01 0.01	6.1 U 6.2 U 6.2 U 12 U 12 U 12 U 6.1 U 6.2 U 6.2 U 6.0 U 410 U 410 U 31 J 400 U 410 U 31 J 160 J 400 U 410 U 31 J 160 J
ug/Kg 12U 12U 12U 12U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 1.2U 1.2U 1.2U 1.2U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 6.0U 6.0U 6.0U	12U 12U 12U 61U 62U 62U 60U 410U 31 400U 410U 31 400U 410U 31 400U 410U 31 60D 410U 31
ug/Kg 6.00 6.00 6.00 6.10 ug/Kg 6.00 6.00 6.10 6.10 ug/Kg 1.20 1.20 1.20 6.10 ug/Kg 1.20 1.20 6.00 6.10 ug/Kg 6.00 6.00 6.10 6.10 ug/Kg 6.00 6.00 6.10 6.10 ug/Kg 6.00 6.00 6.00 </td <td>61U 62U 62U 61U 62U 62U 60U 410U 52U 400U 410U 31 400U 410U 31 400U 410U 31</td>	61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 61U 62U 62U 60U 410U 52U 400U 410U 31 400U 410U 31 400U 410U 31
ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 1.2U 1.2U 1.2U 6.1U ug/Kg 6.0U 6.0U 6.1U 6.1U ug/Kg 1.2U 1.2U 1.2U 1.1U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 1.2U 1.2U 1.2U </td <td>6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J</td>	6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J
Action Bit of the second	6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J
me chloride ug/kg 6.00 6.00 6.10	6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 7.0 U 7.0 U 7.0 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J
and and <td>6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J</td>	6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J
Ioroethene ug/kg 6.0 U 6.0 U 6.1 U	6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J
e ug/Kg 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 6.1 U 6.2 U 6.2 U 400 U 410 U 31 J 400 U 410 U 31 J 400 U 410 U 31 J
e ug/Kg 6.0 6.0 6.0 6.1 6.1 0 ug/Kg 6.0 6.0 6.1 0 ug/Kg 12 0 1.2 0 ug/Kg 6.0 6.0 6.1 0 ug/Kg 400 6.0 0 6.1 0 ug/Kg 400 10 6.0 0 ug/Kg 400 0 400 0 ug/Kg 400 0 2000 0 400 0 ug/Kg 2.2 2000 0 400 0 ug/Kg 2.0 2000 0 400 0 ug/Kg 2.0 2000 0 400 0 ug/Kg 2.0 2000 0 400 0	610 620 620 610 620 620 610 620 620 610 620 620 610 620 620 610 620 620 610 4100 4100 400 410 410 400 410 410 400 410 210
e ug/Kg 6.0 6.0 6.1 6.1 6.1 ug/Kg 6.0 6.1 0 6.1 ug/Kg 6.0 6.0 6.1 0 6.1 0 12 u 12 u 12 u 12 u 12 u 12 u 12 u 1	6.1 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 6.2 U 12 U
ug/Kg 6.0U 6.0U 6.0U 6.1U ug/Kg 12U 12U 12U 12U ug/Kg 6.0U 6.1U 12U 12U ug/Kg 400U 6.0U 6.1U ug/Kg 400U 2000U 400U ug/Kg 201 150J 400U ug/Kg 21J 2000U 400U	6.1 U 6.2 U 6.2 U 6.2 U 12 U
ug/Kg 12U 12U 12U 12U 12U 12U 12U 12U 12U 12U	12.U 12.U 12.U 12.U 12.U 12.U 12.U 12.U
ug/Kg 6.0 6.0 6.0 6.10 ug/Kg 400 0 6.0 6.10 ug/Kg 400 0 2000 0 400 0 ug/Kg 400 0 150 400 0 cene ug/Kg 201 400 0 anthene ug/Kg 301 150 400 0	6.1 U 6.2 U 6.2 U 6.2 U 400 U 410 U 410 U 410 U 410 U 410 160 J 400 U 410 U 160 J 400 U 410 U 160 J 400 U 410 U 210 J
ug/Ka 400 U 2000 U 400 U ug/Ka 400 U 2000 U 400 U cene ug/Ka 400 U 150 J 400 U e ug/Ka 20 U 400 U nthene ug/Ka 30 1 100 0 400 U	400 U 410 U 410 U 410 U 400 U 410 U 410 U 31 J 400 U 410 U 160 J 400 U 410 U 160 J 400 U 410 U 160 J 400 U 410 U 210 J
ug/Kg 400 U 2000 U 400 U ug/Kg 400 U 2000 U 400 U cene ug/Kg 400 U 150 J 400 U e ug/Kg 22 J 2000 U 400 U nthene ug/Kg 30 J 100 I 400 U	400 U 410 U 410 U 400 U 410 U 31 J 400 U 410 U 160 J 400 U 410 U 160 J 400 U 410 U 160 J
ug/Kg 400 2000 400 400 U ug/Kg 22 22 2000 400 U ug/Kg 22 301 400 U ug/Kg 301 400 U	400 U 410 U 31 400 U 410 U 31 400 U 410 U 160 400 U 410 U 160 400 U 410 U 210
uz/Kg 400U 150J 400U uz/Kg 22J 2000U 400U uz/Kg 301 100L 400U	400 U 410 U 160 J 400 U 410 U 160 J 400 U 410 U 160 J 400 U 410 U 210 J
uz/Kr 22] 2000 U 400 U uz/Kr 301 100 M01	400 U 410 U 160 J 400 U 410 U 210 J
	400 410 210 210
ug/Kg 400 U 2000 U 400 U	40011 41011
ug/Kg 400 U	

15867-Tables-Sept00

2#11#4-03-ETX-VA Indp 0005/17/21

Page 2 of 4		MW-4 5-091500-KL-015 9/15/2000		1 0063	5001	22000	1100 J	1700 J	3500 U	11000 8200 J		ODED	0.46 UI	4.6	129	1.3 UJ	0.88 J	701000	1.0	11.2	9310	34.9	9420]	413 7.6	166	0.53 U	U 1.1	358 U	1.6	9.3	311 0.042		0.53 U .	2
•		MW-3 5-091400-KL-010 9/14/2000		11011	410 U	410 U	410 U	410 U	410 U	410 U 410 U		12000	0.54 11	10.7	107	0.61 UJ	0.63 UJ	1//1	15.0	31.0	32400	15.8	4830 J	0U3 35 A	943	0.63 U	1.3 U	U 0.97	=	19.6	105 0.035		0.63 U 80.0	2222
)		MW-3 S-091400-KL-009 9/14/2000		1 00 1	410 U	490	410 U	53]	410 U	160 J 180 J		DAKN	0.811	8.1	76.2	0.51 UJ	0.12 J	2/400	10.7	30.2	23100	87.6	(06/6	170	924	0.62 U	1.2 U	138 U	1.5	18.8	0.11		17.1 80 9	
	JMMARY FY STUDY ET	MW-2 S-091500-KL-014 9/15/2000	Dupplicate	11014	410 U	410 U	410 U	410 U	410 U	410 U 410 U		Roon	0.88 L	7.0	60.1	0.43 UJ	0.62 UJ	0.687	10.9	26.1	23200	H	3470)	000 0 90	169	0.62 U	1.2 U	161 U	0.87	14.8	0.023		0.62 U 80 5	1
TABLE 1A	LS ANALYTICAL RESULTS SUMMARY INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	MW-2 S-091500-KL-013 9/15/2000		11007	400 U	400 U	400 U	400 U	400 U	400 U 400 U		ONEN	1(1 07 0	7.5	55.1	0.45 UJ	0.61 UJ	00/7	11.7	27.4	23600	11.3	10046	25.4	Ē	0.61 U	1.2 U	142 U	1.4	15.7	0.031		0.61 U 87 2	
Ţ	ILS ANALYTIC E INVESTIGATI PARCEL 2 - BUFFAL	MW-2 S-091500-KL-012 9/15/2000		1001	20001	5401	2000 U	2000 U	2000 U	260 J 220 I		15300	0.64 11	4.8	457	1.8 UJ	0.60 UJ	17.6	85	20.6	11700	25.6	51200 J	11.5	1360	1.2 U	0.19	507	3.4	13.2	141 0.068		3.8 R3.7	
	SOIL	0007\$1/6 S-091400-XL-007		1 90	400 U	551	400 U	400 U	400 U	29] [22]		11700	0.80 UT	8.5	. 68.7	0.47 UJ	0.60 UJ	16.0	11.1	16.8	28500	33.9	4/40)	23.6	915	0.34	1.2 U	343 U	12	871	0.043		0.60 U 82.8	-
		Sample Location: Sample ID: Sample Date:	Unit		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg ug/Kg		me/Ka	me/Ke	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/ Kg	me/Ke	mg/Kg	mg/Kg	mg/Kg	mg/ Ng	me/Ke	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ER/KG	mg/Kg mg/Kg	шқ/ лқ тқ/ Кқ		mg/Kg %	
			Parameter Semi-Volatiles (Contd)	Chrysone (Curia)	Dibenz(a.h)anthracene	Fluoranthene	Fluorene	Indeno(1,2.3-cd)pyrene	Naphthalene	r'henåntbrene Pyrene	Matate	Aluminum	Antimony	Arsenic	Barium	Beryllium	Celoint	Chromium	Cobalt	Copper	Iron	Momentum	Mangangeo	Nickel	Potassium	Selenium	Silver	Sodium			Mercury	General Chemistry	Cyanide (total) Total Solids	

15867-Tables-Sept00

242124-02-5TX-VA 100p 0002/17/21

		SOIL	SOILS ANALYTICAL RESULTS SUMMARY SITE INVESTIGATION/FEASIBILITY STUDY PAPCET 2 _ SENIECA STUBET	S ANALYTICAL RESULTS SUMMARY	IMMARY			
			BUFFAL	VESTIGATION/FEASIBILITY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	Y STUDY			
	Sample Location: Sample ID: Sample Date:	MTW-5 S-091400-KL-008 9/14/2000	5B-11 S-091300-KL-001 9/13/2000	5B-12 S-091300-KL-005 9/13/2000	5B-13 S-091300-KL-002 9/13/2000	5B-14 S-091300-KL-003 9/13/2000	5B-15 S-091300-KL-004 9/13/2000	5B-16A S-091800-KL-016 9/18/2000
Parameter	Unit							
Volatiles								
1,1,1-1 ncruoroetnane 1,1,2 2-Tetrachloroethane	ug/Kg	6.7 U			•	6.0 U	5.3 U	310 U
1.1.2.Trichloroethene	ug/ ng 	0.7.0	•	•		6.0 U	5.3 U	310 U
1-Dichloroethane	uk/ NK	0.7.0			•	6.0 U	5.3 U	310 U
1.1-Dichloroethene	uk/ NK 110/ Ke	0.70	•		•	6.0 U	5.3 U	310 U
2-Dichloroethane	uk/ NK 110/ Ko	0'/ D 4 7 1 1	•		•	6.0 U	5.3 U	310 U
1.2-Dichloronone	uk/ nk	0.70			•	6.0 U	5.3 U	310 U
2-Butanone	ue/Ke	111.74	•		•	0.0.0	5.3 U	310 U
2-Hexanone	10/Ke	27 U)	•			24 UJ		1300 U
4-Methyl-2-pentanone	ue/Ke	11 44	•			24.0	21.0	1300 U
Acetone	110/Ko	2, 2	• •	•	•	[0 42		1300 U
Benzene	ue/Ke	6.7 U		•	•	1 47	21 U	420)
Bromodichloromethane	ue/Ke	6.7 U	•			6.0 U	1123	31010
Bromoform	ug/Kg	6.7 U				60 D	5311	31011
Bromomethane	ug/Kg	R				12 U	11 U	630 U
Carbon disulfide	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
Carbon tetrachloride	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
Chlorobenzene	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
Chloroetnane	ug/Kg	13 U				12 UJ	11 UJ	630 U
Chloromethane	ng/ Ag	0./.0		•		6.0 U	5.3 U	310 U
cis-1.2-Dichloroethene	uk/ NK	0 61	•	•	•	12 U	11 U	630 U
cis-1.3-Dichloropropene	uk/ NK	6.711	•	•	•	0.09	5.3 U	310 U
Dibromochloromethane	ue/Ke	6.7 U		•		0.0.0	5.3 U	310 U
Ethylbenzene	ug/Kg	6.7 U				109	2200	0.010
Methylene chloride	ug/Kg	6.7 U			•	. 6011	5311	11018
Styrene	ug/Kg	6.7 U				6:0 U	531	31011
Tetrachloroethene	ug/Kg	6.7 U				8.3	28	7200
Toluene	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
trans-1,2-Dichloroethene	ug/Kg	6.7 U			•	6.0 U	5.3 U	310 U
trans-1,3-Dichloropropene	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
Irichloroethene	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
Vinyl chloride	ug/Kg	13 U	•			12 U	11 U	630 U
Xylene (total)	ug/Kg	6.7 U				6.0 U	5.3 U	310 U
Semi-Volatiles								
Acenaphthene	ug/Kg	440 U	400 U	410 U	390 U	400 U	1800 UI	41011
Anthracene	ug/Kg	30 J	400 U	410 U	390 U	400 U	1201	410 U
Benzo(a)anthracene	ug/Kg	88 J	400 U	410 U	390 U	400 U	1012	41017
Benzo(a)pyrene	ug/Kg	106	400 U	410 U	390 U	400 U	7201	410 U
Benzo(b)fluoranthene	ug/Kg	781	400 U	410 U	390 U	400 U	7501	410 U
Benzo(g,h,i)perylene	ug/Kg	50]	400 LJ	11011	11095	1007	1 Coc	11015
			2 225	1001		9 W C	1007	4 101 11

15867-Tables-Sept00

526129-08-57X-VA 100p 0005/7/21

				TA	TABLE 1A				Page 4 of 4
			SOI	SOILS ANALYTICAL RESULTS SUMMARY SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	ANALYTICAL RESULTS SUM VESTIGATION/FEASIBILITY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	IMMARY IY STUDY IT			
		Sample Location: Sample ID: Sample Date	MW-5 S-091400-KL-008 9/14/2000	SB-11 S-091300-KL-001 9/13/2000	5B-12 5-091300-KL-005 9/13/2000	5B-13 5-091300-KL-002 9/13/2000	SB-14 S-091300-KL-003 9/13/2000	SB-15 S-091300-KQ-004 9/13/2000	SB-16A S-091800-KL-016 9/18/2000
	Parameter Semi-Volatiles (Contd)	Unit							
	Chrysene	ug/Kg	110 J	400 U	410 U	390 U	400 U	830 J	22]
	Utoenz(a,n)anunacene Fluoranthene	ug/ Kg	2201	40017	410 U	0.060 390 U	400 U	1800 L	461
	Fluorene	ug/Kg	440 U	400 U	410 U	390 U	400 U	1800 UJ	410 U
	Indeno(1,2,3-cd)pyrene	ug/Kg	45]	400 U	410 U	390 U	400 U	290 J	410 U
	Naphthalene	ug/Kg /V.	440 U	400 U	410 U	390 U	400 U	1800 UJ	410 U
	Pyrene	ug/Kg	120]	400 U	410 U	390 U	400 U	600 J	40) 44]
	Metals								
	Aluminum	mg/Kg	14100	14500	14100	10200	10500	4230	11100
	Antimony	mg/Kg	0.58 UJ	0.70 UJ	0.93 J	0.62 UJ	0.32 UJ	0.46 UJ	0.78 UJ
	Arsenic	mg/Kg	9.7	9.7	12.9	8.6	9.3	4.8	6.6
	Barium	mg/Kg	85.9	80.2	103	50.8	56.4	71.4	67.9
	Beryllium	mg/Kg	0.74 UJ	[n 09:0	0.69 UJ	0.47 UJ	0.50 UJ	0.24 UJ	0.53 UJ
	Calcium	mg/ Kg mg/ Kg	1 C-1	0000 0000	U.62 UJ 1450	0.60 UJ 1840	0.60 UJ	0.48 J	0.63 UJ
	Chromium	mg/Kg	18.4	18.9	18.6	13.2	12.9	22.8	13.7
	Cobalt	mg/Kg	15.7	13.2	16.6	11.9	14.8	3.0	16.8
	Copper	mg/Kg	9,96	30.0	33.7	27.1	31.5	21.0	32.0
	Iron	mg/Kg	30800	34000	36100	26300	26900	9270	28000
	Mamasium	mg/Kg	44.8	12.6	17.3	11.7	13.7	354	13.9
	Manganese	me/Ke	515	0000	[0575	106/6	3730]	26400]	3940]
	Nickel	mg/Kg	31.8	37.8	37.5	284	300	CI5 78	708 515
	Potassium	mg/Kg	1620	1090	1030	787	206	585	2012
	Selenium	mg/Kg	0.67 U	1.2 U	0.62 U	0.60 U	0.60 U	0.54 U	0.63 U
	Sodium	mg/Kg	1.4 U	1.2 U	1.2 U	1.2 U	1.2 U	1.1 U	1.3 U
	Thallium	mg/ ng mg/ Kg	15	112 U	255 U	156 U	114 U	421	220 U
	Vanadium	mø/Kø	114	210	1 1		777	0.80	1.4
	Zinc	me/Ke	1310	107	51.5 101	1/1 010	18.2	9.6	17.9
	Mercury	mg/Kg	160.0	0.032 U	0.026 U	0.017 U	0.033 U	186 0.13	87.5 0.034
	Consect Chamber								
	Cyanide (total) Total Solids	тк/Кқ %	0.67 U 75.2	0.61 U 82.0	0.62 U 80.4	0.60 U 83.9	0,60 U 83.1	0.53 U 93.5	0.63 U 79.6
Notes:									
	Not applicable.								
- ×	Estimated. Rejected								
c :	Non-detect at associated value.	ue.							

