

Los Alamos Technical Associates, Inc.

33 Washington Highway, Amherst, NY 14226 (716) 830 8636 (phone) www.lata.com

A Service-Disabled Veteran-Owned Small Business

August 27, 2012

Mr. Salvatore J. D'Angelo QA and Regulatory Affairs Manager Niacet Corporation 400 47th Street Niagara Falls, NY 14304 Albuquerque
Buffalo
Chicago
Columbus
Denver
Las Vegas
Los Alamos
New York
New Jersey
Tennessee
Washington, DC

Subject: Summary of Findings for Characterization Activities at 47th Street Facility

Dear Mr. D'Angelo,

This letter and the corresponding attachments represent a summary of findings for the characterization activities performed on Tuesday and Wednesday July 10 and 11, 2012. A summary of the significant results from the Geoprobe sampling, radiation survey, and laboratory activities are presented below. Details of field work performed are included within LATA daily field reports, subcontractor survey reports, and GIS figures that illustrate the locations where intrusive sampling occurred with associated gamma radiation scanning. Validated laboratory data from radionuclide and chemical analyses are also attached.

This characterization effort represents the third phase of activities completed to address elevated radioactive materials in the subsurface primarily contained within three focus areas at the Niacet Corporation Site. The previous phases included a cursory and detailed gamma walkover survey that established the approximate location of the three areas of concern. Based upon correspondence with Niacet, it was the goal of this mobilization to fully characterize the subsurface radioactive materials, both radiologically and chemically, allowing for a more accurate estimate of costs should the decision be made to remove this material. Secondarily, the use of laboratory results with corresponding field survey results enables Niacet to make sound decisions regarding the health and safety of site personnel.

These characterization activities included a larger field crew than previous mobilizations and consisted of a supervisor/project manager/health physicist with sample collection materials, a radiation technician with appropriate radiation detection equipment, and a truck-mounted Geoprobe rig with operator. It was decided that the most cost effective and practical approach to obtaining representative samples from the subsurface was to use a 3" OD split spoon sampler;

after the initial boring, impacted material was confirmed to be within the initial 2 feet below ground surface (bgs) and it was imperative to obtain as much sample as possible.

Over a two day period, the field crew advanced 36 borings within the "focus" areas identified as (a) asphalt area east of Building #102, (b) the southeast field area, and c) the northeast area near Building #6. Figure 1 illustrates the delineated areas and boring locations (approximately 12 borings per focus area). At each boring location, the following activities were performed: (1) a surface or background gamma measurement, (2) split spoon core gamma measurements, (3) down-hole boring gamma measurement, and (4) collection of a grab or composite sample for the areas observed to contain elevated radioactive materials (See attached field and survey reports for details of field activities). Figures 2 through 4 provide exact boring locations, an indicator of whether or not the location is impacted, and details of pertinent chemical and radionuclide analytical results from the samples collected at that location. The following noteworthy findings were observed:

- Although the three focus areas are relatively large and facilitate delineation of the presence of surface and subsurface gamma radiation, the approximately 10 boring locations per area clearly indicate localized 'pockets' of radioactive material (i.e., impacts are not ubiquitous throughout) that did not exceed 24" bgs.
- Approximately half (i.e., 17 of 36) of the boring locations were observed to contain elevated radioactivity, from which samples were collected. The "background" or unimpacted boring locations helped to reduce the footprint of the impacted area.
- With the exception of boring HSB1 and HSB2 in the SE Focus Area, the field gamma survey data mimicked the laboratory analytical results for radionuclides. HSB1 and HSB2 yielded surface gamma radiation readings (i.e., 32k to 110k cpm) and down-hole readings (i.e., 115k to 430k cpm); however, laboratory results indicated background isotopic concentrations. This data suggests that highly localized hot spots could be present, and impacted material was not collected during sampling.
- As detailed in the attached field reports, approximately 50% of the HSB locations experienced Geoprobe 'refusal' from 5" to 16" bgs. This indicated significant presence of dense rock and gravel that is typical of slag-like material (e.g., Building 102 Area). The remaining hot spots contained a conglomeration of metallic-looking, sandy, rocky nonnative material.
- Elevated areas containing very distinctive physical characteristics included the following:
 - 1. Rock pile near surface foundations in SE Focus area rip rap characteristics
 - 2. Surface rock/boulders in SE Focus Area along fence line; main source of activity
 - 3. Blue-green-gray glassy coated rock east of Building 6
 - 4. Metallic looking, dark, sandy, granular soil in NE and SE Focus Areas
- A consistent line of hot spots was observed near the Contractor's parking lot along the fence line. Elevated surface gamma radiation readings up to approximately 180k cpm were detected. This additional walkover was performed at the request of Niacet.
- Comparatively significant surface/core/down-hole gamma measurements were observed at the following locations: HSB1, 2, and 3 in Building 102 Area, HSB2 in SE Area, and HSB3 in NE Area. These areas, with the exception of HSB2 in SE Area as noted above, also yielded elevated laboratory results for certain gamma emitting radionuclides.

- There were some instances when a high surface gamma reading did not yield an elevated down-hole gamma measurement and vice versa. This indicates the presence of surface radioactivity versus radioactivity at depth and vice versa.
- Chemical analyses from laboratory data indicated the presence of PCBs in all three focus areas. Mercury and arsenic were detected in NE Focus Area, but below RCRA standards.
- The following table provides a synopsis of the chemical and radionuclide data from the boring locations with elevated gamma radiation:

Boring	Surface Gamma	Core Gamma	Down-hole	Radionuclide	Chemical
Location	Measurement	Measurement	Gamma	Data	Data
	(cpm)	(cpm)	Measurement	(pCi/g)	
	\ 1 /	\ 1 /	(cpm)	VI 67	
Bldg. 102			, ,		
HSB1*	93k	16k	900k	Pb-214 – 647	NA
				Th-232-32	
				U-235 – 2.5	
				U-238 – 48	
HSB2*	25k	11k	485k	Pb-214 – 90	PCB – 151
				Th-232 - 8.6	μg/kg
				U-235-0.4	
				U-238 – 11.2	
HSB3	51k	17k	780k	Comp w/	Comp w/
		101		above	above
HSB4	NA	18k	200k	Comp w/	Comp w/
GET A				above	above
SE Area	201	7.71	1151	DI 014 000	NTA
HSB1*	32k	7.7k	115k	Pb-214 – 2.28	NA
				Th-232 – 0.6	
				U-235 – 0.1 U-238 – 0.6	
HSB2*	110k	7.8k	430k	Pb-214 – ND	PCB – 260
HSB2**	TTOK	/.8K	430K	Th-232 – 0.6	
				U-235 – 0.1	µg/kg
				U-238 - 0.1 U-238 - 0.9	
HSB3	45k	12k	75k	Pb-214 – 3.34	NA
TISD3	TJK	12K	/ JK	Th-232 – 3.14	1171
				U-235-0.26	
				U-238 – 6.1	
HSB4	27k	12k	35k	Pb-214 – 3.09	NA
	_/11			Th-232-1.22	- 14 -
				U-235-0.20	
				U-238-2.48	
NE Area		:		-	:
HSB1*	27k	11k	63k	Pb-214 - 7.03	ND
				Th-232 - 1.38	
				U-235-0.07	

				U-238 – 1.33	
HSB2	40k	13k	140k	Pb-214 – 13.5	Comp w/
				Th-232 – 1.49	above
				U-235 – 0.20	
				U-238 – 2.40	
HSB3*	45k	20k	74k	Pb-214 – 12.3	PCB – 123
				Th-232-0.60	μg/kg
				U-235-0.71	
				U-238 – 13.6	

Notes:

- (1) Bldg. 102 background was approximately 14k 17k cpm
- (2) High core gamma measurement due to high background at HSB3 in NE Area
- (3) Field gamma measurements represent highest reading recorded at location
- (4) Radionuclide data represents highest measurement of alpha and gamma spec.
- (5) Only significant radionuclides are listed. See full laboratory package for details.
- * Multiple borings were advanced at this location

 $NA-not\ analyzed$

ND - not detected

In summary, Building 102 Area reflected the highest radiation readings in the field and the highest radionuclide concentrations within the corresponding laboratory results. The NE Area also reflected high readings in the field and elevated radionuclide concentrations. Although both areas exceed typical cleanup values for one or more radionuclides, Building 102 area was significantly more elevated (i.e., 15 to over 100x the standard) than the NE Area (i.e., 1 to 3x the standard). The SE Area yielded field and laboratory results that were slightly elevated, but mostly at or below the typical cleanup standard.

Should you have any questions or concerns, please do not hesitate to contact me at your convenience: 716 830 8636 or jbrydges@lata.com. Thank you for the opportunity.

Sincerely,

Jason Brydges, PE Senior Project Manager

cc: Larry Montani, Managing Director Rob Pfendler, Department Manager Ron Voorheis, D&D/Construction Manager

Encl: LATA Field Reports

Site Figures

Survey Field Reports Laboratory Data

LATA FIELD REPORTS

Field Characterization Effort at Niacet Corporation 400 47th Street, Niagara Falls, NY 14304

Project Number 11170.003

Field Report

DATE: 7-10-12 **DAY:** Tuesday **COMPILED BY:** Jason Brydges

WEATHER

Morning	Temperature: 70 degrees F. Partly cloudy. No wind.
Afternoon	Temperature: 86 degrees F. Sunny. Slight breeze, 5mph wind.

PERSONNEL

Nomes	Commons	Position	Hours		
Name	Company	Position	From	To	Total
Jason Brydges	LATA	Program Manager	8:00 am	5:30 pm	8.5 hours
Todd Cleveland	GRD	Radiation Control Technician	8:00 am	5:00 pm	8 hours
Eric	Nature's Way	Geoprobe Operator	8:30 am	5:30 pm	8 hours
Total Man Hours Worked 24.5 hours					24.5 hours

MATERIALS/EQUIPMENT USED ON-SITE:

- Standard level D PPE (i.e., steel toe boots, hard had, and safety glasses) with heavy duty work gloves
- Ludlum 2221 meter with GX-2 gamma radiation scintillation detector. See survey forms for serial numbers and calibration dates.
- Eberline contamination meter (model 12) with alpha/beta/gamma detector (44-9 probe)
- Truck mounted Geoprobe with numerous attachments (e.g., 3" split spoon probe)
- Pickup truck with pin flags, fluorescent paint, latex gloves, sample buckets, and paper towels/rags.
- Sampling station with coolers, sample jars, ice, packaging tape and material, 5 gallon sample pails, stainless steel mixing bowl with spoons, non-phosphate cleanser, and paper towels.

WORK LOG/MINUTES:

8:30 am: Met with John Bielicki to administer site safety training to Eric from Nature's

Way and obtain card reader. Todd and Jason already trained. Todd initiated paint

markings of Bldg 102 area to map-out probe locations.

9:30 am: Sample bottles already on-site. Had quick meeting with Sal D'Angelo and John

Bielicki. Set up sample nomenclature. Performed tailgate safety meeting with

field crew explaining anticipated hazards during the day.

10:00 am: Set up at Bldg 102 area with sampling station, marked utilities and hot spots,

corrected hand held GPS for proper units, labeled approximately 7 biased hot

spots and 7 unbiased pre-survey grid units.

12:00 pm: As requested by Sal, completed walkover of Contractor Parking Area on the south

side of the property. This was performed between 10am and noon when there was

downtime due to engine repairs of Nature's Way Geoprobe unit.

1:00 pm: After lunch and completion of Geoprobe engine repairs, we began GSU = grid

spot unbiased and HSB – hot spot biased borings.

2:00 pm: Completed HSB1 boring at Bldg 102. Had to punch three holes A, B, and C to

adequately get to 2' bgs. A lot of refusal in this area at 5" and 16" depths. A very elevated grab sample was collected, in addition to a composite core sample from

A, B, and C borings.

Background in area was 17k cpm, surface reading was 93k cpm, split spoon cores

read from 9k to 16k cpm, and down-hole readings read from 220k to 900k cpm

gamma radiation.

Material characteristics included 3" asphalt followed by soil, brick, and gravel.

2:30 pm: Completed HSB2 boring at Bldg 102. Punched two holes A and B at this location

due to refusal at 6" bgs. Boring A was more elevated than B and material was

collected for sample.

Surface reading was 25k cpm, cores ranged from 8k to 11k cpm, and down-hole

readings read 24k to 485k cpm gamma radiation.

Material characteristics mimicked that of HSB1 – asphalt, soil, brick, and gravel.

3:00 pm: Completed HSB3 boring at Bldg102. Only single boring necessary, as there was

no refusal. Collected sample and composited with HSB2.

Surface reading was 51k cpm, core readings ranged from 9k to 17k cpm, and

down-hole reading was 780k cpm gamma radiation.

Material was clearly elevated within initial 1' that was metallic granular, rocky

soil. Bottom 1' was non elevated natural clay.

3:30 pm:

Completed HSB4 boring at Bldg 102. Only single boring necessary – no refusal within railroad tracks. Collected sample and composited with HSB2 and 3 for radionuclide and chemical analyses.

Background in area was 14k cpm, core readings ranged from 8k to 18.5k cpm, and down-hole reading was 200k cpm gamma radiation.

Material was similarly delineated to HSB3 in that initial 1' was elevated and metallic gravelly rock. Bottom 1' was a sandy clayey soil.

3:45 pm:

Completed GSU1 boring at Bldg 102. Single boring with no refusal within railroad tracks. No sample collected, as gamma radiation readings were low/background and did not warrant it.

Surface reading was 6800 cpm, core readings ranged from 6200 to 7800 cpm, and down-hole reading was 17k cpm gamma radiation.

Material was similar to HSB4 that was also within railroad tracks – layer of gravel with 18" of black, sandy clayey soil.

4:00 pm:

Completed GSU2 boring at Bldg 102. Single boring with no refusal in asphalt. No sample collected – gamma readings low/background.

Surface reading was 8200 cpm, core readings ranged from 7800 to 9000 cpm, and down-hole reading was 14k cpm gamma radiation.

Material beneath 3" of asphalt was black sandy soil.

4:30 pm:

Completed GSU3 boring at Bldg 102. Single boring with no refusal in asphalt. No sample collected – gamma readings low/background.

Surface reading was 5100 cpm, core readings ranged from 5100 to 7100 cpm, and

down-hole reading was 7900 cpm gamma radiation.

Material beneath 3" of asphalt was identical to GSU2 – black sandy soil.

4:45 pm:

Completed GSU4 boring at Bldg 102. Single boring with no refusal in asphalt. No sample collected – low gamma readings.

Surface reading was 5200 cpm, core readings ranged from 6200 to 9500 cpm, and down-hole reading was 25k cpm gamma radiation.

Material beneath 3" of asphalt was a conglomeration of clay, metallic gravelly rock, and fire brick.

5:00 pm:

Completed GSU5 boring at Bldg 102. Single boring with no refusal in asphalt. No sample collected – low gamma readings.

Surface reading was 6400 cpm, core readings ranged from 7100 to 9200 cpm, and down-hole reading was 9100 cpm gamma radiation.

Material beneath 3" of asphalt was a black sandy soil with ash-like deposits, very similar to GSU2 and 3. Clay was predominate material at 2' bgs.

GENERAL NOTES:

• Exterior site conditions were favorable for insitu characterization activities. No major negative impacts existed (e.g., standing water, logistics, obstructions, etc.).

- There was an initial delay in the morning due to Nature's Way Geoprobe engine having trouble starting.
- During the morning delay, the contractor parking lot was surveyed with the model 2221 and GX-2 probe. A distinct line of hot spots were found along parking lot fenced area up to 180,000 cpm gamma radiation. In addition, some locations in Southeast Focus Area had large rock-like material with elevated readings.
- It was interesting to discover that no boring location that was background/non-elevated had any refusal due to subsurface rock. Split spoon sampler made it easily to depth in these locations.
- Three inch ID split spoon core sampler was chosen as best methodology to use. Although more difficult to pass through the subsurface, it provided the most material for sampling and scanning.
- The characterization efforts were initiated based upon meetings with Niacet. The purpose of the characterization was to (1) provide specific information of elevated subsurface material, and (2) delineate further extent of contamination.
- The impacted area that was the focus of this effort was the asphalt area near Building #102.
- Background radiation measurements were obtained randomly based upon RSO concerns.
- Samples were only collected from elevated readings that were clearly identified
- All field personnel were surveyed after field activities to check for contamination with a model 12 and 44-9 probe. All personnel frisked at background or <40 cpm alpha/beta/gamma radiation.

ISSUES/OBSERVATIONS/CONFLICTS:

- (1) Nature's Way Geoprobe engine malfunctioned early in the day and had to be repaired. This caused approximately 2 hour delay.
- (2) Heat of the day melted much of the ice for sample packaging.
- (3) Refusal at the elevated boring locations caused some delays and inability to complete full boring.

CORRECTIVE ACTIONS:

- (1) To be most productive during morning delay, other two focus areas were walked and painted. In addition, a new area near the contractor parking lot was surveyed.
- (2) Unfortunately, the samples were received by the laboratory at elevated temperatures. Although this would have little effect on radionuclide results, the samples were still flagged "J" qualified during LATA validation process.
- (3) Multiple boring locations were chosen as close as possible to the initial desired location when refusal was encountered during the split spoon coring process. Although this caused more time for these locations, the multiple boring locations allowed for more thorough characterization/coverage.

Field Characterization Effort at Niacet Corporation 400 47th Street, Niagara Falls, NY 14304

Project Number 11170.003

Field Report

DATE: 7-11-12 **DAY:** Wednesday **COMPILED BY:** Jason Brydges

WEATHER

Morning	Temperature: 72 degrees F. Partly cloudy. No wind.
Afternoon	Temperature: 84 degrees F. Sunny. Wind at 10 mph.

PERSONNEL

Nome	Commons	Dogition	Hours		
Name	Company Position		From	To	Total
Jason Brydges	LATA	Program Manager	8:00 am	5:00 pm	8 hours
Todd Cleveland	GRD	Radiation Control Technician	8:00 am	4:30 pm	7.5 hours
Eric	Nature's Way	Geoprobe Operator	8:00 am	4:30 pm	7.5 hours
Total Man Hours Worked 23 1				23 hours	

MATERIALS/EQUIPMENT USED ON-SITE:

- Standard level D PPE (i.e., steel toe boots, hard had, and safety glasses) with heavy duty work gloves
- Ludlum 2221 meter with GX-2 gamma radiation scintillation detector. See survey forms for serial numbers and calibration dates.
- Eberline contamination meter (model 12) with alpha/beta/gamma detector (44-9 probe)
- Truck mounted Geoprobe with numerous attachments (e.g., 3" split spoon probe)
- Pickup truck with pin flags, fluorescent paint, latex gloves, sample buckets, and paper towels/rags.
- Sampling station with coolers, sample jars, ice, packaging tape and material, 5 gallon sample pails, stainless steel mixing bowl with spoons, non-phosphate cleanser, and paper towels.

