

Site Investigation Summary Report

for the property at
The Niacet Corporation
47th Street
Niagara Falls, New York

Prepared for: Union Carbide Corporation, Inc.

Prepared by:
URS Corporation, Inc.
Buffalo, New York

October 2002

URS

October 30, 2002

Michael J. Hinton, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Voluntary Cleanup Program
Nigget Corporation Site #V00

Niacet Corporation Site #V00373-9 Site Investigation Summary Report

Dear Mr. Hinton:

As you are aware, the initial site investigation activities have been completed at the Union Carbide Corporation (UCC) – Niacet Site located at 47th Street in Niagara Falls, New York. The investigations were conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH)—approved, "Work Plan for the Site Investigation/Remedial Alternatives Report (SI/RAR)" prepared by URS Corporation (URS) and dated July 2001 (Revised December 2001). The investigation included soil gas surveys, test trench excavations, collection of surface and subsurface soil and water samples and analysis of samples for mercury, and in a few cases semi-volatile organic compounds and metals.

URS, on behalf of UCC, is pleased to submit the enclosed, "Site Investigation Summary Report" for the above-referenced site. This document presents a brief overview of the investigation activities and a summary of the geologic and analytical data developed for the site. The test trench logs and a data usability summary report (DUSR) are included as appendices.

In accordance with the Work Plan, the current investigations were limited to those portions of the site wherein it was known, and/or suspected, that mercury had been historically used or transported. Mercury contamination was in fact, identified in most of these areas. However, identification and delineation of any potential mercury contamination outside these areas (i.e., the remaining portions of the site) was beyond the scope of the current investigations. Consequently, based on the results of the initial investigations, UCC intends to conduct supplemental investigations to further delineate the nature and extent of the mercury contamination in the currently identified areas as well as the remaining portions of the site.

To that end, the enclosed report should be considered as an "interim" report. Once the supplemental investigations have been completed, a final SI/RAR report will be prepared that summarizes the results of all the investigations and presents suggested remedial alternatives for the site. The intent is to utilize the results presented in this report as the

URS Corporation 282 Delaware Avenue Buffalo, NY 14202-1805 Tel: 716.856.5636 Fax: 716.856.2545

basis for discussions with the NYSDEC and NYSDOH in developing the scope of work for the supplemental investigation program.

Once you've had the opportunity to review the enclosed data, please call to arrange a meeting (tentatively during the week of November 11, 2002) to discuss the current results and the scope of the supplemental investigation program. In the meantime, should you have any questions or require any additional information, please call me at 856-5636.

Sincerely,

URS Corporation

Robert R. Henschel, P.G.

Project Manager

Enc.

cc: Tim King – UCC

Larry Montani – Niacet Matt Forcucci – NYSDOH Gary Litwin – NYSDOH

Andrew English - NYSDEC, Buffalo

J. Doerr - URS

File: 05-00035825.00 (C-1)

SITE INVESTIGATION SUMMARY REPORT

For the Property at
The Niacet Corporation
400 47th Street
Niagara Falls, New York

Prepared for:
Union Carbide Corporation, Inc.

Prepared by:
URS Corporation, Inc.
Buffalo, New York

October 2002

SITE INVESTIGATION SUMMARY REPORT

The Niacet Corporation 400 47th Street Niagara Falls, New York

TABLE OF CONTENTS

			·	
]	Page No.
1.0	INTR	ODUCTI	ON	1
2.0	SITE	INVEST	IGATION	1
3.0	RESU	JLTS		2
	3.1	Site Str	ratigraphy	2
	3.2	Soil Ga	as Survey	3
	3.3	Test Tr	renches	3
		3.3.1	Surface Soils	3
		3.3.2	Subsurface Soils	4
		3.3.3	Water Samples	5
4.0	CON	CLUSION	NS	5
			TABLES	
			(Following Text)	

TABLE 1 - Analytical Mercury Sample Results

TABLE 2 - Analytical Soil Sample Results

TABLE 3 - Analytical Groundwater Sample Results

FIGURES

(Following Text)

FIGURE 1 - Site Location Map

FIGURE 2 - Site Plan

FIGURE 3 - Soil Gas Sampling Locations

FIGURE 4 - Test Trench Locations

FIGURE 5 - Soil Gas Screening Results

SITE INVESTIGATION SUMMARY REPORT

The Niacet Corporation 400 47th Street Niagara Falls, New York

TABLE OF CONTENTS (Continued)

FIGURES (Following Text)

FIGURE 6 - Areas of Visible Mercury Contamination and Soil Analysis Results - Mercury

FIGURE 7 - Soil Analytical Results (SVOCs and Metals)

FIGURE 8 - Water Analytical Results (Total Mercury)

APPENDICES

APPENDIX A - Test Trench Logs

APPENDIX B - Data Usability Summary Report (DUSR)

1.0 INTRODUCTION

The Niacet Facility, formerly owned by Union Carbide Corporation (UCC), is located on 19.42 acres at the intersection of 47th Street and Pine Avenue in Niagara Falls, New York (Figure 1). Elemental mercury was observed in subsurface soils at the site during recent construction activities at the facility. UCC subsequently entered in to a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to investigate and remediate, as necessary, the mercury contamination at the site. UCC contracted URS Corporation (URS) to develop a Site Investigation Work Plan and conduct the investigations. This report provides a brief summary of the activities completed to date and the preliminary results of the investigations.

2.0 SITE INVESTIGATION

Based on review of the historical site data, four areas of the site were identified where mercury had been used, recovered or disposed (Figure 2). Subsequently, a Work Plan to investigate these areas was developed and submitted to the NYSDEC for approval.

The Site Investigation (SI) was conducted between April 29 and May 23, 2002. The SI consisted of a soil gas survey, excavation of test trenches and collection/analysis of soil samples in accordance with the NYSDEC-approved Work Plan.

The soil gas survey was conducted using a Geoprobe direct push unit to drive the soil gas probe to the selected depth (typically, 18–24 inches) at 60 locations (Figure 3). A gas sample was then collected in a Tedlar bag and screened with a Jerome 431 Mercury Vapor Analyzer (MVA). The results were plotted in the field and combined with historical information to select the locations for the test trenches.

A total of 33 test trenches were installed at selected locations (Figure 4). The trenches were advanced until the first occurrence of visible mercury (i.e., globules/beads), perched water, low permeability soil units or bedrock was encountered, whichever was less. Sixteen subsurface soil samples were collected during the trenching and sent to Severn Trent Laboratory for mercury analysis. These samples were collected from each type of fill material encountered, zones where

-1-

elevated MVA readings were recorded, and/or at the contacts between the various units. Additionally, 5 soil/fill material samples were collected and analyzed for Target Compound List (TCL) semivolatile organic compounds (SVOCs) and Target Analyte List (TAL) metals. Four grab samples of the perched water were also collected and analyzed for mercury. A limited data validation was performed on all samples collected. Based on this review, a Data Usability Summary Report (DUSR) was prepared. The DUSR is presented in Appendix B.

The analytical data was compared with the soil gas values, site historical information and the NYSDEC TAGM 4046 recommended soil cleanup objectives to determine the probable nature and extent of contamination onsite.

3.0 RESULTS

3.1 Site Stratigraphy

Based on the results of the SI, it appears that the stratigraphy of the site is relatively uniform. However, there are some variations locally. In general, the upper few inches to two feet consists of a dark brown to black, coarse, granular fill unit, containing fine to coarse gravel (coal, slag, rock, cinder and clinker), with some silty ash and cinders. Locally, this unit contains large amounts of industrial construction and demolition (C&D) debris. This unit is referred to as the "upper fill unit." This is underlain by a "lower fill unit" consisting of a red brown silty clay with large amounts of rock and C&D. This lower fill unit is not present between Buildings 11 and 17 in the western portion of the site. In this area, the upper fill unit, which appears to be exclusively building demo debris, extends down to the top of the native clay units.

Underlying the fill units are naturally occurring silty clays, comprised of both lacustrine and till materials

In the southeastern portion of the site, it appears that the silty clay excavated during construction of the new ASTs (i.e., the lower fill and naturally occurring silty clay units), was spread over the existing ground surface in the eastern half of the sludge disposal area and Process Areas II and III.

-2-

The thickness of the fill materials varies across the site, but typically averages about 5 to 6 feet. Copies of the test pit logs are contained in Appendix A.

3.2 Soil Gas Survey

The soil gas readings obtained during the SI are presented graphically on Figure 5. The readings generated on the MVA, in most cases, were not reflective of the concentrations shown in the analytical data for the subsurface soil samples. High soil gas concentrations were not always indicative of high mercury concentrations in the soil and low soil gas concentrations were not always indicative of low mercury concentrations in the soil. The results do tend to show that a reading of 20 ug/m³ or higher on the MVA is indicative of detectable levels of mercury in the soils. However, readings below 20 ug/m³ are no guarantee that mercury is not present in the soils. The limited correlation is thought to be related to the behavior of elemental mercury in the soil. The mercury beads form a "skin" that acts as a barrier to volatilization. Unless the beads are disturbed (i.e., the skin is ruptured) and fresh mercury is exposed, the mercury will not generate vapor levels that are detectable with the MVA. Consequently, the MVA readings can only be used as a screening tool and not to quantify the amount of mercury in the soil.

In Building 17, high MVA readings were obtained in two soil gas borings advanced through the concrete floor. Additionally, high readings were obtained on the explosimeter from an unknown gas that had collected under the floor. Due to the potential explosion hazard, the drilling was halted and the borings sealed with concrete. The additional borings planned for Building 17 were also put on hold for the time being. Because of the density of underground utilities around the building, particularly to the west, it was not possible to install alternate borings and/or test trenches outside the building to replace the proposed borings inside the building.

3.3 Test Trenches

3.3.1 Surface Soils

Only one surface soil sample (i.e., 0-2 inches) was collected onsite. This sample (SS-1+10) was obtained from the Upper Fill unit along the eastern edge of the new AST area and

exhibited a mercury concentration of 691 mg/kg (Table 1 and Figure 6). Whereas no other surface soil samples were collected, the MVA surveys conducted prior to the start of the intrusive activities and again after the conclusion of the intrusive activities obtained 0 ug/m³ readings throughout most areas. The exception was in those areas where elemental mercury was observed in the soils at or near the surface.

3.3.2 Subsurface Soils

Visible elemental mercury was identified in the near surface soils (i.e., upper two feet) throughout the former mercury recovery area, as well as at a depth of approximately two feet in the soils immediately east of the new AST area (i.e., the area not excavated during construction). The size range of the mercury droplets is estimated at less than 2mm in diameter. Niacet personnel also stated that visible elemental mercury was seen at the bedrock surface at the bottom of the new AST pad excavation. Visible mercury was most likely not noted during the soil excavation inasmuch as no one was specifically looking for it. It is possible that the small mercury beads were not noticed during construction, until a large enough mass had collected to be readily visible and recognized. The spoil from the excavation, which was most probably mercury-contaminated, had in the meantime been transported and spread in the former sludge disposal area.

Niacet personnel also indicated that visible mercury had been observed in the soils immediately below the floor slab in Building 17 during excavation for a linear floor drain. The areas in which visible mercury was observed are presented graphically in Figure 7.

Mercury was detected in all 16 of the subsurface soil samples collected. The two samples (TT-03 and TT-04) collected from the fill materials immediately below the lower fill unit in the sludge disposal area exhibited concentrations of 0.058 and 0.077 mg/kg, respectively. These concentrations are below the NYSDEC TAGM 4046 recommended soil cleanup objectives (i.e., 0.1 mg/kg). The 12 samples collected from the upper and lower fill units outside the areas where visible mercury was observed, exhibited concentrations ranging from 20 to 1460 mg/kg. These concentrations all exceed the TAGM 4046 recommended cleanup objectives. However, with the exceptions of TT-02 (1320 mg/kg) and TT-12 (1460 mg/kg), all these concentrations are below

the USEPA Risk Based Criteria (RBCs) for industrial sites. The mercury concentrations for subsurface soil samples are presented in Table 1 and graphically depicted in Figures 6 and 7.

The five subsurface soil samples analyzed for TCL SVOCs and TAL metals, exhibited concentrations for a few carcinogenic polynuclear aromatic hydrocarbons (cPAHs) and several metals that exceed the TAGM 4046 recommended soil cleanup objectives. However, the observed levels are not unusual for industrial sites. The observed results are presented in Table 2 and graphically depicted on Figure 7.

3.3.3 Water Samples

The four water samples collected from the test trenches exhibited concentrations of mercury ranging from 0.122 to 574 mg/L. These results are presented in Table 3 and graphically depicted in Figure 8.

4.0 CONCLUSIONS

Based on the preliminary data evaluation, the following conclusions have been reached:

- Three areas of the site (i.e., the former mercury recovery area, Building 17 and the area east of the new AST facility) contain visible mercury in the near surface soils. (Due to the potential for exposure of onsite workers to mercury in the former mercury recovery area, it was determined in conjunction with the NYSDEC, NYS Department of Health, UCC, and Niacet personnel that access should be restricted. Consequently, fencing was installed around this area during the investigation program.)
- It appears that mercury is disseminated in the fill materials in the former transportation corridor, Process Area I, and the Sludge Disposal Area. Whereas the concentrations exceed the TAGM 4046 recommended soil cleanup objectives, they do not exceed the USEPA RBCs for industrial sites, with the exception of TT-02 and TT-12.

-5-

- CPAHs and several metals were detected at concentrations that exceed the TAGM
 4046 recommended soil cleanup objectives in subsurface soil samples in all areas of
 the site that were investigated. However, the cPAHs identified and their
 concentrations are very typical of other industrial sites in Western New York.
 Additionally, the metals concentrations may be representative of site background
 levels.
- The perched water at the site exhibited elevated concentrations of mercury in all areas of the site. The concentrations were highest in the Former Mercury Recovery Area and decreased to the south, with the lowest levels being observed in the Sludge Disposal Area. Inasmuch as the samples were grab samples of water flowing into the test trenches, and were not filtered to remove any suspended sediment, it is likely that the concentrations are reflective of the sediment and not soluble mercury in the perched water onsite.
- Mercury detected and/or observed at the site does not appear to have migrated (vertically or horizontally) very far from the original source areas. This is supported by the presence of visible mercury in the near surface soils and the relatively limited lateral extent of the mercury in soils in the three areas identified above.

TABLES

TABLE 1 **ANALYTICAL MERCURY SAMPLE RESULTS NIACET VCP**

Location ID				SS-1+10	TT-02	TT-03	TT-07	TT-08	
Sample ID				UCC-SS-1+10	UCC-TT-2 (2-3)	UCC-TT-3 (3-3.5)	UCC-TT-7 (2.5-3)	UCC-TT-8 (6-6.5)	
Matrix				Soil	Soil	Soil	Soil	Soil	
Dep	th Interv	/al (ft)			0.0-0.5	2.0-3.0	3.0-3.5	2.5-3.0	6.0-6.5
Da	te Sam	pled			05/21/02	05/06/02	05/07/02	05/07/02	05/08/02
Parameter	Units	Criteria (1)	Criteria (2)	Criteria (3)				,	
Metals									
Mercury MG/KG 610 23 0.1		649	1,320	0.058	192	43.1			

Criteria (1)- USEPA Region III Risk-Based Concentration (RBC) Table, Industrial Soil Criteria, 4/2/02.

Criteria (2)- USEPA Region III Risk-Based Concentration (RBC) Table, Residential Soil Criteria, 4/2/02.

Criteria (3)- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives.

Flags assigned during chemistry validation are shown.

	Concentration Exceeds Criteria 1
	Concentration Exceeds Criteria 2
Border	Concentration Exceeds Criteria 3

TABLE 1 **ANALYTICAL MERCURY SAMPLE RESULTS NIACET VCP**

	Location ID					TT-11	TT-22	TT-23	TT-26
	Sample	ID			UCC-TT-9 (4.5-5)	UCC-TT-11 (2.5-3)	UCC-TT-22(3-4)	UCC-TT-23(2-3)	UCC-TT-26(1.5-2)
Matrix				Soil	Soil	Soil	Soil	Soil	
	Depth Interval (ft)					2.5-3.0	3.0-4.0	2.0-3.0	1.5-2.0
	Date Sam	pled			05/08/02	05/08/02	05/21/02	05/21/02	05/21/02
Parameter	Units	Criteria (1)	Criteria (2)	Criteria (3)					
Metals									
Mercury MG/KG 610 23 0.1		33.1	20.3	4.9	3.3	111			

Criteria (1)- USEPA Region III Risk-Based Concentration (RBC) Table, Industrial Soil Criteria, 4/2/02.

Criteria (2)- USEPA Region III Risk-Based Concentration (RBC) Table, Residential Soil Criteria, 4/2/02.

Criteria (3)- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives.

Flags assigned during chemistry validation are shown.

	Concentration Exceeds Criteria 1
	Concentration Exceeds Criteria 2
Border	Concentration Exceeds Criteria 3

TABLE 1 **ANALYTICAL MERCURY SAMPLE RESULTS NIACET VCP**

L	ocation	TT-31	TT-33			
	Sample	UCC-TT-31(2-3)	UCC-TT-33(6-7)			
	Matrix	Soil	Soil			
Dep	th Inter	val (ft)			2.0-3.0	6.0-7.0
Da	ate Sam	pled			05/22/02	05/22/02
Parameter	Units	Criteria (1)	Criteria (2)	Criteria (3)		
Metals						
Mercury	MG/KG	610	23	0.1	134	117

Criteria (1)- USEPA Region III Risk-Based Concentration (RBC) Table, Industrial Soil Criteria, 4/2/02.

Criteria (2)- USEPA Region III Risk-Based Concentration (RBC) Table, Residential Soil Criteria, 4/2/02.

Criteria (3)- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives.

Flags assigned during chemistry validation are shown.

Locat	ion ID		TT-04
Samp	UCC-TT-4 (5-5.5)		
Mat	Soil		
Depth Int	terval (ft)		5.0-5.5
Date Sa	ampled		05/07/02
Parameter	Units	Criteria*	
Metals			
Aluminum	MG/KG	SB	22,700
Antimony	MG/KG	SB	4.2 B
Arsenic	MG/KG	7.5 or SB	6.5
Barium	MG/KG	300 or SB	136
Beryllium	MG/KG	0.16 or SB	1.2
Cadmium	MG/KG	1 or SB	1.3
Calcium	MG/KG	SB	12,200
Chromium	MG/KG	10 or SB	32
Cobalt	MG/KG	30 or SB	20.3
Copper	MG/KG	25 or SB	33.2
Iron	MG/KG	2000 or SB	35,300
Lead	MG/KG	200-500	22.3
Magnesium	MG/KG	SB	9,220
Manganese	MG/KG	SB	382
Mercury	MG/KG	0.1	0.077
Nickel	MG/KG	13 or SB	43
Potassium	MG/KG	SB	3,960
Selenium	MG/KG	2 or SB	0.92
Silver	MG/KG	SB	0.29 B
Sodium	MG/KG	SB	186 B
Thallium	MG/KG	SB	0.40 U
Vanadium	MG/KG	150 or SB	44.1
Zinc	MG/KG	20 or SB	203

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during laboratory review are shown.