15867-Tables-Sept00

Sahirg OS-CTX-VA Inde MUG/7/SI

		ı	•	TABLE 1B	•	•		Page 1 of 3
		GROU	UNDWATER AN. SITE INVESTIGA PARCEL : BUFFA	GROUNDWATER ANALYTICAL RESULTS SUMMARY SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	LTS SUMMARY ITY STUDY JET			
	Sample Location: Sample ID: Sample Date:	MW-1 W-100400-KL-001 10/4/2000	MW-2 W-100500-KL-005 1052000	MW-3 W-100400-KL-004 10/42000	MW-4 W-100500-KL-006 10/5/2000	MW-4 W-100500-KL-007 145/2000	MW-4A W-100400-KL-003 10/42000	MW-5 W-100400-KL-002 10/4/2000
Parameter	Units					Duplicate		
VolaHles								
1,1,1-Trichloroethane	, 1/gu	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	2.8 J
1,1,4,4-1 errachioroethane 1,1,2-Trichloroethane	ר) /Su עבון	5.0 U	25 U 25 U	5.0 U	500 U 500 ti	500 U 500 U	5.0 U	5.0 U
1,1-Dichloroethane	ug/L	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	1.5]
1,1-Dichloroethene	1/gn	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
1,2-Dichloroemane	ug/L	501	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
2-Butanone	ug/L	20 U	1001	0.0.0	0.000	500 U	5.0 U 20 I I	5.0 U
2-Hexanone	ng/L	20 U	100 U	20 U	2000 U	2000 []	2013	20 11
4-Methyl-2-pentanone	ng/L	20 U	100 U	20 U	2000 U	2000 U	20 U	20 U
Acetone	ug/L	3.7]	100 U	ĸ	ĸ	Ж	17 J	4.3]
Benzene Bromodichtoromothene	. ug/L	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
Bromoform	ug/ L 110/1	0.0.0	25 U 75 TT	5.0 U	500 U	500 U	5.0 U	5.0 U
Bromomethane	ug/L	2 2 2	5 2 2	2000	(U WC	(n nnc	D 0.6	U 0.6 R
Carbon disulfide	ng/L	5.0 UJ	25 UJ	5.0 UJ	500 UJ	500 UJ	5.0 UT	5.0 UJ
Carbon tetrachloride	ug/L	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
Chloroethane	ug/L	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
Chloroform	ug/L	5.0 U	25 U	2011	500 T I	K 500 11	10 U	10 U
Chloromethane	ug/L	10 U	50 U	10 U	1000 U	1000 U	10 U	10 U
cls-1,2-Dichloroethene	ng/L	5.0 U	400	5.0 U	250 J	220 J	7.6	5.0 U
Dibromochloromethane	ug/L	5.0 U	25 U 25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
Ethylbenzene	ug/L	5.0 U	25 U	5.0 U	500 11	5001	0.0.5	0.0.5
Methylene chloride	ug/L	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
Styrene Tetrachlorothano	1/2n	5.0 U	25.0	5.0 U	500 U	500 U	5.0 U	5.0 U
Toluene	ug/L ug/L	5.0 U	690 J	5.0 U	17000)	15000]	730	5.0 U
trans-1,2-Dichloroethene	1/8n	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.01
trans-1,3-Dichloropropene	ng/L	5.0 U	25 U	5.0 U	500 U	500 U	5.0 U	5.0 U
unculoroemene Vinvi chloride	ug/L	5.0 U	350	5.0 U	940	840	30	5.0 U
Xylene (total)	ug/L	5.0 U	250	10 U 5.0 U	1000 U	1000 U 500 U	10 U	10 U
Semi-Vola Hles	i		1) 40	2	2000	0 10	0.0.6
Acenaphthene	ng/L	10 U	10 U	10 U	10 U	10 []	10 [1	11.01
Anthracene	ng/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene Benzo(a)antonoo	ug/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(b)filioranthene	חצ/ ר ייביו		101	10 U	10 U	10 U	10 U	10 U
Benzo(g.h.f)Derviene	1/2n	100	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	ug/L	10 U	101	101			10 U	10 U
Chrysene	J/Bn	10 U	10 U	10 U	10 U	101	101	10 0
1060 (- 1 80195 ~ 80195 - 1 900 L							1	12/7/2000

Sample Location: Sample Location: Sample Date: MWv-1 Sample Date: MV-20040-K Sample Date: MV-20040-K Sample Date: MV-20040-K Sample Date: MV-20040-K Sample Date: MV-2004 ug/L 100 ug/L 100 ug/L 100 ug/L 100 ug/L 100 ug/L 220 ug/L 5.00 ug/L	OUND SITE	WATER ANALYTICAL RESULTS SUMM INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK <i>MW-2</i> <i>MW-3</i> <i>MW-4</i> <i>MW-4</i> <i>MW-2</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4 <i>MW-4</i> <i>MW-4 <i>M</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	TS SUMMARY Y STUDY IT w-100500-KL-006 . 1000 1000 1000 1000 1000 1000 1000 10	MW-4 MW-1000500-KL-007 V-1005000 DupHcate 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	MW-4A MW-4A 10400-KL-003 10/42000 10/1 10/1 10/1 10/1 10/1 10/1 10/1	MW-5 MV-5 W-100400-KL-002 10/U 10/U 10/U 10/U 10/U 10/U 10/U 10/U
Sample Location: sample Location: sample Date: Parameter Units Jahilarscene ug/L bene ug/L bene ug/L ug/L brene ug/L brene	WY-2 WY-100500-KZ-005 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	MW-3 W-100400-XL-004 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	MW-4 MY-100500-KL-006 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	MW-4 W-100500-KL-007 19552000 19 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	<i>MW-4A</i> <i>10</i> 4200- <i>KL</i> -003 <i>10</i> 422000 10 <i>U</i> 10 <i>U</i> 10 <i>U</i> 10 <i>U</i> 10 <i>U</i> 10 <i>U</i> 10 <i>U</i> 10 <i>U</i> 200 <i>U</i>	MW-5 W-100400-KL-00 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10
Parameter Imits Tatiles (Contal) ug/L Abhlanthraccne ug/L here	10 U 10 U 10 U 10 U 10 U 10 U 4.1 4.1 7.0 U	100 100 100 100 100 100 100 100 100 100	10 U 10 U 10 U 10 U 10 U 394 0.0 U 10.0 U	Duplicate 10 U 10 U 10 U 10 U 10 U 10 U 10 U 60.0 U	10U 10U 10U 10U 10U 10U 1200	10 U 10 U 10 U 10 U 10 U 10 U
lattics (Contd) Lattics (Contd) Lattics (Contd) L2-3-cd)pyrene ug/L trene ug/L trene ug/L trene ug/L ug/L ug/L ug/L ug/L ug/L Uissolved) ug/L Uissolved) ug/L Uissolved) ug/L Uissolved) ug/L Uissolved) ug/L Uissolved) ug/L Uissolved) ug/L ug	10 U 10 U 10 U 10 U 10 U 6.0 4.1 4.1 7.1 7.0 U	10U 10U 10U 10U 100 100U 100U	10 U 10 U 10 U 10 U 10 U 394 0.0 U 10.0 U	10 U 10 U 10 U 10 U 10 U 10 U 60.0 U	10 U 10 U 10 U 10 U 10 U 10 U 1200 1200	10 U 10 U 10 U 10 U 10 U 10 U 10 U
 J.A.Jantihracene ug/L Mene ug/L Mene ug/L J.Z.3-cd)pyrene ug/L J.Z.3-cd)pyrene ug/L J.Z.3-cd)pyrene ug/L J.Z.3-cd)pyrene ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L Jissolved) ug/L 	10 U 10 U 10 U 10 U 10 U 86.0 4.1 4.1 7.1 5.0 U	10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 394 60.0 U 10.0 U	10 U 10 U 10 U 10 U 10 U 10 U 60.0 U 60.0 U	10U 10U 10U 10U 10U 1200 1200	10 U 10 U 10 U 10 U 10 U 10 U
hene ug/L 2.2.3-cd)pyrene ug/L lene ug/L hrene ug/L hrene ug/L w (Dissolved) ug/L w (Dissolved) ug/L w ug/L Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m	10 U 10 U 10 U 10 U 10 U 4.1 4.1 7.1 5.0 U	10 U 10 U 10 U 10 U 10 U 10 U 10 U	10U 10U 10U 10U 10U 394 60,0U 10,0U	10 U 10 U 10 U 10 U 10 U 60.0 U	10 U 10 U 10 U 10 U 10 U 12 0 12 0	100 100 100 100 100 100 100 100
 ug/L 1.2.3-cd)pyrene ug/L hvene ug/L hvene ug/L hvene ug/L ug/L 	10 U 10 U 10 U 10 U 5.0 U 5.0 U	10U 10U 10U 100 100U 100U	10 U 10 U 10 U 10 U 394 60.0 U 10.0 U	10 U 10 U 10 U 10 U 440 60.0 U	10 U 10 U 10 U 10 U 200 U 1200	10 U 10 U 10 U 10 U 10 U
Luz-colpyrene ug/L hrene ug/L hrene ug/L um (Dissolved) ug/L w (Dissolved) ug/L Uissolved) ug/L Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L um (Dissolved) ug/L us/L bissolved) ug/L us/L bissolved) ug/L bissolved) ug/L	10 U 10 U 20 U 5.0 U 5.0 U 5.0 U	10U 10U 10U 100U 100U	10 U 10 U 10 U 394 60,0 U 10,0 U	10 U 10 U 10 U 4 4 0 60.0 U	10 U 10 U 10 U 200 U 1290	10 U 10 U 10 U 10 U 53.1
lene ug/L hrene ug/L m (Dissolved) ug/L m (Dissolved) ug/L y (Dissolved) ug/L y (Dissolved) ug/L Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m ug/L solved) ug/L m ug/L m ug/L bissolved) ug/L m ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L	10 U 10 U 60.0 U 4.1 - 137 - -	10 U 10 U 10 U 10 0 U 10 0 U	10 U 10 U 10 U 394 60,0 U 10,0 U	10 U 10 U 10 U 440 60.0 U	10 U 10 U 10 U 200 U 1290	10 U 10 U 10 U 53.1
mene ug/L um (Dissolved) ug/L ug/L wy (Dissolved) ug/L wg/L (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L um (Dissolved) ug/L um (Dissolved) ug/L um (Dissolved) ug/L us/L m ug/L solved) ug/L ug/L bissolved) ug/L ug/L m ug/L solved) ug/L ug/L bissolved) ug/L ug/L bissolved) ug/L ug/L bissolved) ug/L ug/L ug/L bissolved) ug/L ug/L bissolved) ug/L ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L bissolved) ug/L	10 U 10 U 86.0 4.1 4.1 5.0 U 5.0 U	10 U 10 U 6 0.0 U 10.0 U	10 U 10 U 394 60,0 U 10,0 U	10 U 10 U 440 60.0 U	10 U 10 U 200 U 1290	10 U 10 U . 53.1
un (Dissolved) un (Dissolved) y (Dissolved) y (Dissolved) y (Dissolved) ug/L Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un ug/L un ug/L	10 U 86.0 4.1 4.1 5.0 U	10 U - - 10.0 U -	10 U 60.0 U 10.0 U	10 U - 440 60.0 U	10 U 200 U 1290	10 U - 53.1
un (Dissolved) un (Dissolved) y (Dissolved) y (Dissolved) ug/L (Dissolved) n (Dissolved) n (Dissolved) n (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L ug/L ug/L un (Dissolved) ug/L ug/L usg	- 86.0 4.1 - 137 - 5.0 U	- 105 60.0 U 10.0 U	- 394 60.0 U - 10.0 U	- 440 - 60.0 U	200 U 1290	53.1
un (Dissolved) ug/L w (Dissolved) ug/L (Dissolved) ug/L (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m m (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L issolved) ug/L ssolved) ug/L	86.0 60.0 U 4.1 4.1 7. 5.0 U	105 - 60.0 U 10.0 U	- 394 60.0 U 10.0 U	- 440 -	200 U 1290	- 53.1
wy (Dissolved) wg/L wy (Dissolved) wg/L (Dissolved) wg/L Dissolved) wg/L m (Dissolved) wg/L m (Dissolved) wg/L m (Dissolved) wg/L wg/L wg/L bissolved) wg/L issolved) wg/L issolved) wg/L bissolved) wg/L bissolved) wg/L ssolved) wg/L	86.0 - 4.1 - 137 5.0 U	105 - 60.0 U 10.0 U	394 60.0 U 10.0 U	440 - 60.0 U	1290	53.1
y (Dissolved) ug/L (Dissolved) ug/L (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L um (Dissolved) ug/L Dissolved) ug/L Sissolved) ug/L solved) ug/L solved) ug/L solved) ug/L solved) ug/L solved) ug/L solved) ug/L	60.0 U 60.0 U 4.1 137 5.0 U	60.0 U - 10.0 U	60.0 U 10.0 U	- 60.0 U		
y (Dissolved) ug/L (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L um (Dissolved) ug/L jissolved) ug/L jissolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L	60.0 U - - - - 5.0 U - -	0.00 10.0U	60.0 U - 10.0 U	60.0 U	3.5 U	•
Dissolved) ug/L ug/L n (Dissolved) ug/L n (Dissolved) ug/L m (Dissolved) ug/L un (Dissolved) ug/L bissolved) ug/L Dissolved) ug/L bissolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L	4.1 - 5.0 U	10.0 U	- 10.0 U		60.0 U	1.9 U
Dissolved) ug/L n (Dissolved) ug/L n (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L bissolved) ug/L bissolved) ug/L solved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L ssolved) ug/L	137 - 5.0 U				10.0 U	
n (Dissolved) ug/L n (Dissolved) ug/L m (Dissolved) ug/L m (Dissolved) ug/L un (Dissolved) ug/L un (Dissolved) ug/L Dissolved) ug/L bissolved) ug/L solved) ug/L solved) ug/L ssolved) ug/L ssolved) ug/L	137 - 5.0 U			D 0.01	10.0 U	10.01
n (Dissolved) ug/L n (Dissolved) ug/L m (Dissolved) ug/L (Dissolved) ug/L um (Dissolved) ug/L Dissolved) ug/L Dissolved) ug/L (Dissolved) ug/L solved) ug/L solved) ug/L ssolved) ug/L ssolved) ug/L	5.0 U	61.4	111	112	164	88.1
m (Dissolved) ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 U	•		•	5.0 U	•
un (Dissolved) ug/L (Dissolved) ug/L um (Dissolved) ug/L Dissolved) ug/L Dissolved) ug/L (Dissolved) ug/L ug/L ug/L solved) ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
(Dissolved) ug/L um (Dissolved) ug/L um (Dissolved) ug/L Dissolved) ug/L (Dissolved) ug/L ug/L ug/L ug/L solved) ug/L solved) ug/L ug/L				• •	5.0 U	•
um (Dissolved) ug/L um Dissolved) ug/L Dissolved) ug/L (Dissolved) ug/L ug/L ug/L ug/L ug/L solved) ug/L ug/L	0	•	•	DC :0	0.0.6	D 0.6
um (Dissolved) ug/L um ug/L Dissolved) ug/L (Dissolved) ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	143000	112000	129000	130000	74700	104000
um Dissolved) ug/L (Dissolved) ug/L ug/L ug/L ug/L ug/L ug/L ug/L		•	•	•	10.0 U	
Jasolved) ug/L (Dissolved) ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.6	1.9 U	1.7	1.2	3.8 U	1.8 U
Dissolved) us/L us/L usolved) us/L J/gu Ug/L ug/L ug/L	-			• :	50.0 U	•
solved) ug/L ug/L ug/L ug/L ug/L	0.0.00	0.0.0	50.0 U	3.5	50.0 U	50.0 U
solved) ug/L ug/L ug/L ug/L	1169	25.011	- 5317	-		-
ug/L Ugsaolved) ug/L Ugu	•		•		164	
(Dissolved) ug/L ug/L	1010	587	1060	1110	8130	1750
J/8n		•			3.0 U	
	3.0 U	3.0 U	3.0 U	3.0 U	3.5	3.0 U
(Dissolved) ug/L	•	•		•	18800	
Magnesium ug/L 42500 Manazate (Diand)	24100	21000	25900	26100	21600	12300
ug/L		• • •	• ;	•	62.0	
olved)	1940	289	823	822	135	1380
	- 44	. 11 0	• 5	• •		•
tum (Dissolved) ug/L			ů,	14.8	18.7	11.6
	7640	8720	5010	5270	0514	3670
Selenium (Dissolved) ug/L			•	•	2011	
	5.0 U	2.3	5.0 U	5.0 U	5.0 U	22

		GROI	GROUNDWATER ANALYTICAL RESULTS SUMMARY	ALYTICAL RESU	JLTS SUMMARY			
			SITE INVESTIGATION/FEASIBILITY STUDY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	VESTIGATION/FEASIBILITY PARCEL 2 - SENECA STREET BUFFALO, NEW YORK	LITY STUDY EET (
	Sample Location: Sample ID: Sample Date:	100402001 W-100400-KL-001 W-100400	MW-2 W-100500-KL-005 10/5/2000	MW-3 W-100400-KL-004 10/4/2000	MW-4 W-100500-KL-006 10/5/2000	MW-4 W-100500-KL-007 10/5/2000 Duplicate	MW-4A W-100400-KL-003 10/4/2000	MW-5 W-100400-KL-002 10/4/2000
Parameter	Units							
Metals (Contd)								
Silver (Dissolved)	ng/L						10.0 U	
Silver	ng/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Sodium (Dissolved)	1/Bn		,				30400	
Sodium	ng/L	168000	204000	82500	161000	162000	33400	55200
Thallium (Dissolved)	1/gu					•	10.0 U	
Thallium	1/Sn	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Vanadium (Dissolved)	ng/L						50.0 U	
Vanadium	ug/L	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Zinc (Dissolved)	ug/L						20.0 U	•
	ng/L	20.0 U	11.0	20.0 U	9.4	9.5	17.6	5.3
Mercury (Dissolved)	ng/L						0.081 U	,
Mercury	ug/L	0.059 U	U 680.0	0.075 U	0.13 U	0.077 U	0.073 U	0.071 U
General Chemistry								·
Cyanide (total)	ng/L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Not applicable.								

Notes: J U

Estimated. Rejected. Non-detect at associated value.

246127-7W-5772-VA 1001-12/7/2000

Page 3 of 3

TABLE 1B

	ER: 15867 Barcel 2	REMARKS				of 0060									DATE: TIME:	DATE:	TIME:	DATE: TIME:				0	1001 (D) APR 28/97(NF) REV. 0 (F-15)	
-		1. 1. S. C.				1 1 200	•							HEALTH/CHEMICAL HAZARDS							RECEIVED FOR LABORATORY BY:	TIME.		
CHAIN OF CUSION RECARD	- Tront Labs urgh, PM	sıəni	TYPE 20 20 20 20 20 20 20 20 20 20 20 20 20	Water 6 22		1 6 2 7										RECEIVED BY:	0	RECEIVED BY:	0	WAY BILL No.	RECEIVE			
- CHAIN OF CI	SHIPPED TO (1 Sever	PRINTED KEVIN LYNCH			-									NTAINERS	DATE: 10 5 000	DATE:	TIME:	DATE			SAMPLE TEAM:	2. Chro		- 12
	CONESTOGA-ROVERS & ASSOCIATES 2055 Niagara Falls Bivd., Suite 3 Niagara Falls, N.Y.74304 (716) 297-6150	AIR ALT.	SAMPLE No.	W-100500-KL-005	W- 100500. KL. 006	W- ROSOR -KL-00-	TRIP BUNK		4 <u>1.</u>					 TOTAL NUMBER OF CONTAINERS	X PLA			÷		MENT: FCA CX	-Fully Executed Copy Bocoliving Laboratory Conv	-Shipper Copy		
•••	CONESTO 2055 Niagara F	SAMPLER'S	SEQ. No. DATE TIME	10/5/00 1015	00/1	1300	+			-						RELINQUISHED BY:	0	RELINQUISHED BY:	Ð	METHOD OF SHIPMENT:	White	Pink Coldonrod		

.