WORK LOG/MINUTES:

8:30 am:

Met with Sal D'Angelo to convey the plan of the day, which was to address SE and NE Focus Areas. Field crew completed our tailgate safety meeting, and mapped out the hotspots and grid spots within both areas to be cored for the day. Terrain in back field was too rough to set up sampling station. Used tailgate of pickup truck instead. Labeled at least 6 biased hot spots and 6 unbiased presurvey grid units in each area. GPS hand held unit and Geoprobe truck working properly and ready to go.

9:00 am:

Completed HSB1 boring at SE Area. Punched three holes A, B, and C in this area due to refusal at 9" bgs, large elevated area, and the surface rocks were contributing to most of the elevated readings. Grabbed single composite sample from all three spots along fence line.

Surface readings ranged from 23k to 32k cpm, cores ranged from 5500 to 7700 cpm, and down-hole readings ranged from 12k to 115k cpm gamma radiation. Large surface rocks seemed to be genesis of most of the activity.

Material consisted of sandy rocky soil with large rocks at the surface; some of them 24" boulders.

9:30 am:

Completed HSB2 boring at SE Area. Punched two holes A & B in area because we missed the initial 'hot spot'. Top 8" generated most of the activity and asphalt was present. Collected single composite sample from both locations for radionuclide and chemical analyses (seemed to most representative of SE Area). Surface readings ranged from 33k to 110k cpm, core readings ranged from 6200 cpm to 7800 cpm, and down-hole readings ranged from 22k to 430k cpm gamma radiation.

Material was mostly a fine sandy soil, but there was non-native fill that generated most of the activity consisting of asphalt, man-made rock and clay.

10:00 am:

Completed HSB3 boring at SE Area. Single boring, no refusal. Pile of man-made rock in area collocated with concrete foundations. Grab sample collected.

Surface reading was 45k cpm, core ranged from 10k to 12.5k cpm, and down-hole reading was 75k cpm gamma radiation.

Material that possessed elevated readings appeared to be piles of rock around foundations. Coring consisted mainly of rocky and sandy soil beneath piles.

10:30 am:

Completed HSB4 boring at SE Area. Single boring, no refusal, along fence line. There was no visible rock in area. Grab sample collected.

Surface reading was 27k cpm, core ranged from 8k to 12.8k cpm, and down-hole reading was 35k cpm gamma radiation.

Material appeared to be non-native sandy soil within initial 1' bgs. A dark, fine soil was beneath sand followed by clay at depth (2' bgs.).

10:50 am: Completed GSU1 boring at SE Area. Single location near elm tree close to

concrete foundations. No sample collected as the boring unimpacted.

Surface reading was 11k cpm, core readings ranged from 6k to 7.5k cpm, and

down-hole reading was 20k cpm gamma radiation.

Material consisted of a fine sandy soil with dark organic looking lenses.

11:05 am: Completed GSU2 boring in SE Area. Located in the north cleared area behind

facility. Low gamma readings throughout coring. No sample collected.

Surface reading was 6k cpm, core readings ranged from 4k to 5.5k cpm, and

down-hole reading was 11k cpm gamma radiation.

Material consisted of non-native soil backfill with concrete, brick and building

debris.

11:20 am: Completed GSU3 boring in SE Area. Located in trailer area. Single location. No

refusal. No elevated readings, so no sample was collected.

Surface reading was 6.5k cpm, core readings ranged from 3.5k cpm to 5.7k cpm,

and down-hole reading was 8k cpm gamma radiation.

Material possessed hard fill on top with dark granular, glassy non-native soil

beneath it. Clay soil was the bottom 6" bgs.

11:35 am: Completed GSU4 boring in SE Area. Single location with no refusal. No elevated

readings. No sample collected.

Surface reading was 6.5k cpm, core readings ranged from 4k cpm to 5.5k cpm,

and down-hole reading was 13k cpm gamma radiation.

Material consisted of 6" of gravel with an 18" clay bottom.

11:50 am: Completed GSU5 boring in SE Area. Single location with no refusal. No elevated

readings. No sample collected.

Surface reading was 10.2k cpm, core readings ranged from 5k to 7.6k cpm, and

down-hole gamma reading was 15.3k cpm gamma radiation.

Material consisted of sandy soil on top, rock and brick in the middle of the core,

and 12" of clay on the bottom.

1:20 pm: Completed HSB1 boring in NE Area. Large oddly shaped area. Punched three

locations A, B, and C, and collected single composite sample from three locations

for radionuclide and chemical analyses.

Surface readings ranged from 25k cpm to 27k cpm, core readings ranged from

7.5k cpm to 11.5k cpm, and down-hole readings ranged from 36k cpm to 63k cpm

gamma radiation.

Material consisted of homogeneous sandy soil without much rock. Fine, dark

granular metallic looking soil on top with 6" clay bottom. Fire brick was observed

in B location at 14" bgs – split spoon refusal.

2:00 pm: Completed HSB2 boring in NE Area. Located near Building 6. Single location

without refusal. Grab sample collected for radionuclide analyses, but composite

sample collected and mixed with HSB1 for chemical analyses.

Surface reading was 40k cpm, core readings ranged from 9.5k cpm to 13.5k cpm, and down-hole reading was 140k cpm gamma radiation.

Material was very similar to HSB1 and thus, mixed for chemical analyses. Radiation readings were higher <u>and</u> metallic material was deeper (i.e., 2.5' bgs).

2:20 pm:

Completed HSB3 boring in NE Area. Also located near Building 6. Multiple hot spots; all borings with refusal at 6" to 10" bgs, so three locations were punched for composite radionuclide analyses. Due to different nature of material, composite sample was sent off-site for chemical analyses as well.

Surface readings ranged from 35k cpm to 45k cpm, core readings ranged from 11k to 20k cpm, and down-hole readings ranged from 49k cpm to 74k cpm gamma radiation.

Material was distinctive blue-gray-green rock with glassy coating. Little fines in the area, thus the refusal at shallow depths.

3:15 pm:

Completed GSU1 boring in NE Area. Single location chosen despite refusal at 17" bgs due to subsurface brick. No sample collected due to low readings.

Surface reading was 6800 cpm, core readings ranged from 6k to 7.8k cpm, and down-hole reading was 12.5k cpm gamma radiation.

Material was essentially clay at the surface with brick in the subsurface.

3:30 pm:

Completed GSU2 boring in NE Area. Single location. No refusal. No sample collected. Low readings throughout.

Surface reading was 9.8k cpm, core readings were 5k cpm to 6.5k cpm, and down-hole reading was 12k cpm gamma radiation.

Material was sandy dark soil with silvery metallic cinders on top 12" followed by clay for the remainder of the core.

3:45 pm:

Completed GSU3 boring in NE Area. Single location. No refusal. No sample collected. Low readings throughout.

Surface reading was 9.5k cpm, core readings were 4k to 6.5k cpm, and down-hole reading was 15k cpm gamma radiation.

Material was layered similar to other NE area locations with sandy dark organic looking soil on top 6", stone and sand in middle and 4" clay bottom.

3:55 pm:

Completed GSU4 boring in NE Area. Single location, although refusal in this area was very shallow (i.e., 6"). No sample collected due to little yield of material and low readings throughout.

Surface reading was 8.2k cpm, core readings were 4k cpm to 6k cpm, and downhole reading was 10k cpm gamma radiation.

Material was surficial rock and sand with hard rock/concrete at 6" bgs.

4:05 pm:

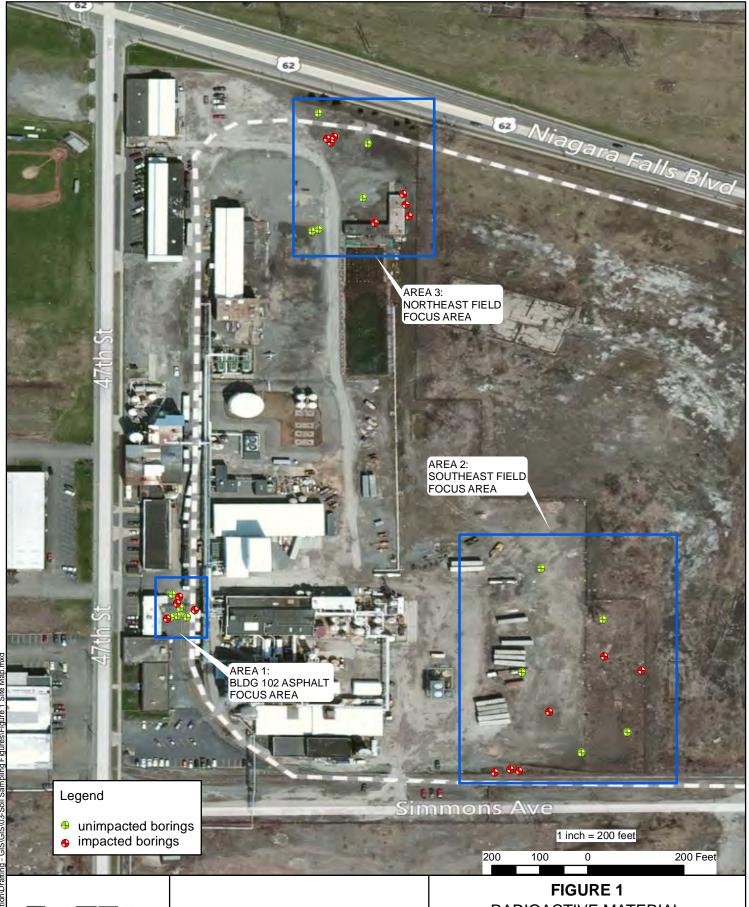
Completed GSU5 boring in NE Area. Very close to GSU4, but only single location. Refusal occurred at this boring as well very shallow (i.e., 4"). No sample collected. No elevated readings.

Surface reading was 6.2k cpm, core readings were 5k cpm to 6.2k cpm, and down-hole reading was 7k cpm gamma radiation.

Material identical to GSU4.

GENERAL NOTES:

- Exterior Site conditions were favorable for the second day in a row. Temperature was high, but no obstructions were encountered during Geoprobe and sampling operations.
- HSB1 and 2 locations in NE area were very similar in nature and appearance to HSB4 location form SE area.
- The impacted areas that were the focus of the characterization included the southeast field area and northeast field area near Building #6.
- It was not necessary to obtain new background radiation measurements.
- Like the previous day, 3" ID split spoon core sampler was chosen as best methodology to use. More difficult to penetrate subsurface, but it provided the most material for sampling and scanning.
- Samples were only collected from elevated readings that were clearly identified
- All field personnel were surveyed after field activities to check for contamination with a model 12 and 44-9 probe. All personnel frisked at background or <40 cpm alpha/beta/gamma radiation.
- When elevated readings were clearly identified in the field areas, the area was delineated by pin flags and the approximate footprint was estimated. Again, readings were placed on the hand sketches represented by a single cpm estimate.


ISSUES/OBSERVATIONS/CONFLICTS:

(1) Location of elevated radioactive material in the subsurface near Building 6 in the NE Area was improperly labeled previously during the walkover surveys. During translation from field notes to GIS figures, an impacted area was originally located on the south side of the building.

CORRECTIVE ACTIONS:

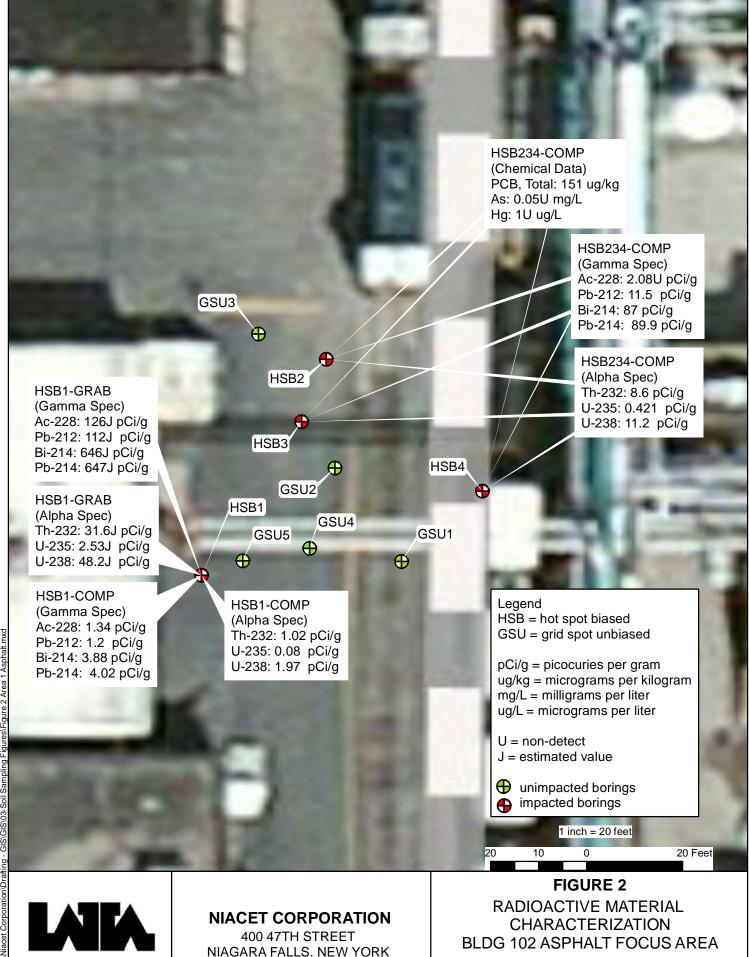
(1) During field Geoprobe and survey efforts on this day, it was confirmed that the subsurface radioactive materials near Building 6 are located on the east side of the building. The elevated hot spot on the north side of the building remained consistent, but the previous readings on the south side of the building do not exist, but rather, they depict the radiation confirmed on the east side of the building.

SITE FIGURES

NIACET CORPORATION

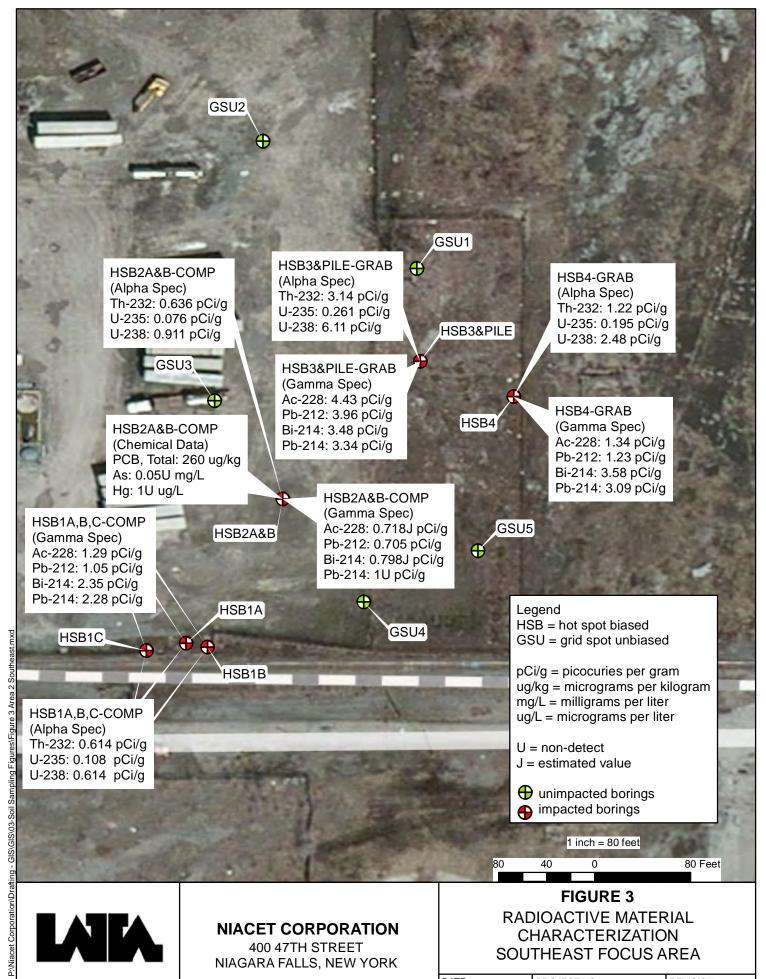
400 47TH STREET NIAGARA FALLS, NEW YORK

RADIOACTIVE MATERIAL


CHARACTERIZATION SITE-WIDE GEOPROBE LAYOUT

DATE:

08/24/12


PROJECT NO.:

REVISION: 0 11170

NIAGARA FALLS, NEW YORK

PROJECT NO .: REVISION: 08/24/12 11170

DATE: 08/24/12 PROJECT NO.: 11170 REVISION: 0

08/24/12

11170

SURVEY FIELD REPORTS

GRD INC.
Greater Radiological Dimensions

1527 Ridge Road, Lewiston, NY 716-754-2654 - Office 716-754-2622 - Fax

DAILY FIELD REPORT NO:	

	FIELD	REPORT		
PROJECT: Niacet - Geoprob	e	DATE: 7/10/12 SHEET / OF /		
LATA Inc.		PROJECT #:		
CONTRACTOR: GRD Inc.	CONTRACT NO:	DAY OF WEEK		
	SIGNATURE	SMTWTFS		
REPORT BY: Toold Cleveland		1222 (127)		
WEATHER: WIND FROM: N NE E Sunny Partly Cloudy Cloudy Overcast		TEMPERATURE, LOW 83 HIGH VO		
DAILY OBJECTIVE				
Gamma survey of locations. Support	of Geoprobe 10, it LATA with ole locations &	naterial description and Gamma material from spoons.		
- performed Gam	na survey o	of material from several geoprobe		
		m were verified		
location	\$			
- Some areas	in the s	outh east" area had large at surface grade		
(OCK-like Cov	tamination	at surface grade		
ESTING / SAMPLES				
- Sample taken by	LATA Inc.			
	A			
SITE VISITORS				
NA				
·				