Concentration Exceeds Criteria.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID			UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix	Soil	Soil	Soil	Soil		
Depth Interval (f	5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5		
Date Sampled			05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				·
Volatile Organic Compounds			waste to the control of the control			
1,1,1,2-Tetrachloroethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1,1-Trichloroethane	UG/KG	800	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1,2,2-Tetrachloroethane	UG/KG	600	6.7 UJ	6 N1	5.6 UJ	6 UJ
1,1,2-Trichloroethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1-Dichloroethane	UG/KG	200	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1-Dichloroethene	UG/KG	400	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1-Dichloropropene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2,3-Trichlorobenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2,3-Trichloropropane	UG/KG	400	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2,4-Trichlorobenzene	UG/KG	3400	6.7 UJ	7.7 J	5.6 UJ	6 UJ
1,2,4-Trimethylbenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dibromo-3-chloropropane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichlorobenzene	UG/KG	7900	6.7 UJ	7.5 J	5.6 UJ	6 UJ
1,2-Dichloroethane	UG/KG	100	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichloroethene (cis)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichloroethene (trans)	UG/KG	300	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichloropropane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3-Dichlorobenzene	UG/KG	1600	6.7 UJ	2.9 J	5.6 UJ	6 UJ
1,3-Dichloropropane	UG/KG	300	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3-Dichloropropene (cis)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3-Dichloropropene (trans)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID			UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix			Soil	Soil	Soil	Soil
Depth Interval (1		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5	
Date Sampled			05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				
Volatile Organic Compounds						
1,4-Dichloro-2-butene (trans)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,4-Dichlorobenzene	UG/KG	8500	6.7 UJ	5.7 J	5.6 UJ	6 UJ
1,4-Dioxane	UG/KG	-	R	R	R	R
2,2-Dichloropropane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
2-Chlorotoluene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
2-Hexanone	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
4-Chlorotoluene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
4-Isopropyltoluene (p-Cymene)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
4-Methyl-2-pentanone	UG/KG	1000	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Acetone	UG/KG	200	12	160 J	10 J	6 UJ
Acrolein	UG/KG	-	ⁱ R	R	R	R
Acrylonitrile	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Allyl chloride	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Benzene	UG/KG	60	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromobenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromochloromethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromodichloromethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromoform	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromomethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Carbon disulfide	UG/KG	2700	6.7 UJ	14 J	5.6 UJ	6 UJ
Carbon tetrachloride	UG/KG	600	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chlorobenzene	UG/KG	1700	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chloroethane	UG/KG	1900	6.7 UJ	6 UJ	5.6 UJ	6 UJ

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID	UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)		
Matrix Depth Interval (ft)			Soil	Soil 3.0-3.5	Soil	Soil
			5.0-6.0		0.5-1.0	1.0-1.5
Date Sampled			05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				
Volatile Organic Compounds						
Chloroform	UG/KG	300	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chloromethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chloroprene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Dibromochloromethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Dibromomethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Dichlorodifluoromethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Ethyl methacrylate	UG/KG	-	- 6.7 UJ	6 UJ	5.6 UJ	6 UJ
Ethylbenzene	UG/KG	5500	6.7 UJ	1.4 J	5.6 UJ	6 UJ
Freon TF	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Hexachlorobutadiene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
lodomethane (Methyl iodide)	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Isobutyl alcohol	UG/KG	-	R	R	R	R
Isopropylbenzene (Cumene)	UG/KG	-	6.7 UJ	2.8 J	5.6 UJ	6 UJ
Methacrylonitrile	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Methyl ethyl ketone (2-Butanone)	UG/KG	300	R	33 J	R	R
Methyl methacrylate	UG/KG	-	6.7 UJ	2.6 J	5.6 UJ	6 UJ
Methyl tert-butyl ether	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Methylene chloride	UG/KG	100	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Naphthalene	UG/KG	13000	6.7 UJ	6 UJ	5.6 UJ	6 UJ
n-Butylbenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
n-Propylbenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Propionitrile	UG/KG	-	R	R	R	R
sec-Butylbenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID			UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix	Soil	Soil 3.0-3.5	Soil	Soil -		
Depth Interval (ft)			5.0-6.0	0.5-1.0	1.0-1.5	
Date Sampled			05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				
Volatile Organic Compounds						
Styrene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
tert-Butylbenzene	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Tetrachloroethene	UG/KG	1400	6.7 UJ	6 N1	5.6 UJ	6 UJ
Tetrahydrofuran	UG/KG	-	67 UJ	60 UJ	56 UJ	60 UJ
Toluene	UG/KG	1500	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Trichloroethene	UG/KG	700	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Trichlorofluoromethane	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Vinyl acetate	UG/KG	-	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Vinyl chloride	UG/KG	200	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Xylene (total)	UG/KG	1200	6.7 UJ	1.9 J	5.6 UJ	6 UJ
Semivolatile Organic Compounds				`		<i>*</i>
1,2,4-Trichlorobenzene	UG/KG	3400	440 U	430 J	530 U	24 J
1,2-Dichlorobenzene	UG/KG	7900	440 U	130 J	530 U	400 U
1,3-Dichlorobenzene	UG/KG	1600	440 U	2,000 U	530 U	400 U
1,4-Dichlorobenzene	UG/KG	8500	440 U	2,000 U	530 U	400 U
2,2'-oxybis(1-Chloropropane)	UG/KG	-	440 U	2,000 U	530 U	400 U
2,4,5-Trichlorophenol	UG/KG	100	1,100 U	5,000 U	1,300 U	1,000 U
2,4,6-Trichlorophenol	UG/KG	-	440 U	2,000 U	530 U	400 U
2,4-Dichlorophenol	UG/KG	400	440 U	2,000 U	530 U	400 U
2,4-Dimethylphenol	UG/KG	-	440 UJ	2,000 UJ	530 UJ	400 UJ
2,4-Dinitrophenol	UG/KG	200 or MDL	1,100 U	5,000 U	1,300 U	1,000 U
2,4-Dinitrotoluene	J UG/KG	-	440 U	2,000 U	530 U	400 U
2,6-Dinitrotoluene	UG/KG	1000	440 U	2,000 U	530 U	400 U

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID	UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)		
Matrix	Soil	Soil	Soil	Soil		
Depth Interval (ft)			5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled			05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				-
Semivolatile Organic Compounds						
2-Chloronaphthalene	UG/KG	-	440 U	92 J	530 U	400 UJ
2-Chlorophenol	UG/KG	800	440 U	2,000 U	530 U	400 U
2-Methylnaphthalene	UG/KG	36400	440 U	2,000 U	41 J	1,100
2-Methylphenol (o-cresol)	UG/KG	100 or MDL	440 U	2,000 U	530 U	400 U
2-Nitroaniline	UG/KG	430 or MDL	1,100 U	5,000 U	1,300 U	1,000 U
2-Nitrophenol	UG/KG	330 or MDL	440 U	2,000 U	530 U	400 U
3,3'-Dichlorobenzidine	UG/KG	-	440 U	2,000 U	530 U	400 U
3-Nitroaniline	UG/KG	500 or MDL	1,100 U	5,000 U	1,300 U	1,000 U
4,6-Dinitro-2-methylphenol	UG/KG	-	1,100 U	5,000 U	1,300 U	1,000 U
4-Bromophenyl-phenylether	UG/KG	-	440 U	2,000 U	530 U	400 U
4-Chloro-3-methylphenol	UG/KG	240 or MDL	440 U	2,000 U	530 U	400 U
4-Chloroaniline	UG/KG	220 or MDL	440 U	2,000 U	530 U	400 U
4-Chlorophenyl-phenylether	UG/KG	-	440 U	2,000 U	530 U	400 U
4-Methylphenol (p-cresol)	UG/KG	900	440 U	2,000 U	530 U	400 U
4-Nitroaniline	UG/KG	- 100	1,100 U	5,000 U	1,300 U	1,000 U
4-Nitrophenol	UG/KG	100 or MDL	1,100 U	5,000 U	1,300 U	1,000 U
Acenaphthene	UG/KG	50000	33 J	240 J	260 J	160 J
Acenaphthylene	UG/KG	41000	440 U	2,000 U	530 U	400 U
Aniline	UG/KG	100	R	R	R	1,000 U
Anthracene	UG/KG	50000	76 J	2,300	660	290 J
Azobenzene	UG/KG	-	440 U	2,000 U	530 U	400 U
Benzidine	UG/KG	-	1,100 UJ	5,000 UJ	1,300 UJ	1,000 UJ
Benzo(a)anthracene	UG/KG	224 or MDL	280 J	1,800 J	1,800	1,000

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID Matrix Depth Interval (ft) Date Sampled			UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
			Soil	Soil	Soil	Soil
			5.0-6.0 05/07/02	3.0-3.5 05/08/02	0.5-1.0 05/09/02	1.0-1.5 05/21/02
Semivolatile Organic Compounds						
Benzo(a)pyrene	UG/KG	61 or MDL		930 J	1,600	1,000
Benzo(b)fluoranthene	UG/KG	1100	240 J	1,300 J	2,200	2,200
Benzo(g,h,i)perylene	UG/KG	50000	200 J	240 J	550	360 J
Benzo(k)fluoranthene	UG/KG	1100	340 J	2,000 U	1,500 J	400 U
Benzoic acid	UG/KG	2700	1,100 U	5,000 U	1,300 U	220 J
Benzyl alcohol	UG/KG	-	440 U	2,000 U	530 U	400 U
bis(2-Chloroethoxy)methane	UG/KG	-	440 U	2,000 U	530 U	400 U
bis(2-Chloroethyl)ether	UG/KG	-	440 U	2,000 U	530 U	400 U
bis(2-Ethylhexyl)phthalate	UG/KG	50000	24 J	2,000 U	530 U	72 J
Butylbenzylphthalate	UG/KG	50000	440 U	2,000 U	530 U	400 U
Carbazole	UG/KG	-	43 J	2,000 U	130 J	200 J
Chrysene	UG/KG	400	330 J	2,000 J	1,800	1,100
Dibenz(a,h)anthracene	UG/KG	14 or MDL	45 J	170 J	200 J	220 J
Dibenzofuran	UG/KG	6200	440 U	290 J	120 J	530
Diethylphthalate	UG/KG	7100	440 U	2,000 U	530 U	400 U
Dimethylphthalate	UG/KG	2000	440 U	2,000 U	530 U	400 U
Di-n-butylphthalate	UG/KG	8100	440 U	2,000 U	530 U	400 U
Di-n-octylphthalate	UG/KG	50000	440 U	2,000 U	530 U	400 U
Fluoranthene	UG/KG	50000	510	1,800 J	3,700	1,800
Fluorene	UG/KG	50000	27 J	900 J	240 J	150 J
Hexachlorobenzene	UG/KG	410	440 U	2,000 U	530 U	400 U
Hexachlorobutadiene	UG/KG	-	440 U	2,000 U	530 U	400 U
Hexachlorocyclopentadiene	UG/KG	-	440 U	2,000 U	530 U	400 U

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Location ID			TT-05	TT-12	TT-16	TT-28
Sample ID Matrix Depth Interval (ft)			UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
			Soil	Soil	Soil	Soil
			5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		,	05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				
Semivolatile Organic Compounds						
Hexachloroethane	UG/KG	-	440 U	2,000 U	530 U	400 U
Indeno(1,2,3-cd)pyrene	UG/KG	3200	180 J	220 J	640	360 J
Isophorone	UG/KG	4400	440 U	2,000 U	530 U	400 U
Naphthalene	UG/KG	13000	24 J	2,000 U	46 J	1,200
Nitrobenzene	UG/KG	200 or MDL	440 U	2,000 U	530 U	400 U
N-Nitrosodimethylamine	UG/KG	-	440 U	2,000 U	530 U	400 U
N-Nitroso-di-n-propylamine	UG/KG		440 U	2,000 U	530 U	400 U
N-Nitrosodiphenylamine	UG/KG	-	440 U	2,000 U	530 U	400 U
Pentachlorophenol	UG/KG	1000 or MDL	1,100 U	5,000 U	1,300 U	1,000 U
Phenanthrene	UG/KG	50000	340 J	770 J	2,600	1,800
Phenol	UG/KG	30 or MDL	440 U	2,000 U	530 U	400 U
Pyrene	UG/KG	50000	510	4,300	3,000	1,600
Pyridine	UG/KG	-	440 U	2,000 U	530 U	400 U
Metals						·
Aluminum	MG/KG	SB	13,800 J	13,200 J	11,200 J	5,010
Antimony	MG/KG	SB	3.9 B	4 B	1.6 B	5.4 B
Arsenic	MG/KG	7.5 or SB	42.3 J	22.9 J	18.4 J	73.1
Barium	MG/KG	300 or SB	132 J	156 J	68.4 J	193
Beryllium	MG/KG	0.16 or SB	0.74	0.78	0.6	0.51 B
Cadmium	MG/KG	1 or SB	1.4	1.2	1.1	2.1 J
Calcium	MG/KG	SB	58,100	27,400	45,900	59,800
Chromium	MG/KG	10 or SB	336 J	222 J	122 J	73.1
Cobalt	MG/KG	30 or SB	19.1 J	14.6 J	7.4 J	77.6

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Location ID Sample ID Matrix Depth Interval (ft) Date Sampled			TT-05	TT-12	TT-16	TT-28
			UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
			Soil	Soil	Soil	Soil
			5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
			05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units	Criteria*				
Metals						
Copper	MG/KG	25 or SB	135 J	476 J	34.4 J	269
Iron	MG/KG	2000 or SB	23,900 J	26,900 J	20,600 J	24,400
Lead	MG/KG	200-500	90.1 J	150 J	253 J	362 J
Magnesium	MG/KG	SB	16,100	12,200	22,400	17,500
Manganese	MG/KG	SB	4,170	483	891	1,060
Mercury	MG/KG	0.1	251	1,460	5,870	230
Nickel	MG/KG	13 or SB	39.7 J	26.8 J	16.7 J	25.7 J
Potassium ·	MG/KG	SB	2,390 J	2,140 J	1,730 J	721 J
Selenium	MG/KG	2 or SB	2.5	1.6	0.78	R
Silver	MG/KG	SB	0.99 B	0.45 B	0.39 B	0.47 B
Sodium	MG/KG	SB	208 B	266 B	325 B	244 B
Thallium	MG/KG	SB	0.38 U	0.40 U	0.34 U	0.68 U
Vanadium	MG/KG	150 or SB	37.6 J	24.8 J	26.5 J	20.6
Zinc	MG/KG	20 or SB	311 J	229 J		346

^{*}Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Recommended Cleanup Objectives. Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

TABLE 3 ANALYTICAL GROUNDWATER SAMPLE RESULTS NIACET VCP

Location ID Sample ID Matrix Depth Interval (ft)			TT-02 UCC-TT-2 Groundwater - 05/07/02	TT-12 UCC-TT-12 Groundwater 2.5-3.0 05/08/02	TT-24 UCC-TT-24 Groundwater - 05/21/02	TT-28 UCC-TT-28 Groundwater - 05/21/02							
							Date Sampled						
							Parameter	Units	Criteria*				
							Metals						
Mercury	UG/L	0.7					122	12,300	574,000	20,900			

Concentration Exceeds Criteria.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. Flags assigned during chemistry validation are shown.

FIGURES

(TOTAL MERCURY)

APPENDIX A

TEST TRENCH LOGS

PPO IECT:	Niacot V	/CP		SHEET: 1 OF 1	
PROJECT: Niacet VCP CLIENT: Union Carbide Corporation			Corporation	JOB NUMBER: 05-000535825.00	
CONTRACTOR: Zebra			- or position.	LOCATION: NE corner Process Area II	
DATE STARTED: 5/6/02				GROUND ELEVATION: 573.09	
DATE COM			5/02	OPERATOR: Butch Eagan	
TEST TRE	ICH NUM	ИВЕF	R: TT-1	GEOLOGIST: John Doerr	
				GROUNDWATER:	
DEPTH SAMPLE NO. TYPE				DESCRIPTION	
			0.0-2.0: FILL; Dark brown to black, silty fi	ne sand, some cinder, ash, coal, slag, fine to coarse gravel,	
1 —			cobbles, brick and concrete, moist		
2			2.0-5.5: FILL; Brown to red brown silty cla	ay, some fine to coarse sand seams, some to trace	
-			cinder coal, ash, wood, fine to coarse grav	el, moist wet in sand seams	
3 ——					
4 —					
·				I	
5 ——	5 5-7 0: Gray SILTY CLAY laminated mo				
6 —				ist, natural	
7 —		End trench at 7' BGS			
8 —			End denomal 7 Boo	•	
9					
10 —					
11 ——					
12					
COMMENT	S: All MV	/A rea	adings were 0, ended trench in natural clay	s. No samples collected	
				,	

URS CORPORATION

PROJECT:	Niacet VCP		SHEET: 1 OF 1			
CLIENT: Union Carbide Corporation			JOB NUMBER: 05-000535825.00			
CONTRACTOR: Zebra			LOCATION: 20' South of SG-11			
DATE STA	RTED: 5/6/0	2	GROUND ELEVATION: 573.49			
DATE COM	IPLETED: 5	6/6/02	OPERATOR: Butch Eagan			
TEST TRE	NCH NUMBE	R: TT-2	GEOLOGIST: John Doerr			
			GROUNDWATER: 4.5'BGS			
DEPTH	SAMPLE NO. TYPE	.	DESCRIPTION			
		0.0-2.0: FILL; Dark brown to black, silty fi	ne sand, some cinder, ash, coal, slag, fine to coarse gravel,			
1 —		cobbles, brick and concrete, moist				
, –		2.0-4.0: FILL; Brown to red brown silty cla	y, some fine to coarse angular to subrounded gravel, cobbles			
2	UCC Hg	boulders, moist				
3 —	TT-2					
4		4.0-4.5: FILL; Dark brown to black fine to	4.0-4.5: FILL; Dark brown to black fine to coarse cinder/slag gravel, some fine to coarse sand (cinder)			
5		Trench abandoned due to infiltrating perch	ed water at 4.5' BGS			
6						
7 —						
8 —						
9 —						
10 ——						
11 ——						
12 ——						
COMMENT	S: All MVA r	eadings were 0: Soil and water samples co	lected and submitted for Hg analysis, soil, 2'-3'			

PROJECT: Niacet VCP SHEET: 1 OF 1 CLIENT: Union Carbide Corporation JOB NUMBER: 05-000535825.00	
CLIENT: Union Carbide Corporation JOB NUMBER: 05-000535825.00	
CONTRACTOR: Zebra LOCATION: 10' east of SG-13	
DATE STARTED: 5/7/02 GROUND ELEVATION: 572.71	
DATE COMPLETED: 5/7/02 OPERATOR: Butch Eagan	
TEST TRENCH NUMBER: TT-3 GEOLOGIST: John Doerr	
GROUNDWATER:	
DESCRIPTION DESCRIPTION	
0.0-0.8: FILL: Black to dark brown, silty fine sand, some ash, coal, cinder, trace clay, moist	V.
0.8-3.4: FILL; red brown, silty clay, some fine to coarse angular gravel, cobbles, boulders, brick,	wire,
2 moist	
3 — — —	
TT-3 Hg 3.4-4.6: FILL; Dark gray, silt, some clay, coarse gravel, cobbles, boulders, brick, very moist	
4	
4.6-6.0: Gray SILTY CLAY, trace fine sand	
5 4.6-6.0: Gray SiL1 Y CLAY, trace line sand	
6 — End trench at 6' BGS	
 7	
$\parallel \dashv \mid \mid$	
8 ——	
9 —	
Comments: MVA Readings: Sample collected from 3.0 to 3.5 and submitted for Hg analysis.	
Depth Readings	
0.8-3.4 0-8	
3.4-4.6 0-58	

PROJECT:	Niacet VCP		SHEET: 1 OF 1		
CLIENT: Union Carbide Corporation			JOB NUMBER: 05-000535825.00		
CONTRACTOR: Zebra			LOCATION: 10' south of SG-15		
DATE STA	RTED: 5/7/02	2	GROUND ELEVATION: 574.68		
DATE COM	IPLETED: 5	7/02	OPERATOR: Butch Eagan		
TEST TRE	NCH NUMBE	R: TT-4	GEOLOGIST: John Doerr		
GROUNDWATER:					
DEPTH	SAMPLE NO. TYPE		DESCRIPTION		
		0.0-0.5: FILL: Black to dark brown, silty fi	ne sand, some ash, coal, cinder, trace clay, moist		
1		052.0: FILL; Red brown silty clay, some	cobbles, brick, moist		
2 ——					
		2.0-4.0: FILL; Dark gray cinder, clinker, as	h slag, some silt, moist		
3 ——					
_					
4					
5		4.0-5.0: FILL; Red brown silty clay, some	1.0-5.0: FILL; Red brown silty clay, some cobbles, bricks, moist		
]	TT-4 Hg	5.0-5.5: FILL: Dark gray to black silty clay	5.0-5.5: FILL: Dark gray to black silty clay, some wood, brick, wet at 5.5		
6 —		Trench abandoned due to infiltrating perch	ned water at 5.5' BGS		
7					
l					
8 —					
		·			
9 ——					
10					
_					
11					
		,			
12					
Commonto	Λ!! M\/Λ roo:	lings were 0. Soil sample collected 5' 5 5'	and submitted for Ha, analysis		
Comments: All MVA readings were 0. Soil sample collected 5'-5.5' and submitted for Hg analysis.					