-	1: 15867	Severa St.		REMARKS		* Dssourd Metals		w/ MNO3 ANdol.										DATE: TIME:		DATE: TIME:	DATC.	TIME:			No M 0472		1001 (D) APR 28/97(NF) REV. 0 (F-15)
	REFERENCE NUMBER:	Buel 2				×	_	-	3	X X X							HEALTH/CHEMICAL HAZARDS							RECEIVED FOR LABORATORY BY:		TIME:	
CHAIN OF CUSIOD HEGUAD	SHIPPED TO (Laboratory Name):	ern-Trent Labs	Urgh, PA	NN LYNCH IN	SAMPLE 200 AN COL	hater 6 2 2	6 A 2	>	3	¥ 2 X 2							39	MICO RECEIVED BY:	Ŷ	RECEIVED BY:			WAY BILL No.		unch	DATE:	
CHAIN	IddiHS	S	P#	PRINTED KE VIN	SAMPLE No.	0-14-001	0-KL-002	0-46-003	0-KL-004 + MS + MS D	w (<							TOTAC NUMBER OF CONTAINERS	DATE: (D) 4		DATE:		TIME	٤٢	ted Copy SAMPLE TEAM:	Copy		
		2055 Niagara Falis Bivd., Suite 3	Niagara Falls, N.Y. 14304	SIGNATURE: T-LA	SEQ. No. DATE TIME	104/00 1315 W-100400-KL-	1 1415 W-1004 00-KL	1 1440 W-100400	1530 W-100400	V - Teip Blaul				***		 	IOTACIND	RELINOUISHED BY		Relinguished By:		RELINQUISHED BY: 3	METHOD OF SHIPMENT: FED	White -Fully Executed Copy		Pink	

	TIME SAMPLE No. TYPE 2007 34 44	011300 011300 011300 011300 011300	Kerter until bereiter	Total Number of Containers Z.O HEALTH/CHEMICAL HAZARDS RELINQUISHED BY: DATE: 1/3/bC RECEIVED BY: 0 TIME: 1/3/bC 0	IED BY: DATE: DATE: Control of the c	METHOD OF SHIPMENT: そりん White -Fully Executed Copy SAMPLE TEAM: WAY BILL No. <i>51526996443</i> Yellow -Receiving Laboratory Copy -Shipper Copy -Shipper Copy -Sampler Copy -S	1001 (D) APR 28/97(NF) REV. 0 (F-15)
--	---------------------------------	--	-----------------------	--	--	--	--------------------------------------

-	MBER: 15867 Serve ca St	REMARKS				1 Tay lec Study + Mert 3				I Ton Ton Svols & Merch			*			ZARDS	DATE: TIME:	DATE: TIME:	DATE: TIME:		BY:	No N 0470		1001 (D) APR 28/97(NF) REV. 0 (F-15)
					XXX	XXX				X	X X X	R X	× ×			HEALTH/CHEMICAL HAZARDS	BY:	BY:	3Y:	· 5152694584	RECEIVED FOR LABORATORY B		DATE:TIME:	
CHAIN OF CUSIOD AECURD	(Laboratory Name		SAMPLE 50 3	501C 3 >				V. E.L	<i>*</i>	OF SOIL Z	_	< 2				(14)				WAY BILL No.		4rch		
	150	L PRINTED KE VIN	SAMPLE No.	00- KL - 008	-K	071400 - KL -007 091400 - KL - 010	2.1 J 4 11	DODERSIGN OF SUN PLON		-01200- KI-014) BUND DUF	KL	-091500-KL-013	071500-KL-015			NUMBER OF CONTAINERS	DATE: TIME:	DATE:	DATE:	DEN VIS	-Fully Executed Copy SAMPLE TEAM:	oratory Copy	Copy	
	CONESTOGA-ROVERS & ASSOCIATES 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, N.Y. 14304 (716) 297-6	SAMPLER'S A C-C	SEQ. No. DATE TIME	9114bo 1215 5-07400	vi	15/5 5 - 09/400	Ē	A I		0	-		V 1500 5-071			/ JOTAL I	RELINQUISHED BY	RELINGUISHED BY:	RELINQUISHED BY: 0	METHOD OF SHIPMENT: 66		Yellow –Receiving Lat Pink –Shipper Coov	enrod	

· . . 8

Severe St.	REMARKS													RDS	DATE: TIME:	DATE: TIME:	DATE: TIME:		L L N ON	چ ع	1001 (D) APH 28/97(NF) REV. 0 (F-15)
4 P	<u> </u>	A/ A	XXX												ED BY:	ED BY:	ED BY:	LNO. 5 152694595	RECEIVED FOR LABORATORY BY:	DATE: TIME:	
Severn - Trent (Keria LYNCH Iners		m												TIME: 1530 0	DATE: RECEIVE	DATE: RECEIVE	NAY BIL	E J		
NESTOGA-ROVERS & ASSOCI 55 Niagara Falls Bivd., Suite 3 1gara Falls, N.Y. 14304 (716) 2	4-1-4	TIME SAMPLE No.	1400 S-071800-KL-016						£					I TOTAL NUMBER OF CONTAI			SHED BY:	DE SHIPMENT: VCD CX	I Copy oratory Copy	-Shipper Copy -Sampler Copy	
	NESTOGA-ROVERS & ASSOCIATES SHIPPED TO (LABORATORY NAME): 55 Niagara Falls Blvd., Suite 3 1gara Falls, N.Y. 14304 (716) 297-6150 PtH 5 h vr 4 h, AA PA Pr c) 2 Sever	CONESTOGA-ROVERS & ASSOCIATES SHIPPED TO (Laboratory name): 2055 Niagara Falls Bivd., Suite 3 Niagara Falls, N.Y. 14304 (716) 297-6150 PLER'S PLER	NESTOGA-ROVERS & ASSOCIATES Serie Pell 10 (Laboratory name): Herenence number: 55 Niagara Falls Blvd., Suite 3 Severn - Trent Lab A 55 Niagara Falls, N.Y. 14304 (716) 297-6150 A++ S hurd A A Applier Revern - Trent Lab A	NESTOGA-ROVERS & ASSOCIATES Serie Pell 10 (Laboratory Name): Herene Number: 55 Niagara Falls Blvd., Suite 3 Severn - Trent Lab A 55 Niagara Falls Blvd., Suite 3 Severn - Trent Lab A 67 Niagara Falls, N.Y. 14304 (716) 297-6150 PHINTED KCVI U LVM CH 7 PRINTED KCVI U LVM CH B 7 NMBE: KCVI U LVM CH B 7 NMBE: KCVI U LVM CH B 7 NMBE: ZCVI U LVM CH B 7 SA Z Z	NESTOGA-ROVERS & ASSOCIATES Server to Laboratory name): Herence number: 55 Niagara Falls Bivd., Suite 3 Sever to Leboratory name): Herence number: 55 Niagara Falls Bivd., Suite 3 Sever to Leboratory name): Herence number: 55 Niagara Falls N.Y. 14304 (716) 297-6150 PHINTED Korite Vol CH Rev C 2 1 Name: Kovite Vol CH Rev C 2 Rev C 1 Name: Kovite Vol CH Rev C 2 Rev C 1 Name: Kovite Vol CH Rev C 2 Rev C 1 Name: Kovite 2 Rev C 2 Rev C 1 Sample Rev C Sample Rev C 2 1 Sample Rev C Sample Rev C 2	NESTOGA-ROVERS & ASSOCIATES Server - Tre wt Laboratory Name; 55 Nigrat Falls Sever - Tre wt Laboratory Name; 55 Nigrat Falls Sever - Tre wt Laboratory Name; 55 Nigrat Falls Sever - Tre wt Laboratory Name; 56 Nigrat Falls Sever - Tre wt Laboratory Name; 56 Nigrat Falls N.Y. 14304 (716) 297-6150 PHT 5 hur a h 7 PRINTED PRINTED 11 Sample Sample 50 Sample Sample 50 Sample Sample 50 Sample Sample 100 S-011800-KL-016 Solu	NESTOGA-ROVERS & ASSOCIATES Solidare fails Blvd., Suite 3 Gara Fails Blvd., Suite 3 Gara Fails M.Y. 14304 (716) 297-6150 The Sample Key LV LV CH NAME: Key LV LV CH NAME: Key LV LV CH NAME: Sample Solid 3 X X X Type 200 X - 031800 - KL - 0 No Hold S - 031	NESTOGA-ROVERS & ASSOCIATES S5 Nagara Falls Bivd., Suite 3 Gara Falls, N.Y. 14304, (716) 297-6150 Gara Falls, N.Y. 14304, (716) 297-6150 PRINTED NAME: KCV1 J. LYN CH RAVE A RAVE 20 RAMPLE No. TYPE 20 RAMPLE NO	NESTOGA-ROVERS & ASSOCIATES S5 Niagara Falls BMd., Suite 3 Gara Falls, N.Y. 14304 (716) 297-6150 Gara Falls, N.Y. 14304 (716) 297-6150 Gara Falls, N.Y. 14304 (716) 297-6150 Rance Koviu Lynu CH NAME: Koviu Lynu CH NAME: Koviu Lynu CH NAME: Koviu Lynu CH NAME: SAMPLE No. The SAMPLE NO. The SA	NESTOGA-ROVERS & ASSOCIATES S5 Niagara Falls Bivd., Suite 3 Gara Falls, N.Y. 14304 (716) 297-6150 PRINTED MARE: KCV1.J. LYN. CH RAMPLE 20 CON S-031800-KL-016 SAMPLE 20 CON S-031800-KL-016 CON S-03	NESTOGA-ROVERS & ASSOCIATES SS Nagara Falls BNG, Suita 3 Gara Falls, N.Y. 14304 (716) 287-6150 Gara Falls, N.Y. 14304 (716) 287-6150 Martie Kcvi LV-N CH NAME: Kcvi LV-N CH NAME: SAMPLE 200 The SAMPLE 2	NESTOGA-ROVERS & ASSOCIATES So Nagara Fals Biva, Suita 3 Gara Fals, N.Y. 14304 (716) 287-6150 Gara Fals, N.Y. 14304 (716) 287-6150 Marter Kevius, Lywich A NAMELE Kevius, Lywich A NAMELE 2001 3 AWPLE No. 77775 2014 3 A X X 400 5 - 031800 - KL - 016 7 A X X 7 A X X X 7 A X X X 7 A X X X 7 A X X X 7 A X X X 7 A X X X X 7 A X X X X 7 A X X X X X X X X X X X X X X X X X X	NESTOGA-ROVERS & ASSOCIATES So Nagran Falls Bru, sufa 3 Gama Falls, M.Y. 14304, (716) 297-5150 Gama Falls, M.Y. 14304, (716) 297-5150 Gama Falls, M.Y. 14304, (716) 297-5150 MAME: KCVI J. LYM CH NAME: KCVI J. LYM CH NAME: KCVI J. LYM CH SAMPLE No. TYPE 20 400 5 - 031800 - KL - 016 CH CH CH CH CH CH CH CH CH CH CH CH CH	NESTOGA-ROVERS & ASSOCIATES SS Magara Falls Bivd. Suita 3 SS Magara Falls Bivd. Suita 3 SS Magara Falls. N.Y. 14304 (716) 2997-6150 Gara Falls. N.Y. 14304 (716) 2997-6150 PRINTED KCVI JJ LVM CH FRINTED KCVI	NESTOGA-ROVERS & ASSOCIATES SS Nagara Falls Bivd. Suite 3 Gam Falls. N.Y. 14304 (716) 297-6150 ATTER KCVI.J. LV-J. CH NAME: KCVI.J. LV-J. CH NAME: SAMPLE No. The SAMPLE No. The SAMPLE 2014 3 ARVEL 201	NESTIGGA FOVERS & ASSOCIATES So Nagara Falls BML, Suite 3 So Nagara Falls BML, Suite 3 So Nagara Falls BML, Suite 3 So Nagara Falls BML, Suite 3 PRINTED NAME: KCVI J, LVJ CH NAME: KCVI J, LVJ CH NAM	NESTOGA-ROVERS & ASSOCIATES So Nagara Falls BMA. Suite 3 So Nagara Falls BMA. Suite 3 So Nagara Falls BMA. Suite 3 So Nagara Falls BMA. Suite 3 PRINTEE N.Y. 14904 (T19) 297-615 NAMELE N.Y. 149	NESTOGA ROVERS & ASSOCIATES Servery Level Associates Se Nagara Falls Bind, Suite 3 A Ray (19) 297-5150 PRINTED KCVI J LVM CH NAME: KCVI J LVM CH N	NESTOGAR DUCERS & ASSOCIATES Server v. Trent Lab Reference number: 56 Nagara Falls Brut, Suite 3 Server v. Trent Lab Reference number: 56 Nagara Falls Brut, Suite 3 Server v. Lynuch Reference number: 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Suite 20 Samete Ro. Samete Ro. 71 H S burt, Ro. Samete Ro. Samete Ro. 71 H S burt, Ro. Samete Ro. Samete Ro. 71 H S burt, Ro. Samete Ro. Samete Ro. 71 H S burt, Ro. Samete Ro. Sameter Ro. 71 H S burt, Ro. Sameter Ro. Sameter Ro. 71 H S burt, Ro. Sameter Ro. Sameter Ro. 71 H S burt, Ro.	NESTIGA-ROVERS & ASSOCIATES SEVERTIN- FOLLO ADDRESS SEVERTIN- FOLLO ADDRESS SEVERTIN- FOLLO ADDRESS SAMPLE N.X. 13304 (719) 297-8150 THE SUV A A A A A A A A A A A A A A A A A A A	NESTOGA ROVERS & ASSOCIATES Sever months Sever months S

4

C	CONESTOGA-ROVER & ASSOCIATES	2055 Niagara Falls Blvd., Suite Niagara Falls, New York 1430 Telephone: (716) 297-6150 www.CRAworld.com	4
	MEMO	DRANDUM	
TO:	Carol Dunnigan	Ref. No.:	15867
FROM:	Susan Scrocchi/js/2 SCS	DATE:	November 7, 200
RE:	Data Usability Summary Report Site Investigation Parcel #2 - Seneca Street Buffalo, New York		

INTRODUCTION

The following details an evaluation of results reported by Severn Trent Laboratories (STL) located in Pittsburgh, Pennsylvania, for 18 groundwater samples and 17 soil samples collected from August through September 2001 at the Parcel #2 Site located in Buffalo, New York.

The samples were analyzed for the following:

Parameters	Methodology
Target Compound List (TCL) Volatile Organic Compounds (VOCs)	SW-846 82601
TCL Semi-Volatile Organic Compounds (SVOCs)	SW-846 82701

A sample collection and analysis summary is presented in Table 1. A summary of the analytical results is presented in Tables 2A and 2B.

The Quality Assurance/Quality Control (QA/QC) criteria by which these data have been evaluated is outlined in the analytical methods and the "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (February 1994, EPA 540/R-94/012).

QA/QC REVIEW

Deliverables

The data package was complete as defined under the requirements for Analytical Services Protocol (ASP) Category A deliverables.

¹ "Test Methods for Solid Waste Physical/Chemical Methods", SW-846, 3rd Edition, September 1986 (with all subsequent revisions).

CRA MEMORANDUM

Holding Times

Based on the methods, all required holding times were met.

<u>Blanks</u>

Method blanks were analyzed on a daily basis and were non-detect for the compounds of interest with the exception of low level concentrations of acetone and di-n-butylphthalate. All associated results similar in concentration to the blanks were qualified as non-detect.

Three trip blanks were collected with the samples and submitted for VOC analyses. All trip blank results were non-detect for the VOCs of interest.

Surrogate Spike Recoveries

All sample blanks and QC samples were spiked with the proper surrogate compounds prior to sample preparation and analysis. All surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD analyses were performed at the proper frequency for all parameters. All results were acceptable indicating good analytical accuracy and precision.

Blank Spike (BS) Analyses

 BSs were analyzed at the required frequency for all parameters and all recoveries were acceptable indicating adequate analytical efficiency.

Field Duplicate Analyses

Samples were collected in duplicate and submitted "blind" to the laboratory for analysis. The analytical results were comparable, demonstrating acceptable sampling and analytical precision for this study.

Sample Quantitation

Due to high concentrations of caprolactam, some SVOC analyses required dilutions. The associated reporting limits were elevated to reflect the dilution factors.

OVERALL ASSESSMENT

All deliverables required by the project were present and the data package was complete. Based on the preceding evaluation, the data were acceptable for use with the qualifications noted.