Radiological Survey Form

Survey#: 07/0/2-00/

Date: 7/10/12

Project /#: Niacet - Geoprobe

Survey Description: Geoprobe / Test Pit Survey Model / Probe # Serial # Cal. Due Geoprobe testing at Nincet. (Building 102 Area) o Direct readings at the surface of hole location, downhole of direct scan of material in the "spoons" 183989/ 12002 1/7/13 2221 /GX-2 1/7/13 147493/ 12005 were taken (cpm) 2221 /GX-Z "Surf" = surface , "DH" - downhole Hole# ★ Gamma Reading (cpm) Notes: (Spoon material) HSB1a 9000-11000 1 min. éhole = 93072, 1 min. bkgd = 17048, DH = 900KCPM HSB 1a 9000-11000 23 iv. lolacktop, Soil, brick & contine 18 inch. Kepm letisale Sin HSB2 HSBIL 9000 -16000 Sin. bladetop, Soil, brick & contam. @ 18 inch. DH = 220 Kcpm HSB1b 9000-16000 9000-11500 black top and retusal p & 16 mich, DH & 400 R com HSBIC 9000-11500 gravel-like" material in specin HSB1C surf = 25398 DH = 485 Kcpm, & 3 of blacktep 2000 - 11000 HSB2a refused @ 6 in " TE refusal @ 6 in ches HSB2a 8000 -11000 HSB2 b 8000 -10000 = 3" of blacktop, refusal @ 6 inches, DH = 24 K cpm HSB3 23 blackton 9000-17000 Surf" = 51216 , DH = 780k HSB3 @\$12" metalliz looking granular, rocky soil, w/22ft of clay 9000-17000 RXR tracks, @ * 6" gravelly / wetallic /glassy slag w/ sandy soil below. HSB4 8000-18500 HSB4 DH=200x cpm , 1 min. bkgd = 14127 8000-18500 SSU1 (0200-7800 = 16972 , surf = 6817 GSU1 layer of gravele surface, \$18 in of black/sundy soil (RxRtrads) 6200 - 7800 55UZ 7,800 - 9000 sirt = 8210, DH & 14000, black sandy soil asu 3 5200-7100 Suf=5103, DH=7912, black sandy soil after blacktop 5\$14 6200-9500 = 5214 , DHX 25K blacktop, some clay, non-notive scile 218", metalliz locking grades fre bid GSU4 6200-9500 GSU5 7100 - 9200 surf = 6391, DH & 9100, blacktop, dark sandy soil 'ash-like" material, then clay @ *2ft. GSU5 7100 - 9200 Notes: - Geofrabe equipment and operator "frisked" w/ model 12 & 44-9 probe was £40cpn (Bigd) - Other personell frisked out @ < 40 cpm m/ model 12

1110/12	1000	Todd Cleveland	Survey Performed by:
Date	Sign	Print	
7-31-12	ung / lelse		Survey Reviewed by:
Date	Sign	Print/	
7-31-12 Date		Grung Weisst	Survey Reviewed by:

Page ______ of ______

DAILY FIELD REPORT NO:	
2	

FIELD	REPORT
PROJECT: Nracet - Geoprobe	DATE: 7/11/12 SHEET 1 OF/
LATA Inc.	PROJECT #:
CONTRACTOR: CONTRACT NO.	PROJECT #: Nincet - Geoprobe
GRD Inc.	DAY OF WEEK S M T W T F S
REPORT BY: SIGNATURE:	202
WEATHER: WIND FROM: N NE E SE S SW W NW at 12	C_mph
DAILY OBJECTIVE	
Perform Gamma survey of Geoph	robe locations. Support LATA with
material survey and description of m	aterial in spoons
FIELD NOTES	
- Survey readings were taken &	of downhole locations and
material that was extracted	in the Geofrobe spoons
- several areas of contamination	
via Gamma survey scan w/m	nodel 2221 & GX-2 plobe
4 6	
- several reins of sub-surtax	ce 'slag-like' material were
located	
MI	4
ESTING / SAMPLES	
- Test samples here collected	by LATA Inc
	7
SITE VISITORS	
NA	

Radiological Survey Form

Survey#: 071112-00/

Date: 7/11/12

Project /#: Ninet - Geoprobo

Survey Description:	Geoprobe / Test Pit	Survey	
Model / Probe #	Serial #	Cal. Due	comments: Geoprobe testing in SE area. (South East Area)
2221 GX-2	147493 /12005	1/7/13	
12 /44-9	138749 / PR 19357		
M	M	NA	
Hole #	Gamma Reading (Spech)	(cpm)	Notes:
HSB Ia	\$5500 - G	700	surf = 30K, DHo 115K, retural @ 8, m, rocky/sandy soil
HSB 16	\$ 6000 -		Surf = 32k g DH = 110k, vocky, sandy, soil, all 24 is
HSB 1c	* 6500 -		Sirt = 23K, DH = 12K, large slag bon ldone sirt act refusal @ 12m")
HSB Za	* 6000 -	7500	Surf = 33k, DH = 22k, fine, sandy soil
HSB2b	* 6200 -	7800	Surt = 110k, DH = 430k, non violive full, cosphalt, man-maderock, clay
HSB3	2 10500 -	12500	Surt=45k, DH=75k, fine apile of man made sky" at surface, rock, sandy soil below
HSB 4	2 Sec - 12	1800	Surf = 27k, DH=35K, fine, non-native sandy soil (0-14) duktion, clay 1-24.
GSUI	\$ 6000 - 75	500	SWIF= 11K y DH=20K, five sandy soil, dark, organic working
GBU2	× 4000 - 5	500	surf = GK, DH=11K, Monnative full, brick, concrete, building debris.
GSU3	* 3500 -	5700	SWIF = G. SK, DH = &K, have fill, w/ davk/glassy non-native, some clay
GS44	+ 4000 - S	500	Set=6.5k, DH=Balky Gin'gravel, 18" day
6915	* 5000 - 7		Strut 10.2 K , DH= 15.3 K, Gru "Landful, warder, brick a 16 in" of clay
		1	
			NA
and in t	he "spoon" full	of ex	aken at surface of hule location (Surf"); downhole (DH) tracted material. 25 6 K cpm.
		7	

Survey Performed by:	lad Cleveland / The	7/11/12
	Print/Sign	Date
Survey Reviewed by:	600 so Wissner Miss	7-31-12
	Pfint/Sign /	Date
		1

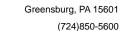
3	K F	MOIO(a	4
GP	G (B	CAL
Diff	4	nc D	

Radiological Survey Form

Survey #: 07/1/12 -002

Date: 7/11/12

Sions.			Project 1.#: Nicecet - Geoprobe
Survey Description:	Geoprobe / Test Pit	Survey	
Model / Probe #	Serial #	Cal. Due	- All readings are in CPM (counts /min)
2221 /GX-Z	147443 /12005	1/7/13	J. S.
12/44-9	138749 / PR193570	5/30/13	
NA	M	NA	
Hole #	Gamma Reading	(cpm)	Notes:
HSB 1a	7800 - 10	200	Surf= 25k, DA = 63k, 28in, fine, metallic soil organiz look
HSB 16	7000 - 11	500	SUNF=25K, DH=3 EK, 8in durk, fine, metallistal. retrusal at
HSB Ic	7500 - 9	000	Surf = 27K, DH=55K, *8in of darkfine, soil; the clay
HSB 2	9500 - 13	500	Surf = 40K, DH=140K = 25 for metallic, fine, soil/conders, then
ttsB 3a	11000- 136	an)	swift= 35K, DH= 49K, blue gray slag, glassy, retusal
HSBY HSB3b			Sist How Dil 2014 Illians of the Control
13733c	18K - 20		suf = 40k, DH=70k, blue gray slag, refusal @ 6 surf = 45, DH=74k, (high buckground area) gray slag,
GSUI	6000 - 78	כוס	Surf = 6780, DH=125K day & brick, refusal P 17
9812	5000 -65		Sur = 9800 DH= lak, I soil, time cinders, thenday (
asu 3	4000 - 65		surt = 9500, DH=15K, ginel, dark sindas/sout, then sand,
9544	4000 - 600		surf = 8200, DH = 10K, rock of Sand 106", then refluen
\$545	5000 -62		surt = 6700, DH = 7000, concrete retusal & 4"
			Control of the contro
			NA


Survey Performed by:	Tood Cleveland	1 (1880)	7/11/12	
Survey Reviewed by:	Print/Sig	Date		
	boorg. Wissburg	the	7-31-12	
	/ Print/Sig	n //	Date	

LABORATORY DATA

Quality Assurance Data Review SDG No. 3073/84_ Qualifiers in EDD EDD Review 3~ 8/13/13 Project Name: EDD in Site DB Sampling Date: Review Date: Laboratory: Reviewer Signature: Acceptable Comments / Qualifications Matrix Review Item Soil / Sed/ Áir Compare Chain of Custody GW (SW) Other to Data Received Soil / Sed/ Air Sample Hold Times GW (SW) Other VOCs only Trip Blank Soil / Sed/ Air Sample Reporting Limits GW/SW A Other Soil / Sed/ Air Surrogate Compound GW/SW) Other Recoveries for Organic Analyses Soil / Sed/ Air Method Blank GW (SW) Other Soil / Sed/ Air Laboratory Control Sample GW/SW) Other Recoveries Soil / Sed/ Air Matrix Spike/Spike Duplicate GW SW Other mt used to audifu Recoveries and RPDs Soil / Sed/ Air Duplicate Sample GW/SW/Other Relative Percent Difference Soil / Sed/ Air Initial and Continuing GW/SW/Dither Calibration Any TICS Additional Comments:

xesonation. Metals, RADS, and PCBs do not require temperature presentation sono qualifications were applied to these. The remaining organics analytes were qualified "J" or estimated based on the NA = Not Applicable NR = Not Reported temperature upon receipt. NSS = Not a Site Sample, Tab batch QC used

August 08, 2012

Mr. James Moore Los Alamos Technical Associates, Inc. 756 Park Meadow Road Westerville, OH 43081

RE: Project: Niacet Characterization

Pace Project No.: 3073184

Dear Mr. Moore:

Enclosed are the analytical results for sample(s) received by the laboratory on July 12, 2012. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

The samples were subcontracted to Pace Analytical Services, Inc., 1000 Riverbend Blvd., Suite F, St. Rose, LA 70087 for TCLP Herbicides analysis. Results of the analysis are reported on the Pace Analytical, New Orleans data tables.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a. Ferris

Carin Ferris

carin.ferris@pacelabs.com Project Manager

Enclosures

cc: Accounts Payable, Los Alamos Technical Associates, Inc.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: Niacet Characterization

Pace Project No.: 3073184

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4 Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification
California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH 0694

Delaware Certification

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification

Idaho Certification

Illinois/PADEP Certification

Indiana/PADEP Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133 Louisiana/TNI Certification #: LA080002

Louisiana/TNI Certification #: 4086

Maine Certification #: PA0091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082

Nevada Certification

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification

New York/TNI Certification #: 10888 North Carolina Certification #: 42706

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188

Utah/TNI Certification #: ANTE

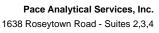
Virgin Island/PADEP Certification
Virginia Certification #: 00112

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia Certification #: 143
Wisconsin/PADEP Certification

Wyoming Certification #: 8TMS-Q


1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE ANALYTE COUNT

Project: Niacet Characterization

Pace Project No.: 3073184

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
3073184001	SEAREA-HSB2A&B-Comp	EPA 8082	SJG	10	PASI-PA
		ASTM D2974-87	AJC	1	PASI-PA
3073184002	SEAREA-HSB1-Comp	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073184003	SEAREA-HSB3-Grabpile	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073184004	SEAREA-HSB2A&B-Comp	EPA 8081	CWB	8	PASI-PA
		EPA 6010	CTS	7	PASI-PA
		EPA 7470	MJO	1	PASI-PA
		EPA 8270	SPL	18	PASI-PA
		EPA 8260	JAS	13	PASI-PA
3073184005	SEAREA-HSB4-Grab	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073184006	SEAREA-HSB2A&B-Comp	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 8081

Description: 8081 GCS Pesticides, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8081. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

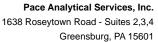
Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

(724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 8082
Description: 8082 GCS PCB

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8082. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/12140

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3073396001

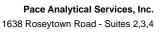
M3: Matrix spike recovery was outside laboratory control limits due to matrix interferences.

- MS (Lab ID: 465909)
 - PCB-1016 (Aroclor 1016)

Additional Comments:

Workorder Comments:

Cooler temperature 20.1° C upon receipt. Ice was present.


Analyte Comments:

QC Batch: OEXT/12140

1c: The response for DCB is high in the closing calibration check standard associated with the analysis of this sample. Recovery may be biased high.

- SEAREA-HSB2A&B-Comp (Lab ID: 3073184001)
 - Decachlorobiphenyl (S)

REPORT OF LABORATORY ANALYSIS

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 6010

Description: 6010 MET ICP, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

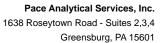
Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:


All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

(724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 7470

Description: 7470 Mercury, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 7470. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

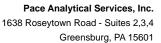
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MERP/3729

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3073164001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.


- MS (Lab ID: 465822)
 - Mercury

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

(724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 8270

Description: 8270 MSSV TCLP Sep Funnel **Client:** Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

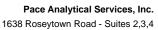
Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 8260
Description: 8260 MSV TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

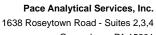
Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: EPA 901.1m

Description: 901.1 Gamma Spec

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

4 samples were analyzed for EPA 901.1m. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

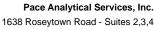
The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

Cooler temperature 20.1° C upon receipt. Ice was present.

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: HSL-300m

Description: HSL300(AS) Actinides

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

4 samples were analyzed for HSL-300m. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

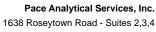
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

Cooler temperature 20.1° C upon receipt. Ice was present.


Analyte Comments:

QC Batch: RADC/12675

N2: The lab does not hold TNI accreditation for this parameter.

- BLANK (Lab ID: 466065)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- SEAREA-HSB1-Comp (Lab ID: 3073184002)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- SEAREA-HSB2A&B-Comp (Lab ID: 3073184006)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073184

Method: HSL-300m

Description: HSL300(AS) Actinides

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

Analyte Comments:

QC Batch: RADC/12675

N2: The lab does not hold TNI accreditation for this parameter.

- SEAREA-HSB3-Grabpile (Lab ID: 3073184003)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- SEAREA-HSB4-Grab (Lab ID: 3073184005)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238

This data package has been reviewed for quality and completeness and is approved for release.

(724)850-5600

ANALYTICAL RESULTS

Project: Niacet Characterization

3073184 Pace Project No.:

Lab ID: 3073184001 Sample: SEAREA-HSB2A&B-Comp Collected: 07/11/12 10:00 Received: 07/12/12 09:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **8082 GCS PCB** Analytical Method: EPA 8082 Preparation Method: EPA 3546 PCB-1016 (Aroclor 1016) ND ug/kg 18.5 07/19/12 10:00 07/24/12 00:34 12674-11-2 PCB-1221 (Aroclor 1221) ND ug/kg 18.5 07/19/12 10:00 07/24/12 00:34 11104-28-2 PCB-1232 (Aroclor 1232) ND ug/kg 18.5 07/19/12 10:00 07/24/12 00:34 11141-16-5 1 PCB-1242 (Aroclor 1242) ND ug/kg 18.5 07/19/12 10:00 07/24/12 00:34 53469-21-9 1 PCB-1248 (Aroclor 1248) 18.5 ND ug/kg 1 07/19/12 10:00 07/24/12 00:34 12672-29-6 PCB-1254 (Aroclor 1254) 117 ug/kg 18.5 07/19/12 10:00 07/24/12 00:34 11097-69-1 1 PCB-1260 (Aroclor 1260) 18.5 07/19/12 10:00 07/24/12 00:34 11096-82-5 143 ug/kg 1 PCB, Total 260 ug/kg 18.5 07/19/12 10:00 07/24/12 00:34 1336-36-3 1 Surrogates Tetrachloro-m-xylene (S) 49 % 30-150 07/19/12 10:00 07/24/12 00:34 877-09-8 Decachlorobiphenyl (S) 40 % 30-150 07/19/12 10:00 07/24/12 00:34 2051-24-3 1c **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 11.2 % 0.10 07/20/12 17:54 Sample: SEAREA-HSB2A&B-Comp Lab ID: 3073184004 Collected: 07/11/12 10:00 Received: 07/12/12 09:10 Results reported on a "dry-weight" basis **Parameters** DF Results Units Report Limit Prepared Analyzed CAS No. Qual 8081 GCS Pesticides, TCLP Analytical Method: EPA 8081 Preparation Method: EPA 3510 gamma-BHC (Lindane) ND ug/L 10.0 07/19/12 14:00 07/24/12 05:06 58-89-9 Chlordane (Technical) ND ug/L 10.0 07/19/12 14:00 07/24/12 05:06 57-74-9 1 ND ug/L Endrin 1.0 1 07/19/12 14:00 07/24/12 05:06 72-20-8 0.50 Heptachlor epoxide ND ua/L 07/19/12 14:00 07/24/12 05:06 1024-57-3 1 Methoxychlor ND ug/L 100 07/19/12 14:00 07/24/12 05:06 72-43-5 1 Toxaphene 07/19/12 14:00 07/24/12 05:06 8001-35-2 ND ug/L 50.0 1 Surrogates Decachlorobiphenyl (S) 78 % 30-150 07/19/12 14:00 07/24/12 05:06 2051-24-3 Tetrachloro-m-xylene (S) 66 % 30-150 07/19/12 14:00 07/24/12 05:06 877-09-8 1 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3005 ND mg/L 0.050 07/18/12 14:00 07/19/12 08:57 7440-38-2 Arsenic ND mg/L 07/18/12 14:00 07/19/12 08:57 7440-39-3 **Barium** 1.0 1 Cadmium ND mg/L 0.050 07/18/12 14:00 07/19/12 08:57 7440-43-9 1 Chromium ND mg/L 0.050 07/18/12 14:00 07/19/12 08:57 7440-47-3 1 Lead ND mg/L 0.050 07/18/12 14:00 07/19/12 08:57 7439-92-1 1 Selenium ND mg/L 0.10 07/18/12 14:00 07/19/12 08:57 7782-49-2 1 0.050 07/18/12 14:00 07/19/12 08:57 7440-22-4 Silver ND mg/L 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470