PROJECT:	Niacet VCP		SHEET: 1 OF 1		
CLIENT: Union Carbide Corporation			JOB NUMBER: 05-000535825.00		
CONTRACTOR: Zebra			LOCATION: South of the Pikes Creek Culvert		
DATE STA	RTED: 5/7/02		GROUND ELEVATION: 575.31		
DATE COM	IPLETED: 5/	7/02	OPERATOR: Butch Eagan		
TEST TRE	NCH NUMBE	R: TT-5	GEOLOGIST: John Doerr		
			GROUNDWATER:		
DEPTH	SAMPLE NO. TYPE	·	DESCRIPTION		
		0.0-5.4: FILL; Dark brown to black silty fine	e sand, some clay, coarse sand, fine to coarse angular gravel,		
1		cobbles, boulders, red and yellow brick, co	oncrete and metal debris, moist		
2					
3 —		÷			
4					
5	5				
	11-5 1 11	Trench abandoned due to infiltrating perch	and water at 5.4' BCS		
6 —		Trendi abandoned due to inilitiating perdi	led water at 5.4 BOS		
_					
/					
8					
9					
9					
10 —					
10					
11					
12					
Comments:	All MVA read	ling were 0. Sample collected from 5.0-5.4	and submitted for full TCL/TAL and Hg analysis.		

DDO IECT	Nicost	VCD		SHEET: 1 OF 1
PROJECT: Niacet VCP CLIENT: Union Carbide Corporation			Cornoration	JOB NUMBER: 05-000535825.00
CONTRACTOR: Zebra			Corporation	LOCATION: 10' east of former East Process I Bldg.
DATE STA				GROUND ELEVATION: No GPS Signal
DATE CON			7/02	OPERATOR: Butch Eagan
TEST TRE				GEOLOGIST: John Doerr
				GROUNDWATER:
DEPTH	SAM	PLE		DESCRIPTION
	NO.	TYPE		
_			•	ine sand, some fine to coarse angular gravel, cobbles,
1			trace coarse sand and clay, moist	
2 ——				vn mottling, silty fine sand, some fine to coarse angular
-			gravel, brick, slag, trace clay, cobbles, bou	uuers, must
3 —				
_				
4 ——				
5				
6				
	5.8-6.5: Fine to coarse sub rounded to well			I rounded GRAVEL, some fine to coarse sand, trace clay
7 —	Trench abandoned due to infiltrating perched wate			ed water at 6.5' BGS
-			٠.	
8 —				
9 ——				
10				
11				
11				
12				
. 4				
Comments:	All MV	A read	ing were 0. No samples collected	

URS CORPORATION

PROJECT:	Niace	t VCP			SHEET: 1	OF 1
CLIENT: Union Carbide Corporation				JOB NUMBE	₹:	05-000535825.00
CONTRACTOR: Zebra			LOCATION:	North of forr	ner East Process I Bldg.	
DATE STA	RTED:	5/7/02		GROUND ELI	EVATION: 57	77.43
DATE COM				OPERATOR:	Butch Eaga	n ·
TEST TRE	NCH N	UMBE	R: TT-7	GEOLOGIST:	John Doerr	
				GROUNDWA'	ΓER:	
DEPTH		MPLE TYPE		DESCR	IPTION	
			0.0-0.5: FILL; black silty fine sand, some f	ne to coarse a	ngular gravel	, moist
1			0.5-1.5: FILL; Yellow coarse sand (decom	posed brick) br	ick, concrete	, metal debris, fine to coarse
_			angular gravel, moist			
2 —			1.5-3.5: FILL; fine to coarse angular grave	I, some fine to	coarse sand,	trace silt, (former roadbed), moist
			MVA- 144-391			
3	TT-7	Hg				
			3.5-3.9: FILL; red brown very tight, highly	compacted silty	/ clay, MVA 7	7-12, moist
4				*************************************		
			End trench at 3.9' BGS			
5 ——						
6			·			
7						
8						
9	•					
10 —	l					
10	İ					
11	1					
	I					
12	ĺ					
'-						
Comments:	Very	high M	/A readings in coarse roadbed horizon, no	visible Ha Sa	nnle collecte	d 2.5.3 and submitted

Comments: Very high MVA readings in coarse roadbed horizon, no visible Hg, Sample collected 2.5-3 and submitted for Hg analysis.

URS CORPORATION

L							
PROJECT:	Niace	t VCP		SHEET: 1 OF 1			
CLIENT: Union Carbide Corporation			Corporation	JOB NUMBER: 05-000535825.00			
CONTRACTOR: Zebra				LOCATION: North of former West Process I Bldg.			
DATE STA	RTED	5/8/02		GROUND ELEVATION: 576.98			
DATE COM	IPLET	ED: 5/8	8/02	OPERATOR: Butch Eagan			
TEST TRE	NCH N	UMBE	R: TT-8	GEOLOGIST: John Doerr			
				GROUNDWATER:			
DEPTH	1	MPLE TYPE		DESCRIPTION			
			0.0-0.4: FILL; black silty fine sand, some t	fine to coarse angular gravel, moist			
1 —			0.4-2.0: FILL; Yellow brown silty fine sand	, some fine to coarse angular gravel, trace brick, cobbles, moist			
2 —							
				gray/blue gray well cemented boulders, with black to metallic			
3 ——		:	relic materials, source unknown, trace brick, cobbles, boulders, moist, MVA 0				
4 —		:	4.0.5.6. EULL: Eine to coarce angular gravel, some fine to searce cond. maint				
5 —			The court in the control angular grav	4.0-5.5: FILL; Fine to coarse angular gravel, some fine to coarse sand, moist			
_			5.5-6.5: FILL; red brown silty clay, some fi	ine to coarse well rounded gravel, trace wood, moist			
6	TT-8	Hg					
7			6.5-8.0: SILTY CLAY, gray, trace fine san	d, some black partings, wet			
·							
8							
-			End trench at 8.0' BGS				
9							
10 —							
11							
12							
<u> </u>							

Comments, all MVA readings 0 Sample collected 6.0-6.5 feet submitted for Hg analysis.

PROJECT: Niacet VCP				SHEET: 1 OF 1			
CLIENT: Union Carbide Corporation			Corporation	JOB NUMBER: 05-000535825.00			
CONTRACTOR: Zebra				LOCATION: South of former West Process I Bldg.			
DATE STA	RTED: 5	/8/02		GROUND ELEVATION: 576.11			
DATE COM	IPLETED	D: 5/8	3/02	OPERATOR: Butch Eagan			
TEST TRE	NCH NUI	MBEF	R: TT-9	GEOLOGIST: John Doerr			
				GROUNDWATER:			
рЕРТН	SAMP NO. T			DESCRIPTION			
			0.0-0.6: FILL; black silty fine sand, some fi	ne to coarse angular gravel, moist			
1 —			0.6-2.8: FILL; red brown silty clay some br	ck and fine to coarse angular gravel, moist			
2 —— 3 —— 4 ——	TT-9		2.8-4.8: FILL; Dark gray silty clay, some fine to coarse angular gravel, cobbles, boulders, moist				
5	11-9	Hg	4.8-5.5: SILTY CLAY, red brown, well lami	nated, moist			
6 —			End trench at 5.5' BGS				
7 ————————————————————————————————————							
Comments	Comments, all MVA readings 0 Sample collected 4.5-5.0 and submitted for Hg analysis.						

OJECT:	Niacet VCP		SHEET: 1 OF 1			
LIENT: Ur	nion Carbid	e Corporation	JOB NUMBER: 05-000535825.00			
ONTRACT	TOR: Zebra		LOCATION: South of former West Process I Bldg.			
ATE STAI	RTED: 5/8/0	2	GROUND ELEVATION: 576.98			
ATE COM	IPLETED: 5	5/8/02	OPERATOR: Butch Eagan			
EST TREM	NCH NUMBI	ER: TT-10	GEOLOGIST: John Doerr			
	,		GROUNDWATER:			
DEPTH	SAMPLE NO. TYPI	<u> </u>	DESCRIPTION			
		0.0-0.6: FILL; black silty fine sand, some	fine to coarse angular gravel, moist,			
, T		0.6-1.2: FILL; Gray, angular coarse grave	el, some angular fine gravel, fine to coarse sand and silt, moist			
		1.2-3.8: FILL; Gray silty clay, some fine to	o coarse gravel, cobbles, boulders, moist			
$_{2}$ \Box						
з —						
4		X.				
		3.8-5.5: FILL; red brown silty clay, some f	ine to coarse gravel, cobbles, boulders, moist			
5						
Ĭ _		5.5-5.7: TILL; Gray Silty clay some fine to	coarse angular rock fragments, fine to coarse sand, moist			
6 —		End trench at 5.7' BGS	End trench at 5.7' BGS			
` _l						
7						
8 —						
9 —						
10 —						
11 —						
12 ——			ı			
	1					

PROJECT:	Niacet \	VCP		SHEET: 1 OF 1	
CLIENT: U	nion Car	bide	Corporation	JOB NUMBER: 05-000535825.00	
CONTRACTOR: Zebra				LOCATION: South of former East Process I Bldg.	
DATE STA	RTED: 5	/8/02		GROUND ELEVATION: 577.83	
DATE COM	IPLETE	D: 5/8	3/02	OPERATOR: Butch Eagan	
TEST TRE	NCH NU	MBER	R: TT-11	GEOLOGIST: John Doerr	
				GROUNDWATER:	
DEPTH	SAMP NO. T		·	DESCRIPTION	
			0.0-0.5: FILL; black silty fine sand, some fi	ne to coarse angular gravel, moist,	
1			0.5-3.0: FILL; gray silty fine sand, pea gra	vel, some concrete, brick, steel beams, rebar, wire	
		Ì	and other assorted debris, moist	MVA 356 @ 2.5'	
2					
3	TT-11	Hg	3.0-3.5: Gray well laminated SILTY CLAY,	moiet	
_			End Trench at 3.5' BGS	HIOIST	
4		İ	End Henchat 3.5 BGS		
5		1			
		1			
ο ——			•		
7		İ			
'					
8 —					
9					
10 ——					
11					
_		1			
12					
Comments:	Comments: Sample collected 2.5-3 submitted for Hg analysis.				

URS CORPORATION

PROJECT:	Niace	t VCP		SHEET: 1 OF 1		
			Corporation	JOB NUMBER: 05-000535825.00		
CONTRACT			Corporation	LOCATION: South of former East Process I Bldg.		
DATE STAI				GROUND ELEVATION: 576.89		
DATE COM				OPERATOR: Butch Eagan		
TEST TREM				GEOLOGIST: John Doerr		
<u> </u>				GROUNDWATER:		
DEPTH		MPLE TYPE		DESCRIPTION		
			0.0-0.7: FILL; black silty fine sand, some f	ine to coarse angular gravel, moist,		
1 —			0.7-2.3: FILL: red brown silty clay, some fi	ne to coarse gravel, brick, concrete, moist		
2 —			2.3-4.2: FILL; black fine to coarse angular	gravel, some fine to coarse gravel, cobbles, boulders, greasy		
3 —	TT-12	Full	appearance, moist to wet, sheen, petroleum odor, MVA 746, FID 0			
4 —						
			End trench on concrete pad at 4.2' BGS			
5 —						
6 —						
7						
8 —						
9 —						
10 —						
11						
_						
12 —						

Comments: Soil and water samples collected 3.5-4 and submitted for Hg and TCL/TAL analysis, water Hg only No visible Hg

PROJECT:	Niacet VCP		SHEET: 1 OF 1	
CLIENT: U	nion Carbide	Corporation	JOB NUMBER: 05-000535825.00	
CONTRAC	TOR: Zebra	-	LOCATION: Mercury Recovery Area	
DATE STA	RTED: 5/9/02	2	GROUND ELEVATION: 577.30	
DATE COM	IPLETED: 5	9/02	OPERATOR: Butch Eagan	
TEST TRE	NCH NUMBE	R: TT-13	GEOLOGIST: John Doerr	
			GROUNDWATER:	
DEPTH	SAMPLE NO. TYPE		DESCRIPTION	
		0.0-0.4: FILL; black silty fine sand, and fin	e to coarse angular gravel, moist,	
1		0.4-1.3: FILL: tan to yellow ash, moist	•	
2		1.3-2.1: FILL; Red brown silty clay, some	fine to coarse angular gravel, cobbles, moist, visible mercury	
		End trench at 2.1' BGS due to encountering	ng visible mercury	
3				
_				
4				
5				
6 ——				
7				
8				
_			,	
9				
10				
11				
12				
12				
Comments : visible mercury 1.5'- 2'				

PROJECT:	PROJECT: Niacet VCP				SHEET: 1 OF 1	
			Corporation	JOB NUMBER	: 05-000535825.00	
CONTRAC					lercury Recovery Area	
DATE STA					VATION: 577.21	
DATE COM				OPERATOR: B		
TEST TRE	NCH N	UMBER		GEOLOGIST: .		
				GROUNDWAT	ER:	
DEPTH	1	MPLE TYPE		DESCRI	PTION	
			0.0-0.3: FILL; black silty fine sand, and fine	_		
1]		0.3-1.3: FILL: tan to yellow ash, some brick		ar, metal, visible mercury, moist	
]	. !	End trench at 1.3' BGS due to visible merc	cury		
2 ——		. !				
_		. !				
3		ļ				
_	1	. !				
4		1				
_ —	1					
5 ——	1					
	1	. 1				
6	1	. !	ŕ			
	1	,				
7	1	. !				
8	1	,				
\ \]					
9 —]					
Ĭ _] [. !				
10 ——]	. !				
		. !				
11 ——		. !				
		. !				
12	1					
Commente	Comments: visible mercury at 1.3'					
Comments	. VISIDIC	; III C ICu	ry at 1.5			

<u> </u>				
PROJECT:	Niace	t VCP		SHEET: 1 OF 1
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER: 05-000535825.00
CONTRAC	TOR:	Zebra		LOCATION: Mercury Recovery Area
DATE STA	RTED:	5/9/02		GROUND ELEVATION: 577.61
DATE COM				OPERATOR: Butch Eagan
TEST TRE	NCH N	UMBER	R: TT-15	GEOLOGIST: John Doerr
				GROUNDWATER:
DEPTH		MPLE TYPE		DESCRIPTION
			0.0-0.5: FILL; black silty fine sand and fine	e to coarse angular gravel, moist
1 ————————————————————————————————————	: Visible	e mercu	End Trench at 0.5' BGS due to visible men	

URS CORPORATION

L				
PROJECT:	Niace	t VCP		SHEET: 1 OF 1
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER: 05-000535825.00
CONTRAC	TOR:	Zebra		LOCATION: Mercury Recovery Area
DATE STA	RTED:	5/9/02		GROUND ELEVATION: 577.06
DATE COM	IPLET	ED: 5/9	9/02	OPERATOR: Butch Eagan
TEST TRE	NCH N	UMBER	R: TT-16	GEOLOGIST: John Doerr
				GROUNDWATER:
DEPTH		MPLE .		DESCRIPTION
		TYPE		
l	TT-16	Full	0.0-0.5: FILL; black silty fine sand and fine	
1			End Trench at 0.5' BGS due to visible men	cury
		/		
2 —			,	
_				
3				
_				
4				
_				
5				
6 —				
				1
7 —				
8				
9 ——				
10				
11				
-				
12				

Comments: Visible mercury at 0.5', TCL/TAL sample collected at 0.5 feet.

PROJECT:	Niace	t VCP			SHEET: 1 OF 1	
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER: 05-000535825.00		
CONTRAC	TOR:	Zebra		LOCATION: Mercury Recovery Area		
DATE STA					_EVATION: 577.21	
DATE COM					: Butch Eagan	
TEST TRE	NCH N	UMBER		GEOLOGIST: John Doerr		
DEPTH	CAL	IPLE		GROUNDWA		
DEPIN	•	TYPE		DESCRIPTION		
			0.0-0.5: FILL; black silty fine sand and fine	to coarse and	gular gravel, moist	
1]		End Trench at 0.5' BGS due to visible mer	cury		
2 ——						
3 ——						
_						
4 ——						
5 —						
_						
6 —						
7						
_						
8 ——						
9 —						
_						
10						
11						
12 ——						
Comments:	omments: Visible mercury at 0.5'					

PROJECT:	Niace	t VCP		SHEET: 1 OF 1
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER: 05-000535825.00
CONTRAC	TOR:	Zebra		LOCATION: West of Mercury Recovery Area
DATE STA	RTED:	5/9/02		GROUND ELEVATION: 577.27
DATE COM				OPERATOR: Butch Eagan
TEST TRE	NCH N	UMBE	R: TT-18	GEOLOGIST: John Doerr
				GROUNDWATER:
DEPTH		MPLE TYPE		DESCRIPTION
			0.0-0.4: FILL; black silty fine sand and fine	
1 —				ne to coarse angular gravel, cobbles, boulders,
	1		brick, metal debris, wood, concrete, moist	
2	l			fine to coarse angular gravel rock fragments, cobbles boulders,
_	l		End trench at 4.8' BGS in glacial till	
3 —	•			
	l			
4 ——				
5 —				
6 —				
_			· ·	
7 —				
8 —				
_				
9 —				
10 —				
_				
11 —				
, 				
12 —				
			,	
				•

PROJECT:	Niace	t VCP			SHEET: 1 OF 1	
CLIENT: U	nion C	arbide	Corporation	JOB NUMBE	R: 05-000535825.00	
CONTRACTOR: Zebra				LOCATION:	Mercury Recovery Area	
DATE STA	RTED	5/9/02		GROUND EL	EVATION: 576.99	
DATE COM	IPLET	ED: 5/9	0/02	OPERATOR:	Butch Eagan	
TEST TRE	NCH N	UMBER	R: TT-19	GEOLOGIST	: John Doerr	
				GROUNDWA	TER:	
DEPTH		MPLE		DESCR	RIPTION	
	NO.	TYPE				
_			0.0-0.5: FILL; black silty sand, some fine to	o coarse angu	lar gravel, moist	
1			End Trench at 0.5' BGS due to visible mer	cury		
2 ——	1 1					
	4					
3 ——						
4	-					
	- 1					
5 ——						
6 —	1 1					
	1 1					
7	1 1					
	1					
8 ——	1					
_	1					
9 ——	1 1					
40	1 1					
10 ——	1					
11	1 1					
11 ——	1 1					
12 —]					
12			<u>'</u>			
Comments	: Visibl	e mercu	ry at 0.5'			

PROJECT: Niacet VC	P	SHEET: 1 OF 1		
CLIENT: Union Carbi	de Corporation	JOB NUMBER: 05-000535825.00		
CONTRACTOR: Zebi	ra	LOCATION: Mercury Recovery Area		
DATE STARTED: 5/9/	02	GROUND ELEVATION: 577.32		
DATE COMPLETED:		OPERATOR: Butch Eagan		
TEST TRENCH NUME		GEOLOGIST: John Doerr		
		GROUNDWATER:		
DEPTH SAMPLE NO. TYP	1	DESCRIPTION		
	0.0-0.5: FILL; black silty fine sand and fine	to coarse angular gravel, moist		
1 —	End Trench at 0.5' BGS due to visible mer	cury		
'	`			
2 —				
-				
3 —				
4 —				
_				
5 —				
6 —				
7 —				
_				
8 —				
9 —				
10 ——				
-				
11 —				
12				
Comments: Visible me	ercury at 0.5'			