			Comments										Field duplicate of 082001-SB24-8-10																	
Analysis/Parameters	səlit	ыоУ-і	шəS	Ĩ	>	< >	×		×			×	×				×											×		
Analysis/		səliti	σιολ				;	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	I	Collection	Time	(hr.min)		00.11	11:40	14:00	16:15	15:00	16:00	17:00	17:30	14:10	14:20	18:00	08:35	09:20	09:30	09:45	10:30	11:00	10:30	10:55	11:20	12:20	13:20	14:05	14:15	15:40
		Collection	Date	(mm/dd/yy)		10/02/00	10/07/20	08/20/01	08/20/01	08/20/01	08/20/01	08/20/01	08/20/01	08/20/01	08/20/01	08/20/01	08/22/01	08/22/01	08/22/01	08/22/01	08/22/01	08/22/01	09/19/01	00/11/01	09/20/01	09/20/01	09/20/01	09/20/01	09/20/01	09/20/01
			Matrix			100	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Water	Water	Water	Water	Water	Water	Water	Water
/	85	_	L cation I.D.	_	in the second se	7101-770	P20-10-17	B21-6-8	B19-6-8	B28-6-8	B29-8-10	B24-8-10	B24-8-10	B17-2-4	B17-6-8	B25-8-10	B18-6-8	B17-0-2	B17-4/6	B17-8/10	B22-1/1-12	B23-/1-12	IWM	MW5	MW3	MW10A	MW8A	MW10	MW7A	MW2
			Sample I.D.			21-01-/ZAC-100Z00	71-01-9292-100220	082001-5821-6-8	082001-SB19-6-8	082001-SB28-6-8	082001-SB29-8-10	082001-SB24-8-10	082001-SB35-8-10	082001-SB17-2-4	082001-SB17-6-8	082001-SB25-8-10	082201-SB18-6-8	082201-SB17-0-2	082201-SB17-4-6	082201-SB17-8-10	082201-SB22-11-12	082201-SB23-11-12	W-091901-FG-MW1	W-091901-FG-MW5	W-092001-FG-MW3	W-092001-FG-MW10A	W-092001-FG-MW8A	W-092001-FG-MW10	W-092001-FG-MW7A	W-092001-FG-MW2

TABLE 1

Page 1 of 2

SAMPLING AND ANALYSIS SUMMARY QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001

> . 15867-Memos-Dunn-2

Ť
Ц
BL
ΤA

Page 2 of 2

SAMPLING AND ANALYSIS SUMMARY QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001

Analysis/Parameters

səlit

Comments									Field duplicate of W-092401-FG-MW6	
nloV-im92		×						×	×	×
səlitaloV	×	×	×	×	×	×	×	×	×	×
Collection Time (hr:min)	16:15	13:30	14:50	16:10	11:10	12:30	13:00	15:10	14:30	16:30
Collection Date (mm/dd/yy)	09/20/01	09/21/01	09/21/01	09/21/01	09/24/01	09/24/01	09/24/01	09/24/01	09/24/01	09/24/01
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Location I.D.	MW11A	MW11	6MM	MW9A	MW4	MW4A	MW8	MW6	MW6	MW7
Sample I.D.	W-092001-FG-MW11A	W-092101-FG-MW11	W-092101-FG-MW9	W-092101-FG-MW9A	W-092401-FG-MW4	W-092401-FG-MW4A	W-092401-FG-MW8	W-092401-FG-MW6	W-092401-FG-MW15	W-092401-FG-MW7

15867-Memos-Dunn-2

			TABLE 2A				Page 1 of 12
	o	ANALYTICAL R UARTERLY SAMPI PARCEL BUEF AUGUS	ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	- SOILS PROGRAM Г			
	Sample Location: Sample ID:	SB-17 082001-SB17-2-4	SB-17 082001-SB17-6-8	SB-17 082201-5B17-0-2	SB-17 082201-SB17-4-6	SB-17 082201-SB17-8-10	SB-18 082201-SB18-6-8
	Sample Date:	2-4 ft 8/20/2001	6-8 ft 8/20/2001	0-2 ft 8/22/2001	4-6 ft 8/22/2001	8-10 ft 8/22/2001	6-8 ft 8/22/2001
Parameter	Unit						
Volatiles							
1,1,1-Trichloroethane	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
1,1,2,2-Tetrachloroethane	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	
1,1,2-Trichloroethane	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	
1,1-Dichloroethane	µg/kg		ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
1,1-Dichloroethene	μg/kg		ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
1,2,4-Trichlorobenzene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
1,2-Dibromo-3-chloropropane DBCP	µg/kg	ND 10	ND 12	ND 10	ND 12	ND 12	ND 11
1,2-Dibromoethane Ethylene Dibromide	µg/kg	ND 5.2	ND 6.2		ND 6.2	ND 6.1	ND 5.7
1,2-Dichlorobenzene	µg/kg		ND 6.2	ND 5.2	ND 6.2		ND 5.7
1,2-Dichloroethane	µg/kg		ND 6.2		ND 6.2		ND 5.7
1,2-Dichloropropane	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
1,3-Dichlorobenzene	µg/kg		ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
1,4-Dichlorobenzene	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
2-Butanone	µg/kg	ND 21	ND 25	ND 21	ND 25	ND 24	8.3]
2-Hexanone	µg/kg	ND 21	ND 25	ND 21	ND 25	ND 24	ND 23
4-Methyl-2-pentanone	µg/kg		ND 25	ND 21	ND 25	ND 24	ND 23
Acetone	µg/kg	ND 21	ND 25	ND 21	ND 25	ND 24	ND 46
Benzene, isopropyl	µg/kg		ND 6.2			ND 6.1	ND 5.7
Benzene	µg/kg	ND 5.2	ND 6.2			ND 6.1	ND 5.7
Bromodichloromethane	μg/kg		ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Bromoform	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Bromomethane	μg/kg	ND 10	ND 12	ND 10	ND 12	ND 12	11 DN
Carbon disulfide	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Carbon tetrachloride	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Chlorobenzene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Chloroethane	µg/kg	ND 10	ND 12	ND 10	ND 12	ND 12	11 UN
Chloroform Trichloromethane	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Chloromethane	µg/kg	ND 10	ND 12	ND 10	ND 12	ND 12	11 QN
cis-1,2-Dichloroethene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	1.5 J	6.1
cis-1,3-Dichloropropene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Cyclohexane	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7

15867-Mennes-Dunn-2

	Sample Location: Sample ID: Sample Date:	SB-17 082001-SB17-2-4 2-4 ft 8/20/2001	5B-17 082001-5B17-6-8 6-8/ft 8/2001	5B-17 682201-5B17-0-2 0-2 ft 8/22/2001	SB-17 082201-SB17-4-6 4-6 ft 8/22/2001	5B-17 082201-5B17-8-10 8-10 ft 8/22/2001	5B-18 082201-5B18-6-8 6-8 ft 8/22/2001
Parameter	Unit						
Volatiles (Cont'd.)							
Dibromochloromethane	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Dichlorodifluoromethane CFC-12	µg/kg	ND 10	ND 12	01 J0	ND 12	ND 12	ND 11
Ethylbenzene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Methyl acetate	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Methyl cyclohexane	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Methyl Tert Butyl Ether	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Methylene chloride	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Styrene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Tetrachloroethene	µg/kg	33	140	13	16	0026	2.9 J
Toluene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
trans-1,2-Dichloroethene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
trans-1,3-Dichloropropene	µg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Trichloroethene	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	13	6.1
Trichlorofluoromethane CFC-11	μg/kg	ND 10	ND 12	ND 10	ND 12	ND 12	ND 11
Trifluorotrichloroethane Freon 113	μg/kg	ND 5.2	ND 6.2	ND 5.2	ND 6.2	ND 6.1	ND 5.7
Vinyl chloride	μg/kg	ND 10	ND 12	ND 10	ND 12	ND 12	ND 11
Xylene total	μg/kg	ND 16	ND 19	ND 16	ND 19	ND 18	ND 17
Semi-Volatiles							
2,2'-oxybis 1-Chloropropane	μg/kg	,					ND 3800
2,4,5-Trichlorophenol	µg/kg				,	,	ND 3800
2,4,6-Trichlorophenol	µg/kg			,	,	ı	ND 3800
2,4-Dichlorophenol	μg/kg				,		ND 3800
2,4-Dimethylphenol	μg/kg	ı				,	ND 3800
2,4-Dinitrophenol	μg/kg				,		ND 18000
2,4-Dinitrotoluene	μg/kg	ŀ				,	ND 3800
2,6-Dinitrotoluene	μg/kg	,					ND 3800
2-Chloronaphthalene	μg/kg		,				ND 3800
2-Chlorophenol	µg/kg	ı					ND 3800
Z-Methyl naphthalene	μg/kg	ı	ı		,	,	460]

TABLE 2A

Page 2 of 12

		ANALYTICAL RESULTS SUMMARY - SOILS					,
	ō	JARTERLY SAMPL PARCEL # BUFF/ AUGUST	ANALYTICAL RESOLIDS SUMMAINT - SOLIS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	PROGRAM			
	Sample Location: Sample ID:	SB-17 082001-SB17-2-4 2-4.ft	5B-17 082001-5B17-6-8 6-8 ft	5B-17 082201-5B17-0-2 0-2 ft	58-17 082201-5817-4-6 4-6/f	5B-17 082201-5B17-8-10 8-10 ft	5B-18 082201-5B18-6-8 6-8 ft
Parameter	Sample Date: Unit	1002/02/0	1007 477 40	1007 /77 /6	1007 77 80	1007 77 60	1007 /77 /0
Semi-Volatiles (Cont'd.)							
2-Nitroaniline	ue/ke	ı	,				ND 18000
2-Nitrophenol	ug/kg						ND 3800
3,3'-Dichlorobenzidine	μg/kg			ı	,	ł	ND 18000
3-Nitroaniline	µg/kg	1	1	,		•	ND 18000
4,6-Dinitro-2-methylphenol	μg/kg				•		ND 18000
4-Bromophenyl phenyl ether	µg/kg			,		,	ND 3800
4-Chloro-3-methylphenol	µg/kg				ı	,	ND 3800
4-Chloroaniline	µg/kg		•				ND 3800
4-Chlorophenyl phenyl ether	µg/kg		,			•	ND 3800
4-Methylphenol	µg/kg	•			•		ND 3800
4-Nitroaniline	μg/kg	•					ND 18000
4-Nitrophenol	µg/kg						ND 18000
Acenaphthene	µg/kg					•	1200 J
Acenaphthylene	µg/kg	٠				,	ND 3800
Acetophenone	µg/kg		s		•		ND 3800
Anthracene	µg/kg		۰		ł		1800 J
Atrazine	µg/kg	١	,		,		ND 3800
Benzaldehyde	µg/kg				·		ND 3800
Benzo a anthracene	µg/kg						3200 J
Benzo a pyrene	µg/kg			·	,		2200 J
Benzo b fluoranthene	µg/kg						2000 J
Benzo g,h,i perylene	µg/kg				•		1100 J
Benzo k fluoranthene	µg/kg	ı				•	1400 J
Biphenyl	μg/kg				·		ND 3800
bis 2-Chloroethoxy methane	μg/kg	,	,		·		ND 3800
bis 2-Chloroethyl ether	µg/kg		·				ND 3800
bis 2-Ethylhexyl phthalate	µg/kg	,				,	ND 3800
Butyl benzylphthalate	µg/kg						ND 3800
Caprolactam	µg/kg						ND 3800
Carbazole	ue/ke		1				9901
				•	ı		[100

	Ø	ANALYTICAL RI UARTERLY SAMPL PARCEL : BUFF AUGUS	ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	- SOILS PROGRAM			
	Sample Location:	SB-17	SB-17	SB-17	SB-17	SB-17	SB-18
	Sample ID:	082001-SB17-2-4 2-4 ft	082001-SB17-6-8 6-8 ft	082201-SB17-0-2 0-2 ft	082201-SB17-4-6 4-6 ft	082201-SB17-8-10 8-10 ft	082201-SB18-6-8 6-8 ft
	Sample Date:	8/20/2001	8/20/2001	8/22/2001	8/22/2001	8/22/2001	8/22/2001
Parameter	Unit						
Semi-Volatiles (Cont'd.)							
Dibenz a,h anthracene	μg/kg	ı	ı	,	ı	·	ND 3800
Dibenzofuran	µg/kg		,				730 J
Diethyl phthalate	µg/kg	•	,				ND 3800
Dimethyl phthalate	µg/kg	ı		ı		,	ND 3800
Di-n-butylphthalate	µg/kg	·		,			ND 3800
Di-n-octyl phthalate	µg/kg	•					ND 3800
Fluoranthene	μg/kg	•		•			5900
Fluorene	µg/kg				,		1100 J
Hexachlorobenzene	µg/kg	•					ND 3800
Hexachlorobutadiene	µg/kg	,					ND 3800
Hexachlorocyclopentadiene	µg/kg		,	•			ND 18000
Hexachloroethane	µg/kg		•			,	ND 3800
Indeno 1,2,3-cd pyrene	µg/kg	ı					1100 J
Isophorone	µg/kg			•			ND 3800
Naphthalene	µg/kg			•			1700 J
Nitrobenzene	µg/kg	ŀ					ND 3800
N-Nitrosodi-n-propylamine	µg/kg						ND 3800
N-Nitrosodiphenylamine	µg/kg				ı	ı	ND 3800
Pentachlorophenol	µg/kg	,	,				ND 18000
Phenanthrene	µg/kg						0069
Phenol	µg/kg	·			,		ND 3800
Pyrene	µg/kg		•	•		ı	5800
General Chemistry							

12

			TABLE 2A				Page 5 of 12
	Ø	ANALYTICAL R UARTERLY SAMPI PARCEL BUFF AUGUS	ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	- SOILS 5 PROGRAM T			
	Sample Location: Sample ID:	SB-19 082001-SB19-6-8	SB-21 082001-SB21-6-8	5B-22 082201-5B22-11-12	5B-23 082201-5B23-11-12	SB-24 082001-SB24-8-10	SB-24 082001-SB35-8-10
	Sample Date:	6-8 ft 8/20/2001	6-8 ft 8/20/2001	11-12 ft 8/22/2001	11-12 ft 8/22/2001	8-10 ft 8/20/2001	8-10 ft 8/20/2001
Parameter	Unit						Duplicate
Volatiles							
1,1,1-Trichloroethane	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
1,1,2,2-Tetrachloroethane	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
1,1,2-Trichloroethane	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
1,1-Dichloroethane	µg/kg	ND 6.3	ND 6.0	ND 5.9		ND 6.0	ND 6.0
1,1-Dichloroethene	µg/kg	ND 6.3					
1,2,4-Trichlorobenzene	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
1,2-Dibromo-3-chloropropane DBCP	µg/kg	ND 13					ND 12
1,2-Dibromoethane Ethylene Dibromide	µg/kg	ND 6.3	ND 6.0		ND 5.9		ND 6.0
1,2-Dichlorobenzene	μg/kg	ND 6.3	ND 6.0				ND 6.0
1,2-Dichloroetnane	µg/ кg 	NU 6.3	ND 6.0	ND 5.9			ND 6.0
1,2-Dictuoropropane 1.3-Dichlorobenzene	µg/ кg 110 / ko	ND 6.3 ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
1,4-Dichlorobenzene	HE/KE	ND 6.3			ND 5.9		ND 6.0
2-Butanone	μg/kg	ND 25					ND 24
2-Hexanone	µg/kg	ND 25	ND 24	ND 24	ND 24	ND 24	ND 24
4-Methyl-2-pentanone	µg/kg	ND 25	ND 24	ND 24	ND 24	ND 24	ND 24
Acetone	µg/kg	ND 25	ND 24	ND 24	ND 24	ND 24	ND 24
Benzene, isopropyl	µg/kg	ND 6.3	ND 6.0	ND 5.9		ND 6.0	ND 6.0
Benzene	µg/kg	ND 6.3	ND 6.0	ND 5.9		ND 6.0	ND 6.0
Bromodichloromethane	µg/kg	ND 6.3	ND 6.0		ND 5.9		ND 6.0
Bromoform	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Bromomethane	μg/kg	ND 13	ND 12	ND 12	ND 12	ND 12	ND 12
Carbon disulfide	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Carbon tetrachloride	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Chlorobenzene	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Chloroethane	μg/kg	ND 13	ND 12	ND 12	ND 12	ND 12	ND 12
Chloroform Trichloromethane	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Chloromethane	μg/kg	ND 13	ND 12	ND 12	ND 12	ND 12	ND 12
cis-1,2-Dichloroethene	μg/kg	70	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
cis-1,3-Dichloropropene	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Cyclohexane	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0

of 12

							ſ
			TABLE 2A				Page 6 of
	Ø	ANALYTICAL R UARTERLY SAMPI PARCEL BUFF AUGUS	ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	- SOILS 5 PROGRAM T			
	Sample Location: Sample ID:	5B-19 082001-5B19-6-8	5B-21 082001-5B21-6-8	SB-22 082201-SB22-11-12	SB-23 082201-SB23-11-12	SB-24 082001-SB24-8-10	5B-24 082001-5B35-8-10
		6-8 <i>f</i> t	6-8 <i>f</i> t	11-12 ft	11-12 ft	8-10 ft	8-10 ft
	Sample Date:	8/20/2001	8/20/2001	8/22/2001	8/22/2001	8/20/2001	8/20/2001
Parameter	Unit						Duplicate
Volatiles (Cont'd.)							
Dibromochloromethane	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Dichlorodifluoromethane CFC-12	µg/kg	ND 13	ND 12	ND 12	ND 12	ND 12	ND 12
Ethylbenzene	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Methyl acetate	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Methyl cyclohexane	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Methyl Tert Butyl Ether	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Methylene chloride	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Styrene	µg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Tetrachloroethene	μg/kg	29000	2.9]	19	1.6 J	53]	9.8]
loluene	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
trans-1,2-Dichloroethene	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Trichlorosthene	μg/kg /Lσ	NU 6.3	ND 6.0	9.5 UN	ND 5.9	ND 6.0	0.0 UN
Trichlorofluoromethane CFC-11	μ8/ NB 110/ko	22 ND 13	ND 12	ND 12	20 UN	ND 17	ND 12
Trifluorotrichloroethane Freon 113	μg/kg	ND 6.3	ND 6.0	ND 5.9	ND 5.9	ND 6.0	ND 6.0
Vinyl chloride	µg/kg	ND 13	ND 12	ND 12	ND 12	ND 12	ND 12
Xylene total	µg/kg	ND 19	ND 18	ND 18	ND 18	ND 18	ND 18
Semi-Volatiles							
2,2'-oxybis 1-Chloropropane	µg/kg	ND 410		,		ND 400	ND 400
2,4,5-Trichlorophenol	μg/kg	ND 410		1	,	ND 400	ND 400
2,4,6-Trichlorophenol	μg/kg	ND 410	•		·	ND 400	ND 400
2,4-Dichlorophenol	μg/kg	ND 410	•		ı	ND 400	ND 400
2,4-Dimethylphenol	μg/kg	ND 410	·		,	ND 400	ND 400
2,4-Dinitrophenol	μg/kg	ND 2000	•			ND 1900	ND 1900
2,4-Dínitrotoluene	μg/kg	ND 410			,		ND 400
2,6-Dinitrotoluene	μg/kg	ND 410	•	t		ND 400	ND 400
2-Chloronaphthalene	μg/kg	ND 410	,	,		ND 400	ND 400
2-Chlorophenol	µg/kg	ND 410	ı	,			ND 400
2-Methyl naphthalene	μg/kg	ND 410	ı	,		ND 400	ND 400
2-Methylphenol	µg/kg	ND 410	I		ı	ND 400	ND 400