Date: 08/08/2012 04:58 PM

Mercury

REPORT OF LABORATORY ANALYSIS

1.0

1.0 ug/L

07/18/12 14:38 07/19/12 10:30 7439-97-6

Received: 07/12/12 09:10 Matrix: Solid

ANALYTICAL RESULTS

Collected: 07/11/12 10:00

Lab ID: 3073184004

Project: Niacet Characterization

Results reported on a "dry-weight" basis

Pace Project No.: 3073184

Sample: SEAREA-HSB2A&B-Comp

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV TCLP Sep Funnel Analytical Method: EPA 8270 Preparation Method: EPA 3510 500 07/20/12 13:00 07/21/12 21:51 106-46-7 1,4-Dichlorobenzene ND ug/L ND ug/L 2,4-Dinitrotoluene 100 07/20/12 13:00 07/21/12 21:51 121-14-2 Hexachloro-1,3-butadiene ND ug/L 100 07/20/12 13:00 07/21/12 21:51 87-68-3 1 Hexachlorobenzene ND ug/L 100 07/20/12 13:00 07/21/12 21:51 118-74-1 1 Hexachloroethane 500 07/20/12 13:00 07/21/12 21:51 67-72-1 ND ug/L 1 2-Methylphenol(o-Cresol) ND ug/L 2000 07/20/12 13:00 07/21/12 21:51 95-48-7 1 3&4-Methylphenol(m&p Cresol) ND ug/L 2000 07/20/12 13:00 07/21/12 21:51 1 Nitrobenzene ND ug/L 100 07/20/12 13:00 07/21/12 21:51 98-95-3 1 5000 07/20/12 13:00 07/21/12 21:51 87-86-5 Pentachlorophenol ND ug/L 1 07/20/12 13:00 07/21/12 21:51 110-86-1 Pyridine ND ug/L 500 1 ND ug/L 5000 07/20/12 13:00 07/21/12 21:51 95-95-4 2,4,5-Trichlorophenol 1 2,4,6-Trichlorophenol ND ug/L 100 1 07/20/12 13:00 07/21/12 21:51 88-06-2 Surrogates Nitrobenzene-d5 (S) 83 % 35-114 07/20/12 13:00 07/21/12 21:51 4165-60-0 1 2-Fluorobiphenyl (S) 89 % 43-116 07/20/12 13:00 07/21/12 21:51 321-60-8 1 Terphenyl-d14 (S) 99 % 33-141 07/20/12 13:00 07/21/12 21:51 1718-51-0 1

Phenol-d6 (S)	32 %	10-110	1	07/20/12 13:00	07/21/12 21:51	13127-88-3
2-Fluorophenol (S)	54 %	21-110	1	07/20/12 13:00	07/21/12 21:51	367-12-4
2,4,6-Tribromophenol (S)	70 %	10-123	1	07/20/12 13:00	07/21/12 21:51	118-79-6
8260 MSV TCLP	Analytical Method: EPA 8260					
Benzene	ND ug/L	50.0	1		07/24/12 05:22	71-43-2
2-Butanone (MEK)	ND ug/L	5000	1		07/24/12 05:22	78-93-3
Carbon tetrachloride	ND ug/L	50.0	1		07/24/12 05:22	56-23-5
Chlorobenzene	ND ug/L	1000	1		07/24/12 05:22	108-90-7
Chloroform	ND ug/L	500	1		07/24/12 05:22	67-66-3
1,2-Dichloroethane	ND ug/L	50.0	1		07/24/12 05:22	107-06-2
1,1-Dichloroethene	ND ug/L	50.0	1		07/24/12 05:22	75-35-4
Tetrachloroethene	ND ug/L	50.0	1		07/24/12 05:22	127-18-4
Trichloroethene	ND ug/L	50.0	1		07/24/12 05:22	79-01-6
Vinyl chloride	ND ug/L	50.0	1		07/24/12 05:22	75-01-4
Surrogates	-					
1,2-Dichloroethane-d4 (S)	105 %	70-130	1		07/24/12 05:22	17060-07-0

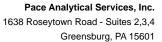
99 %

98 %

Toluene-d8 (S)

4-Bromofluorobenzene (S)

70-130


70-130

1

1

07/24/12 05:22 2037-26-5

07/24/12 05:22 460-00-4

(724)850-5600

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: MERP/3729

Analysis Method: Analysis Description: EPA 7470

QC Batch Method:

EPA 7470

7470 Mercury TCLP

Associated Lab Samples: 3073184004

METHOD BLANK: 465819 Matrix: Water

Associated Lab Samples:

3073184004

Blank Result

ND

Reporting

Parameter

LABORATORY CONTROL SAMPLE:

Parameter

Units

Units

Units

Limit

Analyzed Qualifiers

1.0 07/19/12 09:58

Mercury ug/L

465820

Spike Conc.

LCS Result

ND

ND

LCS % Rec % Rec Limits

Qualifiers

Mercury

Mercury

Mercury

ug/L

ug/L

ug/L

85-115

MATRIX SPIKE SAMPLE:

465822

Parameter

Parameter

3073164001 Units Result

Spike Conc.

2.5

ND

1.0

MS Result

101

3.2

MS % Rec % Rec Limits

85-115 M1

Qualifiers

SAMPLE DUPLICATE: 465821

3073164001 Result

Dup Result

RPD

Qualifiers

127

Date: 08/08/2012 04:58 PM

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601

(724)850-5600

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: MPRP/8712 Analysis Method: EPA 6010
QC Batch Method: EPA 3005 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 3073184004

METHOD BLANK: 465792 Matrix: Water

Associated Lab Samples: 3073184004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.050	07/19/12 07:59	
Barium	mg/L	ND	1.0	07/19/12 07:59	
Cadmium	mg/L	ND	0.050	07/19/12 07:59	
Chromium	mg/L	ND	0.050	07/19/12 07:59	
Lead	mg/L	ND	0.050	07/19/12 07:59	
Selenium	mg/L	ND	0.10	07/19/12 07:59	
Silver	mg/L	ND	0.050	07/19/12 07:59	

LABORATORY	CONTROL	SAMPLE:	465793
------------	---------	---------	--------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	.5	0.49	99	80-120	
Barium	mg/L	.5	.5J	100	80-120	
Cadmium	mg/L	.5	0.50	99	80-120	
Chromium	mg/L	.5	0.49	98	80-120	
Lead	mg/L	.5	0.49	98	80-120	
Selenium	mg/L	.5	0.50	99	80-120	
Silver	mg/L	.25	0.25	101	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	465795	465796

WWW.T.CO. II.C. C. WW.T.T.CO.	0L DO: L.O		•		100100						
	3	073164001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/L	ND ND	.5	.5	0.54	0.53	107	106	80-120	2	
Barium	mg/L	ND	.5	.5	.82J	.81J	95	93	80-120		
Cadmium	mg/L	ND	.5	.5	0.47	0.47	95	94	80-120	1	
Chromium	mg/L	ND	.5	.5	0.47	0.47	94	94	80-120	.5	
Lead	mg/L	ND	.5	.5	0.51	0.51	100	99	80-120	.9	
Selenium	mg/L	ND	.5	.5	0.54	0.55	109	109	80-120	.4	
Silver	mg/L	ND	.25	.25	0.26	0.26	106	104	80-120	1	

MATRIX SPIKE SAMPLE:	465798

		3073184004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	ND	.5	0.55	107	80-120	
Barium	mg/L	ND	.5	1.0	93	80-120	
Cadmium	mg/L	ND	.5	0.47	94	80-120	
Chromium	mg/L	ND	.5	0.50	95	80-120	

Date: 08/08/2012 04:58 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

MATRIX SPIKE SAMPLE:	465798						
		3073184004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead	mg/L	ND	.5	0.51	100	80-120	
Selenium	mg/L	ND	.5	0.54	107	80-120	
Silver	mg/L	ND	.25	0.27	107	80-120	

SAMPLE DUPLICATE: 465794

Parameter	Units	3073164001 Result	Dup Result	RPD	Qualifiers
Arsenic	mg/L		.0037J		
Barium	mg/L	ND	.34J		
Cadmium	mg/L	ND	ND		
Chromium	mg/L	ND	ND		
Lead	mg/L	ND	.0083J		
Selenium	mg/L	ND	ND		
Silver	mg/L	ND	ND		

SAMPLE DUPLICATE: 465797

Parameter	Units	3073184004 Result	Dup Result	RPD	Qualifiers
Arsenic	mg/L		.015J		
Barium	mg/L	ND	.54J		
Cadmium	mg/L	ND	.00062J		
Chromium	mg/L	ND	.024J		
Lead	mg/L	ND	.0074J		
Selenium	mg/L	ND	.0034J		
Silver	mg/L	ND	ND		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: MSV/13357 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 3073184004

METHOD BLANK: 467531 Matrix: Water

Associated Lab Samples: 3073184004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	ND	50.0	07/24/12 02:18	
1,2-Dichloroethane	ug/L	ND	50.0	07/24/12 02:18	
2-Butanone (MEK)	ug/L	ND	5000	07/24/12 02:18	
Benzene	ug/L	ND	50.0	07/24/12 02:18	
Carbon tetrachloride	ug/L	ND	50.0	07/24/12 02:18	
Chlorobenzene	ug/L	ND	1000	07/24/12 02:18	
Chloroform	ug/L	ND	500	07/24/12 02:18	
Tetrachloroethene	ug/L	ND	50.0	07/24/12 02:18	
Trichloroethene	ug/L	ND	50.0	07/24/12 02:18	
Vinyl chloride	ug/L	ND	50.0	07/24/12 02:18	
1,2-Dichloroethane-d4 (S)	%	103	70-130	07/24/12 02:18	
4-Bromofluorobenzene (S)	%	102	70-130	07/24/12 02:18	
Toluene-d8 (S)	%	100	70-130	07/24/12 02:18	

LABORATORY CONTROL SAMPLE: 467532

Date: 08/08/2012 04:58 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1-Dichloroethene	ug/L	200	192	96	70-130	
1,2-Dichloroethane	ug/L	200	191	95	70-130	
2-Butanone (MEK)	ug/L	200	204J	102	70-130	
Benzene	ug/L	200	179	90	70-130	
Carbon tetrachloride	ug/L	200	192	96	70-130	
Chlorobenzene	ug/L	200	194J	97	70-130	
Chloroform	ug/L	200	180J	90	70-130	
Tetrachloroethene	ug/L	200	181	90	70-130	
Trichloroethene	ug/L	200	179	89	70-130	
Vinyl chloride	ug/L	200	209	104	70-130	
1,2-Dichloroethane-d4 (S)	%			103	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: OEXT/12149 Analysis Method: EPA 8081

QC Batch Method: EPA 3510 Analysis Description: 8081 GCS TCLP Pesticides

Associated Lab Samples: 3073184004

METHOD BLANK: 466179 Matrix: Water

Associated Lab Samples: 3073184004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	ug/L	ND	10.0	07/24/12 00:05	
Endrin	ug/L	ND	1.0	07/24/12 00:05	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 00:05	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 00:05	
Methoxychlor	ug/L	ND	100	07/24/12 00:05	
Toxaphene	ug/L	ND	50.0	07/24/12 00:05	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 00:05	
Tetrachloro-m-xylene (S)	%	75	30-150	07/24/12 00:05	

METHOD BLANK: 466181 Matrix: Water

Associated Lab Samples: 3073184004

	10101001				
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	 ug/L	ND	10.0	07/24/12 05:33	
Endrin	ug/L	ND	1.0	07/24/12 05:33	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 05:33	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 05:33	
Methoxychlor	ug/L	ND	100	07/24/12 05:33	
Toxaphene	ug/L	ND	50.0	07/24/12 05:33	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 05:33	
Tetrachloro-m-xylene (S)	%	73	30-150	07/24/12 05:33	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 05:33	

METHOD BLANK: 466182 Matrix: Water

Associated Lab Samples: 3073184004

Date: 08/08/2012 04:58 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	ug/L	ND ND	10.0	07/24/12 06:28	
Endrin	ug/L	ND	1.0	07/24/12 06:28	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 06:28	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 06:28	
Methoxychlor	ug/L	ND	100	07/24/12 06:28	
Toxaphene	ug/L	ND	50.0	07/24/12 06:28	
Decachlorobiphenyl (S)	%	89	30-150	07/24/12 06:28	
Tetrachloro-m-xylene (S)	%	83	30-150	07/24/12 06:28	

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

Date: 08/08/2012 04:58 PM

LABORATORY CONTROL SAMPLE: 466180

EADORATORT CONTROL CAM	1 LL. 400100	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Endrin	ug/L	1.6	1.4	88	57-112	
gamma-BHC (Lindane)	ug/L	1.6	1.4J	88	66-118	
Heptachlor epoxide	ug/L	1.6	1.2	76	66-114	
Methoxychlor	ug/L	1.6	1.3J	81	50-150	
Decachlorobiphenyl (S)	%			80	30-150	
Tetrachloro-m-xylene (S)	%			66	30-150	

MATRIX SPIKE & MATRIX SI	3		466184								
_	_	073416001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Endrin	ug/L	ND	1.6	1.6	1.7	1.6	104	102	57-112		
gamma-BHC (Lindane)	ug/L	ND	1.6	1.6	1.7J	1.7J	105	104	66-118		
Heptachlor epoxide	ug/L	ND	1.6	1.6	1.4	1.4	90	89	66-114	1	
Methoxychlor	ug/L	ND	1.6	1.6	1.6J	1.5J	98	96	50-150		
Decachlorobiphenyl (S)	%						77	77	30-150		
Tetrachloro-m-xylene (S)	%						80	80	30-150		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: OEXT/12140 Analysis Method: EPA 8082
QC Batch Method: EPA 3546 Analysis Description: 8082 GCS PCB

Associated Lab Samples: 3073184001

METHOD BLANK: 465907 Matrix: Solid

Associated Lab Samples: 3073184001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1221 (Aroclor 1221)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1232 (Aroclor 1232)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1242 (Aroclor 1242)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1248 (Aroclor 1248)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1254 (Aroclor 1254)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1260 (Aroclor 1260)	ug/kg	ND	16.7	07/21/12 17:41	
Decachlorobiphenyl (S)	%	76	30-150	07/21/12 17:41	
Tetrachloro-m-xylene (S)	%	61	30-150	07/21/12 17:41	

LABORATORY CONTROL SAMPLE: 465908

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	167	105	63	55-145	
PCB-1260 (Aroclor 1260)	ug/kg	167	128	77	55-145	
Decachlorobiphenyl (S)	%			73	30-150	
Tetrachloro-m-xylene (S)	%			56	30-150	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 465910 465909 MS MSD MSD 3073396001 Spike Spike MS MS MSD % Rec % Rec **RPD** Parameter Units Result Conc. Conc. Result Result % Rec Limits Qual PCB-1016 (Aroclor 1016) ND 9 M3 ug/kg 172 175 92.1 100 54 57 55-145 ND PCB-1260 (Aroclor 1260) 172 175 113 115 61 62 55-145 2 ug/kg Decachlorobiphenyl (S) % 30-150 48 44 Tetrachloro-m-xylene (S) % 46 48 30-150

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601

(724)850-5600

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: OEXT/12158
QC Batch Method: EPA 3510

Analysis Method: EPA 8270

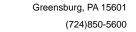
Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 3073184004

METHOD BLANK: 466539 Matrix: Water

Associated Lab Samples: 3073184004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	500	07/21/12 16:04	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 16:04	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 16:04	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 16:04	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 16:04	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 16:04	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 16:04	
Hexachlorobenzene	ug/L	ND	100	07/21/12 16:04	
Hexachloroethane	ug/L	ND	500	07/21/12 16:04	
Nitrobenzene	ug/L	ND	100	07/21/12 16:04	
Pentachlorophenol	ug/L	ND	5000	07/21/12 16:04	
Pyridine	ug/L	ND	500	07/21/12 16:04	
2,4,6-Tribromophenol (S)	%	72	10-123	07/21/12 16:04	
2-Fluorobiphenyl (S)	%	75	43-116	07/21/12 16:04	
2-Fluorophenol (S)	%	45	21-110	07/21/12 16:04	
Nitrobenzene-d5 (S)	%	74	35-114	07/21/12 16:04	
Phenol-d6 (S)	%	30	10-110	07/21/12 16:04	
Terphenyl-d14 (S)	%	92	33-141	07/21/12 16:04	


METHOD BLANK: 466543 Matrix: Water

Associated Lab Samples: 3073184004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	500	07/21/12 20:09	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 20:09	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 20:09	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 20:09	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 20:09	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 20:09	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 20:09	
Hexachlorobenzene	ug/L	ND	100	07/21/12 20:09	
Hexachloroethane	ug/L	ND	500	07/21/12 20:09	
Nitrobenzene	ug/L	ND	100	07/21/12 20:09	
Pentachlorophenol	ug/L	ND	5000	07/21/12 20:09	
Pyridine	ug/L	ND	500	07/21/12 20:09	
2,4,6-Tribromophenol (S)	%	59	10-123	07/21/12 20:09	
2-Fluorobiphenyl (S)	%	79	43-116	07/21/12 20:09	
2-Fluorophenol (S)	%	45	21-110	07/21/12 20:09	
Nitrobenzene-d5 (S)	%	74	35-114	07/21/12 20:09	
Phenol-d6 (S)	%	28	10-110	07/21/12 20:09	
Terphenyl-d14 (S)	%	91	33-141	07/21/12 20:09	

Date: 08/08/2012 04:58 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

METHOD BLANK: 466544 Matrix: Water

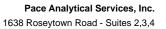
Associated Lab Samples: 3073184004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	500	07/21/12 23:13	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 23:13	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 23:13	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 23:13	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 23:13	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 23:13	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 23:13	
Hexachlorobenzene	ug/L	ND	100	07/21/12 23:13	
Hexachloroethane	ug/L	ND	500	07/21/12 23:13	
Nitrobenzene	ug/L	ND	100	07/21/12 23:13	
Pentachlorophenol	ug/L	ND	5000	07/21/12 23:13	
Pyridine	ug/L	ND	500	07/21/12 23:13	
2,4,6-Tribromophenol (S)	%	73	10-123	07/21/12 23:13	
2-Fluorobiphenyl (S)	%	87	43-116	07/21/12 23:13	
2-Fluorophenol (S)	%	50	21-110	07/21/12 23:13	
Nitrobenzene-d5 (S)	%	76	35-114	07/21/12 23:13	
Phenol-d6 (S)	%	31	10-110	07/21/12 23:13	
Terphenyl-d14 (S)	%	98	33-141	07/21/12 23:13	