ROJECT:	Niacet VCP		SHEET: 1 OF 1
	nion Carbide	Corporation	JOB NUMBER: 05-000535825.00
	TOR: Zebra		LOCATION: North of Mercury Recovery Area
ATE STA	RTED: 5/13/0	2	GROUND ELEVATION: 577.48
ATE CON	IPLETED: 5/	13/02	OPERATOR: Ken Eagan
EST TRE	NCH NUMBER	R: TT-21	GEOLOGIST: John Doerr
			GROUNDWATER:
DEPTH	SAMPLE NO. TYPE		DESCRIPTION
1 —		0.0-0.5: FILL; Dark gray fine to coarse and 0.5-2.8: FILL; red brown silty clay, some b	
3 —		End trench at 2.8' BGS due to in filling by	water from upper gravel.
5 —			
6 —			
7 ——		·	
8 —— — 9 ——			
0 —			
1 —— 2 ——			
	<u> </u>		

URS CORPORATION

SHETT: 1 OF1						
CONTRACTOR: Zebra LOCATION: North of Mercury Recovery Area DATE STARTED: 5/21/02 GROUND ELEVATION: 577.39 DATE COMPLETED: 5/21/02 OPERATOR: Matt Reardon TEST TRENCH NUMBER: TT-22 GEOLOGIST: John Doerr GROUNDWATER: DEPTH SAMPLE NO. TYPE DESCRIPTION 1	PROJECT:	Niace	t VCP		SHEET: 1 OF 1	
DATE STARTED: 5/21/02 DATE COMPLETED: 5/21/02 DATE COMPLETED: 5/21/02 OPERATOR: Matt Reardon TEST TRENCH NUMBER: TT-22 GEOLOGIST: John Doerr GROUNDWATER: DEPTH SAMPLE NO. TYPE 0.0-0.4: FILL; Dark gray fine to coarse angular gravel, some ash and cinder, moist 0.4-1.0: FILL; light gray to yellow slag clinker and cinder, moist 1.0-2.0: FILL; light gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 5. — Find trench at 4.0'BGS refusal on concrete pad End trench at 4.0'BGS refusal on concrete pad End trench at 4.0'BGS refusal on concrete pad	CLIENT: Union Carbide Corporation			Corporation	JOB NUMBER: 05-000535825.00	
DATE COMPLETED: 5/21/02 TEST TRENCH NUMBER: TT-22 GEOLOGIST: John Doerr GROUNDWATER: DEPTH No. TYPE 0.0-0.4: FilLt; Dark gray fine to coarse angular gravel, some ash and cinder, moist 1.0-2.0: FilLt; light gray to yellow slag clinker and cinder, moist 2.0-4.0: FilLt; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 2.0-4.0: FilLt; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 5.	CONTRAC	TOR:	Zebra		LOCATION: North of Mercury Recovery Area	
TEST TRENCH NUMBER: TT-22 DEPTH NO. TYPE O.0-0.4: FILL; Dark gray fine to coarse angular gravel, some ash and cinder, moist 0.4-1.0: FILL; Dark gray to yellow slag clinker and cinder, moist 1.0-2.0: FILL; light gray to yellow slag clinker and cinder, moist 2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 4. TT-22 TT-22 End trench at 4.0'BGS refusal on concrete pad End trench at 4.0'BGS refusal on concrete pad	DATE STA	RTED	5/21/0	2	GROUND ELEVATION: 577.39	
DEPTH No. TYPE DESCRIPTION 1	DATE CON	IPLET	ED: 5/2	21/02	OPERATOR: Matt Reardon	
DESCRIPTION 1	TEST TRE	NCH N	UMBE	R: TT-22	GEOLOGIST: John Doerr	
NO. TYPE 0.0-0.4: FILL; Dark gray fine to coarse angular gravel, some ash and cinder, moist 0.4-1.0: FILL; Dark gray ash and cinder, moist 1.0-2.0: FILL; light gray to yellow slag clinker and cinder, moist 2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 1.0-2.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 5					GROUNDWATER:	
1 — 0.4-1.0: FILL; Dark gray ash and cinder, moist 1.0-2.0: FILL; light gray to yellow slag clinker and cinder, moist 2 — UCC Hg TT-22 — End trench at 4.0'BGS refusal on concrete pad 5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 11 — 11 — 11 — 11	DEPTH	l			DESCRIPTION	
1.0-2.0: FILL; light gray to yellow slag clinker and cinder, moist 2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist TT-22 End trench at 4.0'BGS refusal on concrete pad Find trench at 4.0'BGS refusal on concrete pad TT-21 End trench at 4.0'BGS refusal on concrete pad				0.0-0.4: FILL; Dark gray fine to coarse and	gular gravel, some ash and cinder, moist	
2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist 3 UCC Hg TT-22 End trench at 4.0'BGS refusal on concrete pad 5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 11 — 11 — 11 — 11	1			0.4-1.0: FILL; Dark gray ash and cinder, m	noist	
2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist TT-22 End trench at 4.0'BGS refusal on concrete pad T-2 Find trench at 4.0'BGS refusal on concrete pad T-2 T-2 T-2 T-2 T-2 T-2 T-2 T-	-			1.0-2.0: FILL; light gray to yellow slag clinl	ker and cinder, moist	
2.0-4.0: FILL; Dark gray grading down to red brown silty clay, some rounded fine to coarse gravel, moist TT-22 End trench at 4.0'BGS refusal on concrete pad T-2 Find trench at 4.0'BGS refusal on concrete pad T-2 T-2 T-2 T-2 T-2 T-2 T-2 T-	2 —					
4	·			2.0-4.0: FILL; Dark gray grading down to	red brown silty clay, some rounded fine to coarse gravel, moist	
4 — TT-22 — End trench at 4.0'BGS refusal on concrete pad 5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 11 — 11 — 11 — 11	3	HCC	На			
5 — 6 — 7 — 8 — 9 — 10 — 11 — 11 — 1	_	1 1	119			
6 — 7 — 8 — 9 — 10 — 11 — 11 — 1	,			End trench at 4.0'BGS refusal on concrete	pad	
6 — 7 — 8 — 9 — 10 — 11 — 11 — 1	5					
7 — 8 — 9 — 10 — 11 — — 11 — —						
9 — 10 — 11 — 11 — 1	6					
9 — 10 — 11 — 11 — 1						
9 — 10 — 11 — 11 — 1	7 —					
9 — 10 — 11 — 11 — 1						
	8					
	_					
	9					
	10					
	10					
	11					
12 —						
	12					

Comments: Soil sample collected 3-4 and submitted for Hg

No visible Hg

URS CORPORATION

PROJECT	Niace	t VCP		SHEET: 1 OF 1		
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER: 05-000535825.00		
CONTRACTOR: Zebra				LOCATION: East of Mercury Recovery Area		
DATE STA	RTED	5/21/0	2	GROUND ELEVATION: 577.17		
DATE CO	IPLET	ED: 5/2	21/02	OPERATOR: Matt Reardon		
TEST TRE	NCH N	IUMBEI	R: TT-23	GEOLOGIST: John Doerr		
				GROUNDWATER:		
DEPTH	•	MPLE	•	DESCRIPTION		
	NO.	TYPE	0.005 5111 5 1 5 1			
II -			0.0-0.5: FILL; Dark gray fine to coarse and			
1			10.5-3.0: FILL; red brown silty day, some re	ounded fine to coarse gravel, moist, MVA=68-116		
<u>-</u>	1					
2	UCC	Hg				
	TT-23	1.19				
3			End Trench at 3.0' BGS, refusal on concre	End Trench at 3.0' BGS, refusal on concrete pad		
4						
5 —						
3						
6						
∥ _						
∥ 7						
8						
9 ——						
-						
10						
	1			*		
11						
12 -	1					
12	1		,			
	-					

Comments: Soil sample collected 2-3 and submitted for Hg

No visible Hg

PROJECT:	Niacet VCF		SHEET: 1 OF 1		
CLIENT: U	nion Carbid	e Corporation	JOB NUMBER: 05-000535825.00		
CONTRAC	TOR: Zebra		LOCATION: South of Mercury Recovery Area		
DATE STA	RTED:	5/21/02	GROUND ELEVATION: 577.41		
DATE COM	IPLETED:	5/21/02	OPERATOR: Matt Reardon		
TEST TRE	NCH NUMB	ER: TT-24	GEOLOGIST: John Doerr		
			GROUNDWATER:		
DEPTH	SAMPLE NO. TYP		DESCRIPTION		
		0.0-0.4: FILL: black silty sand, some fine	to coarse angular gravel, moist		
1		0.4-2.0: FILL: red brown silty clay, some f	ine to coarse gravel, brick, concrete, cobble, boulder, metal,		
		wood, moist, MVA 23-68			
2 —					
-		2.0-4.9: FILL: Same as above, MVA 0-14			
3					
		·			
4					
			•		
5 ——	,	4.9: Concrete pad, perched water.			
		End trench on concrete pad at 4.9' BGS			
6					
_					
7		·			
8 —					
9					
10					
11					
12					
Comments	Comments: No visible Hg, Water sample collected and submitted for Hg analysis.				
pounitients:	IND AIRIDIG L	iy, vvater sample collected and submitted to	r ry arraiyaa.		

PROJECT:	Niacet VCP		SHEET: 1 OF 1
CLIENT: U	nion Carbide	Corporation	JOB NUMBER: 05-000535825.00
	TOR: Zebra		LOCATION: South of Mercury Recovery Area
DATE STARTED: 5/21/02			GROUND ELEVATION: 577.65
DATE COM	IPLETED:	5/21/02	OPERATOR: Matt Reardon
TEST TRE	NCH NUMBE	R: TT-25	GEOLOGIST: John Doerr
			GROUNDWATER:
DEPTH	SAMPLE NO. TYPE		DESCRIPTION
		0.0-0.3: FILL: black silty sand, some fine	to coarse angular gravel, moist
1		0.3-3.9: FILL: red brown silty clay and co	ncrete, some brick, metal, wood, cobble, boulder, MVA <24
2 —			
	*		
3 ——			
4 ——		End trench at 3.9' BGS	
5 —			
6			
7			
8 —			
9 —			
10			
11			
12 —			
		<u></u>	
Comments:	No visible Ho	J.	
I			

PROJECT:	Niacet V	CP		SHEET: 1 OF 1					
CLIENT: U	nion Carb	ide	Corporation	JOB NUMBER: 05-000535825.00					
CONTRAC		ora		LOCATION: South of TT-25, West of Cooling Pond					
DATE STA			5/21/02	GROUND ELEVATION: 577.22					
DATE COM			5/21/02	OPERATOR: Matt Reardon					
TEST TRE	ACH NOW	BEF	R: TT-26	GEOLOGIST: John Doerr					
GROUNDWATER:									
DEPTH	SAMPL NO. TY	E PE		DESCRIPTION					
1			0.0-1.5: FILL: dark gray coarse sand, cind brick, metal, wood, moist.	er and clinker, some fine sand, ash, fine to coarse gravel, slag,					
2 —	TT-26 H	lg	1.5-3.7: FILL: red brown silty clay and con	crete, some brick, metal, wood, cobble, boulder, moist, MVA <31					
3 —									
4 —									
5 —			Trench abandoned due to infiltrating perch	rench abandoned due to infiltrating perched water at 3.7' BGS					
6 —									
7 —									
8 —									
9 —									
10 ——									
11 ——									
12 ——									
Comments:	No visible	e Hg	. Soil Sample collected from 1.5-2' and su	bmitted for Hg analysis.					
ll									

PROJECT:	Niace	t VCP		SHEET: 1 OF 1				
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER: 05-000535825.00				
CONTRAC	TOR:	Zebra		LOCATION: East of "New" AST Area				
DATE STA	DATE STARTED: 5/21/02			GROUND ELEVATION: 577.68				
DATE COM	IPLET	ED:	5/21/02	OPERATOR: Matt Reardon				
TEST TRE	NCH N	UMBER	R: TT-27	GEOLOGIST: John Doerr				
				GROUNDWATER:				
DEPTH		MPLE TYPE	2	DESCRIPTION				
			0.0-2.0: FILL: dark gray cinder, brick, slag,	wood, concrete, moist.				
1								
2			Visible Hg at 2.0'					
			End trench at 2.0' BGS					
3 ——								
_								
4 ——								
5 —			,					
]			·					
6								
7 —								
8 ——								
				/				
9 ——								
10 —								
11								
		*						
12 ——								
Comments	Visib	e Ha al	2.0' BGS					
- Commonto	V 13101	o rigai	. 2.0 200					
				,				
				·				

URS CORPORATION

PROJECT:	Niace	t VCP			SHEET:	1 OF 1
CLIENT: U	nion C	arbide	Corporation	JOB NUMBEI	R:	05-000535825.00
CONTRAC	TOR:	Zebra		LOCATION:	East of "N	lew" AST Area
DATE STA	RTED	:	5/21/02	GROUND ELI	EVATION:	: 577.35
DATE COM	IPLET	ED:	5/21/02	OPERATOR:	Matt Real	rdon
TEST TRE	NCH N	IUMBEI	R: TT-28	GEOLOGIST:	John Do	err
				GROUNDWA	TER:	
DEPTH		MPLE TYPE		DESCR	IPTIOI	N
			0.0-1.4: FILL: gray, cinder, brick, metal, co	ncrete, wood,	moist, MV	A 127-672
1						
1	TT-28	TCL				
2 —			1.4-1.8: FILL: light brown, pea gravel			
			1.8-2.4: FILL: dark red, fine to coarse sand	d, trace fine to	coarse gra	avel, clay
3 —			2.4-5.9: FILL: red brown, silty clay and cor	icrete, brick, m	netal, wood	d, cobble, boulder
4						
			·			
5						
6						
			Trench abandoned due to infiltrating perch	ed water at 5.9	9" BGS	
7						
						/
8						
9 ——						
10						
11						
12						· · · · · · · · · · · · · · · · · · ·
_			L			

Comments: No visible Hg, High MVA readings in upper 1.4' of fill. Soil Sample collected from 1-1.5' and submitted for TCL analysis, groundwater sample collected and submitted for Hg analysis.

PROJECT:	Niacet VC		SHEET: 1 OF 1				
CLIENT: U	nion Carbio	de Corporation	JOB NUMBER: 05-000535825.00				
CONTRACT	TOR: Zebr	a	LOCATION: East of "New" AST Area				
DATE STAI	RTED:	5/21/02	GROUND ELEVATION: 578.36				
DATE COM	IPLETED:	5/21/02	OPERATOR: Matt Reardon				
TEST TRE	NCH NUMB	ER: TT-29	GEOLOGIST: John Doerr				
			GROUNDWATER:				
DEPTH	SAMPLE NO. TYP		DESCRIPTION				
1 —		0.0-1.0: FILL: dark gray cinder, brick, slag	g, wood, concrete, moist.				
2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 9		End trench at 1.5' BGS					
10 — 11 — 12 —							
Commonto	No visible	Ha all MI/A readings were A					

PROJECT:	Niacet VCI		SHEET: 1 OF 1
		le Corporation	JOB NUMBER: 05-000535825.00
CONTRAC			LOCATION: South of Cooling Pond, in scrap piles.
DATE STA		5/22/02	GROUND ELEVATION: 576.41
DATE COM		5/22/02	OPERATOR: Matt Reardon
		ER: TT-30	GEOLOGIST: John Doerr
			GROUNDWATER:
DEPTH	SAMPLE NO. TYP		DESCRIPTION
		0.0-0.5: FILL: dark gray cinder, brick, slag	a, wood, concrete, moist, MVA <10
_		0.5-1.4: FILL: gray, compacted silty clay	
			•
2 —		1.4-4.2: FILL: gray, fine to coarse sand, s	ome fine to coarse gravel.
3 —			
4		Trench abandoned due to infiltrating perc	hed water at 4.2' BGS
5 —			
6 —			
] 5			1
7			
8 —			
9 ——		N. Carlotte and Ca	
10 —			•
11			
12 —			
Comments:	No visible	Hg.	
4			·

PROJECT:	Niace	t VCP			SHEET:	1 OF 1	
CLIENT: U	nion C	arbide	Corporation	JOB NUMBE	R:	05-000535825.00	
CONTRAC	TOR:	Zebra		LOCATION:	South of C	ooling Pond, in scrap piles.	
DATE STA	RTED	:	5/22/02	GROUND EL	EVATION:	575.70	
DATE CON	IPLET	ED:	5/22/02	OPERATOR:	Matt Reard	lon	
TEST TRE	NCH N	UMBER	R: TT-31	GEOLOGIST:	John Doe	rr	
				GROUNDWA	TER:		
DEPTH	1	MPLE TYPE		DESCR	RIPTION		
			0.0-0.5: FILL: dark gray cinder, brick, slag	wood, concre	te, moist, M	IVA <10	
1			0.5-1.8: FILL: gray, coarse angular gravel,	some fine to o	coarse sand	, trace clay.	
2 —			1.8-2.9: FILL: gray, fine to coarse sand, br	ick, concrete,	cobbles, bo	ulder, metal, wood	
	TT-31	Hg					
3 ——							
			Trench abandoned due to infiltrating perch	ed water at 52	9' BGS	wet at 2.9'	
4			•				
5							
6							
7							
8							
9 ——							
10							
11							
12							
Comments:	No v	isible Ho	g, Soil sample collected from 2'-3' and sub	mitted for Hg	analysis.		

PROJECT:	Niacet V	/CP		SHEET: 1 OF 1
CLIENT: Ui	nion Car	bide	Corporation	JOB NUMBER: 05-000535825.00
CONTRAC	CONTRACTOR: Zebra			LOCATION: North of Building #17
DATE STA	RTED:		5/22/02	GROUND ELEVATION: 576.04
DATE COM	IPLETED): 	5/22/02	OPERATOR: Matt Reardon
TEST TRE	NCH NUI	MBEF	R: TT-32	GEOLOGIST: John Doerr
				GROUNDWATER:
DEPTH	SAMP NO. T			DESCRIPTION
1 — 2 — 2				rel, brick, slag, wood, concrete, moist, MVA <10 avel, concrete, rebar, red and yellow brick, metal, wood, cobble, sand, trace clay
3 ——	-		End trench at 3.0' BGS, refusal because o	f too much rebar
5 — 6 —				
7 — 8 —				
9 — 10 —				
 11				
12				
Comments:	No visit	ole Hç	j.	

PROJECT:	Niace	t VCP			SHEET: 1	1 OF 1		
CLIENT: U	nion C	arbide	Corporation	JOB NUMBER	₹:	05-000535825	5.00	
CONTRAC	TOR:	Zebra		LOCATION:	North of Bu	uilding #17		
DATE STA	RTED	:	5/22/02	GROUND ELE	EVATION: 5	576.09		
DATE COM	IPLET	ED:	5/22/02	OPERATOR:	Matt Reard	lon		
TEST TRE	NCH N	UMBER	R: TT-33	GEOLOGIST:	John Doer	rr		
				GROUNDWA [*]	TER:			
DEPTH	SAI NO.	MPLE TYPE		DESCRIPTION				
1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 — —	ТТ-33	Hg	0.0-0.5: FILL: dark gray fine to coarse grav 0.5-6.2: FILL: dark gray, coarse angular gr boulder, some fine to coarse 6.2-6.8: FILL: black/gray/yellow silt-silty cla End trench at 6.8' BGS	avel, concrete, e sand, trace cl	, rebar, red	and yellow brick,	metal, wood, co	
11 —— — 12 ——	,							
Comments:	No vi	isible Ho	g, Soil sample collected from 6'-7' and subm	nitted for Hg a	nalysis.			

APPENDIX B

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

NIACET VCP NIAGARA FALLS, NEW YORK

Analyses Performed by: SEVERN TRENT LABORATORIES, INC.