15867 Memos Dunn-2

Page 6 of 12

			TABLE 2A				Page 7 of 12
	o	ANALYTICAL RI UARTERLY SAMPI PARCEL I BUFF AUGUS	ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	- SOILS PROGRAM			
	Sample Location: Same ID-	5B-19 082001_5879_6_8	5B-21 082001_5B21_6_8	SB-22 082201_5B22_11_12	5B-23 682701_5823_11_12	5B-24 082001_5B24-8-10	5B-24 082001_5R35_8_10
		6-8-ft	6-8 ft	11-12 ft	11-12 ft	8-10 ft	8-10 ft
	Sample Date:	8/20/2001	8/20/2001	8/22/2001	8/22/2001	8/20/2001	8/20/2001
Parameter	Unit						Duplicate
Semi-Volatiles (Cont'd.)							
2-Nitroaniline	ug/kg	ND 2000		,		ND 1900	ND 1900
2-Nitrophenol	ug/kg	ND 410	·			ND 400	ND 400
3,3'-Dichlorobenzidine	µg/kg					ND 1900	ND 1900
3-Nitroaniline	µg/kg	ND 2000	,			ND 1900	ND 1900
4,6-Dinitro-2-methylphenol	µg/kg	ND 2000				ND 1900	ND 1900
4-Bromophenyl phenyl ether	μg/kg	ND 410	,	,		ND 400	ND 400
4-Chloro-3-methylphenol	µg/kg	ND 410	,		,	ND 400	ND 400
4-Chloroaniline	μg/kg	ND 410		·		ND 400	ND 400
4-Chlorophenyl phenyl ether	µg/kg	ND 410	ſ	3	,	ND 400	ND 400
4-Methylphenol	µg/kg	ND 410		•		ND 400	ND 400
4-Nitroaniline	μg/kg	ND 2000		•		ND 1900	ND 1900
4-Nitrophenol	μg/kg	ND 2000		,		ND 1900	ND 1900
Acenaphthene	µg/kg	ND 410			·	ND 400	ND 400
Acenaphthylene	µg/kg	ND 410		,		ND 400	ND 400
Acetophenone	μg/kg	ND 410	ı		,	ND 400	
Anthracene	μg/kg	ND 410		,		ND 400	ND 400
Atrazine	µg/kg	ND 410					ND 400
Benzaldehyde	μg/kg	ND 410	ı	·	•	ND 400	
Benzo a anthracene	μg/kg	ND 410	·	ı	,	ND 400	
Benzo a pyrene	μg/kg	ND 410		·		ND 400	
Benzo b fluoranthene	μg/kg	ND 410	1	•	,	ND 400	ND 400
Benzo g,h,i perylene	μg/kg	ND 410	•			ND 400	ND 400
Benzo k fluoranthene	µg/kg	ND 410				ND 400	ND 400
Biphenyl	µg/kg	ND 410		•	ı	ND 400	ND 400
bis 2-Chloroethoxy methane	μg/kg	ND 410		•	,	ND 400	ND 400
bis 2-Chloroethyl ether	μg/kg	ND 410			•	ND 400	ND 400
bis 2-Ethylhexyl phthalate	μg/kg	120 J				ND 400	ND 400
Butyl benzylphthalate	µg/kg	ND 410		·	•	ND 400	ND 400
Caprolactam	μg/kg	ND 410		·		ND 400	ND 400
Carbazole	µg/kg	ND 410		·		ND 400	ND 400
Chrysene	µg/kg	ND 410				ND 400	ND 400

.

			TABLE 2B				Page 7 of 12
		ANALYTICAL I QUARTERLY PA	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	ROUNDWATER NG PROGRAM SET 01			
	Sample Location: Sample ID: Sample Date:	MW-6 W-092401-F6-MW6 9/24/2001	MW-6 W-092401-F6-MW15 9/24/2001	MW-7 W-092401-F6-MW7 9/24/2001	MW-7A W-092001-FG-MW7A 9/20/2001	MW-8 W-092401-F6-MW8 9/24/2001	MW-8A W-092001-FG-MW8A 9/20/2001
Parameter	Unit		Duplicate				
Semi-Volatiles (Cont'd.)							
4,6-Dinitro-2-methylphenol	μg/L	ND 5000				,	
4-Chloro-3-methylphenol	μg/ L μσ/L	ND 1000	0001 CIN	ND 10			
4-Chloroaniline	Hg/L						
4-Chlorophenyl phenyl ether	µg/L	ND 1000	ND 1000	ND 10			,
4-Methylphenol	μg/L			ND 10		,	•
4-Nitroaniline	μg/L						
4-Nitrophenol	μg/L						,
Acenaphthene	μg/L				•		
Acenaphthylene	μg/L				,		
Acetophenone	μg/L			ND 10	,		
Antruacene	μ <u></u> g/L	ND 1000	ND 1000	01 UN			
Benzaldehyde	н8/ L пе/L						
Benzo a anthracene	ug/L						
Benzo a pyrene	µg/L	ND 1000	ND 1000	ND 10			
Benzo b fluoranthene	µg/L	ND 1000	ND 1000	ND 10			
Benzo g,h,i perylene	hg/L	ND 1000	ND 1000	ND 10			
Benzo k fluoranthene	μg/L					•	
Biphenyl	µg/L						
bis 2-Chloroethoxy methane	μg/L	ND 1000			·	ł	
bis z-Ciuoroetnyi etner Lia 2 Ert-itaanii - Litalata	μ g /L	ND 1000				ı	
UIS Z-EUNYLINEXYI PINUNAIANE Ruful hanzuluhthalata	μ <u>β</u> / L 	0001 CIN	ND 1000	01 UN			•
Caprolactam	1/2m	5100		1600			
Carbazole	H6/ C	ND 1000		ND 10			
Chrvsene	- 19-1 116/L	ND 1000	ND 1000	01 (IN			
Dibenz a,h anthracene	μg/L	ND 1000					
Dibenzofuran	μg/L	ND 1000	ND 1000	ŇD 10			ı
Diethyl phthalate	μg/L	ND 1000	ND 1000	ND 10			
Dimethyl phthalate	μg/L		ND 1000	ND 10			
Di-n-butylphthalate	µg/L		ND 1000	ND 10			,
Di-n-octyl phthalate	μg/L	ND 1000	ND 1000	ND 10			
15867.Memos.Dum-2							

	0	ANALYTICAL R UARTERLY SAMPI PARCEL J BUFF AUGUS	ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	- SOILS 5 PROGRAM Γ			
	Sample Location: Sample ID:	SB-19 082001-SB19-6-8	5B-21 082001-5B21-6-8	5B-22 082201-5B22-11-12	5B-23 082201-5B23-11-12	SB-24 082001-SB24-8-10	SB-24 082001-SB35-8-10
	Sample Date:	6-8 ft 8/20/2001	6-8 ft 8/20/2001	11-12 ft 8/22/2001	11-12 ft 8/22/2001	8-10 ft 8/20/2001	8-10 ft 8/20/2001
Parameter	Unit						Duplicate
Semi-Volatiles (Cont'd.)							
Dibenz a,h anthracene	μg/kg	ND 410			,	ND 400	ND 400
Dibenzofuran	μg/kg	ND 410	·			ND 400	ND 400
Diethyl phthalate	μg/kg	ND 410	,			ND 400	ND 400
Dimethyl phthalate	µg/kg	ND 410		,		ND 400	ND 400
Di-n-butylphthalate	μg/kg	ND 410	ſ	,		ND 400	ND 400
Di-n-octyl phthalate	µg/kg	ND 410				ND 400	ND 400
Fluoranthene	µg/kg	43]		,	,	ND 400	ND 400
Fluorene	μg/kg	ND 410		·		ND 400	ND 400
Hexachlorobenzene	μg/kg	ND 410	,			ND 400	ND 400
Hexachlorobutadiene	μg/kg	ND 410				ND 400	ND 400
Hexachlorocyclopentadiene	μg/kg	ND 2000				ND 1900	ND 1900
Hexachloroethane	hg/kg	ND 410				ND 400	ND 400
Indeno 1,2,3-cd pyrene	μg/kg	ND 410	,	,		ND 400	ND 400
Isophorone	hg/kg	ND 410	ı	•		ND 400	ND 400
Naphthalene	μg/kg	ND 410	ı		,	ND 400	ND 400
Nitrobenzene	μg/kg	ND 410	,		,	ND 400	ND 400
N-Nitrosodi-n-propylamine	μg/kg	ND 410	,			ND 400	ND 400
N-Nitrosodiphenylamine	μg/kg	ND 410	ı			ND 400	ND 400
Pentachlorophenol	μg/kg	ND 2000	,			ND 1900	ND 1900
Phenanthrene	µg/kg	ND 410				ND 400	ND 400
Phenol	μg/kg	ND 410	·	·		ND 400	ND 400
Pyrene	µg/kg	51 J		•		ND 400	ND 400
General Chemistry							
Total Solids	%	79.8	83.6	84.9	84.6	83.4	82.7

•

Page 8 of 12

TABLE 2A

15867-Memos-Dunn-2

Page 9 of 12

TABLE 2A

ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001

	Sample Location:	SB-25	SB-26	SB-27	SB-28	SB-29
	Sample ID:	082001-SB25-8-10 8-10 ft	082001-SB26-10-12 10-12 ft	082001-SB27-10-12 10-12 ft	082001-SB28-6-8 6-8 ft	082001-SB29-8-10 8-10 ft
	Sample Date:	8/20/2001	8/20/2001	8/20/2001	8/20/2001	8/20/2001
Parameter	Unit					
Volatiles						
1,1,1-Trichloroethane	µg/kg	ND 6.0		•	ND 6.2	ND 6.2
1,1,2,2-Tetrachloroethane	µg/kg	ND 6.0	,	,	ND 6.2	ND 6.2
1,1,2-Trichloroethane	μg/kg	ND 6.0	,		ND 6.2	ND 6.2
1,1-Dichloroethane	µg/kg	ND 6.0		·	ND 6.2	ND 6.2
1,1-Dichloroethene	µg/kg	ND 6.0		,	ND 6.2	ND 6.2
1,2,4-Trichlorobenzene	µg/kg	ND 6.0	·	ı	ND 6.2	ND 6.2
1,2-Dibromo-3-chloropropane DBCP	µg/kg	ND 12		I	ND 12	ND 12
1,2-Dibromoethane Ethylene Dibromide	µg/kg	ND 6.0		,	ND 6.2	ND 6.2
1,2-Dichlorobenzene	μg/kg	ND 6.0		ı	ND 6.2	ND 6.2
1,2-Dichloroethane	µg/kg	ND 6.0		,	ND 6.2	ND 6.2
1,2-Dichloropropane	µg/kg	ND 6.0	,		ND 6.2	ND 6.2
1,3-Dichlorobenzene	µg/kg	ND 6.0	,	ŗ	ND 6.2	ND 6.2
1,4-Dichlorobenzene	μg/kg	ND 6.0	·	·	ND 6.2	ND 6.2
2-Butanone	µg/kg	ND 24	,		ND 25	ND 25
2-Hexanone	µg/kg	ND 24		,	ND 25	ND 25
4-Methyl-2-pentanone	µg/kg	ND 24		·	ND 25	ND 25
Acetone	µg/kg	ND 24		٠	ND 25	ND 25
Benzene, isopropyl	µg/kg	ND 6.0	,	·	ND 6.2	ND 6.2
Benzene	μg/kg	ND 6.0		ı	ND 6.2	ND 6.2
Bromodichloromethane	μg/kg	ND 6.0	,	•	ND 6.2	ND 6.2
Bromoform	µg/kg	ND 6.0		ı	ND 6.2	ND 6.2
Bromomethane	μg/kg	ND 12		,	ND 12	ND 12
Carbon disulfide	μg/kg	ND 6.0			ND 6.2	ND 6.2
Carbon tetrachloride	µg/kg	ND 6.0			ND 6.2	ND 6.2
Chlorobenzene	µg/kg	ND 6.0		ı	ND 6.2	ND 6.2
Chloroethane	µg/kg	ND 12	·	ı	ND 12	ND 12
Chloroform Trichloromethane	µg/kg	ND 6.0	.'	ı	ND 6.2	ND 6.2
Chloromethane	µg/kg	ND 12		ı	ND 12	ND 12
cis-1,2-Dichloroethene	ug/kg	ND 6.0			ND 6.2	ND 6.2
cis-1,3-Dichloropropene	µg/kg	ND 6.0		•	ND 6.2	ND 6.2
Cyclohexane	µg/kg	ND 6.0	·	I	ND 6.2	ND 6.2

15867-Memos-Dunn-2

TABLE 2A

Page 10 of 12

ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001

	Sample Location:	SB-25	SB-26	SB-27	SB-28	SB-29
	Sample ID:	082001-SB25-8-10	082001-SB26-10-12	082001-SB27-10-12	082001-SB28-6-8	082001-SB29-8-10
	Sample Date:	8/20/2001	8/20/2001	10-12 Jr 8/20/2001	0-8.JT 8/20/2001	8/20/2001
Parameter	Unit					
Volatiles (Cont'd.)						
Dibromochloromethane	µg/kg	ND 6.0	,		ND 6.2	ND 6.2
Dichlorodifluoromethane CFC-12	µg/kg	ND 12			ND 12	ND 12
Ethylbenzene	μg/kg	ND 6.0	·		ND 6.2	ND 6.2
Methyl acetate	µg/kg	ND 6.0			ND 6.2	ND 6.2
Methyl cyclohexane	µg/kg	ND 6.0			ND 6.2	ND 6.2
Methyl Tert Butyl Ether	μg/kg	ND 6.0			ND 6.2	ND 6.2
Methylene chloride	µg/kg	ND 6.0	,		ND 6.2	ND 6.2
Styrene	μg/kg	ND 6.0			ND 6.2	ND 6.2
Tetrachloroethene	μg/kg	1.5 J			ND 6.2	ND 6.2
Toluene	µg/kg	ND 6.0			ND 6.2	ND 6.2
trans-1,2-Dichloroethene	μg/kg	ND 6.0	·	,	ND 6.2	ND 6.2
trans-1,3-Dichloropropene	μg/kg	ND 6.0		,	ND 6.2	ND 6.2
Trichloroethene	μg/kg	ND 6.0			ND 6.2	ND 6.2
Trichlorofluoromethane CFC-11	µg/kg	ND 12	•	·	ND 12	ND 12
Trifluorotrichloroethane Freon 113	μg/kg	ND 6.0	,	ı	ND 6.2	ND 6.2
Vinyl chloride	μg/kg	ND 12		,	ND 12	ND 12
Xylene total	µg/kg	ND 18		ı	ND 18	ND 19
Semi-Volatiles						
2,2'-oxybis 1-Chloropropane	μg/kg		ND 390	ND 400		ŀ
2,4,5-Trichlorophenol	µg/kg		ND 390	ND 400		ı
2,4,6-Trichlorophenol	μg/kg		ND 390	ND 400		·
2,4-Dichlorophenol	µg/kg		ND 390	ND 400		•
2,4-Dimethylphenol	µg/kg	,	ND 390	ND 400		
2,4-Dinitrophenol	µg/kg		ND 1900	ND 1900		
2,4-Dinitrotoluene	µg/kg		ND 390	ND 400		
2,6-Dinitrotoluene	µg/kg		ND 390	ND 400		
2-Chloronaphthalene	µg/kg		ND 390	ND 400		
2-Chlorophenol	µg/kg	,	ND 390	ND 400		
2-Methyl naphthalene	µg/kg		ND 390	ND 400		·
2-Methylphenol	μg/kg	,	ND 390	ND 400		

TABLE 2A

Page 11 of 12

ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001

ND 1900 ND 1900 <t< th=""><th></th><th>Sample Location: Sample ID:</th><th>SB-25 082001-SB25-8-10 0-10-6</th><th>SB-26 082001-SB26-10-12</th><th>5B-27 082001-5B27-10-12 40-47-64</th><th>5B-28 082001-5B28-6-8</th><th>5B-29 082001-5B29-8-10</th></t<>		Sample Location: Sample ID:	SB-25 082001-SB25-8-10 0-10-6	SB-26 082001-SB26-10-12	5B-27 082001-5B27-10-12 40-47-64	5B-28 082001-5B28-6-8	5B-29 082001-5B29-8-10
Init Lini Runter $IIII$ $IIIZ$		Sample Date:	8/20/2001	10-12 JT 8/20/2001	10-12 JT 8/20/2001	0-8 JT 8/20/2001	8/20/2001
III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 1900 III (K) - ND 390 IIII (K) <th>Parameter</th> <th>Unit</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Parameter	Unit					
$\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390	Semi-Volatiles (Cont'd.)						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2-Nitroaniline	µg/kg		ND 1900	ND 1900	·	
$\mu g/kg$ - ND 1900 their $\mu g/kg$ - ND 1900 ether $\mu g/kg$ - ND 1900 ether $\mu g/kg$ - ND 1900 ether $\mu g/kg$ - ND 390 ether $\mu g/kg$ - ND 390 $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - <	2-Nitrophenol	μg/kg		ND 390	ND 400		
$\mu g/kg$ - ND 1900 ether $\mu g/kg$ - ND 1900 ether $\mu g/kg$ - ND 390 ether $\mu g/kg$ - ND 390 ether $\mu g/kg$ - ND 390 ether $\mu g/kg$ - ND 390 $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - $\mu g/kg$ - ND 390 - <tr< td=""><td>3,3'-Dichlorobenzidine</td><td>μg/kg</td><td>,</td><td>ND 1900</td><td>ND 1900</td><td></td><td></td></tr<>	3,3'-Dichlorobenzidine	μg/kg	,	ND 1900	ND 1900		
mol μ_{g}/k_{g} - ND 1900 ether μ_{g}/k_{g} - ND 390 ether μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g}	3-Nitroaniline	μg/kg	,	ND 1900	ND 1900		
ether μ_{g}/k_{g} - ND 390 ol μ_{g}/k_{g} - ND 390 ether μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 1900 μ_{g}/k_{g} - ND 1900 μ_{g}/k_{g} - ND 1900 μ_{g}/k_{g} - ND 1900 μ_{g}/k_{g} - ND 390 μ_{g}/k_{g} - ND 300 μ_{g}/k_{g} - ND 300 μ_{g}/k_{g} - ND 300	4,6-Dinitro-2-methylphenol	µg/kg		ND 1900	ND 1900		
ol $\mu g/kg$ - ND 390 ether $\mu g/kg$ - ND 390 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390 $\mu g/kg$ - ND 390	4-Bromophenyl phenyl ether	µg/kg		ND 390	ND 400		
$\mu g/kg$ - ND 390 $\mu g/kg$ - ND 390 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390	4-Chloro-3-methylphenol	μg/kg		ND 390	ND 400		
ether $\mu g/kg$ - ND 390 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390	4-Chloroaniline	µg/kg		ND 390	ND 400		
$\mu g/kg$ - ND 390 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390 <	4-Chlorophenyl phenyl ether	µg/kg	•	ND 390	ND 400		
$\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390 $\mu g/kg$ - ND	4-Methylphenol	µg/kg		ND 390	ND 400		
$\mu g/kg$ - ND 1900 $\mu g/kg$ - ND 390 <	4-Nitroaniline	μg/kg		ND 1900	ND 1900	•	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4-Nitrophenol	μg/kg	,	ND 1900	ND 1900		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Acenaphthene	µg/kg	ı	ND 390	ND 400		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Acenaphthylene	µg/kg		ND 390	ND 400	,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Acetophenone	µg/kg	,	ND 390	ND 400	,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Anthracene	μg/kg	,	ND 390	ND 400	,	,
$\begin{array}{lcccccccccccccccccccccccccccccccccccc$	Atrazine	μg/kg	,	ND 390	ND 400		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Benzaldehyde	μg/kg		ND 390	ND 400		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzo a anthracene	µg/kg	ı	ND 390	ND 400		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzo a pyrene	μg/kg	,	ND 390	ND 400		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzo b fluoranthene	μg/kg		ND 390	ND 400		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzo g,h,i perylene	µg/kg	,	ND 390	ND 400		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzo k fluoranthene	µg/kg		ND 390	ND 400		
μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND μg/kg - ND 390 ND	Biphenyl	µg/kg	,	ND 390	ND 400	,	,
$\begin{array}{llllllllllllllllllllllllllllllllllll$	bis 2-Chloroethoxy methane	μg/kg	,	ND 390	ND 400		
xyl phthalate μ_{g}/k_{g} - ND 390 ND bhthalate μ_{g}/k_{g} - ND 390 ND μ_{g}/k_{g} - ND 390 ND μ_{g}/k_{g} - ND 390 ND μ_{g}/k_{g} - ND 390 ND	bis 2-Chloroethyl ether	μg/kg	,	ND 390	ND 400	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	bis 2-Ethylhexyl phthalate	µg/kg		ND 390	ND 400		
UN - ND 390 ND μg/kg - ND 390 ND UN - - - ND ND - - - ND	Butyl benzylphthalate	µg/kg	ı	ND 390	ND 400	,	ı
μg/kg - ND 390 ND μg/kg - ND 390 ND	Caprolactam	µg/kg	ı	ND 390	ND 400		ł
μg/kg - ND 390 ND	Carbazole	µg/kg	ı	ND 390	ND 400	ı	
	Chrysene	hg/kg		ND 390			