LABORATORY CONTROL SAMPLE: 466540

Date: 08/08/2012 04:58 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	500	314J	63	10-95	
2,4,5-Trichlorophenol	ug/L	500	255J	51	10-200	
2,4,6-Trichlorophenol	ug/L	500	359	72	42-132	
2,4-Dinitrotoluene	ug/L	500	319	64	10-133	
2-Methylphenol(o-Cresol)	ug/L	500	327J	65	10-200	
3&4-Methylphenol(m&p Cresol)	ug/L	1000	623J	62	10-200	
Hexachloro-1,3-butadiene	ug/L	500	343	69	38-113	
Hexachlorobenzene	ug/L	500	361	72	58-130	
Hexachloroethane	ug/L	500	329J	66	36-96	
Nitrobenzene	ug/L	500	360	72	41-108	
Pentachlorophenol	ug/L	500	304J	61	13-129	
Pyridine	ug/L	500	ND	31	10-200	
2,4,6-Tribromophenol (S)	%			59	10-123	
2-Fluorobiphenyl (S)	%			73	43-116	
2-Fluorophenol (S)	%			47	21-110	
Nitrobenzene-d5 (S)	%			71	35-114	
Phenol-d6 (S)	%			24	10-110	
Terphenyl-d14 (S)	%			88	33-141	


QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

Date: 08/08/2012 04:58 PM

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 46654	1		466542						
	30	073396001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1,4-Dichlorobenzene	ug/L	ND	500	500	359J	361J	72	72	10-95		
2,4,5-Trichlorophenol	ug/L	ND	500	500	365J	306J	73	61	10-200		
2,4,6-Trichlorophenol	ug/L	ND	500	500	403	400	81	80	42-132	.7	
2,4-Dinitrotoluene	ug/L	ND	500	500	357	361	71	72	10-133	1	
-Methylphenol(o-Cresol)	ug/L	ND	500	500	366J	379J	73	76	10-200		
8&4-Methylphenol(m&p Cresol)	ug/L	ND	1000	1000	669J	673J	67	67	10-200		
lexachloro-1,3-butadiene	ug/L	ND	500	500	402	408	80	82	38-113	2	
lexachlorobenzene	ug/L	ND	500	500	398	415	80	83	58-130	4	
lexachloroethane	ug/L	ND	500	500	373J	385J	75	77	36-96		
litrobenzene	ug/L	ND	500	500	422	432	84	86	41-108	3	
entachlorophenol	ug/L	ND	500	500	309J	388J	62	78	13-129		
Pyridine	ug/L	ND	500	500	ND	ND	37	32	10-200		
,4,6-Tribromophenol (S)	%						73	68	10-123		
-Fluorobiphenyl (S)	%						80	81	43-116		
-Fluorophenol (S)	%						49	49	21-110		
litrobenzene-d5 (S)	%						82	82	35-114		
Phenol-d6 (S)	%						27	27	10-110		
erphenyl-d14 (S)	%						87	91	33-141		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

QC Batch: PMST/3284 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 3073184001

SAMPLE DUPLICATE: 466978

3073184001 Dup
Parameter Units Result Result RPD Qualifiers

Percent Moisture % 11.2 9.6 15

SAMPLE DUPLICATE: 466979

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Percent Moisture
 %
 12.0
 12.3
 2

ANALYTICAL RESULTS

Project: Niacet Characterization

Pace Project No.: 3073184

Sample: SEAREA-HSB1-Comp Lab ID: 3073184002 Collected: 07/11/12 09:00 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	0.224U ± 0.174 (0.882)	pCi/g	08/07/12 09:12	14952-40-0	
Actinium-228	EPA 901.1m	1.29 ± 0.231 (0.161)	pCi/g	08/07/12 09:12	14331-83-0	
Bismuth-212	EPA 901.1m	1.23 ± 0.798 (0.806)	pCi/g	08/07/12 09:12	14913-49-6	
Bismuth-214	EPA 901.1m	2.35 ± 0.315 (0.276)	pCi/g	08/07/12 09:12	14733-03-0	
Cesium-137	EPA 901.1m	0.302J ± 0.0800 (0.0620)	pCi/g	08/07/12 09:12	10045-97-3	
Cobalt-60	EPA 901.1m	-0.002U ± 0.0480 (0.0710)	pCi/g	08/07/12 09:12	10198-40-0	
Lead-210	EPA 901.1m	-2.800U ± 63.4 (66.7)	pCi/g	08/07/12 09:12	14255-04-0	
Lead-212	EPA 901.1m	1.05 ± 0.162 (0.129)	pCi/g	08/07/12 09:12	15092-94-1	
Lead-214	EPA 901.1m	2.28 ± 0.307 (0.139)	pCi/g	08/07/12 09:12	15067-28-4	
Potassium-40	EPA 901.1m	6.65 ± 1.21 (0.698)	pCi/g	08/07/12 09:12	13966-00-2	
Protactinium-234M	EPA 901.1m	0.758U ± 4.10 (7.28)	pCi/g	08/07/12 09:12	15100-28-4	
Radium-226	EPA 901.1m	$2.37 \pm 0.290 (0.125)$	pCi/g	08/07/12 09:12	13982-63-3	
Radium-228	EPA 901.1m	1.29 ± 0.231 (0.161)	pCi/g	08/07/12 09:12	15262-20-1	
Thallium-208	EPA 901.1m	$0.362J \pm 0.0870 (0.0680)$	pCi/g	08/07/12 09:12	14913-50-9	
Thorium-234	EPA 901.1m	0.150U ± 3.01 (5.09)	pCi/g	08/07/12 09:12	15065-10-8	
Uranium-235	EPA 901.1m	0.295J ± 0.106 (0.101)	pCi/g	08/07/12 09:12	15117-96-1	
Thorium-228	HSL-300m	$0.805 \pm 0.184 (0.104)$	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	$1.08 \pm 0.224 (0.053)$	pCi/g	07/27/12 13:09	14269-63-7	N2
Thorium-232	HSL-300m	$0.614 \pm 0.144 (0.017)$	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	0.681 ± 0.176 (0.146)	pCi/g	07/26/12 16:07	13966-29-5	N2
Uranium-235	HSL-300m	0.108 ± 0.062 (0.054)	pCi/g	07/26/12 16:07	15117-96-1	N2
Uranium-238	HSL-300m	$0.730 \pm 0.171 (0.077)$	pCi/g	07/26/12 16:07		N2

Sample: SEAREA-HSB3-Grabpile Lab ID: 3073184003 Collected: 07/11/12 10:33 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	1.20 ± 0.520 (0.714)	pCi/g	08/07/12 09:45	14952-40-0	
Actinium-228	EPA 901.1m	4.43 ± 0.614 (0.242)	pCi/g	08/07/12 09:45	14331-83-0	
Bismuth-212	EPA 901.1m	5.22 ± 1.52 (1.18)	pCi/g	08/07/12 09:45	14913-49-6	
Bismuth-214	EPA 901.1m	3.48 ± 0.459 (0.468)	pCi/g	08/07/12 09:45	14733-03-0	
Cesium-137	EPA 901.1m	0.306J ± 0.0830 (0.0690)	pCi/g	08/07/12 09:45	10045-97-3	
Cobalt-60	EPA 901.1m	-0.006U ± 0.0870 (0.0830)	pCi/g	08/07/12 09:45	10198-40-0	
Lead-210	EPA 901.1m	17.6U ± 32.1 (53.4)	pCi/g	08/07/12 09:45	14255-04-0	
Lead-212	EPA 901.1m	3.96 ± 0.471 (0.188)	pCi/g	08/07/12 09:45	15092-94-1	
Lead-214	EPA 901.1m	3.34 ± 0.438 (0.204)	pCi/g	08/07/12 09:45	15067-28-4	
Potassium-40	EPA 901.1m	9.17 ± 1.48 (0.687)	pCi/g	08/07/12 09:45	13966-00-2	
Protactinium-234M	EPA 901.1m	4.93U ± 5.93 (9.71)	pCi/g	08/07/12 09:45	15100-28-4	
Radium-226	EPA 901.1m	3.24 ± 0.412 (0.167)	pCi/g	08/07/12 09:45	13982-63-3	
Radium-228	EPA 901.1m	4.43 ± 0.614 (0.242)	pCi/g	08/07/12 09:45	15262-20-1	
Thallium-208	EPA 901.1m	1.35 ± 0.195 (0.0920)	pCi/g	08/07/12 09:45	14913-50-9	
Thorium-234	EPA 901.1m	7.67 ± 2.14 (6.07)	pCi/g	08/07/12 09:45	15065-10-8	
Uranium-235	EPA 901.1m	0.688J ± 0.163 (0.149)	pCi/g	08/07/12 09:45	15117-96-1	
Thorium-228	HSL-300m	3.12 ± 0.568 (0.132)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	2.94 ± 0.535 (0.063)	pCi/g	07/27/12 13:09	14269-63-7	N2

Date: 08/08/2012 04:58 PM

REPORT OF LABORATORY ANALYSIS

(724)850-5600

ANALYTICAL RESULTS

Project: Niacet Characterization

Pace Project No.: 3073184

Sample: SEAREA-HSB3-Grabpile Lab ID: 3073184003 Collected: 07/11/12 10:33 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Thorium-232	HSL-300m	3.14 ± 0.566 (0.040)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	5.50 ± 0.876 (0.112)	pCi/g	07/26/12 16:07	13966-29-5	N2
Uranium-235	HSL-300m	0.261 ± 0.103 (0.059)	pCi/g	07/26/12 16:07	15117-96-1	N2
Uranium-238	HSL-300m	6.11 ± 0.963 (0.018)	pCi/g	07/26/12 16:07		N2

Sample: SEAREA-HSB4-Grab Lab ID: 3073184005 Collected: 07/11/12 10:30 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	0.116U ± 0.102 (0.651)	pCi/g	08/07/12 10:19	14952-40-0	
Actinium-228	EPA 901.1m	1.34 ± 0.257 (0.242)	pCi/g	08/07/12 10:19	14331-83-0	
Bismuth-212	EPA 901.1m	1.82 ± 0.762 (0.697)	pCi/g	08/07/12 10:19	14913-49-6	
Bismuth-214	EPA 901.1m	3.58 ± 0.652 (0.337)	pCi/g	08/07/12 10:19	14733-03-0	
Cesium-137	EPA 901.1m	0.0980J ± 0.0440 (0.0430)	pCi/g	08/07/12 10:19	10045-97-3	
Cobalt-60	EPA 901.1m	-0.013U ± 0.339 (0.0750)	pCi/g	08/07/12 10:19	10198-40-0	
Lead-210	EPA 901.1m	6.19U ± 22.7 (38.4)	pCi/g	08/07/12 10:19	14255-04-0	
Lead-212	EPA 901.1m	1.23 ± 0.184 (0.143)	pCi/g	08/07/12 10:19	15092-94-1	
Lead-214	EPA 901.1m	$3.09 \pm 0.386 (0.144)$	pCi/g	08/07/12 10:19	15067-28-4	
Potassium-40	EPA 901.1m	7.54 ± 1.28 (0.662)	pCi/g	08/07/12 10:19	13966-00-2	
Protactinium-234M	EPA 901.1m	0.847U ± 4.46 (7.88)	pCi/g	08/07/12 10:19	15100-28-4	
Radium-226	EPA 901.1m	2.83 ± 0.356 (0.173)	pCi/g	08/07/12 10:19	13982-63-3	
Radium-228	EPA 901.1m	1.34 ± 0.257 (0.242)	pCi/g	08/07/12 10:19	15262-20-1	
Thallium-208	EPA 901.1m	0.420J ± 0.0840 (0.0570)	pCi/g	08/07/12 10:19	14913-50-9	
Thorium-234	EPA 901.1m	2.69U ± 1.31 (4.30)	pCi/g	08/07/12 10:19	15065-10-8	
Uranium-235	EPA 901.1m	0.418J ± 0.119 (0.111)	pCi/g	08/07/12 10:19	15117-96-1	
Thorium-228	HSL-300m	1.20 ± 0.267 (0.136)	pCi/g	07/27/12 13:10	14274-82-9	N2
Thorium-230	HSL-300m	2.77 ± 0.514 (0.091)	pCi/g	07/27/12 13:10	14269-63-7	N2
Thorium-232	HSL-300m	1.22 ± 0.263 (0.081)	pCi/g	07/27/12 13:10	7440-29-1	N2
Uranium-234	HSL-300m	2.76 ± 0.477 (0.117)	pCi/g	07/26/12 16:07	13966-29-5	N2
Uranium-235	HSL-300m	$0.195 \pm 0.085 (0.023)$	pCi/g	07/26/12 16:07	15117-96-1	N2
Uranium-238	HSL-300m	2.48 ± 0.433 (0.062)	pCi/g	07/26/12 16:07		N2

Sample: SEAREA-HSB2A&B-Comp Lab ID: 3073184006 Collected: 07/11/12 09:30 Received: 07/12/12 09:10 Matrix: Solid PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	0.150U ± 0.170 (0.459)	pCi/g	08/07/12 10:55	14952-40-0	
Actinium-228	EPA 901.1m	0.718J ± 0.207 (0.154)	pCi/g	08/07/12 10:55	14331-83-0	
Bismuth-212	EPA 901.1m	0.504U ± 0.530 (0.856)	pCi/g	08/07/12 10:55	14913-49-6	
Bismuth-214	EPA 901.1m	0.798J ± 0.147 (0.410)	pCi/g	08/07/12 10:55	14733-03-0	
Cesium-137	EPA 901.1m	0.0940J ± 0.0440 (0.0610)	pCi/g	08/07/12 10:55	10045-97-3	
Cobalt-60	EPA 901.1m	-0.001U ± 0.0370 (0.0680)	pCi/g	08/07/12 10:55	10198-40-0	
Lead-210	EPA 901.1m	-1.600U ± 38.8 (27.2)	pCi/g	08/07/12 10:55	14255-04-0	

Date: 08/08/2012 04:58 PM REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601

(724)850-5600

ANALYTICAL RESULTS

Project: Niacet Characterization

Pace Project No.: 3073184

Date: 08/08/2012 04:58 PM

Sample: SEAREA-HSB2A&B-Comp Lab ID: 3073184006 Collected: 07/11/12 09:30 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

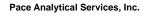
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Lead-212	EPA 901.1m	0.705J ± 0.121 (0.0960)	pCi/g	08/07/12 10:55	15092-94-1	
Lead-214	EPA 901.1m	1.000 ± 0.173 (0.112)	pCi/g	08/07/12 10:55	15067-28-4	
Potassium-40	EPA 901.1m	8.06 ± 1.27 (0.539)	pCi/g	08/07/12 10:55	13966-00-2	
Protactinium-234M	EPA 901.1m	1.19U ± 3.44 (6.07)	pCi/g	08/07/12 10:55	15100-28-4	
Radium-226	EPA 901.1m	$0.953J \pm 0.156 (0.104)$	pCi/g	08/07/12 10:55	13982-63-3	
Radium-228	EPA 901.1m	0.718J ± 0.207 (0.154)	pCi/g	08/07/12 10:55	15262-20-1	
Thallium-208	EPA 901.1m	0.235J ± 0.0670 (0.0590)	pCi/g	08/07/12 10:55	14913-50-9	
Thorium-234	EPA 901.1m	1.04 ± 0.888 (3.13)	pCi/g	08/07/12 10:55	15065-10-8	
Uranium-235	EPA 901.1m	0.102J ± 0.0510 (0.0620)	pCi/g	08/07/12 10:55	15117-96-1	
Thorium-228	HSL-300m	$0.966 \pm 0.220 (0.107)$	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	$0.840 \pm 0.199 (0.108)$	pCi/g	07/27/12 13:09	14269-63-7	N2
Thorium-232	HSL-300m	0.636 ± 0.158 (0.016)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	$0.787 \pm 0.182 (0.075)$	pCi/g	07/26/12 16:04	13966-29-5	N2
Uranium-235	HSL-300m	0.076 ± 0.051 (0.023)	pCi/g	07/26/12 16:04	15117-96-1	N2
Uranium-238	HSL-300m	0.911 ± 0.200 (0.054)	pCi/g	07/26/12 16:04		N2

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

Date: 08/08/2012 04:58 PM


QC Batch: RADC/12641 Analysis Method: EPA 901.1m

QC Batch Method: EPA 901.1m Analysis Description: 901.1 Gamma Spec

Associated Lab Samples: 3073184002, 3073184003, 3073184005, 3073184006

METHOD BLANK: 464107 Matrix: Solid
Associated Lab Samples: 3073184002, 3073184003, 3073184005, 3073184006

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Actinium-227	0.203 ± 0.227 (0.274)	pCi/g	08/05/12 18:35	
Actinium-228	$0.0210 \pm 0.0360 (0.239)$	pCi/g	08/05/12 18:35	
Bismuth-212	$0.191 \pm 0.454 (0.790)$	pCi/g	08/05/12 18:35	
Bismuth-214	-0.107 ± 2.38 (0.445)	pCi/g	08/05/12 18:35	
Cesium-137	$0.0200 \pm 0.0360 (0.0600)$	pCi/g	08/05/12 18:35	
Cobalt-60	$-0.019 \pm 0.0940 (0.0650)$	pCi/g	08/05/12 18:35	
Lead-210	5.11 ± 14.3 (24.7)	pCi/g	08/05/12 18:35	
Lead-212	$-0.044 \pm 18.9 (0.0970)$	pCi/g	08/05/12 18:35	
Lead-214	$0.0990 \pm 0.0750 (0.114)$	pCi/g	08/05/12 18:35	
Potassium-40	-0.117 ± 0.553 (0.767)	pCi/g	08/05/12 18:35	
Protactinium-234M	1.73 ± 3.37 (5.83)	pCi/g	08/05/12 18:35	
Radium-226	$0.0200 \pm 0.0220 (0.165)$	pCi/g	08/05/12 18:35	
Radium-228	$0.0210 \pm 0.0360 (0.239)$	pCi/g	08/05/12 18:35	
Thallium-208	-0.011 ± 0.0720 (0.0580)	pCi/g	08/05/12 18:35	
Thorium-234	0.148 ± 1.14 (2.01)	pCi/g	08/05/12 18:35	
Uranium-235	$0.000 \pm 0.0370 (0.0660)$	pCi/g	08/05/12 18:35	