Prepared by:

URS CORPORATION
282 DELAWARE AVENUE
BUFFALO, NY 14202

JULY 2002

TABLE OF CONTENTS

			Page No.
I.	INITRO	DUCTION	1
II.		YTICAL METHODOLOGIES	
Ш.		DELIVERABLE COMPLETENESS	
IV.		RVATION/HOLDING TIMES	
ν. V.		TY CONTROL DATA	
٧.			
	A.	QC Blanks	
	B.	Instrument Tuning Criteria.	
	C.	Initial and Continuing Calibrations	
	D.	Surrogate/Internal Standard Recoveries	4
	E.	Matrix Spike/Matrix Spike Duplicate/Laboratory Control Sample/ Laboratory Control Sample Duplicate	4
	F.	Matrix Duplicates	5
	G.	Serial Dilutions	5
VI.	SAMPI	LE RESULTS	6
	A.	Raw Data vs. Reporting Forms	6
	В.	Quantitation Limits	6
	C.	Chromatography	7
	D.	Sample Dilutions	7
VII.	SUMM	ARY	7
		TABLES (following text)	
Table 1		Sample and Analysis Summary	
Table 2		Validated Analytical Soil Sample Results	
Table 3		Validated Analytical Groundwater Sample Results	

ATTACHMENTS

Attachment A -Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999.

II. ANALYTICAL METHODOLOGIES

The data being evaluated is from the May 6, 2002 through May 22, 2002 sampling of 17 soil samples, and four groundwater samples. The analytical laboratory that performed the analyses is Severn Trent Laboratories, Inc., located in Burlington, Vermont. The samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) by USEPA Method 8260B, TCL semivolatile organic compounds (SVOCs) by USEPA Method 8270C, target analyte list (TAL) metals by USEPA Methods 6010B, and mercury by USEPA Methods 7471A/7470A. Not all samples were analyzed for all parameters. All methods are referenced in NYSDEC Analytical Services Protocol (ASP), 6/2000. Table 1 summarizes the samples collected and the requested analytical parameters. The validated analytical results are presented in Tables 2 and 3.

A limited data validation was performed following the guidelines in United States Environmental Protection Agency (USEPA) Standard Operation Procedure (SOP) for the Validation of Organic Data Acquired Using SW-846 Method 8260B, SOP No. HW-24, Revision I, June 1999; USEPA Region II SOP for the Validation of Organic Data Acquired Using SW-846 Method 8270C, SOP No. HW-22, Revision II, June 2001; and USEPA Region II Evaluation of Metals Data for the Contract Laboratory Program, SOP No. HW-2, Revision XI, January 1992. Qualifications applied to the data include "J/UJ" (estimated concentration/estimated quantitation limit), "U" (not detected), and "R" (rejected). Support documentation for the qualification of data is presented in Attachment A.

III. DATA DELIVERABLE COMPLETENESS

The laboratory deliverable data packages were in accordance with NYSDEC ASP, Superfund Category requirements.

IV. PRESERVATION/HOLDING TIMES

The VOC analyses of samples UCC-TT-5 (5-6), UCC-TT-12 (3-3.5), UCC-TT-16 (0.5-1), and UCC-TT-28 (1-1.5) were performed outside of the 10 day technical holding time. All compounds were qualified as estimated ("J" or "UJ") unless otherwise rejected ("R") due to severe QC non-conformances. All other holding times and preservation requirements were met.

V. QUALITY CONTROL DATA

A. QC Blanks

Methylene chloride was detected in all samples at concentrations less than the reporting limit (i.e., "J" values). The detected concentrations were also less than ten times the amount detected in the associated method blanks. In accordance with USEPA Region II validation guidelines, the sample results for this compound were elevated to the reporting limit and qualified ("U"). Support documentation (i.e., Form 4s and method blank Form Is) is presented in Attachment A.

Naphthalene was detected in samples UCC-TT-28 (1-1.5) and UCC-TT-5 (5-6) at concentrations less than the reporting limit (i.e., "J" values). The detected concentrations were also less than five times the amount detected in the associated method blanks. In accordance with USEPA Region II validation guidelines, the sample results for this compound were elevated to the reporting limit and qualified ("U"). Support documentation (i.e., Form 4s and method blank Form Is) is presented in Attachment A.

Benzoic acid was detected in sample UCC-TT-5 at a concentration less than the reporting limit (i.e., "J" value). The detected concentration was also less than five times the amount detected in the associated method blank. In accordance with USEPA Region II validation guidelines, the sample result for this compound was elevated to the reporting limit and qualified ("U"). Support documentation (i.e., Form 4 and method blank Form I) is presented in Attachment A.

No other qualifications were made because of blank contamination.

B. <u>Instrument Tuning Criteria</u>

All NYSDEC ASP instrument tuning criteria were met for the VOC and SVOC analyses.

C. <u>Initial and Continuing Calibrations</u>

The VOC initial calibration (ICAL) exhibited a very poor (i.e., <0.05) relative response factor (RRF) for 1,4-dioxane, acrolein, 2-butanone, propionitrile, and isobutyl alcohol. In accordance with USEPA Region II validation guidelines, the undetected results for these compounds were rejected ("R") in all samples.

The VOC percent difference (%D) between the ICAL and continuing calibration (CCAL) standard RRF exceeded the USEPA Region II QC limit (i.e., >20%) for acetone, methyl iodide, and methylene chloride. The results for these compounds were previously flagged as estimated ("UJ") in all samples due to the holding time violation.

The SVOC relative standard deviation (%RSD) in the ICAL exceeded the USEPA Region II QC limit (i.e., >15%) for benzo(k)fluoranthene. In accordance with USEPA Region II validation guidelines, the results for this compound were flagged as estimated ("J") in sample UCC-TT-16 (0.5-1).

The SVOC %D between the ICAL and CCAL standard RRF exceeded the USEPA Region II QC limit (i.e., >20%) for benzidine. In accordance with USEPA Region II validation guidelines, the results for this compound in samples UCC-TT-5 (5-6), UCC-TT-12 (3-3.5), and UCC-TT-16 (0.5-1) were qualified as estimated ("UJ").

The SVOC %D between the ICAL and CCAL standard RRF exceeded the USEPA Region II QC limit (i.e., >20%) for 2,4-dimethylphenol and benzidine. In accordance with USEPA Region II validation guidelines, the results for these compounds in sample UCC-TT-28 (1-1.5) were qualified as estimated ("UJ").

Documentation supporting the qualification of data (i.e., Form VI for the ICAL, Form VII for the CCAL) is presented in Attachment A. All other initial and continuing calibration data were compliant with USEPA Region II validation criteria.

D. <u>Surrogate/Internal Standard Recoveries</u>

Sample UCC-TT-12 (3-3.5) exhibited recoveries for VOC surrogates toluene-d8 and bromofluorobenzene that were above the upper QC limits (i.e., >117% and >121%, respectively). This sample was re-analyzed and exhibited similar recoveries for both surrogates. The original analysis has been reported on Table 2. All detected compounds were already qualified as estimated ("J") due to the holding time violation. Support documentation (i.e., Form 2 - surrogate recoveries) is presented in Attachment A.

No other data qualification was necessary based on surrogate and internal standard recoveries.

E. <u>Matrix Spike/Matrix Spike Duplicate/Laboratory Control Sample/Laboratory Control</u> Sample Duplicate

The recovery of SVOC spiking compound aniline exhibited a very poor recovery (i.e. <10%) in the laboratory control sample (LCS) and laboratory control sample

duplicate (LCSD). In accordance with the USEPA Region II validation guidelines the aniline results were rejected ("R") in samples UCC-TT-5 (5-6), UCC-TT-12 (3.-3.5), and UCC-TT-16 (0.5-1). Support documentation (i.e., Form 3) is presented in Attachment A.

The recovery of SVOC spiking compound 2,4-dimethylphenol was below the QC limit (i.e., <33%) in the LCS. In accordance with the USEPA Region II validation guidelines the 2,4-dimethylphenol results in samples UCC-TT-5 (5-6), UCC-TT-12 (3-3.5), and UCC-TT-16 (0.5-1) were qualified as estimated ("UJ"). Support documentation (i.e., Form 3) is presented in Attachment A.

The recovery of SVOC spiking compound pentachlorophenol was below the QC limit (i.e., <72%) in the LCS/LCSD. In accordance with the USEPA Region II validation guidelines the result for this compound in sample UCC-TT-28 (1-1.5) was qualified as estimated ("UJ"). Support documentation (i.e., Form 3) is presented in Attachment A.

All other LCS/LCSD results were within the applicable QC limits, therefore no additional qualification of data was necessary. A MS/MSD was not requested for this sampling event.

F. <u>Matrix Duplicates</u>

Matrix duplicates were not requested for this sampling event.

G. Serial Dilutions

The %D between the sample UCC-TT-4 (5-5.5) and the serial dilution result was greater than 10% for aluminum, arsenic, barium, chromium, cobalt, copper, iron, lead (Pb), nickel (Ni), potassium (K), vanadium, and zinc. In accordance with Region II validation guidelines, the detected results for these metals in samples UCC-TT-4 (5-5.5), UCC-TT-5 (5-6), UCC-TT-12 (3-3.5), and UCC-TT-16 (0.5-1) were qualified

as estimated ("J"). Support documentation (i.e., Form IX for serial dilution) is presented in Attachment A.

The %D between the sample UCC-TT-28 (1-1.5) and the serial dilution result was greater than 10% for cadmium, Pb, Ni, and K. In accordance with Region II validation guidelines, these metals in sample UCC-TT-28 (1-1.5) were qualified as estimated ("J"). Support documentation (i.e., Form IX for serial dilution) is presented in Attachment A.

The %D between the sample UCC-TT-28 (1-1.5) and the serial dilution result grossly exceeded the QC limit (i.e., >100%D) for selenium. In accordance with Region II validation guidelines, the selenium result in sample UCC-TT-28 (1-1.5) was rejected ("R"). Support documentation (i.e., Form IX for serial dilution) is presented in Attachment A.

All other serial dilution results were within the applicable QC limits, and no other qualification of data was necessary.

VI. SAMPLE RESULTS

A. Raw Data vs. Reporting Forms

The final results as listed on the reporting forms were in agreement with the raw data, and no transcription/calculation errors were detected.

B. Quantitation Limits

All quantitation limits were reported in accordance with method requirements, and were adjusted for dilution factors and moisture content. Several organic sample results were qualified "J" by the laboratory indicating estimated concentrations below the quantitation limits. Several metal sample results were qualified "B" by the

laboratory indicating the concentration was above the instrument detection limit (IDL) but below the contract required detection limit (CRDL).

C. Chromatography

No chromatography problems were encountered.

D. <u>Sample Dilutions</u>

Sample UCC-TT-12 SVOCs was analyzed utilizing a dilution. As noted in the laboratory case narrative, the presence of non-target compounds caused internal standard failures when the sample was analyzed undiluted. Support documentation (i.e., laboratory case narrative) is presented in Attachment A.

VII. SUMMARY

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified "J/UJ" (estimated) are considered conditionally usable. Those results qualified "R" (rejected) are unusable. All other sample results are usable as reported.

TABLE 1

SAMPLE AND ANALYSIS SUMMARY

NIACET VCP

Sample ID	Sample Date	TCL VOCs (8260B) ¹	TCL SVOCS (8270C) ¹	TAL METALS (6010B,7471A) ¹	MERCURY ONLY (7470A/7471A) ¹	Comments
SOIL SAMPLES						
UCC-SS-1+10	5/21/02	***	***		X	etin.
UCC-TT-2(2-3)	5/6/02			***	X	and .
UCC-TT-3(3-3.5)	5/7/02				X	
UCC-TT-4(5-5.5)	5/7/02			X		***
UCC-TT-5(5-6)	5/7/02	X	X	X		***
UCC-TT-7(2.5-3)	5/7/02	***	No.		X	***
UCC-TT-8(6-6.5)	5/8/02				X	
UCC-TT-9(4.5-5)	5/8/02		4		X	
UCC-TT-11(2.5-3)	5/8/02				· X	
UCC-TT-12(3-3.5)	5/8/02	X	Х	X		en è
UCC-TT-16(0.5-1)	5/9/02	X	X	X		***
UCC-TT-22(3-4)	5/21/02	***			X	
UCC-TT-23(2-3)	5/21/02				X	
UCC-TT-26(1.5-2)	5/21/02			-	X	
UCC-TT-28(1-1.5)	5/21/02	X	X	X	***	at ab til
UCC-TT-31(2-3)	5/22/02			No. to	X	
UCC-TT-33(6-7)	5/22/02				X	
GROUNDWATER SAMPLE	ES					
UCC-TT-2	5/7/02		***	400	X	***
UCC-TT-12	5/8/02			and the second s	X	***
UCC-TT-24	5/21/02	***			X	
UCC-TT-28	5/21/02		***		X	

TCL - Target Compound List TAL - Target Analyte List VOC - Volatile Organic Compound SVOC - Semivolatile Organic Compound

^{1 -} Method referenced in New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP), June 2000.

Location ID		TT-04
Sample ID		UCC-TT-4 (5-5.5)
Matrix		Soil
Depth Interval (ft)		5.0-5.5
Date Sampled		05/07/02
Parameter	Units	
Metals		
Aluminum	MG/KG	22,700 J
Antimony	MG/KG	4.2 B
Arsenic	MG/KG	6.5
Barium	MG/KG	136 J
Beryllium	MG/KG	1.2
Cadmium	MG/KG	1.3
Calcium	MG/KG	12,200
Chromium	MG/KG	32 J
Cobalt	MG/KG	20.3 J
Copper	MG/KG	33.2 J
Iron	MG/KG	35,300 J
Lead	MG/KG	22.3 J
Magnesium	MG/KG	9,220
Manganese	MG/KG	382
Mercury	MG/KG	0.077
Nickel	MG/KG	43 J
Potassium	MG/KG	3,960 J
Selenium	MG/KG	0.92
Silver	MG/KG	0.29 B
Sodium	MG/KG	186 B
Thallium	MG/KG	0.40 U
Vanadium	MG/KG	44.1 J
Zinc	MG/KG	203 J

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02____ CHECKED BY:__GEK 7/16/02____

Location ID		SS-1+10	TT-02	TT-03	TT-07	TT-08
Sample ID		UCC-SS-1+10	UCC-TT-2 (2-3)	UCC-TT-3 (3-3.5)	UCC-TT-7 (2.5-3)	UCC-TT-8 (6-6.5)
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		0.0-0.5	2.0-3.0	3.0-3.5	2.5-3.0	6.0-6.5
Date Sampled		05/21/02	05/06/02	05/07/02	05/07/02	05/08/02
Parameter	Units					
Metals						
Mercury	MG/KG	649	1,320	0.058	192	43.1

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02_ CHECKED BY: __GEK 7/16/02____

Location ID		TT-09	TT-11	TT-22	TT-23	TT-26
Sample ID		UCC-TT-9 (4.5-5)	UCC-TT-11 (2.5-3)	UCC-TT-22(3-4)	UCC-TT-23(2-3)	UCC-TT-26(1.5-2)
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		4.5-5.0	2.5-3.0	3.0-4.0	2.0-3.0	1.5-2.0
Date Sampled		05/08/02	05/08/02	05/21/02	05/21/02	05/21/02
Parameter	Units					
Metals						
Mercury	MG/KG	33.1	20.3	4.9	3.3	111

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02_ CHECKED BY: GEK 7/16/02

Location ID		TT-31	TT-33
Sample ID		UCC-TT-31(2-3)	UCC-TT-33(6-7)
Matrix		Soil	Soil
Depth Interval (ft)		2.0-3.0	6.0-7.0
Date Sampled		05/22/02	05/22/02
Parameter	Units		
Metals			
Mercury	MG/KG	134	117

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02_ CHECKED BY:__GEK 7/16/02____

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix		Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Volatile Organic Compounds		·			
1,1,1,2-Tetrachloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1,1-Trichloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1,2,2-Tetrachloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1,2-Trichloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1-Dichloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1-Dichloroethene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,1-Dichloropropene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2,3-Trichlorobenzene	UG/KG	6.7 UJ	é N1	5.6 UJ	6 UJ
1,2,3-Trichloropropane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2,4-Trichlorobenzene	UG/KG	6.7 UJ	7.7 J	5.6 UJ	6 UJ
1,2,4-Trimethylbenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dibromo-3-chloropropane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichlorobenzene	UG/KG	6.7 UJ	7.5 J	5.6 UJ	6 UJ
1,2-Dichloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichloroethene (cis)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichloroethene (trans)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,2-Dichloropropane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3,5-Trimethylbenzene (Mesitylene)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3-Dichlorobenzene	UG/KG	6.7 UJ	2.9 J	5.6 UJ	6 UJ
1,3-Dichloropropane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3-Dichloropropene (cis)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,3-Dichloropropene (trans)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
1,4-Dichloro-2-butene (trans)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02_ CHECKED BY:__GEK 7/16/02__

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix		Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Volatile Organic Compounds					
1,4-Dichlorobenzene	UG/KG	6.7 UJ	5.7 J	5.6 UJ	6 UJ
1,4-Dioxane	UG/KG	R	R	R	R
2,2-Dichloropropane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
2-Chlorotoluene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
2-Hexanone	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
4-Chlorotoluene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
4-Isopropyltoluene (p-Cymene)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
4-Methyl-2-pentanone	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Acetone	UG/KG	12	160 J	10 J	6 UJ
Acrolein	UG/KG	R	R	R	R
Acrylonitrile	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Allyl chloride	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Benzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromobenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromochloromethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromodichloromethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromoform	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Bromomethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Carbon disulfide	UG/KG	6.7 UJ	14 J	5.6 UJ	6 UJ
Carbon tetrachloride	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chlorobenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chloroethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chloroform	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Chloromethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02_ CHECKED BY: __GEK 7/16/02___

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6) Soil	UCC-TT-12 (3-3.5) Soil	UCC-TT-16(0.5-1) Soil	UCC-TT-28(1-1.5) Soil
Matrix					
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Volatile Organic Compounds					
Chloroprene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Dibromochloromethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Dibromomethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Dichlorodifluoromethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Ethyl methacrylate	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Ethylbenzene	UG/KG	6.7 UJ	1.4 J	5.6 UJ	6 UJ
Freon TF	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Hexachlorobutadiene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
lodomethane (Methyl iodide)	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Isobutyl alcohol	UG/KG	R	R	R	R
Isopropylbenzene (Cumene)	UG/KG	6.7 UJ	2.8 J	5.6 UJ	6 UJ
Methacrylonitrile	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Methyl ethyl ketone (2-Butanone)	UG/KG	R	33 J	R	R
Methyl methacrylate	UG/KG	6.7 UJ	2.6 J	5.6 UJ	6 UJ
Methyl tert-butyl ether	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Methylene chloride	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Naphthalene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
n-Butylbenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
n-Propylbenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Propionitrile	UG/KG	R	R	R	R
sec-Butylbenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Styrene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
tert-Butylbenzene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Tetrachloroethene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02_ CHECKED BY:__GEK 7/16/02___

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix		Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Volatile Organic Compounds					
Tetrahydrofuran	UG/KG	67 UJ	60 UJ	56 UJ	60 UJ
Toluene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Trichloroethene	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Trichlorofluoromethane	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Vinyl acetate	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Vinyl chloride	UG/KG	6.7 UJ	6 UJ	5.6 UJ	6 UJ
Xylene (total)	UG/KG	6.7 UJ	1.9 J	5.6 UJ	6 UJ
Semivolatile Organic Compounds				-	
1,2,4-Trichlorobenzene	UG/KG	440 U	430 J	530 U	24 J
1,2-Dichlorobenzene	UG/KG	440 U	130 J	530 U	400 U
1,3-Dichlorobenzene	UG/KG	440 U	2,000 U	530 U	400 U
1,4-Dichlorobenzene	UG/KG	440 U	2,000 U	530 U	400 U
2,2'-oxybis(1-Chloropropane)	UG/KG	440 U	2,000 U	530 U	400 U
2,4,5-Trichlorophenol	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
2,4,6-Trichlorophenol	UG/KG	440 U	2,000 U	530 U	400 U
2,4-Dichlorophenol	UG/KG	440 U	2,000 U	530 U	400 U
2,4-Dimethylphenol	UG/KG	440 UJ	2,000 UJ	530 UJ	400 UJ
2,4-Dinitrophenol	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
2,4-Dinitrotoluene	UG/KG	440 U	2,000 U	530 U	400 U
2,6-Dinitrotoluene	UG/KG	440 U	2,000 U	530 U	400 U
2-Chloronaphthalene	UG/KG	440 U	92 J	530 U	400 UJ
2-Chlorophenol	UG/KG	440 U	2,000 U	530 U	400 U
2-Methylnaphthalene	UG/KG	440 U	2,000 U	41 J	1,100
2-Methylphenol (o-cresol)	UG/KG	440 U	2,000 U	530 U	400 U