TABLE 2A

Page 12 of 12

ANALYTICAL RESULTS SUMMARY - SOILS QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001

	Sample Location: Sample ID:	SB-25 082001-SB25-8-10	SB-26 082001-SB26-10-12	5B-27 082001-5B27-10-12	5B-28 082001-5B28-6-8	58-29 082001-5829-8-10
	Sample Date:	8-10 ft 8/20/2001	10-12 ft 8/20/2001	10-12 <i>)</i> t 8/20/2001	6-8 <i>f</i> t 8/20/2001	8-10 <i>f</i> t 8/20/2001
Parameter	Unit					
Semi-Volatiles (Cont'd.)						
Dibenz a,h anthracene	µg/kg		ND 390	ND 400		
Dibenzofuran	µg/kg		ND 390	ND 400		
Diethyl phthalate	µg/kg	,	ND 390	ND 400		,
Dimethyl phthalate	µg/kg		ND 390	ND 400		,
Di-n-butylphthalate	µg/kg		ND 390	ND 400		•
Di-n-octyl phthalate	µg/kg		ND 390	ND 400		
Fluoranthene	μg/kg		ND 390	ND 400		,
Fluorene	µg/kg	,	ND 390	ND 400	,	,
Hexachlorobenzene	μg/kg		ND 390	ND 400		
Hexachlorobutadiene	µg/kg		ND 390	ND 400	ı	
Hexachlorocyclopentadiene	µg/kg		ND 1900	ND 1900		·
Hexachloroethane	μg/kg		ND 390	ND 400		ı
Indeno 1,2,3-cd pyrene	µg/kg	1	ND 390	ND 400		
Isophorone	μg/kg		ND 390	ND 400		
Naphthalene	μg/kg	,	ND 390	ND 400		•
Nitrobenzene	μg/kg	,	ND 390	ND 400	,	
N-Nitrosodi-n-propylamine	μg/kg		ND 390	ND 400		
N-Nitrosodiphenylamine	μg/kg	·	ND 390	ND 400		
Pentachlorophenol	μg/kg		ND 1900	ND 1900		
Phenanthrene	μg/kg	ı	ND 390	ND 400		
Phenol	μg/kg	·	ND 390	ND 400		
Pyrene	µg/kg		ND 390	ND 400	,	,
General Chemistry						
Total Solids	%	83.0	84.1	83.5	81.2	80.5

Notes:

Not applicable. Estimated.

Non-detect at associated value. , _ Q

15867-Mennos-Dunn-2

		ANALYTICAL	ANALYTICAL RESULTS SUMMARY - GROUNDWATER				
		QUARTERLY PA	QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	SROUNDWATER NG PROGRAM EET 001			
	Sample Location: Sample ID: Sample Date:	MW-1 W-091901-FG-MW1 9/19/2001	MW-2 W-092001-FG-MW2 9/20/2001	MW-3 W-092001-FG-MW3 9/20/2001	MW-4 W-092401-F6-MW4 9/24/2001	MW-4A W-092401-F6-MW4A 9/24/2001	MW-5 W-091901-FG-MW5 9/19/2001
Parameter	Unit						
Volatiles							
1,1,1-Trichloroethane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1,2,2-Tetrachloroethane	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1,2-Trichloroethane	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1-Dichloroethane	μg/L			ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1-Dichloroethene	μg/L			ND 5.0	ND 5.0		
1,2,4-Trichlorobenzene	μg/L	ND 5.0					
1,2-Dibromo-3-chloropropane DBCP	μg/L						
1,2-Dibromoethane Ethylene Dibromide	μg/L						
1,2-Dichlorobenzene	μg/L						
1,2-Dichloroethane	µg/L						
1,2-Dichloropropane	μg/L						
1,3-Dichlorobenzene	µg/L						
1,4-Dichlorobenzene	μg/L						
2-butanone	μg/L						
2-Hexanone	μg/L						
4-Methyl-2-pentanone	μg/L						
Acetone	μg/L						
Benzene, isopropyl	μg/L						
benzene	μg/L						
bromodichloromethane Bromoform	μg/L 	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	U.C. UN
Brownorth and	μ <u>8</u> / Γ 						
	µg/ с						
	hg/L						
Carbon tetrachloride	hg/L						
Chlorobenzene	µg/L					ND 5.0	
Chloroethane	µg/L		ND 10	ND 10	ND 10	ND 10	ND 10
Chloroform Trichloromethane	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Chloromethane	μg/L	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10
cis-1,2-Dichloroethene	μg/L	ND 5.0	180	ND 5.0	3.8 J	33	ND 5.0
cis-1,3-Dichloropropene	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Cyclohexane	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Dibromochloromethane	hg/L		ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Dichlorodifluoromethane CFC-12	µg/L	ND 10	ND 10	01 UN			01 CIN

•	•	•	TABLE 2B	•	•		Page 2 of 12
		ANALYTICAL QUARTERLY PJ	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	SROUNDWATER NG PROGRAM EET 001			
	Sample Location: Sample ID: Sample Date:	МШ-1 W-091901-FG-МШ 9/19/2001	MW-2 W-092001-FG-MW2 9/20/2001	MW-3 W-092001-FG-MW3 9/20/2001	MW-4 W-092401-F6-MW4 9/24/2001	MW-4A W-092401-F6-MW4A 9/24/2001	MW-5 W-091901-FG-MW5 9/19/2001
Parameter	Unit						
Volatiles (Cont'd.)							
Ethylbenzene	μg/L						
Methyl acetate	µg/L	-					
Methyl cyclohexane	μg/L						
Methyl Tert Butyl Ether Mathylano chlorida	Hg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	0.2 UN ND 5.0
Methylene Chloride Chrono	μg/ L 						
Styrene Tetrachloroothene	μg/ L 		0.6 UN		0.6 UN	0.0 UN 65	
Toluene	μ8/ L 10/1					NIN 5.0	
trans-1.2-Dichloroethene	H8/ C		ND 5.0N		ND 5.0		
trans-1,3-Dichloropropene	με/L						
Trichloroethene	µg/L		210				
Trichlorofluoromethane CFC-11	μg/L	ND 10	ND 10	ND 10	01 UN	ND 10	ND 10
Trifluorotrichloroethane Freon 113	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Vinyl chloride	μg/L		4.5 J	ND 10	ND 10	ND 10	ND 10
Xylene total	μg/L	ND 15	ND 15	ND 15	ND 15	ND 15	ND 15
Semi-Volatiles							
2,2'-oxybis 1-Chloropropane	µg/L	,					,
2,4,5-Trichlorophenol	μg/L						,
2,4,6-Trichlorophenol	μg/L	·	۱	,			·
2,4-Dichlorophenol	µg/L	,					ı
2,4-Dimethylphenol	µg/L		ı	,		,	ı
2,4-Dinitrophenol	µg/L	ı		,			1
2,4-Dinitrotoluene	µg/L	,	ı				
2,6-Dinitrotoluene	µg/L		ı				ı
2-Chloronaphthalene	µg/L	•			,		ı
2-Chlorophenol	µg/L	•				,	
2-Methyl naphthalene	µg/L						
2-Methylphenol	μg/L	Ņ	,				
2-Nitroaniline	μg/L				ı		
2-Nitrophenol	μg/L	·	ı				
3,3'-Dichlorobenzidine	μg/L	•				·	
3-Nitroaniline	µg/L	•	•		·		•
15867-Mennes-Dunn-2							

ANALYTICA QUARTERI QUARTERI Sample Location: MW-1 Sample ID: W-091901-FG-MW1 Sample Date: 9/19/2001 Parameter Unit	ANALYTICAL RES QUARTERLY SAI PARC	YTICAL RESULTS SUMMARY - GROUNDWATER RTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK	OUNDWATER G PROGRAM ST			
Sample Location: Sample ID: Sample Date: Unit	AUG	AUGUST - SEPTEMBER 2001	1			
		MW-2 W-092001-FG-MW2 9/20/2001	MW-3 W-092001-FG-MW3 9/20/2001	MW-4 W-092401-F6-MW4 9/24/2001	MW-4A W-092401-F6-MW4A 9/24/2001	MW-5 W-091901-FG-MW5 9/19/2001
Semi-Volatiles (Cont'd.)						
		ŀ	ı	·	ı	·
her		·	•			t
ylphenol μg/L	ı	,			·	I
hg/L	ı	ı	·	·	·	
phenyl ether μg/L	,	,	I	ı		•
01	I			·		ı
	•	•	•	ŀ	•	
	I	1	·	ı		·
	ı		ŀ	ı	ı	ŀ
Acenaphthylene - µg/L	ı	·	,		ı	
Acetophenone Jug/L -	ı	,	,			•
Anthracene Jg/L -	ı			ı		·
	ŗ	1	,	ı		•
Benzaldehyde - μg/L	ı			ı		•
Benzo a anthracene µg/L -	ı		·		·	•
	•	•	•	I		•
6	·	ı		ı	•	•
			•	·		•
fluoranthene	•	•	•		•	·
	,	ŀ	,	ı	•	·
hane		ı	١		·	
bis 2-Ethylhexyl phthalate		•	ł			,
ohthalate	•		·	·	ı	
Caprolactam μg/L -			1	,		•
Carbazole µg/L -	ı	ı		•	,	•
Chrysene µg/L -	•		,			•
Dibenz a,h anthracene µg/L	·	•	ı	ı	·	
			•			·
			,	,	1	ı
	•		•	•	,	
			•			ı
Di-n-octyl phthalate		ı	I		ı	1
13467.Menus-Dunn-2						

GROUNDWATER LING PROGRAM REET K 2001	MW-3 MW-4 MW-4 MW-5 W-092001-FG-MW3 W-092401-F6-MW4 W-091901-FG-MW5 9/20/2001 9/24/2001 9/24/2001 9/19/2001																		•
ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	MW-2 AWT W-092001-FG-MW2 9/20/2001			,	ı	ı	ı	ı	ı	ŗ	,	·	ı	·	ı	ı	·	ı	
QUARI	MW-1 W-091901-FG-MW7 9/19/2001			,	,		'	,		,	,	,	,	,			,		,
	Sample Location: Sample ID: Sample Date:	Unit		hg/L	hg/L	µg/L	hg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	μg/L	μg/L	hg/L	hg/L	hg/L	µg/L
		Parameter	Semi-Volatiles (Cont'd.)	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno 1,2,3-cd pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene

Page 4 of 12

TABLE 2B

			TABLE 2B				Page 5 of 12
		ANALYTICALI QUARTERLY P/	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	ROUNDWATER NG PROGRAM EET 001			
	Sample Location: Sample ID: Sample Date:	MW-6 W-092401-F6-MW6 9/24/2001	MW-6 W-092401-F6-MW15 9/24/2001	MW-7 W-092401-F6-MW7 9/24/2001	MW-7A W-092001-FG-MW7A 9/20/2001	MW-8 W-092401-F6-MW8 9/24/2001	MW-8A W-092001-FG-MW8A 9/20/2001
Parameter	Unit		Dupineus				
Volatiles							
1,1,1-Trichloroethane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1,2,2-Tetrachloroethane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1,2-Trichloroethane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1-Dichloroethane	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,1-Dichloroethene	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,2,4-Trichlorobenzene	μg/L	ŝ	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,2-Dibromo-3-chloropropane DBCP		ND 10	ND 10	ND 10	ND 10	ND 10	ND 10
1,2-Dibromoethane Ethylene Dibromide		ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
1,2-Dichlorobenzene	µg/L	ND 5.0	ND 5.0		ND 5.0	ND 5.0	ND 5.0
1,2-Dichloroethane	µg/L	ND 5.0	ND 5.0			ND 5.0	ND 5.0
1,2-Dichloropropane	µg/L	ND 5.0					ND 5.0
1,3-Dichlorobenzene	µg/L		ND 5.0			ND 5.0	ND 5.0
1,4-Dichlorobenzene	µg/L			ND 5.0	ND 5.0	ND 5.0	ND 5.0
2-Butanone	μg/L					ND 20	
2-Hexanone	μg/L				ND 20	ND 20	ND 20
4-Methyl-2-pentanone	μg/L				ND 20	ND 20	ND 20
Acetone	μg/L	ND 20		-		-	13 J
Benzene, isopropyl	μg/L	ND 5.0					
Benzene	μg/L	ഹ					
Bromodichloromethane	µg/L						
Bromoform	μg/L	ŝ					
Bromomethane	µg/L	-		ND 10			
Carbon disulfide	µg/L	ഹ			ND 5.0	ND 5.0	ND 5.0
Carbon tetrachloride	μg/L	ŝ			ND 5.0	ND 5.0	ND 5.0
Chlorobenzene	μg/L	ŝ		ND 5.0	ND 5.0	ND 5.0	ND 5.0
Chloroethane	μg/L	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10
Chloroform Trichloromethane	μg/L	ŝ		ND 5.0	ND 5.0	ND 5.0	ND 5.0
Chloromethane	µg/L	-			ND 10	ND 10	ND 10
cis-1,2-Dichloroethene	μg/L	ŝ					ND 5.0
cis-1,3-Dichloropropene	Hg/L	ŝ					
Cyclohexane	μg/L	ι. Ω					
Dibromochloromethane	μg/L	ы.		ND 5.0	ND 5.0	ND 5.0	ND 5.0
Dichlorodifluoromethane CFC-12	µg/L	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10
15867-Mennas-Duna-2							

			TABLE 2B				Page 6 of 12
		ANALYTICAL J QUARTERLY PA	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	ROUNDWATER NG PROGRAM EET 001			
	Sample Location: Sample ID: Sample Date:	MW-6 W-092401-F6-MW6 9/24/2001	MW-6 W-092401-F6-MW15 9/24/2001	MW-7 W-092401-F6-MW7 9/24/2001	MW-7A W-092001-FG-MW7A 9/20/2001	MW-8 W-092401-F6-MW8 9/24/2001	MW-8A W-092001-FG-MW8A 9/20/2001
Parameter	Unit						
Volatiles (Cont'd.)							
Ethylbenzene	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Methyl acetate	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Methyl cyclohexane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Methyl Tert Butyl Ether	μg/L			ND 5.0			
Methylene chloride	µg/L			ND 5.0	ND 5.0		
Styrene	μg/L						
Tetrachloroethene	µg/L						
Toluene	μg/L						
trans-1,2-Dichloroethene	μg/L						
trans-1,3-Dichloropropene	μg/L						
Trichloroethene	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Trichlorofluoromethane CFC-11	μg/L	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10
Trifluorotrichloroethane Freon 113	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 5.0
Vinyl chloride	µg/L		ND 10	ND 10	ND 10	ND 10	ND 10
Xylene total	µg/L	ND 15	ND 15	ND 15	ND 15	ND 15	ND 15
Semi-Volatiles							
2,2'-oxybis 1-Chloropropane	µg/L	ND 1000	ND 1000	ND 10		ı	·
2,4,5-Trichlorophenol	µg/L	ND 1000	ND 1000	ND 10			,
2,4,6-Trichlorophenol	µg/L	ND 1000	ND 1000	ND 10			,
2,4-Dichlorophenol	μg/L	1	ND 1000	ND 10	•	•	
2,4-Dimethylphenol	µg/L		ND 1000		•	•	
2,4-Dinitrophenol	μg/L					•	
2,4-Dinitrotoluene	µg/L		ND 1000				ı
2,6-Dinitrotoluene	μg/L					•	
2-Chloronaphthalene	μg/L						,
2-Chlorophenol	µg/L		ND 1000				
2-Methyl naphthalene	μg/L		ND 1000			•	
2-Methylphenol	μg/L				ŀ		
2-Nitroaniline	μg/L						
2-Nitrophenol	μg/L				•		ı
3,3'-Dichlorobenzidine	µg/L						ı
3-Nitroaniline	μg/L	ND 5000	ND 5000	ND 50	ı	·	ı
15867-Menuss-Dum-2							

ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	Sample Location: MW-6 MW-7 MW-8 MW-8 Sample ID: W-092401-F6-MW6 W-092401-F6-MW15 W-092401-F6-MW8 W-092001-FG-MW8 M-092001-FG-MW8 M-092001-FG-MW8 M-092001-FG-MW8 W-092001-FG-MW8 W-092001-FG-MW8 W-092001-FG-MW8 M-092001-FG-MW8 M-092		Hg/L ND 1000 ND 1000 ND 10	μg/L ND 1000 ND 1000 ND 10	Hg/L ND 1000 ND 1000 ND 10					Hg/L ND 1000 ND 1000 ND 10 · · · · ·	Hg/L ND 1000 ND 1000 ND 10	μg/L ND 1000 ND 1000 ND 10			rg/l ND 5000 ND 500 ND 50		µg/L ND 1000 ND 1000 ND 10	μg/L ND 1000 ND 1000 ND 10	
	Parameter	Semi-Volatiles (Cont'd.)	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno 1,2,3-cd pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	

•

Page 8 of 12

TABLE 2B

			TABLE 2B	i	1	1	Page 9 of 12
		ANALYTICAL QUARTERLY P	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	ROUNDWATER NG PROGRAM EET 001			
	Sample Location: Sample ID: Sample Date:	MW-9 W-092101-FG-MW9 9/21/2001	MW-9A W-092101-FG-MW9A 9/21/2001	MW-10 W-092001-FG-MW10 9/20/2001	MW-10A W-092001-FG-MW10A 9/20/2001	MW-11 W-092101-FG-MW11 9/21/2001	MW-11A W-092001-FG-MW11A 9/20/2001
Parameter	Unit						
Volatiles							
1,1,1-Trichloroethane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 10	ND 5.0
1,1,2,2-Tetrachloroethane	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 10	
1,1,2-Trichloroethane	μg/L	ND 5.0		ND 5.0	ND 5.0	ND 10	
1,1-Dichloroethane	µg/L	ND 5.0		ND 5.0	ND 5.0	ND 10	
1,1-Dichloroethene	μg/L	2.0 J	ND 5.0	ND 5.0	ND 5.0	ND 10	
1,2,4-Trichlorobenzene	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 10	ND 5.0
1,2-Dibromo-3-chloropropane DBCP		ND 10	ND 10	ND 10	ND 10	ND 20	
1,2-Dibromoethane Ethylene Dibromide				ND 5.0		ND 10	
1,2-Dichlorobenzene	µg/L						
1,2-Dichloroethane	hg/L						
1,2-Dichloropropane	µg/L						
1,3-Dichlorobenzene	µg/L						
1,4-Dichlorobenzene	μg/L	ND 5.0					
2-Butanone	hg/L	ND 20					
2-Hexanone	μg/L	ND 20					
4-Methyl-2-pentanone	μg/L	ND 20	ND 20		ND 20	ND 40	ND 20
Асеголе Вел <i>ге</i> не isonronvl	μg/ L 110/L	ND 20	ND 20	02 (JN) 20	[7:6	NU 40	
Benzene	με/L						
Bromodichloromethane	hg/L	ND 5.0					
Bromoform	µg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 10	ND 5.0
Bromomethane	hg/L				ND 10	ND 20	ND 10
Carbon disulfide	µg/L			ND 5.0	ND 5.0	ND 10	1.5 J
Carbon tetrachloride	μg/L	ND 5.0		ND 5.0	ND 5.0	01 UN	ND 5.0
Chlorobenzene	μg/L	ND 5.0			ND 5.0		ND 5.0
Chloroethane	μg/L	ND 10			ND 10	ND 20	ND 10
Chloroform Trichloromethane	hg/L	ND 5.0					ND 5.0
Chloromethane	μg/L	ND 10				ND 20	ND 10
cis-1,2-Dichloroethene	µg/L	230 J				4.3]	LO LO
cis-1,3-Dichloropropene	hg/L	ND 5.0				ND 10	
Cyclohexane	μg/L	ND 5.0					
Dibromochloromethane	hg/L	ND 5.0					ND 5.0
Dichlorodifluoromethane CFC-12	µg/L	ND 10	ND 10	ND 10	ND 10	ND 20	ND 10
15867-Memus-Dunn-2							

			TABLE 2B	•	1	1	Page 10 of 12
		ANALYTICAL QUARTERLY P	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	GROUNDWATER NG PROGRAM EET			
	Sample Location: Sample ID: Sample Date:	MW-9 W-092101-FG-MW9 9/21/2001	MW-9A W-092101-FG-MW9A 9/21/2001	MW-10 W-092001-FG-MW10 9/20/2001	MW-10A W-092001-FG-MW10A 9/20/2001	MW-11 W-092101-FG-MW11 9/21/2001	MW-11A W-092001-FG-MW11A 9/20/2001
Parameter	Unit						
Volatiles (Cont'd.)							
Ethylbenzene	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 10	ND 5.0
Methyl acetate	μg/L	ND 5.0					
Methyl cyclohexane	μg/L	ND 5.0	ND 5.0	ND 5.0			
Methyl Tert Butyl Ether	μg/L	ND 5.0					
Methylene chloride	μg/L	ND 5.0				ND 10	
Styrene	µg/L	ND 5.0	ND 5.0			ND 10	ND 5.0
Tetrachloroethene	μg/L	12000	27			240	
Toluene	μg/L	ND 5.0				ND 10	
trans-1,2-Dichloroethene	µg/L	2.2 J	ND 5.0			ND 10	
trans-1,3-Dichloropropene	μg/L	ND 5.0	ND 5.0			ND 10	ND 5.0
Trichloroethene	μg/L	1200	3.7 J	ND 5.0	ND 5.0	12	75
Trichlorofluoromethane CFC-11	μg/L	ND 10	ND 10	ND 10	ND 10	ND 20	
Trifluorotrichloroethane Freon 113	μg/L	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 10	ND 5.0
Vinyl chloride	μg/L	2.7 J	ND 10	ND 10			ND 10
Xylene total	µg/L	ND 15	ND 15	ND 15	ND 15	ND 30	ND 15
Semi-Volatiles							
2,2'-oxybis 1-Chloropropane	µg/L			ND 10		ND 10	
2,4,5-Trichlorophenol	μg/L		,	ND 10		ND 10	
2,4,6-Trichlorophenol	µg/L			ND 10	\$	ND 10	
2,4-Dichlorophenol	μg/L			ND 10		ND 10	I
2,4-Dimethylphenol	μg/L			ND 10		ND 10	ı
2,4-Dinitrophenol	μg/L	,					
2,4-Dinitrotoluene	hg/L	•		ND 10		ND 10	
2,6-Dinitrotoluene	hg/L					ND 10	
2-Chloronaphthalene	μg/L			ND 10		ND 10	
2-Chlorophenol	μg/L			ND 10		ND 10	ı
2-Methyl naphthalene	hg/L	,	ı	ND 10			
2-Methylphenol	μg/L	•					
2-Nitroaniline	hg/L						
2-Nitrophenol	hg/L		ł		•		
3,3'-Dichlorobenzidine	hg/L		•				
3-Nitroaniline	hg/L			ND 50	•	ND 50	
15867. Mennus-Dunn-2							

			TABLE 2B				Page 11 of 12
		ANALYTICAL QUARTERLY P/	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	ROUNDWATER NG PROGRAM EET 001			
	Sample Location: Sample ID: Sample Date:	MW-9 W-092101-FG-MW9 9/21/2001	MW-9A W-092101-FG-MW9A 9/21/2001	MW-10 W-092001-FG-MW10 9/20/2001	MW-10A W-092001-FG-MW10A 9/20/2001	MW-11 W-092101-FG-MW11 9/21/2001	MW-11A W-092001-FG-MW11A 9/20/2001
Parameter	Unit						
Semi-Volatiles (Cont'd.)							
4,6-Dinitro-2-methylphenol	hg/L		,	ND 50		ND 50	•
4-Bromophenyl phenyl ether	μg/L	ı	ı	ND 10	·	ND 10	
4-Chloro-3-methylphenol	µg/L		,			ND 10	
4-Chloroaniline	μg/L						
4-Chlorophenyl phenyl ether	μg/L	·					ı
4-Methylphenol	μg/L		ı				
4-Nitroaniline	µg/L						
4-Nitrophenol	μg/L				•	ND 50	
Acenaphthene	µg/L				•		
Acenaphthylene	μg/L						
Acetophenone	µg/L						
Anthracene	µg/L						
Atrazine	μg/L						
Benzaldehyde	hg/L		•				•
Benzo a anthracene	μg/L	•					•
benzo a pyrene	hg/L	,					•
Benzo b fluoranthene	µg/L						
Benzo g,h,i perylene	μg/L						
Benzo K riuorantnene Bishoord	μg/L			01 UN		01 UN	
biputeury. his 2-Chloroethovv methane	μ8/ L 				•	01 UN	
bis 2-Chloroethyl ether	uø/L	,			. ,		
bis 2-Ethylhexyl phthalate	μg/L						,
Butyl benzylphthalate	µg/L			ND 10	,	ND 10	ı
Caprolactam	Hg/L			ND 10		ND 10	
Carbazole	µg/L			ND 10		ND 10	,
Chrysene	hg/L			ND 10		ND 10	
Dibenz a,h anthracene	μg/L	•		ND 10		ND 10	
Dibenzofuran	μg/L	ı		ND 10		ND 10	
Diethyl phthalate	hg/L			ND 10		ND 10	
Dimethyl phthalate	μg/L		,	ND 10		ND 10	
Di-n-butylphthalate	μg/L		ı	ND 10	ı	ND 10	,
Di-n-octyl phthalate	μg/L	ı		ND 10		ND 10	
15867-Memus-Dunn-2							

Page 12 of 12		MW-11 MW-11A W-092101-FG-MW11 W-092001-FG-MW11A 9/21/2001 9/20/2001				ND 10 -		ND 10 -	ND 50 -	ND 10 -	ND 10 -	ND 10 -	ND 10 -		ND 10 -	ND 10 -	ND 50 -	ND 10 -	ND 10 -	
		MW-10A W-092001-FG-MW10A W-09 9/20/2001			-		ı	·	·			1	ı		·		·		·	
	SROUNDWATER NG PROGRAM EET 001	MW-10 W-092001-FG-MW10 9/20/2001			ND 10	ND 10	ND 10	ND 10	ND 50	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10	ND 50	ND 10	ND 10	01 UN
TABLE 2B	ANALYTICAL RESULTS SUMMARY - GROUNDWATER QUARTERLY SAMPLING MONITORING PROGRAM PARCEL #2 - SENECA STREET BUFFALO, NEW YORK AUGUST - SEPTEMBER 2001	MW-9A W-092101-FG-MW9A 9/21/2001								ł						•				
	ANALYTICAL F Quarterly 9 Pa A	MW-9 W-092101-FG-MW9 9/21/2001												,					ı	
		Sample Location: Sample ID: Sample Date:	Unit		μg/L	µg/L	μg/L	Hg/L	hg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	hg/L	μg/L	Hg/L	µg/L	Hg/L
			Parameter	Semi-Volatiles (Cont'd.)	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno 1,2,3-cd pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene

•

Notes:

Not applicable. Estimated. Non-detect at associated value. - É QN

15867 Memos Dunn 2

		CONEST	CONESTOGA-ROVERS & ASSOCIATES	SHPPED TO (Laboratory Name): STL P. M. South V. C. J. J. L. South	ory Nam	:(;	REFER	PEFERENCE NUMBER:	2 2 2	2.2
J		zuoo nia Niagara I	150	F. Hoburge PM	157.38	00		2		
SAM	SAMPLER'S SIGNATURE:	S Arow	NAME: NAME: C	rink carbe	uers		1. 4		Det	
SEQ.	DATE	TIME	SAMPLE No.	SAMPLE TYPE	면 Contail	MARAS			HEN	HEMAHKS
\$ 7(2)	5/20/04		1 - Charles Constant Constant		-					
	-	12.12.5	1111-11-111-111-11-11-11-11-11-11-11-11	~~~	1	 1				
>			052001 · 1621-6-		Z	۱ ۸				
*		18.53	082001 - 5614-6-		N)	~			•	
2		2	1-3-8-2001 - 26-28 - C-1		2	1				
5		ا يزد ودري	022001 - 58 X4- 5-	<u> </u>	<i>.</i> *	i N				
3		1 2000	1 ×1 ×1 × × × × × × × × × × × × × × × ×	20	:√ 1	7 2				
\$ \$		12 40	C32001- 18 85-8-	10	(S)	7				
Š		arhi	082000817-2-	~	~	: ~				
2		11/20	082001 - 2217-6-		\sim					
-		Land and the state of the state	and a second second with the second of the second second second second second second second second second second	7.0						
>	è	1. 5. 30 5 1	082001 5626484	→	Ž	n Z				
1										
			TOTAL NUMBER OF CONTAINERS	St St	112	-	HEALTH/CHE	HEALTH/CHEMICAL HAZARDS		
BELI ①	ISIMONI	RELINQUISHED BY:	: L. C.	DATE: 2/24/01 TIME: 12:002 (FC	RECEIVED BY:	'ED BY:			DATE: TIME:	
REL	INQUIS	RELINQUISHED BY:		DATE:	RECEIVED BY:	ED BY:			DATE:	
0				TIME:	0				TIME:	
RELI 0	INQUISI	RELINQUISHED BY:	ÿ	DATE: TIME:	RECEIVED BY:	ΈD BY:			DATE: TIME:	
1ETH	METHOD OF	F SHIPMENT:	IENT:		WAY BILL No.	-L No.				
White Yellow	. Z		d Copy boratory Copy	SAMPLE TEAM: Frank (m.). c		RECEIV	RECEIVED FOR LABORATORY BY:		o Z	3523
Pink Goldonrod	-		-Snipper Copy	Mann Color	2		H			

NUMBER:		REMARKS													HAZARUS	DATE: TIME:	DATE:	TIME:	DATE: TIME:		ту ВҮ: No 划 3524	
															HEALIH/CHEMICAL HAZARDS	3Y:	3Y:		3Y:		RECEIVED FOR LABORATORY BY:	
SHIPPED TO (Laboratory Name):		iners	SAMPLE 013 TYPE 200	.	2	2	-1	L7	*							× / / 「 RECEIVED BY: ・ * / / ● - 0 - 2 ×	RECEIVED BY:	0	RECEIVED BY:	WAY BILL No	6160	-
		I ronk Ga		2		9									IAINERS	DATE: 2 / 2 / TIME: 1 7 / 3	DATE:	TIME:	DATE: TIME:		SAMPLE TEAM:	
	CONESTOGA-ROVERS & ASSOCIATES 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, N.Y. 14304 (716) 297-6150	Autor Control NAME.	SAMPLE No.	0861 - 10 M.			いいい あいわせい いいい シャンダ	1							TOTAL NUMBER OF CONTAINERS					IENT:	-Fully Executed Copy -Receiving Laboratory Copy	-Shipper Copy
	CONESTO 2055 Niag Niagara Fa	SAMPLER'S	DATE TIME	16 44 8 35 C	يرية 19 ع د موجع		1.45		W JUNO								RELINQUISHED BY:		Relinquished BY: 3	METHOD OF SHIPMENT:		Pink
		SAM	No KO													BEL	REL	0	© BEL	METI	White Yellow	Pink

Bit Nation State File State		CONFST	CONFECTOGA-BOWERS & ASSOCIATES	0 1 0	ratory Nam	e):		IBER:	
Finne Finne Finne Ender Ender <th< th=""><th>The second secon</th><th>2055 Nia Niagara I</th><th>gara Falls Blvd., Suite 3 alls, N.Y. 14304 (716) 297-6150</th><th>and a</th><th>22 38</th><th></th><th>3187 5000</th><th></th><th></th></th<>	The second secon	2055 Nia Niagara I	gara Falls Blvd., Suite 3 alls, N.Y. 14304 (716) 297-6150	and a	22 38		3187 5000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MPLER'	ທ _ີ ່ ເບ	PRINTED	Frank 60	uets	SURI		BEMAR	
$v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v$	DATE	TIME	SAMPLE No.	<u>S</u>	-	NA SAS		Screech V.	20.50.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. P.J.					1	. ++.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	£ 6/2		- 29-10016C	5	1	X		·~/	Δ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	alida		W-012001-F6-1	2		×		5	1 K.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	的情况	0121	(-041001-to-)	Ą	•	×		l'deco	•
作用 他の し 他の 日 1 1 1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>			00 2 col - F. C.	4	,	×		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1 2 2 4 1		012.01			×			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sec.			V	`	大法			
Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference Interference	21:31.		-93 - 100 C LO		ۍ . تو ر	X			
1 1 <td>91-1 15</td> <td>1</td> <td></td> <td></td> <td>~~~</td> <td>~~</td> <td></td> <td>1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2</td> <td></td>	91-1 15	1			~~~	~~		1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
Image: constraint of the image of the im	· · · · · · · · · · · · · · · · · · ·		- 00 - 101 - 6 (Å	┢	, ×			
Image: Non-Shiper Copy Image: Non-Shiper Copy<	•••					be.			
Interview Inter									
Induction Induction Induction Induction Induction TOTAL NUMBER OF CONTAINERS 3,1 HEALTH/CHEMICAL HAZARDS TOTAL NUMBER OF CONTAINERS 3,1 HEALTH/CHEMICAL HAZARDS NOUISHED BY: TIME: 7,3,0 0 ANUAL TIME: A Particle NOUISHED BY: TIME: A DATE NO A B A DO OF SHIPMENT: A A									
TOTAL NUMBER OF CONTAINERS 3 HEALTH/CHEMICAL HAZARDS TOTAL NUMBER OF CONTAINERS 3 HEALTH/CHEMICAL HAZARDS NOUISHED BY: TIME: 7.3 NOUISHED BY: DATE: 7/2/5/5 NOUISHED BY: DATE: 7/2/5 NOUISHED BY: DATE: 7/2/5 NOUISHED BY: DATE: 7/2/5 NOUISHED BY: DATE: 7/2/5 NOUISHED BY: DATE: RECEIVED BY: NOUISHED BY: DATE: RECEIVED BY: NOUISHED BY: DATE: 20 NOUISHED BY: DATE: 20 NOUISHED BY: MATE: 20 NOUISHED BY: MATE: 20 NOUISHED BY: MATE: 20 NOUISHED BY: MATE: 20									
TOTAL NUMBER OF CONTAINERS 3/ HEALTH/CHEMICAL HAZARDS NOUISHED BY: DATE: \$/ 2 \string of states PATE: \$/ 2 \string of states PATE: \$/ 2 \string of states NOUISHED BY: TIME: 7:3() 0 PATE: \$/ 2 \string of states PATE: \$/ 2 \string of states NOUISHED BY: TIME: 7:3() 0 0 PATE: \$/ 2 \string of states PATE: \$/ 2 \string of states NOUISHED BY: TIME: 0 0 0 0 PATE: \$/ 2 \string of states PATE: \$/ 2 \string of states NOUISHED BY: TIME: 0 0 No No OD OF SHIPMENT: MAY BILL No. MAY BILL No. NO NO -Fully Executed Copy From Copy SAMPLE TEAM: RECEIVED FOR LABORATORY BY: NO									
NQUISHED BY: DATE: \$/z\$ \$/z\$ BATE: \$/z\$ DATE: TIME: 7.3 D NOUISHED BY: TIME: 7.3 0 0 0 0 0 NOUISHED BY: DATE: DATE: 0 0 0 0 NOUISHED BY: DATE: DATE: 0 0 0 NOUISHED BY: DATE: DATE: 0 0 NOUISHED BY: DATE: 0 0 0 OLISHED BY: DATE: 0 0 0 OD OF SHIPMENT:			TOTAL NUMBER OF CONTAIL	NERS	75	HEA		RDS	
NOUISHED BY: DATE: DATE: DATE: DATE: NOUISHED BY: TIME: © TIME: NOUISHED BY: DATE: © NOUISHED BY: TIME: © NOUISHED BY: DATE: © NOUISHED BY: DATE: © ITIME: © DATE: NOUISHED BY: DATE: © ITIME: © DATE: OD OF SHIPMENT: MAY BILL No. -Fully Executed Copy From Copy -Fully Executed Copy From Copy -Shipper Copy From Copy		SHED B'		2/5					
TIME: TIME: TIME: NOUISHED BY: DATE: DATE: NOUISHED BY: DATE: DATE: DO OF SHIPMENT: MAY BILL No. -Fully Executed Copy From Control Copy -Receiving Laboratory Copy From Control Copy -Shipper Copy From Copy	INQUI	SHED B		DATE:	RECEIV	/ED BY:		DATE:	
NOUISHED BY: DATE: DATE: DATE: TIME: Image: Time: Image: Time: Image: Time: OD OF SHIPMENT: MAY BILL No. MAY BILL No. -Fully Executed Copy SAMPLE TEAM: RECEIVED FOR LABORATORY BY: -Receiving Laboratory Copy -Shipper Copy				TIME:	0			TIME:	
OD OF SHIPMENT: WAY BILL NoFully Executed Copy -Fully Executed Copy -RECEIVED FOR LABORATORY BY: -Receiving Laboratory Copy - Communication -Shipper Copy - Communication - Shipper Copy - Communication - Com	LINQUI	SHED B'			BECEIV	ED BY:		DATE: TIME:	
ーFully Executed Copy SAMPLE TEAM: RECEIVED FOR LABORATORY BY: -Receiving Laboratory Copy Control Contro Control Control Control Control Control Control Control Cont	O DOH	F SHIPA			WAY BI	LL No.			
	9			AMPLE TEAM:		RECEIVED F	OR LABORATORY BY		1
	anrod		I		# 5	DATE.	TIME	Storige Storige	0875