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073184

Date: 08/08/2012 04:58 PM

QC Batch: RADC/12675 Analysis Method: HSL-300m

QC Batch Method: HSL-300m Analysis Description: HSL300(AS) Actinides

Associated Lab Samples: 3073184002, 3073184003, 3073184005, 3073184006

METHOD BLANK: 466065 Matrix: Solid
Associated Lab Samples: 3073184002, 3073184003, 3073184005, 3073184006

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Thorium-228	0.152 ± 0.076 (0.099)	pCi/g	07/27/12 13:09	N2
Thorium-230	$0.009 \pm 0.034 (0.071)$	pCi/g	07/27/12 13:09	N2
Thorium-232	$-0.004 \pm 0.021 (0.034)$	pCi/g	07/27/12 13:09	N2
Uranium-234	$0.040 \pm 0.045 (0.076)$	pCi/g	07/26/12 16:04	N2
Uranium-235	$0.008 \pm 0.032 (0.020)$	pCi/g	07/26/12 16:04	N2
Uranium-238	$0.017 \pm 0.025 (0.016)$	pCi/g	07/26/12 16:04	N2

Pace Analytical

Quality Control Sample Performance Assessment

RCDU Upload

ent							Į.				
Sample Matrix Spike Control Assessme	Analyte:	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Conc. (pCi/L):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Tarnet Cont (nC)! a E):
			Assessment								
466065			Flag								
MB Sample ID:			Critical Value	0.02810	0.00000	0.0000.0					
Soil		ssessment	MDC	0920"0	0.0204	0.0157					
Matrix:		Method Blank A	1.96 Sig Unc.	0.0451	0.0319	0.0246					
			Activity	0,0402	0.0075	0.0173					
			Analyte	Uranium-234	Uranium-235	Uranium-238					
	MB Sample ID:	Soil MB Sample ID: 466065	Soil MB Sample ID: 466066 Sample ID: 5a	Matrix: Soil MB Sample ID: 466066 Method Blank Assessment Activity 1.36 Sig Unc. MDC Critical Value Flag Assessment Sa	Matrix: Soil MB Sample ID: 466066 A66066 A	Matrix: Soil MB Sample ID: 466066 MB Samp	Matrix: Soil MB Sample ID: 466066 Method Blank Assessment Seasonert Sa Activity 1.96 Sig Unc. MDC Critical Value Flag Assessment Sa Color 0.0452 0.0451 0.02610 0.00200 0.00000 0.00000 0.00000 0.0173 0.0246 0.00607 0.00000 0.00000 0.00000	Matrix: Soil MB Sample ID: 466066 Method Blank Assessment Activity 1.36 Sig Unc. MDC Critical Value Flag Assessment Sa 0.0452 0.0451 0.0760 0.02810 0.02000 0.02000 0.02000 0.00000 0.0157 0.00000 0.0157 0.00000 0.0157 0.00000 0.0157 0.00000 0.0157 0.00000 0.0157 0.00000 0.0157 0.00000 0.0157 0.00000 0.00000 0.0157 0.000000 0.00000	Matrix: Soil MB Sample ID: 466066 A66066 Sa Activity 1.86 Sig Unc. MDC Critical Value Flag Acsessment Sa 0.0402 0.0462 0.0461 0.0760 0.02810 0.02810 0.00000 0.0000 0.0000 0.0000 MS/MSD Decay Corrected 0.0173 0.0246 0.0167 0.00000 0.0000 MS/MSD Decay Corrected Spike Voil	Matrix: Soll MB Sample ID: 466066 A66066 Sa Activity 1.36 Sig Unc. MDC Critical Value Flag Assessment Sa 0.0402 0.0462 0.0451 0.0760 0.02810 0.0204 0.00000 MS/MSD Decay Corrected 0.0173 0.0246 0.0167 0.00000 MS/MSD Decay Corrected Spike Volum 0.0173 0.0246 0.0167 0.00000 MS/MSD Decay Corrected Spike Volum	Matrix: Soil MB Sample ID: 466066 Activity Activity L36 Sig Unc. MDC Critical Value Flag Assessment Sa 0.0402 0.0451 0.0760 0.02810 0.0204 0.00000 MS/MSD Decay Corrected 0.0173 0.0246 0.0167 0.00000 MS/MSD Decay Corrected Spike Volt 0.0173 0.0246 0.0167 0.00000 MS/MSD Decay Corrected

																							ment											Ì	
The second second	Spike I.D.:	MS/MSD Decay Corrected Spike Conc. (pCi/L):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L. g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike uncertainty (calculated):	MSD Spike uncertainty (calculated):	Sample Result:	Sample 1.96 Sigma Unc.:	Sample Matrix Spike Result:	Sample MS 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample MSD 1.96 Sigma Unc.:	MS % Recovery:	MSD % Recovery:	MS Assessment:	MSD Assessment:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment		Analyte:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Sample Matrix Spike 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample Matrix Spike Duplicate 1.96 Sigma Unc.:	MS/MSD Relative Percent Difference:	MS/ MSD RPD Assessment:	"HEND I Imit.
								CSD																											
								CCS																											
	0.0000							TCSD	n-238	7/27/12 7:56	11-041U238	47,250	0.100	0.500	9.450	0.333	9.810	1.770	103.81%	Page	125.00%	75.00%													
	0.0157						Control Sample Assessment	rcs	Uranium-238	7/27/12 7:56	11-041U238	47.250	0,100	0.500	9,450	0,333	10.200	1,860	107.94%	Pass	125.00%	75.00%	Assessment												
	0.0246						-	CSD	1-234	7/27/12 7:56	11-041U234	46 300	0.100	0.500	9.260	0.327	9.780	1.770	105.62%	Pass	125.00%	75,00%	Duplicate Sample Assessment	Y	Uranium-238	LCS12675	LCSD12675	10.2000	1.8600	9.8100	1.7700	z	3.90%	Pass)	25.00%
	0.0173						Laboratory	rcs	Uranium-234	7/27/12 7:56	11-041U234	46.300	0.100	0.500	9 260	0.327	9.770	1.800	105.51%	Pass	125.00%	75.00%	_	.	Uranium-234	LCS12675	LCSD12675	9.7700	1,8000	9.7800	1.7700	z	0.10%	Pass	25.00%
	Uranium-238								Analyte:	Count Date:	Spike I.D.:	Spike Concentration (pCI/L):	Volume Used (mL):	Aliquot Volume (L, g, F):	Target Conc. (pCi/L, g, F);	1.96 Sigma Uncertainty (Calculated):	Result (pCi/L, g, F):	1.96 Sigma Unc:	% Recovery:	Assessment:	Upper % Recovery Limits:	Lower % Recovery Limits:		LCS/LCSD Y or N?:	Analyte:	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	1.96 Sigma Unc.	Sample Duplicate Result (pCi/L, g, F):	Duplicate Sample 1.96 Sigma Unc.	Either results below MDC?	Relative Percent Difference:	Assessment:	% RPD Limit:

% RPD Limit: 25.00% 25.00% 25.00% Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

X8/9/12

Quality Control Sample Performance Assessment

RCDU Upload

Sample Collection Dat			nk Assessment	Method Bla	
Analyt					
Sample Matrix Spik	466065	MB Sample ID:	Soil	Matrix:	
	PGH-R-008	SOP:	12675	Worklist:	
	HSL-300m	Method:	7/30/2012	Date:	
			Z-	Analyst:	colobe com

	ntrol Assessment																				7								cate Sample Assessn	87											
	Sample Matrix Spike Control Assessment	Analyte:	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Conc. (pCi/L):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L. g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike uncertainty (calculated):	MSD Spike uncertainty (calculated):	Sample Result:	Sample 1.96 Sigma Unc.:	Sample Matrix Spike Result:	Sample MS 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample MSD 1.96 Sigma Unc.:	MS % Recovery:	MSD % Recovery:	MS Assessment:	MSD Assessment:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessm		Analyte:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Sample Matrix Spike 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample Matrix Spike Duplicate 1.96 Sigma Unc.:	MS/MSD Relative Percent Difference:	MS/ MSD RPD Assessment:	% RPD Limit:
R-008				Assessment										CSD																		87									
PGH-R-008	466065			Flag		4								CS																											
SOP:	MB Sample ID:			Critical Value	0.00930	0.02670	0.03950							TCSD																						S Transfer					
12675	Soil		sessment	MDC	0,0336	0.0710	0.0986						ple Assessment	SOT															ssessment												
ij	Matrix: S		Method Blank Assessment	1.96 Sig Unc.	0.0214	0.0344	0.0757						boratory Control Sample Assessment	CCSD	um-230	7/27/12 13:11	12-018	26.497	0.100	0.500	5,299	0.312	4.810	0.832	%22.06	Pass	125.00%	75.00%	Duplicate Sample Assessment												
				Activity	-0.0036	0.0090	0.1520						Labo	rcs		7/27/12 13:11	12-018	26.497	0.100	0.500	5.299	0.312	4.780	0.830	90.20%	Pass	25.00%	75.00%		, A	Thomam-230	LCS12675	LCSD12675	4.7800	0.8300	4.8100	0.8320	z	0.63%	Pass	25.00%
				Analyte	Thorium-232	Thorium-230	Thorium-228								Analyte:	Count Date: 7	Spike LD.:	Spike Concentration (pCi/L):	Volume Used (mL):	Aliquot Volume (L. g. F):	Target Conc. (pCi/L, g, F):	1.96 Sigma Uncertainty (Calculated):	Result (pCi/L, g, F):	1.96 Sigma Unc:	% Recovery:	Assessment:	Upper % Recovery Limits:	Lower % Recovery Limits:		LCS/LCSD Y or N?:	Analyte:	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	1.96 Sigma Unc:	Sample Duplicate Result (pCi/L, g, F):	Duplicate Sample 1.96 Sigma Unc.	Either results below MDC?	Relative Percent Difference:	Assessment:	% RPD Limit:

% RPD Limit: 25.00%
Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

1 of 1

Gamma Spec Quality Control Sample Performance Assessment

	*Analytical	s.com
	alyti	ww.pacelabs.com
	eAn	MAM
6	Pace	
3	1	

Hoover 8/8/2012 12641 Soil Worklist: Matrix:

8 Oz Can PCi Gram Activity Units: Aliquot Units: Geometry:

Evaluation

% RPD

Numerical Indicator

Duplicate 2 Sigma CSU

Duplicate Results Sample ID:

Sample 2 Sigma CSU

Sample Results

Analytes of Interest Potassium-40

Duplicate Sample Precision Assessment

Duplicate Sample ID:

#DIV/0i

#DIV/0!

#DIV/0i #DIV/0! #DIV/0! #DIV/0i #DIV/0i #DIV/0i #DIV/0! #DIV/0i #DIV/0i #DIV/0i #DIV/0i #DIV/0i

#DIV/0! #DIV/0!

#DIV/0i #DIV/0i #DIV/0i

#DIV/0i #DIV/0i #DIV/0i

#DIV/0i #DIV/0i #DIV/0i

#DIV/0!

#DIV/0! #DIV/0! #DIV/0!

#DIV/0i #DIV/0i #DIV/0i #DIV/0i #DIV/0i #DIV/0i #DIV/0!

#DIV/0i

#DIV/0i #DIV/0! #D1V/0i #DIV/0i #DIV/0i #DIV/0!

Radium-223 Radium-226 Actinium-228 Protactinium-231 Protactinium-234

Thallium-208 Lead-210 Cobalt-60 Cesium-137

Bismuth-214

Lead-214

rotactinium-234N

Uranium-235 Radium-228 Bismuth-212

Analytes of Interest	st MB Result	2 Sigma CSU	MB MDC	Numerical Indicator	MB Evaluation	1
Potassium-40	-0.117	0.553	0.767	0.415	/ Pass /	
Cobalt-60	-0.019	0.0940	0.0650	0.396	Pass 1	
Cesium-137	0.0200	0.0360	0.0600	1.089	Pass	
Thallium-208	-0.011	0.0720	0.0580	0,299	Pass	
Lead-210	5.11	14.3	24.7	0.700	Pass	
Bismuth-214	-0.107	2.38	0.445	0 088	Pass	
Lead-214	0660'0	0.0750	0.114	2.587	Pass	
Radium-223	0.001000	0.00200	0.342	0.980	Pass	
Radium-226	0.0200	0.0220	0.165	1.782	Pass	
Actinium-228	0.0210	0.0360	0 239	1.143	Pass	
Protactinium-231	-0.733	1.56	2.65	0.921	Pass	
Protactinium-234	1,73	3.37	5.83	1.006	Pass	
Protactinium-234M		3.37	5.83	1.006	Pass	
Uranium-235	0.000	0 0370	0.0660	0.000	Pass	
Radium-228	0.0210	0 0360	0.239	1.143	Pass	
Bismuth-212	0.191	0 454	0.790	0.825	Pass	
Lead-212	-0.044	18.9	0,0970	0.005	Pass	
Thorium-234	0.148	1.14	2.01	0.254	Pass	
Actinium-227	0.203	0.227	0.274	1.753	Pass	
					>	

MB Evanation	Pass	Pass 1	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	/ Pass /	>)	
Numerical Indicator	0.415	0.396	1.089	0,299	0.700	0 088	2.587	0.980	1.782	1.143	0.921	1.006	1.006	0.000	1.143	0.825	0.005	0.254	1.753			
MB MDC	0.767	0.0650	0.0600	0.0580	24.7	0.445	0.114	0.342	0.165	0 239	2.65	5.83	5.83	0,0660	0.239	0.790	0,0970	2.01	0.274			
2 Sigma CSU	0.553	0.0940	0.0360	0.0720	14.3	2.38	0.0750	0.00200	0.0220	0.0360	1.56	3.37	3.37	0 0370	0 0360	0 454	18.9	1.14	0 227			
IND RESON	-0 117	-0.019	0.0200	-0.011	5.11	-0.107	06600	0.001000	0.0200	0.0210	-0.733	1,73	1.73	0.000	0.0210	0.191	-0.044	0.148	0.203			
Heres:	40	0	37	80	_	14	4	23	56	28	-231	-234	Z34M	35	28	12		34	27			

Laboratory Control Sample Assessment	ple Assessment				Laboratory Control Sample Du
	Analyte	Am-241	Cs-137	Co-60	
	Count Date	8/5/2012	8/5/2012	8/5/2012	
	Reference ID	09-039Am	09-039Cs	09-039Co	
Volume or Mass of	Reference Concentration	1 044	4.931	3,632	Ref
Raference Geometry	Reference Uncertainty	0.059	0.059	0'029	
	LCS Concentration	1.0222	5.5237	3.8859	
	LCS 2 Sigma CSU	0 525	0.581	0.406	
	Numerical Indicator	0.08	-1.99	-1.21	
	Percent Recovery	98.0%	112.0%	107.0%	
	LCS Evaluation	Pass	Pass	Pass	

Laboratory Control Sample Duplicate Assessment			
Analyte	Am-241	Cs-137	Co-60
Count Date	8/6/2012	8/6/2012	8/6/2012
Reference ID	09-039Am	09-039Cs	09-039Co
Reference Concentration	1.044	4 931	3 632
Reference Uncertainty	0.059	0 059	0.059
LCSD Concentration	1.109	5.549	3.8684
LCSD 2 Sigma CSU	0.508	0.583	0.406
Numerical Indicator	-0.25	-2.07	-1 13
Percent Recovery	106.3%	112.5%	106.5%
LCSD Evaluation	Pass	Pass	Pass

Precision Evaluation

Percent

Numerical Indicator

LCSD 2 Sigma CSU

LCSD Concentration

LCS 2 Sigma CSU

LCS Concentration

Analyte

Duplicate LCS Precision Assessment

Thorium-234 Actinium-227

Lead-212

Pass Pass Pass

8.1% 0.5% 0.5%

-0.233 -0.060 0.060

0.508 0.583 0.406

1.109 5.549 3.868

0.525 0.581 0.406

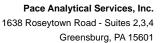
1.022 5.524 3.886

Am-241 Cs-137 Co-60

#DIV/0!

#DIV/0!

#DIV/0! #DIV/0! #DIV/0!


#DIV/0!

If the sample or Duplicate sample activity is below the associated MDC, the %RPD evaluation is not applicable and the sample duplicate precision criteria is acceptable.

Evaluation:

Gamma QCC 12641 xls Gamma QC_V1

(724)850-5600

QUALIFIERS

Project: Niacet Characterization

Pace Project No.: 3073184

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty

(MDC) - Minimum Detectable Concentration

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

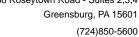
WORKORDER QUALIFIERS

WO: 3073184

[1] Cooler temperature 20.1° C upon receipt. Ice was present.

ANALYTE QUALIFIERS

Date: 08/08/2012 04:58 PM


1c The response for DCB is high in the closing calibration check standard associated with the analysis of this sample.