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02__ CHECKED BY:__GEK 7/16/02____

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6) Soil	UCC-TT-12 (3-3.5) Soil	UCC-TT-16(0.5-1) Soil	UCC-TT-28(1-1.5) Soil
Matrix	-				
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Semivolatile Organic Compounds			-		
2-Nitroaniline	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
2-Nitrophenol	UG/KG	440 U	2,000 U	530 U	400 U
3,3'-Dichlorobenzidine	UG/KG	440 U	2,000 U	530 U	400 U
3-Nitroaniline	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
4,6-Dinitro-2-methylphenol	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
4-Bromophenyl-phenylether	UG/KG	440 U	2,000 U	530 U	400 U
4-Chloro-3-methylphenol	UG/KG	440 U	2,000 U	530 U	400 U
4-Chloroaniline	UG/KG	440 U	2,000 U	530 U	400 U
4-Chlorophenyl-phenylether	UG/KG	440 U	2,000 U	530 U	400 U
4-Methylphenol (p-cresol)	UG/KG	440 U	2,000 U	530 U	400 U
4-Nitroaniline	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
4-Nitrophenol	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
Acenaphthene	UG/KG	33 J	240 J	260 J	160 J
Acenaphthylene	UG/KG	440 U	2,000 U	530 U	400 U
Aniline	UG/KG	R	R	R	1,000 U
Anthracene	UG/KG	76 J	2,300	660	290 J
Azobenzene	UG/KG	440 U	2,000 U	530 U	400 U
Benzidine	UG/KG	1,100 UJ	5,000 UJ	1,300 UJ	1,000 UJ
Benzo(a)anthracene	UG/KG	280 J	1,800 J	1,800	1,000
Benzo(a)pyrene	UG/KG	280 J	930 J	1,600	1,000
Benzo(b)fluoranthene	UG/KG	240 J	1,300 J	2,200	2,200
Benzo(g,h,i)perylene	UG/KG	200 J	240 J	550	360 J
Benzo(k)fluoranthene	UG/KG	340 J	2,000 U	1,500 J	400 U
Benzoic acid	UG/KG	1,100 U	5,000 U	1,300 U	220 J

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02__ CHECKED BY:__GEK 7/16/02____

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6) Soil	UCC-TT-12 (3-3.5) Soil	UCC-TT-16(0.5-1) Soil	UCC-TT-28(1-1.5) Soil
Matrix					
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Semivolatile Organic Compounds		P-111-11-11-11-11-11-11-11-11-11-11-11-1			
Benzyl alcohol	UG/KG	440 U	2,000 U	530 U	400 U
bis(2-Chloroethoxy)methane	UG/KG	440 U	2,000 U	530 U	400 U
bis(2-Chloroethyl)ether	UG/KG	440 U	2,000 U	530 U	400 U
bis(2-Ethylhexyl)phthalate	UG/KG	24 J	2,000 U	530 U	72 J
Butylbenzylphthalate	UG/KG	440 U	2,000 U	530 U	400 U
Carbazole	UG/KG	43 J	2,000 U	130 J	200 J
Chrysene	UG/KG	330 J	2,000 J	1,800	1,100
Dibenz(a,h)anthracene	UG/KG	45 J	170 J	200 J	220 J
Dibenzofuran	UG/KG	440 U	290 J	120 J	530
Diethylphthalate	UG/KG	440 U	2,000 U	530 U	400 U
Dimethylphthalate	UG/KG	440 U	2,000 U	530 U	400 U
Di-n-butylphthalate	UG/KG	440 U	2,000 U	530 U	400 U
Di-n-octylphthalate	UG/KG	440 U	2,000 U	530 U	400 U
Fluoranthene	UG/KG	510	1,800 J	3,700	1,800
Fluorene	UG/KG	27 J	900 J	240 J	150 J
Hexachlorobenzene	UG/KG	440 U	2,000 U	530 U	400 U
Hexachlorobutadiene	UG/KG	440 U	2,000 U	530 U	400 U
Hexachlorocyclopentadiene	UG/KG	440 U	2,000 U	530 U	400 U
Hexachloroethane	UG/KG	440 U	2,000 U	530 U	400 U
Indeno(1,2,3-cd)pyrene	UG/KG	180 J	220 J	640	360 J
Isophorone	UG/KG	440 U	2,000 U	530 U	400 U
Naphthalene	UG/KG	24 J	2,000 U	46 J	1,200
Nitrobenzene	UG/KG	440 U	2,000 U	530 U	400 U
N-Nitrosodimethylamine	UG/KG	440 U	2,000 U	530 U	400 U

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02__ CHECKED BY: __GEK 7/16/02____

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix		Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Semivolatile Organic Compounds					/
N-Nitroso-di-n-propylamine	UG/KG	440 U	2,000 U	530 U	400 U
N-Nitrosodiphenylamine	UG/KG	440 U	2,000 U	530 U	400 U
Pentachlorophenol	UG/KG	1,100 U	5,000 U	1,300 U	1,000 U
Phenanthrene	UG/KG	340 J	770 J	2,600	1,800
Phenol	UG/KG	440 U	2,000 U	530 U	400 U
Pyrene	UG/KG	510	4,300	3,000	1,600
Pyridine	UG/KG	440 U	2,000 U	530 U	400 U
Metals					
Aluminum	MG/KG	13,800 J	13,200 J	11,200 J	5,010
Antimony	MG/KG	3.9 B	4 B	1.6 B	5.4 B
Arsenic	MG/KG	42.3 J	22.9 J	18.4 J	73.1
Barium	MG/KG	132 J	156 J	68.4 J	193
Beryllium	MG/KG	0.74	0.78	0.6	0.51 B
Cadmium	MG/KG	1.4	1.2	1.1	2.1 J
Calcium	MG/KG	58,100	27,400	45,900	59,800
Chromium	MG/KG	336 J	222 J	122 J	73.1
Cobalt	MG/KG	19.1 J	14.6 J	7.4 J	77.6
Copper	MG/KG	135 J	476 J	34.4 J	269
iron	MG/KG	23,900 J	26,900 J	20,600 J	24,400
Lead	MG/KG	90.1 J	150 J	253 J	362 J
Magnesium	MG/KG	16,100	12,200	22,400	17,500
Manganese	MG/KG	4,170	483	891	1,060
Mercury	MG/KG	251	1,460	5,870	230
Nickel	MG/KG	39.7 J	26.8 J	16.7 J	25.7 J

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02__ CHECKED BY: __GEK 7/16/02____

Location ID		TT-05	TT-12	TT-16	TT-28
Sample ID		UCC-TT-5 (5-6)	UCC-TT-12 (3-3.5)	UCC-TT-16(0.5-1)	UCC-TT-28(1-1.5)
Matrix		Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	3.0-3.5	0.5-1.0	1.0-1.5
Date Sampled		05/07/02	05/08/02	05/09/02	05/21/02
Parameter	Units				
Metals					
Potassium	MG/KG	2,390 J	2,140 J	1,730 J	721 J
Selenium	MG/KG	2.5	1.6	0.78	R
Silver	MG/KG	0.99 B	0.45 B	0.39 B	0.47 B
Sodium	MG/KG	208 B	266 B	325 B	244 B
Thallium	MG/KG	0.38 U	0.40 U	0.34 U	0.68 U
Vanadium	MG/KG	37.6 J	24.8 J	26.5 J	20.6
Zinc	MG/KG	311 J	229 J	197 J	346

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02____ CHECKED BY:__GEK 7/16/02____

TABLE 3 ANALYTICAL GROUNDWATER SAMPLE RESULTS NIACET VCP

Location ID		TT-02	TT-12	TT-24	TT-28
Sample ID		UCC-TT-2	UCC-TT-12	UCC-TT-24	UCC-TT-28
Matrix		Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	2.5-3.0	-	-
Date Sampled		05/07/02	05/08/02	05/21/02	05/21/02
Parameter	Units				
Metals				·	
Mercury	UG/L	122	12,300	574,000	20,900

Flags assigned during chemistry validation are shown.

MADE BY:__AMK 7/16/02___ CHECKED BY:__GEK 7/16/02___

ATTACHMENT A

SUPPORT DOCUMENTATION

FORM 4 VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

Lab Sample ID: VBLKT2

	•	VBLKT2
Lab Name: STL BURLINGTON	Contract: 22000	

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 88054

Date Analyzed: 06/03/02 Time Analyzed: 0232

GC Column: CAP ID: 0.53 (mm) Heated Purge: (Y/N) Y

Instrument ID: N

Lab File ID: NTMB01E

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	==========	=========	========
01	NTME LCS	NTME LCS	NTM50EQ	0133
02	NIME LCSD	NTME LCSD	NTM50EQ2	0202
03	UCCTT281-1.5	488800	48880012	0319
04				
05				
06				
07				
08 09				
10				
11				
12				
13				
14				
15			**************************************	
16				
17				
18				
19	4			
20				
21				
22,				
23				
24				
25				
26			-	
27				
28				
29 30				
30	į.	1	1	1

COMMENTS:			
·	•		
		•	

CLIENT SAMPLE NO.

0

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL BURLINGTON

Contract: 22000 VBLKT2

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 88054

Matrix: (soil/water) SOIL Lab Sample ID: VBLKT2

Sample wt/vol: 5.0 (q/mL) G Lab File ID: NTMB01E

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 06/03/02

GC Column: CAP ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

5.0 U 75-71-8-----Dichlorodifluoromethane 74-87-3-----Chloromethane 5.0 U 5.0 U 75-01-4-----Vinyl Chloride 74-83-9-----Bromomethane 5.0 U 5.0 U 75-00-3-----Chloroethane 75-69-4-----Trichlorofluoromethane 5.0 U 107-02-8-----Acrolein 5.0 U 76-13-1----Freon TF 5.0 U 5.0 U 75-35-4----1,1-Dichloroethene 67-64-1-----Acetone 5.0 U 74-88-4-----Methyl Todide 5.0 U 75-15-0-----Carbon Disulfide 5.0 U 107-05-1----Allyl Chloride 5.0 U 75-09-2-----Methylene Chloride 0.97 J 107-13-1-----Acrylonitrile 5.0 U 5.0 U 156-60-5----trans-1,2-Dichloroethene 540-59-0----1,2-Dichloroethene (total) 5.0 U 1634-04-4----Methyl-t-Butyl Ether 5.0 U 75-34-3----1,1-Dichloroethane 5.0 U 108-05-4-----Vinyl Acetate 5.0 U 126-99-8-----Chloroprene 5.0 U 156-59-2----cis-1,2-Dichloroethene 5.0 U 78-93-3----2-Butanone 5.0 U 107-12-0-----Propionitrile 20 U 126-98-7-----Methacrylonitrile 5.0 U 74-97-5----Bromochloromethane 5.0 U 109-99-9----Tetrahydrofuran 50 U 67-66-3-----Chloroform 5.0 U 71-55-6----1,1,1-Trichloroethane 5.0 U 56-23-5-----Carbon Tetrachloride 5.0 U 78-83-1----Isobutyl Alcohol 250 U 71-43-2----Benzene 5.0 U 107-06-2----1,2-Dichloroethane 5.0 U

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

1	VBLKT2
SDG 1	No.: 88054
e ID:	VBLKT2
ID:	NTMB01E

Matrix: (soil/water) SOIL

LOW

Case No.: 22000 SAS No.:

Contract: 22000

Lab Sampl

Lab Name: STL BURLINGTON

5.0 (g/mL) G

Lab File

Sample wt/vol:

Lab Code: STLVT

Level: (low/med)

Date Received:

% Moisture: not dec.

CAS NO.

Date Analyzed: 06/03/02

GC Column: CAP

ID: 0.53 (mm)

COMPOUND

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Q

1,2,4-Trichlorobenzene	1.6	J
	5.0	U
	3.8	J
	5.0	U
	5.0	ប
	5.0	U
Bromobenzene	5.0	ប
n-Propylbenzene	5.0	ប
2-Chlorotoluene	5.0	ט
4-Chlorotoluene	5.0	U
	5.0	U
	5.0	lυ
	5.0	U
	5.0	U
	5.0	U
	- 1	1
	-1	Į.
-	-	
	n-Propylbenzene	Hexachlorobutadiene 5.0Naphthalene 3.82,2-Dichloropropane 5.01,1-Dichloropropene 5.01,3-Dichloropropane 5.0Bromobenzene 5.0Propylbenzene 5.02-Chlorotoluene 5.04-Chlorotoluene 5.01,3,5-Trimethylbenzene 5.0tert-Butylbenzene 5.01,2,4-Trimethylbenzene 5.0sec-Butylbenzene 5.0sec-Butylbenzene 5.08-Usopropyltoluene 5.0

VOLATILE METHOD BLANK SUMMARY

VBLKO7	7
--------	---

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

Case No.: 22000 SAS No.:

SDG No.: 87896

Lab File ID: NTMB01C

Lab Sample ID: VBLKO7

Date Analyzed: 05/20/02

Time Analyzed: 1514

GC Column: CAP ID: 0.53 (mm)

Heated Purge: (Y/N) Y

Instrument ID: N

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

1		LAB	LAB	TIME
	CAMDI E MO		FILE ID	ANALYZED
	SAMPLE NO.	SAMPLE ID	FILE ID	MINATITYED
0.1	======================================		**************************************	1415
01	NIMC LCS	NIMC LCS	NTM50CQ2	1415
02	NTMC LCSD	NTMC /LCSD	NTM50CQ3	1444
03	UCC-TT-5	487113	487113I2	1558
04	UCC-TT-12	487120	48712012	1627
05	UCC-TT-16	487259	48725912	1757
06	UCC-TT-12RE	487120R1	487120I3	1927
07				
80				
09				
10				
11				
12				
13				
14				
15				
16				
17		:		
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:	·*	

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKO7

Lab Name: STL BURLINGTON Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 87896

Matrix: (soil/water) SOIL Lab Sample ID: VBLKO7

Sample wt/vol: 5.0 (g/mL) G Lab File ID: NTMB01C

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 05/20/02

GC Column: CAP ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG

75-71-8	CAS NO.	COMPOUND (ug/L or	ug/kg)	UG/KG		Ç	2
74-87-3	75-71-8	Dichlorodifluoromethane		1	5.0	П	
75-01-4						ſ	
74-83-9							
75-00-3Chloroethane 5.0 U 75-69-4Trichlorofluoromethane 5.0 U 107-02-8Acrolein 5.0 U 76-13-1Freon TF 5.0 U 75-35-41,1-Dichloroethene 5.0 U 67-64-1Acetone 5.0 U 74-88-4Methyl Todide 5.0 U 107-05-1Aceton Disulfide 5.0 U 107-05-1Allyl Chloride 2.0 J 107-13-1Acrylonitrile 5.0 U 156-60-5							
75-69-4							
107-02-8							
75-35-41,1-Dichloroethene 5.0 U 67-64-1Acetone 5.0 U 74-88-4Methyl Todide 5.0 U 75-15-0Carbon Disulfide 5.0 U 107-05-1Allyl Chloride 5.0 U 75-09-2						1	
67-64-1	76-13-1	Freon TF					
74-88-4Methyl Todide 5.0 U 75-15-0Carbon Disulfide 5.0 U 107-05-1Allyl Chloride 5.0 U 75-09-2Methylene Chloride 2.0 J 107-13-1	75-35-4	1,1-Dichloroethene		!	5.0	U	
75-15-0Carbon Disulfide 5.0 U 107-05-1Allyl Chloride 5.0 U 75-09-2Methylene Chloride 2.0 J 107-13-1Acrylonitrile 5.0 U 156-60-5trans-1,2-Dichloroethene 5.0 U 540-59-01,2-Dichloroethene (total) 5.0 U 1634-04-4Methyl-t-Butyl Ether 5.0 U 75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 5.0 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Benzene 5.0 U	67-64-1	Acetone		!	5.0	U	
107-05-1Allyl Chloride 5.0 U 75-09-2Methylene Chloride 2.0 J 107-13-1Acrylonitrile 5.0 U 156-60-5trans-1,2-Dichloroethene 5.0 U 540-59-01,2-Dichloroethene (total) 5.0 U 1634-04-4Methyl-t-Butyl Ether 5.0 U 75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2Chloroprene 5.0 U 107-12-0Propionitrile 20 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5	74-88-4	Methyl Todide		!	5.0	U	
75-09-2Methylene Chloride 2.0 J 107-13-1Acrylonitrile 5.0 U 156-60-5trans-1,2-Dichloroethene 5.0 U 540-59-01,2-Dichloroethene (total) 5.0 U 1634-04-4Methyl-t-Butyl Ether 5.0 U 75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 5.0 U 67-66-3Chloroform 5.0 U 71-55-6I,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Benzene 5.0 U					5.0	U	
75-09-2	107-05-1	Allyl Chloride		1	5.0	U	
156-60-5trans-1,2-Dichloroethene 5.0 U 540-59-01,2-Dichloroethene (total) 5.0 U 1634-04-4Methyl-t-Butyl Ether 5.0 U 75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2Cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 5.0 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Benzene 5.0 U							
540-59-01,2-Dichloroethene (total) 5.0 U 1634-04-4Methyl-t-Butyl Ether 5.0 U 75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Benzene 5.0 U	107-13-1	Acrylonitrile		1	5.0	U	
1634-04-4Methyl-t-Butyl Ether 5.0 U 75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Benzene 5.0 U	156-60-5	trans-1,2-Dichloroethene		!	5.0	U	
75-34-31,1-Dichloroethane 5.0 U 108-05-4Vinyl Acetate 5.0 U 126-99-8Chloroprene 5.0 U 156-59-2cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 67-66-3Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5				1	5.0	U	
108-05-4	1634-04-4	Methyl-t-Butyl Ether		!	5.0	U	
108-05-4	75-34-3	1,1-Dichloroethane		!	5.0	U	
156-59-2cis-1,2-Dichloroethene 5.0 U 78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U							
78-93-32-Butanone 5.0 U 107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U	126-99-8	Chloroprene		!	5.0	U	
107-12-0Propionitrile 20 U 126-98-7Methacrylonitrile 5.0 U 74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U				1	5.0	U	
126-98-7	78-93-3	2-Butanone		!	5.0	U	
74-97-5Bromochloromethane 5.0 U 109-99-9Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U	107-12-0	Propionitrile			20	U	
109-99-9Tetrahydrofuran 50 U 67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U				1	5.0	U	
67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U				!	5.0	U	
67-66-3Chloroform 5.0 U 71-55-61,1,1-Trichloroethane 5.0 U 56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U	109-99-9	Tetrahydrofuran			50	U	
56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U				!			
56-23-5Carbon Tetrachloride 5.0 U 78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U	71-55-6	1,1,1-Trichloroethane		!	5.0	U	
78-83-1Isobutyl Alcohol 250 U 71-43-2Benzene 5.0 U	56-23-5	Carbon Tetrachloride		!	5.0	U	
71-43-2Benzene 5.0 U	78-83-1	Isobutyl Alcohol					
	107-06-2	1,2-Dichloroethane			1		
			_				

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

VBLK07

Contract: 22000 Lab Name: STL BURLINGTON

Lab Code: STLVT

Case No.: 22000 SAS No.: SDG No.: 87896

Matrix: (soil/water) SOIL Lab Sample ID: VBLKO7

Sample wt/vol: 5.0 (g/mL) GLab File ID: NTMB01C

Level: (low/med) Date Received: LOW

Date Analyzed: 05/20/02 % Moisture: not dec.