CHAIN OF (e CUSTC	- A	CUSTODY RECORD	- -	
) TO (L	10 (Laboratory Name): Hsburgh Num Fith Way	ory Nar Wuliy 1523	ame): 3.5	REFERENCE NUMBER: 2137 Semples	R: # 015867
A PRINTED Fra		INEBS OL	PARAMETERS	$\nabla D \rangle$	
SEQ. DATE TIME SAMPLE No.	SAMPLE TYPE	оит <u>а</u> . Соита			SUE SCRACLA
4-21-01 13,3,0 W - 09 2101 - FG-1	-	2	–	MS/MSD /	297.61
14210 - 042101-16- MWG	1	n v	5		W/ results &
T8-2		5 14) (\)	Trip B 1 Gw	
					* Please Les
					Lerbert Samerics
					Je cam
					Service Volce
TOTAL NUMBER OF CONTAINERS		23		CHEMICAL HAZARDS	
RELINQUISHED BY DATE: 1/21/ (1) 1/1/1/1/2/	No RE	RECEIVED	D BY:		DATE: TIME:
D BY:		RECEIVED	D BY:		DATE: TIMF·
LINQUISHED BY:		RECEIVED	D BY:		DATE: TIME:
METHOD OF SHIPMENT: Tech 2X		WAY	BILL No.	LA L	
 Fully Execut -Receiving Lo 	2		RECEIVED) FOR LABORATORY BY:	NO NE
-Shipper Copy rod -Sampler Copy			DATE:	TIME:	
				1001 (D)	1001 (D) OCT 31/94(NF) REV.1 (F-05)

2137 Service St. (A220 Hut)	XXXX				¥	PR	otis 1 de ani	((K))	* ~						میں ہے۔ میں اور اور اور اور اور اور اور اور اور اور	> 	REV.1 (F-05)
2137 Service St. (A220 Hut)	KEMARKS				AND DIANE	3	Samples c	Scrotchi S	t. w.t.		DATE: TIME:	DATE: TIME:	DATE: TIME:		BY: NQ NF-		1001 (D) OCT 31/94(NF) REV.1 (F-05)
										CHEMICAL HAZARDS					LABORATORY	TIME:	1001
AMETERS	Contraction of the second seco			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4					HEALTH/	(ED ВΥ:	/ЕD ВҮ:	ED BY:	' BILL No.	RECEIVED FOR	DATE:	
PA -	SAMPLE OT	333			3					24	1 2 4/ 0/ RECEIVED	RECEIVED	RECEIVED 1	WAY	Ser the		
Pitsburg		w5	IWG IW IS	LMW -						CONTAINERS	DATE: 4/2-4		DATE: TIME:		SAMPLE TEAM: Franks (
& ASSOCIATES Blvd. Suite T 4304 (716)297	SAMPLE No.	W-042401-16-MW1 W-092401-F6-MW4A W-092401-F6-MW5	· 1072401 ·	- 1012	C-41					TOTAL NUMBER OF	auls			ENT: Fedex	cuted Copy Laboratory Copy	oer Copy pler Copy	
Ils, NY	TIME	1300			1						SHED BY:)	HED BY:	HED ΒΥ:	F SHIPMENT:	-Fully Exec -Receiving	-Snipper -Sampler	
2055 Niggara Falls Niggara Falls, NY 1. SAMPLER'S 4 m/1 SIGNATURE:	DATE	10-7-4			>						(1)	RELINQUISHED	RELINQUISHED	METHOD OF	White Yellow	Pink Goldenrod	
SAN SAN SIGN	SEQ. No.]⊒€	©re	RELI G	ME	γ × ε	Golde	

G	CONESTOGA-ROVERS & ASSOCIATES	Niagara Falls, New York 143 Telephone: (716) 297-6150 www.CRAworld.com	Fax: (716) 297-226
	MEMOR	ANDUM	
То:	Carol Dunnigan	Ref. No.:	15867
From:	Susan Scrocchi/js/3 55	Date: Revised:	January 7, 2002 January 15, 2002
RE:	Data Usability Summary Report Site Investigation Parcel #2 – Seneca Street Buffalo, New York		

The following details an evaluation of results reported by Severn Trent Laboratories (STL) located in Pittsburgh, Pennsylvania, for 10 groundwater samples in November 2001 at the Parcel #2 Site located in Buffalo, New York.

The samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) using Method SW-846 8260, referenced from "Test Methods for Solid Waste Physical/Chemical Methods", SW-847, 3rd Edition, September 1986 (with all subsequent revisions).

A summary of the analytical results is presented in Table 1.

The Quality Assurance/Quality Control (QA/QC) criteria by which these data have been evaluated is outlined in the analytical methods and the "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999, United States Environmental Protection Agency [USEPA] 540/R-99/008).

QA/QC REVIEW

2

Deliverables

- The data package was complete as defined under the requirements for Analytical Services Protocol (ASP) Category A deliverables.
- Holding Times

Based on the methods, all required holding times were met.

Blanks

Method blanks were analyzed on a daily basis and were non-detect for the compounds of interest.

2055 Niagara Falls Blvd., Suite #3

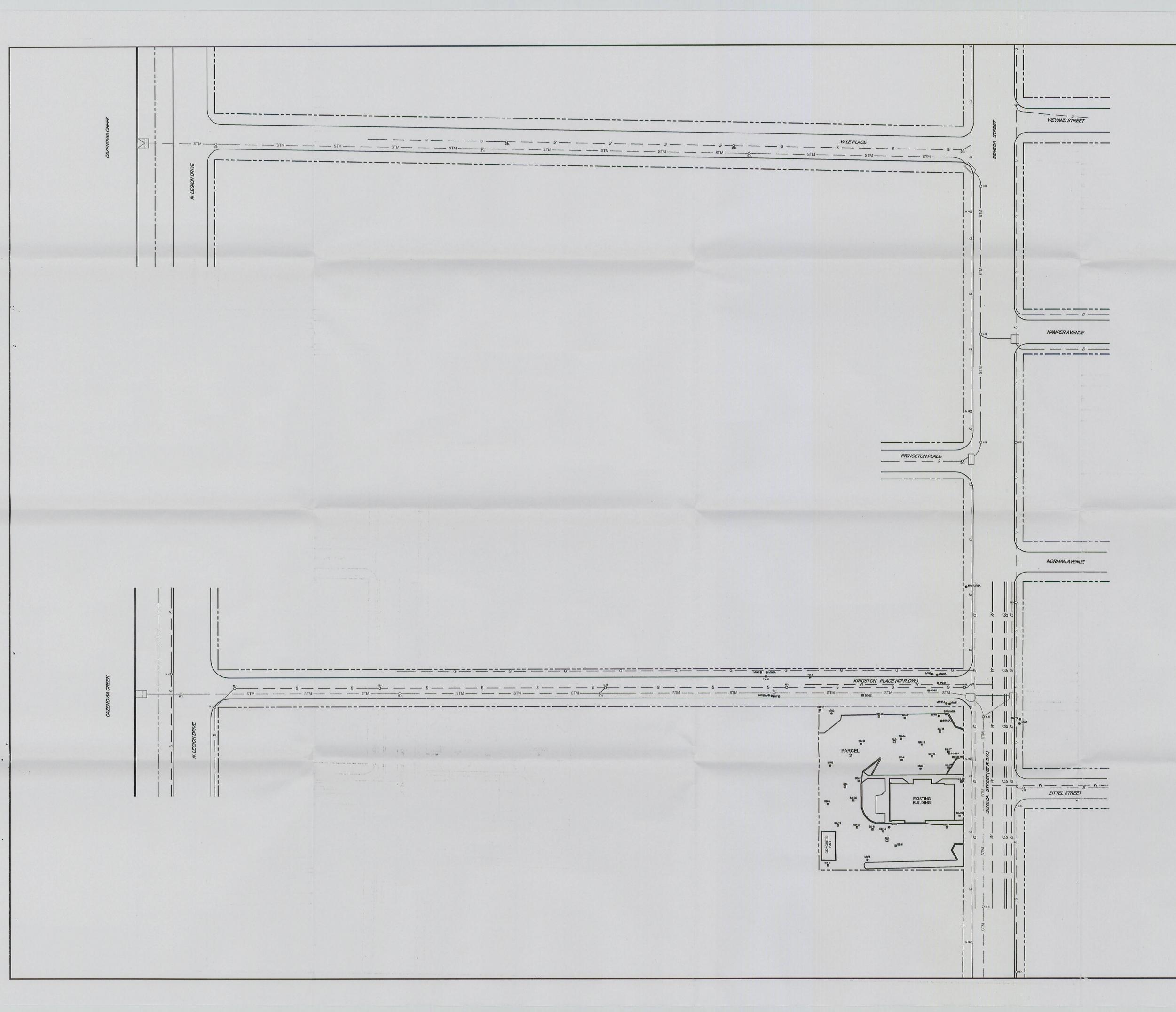
		TAF	TABLE 1			Page 2 of 4
		ANALYTICAL RE GROUNDWAT PARCEL #2, SI NOVEM	ANALYTICAL RESULTS SUMMARY GROUNDWATER SAMPLING PARCEL #2, SENECA STREET NOVEMBER 2001			
	Sample Location: Sample ID: Sample Date:	MW-11 GW-112801-JP-005 11/28/2001	MW-11A GW-112901-JP-008 11/29/2001	MW-12 GW-112701-JP-001 11/27/2001	MW-12A GW-113001-JP-010 11/30/2001	MW-2 GW-112901-JP-009 11/29/2001
Parameter	Unit					
Volatiles						
cis-1,2-Dichloroethene	μg/L	29	7.1 J	360	33	140
cis-1,3-Dichloropropene	μg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Cyclohexane	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Dibromochloromethane	μg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Dichlorodifluoromethane (CFC-12)	µg/L	ND 10	ND 20	ND 10	ND 10	ND 10
Ethylbenzene	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Methyl acetate	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Methyl cyclohexane	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Methyl Tert Butyl Ether	μg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Methylene chloride	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Styrene	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Tetrachloroethene	μg/L	1700	240	6200	100	85
Toluene	μg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
trans-1,2-Dichloroethene	μg/L	ND 5.0	ND 10	3.0 J	ND 5.0	ND 5.0
trans-1,3-Dichloropropene	µg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Trichloroethene	µg/L	84	80	2000	36	140
Trichlorofluoromethane (CFC-11)	µg/L	ND 10	ND 20	ND 10	ND 10	ND 10
Trifluorotrichloroethane (Freon 113)	μg/L	ND 5.0	ND 10	ND 5.0	ND 5.0	ND 5.0
Vinyl chloride	μg/L	ND 10	ND 20	3.3 J	ND 10	5.0 J
Xylene (total)	μg/L	ND 15	ND 30	ND 15	ND 15	ND 15

15867-Метоs-Dunn-3

Page 2 of 4

•

		TAI	TABLE 1			Page 3 of 4
		ANALYTICAL RE GROUNDWA' PARCEL #2, S NOVEM	ANALYTICAL RESULTS SUMMARY GROUNDWATER SAMPLING PARCEL #2, SENECA STREET NOVEMBER 2001			
S	Sample Location: Sample ID: Sample Date:	MW-4 GW-112801-JP-003 11/28/2001	MW-4 GW-112801-JP-004 11/28/2001	MW-4A GW-112901-JP-007 11/29/2001	MW-9 GW-112701-JP-002 11/27/2001	MW-9A GW-112801-JP-006 11/28/2001
Parameter	Unit		(Field Duplicate)			
Volatiles						
1,1,1-Trichloroethane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,1,2,2-Tetrachloroethane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,1,2-Trichloroethane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,1-Dichloroethane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,1-Dichloroethene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,2,4-Trichlorobenzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	ND 300	ND 500	ND 10	ND 500	ND 10
1,2-Dibromoethane (Ethylene Dibromide)		ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,2-Dichlorobenzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,2-Dichloroethane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,2-Dichloropropane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,3-Dichlorobenzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
1,4-Dichlorobenzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
2-Butanone	μg/L	ND 600	ND 1000	ND 20	ND 1000	ND 20
2-Hexanone	μg/L	ND 600	ND 1000	ND 20	ND 1000	ND 20
4-Methyl-2-pentanone	μg/L	ND 600	ND 1000	ND 20	ND 1000	ND 20
Acetone	μg/L	ND 600	ND 1000	ND 20	ND 1000	ND 20
Benzene, isopropyl	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Benzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Bromodichloromethane	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Bromoform	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Bromomethane	μg/L	ND 300	ND 500	ND 10	ND 500	ND 10
Carbon disulfide	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Carbon tetrachloride	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Chlorobenzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Chloroethane	μg/L	ND 300	ND 500	ND 10	ND 500 -	ND 10
Chloroform (Trichloromethane)	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Chloromethane	μg/L	ND 300	ND 500	ND 10	ND 500	ND 10


		I ABLE I ANALYTICAL RESUL GROUNDWATER 9 PARCEL #2, SENEG NOVEMBER	ANALYTICAL RESULTS SUMMARY GROUNDWATER SAMPLING PARCEL #2, SENECA STREET NOVEMBER 2001			
	Sample Location: Sample ID: Sample Date:	MW-4 GW-112801-JP-003 11/28/2001	MW-4 GW-112801-JP-004 11/28/2001 (Field Duplicate)	MW-4A GW-112901-JP-007 11/29/2001	MW-9 GW-112701-JP-002 11/27/2001	MW-9A GW-112801-JP-006 11/28/2001
Parameter	Unit					
Volatiles						
cis-1,2-Dichloroethene	µg/L	100]	160]	46	260	2.0 J
cis-1,3-Dichloropropene	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Cyclohexane	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Dibromochloromethane	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Dichlorodifluoromethane (CFC-12)	µg/L	ND 300	ND 500	ND 10	ND 500	ND 10
Ethylbenzene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Methyl acetate	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Methyl cyclohexane	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Methyl Tert Butyl Ether	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Methylene chloride	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Styrene	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Tetrachloroethene	μg/L	5800	9400	32	9500	41
Toluene	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
trans-1,2-Dichloroethene	μg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
trans-1,3-Dichloropropene	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Trichloroethene	µg/L	360	580	95	1000	7.7
Trichlorofluoromethane (CFC-11)	µg/L	ND 300	ND 500	ND 10	ND 500	ND 10
Trifluorotrichloroethane (Freon 113)	µg/L	ND 150	ND 250	ND 5.0	ND 250	ND 5.0
Vinyl chloride	µg/L	ND 300	ND 500	ND 10	ND 500	ND 10
Xylene (total)	µg/L	ND 450	ND 750	ND 15	ND 750	ND 15

-

Notes:

J Estimated.ND Non-detect at associated value.

ואם ואחזו-תבוברו מו משתרחיורת

Nº	R	evision		Date	Initial
	20 50ft	SB-5 MW-1 PZ-2 C.B.□		DRING WELI IETER BASIN	
	SCAL	E VERIFICATIO	N		
THIS	BAR MEASURES 1" ON C	original. Adjus	T SCALE ACC	CORDINGLY.	
Approved					
	DRA	AWING STATU	S		
	Status			Daíe	Initia
ŀ	IODGSON, WOODS				
	PARCEL 2	- SENECA	STREE	Т	
S	EWER SYS	STEMS P	LOT F	PLAN	
CRA		GA-ROVE	RS & /	ASSOCI	ATES
Source Reference:			A CONTRACTOR OF A		and the second second second second second second second second second second second second second second second
	BUFFAL	LO SEWER AUTHO	RITY		
Project Manager: R. SHEPH	Reviewed		Date:	01/17/02	
	ERD Project N	d By: CFD		Drav	wing №: LAN 1