Recovery may be biased high.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

N2 The lab does not hold TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Niacet Characterization

Pace Project No.: 3073184

Date: 08/08/2012 04:58 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
3073184004	SEAREA-HSB2A&B-Comp	EPA 3510	OEXT/12149	EPA 8081	GCSV/4671
3073184001	SEAREA-HSB2A&B-Comp	EPA 3546	OEXT/12140	EPA 8082	GCSV/4666
3073184004	SEAREA-HSB2A&B-Comp	EPA 3005	MPRP/8712	EPA 6010	ICP/8162
3073184004	SEAREA-HSB2A&B-Comp	EPA 7470	MERP/3729	EPA 7470	MERC/3584
3073184004	SEAREA-HSB2A&B-Comp	EPA 3510	OEXT/12158	EPA 8270	MSSV/4145
3073184004	SEAREA-HSB2A&B-Comp	EPA 8260	MSV/13357		
3073184001	SEAREA-HSB2A&B-Comp	ASTM D2974-87	PMST/3284		
3073184002 3073184003 3073184005 3073184006	SEAREA-HSB1-Comp SEAREA-HSB3-Grabpile SEAREA-HSB4-Grab SEAREA-HSB2A&B-Comp	EPA 901.1m EPA 901.1m EPA 901.1m EPA 901.1m	RADC/12641 RADC/12641 RADC/12641 RADC/12641		
3073184002 3073184003 3073184005 3073184006	SEAREA-HSB1-Comp SEAREA-HSB3-Grabpile SEAREA-HSB4-Grab SEAREA-HSB2A&B-Comp	HSL-300m HSL-300m HSL-300m HSL-300m	RADC/12675 RADC/12675 RADC/12675 RADC/12675		

July 23, 2012

Carin Ferris PASI Pittsburgh 1638 Roseytown Road Greensburg, PA 15601

RE: Project 20141444

Project ID: 3073184/LOS ALAMOS

Dear Carin Ferris:

Enclosed are the analytical results for sample(s) received by the laboratory on July 14, 2012. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerly,

Karen Brown

karen.brown@pacelabs.com

aunt Paour

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Laboratory Certifications

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141444

Client: PASI Pittsburgh

Project ID: 3073184/LOS ALAMOS

Washington Department of Ecology C2078

Oregon Environmental Laboratory Accreditation - LA200001 U.S. Dept. of Agriculture Foreign Soil Import P330-10-00119 Pennsylviania Dept. of Env Protection (NELAC) 68-04202

Texas Commission on Env. Quality (NELAC) T104704405-09-TX Kansas Department of Health and Environment (NELAC) E-10266

Florida Department of Health (NELAC) E87595

Oklahoma Department of Environmental Quality - 2010-139

Illinois Environmental Protection Agency - 0025721

California Env. Lab Accreditation Program Branch - 11277CA Louisiana Dept. of Environmental Quality (NELAC/LELAP) 02006

This report shall not be reproduced, execpt in full, without the written consent of Pace Analytical Services, Inc.

7/23/2012 13:11:19

Sample Cross Reference

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141444

Client: PASI Pittsburgh

Project ID: 3073184/LOS ALAMOS

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time
SEAREA-HSB2A&B-COMP/307318	201004971	Other	11-Jul-12 10:00	14-Jul-12 08:20

CrossRef 7/23/2012 13:11:20

All surrogate recoveries were within QC limits.

Project Narrative

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

	Project: 20141444
Sample Receipt Condition:	
All samples were received in accordance with EPA	protocol.
Holding Times:	
All holding times were met.	
Blanks:	
All blank results were below reporting limits.	
Laboratory Control Samples:	
All LCS recoveries were within QC limits.	
Matrix Spikes and Duplicates:	
MS or MSD recoveries outside of QC limits are qua	alified in the Report of Quality Control section.

QC Cross Reference

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141444

Analytical Method	Batch	Sample used for QC
EPA 8151	188683	Batch sample from another client

Narrative1 7/23/2012 13:12:30

For the sample used as the original for the DUP or MS/MSD for the batch:

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Client: PASI Pittsburgh

Project: 20141444

Client ID: SEAREA-HSB2A&B-COMP/3073184004

Project ID: 3073184/LOS ALAMOS Site: None

Lab ID: 201004971 (TCLP)

% Moisture: n/a Matrix: Other

Description: None Prep Level: TCLP **Batch:** 188683

Method: EPA 8151 (TCLP)

8151 Herbs TCLP Collected: 11-Jul-12 Received: 14-Jul-12

Prepared: 19-Jul-12

Units: mg/L

Reporting CAS No. Analyte Dilution Result Limit **Reg Limit** Analysis Qu 94-75-7 2,4-D 1 ND 0.0200 10.0 20-Jul-12 19:50 SPP1 93-72-1 2,4,5-TP (Silvex) ND 0.0200 1.00 20-Jul-12 19:50 SPP1

Surrogate Recovery

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Batch: <u>188683</u> **Project:** <u>20141444</u>

Method: TCLP GC Semivolatile Organics

Lab ID	Sample ID	Qu	Sur 1 %Rec	Sur 2 %Rec	Sur 3 %Rec	Sur 4 %Rec	Sur 5 %Rec	Sur 6 %Rec	Sur 7 %Rec	Sur 8 %Rec
201006296	188683 BLANK 1		53	52						
201006479	188683 BLANK 2		90	87						
201006297	188683 LCS 1		135	128						
201006298	PUMA-SV-12 MS 1		44	44						
201006299	PUMA-SV-12 MSD 1		101	102						
201004971	SEAREA-HSB2A&B-COMP/307		99	98						
	QC limits:		10-166	10-166						

Sur 1: 2,4-DCPA (Conf)(S) Sur 2: 2,4-DCPA (S)

 $[\]ensuremath{^*}$ denotes surrogate recovery outside of QC limits.

Quality Control

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Batch: <u>188683</u> Project: <u>20141444</u> LCS: <u>20100629</u> <u>20-Jul-12</u> <u>17:41</u>

Method: TCLP GC Semivolatile Organics MS: 20100629 20-Jul-12 18:45

Units: mg/L MSD: 20100629 20-Jul-12 19:07

Original for MS: Batch Sample 201005267

Parameter Name	LCS Spike	LCS Found	LCS %Rec	MS Spike	Sample Found	MS Found	MSD Found	MS %Rec	MSD %Rec	RPD		Limits MS/MSD	Max RPD	Qu
2,4-D 2,4,5-TP (Silvex)	0.200 0.0200	0.178 0.0187	89 93	0.200 0.0200		0.0691 0.00763	0.169 0.0182	35 38	85 91		10-159 30-165		27 20	

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Blank ID: <u>188683 BLANK 1</u> **Project:** <u>20141444</u>

Lab ID: 201006296

Prep Level: TCLP Batch: 188683

Method: TCLP GC Semivolatile Organics

Prepared: 19-Jul-12

			Units: mg/L					
			Reporting					
CAS Numb Analyte		Dilution	Result	Qu Limit	Analysis			
94-75-7	2,4-D	1	ND	0.02	200 20-Jul-12 16:58 SPP1			
93-72-1	2,4,5-TP (Silvex)	1	ND	0.02	200 20-Jul-12 16:58 SPP1			

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Blank ID: <u>188683 BLANK 2</u> **Project:** <u>20141444</u>

Lab ID: 201006479

Prep Level: TCLP Batch: 188683

Method: TCLP GC Semivolatile Organics

Prepared: 19-Jul-12

			Units: mg/L					
			Reporting					
CAS Numb Analyte		Dilution	Result	Qu Limit		Analysis		
94-75-7	2,4-D	1	ND		0.0200	20-Jul-12 17:19 SPP1		
93-72-1	2,4,5-TP (Silvex)	1	ND		0.0200	20-Jul-12 17:19 SPP1		

Definitions/Qualifiers

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141444

Value	Description
J	This estimated value for the analyte is below the adjusted reporting limit but above the instrument reporting limit.
U	The analyte was analyzed for but not detected at the reporting limit or method detection limit indicated.
В	This analyte was detected in the method blank.
E	The sample concentration is above the linear calibrated range of the analysis.
LCS	Laboratory Control Sample.
MS(D)	Matrix Spike (Duplicate).
DUP	Sample Duplicate.
RPD	Relative Percent Difference.

Chains of Custody

Chain of Custody

ZOTHER PAST PART

Workord Report To	er: 3073184	rkorder	Workorder Name: Niacet Characterization	Characterizatic	u	0	Owner Received Date:	M	7/12/2012 Requested	12/2012 Results Requested By: Requested Analysis	quested By	7/26/2012
Carin Ferris Pace Analyt 1638 Rosey Greensburg Phone (724) Fax (999)99	Carin Ferris Pace Analytical Services, Inc. 1638 Roseytown Road Greensburg, PA 15601 Phone (724)850-5600 Fax (999)999-9999		Pace An 1000 Riv Suite F St. Rose Phone 1	Pace Analytical New Orleans 1000 Riverbend Blvd Suite F St. Rose, LA 70087 Phone 1(504)469-0333	Orleans 33			25 Sapraga				
ltem San	Sample ID	Sample Type	Sample Collect Type Date/Time	Labib	Matrix	bevieserdnU	Confainers	9' 1-12 S' 1-12 LCT5				LAB USE ONLY
1 SEA	SEAREA-HSB2A&B-Comp	PS	7/11/2012 10:00	3073184004	Solid	τ-		7			301	DESG 71
3												
4											-	
2	The second of th		ST SOYEAS SONE	ACCOMPANY COMMENTS IN THE STATE OF	1							
Transfers	Rejeased By		Date/Time	Received By	9		Date/Time			Comments	ints (1)	
-	4700	10	7/18/16	140	1		1,1	1				
2 6	200	700					21/1/1/2					
Cooler T	Cooler Temperature on Receipt	M	C Cus	Custody Seal	Por N		Received on Ice	e Oor	z	Sampl	Samples Intact (V)	or N

	Sample Condit		qaa PATI-PIII
Pace Analytical 1000 Riverbend, Blue St. Rose, LA 70087			
Courier: Pace Courier Hackbarth	Ø Fed X □	UPS 🗆 DHL	□ USPS □ Customer □ Other
Custody Seal on Cooler Box Present:	see COC]		Custody Seals Intact: ☐Yes ☐No
Therometer	Type of Ice:	Wet Blue None	Samples on ice: [see COC]
Cooler Temperature: [see COC]	Temp should be above	freezing to 6°C	Date and initials of person examining contents:
Temp must be measured from Temperature blank w	hen present	Comments:	
Temperature Blank Present"?	DYes ONO ONA	A 1	
Chain of Custody Present:	☑Yes □No □N/	A 2	
Chain of Custody Complete:	☑Yeş □No □N//	A 3	
Chain of Custody Relinquished:	ØYes □No □N//	4	
Sampler Name & Signature on COC:	ØYeş □No □N/	5	
Samples Arrived within Hold Time:	ØYes □No □N/A	6	
Sufficient Volume:	ZYes ONO ON/A	7	
Correct Containers Used:	PYes DNo DN/A	8	
Filtered vol. Rec. for Diss. tests	□Yes ☑No □N/A	9	
Sample Labels match COC:	Yes DNo DN/A	10	
All containers received within manafacture's precautionary and/or expiration dates.	ØYes □No □N/A	11	
All containers needing preservation have been checked (except VOA, collform, & O&G).	ØYes □No □N/A	12	
All containers preservation checked found to be compliance with EPA recommendation.		If No, was pre	eserative added? □Yes □No rd lot no.: HNO3 H2SO4
Samples checked for dechlorination:	□Yes DNo □N/A	14	
Headspace in VOA Vials (>6mm):	□Yes ☑No □N/A	14	
Trip Blank Present:	□Yes ☑Ng □N/A	16	
Trip Blank Custody Seals Present	☐Yes ☑No ☐N/A	17	
Pace Trip Blank Lot # (If purchased): N/A		18	
			Date/Time:
Comments/ Resolution:			
,		a dentita en la servició de la servició de la servicio del servicio de la servicio de la servicio del servicio de la servicio della servicio della servicio de la servicio della servicio	
	<u> </u>		
		· · · · · · · · · · · · · · · · · · ·	

CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical www.pacelabs.com

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

1231597 Pace Project No./ Lab I.D. DRINKING WATER 3073184 SAMPLE CONDITIONS OTHER 222 88 5 GROUND WATER Ś Residual Chlorine (Y/N) REGULATORY AGENCY RCRA つれつ Requester Analysis Filtered (VIN) STATE 4308 Site Location 7-0-L NPDES DATE TSU J. KARK MAADOWRDS ACCEPTED BY / AFFILIATION 051 051 HO N.A # Analysis Test Other Methano Preservatives OSSSN Attention: JAMAS Address: 756 1 HCI Invoice Information: EONH Company Name: ⁵OS^zH Section C Pace Quote Reference: Pace Project ace Profile #: Unpreserved 뾽 lanager: # OF CONTAINERS SAMPLE TEMP AT COLLECTION Project Name MIACET CHARACTER ISOTAW DATE TIME COMPOSITE END/GRAB DATE 10:30 AM COLLECTED 233044 2 sobes RELINQUISHED BY ! AFFILIATION 3 JAM TIME 1170.003 NOW COMPOSITE START 17-17-1 フィース 7-11-12 Z Z Z 7-11-5 THY THY DATE TASON Report To: TAMES Required Project Information: (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: Project Number: Section B Copy To: Matrix Codes MATRIX / CODE 4582A48-COM Drinking Water Water Waste Water Posit/Solidi Oil Wipe Air Tissue Other 1009-4582 A+B -COMP -Clab 1474, Car nto the state ADDITIONAL COMMENTS SEAUR - 45824 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE CE DOM-HSB3 SAMPLE ID Section D Required Client Information Section A Required Client Information: Phone 76 850 8636 SMOOLO Requested Due Date/TAT: RMH 065 SCARRA Address: 52 6 10 Ŧ 12 60 # MƏL

voices not paid within Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any

SIGNATURE of SAMPLER: PRINT Name of SAMPLER:

SAMPLER NAME AND SIGNATURE

ORIGINAL,

(N/A)

(N/A)

Sealed Coole Custody

ICB (Y/N) Received on

O° ni qmeT

(MM/DD/YY):

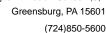
F-ALL-Q-020rev.07, 15-May-2007

Sample Condition Upon Receipt

Project # 507318U Client Name: /_ Courier: VFed Ex UPS USPS Client Commercial Pace Other Optional Tracking # 195764330490 Proj. Due Date: Proj. Name: .. Seals intact: Ves ☐ no Packing Material: Bubble Wrap Bubble Bags None Other Thermometer Used Type of ice: (Wet Blue None Samples on ice, cooling process has begun Date and Initials of person examining Biological Tissue is Frozen: Yes No 1-12-12 Cooler Temperature contents: marimal meledcomments: Temp should be above freezing to 6°C ÆYes □No Chain of Custody Present: □Yes 2No □N/A Chain of Custody Filled Out: Chain of Custody Relinquished: □xes □No □N/A Sampler Name & Signature on COC: ☑Yes □No □N/A -∰Yes □Nο □N/A Samples Arrived within Hold Time: □Yes .□N/A Short Hold Time Analysis (<72hr): ☐Yes ☐No □N/A Rush Turn Around Time Requested: ✓☐Yes ☐No □N/A Sufficient Volume: ☐Yes ☐No □N/A |9. Correct Containers Used: -DYes □No □N/A -Pace Containers Used: -ETYES □NO □N/A 10. Containers Intact: Filtered volume received for Dissolved tests ☐Yes ☐No **DN/A** , □Yes □No □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matnx: All containers needing preservation have been checked. □Yes □No □NVA 13. All containers needing preservation are found to be in □Yes □No ☑N/A compliance with EPA recommendation. Initial when Lot # of added ☐Yes ☐No completed preservative exceptions: VOA, collform, TOC, O&G, WI-DRO (water) □Yes □No ☑N/A Samples checked for dechlorination: ☐Yes ☐No ZÍN/A 15. Headspace in VOA Vials (>6mm): □Yes □No /ÛN/A 16. Trip Blank Present: ☐Yes ☐No ☐N/A Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Field Data Required? Y / N Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution: Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Number: 273/84


Client Name:

	_
	Ŕ
;	Ę
•	न्त्र
	\$
_	ò
	200
	4
~	. \

											,		_
Other							-					 -	9
ediO					-								2012).xlg
oolqiZ													15May
Cubitainer (500 ml / 4L)													(C016-
Radchem Nalgene (1/2 gal. / 1 gal.L)				-									SCURF Back (C016-4 15May2012).xls
Redchem Nalgene (125 / 250 / 500 / 1L).	<u> </u>												scn
Wipes / swipe/ smearl filter	<u>_</u>		<u>-</u> -										
Bacteria (120 ml)													
Sulfide (500 mi)													
(Jm 05s) ebiney	_										[/
(im 0£ im 0+) AOV													
(1г) нац													
O&G(1L)								<u>-</u> _					
Dissolved Metals preserved Y N						-			i				<u> </u>
Total Metals													
(lm 03s) XOT						 		<u> </u>					
TOC (40 ml / 250 ml)												-	
Phenolics (250 ml)	i			" "									
Nutrient (250 / 500)													
الالك soinsgr)													<u> </u>
(250 / 500 / 1L)													
Soil kit (2 SB, 1M, soil jar)	25C							,		-			
Glass Jar (120 / 260) 500 (11)					-								
Matrix Code	SC.					7							
o i l məfl	(00)	603	500	604	00 S	000							

. & &	t .	o. <u>3073</u>	83 Qualifiers in EDD 54 8//3//2 EDD Review 54 8//3//2
jec <u>f Name: VIACE</u>			EDD in Site DB
mpling Date: 2/11/2			EDD III dite po
view Dafe: / \$/13/13			
boratory: Poce			
viewer Signature:	o h Mal		
Review Item	Matrix		Comments / Qualifications
ompare Chain of Custody	Soil / Sed/ Áir		one somple jour of HSB-1,2-comp
Dafa Received	GW/SWI)Other	11/	received broken. Analysis performed
	Venner		Gom second container received.
ample Hold Times	Soil / Sed/ Air		
-	GW/3W)Other		<u> </u>
	The same of the sa		
rip Blank	VOCs only	<u> </u>	NA
sample Reporting Limits	Soil / Sed/ Air	<u> </u>	
	GW/SW) Other		
			
Surrogate Compound	Soil / Sed/ Air	<u> </u>	
Recoveries for	GW/SW/)Other		
Organic Analyses	-		
Method Blank	Soil / Sed/ Air		
	GW (SW) Othe		
Laboratory Control Sample	Soil / Sed/ Air		
Recoveries	GWIEW TO the	r V	
Matrix Spike/Spike Duplicate	Soil I SedI Air		* Rotch OC From a different project
Recoveries and RPDs	GW(SW) Othe	er .	not used to qualify viacet data set
Duplicate Sample	Soil / Sed/ Air		X Robot OC From a different project
Relative Percent Difference	GW (SW) Oth	er	Instructed to audify Diacet doctor
	And a second of the second of		504
Initial and Continuing	Soil / Sed/ Af	ř .	
Calibration	GW (SW) Oil	ier .	NA- Not included in a level Z
			bata report
TICS	Any		1 \ \lambda \\ \lambda \\ \lambda \-
Additional Comments:	lataneleuristhe revirus Limpact	<u> 1000 S C 1</u>	Hessianal oppinion that the elevated tem to errow the side of caution methods we wetals. RAD, and PCBs do not requi
Temp. preservation Were qualified as NA = Not Applicable NR = Not Reported NSS = Not a Site Sample, Tab b	alab ocuped (5)"	sed on the	jualified. The remaining organics saw e temperature upon receipt. inarrative indicates that there was a lifterence for the 1260 result of
QA Review Forturev 8/21/08		NEARE	19-HSB3ABC-Comp. The 1260 and 1144 the total ACB results for this

August 10, 2012

Mr. James Moore Los Alamos Technical Associates, Inc. 756 Park Meadow Road Westerville, OH 43081

RE: Project: Niacet Characterization

Pace Project No.: 3073183

Dear Mr. Moore:

Enclosed are the analytical results for sample(s) received by the laboratory on July 12, 2012. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

The samples were subcontracted to Pace Analytical Services, Inc., 1000 Riverbend Blvd., Suite F, St. Rose, LA 70087 for TCLP Herbicides analysis. Results of the analysis are reported on the Pace Analytical, New Orleans data tables.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a. Ferris

Carin Ferris

carin.ferris@pacelabs.com Project Manager

Enclosures

cc: Accounts Payable, Los Alamos Technical Associates, Inc.