GC Column: CAP Dilution Factor: 1.0 ID: 0.53 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL)

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND Q

120-82-1----1,2,4-Trichlorobenzene 1.2 J 87-68-3-----Hexachlorobutadiene 5.0 U 2.6 J 91-20-3-----Naphthalene 594-20-7----2,2-Dichloropropane 5.0 U 5.0 U 563-58-6-----1,1-Dichloropropene 142-28-9-----1,3-Dichloropropane 5.0 U 108-86-1----Bromobenzene 5.0 U 103-65-1----n-Propylbenzene 5.0 U 95-49-8----2-Chlorotoluene 5.0 U 106-43-4----4-Chlorotoluene 5.0 U 108-67-8-----1,3,5-Trimethylbenzene 5.0 U 98-06-6----tert-Butylbenzene 5.0 U 95-63-6----1,2,4-Trimethylbenzene 5.0 U 135-98-8----sec-Butylbenzene 5.0 U 99-87-6----4-Isopropyltoluene 5.0 U 104-51-8----n-Butylbenzene 5.0 U 87-61-6----1,2,3-Trichlorobenzene 1.4 J

FORM 2 SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

Case No.: 22000

SAS No.:

SDG No.: 87896

Level: (low/med) LOW

	TOT TUO === 0 0
01 NTMC LCS	0 0
	0
02 NTMC LCSD 99 101 99 97	
	0
03 VBLK07 100 102 101 97	
04 UCC-TT-5 105 98 109 98	0
05 UCC-TT-12 122* 107 149* 100	2
06 UCC-TT-16 113 106 118 104	0
07 UCC-TT-12RE 118* 105 143* 94	2
09	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

Case No.: 22000

SAS No.:

SDG No.: 87896

Instrument ID: N Calibration Date(s): 05/07/02

05/07/02

Heated Purge: (Y/N) Y Calibration Time(s): 0922

1120

GC Column: CAP

ID: 0.53 (mm)

AB FILE ID: RRF5 =NTM05V RRF20 =NTM20V RF50 =NTM50V RRF100=NTM100V RRF200=NTM200V							
RRF50 =NTM50V RRF10	00=NTM10	OV .	RRF2	00=NTM2	00 V		J.º
							- 8
COMPOUND	RRF5	RRF20	RRF50	1	RRF200	1	RSD
Dichlorodifluoromethane	0.500	0.475	0.496	0.497	0.494	0.492	2.0
Chloromethane Vinyl Chloride	* 0.393	0.368	0.385				
Vinyl Chloride	0.341					0.344	
Bromomethane	0.180	0.153	0.163	0.176	0.183		7.4
Chloroethane	0.183	0.190	0.162				
Trichlorofluoromethane	0.550	0.526			0.433		9.7
Acrolein	0.028					0.025	
	0.565		0.582				
Freon TF 1,1-Dichloroethene	0.317						
	0.080		0.066			0.068	(15.4)
Acetone Methyl Iodide Carbon Disulfide	0.198	0.272	0.388			0.336	(28.6
Carbon Disulfide	0.822						
Allyl Chloride	0.462	0.495	0.495	0.469			4.6
Allyl Chloride Methylene Chloride	0.543		0.332				28.1
Acrylonitrile	0.079		0.077				
trans-1,2-Dichloroethene	0.332	0.352	0.351	0.324			
1,2-Dichloroethene (total)	0.338	0.354	0.351	0.324			5.5
Methyl-t-Butyl Ether	0.633	0.661	0.662	0.608			5.1
1,1-Dichloroethane	* 0.614	0.643	0.662	0.608	0.587	0.623	
Vinyl Acetate	0.485						9.8
Chioroprene	0.423	0.445	0.456	0.431	0.409	0.433	
cis-1,2-Dichloroethene	0.345		0.351	0.325	0.310	0.337	5.8
2-Butanone	0.026				0.027	0.028	7.5
Propionitrile Methacrylonitrile	0.029	0.030	0.029	0.025	0.025	0.028	9.4
Methacrylonitrile	0.082						10.8
Bromochioromethane	0.227	0.244	0.247	0.229			5.1
Tetrahydrofuran	0.082	0.086	0.078	0.064	0.059	0.074	15.7
Chloroform	0.539	0.570	0.571	0.528	0.494	0.540	5.9
1,1,1-Trichloroethane	0.459	0.494	0.497	0.469	0.439	0.472	5.2
Carbon Tetrachloride	0.463	0.483	0.490	0.461	0.436	0.467	4.6
Isobutyl Alcohol	0.014	0.016			0.012	0.014	13.1
Benzene	0.862	0.865	0.874	0.825			
1,2-Dichloroethane	0.282					0.276	
Trichloroethene	0.351						
1,2-Dichloropropane	0.367						
Methyl Methacrylate	0.250						
Dibromomethane	0.319						
	_	<u> </u>	l]	<u></u>		

^{*} Compounds with required minimum RRF and maximim *RSD values.

All other compounds must meet a minimim RRF of 0.010.

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

Case No.: 22000

SAS No.:

SDG No.: 87896

05/07/02

Instrument ID: N

Calibration Date(s): 05/07/02

Heated Purge: (Y/N) Y

Calibration Time(s): 0922

1120

GC Column: CAP

ID: 0.53 (mm)

LAB FILE ID: RRF5 RRF50 =NIM50V RRF10	=NTM05 0=NTM10			0 =NTM20			
			·				
COMPOUND	RRF5	RRF20	RRF50	1	RRF200	1	RSD
1,4-Dioxane	0.004	0.004	1	0.003	0.003	0.004	
Bromodichloromethane	0.546						5.7
cis-1,3-Dichloropropene	0.579						5.1
4-Methyl-2-pentanone	0.418						
Toluene	0.686						
trans-1,3-Dichloropropene	0.452						
Ethyl Methacrylate	0.496						
1,1,2-Trichloroethane	0.296						
Tetrachloroethene	0.512						
2-Hexanone	0.289						4.3
Dibromochloromethane	0.577						4.6
1,2-Dibromoethane	0.534						
Chlorobenzene	* 0.877						
1,1,1,2-Tetrachloroethane	0.433						5.1
Ethyl benzene	1.295						5.7
Xylene (m,p)	0.540				0.486		
Xylene (m,p) Xylene (total)	0.507	0.532	0.552	0.527	0.499	0.523	4.1
Xylene (o) Styrene Bromoform Isopropylbenzene	0.507						
Styrene	0.869	0.902	0.933	0.883	0.824	0.882	4.6
Bromoform	* 0.405	0.470	0.495	0.472	0.453	0.459	7.3
Isopropylbenzene	2.852						
cis-1,4-Dichloro-2-butene	0.220	0.263	0.281	0.260	0.254	0.256	8.8
-, -, -,	* 1.170						6.5
1,2,3-Trichloropropane	0.309						
trans-1,4-Dichloro-2-butene	0.221	0.260					
1,3-Dichlorobenzene	1.518	1.535	1.576	1.463			5.4
1,4-Dichlorobenzene	1.523						5.7
1,2-Dichlorobenzene	1.408						6.9
1,2-Dibromo-3-Chloropropane	0.206						
1,2,4-Trichlorobenzene	1.072						6.3
Hexachlorobutadiene	0.782						5.3
Nanhthalone	1.992						
2,2-Dichloropropane	0.409						
T, T DICHIO OU OUELE	0.432	0.441	0.442	0.415			5.6
1,3-Dichloropropane	0.556						5.4
Bromobenzene	0.908	0.942	0.985	0.938	0.896		3.7
n-Propylbenzene	0.768	0.786	0.812	0.780		0.778	3.2
		1	1	l			l

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL BURLINGTON Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 87896

Instrument ID: N Calibration Date: 05/20/02 Time: 1316

Lab File ID: NTM50CV Init. Calib. Date(s): 05/07/02 05/07/02

Heated Purge: (Y/N) Y Init. Calib. Times: 0922 1120

GC Column: CAP ID: 0.53 (mm)

:			100			
			MIN		MAX	
COMPOUND	RRF	RRF50	RRF	%D	%D	
Dichlorodifluoromethane	0.492	0.513		=====	20.0	
	. 1				20.0	
Chloromethane	0.382				20.0	
Vinyl Chloride Bromomethane	0.344	0.342				
Chloroethane	0.171	0.184 0.207			20.0	
Trichlorofluoromethane	0.164				20.0	
Acrolein						
Freon TF	0.025 0.554	0.031			20.0	^
1,1-Dichloroethene	0.334				20.0	
					20.0	
Acetone Methyl Iodide	0.068					
Carbon Disulfide	0.336					
	0.824	0.855			20.0	
Allyl Chloride	0.473	0.499			20.0	
Methylene Chloride	0.365					
Acrylonitrile	0.073				20.0	
trans-1,2-Dichloroethene	0.334				20.0	
1,2-Dichloroethene (total)	0.335	0.346		3.3	20.0	
Methyl-t-Butyl Ether	0.631	0.630			20.0	
1,1-Dichloroethane	0.623	0.640			20.0	
Vinyl Acetate	0.481	0.477			20.0	
Chloroprene	0.433	0.448			20.0	
cis-1,2-Dichloroethene	0.337	0.341			20.0	
2-Butanone	0.028	0.032		4	20.0	
Propionitrile	0.028	0.028			20.0	
Methacrylonitrile	0.082	0.083		4	20.0	l
Bromochloromethane	0.233	0.232			20.0	
Tetrahydrofuran	0.074				20.0	
Chloroform	0.540				20.0	
1,1,1-Trichloroethane	0.472				20.0	1
Carbon Tetrachloride	0.467		0.01		20.0	
Isobutyl Alcohol	0.014		0.01		20.0	
Benzene	0.841		,		20.0	
1,2-Dichloroethane	0.276				20.0	
Trichloroethene	0.348		0.01		20.0	
1,2-Dichloropropane	0.366		0.01		20.0	
Methyl Methacrylate	0.256		0.01	2.0	20.0	
Dibromomethane	0.306	0.313	0.01	2.3	20.0	

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL BURLINGTON Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 87896

Instrument ID: N Calibration Date: 05/20/02 Time: 1316

Lab File ID: NTM50CV Init. Calib. Date(s): 05/07/02 05/07/02

Heated Purge: (Y/N) Y Init. Calib. Times: 0922 1120

GC Column: CAP ID: 0.53 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D ======	MAX %D
1,4-Dioxane	0.004	0.004	0.01	0.0	20.0
Bromodichloromethane	0.552	0.544			
cis-1,3-Dichloropropene	0.584	0.584	0.01	1 .	
4-Methyl-2-pentanone	0.414	0.403	0.01		
Toluene	0.699	0.700	0.01		
trans-1,3-Dichloropropene	0.480	0.478	0.01		
Ethyl Methacrylate	0.513	0.507			
1,1,2-Trichloroethane	0.299	0.287	0.01		20.0
Tetrachloroethene	0.519	0.552	0.01	6.4	
2-Hexanone	0.291	0.302	0.01	3.8	
Dirromochloromethane	0.616	0.595	0.01		
1,2-Dibromoethane	0.554	0.544	0.01	1.8	
Chlorobenzene	0.890	0.893	0.3		
1,1,1,2-Tetrachloroethane	0.463	0.460	0.01	0.6	
Ethylbenzene	1.277	1.322	0.01	3.5	20.0
Xylene (m,p)	0.532	0.554	0.01	4.1	20.0
Xylene (total)	0.523	0.542	0.01	3.6	20.0
Xylene (o)	0.523	0.542	0.01	3.6	20.0
Styrene	0.882	0.905	0.01	2.6	20.0
Bromoform	0.459	0.448	0.1	2.4	20.0
Isopropylbenzene	2.887	2.911	0.01		
cis-1,4-Dichloro-2-butene	0.256	0.260	0.01	1.6	20.0
1,1,2,2-Tetrachloroethane	1.200	1.132	0.3	5.7	20.0
1,2,3-Trichloropropane	0.321	0.306	0.01	4.7	20.0
trans-1,4-Dichloro-2-butene	0.247	0.250	0.01	1.2	20.0
1,3-Dichlorobenzene	1.492	1.510	0.01	1.2	20.0
1,4-Dichlorobenzene	1.481	1.496	0.01	1.0	20.0
1,2-Dichlorobenzene	1.341	1.310	0.01	2.3	20.0
1,2-Dibromo-3-Chloropropane	0.231	0.219	0.01	5.2	20.0
1,2,4-Trichlorobenzene	1.020	1.048	0.01	2.7	
Hexachlorobutadiene	0.788	0.786		0.2	20.0
Naphthalene	1.846	1.632	0.01	11.6	
2,2-Dichloropropane	0.411	0.435		5.8	
1,1-Dichloropropene	0.423	0.447			
1,3-Dichloropropane	0.565	0.554			
Bromobenzene	0.934	0.914	0.01		
n-Propylbenzene	0.778	0.789	0.01	1.4	1 (

Mr. John Doerr June 14, 2002 Page 2 of 4

STL Burlington

SW846 Method 8260B Volatiles:

The original volatile organic analysis of the field sample identified as UCC-TT-12 area responses for the internal standard 1,4-Dichlorobenzene-d4, which were outside the control limits. The analysis of this sample also yielded percent recoveries of the surrogate monitoring compounds Toluene-d8 and Bromofluorobenzene that exceeded the control limits. This sample was subsequently re-analyzed and exhibited similar internal standard area responses and surrogate percent recoveries. Both sets of data have been presented in this case submittal. The laboratory suspects that this anomaly is due to the nature of the sample matrix.

The volatile organic analyses of the blank spike sample identified as NTMC LCS and the associated blank spike duplicate sample, NTMC LCSD exhibited percent recoveries of the target compounds Methyl Iodide, Trichloroethene and 1,2-Dichloropropane, which exceeded the control limits. These exceedences can be found on the associated form IIIs.

A select continuing calibration standard exhibited percent difference relative to the nominal concentrations that exceeded the established 20 percent difference criteria for the target compounds Chloroethane, Acrolein, Methyl Iodide and 1,4-Dioxane. These compounds were not detected in the field samples of this delivery group.

The analysis of the method blank identified as VBLKO7 exhibited the presence of the target compounds 1,2,4-Trichlorobenzene, Naphthalene and 1,2,3-Trichlorobenzene. However the concentrations detected in the method blank sample was below the method reporting limit. These compounds were not detected in the field samples of this delivery group. All associated results have been identified with the qualifier "B".

Please note that manual integrations were performed for the processing of volatile organic data files. Documentation of these integrations can be found in supporting documentation section of the data package.

SW846 Method 8270C Semivolatiles:

The semivolatile organic analysis of the field sample UCC-TT-12 was accomplished at a dilution due to the presence of non-target Tentatively Identified Compounds (TICs), which results in internal standard failures in the full strength acquisition.

The analysis of the sample UCC-TT-16 was accomplished at a dilution due to the presence of select target analytes which would have exceeded the calibration range of the instrument in a full strength acquisition.

6C SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: STL BURLINGTON Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 87896

Instrument ID: Q Calibration Date(s): 06/07/02 06/07/02

Calibration Time(s): 1217 1627

LAB FILE ID: RRF20 =QUQ020 RRF50 =QUQ050 RRF80 =QUQ080 RRF120=QUQ120 RRF160=QUQ160								
RRF80 =QUQ080 RRF12	U=QUQ12(J	KKLI	on=ÖnÖT(50		£	
COMPOUND	PPEGG	PPEC	DD TOO	DDD100	DDD1 60	RRF	8	
COMPOUND	RRF20	RRF50	RRF80	RRF120	RRF160	RRF	RSD	
Agenanhthono	* 1.153	1.125	1				7.3*	
	*	0.111			0.188	0.154	(22.2*>-	
Dibenzofuran	* 1.691	1.583	1.499	1.477	1.398	1.530	7.3*	
4-Nitrophenol	*	0.128	0.141	0.148	0.154	0.143	7.8*	
2,4-Dinitrotoluene	* 0.434	0.449			0.423	0.436	2.1*	
Diethylphthalate	1.519	1.347			1.111	1.281	12.3	
	* 1.300	1.216	1.177	1.136	1.080	1.182	7.0*	
4-Chlorophenyl-phenylether	* [′] 0.596	0.557	0.511	0.505	0.469	0.528	9.4*	
4-Nitroaniline		0.388					3.3	
4,6-Dinitro-2-methylphenol_		0.140	0.152	0.166	0.163	0.155	7.6	
N-nitrosodiphenylamine (1)	0.602	0.557	0.515	0.485	0.459	0.524	10.9	
Azobenzene	1.274	1.153	1.064	1.025	0.962	1.096	11.1	
	* 0.225		0.209	0.209	0.196	0.211	5.1*	
	* 0.246	0.240	0.228	0.226	0.215	0.231		
	*	0.126						
Phenanthrene	* 1.184	1.102			0.992	1.075	6.8*	
Anthracene	* 1.166							
Carbazole	1.158	1.130	1.062	1.047	0.993	1.078	6.2	
Di-n-butylphthalate	1.802				1.482		7.8	
Fluoranthene	* 1.209	1.168			1.042	1.121	5.9*	
Benzidine		0.406	0.728	0.467	0.566	0.542	(26.0)	
1 - 1 - 0110	* 1.656	1.581			1.364	1.497	7.9*	
Butylbenzylphthalate	1.005		0.950	0.952	0.921	0.966	3.8	
Benzo (a) anthracene	* 1.378	1.320	1.284	1.276	1.239	1.299	4.1*	
3,3'-Dichlorobenzidine	0.338	0.354	0.369	0.332	0.325	0.344	5.2	
	* 1.302	1.191	1.139	1.120	1.071	1.165	7.6*	
bis(2-Ethylhexyl)phthalate	1.418	1.358	1.248	1.224	1.171	1.284	7.9	
Di-n-octylphthalate	2.424	2.316	2.125	2.078	1.965	2.182	8.5	
	* 1.612		1.577	1.709	1.659	1.625	3.6*	
Benzo(k) fluoranthene	* 1.929	2.002	1.662	1.298				
Benzo(a) pyrene	* 1.558	1.547	1.471	1.350	1.340		7.2*	
Indeno (1, 2, 3-cd) pyrene	* 1.586	1.675	1.636				2.1*	
Dibenz(a,h)anthracene	* 1.269	1.343						
Benzo(g,h,i)perylene	* 1.409	1.484	1.392	1.409	1.366	1.412	3.1*	
=======================================			3	1	1	1	1 1	
2-Fluorophenol	* 1.607	1.633						
Phenol-d5	* 2.040	1.854	1.758	1.680	1.571	1.781	10.0*	
(1) Cannot be seperated from	l Dipheny	amine	l	l	l			

⁽¹⁾ Cannot be seperated from Diphenylamine

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 88054

Instrument ID: Q Calibration Date: 06/10/02 Time: 0544

Init. Calib. Times: 1217 1627

GC Column: RTX-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
=======================================	=======	========	=======	=====	====
N-Nitrosodimethylamine	1.325	1.472	0.01	11.1	25.0
Pyridine	1.786	1.776	0.01	0.6	25.0
Aniline	1.953	2.311	0.01	18.3	25.0
Phenol	1.845	2.148	0.8	16.4	20.0
bis(2-Chloroethyl)Ether	1.488	1.770	0.7	19.0	25.0
2-Chlorophenol	1.456	1.615	0.8	10.9	
1,3-Dichlorobenzene	1.526	1.669	0.6	9.4	25.0
1,4-Dichlorobenzene	1.528	1.657	0.5	8.4	20.0
Benzyl Alcohol	0.927	0.980	0.01	5.7	25.0
1,2-Dichlorobenzene	1.411	1.566	0.4	11.0	25.0
2-Methylphenol	1.149	1.240	0.7	7.9	
2,2'-oxybis(1-Chloropropane)	2.607	3.006	0.01	15.3	
4-Methylphenol	1.652	1.929	0.6	16.8	
N-Nitroso-di-n-propylamine	1.080	1.178	0.05	9.1	
Hexachloroethane	0.721	0.788	0.3	9.3	25.0
Nitrobenzene	0.429	0.480	0.2	11.9	25.0
Isophorone	0.841	0.947	0.4		25.0
2-Nitrophenol	0.232	0.246	0.1		20.0
2,4-Dimethylphenol	0.299	0.363	0.2		
bis (2-Chloroethoxy) methane	0.520	0.598	0.3		25.0
Benzoic Acid	0.192	0.187	0.01		25.0
2,4-Dichlorophenol	0.275	0.302	0.2		20.0
1,2,4-Trichlorobenzene	0.305	0.342	0.2		25.0
Naphthalene	1.018	1.141	0.7	12.1	
4-Chloroaniline	0.443	0.500	0.01	12.9	
Hexachlorobutadiene	0.167	0.184	0.01	10.2	1
4-Chloro-3-methylphenol	0.266	0.282	0.01	6.0	
2-Methylnaphthalene	0.819	0.937	0.01		25.0
Hexachlorocyclopentadiene	0.294	0.323	0.05	9.9	25.0
2,4,6-Trichlorophenol	0.385	0.420	0.2		20.0
2,4,5-Trichlorophenol	0.389	0.417	0.2	7.2	
2-Chloronaphthalene	1.013	1.132	0.8		25.0
2-Nitroaniline	0.422	0.465	0.01	10.2	
Dimethylphthalate	1.298	1.458	0.01	12.3	
Acenaphthylene	1.904	2.108		10.7	
2,6-Dinitrotoluene	0.332	0.372	0.2	12.0	
3-Nitroaniline	0.374	0.410	0.01	9.6	25.0
				l,	l

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 87896

Instrument ID: Q Calibration Date: 06/10/02 Time: 0544

Init. Calib. Times: 1217 1627

GC Column: RTX-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
Acenaphthene	1.058	1.188	0.9	12.3	20.0
2,4-Dinitrophenol	0.154				25.0
Dibenzofuran	1.530	1.738	0.03		25.0
4-Nitrophenol	0.143	0.131	0.05		25.0
2,4-Dinitrotoluene	0.1436		0.2		25.0
Diethylphthalate	1.281	1.467	0.01		25.0
Fluorene	1.182	1.342	0.9		25.0
4-Chlorophenyl-phenylether	0.528	0.590	0.4		25.0
4-Nitroaniline	0.380	0.420			25.0
4,6-Dinitro-2-methylphenol	0.155				25.0
N-nitrosodiphenylamine	0.524			I .	20.0
Azobenzene	1.096		0.01		25.0
4-Bromophenyl-phenylether	0.211	0.226	0.1		25.0
Hexachlorobenzene	0.231	0.249			25.0
Pentachlorophenol	0.136		0.04		20.0
Phenanthrene	1.075	1.188	0.7		25.0
Anthracene	1.050	1.148	0.7		25.0
Carbazole	1.078	1.166	0.01	8.2	25.0
Di-n-butylphthalate	1.616	1.777	0.01	10.0	25.0
Fluoranthene	1.121	1.184	0.6	5.6	20.0
Benzidine	0.542	0.377	0.01		2 5.0
Pyrene	1.497	1.692	0.6	13.0	25.0
Butylbenzylphthalate	0.966	1.042	0.01		25.0
Benzo (a) anthracene	1.299	1.404	0.8	8.1	25.0
3,3'-Dichlorobenzidine	0.344		0.01	9.3	25.0
Chrysene	1.165	1.300	0.7		25.0
bis(2-Ethylhexyl)phthalate_	1.284	1.451	0.01		25.0
Di-n-octylphthalate	2.182	2.468	0.01		20.0
Benzo(b) fluoranthene	1.625	1.837	0.7	13.0	25.0
Benzo(k) fluoranthene	1.638	1.832	0.7		25.0
Benzo(a)pyrene	1.453	1.650	0.7		20.0
Indeno(1,2,3-cd)pyrene	1.626				25.0
Dibenz(a,h)anthracene	1.292	1	1		25.0
Benzo(g,h,i)perylene	1.412	1.541	0.5	į.	25.0
2-Fluorophenol	1.599	1.727	0.6	8.0	25.0
Phenol-d5	1.781	1.895	0.8		25.0
					l

FORM 3 SOIL SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.:

SDG No.: 87896

Matrix Spike - STLVT Sample No.: P3LCS Level: (low/med) LOW

1	SPIKE	LCSD	LCSD			
	ADDED	CONCENTRATION	8	ક	OC T	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
		(49/149/	======	=====	=====	======
N-Nitrosodimethylamine	1000	850	85	12	40	51-119
Pyridine	1000	340	34	12	40	15-102
Aniline	2000	140	(7*		40	10- 73
Phenol	1000	990	99	12	40	59-117
bis(2-Chloroethyl)Ether	1000	980	98	13	40	57-116
2-Chlorophenol	1000	980	98	12	40	61-102
1,3-Dichlorobenzene	1000	870	87	10	40	60-103
1,4-Dichlorobenzene	1000	910	91	10	40	65- 99
Benzyl Alcohol	1000	1100	110	24	40	68-117
1,2-Dichlorobenzene	1000	890	89	11	40	65-101
2-Methylphenol	1000	930	93	20	40	66- 98
2,2'-oxybis(1-Chloropro	1000	980	98	11	40	64-111
4-Methylphenol	2000	1600	80	13	40	56-112
N-Nitroso-di-n-prop.(1)	1000	950	95	10	4.0	50-116
Hexachloroethane	1000	990	99	11	40	52-117
Nitrobenzene	1000	940	94	12	40	58-111
Isophorone	1000	950	95	15	40	52-119
2-Nitrophenol	1000	990	- 99	15	40	62-115
2,4-Dimethylphenol	1000	390	39	36	40	33-120
bis(2-Chloroethoxy)meth	1000	1000	100	13	40	39-103
Benzoic Acid	2000	1800	90	5	40	10-146
2,4-Dichlorophenol	1000	1100	110	18	40	56-115
1,2,4-Trichlorobenzene	1000	1000	100	16	40	63-111
Naphthalene	1000	960	96	14	40	61-104
4-Chloroaniline	2000	520	26	26	40	10- 81
Hexachlorobutadiene	1000	920	92	13	40	52-121
4-Chloro-3-methylphenol	1000	1100	110	21	40	61-116
2-Methylnaphthalene	1000	1000	100	9	40	64-110
					l	l

(1) N-Nitroso-di-n-propylamine

ш	Q=1	L - 1			E7		and Dr	ND 1		n asterisk	_
#	COLUMN	ro be	usea	FΩ	riad	recovery	and RE	u vames	with at	i ascerise	₹

COMMENTS:			
COMMENTO:	 	 	
	•		

^{*} Values outside of QC limits

SOIL SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

Case No.: 22000

SAS No.:

SDG No.: 87896

Matrix Spike - STLVT Sample No.: P3LCS

Level: (low/med) LOW

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
=======================================	=======	=========	===========	=====	=====
N-Nitrosodimethylamine	1000		750	75	51-119
Pyridine	1000		300	30	15-102
Aniline	2000		120	6*	10- 73
Phenol	1000		880	88	59-117
bis(2-Chloroethyl)Ether	1000		860	86	57-116
2-Chlorophenol	1000		870	87	61-102
1,3-Dichlorobenzene	1000		790	79	60-103
1,4-Dichlorobenzene	1000		820	82	65- 99
Benzyl Alcohol	1000		860	86	68-117
1,2-Dichlorobenzene	1000		800	.80	65-101
2-Methylphenol	1000	No. of the second second	760	76	66- 98
2,2'-oxybis(1-Chloropro	1000		880	88	64-111
4-Methylphenol	2000		1400	70	56-112
N-Nitroso-di-n-prop.(1)	1000		860	86	50-116
Hexachloroethane	1000	,	890	89	52-117
Nitrobenzene	1000		830	83	58-111
Isophorone	1000		820	82	52-119
2-Nitrophenol	1000		850	.85	62-115
2,4-Dimethylphenol	1000		270	27*	33-120
bis(2-Chloroethoxy)meth	1000		880	88	39-103
Benzoic Acid	2000	•	1900	95	10-146
2,4-Dichlorophenol	1000		920	92	56-115
1,2,4-Trichlorobenzene	1000		850	85	63-111
Naphthalene	1000		830	83	61-104
4-Chloroaniline	2000		390	20	10- 81
Hexachlorobutadiene	1000		810	81	52-121
4-Chloro-3-methylphenol	1000		890	89	61-116
2-Methylnaphthalene	1000		910	91	64-110

⁽¹⁾ N-Nitroso-di-n-propylamine

COMMENTS:			
	 	· · · · · · · · · · · · · · · · · · ·	

[#] Column to be used to flag recovery and RPD values with an asterisk
* Values outside of QC limits

SOIL SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.:

SDG No.: 88054

Matrix Spike - STLVT Sample No.: Q7LCS Level: (low/med) LOW

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION		ક	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
		=========	=========	=====	=====
Hexachlorocyclopentadie	2000	•	1400	70	10-146
2,4,6-Trichlorophenol	2000		1800	90	10-140
2,4,5-Trichlorophenol	2000		1900	95	34-122
2-Chloronaphthalene	1000		690	€9 *	72-110
2-Nitroaniline	2000		1900	95	60-126
Dimethylphthalate	1000	. 10	960	96	62-119
Acenaphthylene	1000		920	92	59-104
2,6-Dinitrotoluene	1000		970	97	71-108
3-Nitroaniline	2000		1100	55	44- 79
Acenaphthene	1000		900	90	59-111
2,4-Dinitrophenol	2000		1400	70	10-208
Dibenzofuran	1000	,	930	93	67-121
4-Nitrophenol	2000		1900	95	42-147
2,4-Dinitrotoluene	1000		890	89	60-121
Diethylphthalate	1000		910	.91	62-118
Fluorene	1000		930	93	61-120
4-Chlorophenyl-phenylet	1000		950	95	67-110
4-Nitroaniline	2000		1400	70	44-105
4,6-Dinitro-2-methylphe	2000		2000	100	30-166
N-nitrosodiphenylamine	1000		910	91	57-116
Azobenzene	1000		970	97	66-132
4-Bromophenyl-phenyleth	1000		910	91	67-101
Hexachlorobenzene	1000		850	85	52-122
Pentachlorophenol	2000		450	22	19- 94
Phenanthrene	1000		930	93	66-111
Anthracene	1000		940	94	59-120
Carbazole	1000		920	92	56-145
Di-n-butylphthalate	1000		930	93	62-118

(1)	N-Nit	roso-di	-n-prop	ylamine
-----	-------	---------	---------	---------

#	Column	to	be	used	to	flaq	recovery	and	RPD	values	with	an	asterisk
---	--------	----	----	------	----	------	----------	-----	-----	--------	------	----	----------

COMMENTS:				
		 ···	 	
	• •			

^{*} Values outside of QC limits

SOIL SEMIVOLATILE LAB CONTROL SAMPLE

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

Case No.: 22000 SAS No.:

SDG No.: 88054

Matrix Spike - STLVT Sample No.: Q7LCS Level: (low/med) LOW

COMPOUND	SPIKE ADDED (ug/Kg)	LCSD CONCENTRATION (ug/Kg)	LCSD % REC #	% RPD #	RPD	IMITS REC.
	2000	1300	65	7	40	10-146
Hexachlorocyclopentadie	2000 2000	1800	90	0	40 40	10-146
2,4,6-Trichlorophenol		1900	95	- 1	40	34-122
2,4,5-Trichlorophenol	2000	700	70*	0		
2-Chloronaphthalene	1000) 1	40	72-110
2-Nitroaniline	2000	1900	95	0	40	60-126
Dimethylphthalate	1000	960	96	0	40	62-119
Acenaphthylene	1000	930	93	1	40	59-104
2,6-Dinitrotoluene	1000	950	95	. 2	40	71-108
3-Nitroaniline	2000	1100	55	0	40	44- 79
Acenaphthene	1000	900	90	. 0	40	59-111
2,4-Dinitrophenol	2000	1800	90	25	40	10-208
Dibenzofuran	1000	930	93	0	40	67-121
4-Nitrophenol	2000	2000	100	5	40	42-147
2,4-Dinitrotoluene	1000	900	90	1	40	60-121
Diethylphthalate	1000	910	91	0	40	62-118
Fluorene	1000	940	94	1	40	61-120
4-Chlorophenyl-phenylet	1000	970	97	2	40	67-110
4-Nitroaniline	2000	1400	70	0	40	44-105
4,6-Dinitro-2-methylphe	2000	2200	110	10	40	30-166
N-nitrosodiphenylamine	1000	930	93	2	40	57-116
Azobenzene	1000	1000	100	3	40	66-132
4-Bromophenyl-phenyleth	1000	940	94	3	40	67-101
Hexachlorobenzene	1000	870	87	_2	40	52-122
Pentachlorophenol	2000	720	36	48*	9 40	19- 94
Phenanthrene	1000	980	98	5	40	66-111
Anthracene	1000	980	98	4	40	59-120
Carbazole	1000	940	94	2	40	56-145
Di-n-butylphthalate	1000	970	97	4	40	62-118
<u></u>		I		l		l

(1) N-Nitroso-di-n-propylamine

#	Column	tol	oe 11	sed	to	flag	recovery	and	RPD	values	with	an	asterisk

COMMENTS:		

^{*} Values outside of QC limits

FORM 4 SEMIVOLATILE METHOD BLANK SUMMARY

SBLKP3

Lab Name: STL BURLINGTON

Contract: 22000

Lab Code: STLVT

SAS No.:

SDG No.: 87896

Lab File ID: B0520P3

Lab Sample ID: SBLKP3

Instrument ID: Q

Date Extracted: 05/20/02

Matrix: (soil/water) SOIL

Date Analyzed: 05/31/02

Level: (low/med) LOW

Time Analyzed: 0212

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	STLVT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	======================================	======================================		05 (21 (02
01 02	P3LCS P3LCSD	P3LCS P3LCSD	Q0520P3 Q0520P3D	05/31/02
03		487113	487113	06/10/02
04	UCC-TT-16(0.	487259	487259D	06/10/02
05	UCC-TT-12 (3		487120D	05/31/02 06/10/02 06/10/02 06/10/02
06			**************************************	-
07				
08 09		£		
10				
11				
12				
13		· · · · · · · · · · · · · · · · · · ·		
14 15				
16				
17				
18				
19				
20				
21 22	<u> </u>			
23				
24				
25				
26				
27				
28				
29 30				
30		1		

COMMENTS:	•	

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SBLKP3

Lab Name: STL BURLINGTON Contract: 22000

Lab Code: STLVT Case No.: 22000 SAS No.: SDG No.: 87896

Matrix: (soil/water) SOIL Lab Sample ID: SBLKP3

Sample wt/vol: 30.0 (g/mL) G Lab File ID: B0520P3

Level: (low/med) LOW Date Received:

% Moisture: 0 decanted: (Y/N) N Date Extracted:05/20/02

Concentrated Extract Volume: 500(uL) Date Analyzed: 05/31/02

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND (ug/L Of ug/		<u> </u>
62-75-9	N-Nitrosodimethylamine	330	U
110-86-1	Pyridine	330	U
62-53-3		830	ប
108-95-2	Phenol	500	
111-44-4	bis(2-Chloroethyl)Ether	330	Ū
	2-Chlorophenol	330	U
	1,3-Dichlorobenzene	330	U
	1,4-Dichlorobenzene	330	U
100-51-6	Benzyl Alcohol	330	U
	1,2-Dichlorobenzene	330	U
	2-Methylphenol	330	U
	2,2'-oxybis(1-Chloropropane)	330	U
106-44-5	4-Methylphenol	330	U
	N-Nitroso-di-n-propylamine	330	U
67-72-1	Hexachloroethane	330	U
98-95-3	Nitrobenzene	330	U
78-59-1	Isophorone	330	U
	2-Nitrophenol	330	U
105-67-9	2,4-Dimethylphenol	330	U
111-91-1	bis(2-Chloroethoxy) methane	330	U
	Benzoic Acid	120	J
120-83-2	2,4-Dichlorophenol	330	U
	1,2,4-Trichlorobenzene	330	U
91-20-3	Naphthalene	330	U
106-47-8	4-Chloroaniline	330	U
87-68-3	Hexachlorobutadiene	330	U
	4-Chloro-3-methylphenol	330	8
	2-Methylnaphthalene	330	
	Hexachlorocyclopentadiene	330	
88-06-2	2,4,6-Trichlorophenol	330	
	2,4,5-Trichlorophenol	830	
91-58-7	2-Chloronaphthalene	330	1
88-74-4	2-Nitroaniline	830	1
		030	

U.S. EPA - CLP

9 ICP SERIAL DILUTIONS

SAMPLE NO.

UCC-TT-28 (1-1.5) L

Lab Name: STL BURLINGTON Contract: 22000

Matrix (soil/water): SOIL Level (low/med): LOW

Concentration Units: ug/L

Concentration Units: ug/L									
Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	м		
Aluminum	42530.00		45550.00		7.1		P		
Antimony	46.28	В	51.50	В	11.3	D	P		
Arsenic	621.00		672.80		8.3		P		
Barium	1637.00		1723.00		5.3		P		
Beryllium	4.30	В	4.35	В	1.2		P		
Cadmium	18.11		22.22	В	22.7	D	P		
Calcium	508100.00		546100.00		7.5	Ī	P		
Chromium	621.20		666.00		7.2	1	₽		
Cobalt	659.20		721.90		9.5	ĺ	P		
Copper	2284.00		2406.00		5.3		P		
Iron	207500.00		223300.00		7.6		P		
Lead	3079.00		3476.00		(12.9	E	P		
Magnesium	149000.00		162200.00		8.9		P		
Manganese	9025.00		9700.00		7.5	İ	P		
Nickel	218.70		246.40		12.7) E	P		
Potassium	6126.00		7914.00	В	29.2	D	P		
Selenium	17.34		10.00	U	100.0)	P		
Silver	3.98	В	15.64	В	293.0		P		
Sodium	2074.00	В	4117.00	В	98.5	i	P		
Thallium	5.80	ט	29.00	Ū			P		
Vanadium	175.00	ii	184.40	В	5.4		P		
Zinc	2939.00	ii	3230.00		9.9		P		

U.S. EPA - CLP

9 ICP SERIAL DILUTIONS

SAMPLE NO.

UCC-TT-4 (5-5.5) L

Lab Name: STL BURLINGTON Contract: 22000

Matrix (soil/water): SOIL Level (low/med): LOW

Concentration Units: ug/L

Concentration Units: ug/L						
Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	% Differ- ence	Q	M
Aluminum	189500.00		224700.00	(18.6	E	P
Antimony	35.27	В	52.20 B	48.0	2	P
Arsenic	54.53	1 1	63.40	[16.3]	r	P
Barium	1135.00 /	1 1	1314.00	[15.8]		P
Beryllium	9.71		10.07 B	3.7		P
Cadmium	11.22		11.78 B	5.0		P
Calcium	101600.00		110300.00	8.6		P
Chromium	267.30		310.70	[16.2]	E	P
Cobalt	169.80		199.10 B	[17.3]) E	P
Copper	277.50	1 1	318.60	(14.8)	E	P
Iron	294600.00		346100.00	[[17.5]	E	P
Lead	185.80	1 1	230.10	23.8) E	P
Magnesium	76990.00	ĪĪ	84380.00	9.6		P
Manganese	3188.00		3404.00	6.8		P
Nickel	359.30	İ	430.80	(19.9)) E	P
Potassium	33050.00	İ	42770.00	29.4	E	P
Selenium	7.68	1 1	20.97 B	173.0		P
Silver	2.41	В	6.00 U	100.0		P
Sodium	1550.00	В	4137.00 B	166.9		P
Thallium	3.30	U	16.50 U			P
Vanadium	368.00	İ	412.00	[12.0]) E	P
Zinc	1699.00	i i	2021.00	(19.0) E	P