CERTIFICATIONS

Project: Niacet Characterization

Pace Project No.: 3073183

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4 Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification
California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH 0694

Delaware Certification

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification

Idaho Certification

Illinois/PADEP Certification

Indiana/PADEP Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: 90133

Louisiana/TNI Certification #: LA080002

Louisiana/TNI Certification #: 4086

Maine Certification #: PA0091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082

Nevada Certification

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification

New York/TNI Certification #: 10888 North Carolina Certification #: 42706

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

South Dakota Certification

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188

Utah/TNI Certification #: ANTE

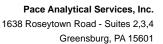
Virgin Island/PADEP Certification
Virginia Certification #: 00112

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia Certification #: 143
Wisconsin/PADEP Certification

Wyoming Certification #: 8TMS-Q



SAMPLE ANALYTE COUNT

Project: Niacet Characterization

Pace Project No.: 3073183

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
3073183001	NEAREA-HSB1,2-Comp	EPA 8081	CWB	8	PASI-PA
		EPA 8082	SJG	10	PASI-PA
		EPA 6010	CTS	7	PASI-PA
		EPA 7470	MJO	1	PASI-PA
		EPA 8270	SPL	18	PASI-PA
		EPA 8260	JAS	13	PASI-PA
		ASTM D2974-87	AJC	1	PASI-PA
3073183002	NEAREA-HSB2-Grab	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073183003	NEAREA-HSB1-Comp	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073183005	NEAREA-HSB3ABC-Comp	EPA 8081	CWB	8	PASI-PA
		EPA 8082	SJG	10	PASI-PA
		EPA 6010	CTS	7	PASI-PA
		EPA 7470	MJO	1	PASI-PA
		EPA 8270	SPL	18	PASI-PA
		EPA 8260	JAS	13	PASI-PA
		ASTM D2974-87	AJC	1	PASI-PA
		EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA

(724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 8081

Description: 8081 GCS Pesticides, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

2 samples were analyzed for EPA 8081. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

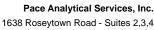
Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 8082
Description: 8082 GCS PCB

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

2 samples were analyzed for EPA 8082. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/12140

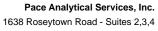
A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3073396001

M3: Matrix spike recovery was outside laboratory control limits due to matrix interferences.

- MS (Lab ID: 465909)
 - PCB-1016 (Aroclor 1016)

Additional Comments:

Workorder Comments:


Sample NEAREA-HSB1,2-Comp was received broken.

Analyte Comments:

QC Batch: OEXT/12140

1c: The response for DCB is high in the closing calibration check standard associated with the analysis of this sample. Recovery may be biased high.

- NEAREA-HSB3ABC-Comp (Lab ID: 3073183005)
 - Decachlorobiphenyl (S)

PROJECT NARRATIVE

Project: Niacet Characterization

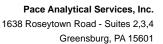
Pace Project No.: 3073183

Method: EPA 8082
Description: 8082 GCS PCB

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

Analyte Comments:


QC Batch: OEXT/12140

C3: Relative percent difference between results from each column was greater than 40%. The higher of the two results was

reported.

• NEAREA-HSB3ABC-Comp (Lab ID: 3073183005)

• PCB-1260 (Aroclor 1260)

(724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 6010

Description: 6010 MET ICP, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

2 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 7470

Description: 7470 Mercury, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

2 samples were analyzed for EPA 7470. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

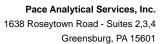
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MERP/3729

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3073164001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.


- MS (Lab ID: 465822)
 - Mercury

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

(724)850-5600

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 8270

Description: 8270 MSSV TCLP Sep Funnel **Client:** Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

2 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 8260
Description: 8260 MSV TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

2 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: EPA 901.1m

Description: 901.1 Gamma Spec

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

3 samples were analyzed for EPA 901.1m. All samples were received in acceptable condition with any exceptions noted below.

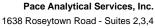
Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: HSL-300m

Description: HSL300(AS) Actinides

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

General Information:

3 samples were analyzed for HSL-300m. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

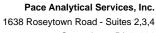
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Workorder Comments:

Sample NEAREA-HSB1,2-Comp was received broken.


Analyte Comments:

QC Batch: RADC/12675

N2: The lab does not hold TNI accreditation for this parameter.

- BLANK (Lab ID: 466065)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- NEAREA-HSB1-Comp (Lab ID: 3073183003)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- NEAREA-HSB2-Grab (Lab ID: 3073183002)
 - Thorium-228
 - Thorium-230
 - Thorium-232 • Uranium-234

 - Uranium-235
 - Uranium-238

PROJECT NARRATIVE

Project: Niacet Characterization

Pace Project No.: 3073183

Method: HSL-300m

Description: HSL300(AS) Actinides

Client: Los Alamos Technical Associates, Inc

Date: August 10, 2012

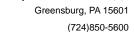
Analyte Comments:

QC Batch: RADC/12675

N2: The lab does not hold TNI accreditation for this parameter.

- NEAREA-HSB3ABC-Comp (Lab ID: 3073183005)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238

This data package has been reviewed for quality and completeness and is approved for release.



Project: Niacet Characterization

Pace Project No.: 3073183

Sample: NEAREA-HSB1,2-Comp Lab ID: 3073183001 Received: 07/12/12 09:10 Collected: 07/11/12 14:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8081 GCS Pesticides, TCLP Analytical Method: EPA 8081 Preparation Method: EPA 3510 07/19/12 14:00 07/24/12 04:11 58-89-9 gamma-BHC (Lindane) ND ug/L 10.0 ND ug/L Chlordane (Technical) 10.0 07/19/12 14:00 07/24/12 04:11 57-74-9 ND ug/L 1.0 07/19/12 14:00 07/24/12 04:11 72-20-8 Endrin 1 Heptachlor epoxide ND ug/L 0.50 1 07/19/12 14:00 07/24/12 04:11 1024-57-3 07/19/12 14:00 07/24/12 04:11 72-43-5 Methoxychlor ND ug/L 100 1 Toxaphene ND ug/L 50.0 07/19/12 14:00 07/24/12 04:11 8001-35-2 1 Surrogates Decachlorobiphenyl (S) 85 % 30-150 1 07/19/12 14:00 07/24/12 04:11 2051-24-3 Tetrachloro-m-xylene (S) 75 % 30-150 07/19/12 14:00 07/24/12 04:11 877-09-8 **8082 GCS PCB** Analytical Method: EPA 8082 Preparation Method: EPA 3546 PCB-1016 (Aroclor 1016) ND ug/kg 17.0 07/19/12 10:00 07/24/12 00:10 12674-11-2 PCB-1221 (Aroclor 1221) ND ug/kg 17.0 1 07/19/12 10:00 07/24/12 00:10 11104-28-2 PCB-1232 (Aroclor 1232) ND ug/kg 07/19/12 10:00 07/24/12 00:10 11141-16-5 17.0 1 PCB-1242 (Aroclor 1242) ND ug/kg 17.0 07/19/12 10:00 07/24/12 00:10 53469-21-9 1 PCB-1248 (Aroclor 1248) ND ug/kg 17.0 07/19/12 10:00 07/24/12 00:10 12672-29-6 1 ND ug/kg 07/19/12 10:00 07/24/12 00:10 11097-69-1 PCB-1254 (Aroclor 1254) 17.0 1 PCB-1260 (Aroclor 1260) ND ug/kg 17.0 07/19/12 10:00 07/24/12 00:10 11096-82-5 1 PCB, Total ND ug/kg 17.0 1 07/19/12 10:00 07/24/12 00:10 1336-36-3 Surrogates Tetrachloro-m-xylene (S) 37 % 30-150 07/19/12 10:00 07/24/12 00:10 877-09-8 07/19/12 10:00 07/24/12 00:10 2051-24-3 Decachlorobiphenyl (S) 31 % 30-150 1 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3005 ND mg/L 0.050 07/18/12 14:00 07/19/12 08:51 7440-38-2 Arsenic ND ma/L Barium 1.0 1 07/18/12 14:00 07/19/12 08:51 7440-39-3 Cadmium ND mg/L 0.050 07/18/12 14:00 07/19/12 08:51 7440-43-9 1 ND mg/L 0.050 Chromium 07/18/12 14:00 07/19/12 08:51 7440-47-3 1 0.091 mg/L 0.050 07/18/12 14:00 07/19/12 08:51 7439-92-1 Lead 1 07/18/12 14:00 07/19/12 08:51 7782-49-2 Selenium ND mg/L 0.10 1 Silver ND mg/L 0.050 1 07/18/12 14:00 07/19/12 08:51 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 ND ug/L 1.0 07/18/12 14:38 07/19/12 10:21 7439-97-6 Mercury 8270 MSSV TCLP Sep Funnel Analytical Method: EPA 8270 Preparation Method: EPA 3510 1,4-Dichlorobenzene ND ug/L 500 07/20/12 13:00 07/21/12 21:10 106-46-7 1 2,4-Dinitrotoluene ND ug/L 100 1 07/20/12 13:00 07/21/12 21:10 121-14-2 Hexachloro-1,3-butadiene ND ug/L 100 1 07/20/12 13:00 07/21/12 21:10 87-68-3 Hexachlorobenzene ND ug/L 100 1 07/20/12 13:00 07/21/12 21:10 118-74-1 Hexachloroethane ND ug/L 500 07/20/12 13:00 07/21/12 21:10 67-72-1 1 ND ug/L 2000 2-Methylphenol(o-Cresol) 1 07/20/12 13:00 07/21/12 21:10 95-48-7 ND ug/L 2000 3&4-Methylphenol(m&p Cresol) 1 07/20/12 13:00 07/21/12 21:10 ND ua/L Nitrobenzene 100 1 07/20/12 13:00 07/21/12 21:10 98-95-3 Pentachlorophenol ND ug/L 5000 07/20/12 13:00 07/21/12 21:10 87-86-5

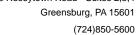
Date: 08/10/2012 11:53 AM

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

Sample: NEAREA-HSB1,2-Comp Lab ID: 3073183001 Received: 07/12/12 09:10 Collected: 07/11/12 14:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV TCLP Sep Funnel Analytical Method: EPA 8270 Preparation Method: EPA 3510 Pyridine ND ug/L 500 07/20/12 13:00 07/21/12 21:10 110-86-1 5000 2,4,5-Trichlorophenol ND ug/L 07/20/12 13:00 07/21/12 21:10 95-95-4 1 2,4,6-Trichlorophenol ND ug/L 100 07/20/12 13:00 07/21/12 21:10 88-06-2 1 Surrogates 83 % 07/20/12 13:00 07/21/12 21:10 4165-60-0 Nitrobenzene-d5 (S) 35-114 1 2-Fluorobiphenyl (S) 89 % 43-116 07/20/12 13:00 07/21/12 21:10 321-60-8 1 98 % Terphenyl-d14 (S) 33-141 1 07/20/12 13:00 07/21/12 21:10 1718-51-0 Phenol-d6 (S) 28 % 10-110 07/20/12 13:00 07/21/12 21:10 13127-88-3 1 2-Fluorophenol (S) 42 % 21-110 1 07/20/12 13:00 07/21/12 21:10 367-12-4 2,4,6-Tribromophenol (S) 73 % 10-123 07/20/12 13:00 07/21/12 21:10 118-79-6 8260 MSV TCLP Analytical Method: EPA 8260 Benzene ND ug/L 50.0 1 07/24/12 04:30 71-43-2 2-Butanone (MEK) ND ug/L 5000 07/24/12 04:30 78-93-3 1 ND ug/L Carbon tetrachloride 50.0 1 07/24/12 04:30 56-23-5 Chlorobenzene ND ua/L 1000 07/24/12 04:30 108-90-7 1 Chloroform ND ug/L 500 07/24/12 04:30 67-66-3 1 1.2-Dichloroethane ND ug/L 50.0 07/24/12 04:30 107-06-2 1 07/24/12 04:30 75-35-4 1.1-Dichloroethene ND ug/L 50.0 1 07/24/12 04:30 127-18-4 Tetrachloroethene ND ug/L 50.0 1 Trichloroethene ND ug/L 50.0 1 07/24/12 04:30 79-01-6 Vinyl chloride ND ug/L 50.0 07/24/12 04:30 75-01-4 Surrogates 1,2-Dichloroethane-d4 (S) 104 % 70-130 07/24/12 04:30 17060-07-0 1 Toluene-d8 (S) 99 % 70-130 07/24/12 04:30 2037-26-5 1 4-Bromofluorobenzene (S) 100 % 70-130 07/24/12 04:30 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 2.9 % Percent Moisture 0.10 1 07/20/12 17:53 Lab ID: 3073183005 Sample: NEAREA-HSB3ABC-Comp Collected: 07/11/12 15:00 Received: 07/12/12 09:10 Matrix: Solid Results reported on a "dry-weight" basis DF **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual 8081 GCS Pesticides, TCLP Analytical Method: EPA 8081 Preparation Method: EPA 3510 gamma-BHC (Lindane) ND ug/L 10.0 1 07/19/12 14:00 07/24/12 04:39 58-89-9 ND ug/L 10.0 07/19/12 14:00 07/24/12 04:39 57-74-9 Chlordane (Technical) 1 ND ug/L 07/19/12 14:00 07/24/12 04:39 72-20-8 **Endrin** 1.0 1 0.50 07/19/12 14:00 07/24/12 04:39 1024-57-3 Heptachlor epoxide ND ug/L 1 Methoxychlor ND ug/L 100 1 07/19/12 14:00 07/24/12 04:39 72-43-5 Toxaphene ND ug/L 50.0 1 07/19/12 14:00 07/24/12 04:39 8001-35-2 Surrogates 07/19/12 14:00 07/24/12 04:39 2051-24-3 Decachlorobiphenyl (S) 84 % 30-150 1 07/19/12 14:00 07/24/12 04:39 877-09-8 30-150 Tetrachloro-m-xylene (S) 73 %



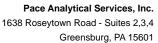
Project: Niacet Characterization

Pace Project No.: 3073183

Sample: NEAREA-HSB3ABC-Comp Lab ID: 3073183005 Collected: 07/11/12 15:00 Received: 07/12/12 09:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **8082 GCS PCB** Analytical Method: EPA 8082 Preparation Method: EPA 3546 07/19/12 10:00 07/24/12 00:18 12674-11-2 PCB-1016 (Aroclor 1016) ND ug/kg 17.6 PCB-1221 (Aroclor 1221) ND ug/kg 17.6 07/19/12 10:00 07/24/12 00:18 11104-28-2 PCB-1232 (Aroclor 1232) ND ug/kg 17.6 07/19/12 10:00 07/24/12 00:18 11141-16-5 1 PCB-1242 (Aroclor 1242) ND ug/kg 17.6 1 07/19/12 10:00 07/24/12 00:18 53469-21-9 PCB-1248 (Aroclor 1248) 07/19/12 10:00 07/24/12 00:18 12672-29-6 ND ug/kg 17.6 1 PCB-1254 (Aroclor 1254) 48.2 ug/kg 17.6 07/19/12 10:00 07/24/12 00:18 11097-69-1 1 PCB-1260 (Aroclor 1260) 75.1 ug/kg 17.6 07/19/12 10:00 07/24/12 00:18 11096-82-5 C3 1 07/19/12 10:00 07/24/12 00:18 1336-36-3 PCB, Total 123 ug/kg 17.6 1 Surrogates Tetrachloro-m-xylene (S) 60 % 30-150 07/19/12 10:00 07/24/12 00:18 877-09-8 Decachlorobiphenyl (S) 58 % 30-150 07/19/12 10:00 07/24/12 00:18 2051-24-3 1c Analytical Method: EPA 6010 Preparation Method: EPA 3005 6010 MET ICP, TCLP 0.093 mg/L 0.050 07/18/12 14:00 07/19/12 08:54 7440-38-2 Arsenic ND mg/L Barium 1.0 07/18/12 14:00 07/19/12 08:54 7440-39-3 1 Cadmium ND mg/L 0.050 07/18/12 14:00 07/19/12 08:54 7440-43-9 1 Chromium ND mg/L 0.050 07/18/12 14:00 07/19/12 08:54 7440-47-3 1 ND mg/L Lead 0.050 07/18/12 14:00 07/19/12 08:54 7439-92-1 1 Selenium ND mg/L 0.10 1 07/18/12 14:00 07/19/12 08:54 7782-49-2 Silver ND mg/L 0.050 1 07/18/12 14:00 07/19/12 08:54 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 1.8 ug/L 1.0 07/18/12 14:38 07/19/12 10:22 7439-97-6 Mercury 1 8270 MSSV TCLP Sep Funnel Analytical Method: EPA 8270 Preparation Method: EPA 3510 500 07/20/12 13:00 07/21/12 21:31 106-46-7 1,4-Dichlorobenzene ND ug/L 1 ND ug/L 100 07/20/12 13:00 07/21/12 21:31 121-14-2 2,4-Dinitrotoluene 1 100 07/20/12 13:00 07/21/12 21:31 87-68-3 Hexachloro-1,3-butadiene ND ug/L 1 Hexachlorobenzene ND ug/L 100 1 07/20/12 13:00 07/21/12 21:31 118-74-1 Hexachloroethane ND ug/L 500 07/20/12 13:00 07/21/12 21:31 67-72-1 2-Methylphenol(o-Cresol) ND ug/L 2000 07/20/12 13:00 07/21/12 21:31 95-48-7 3&4-Methylphenol(m&p Cresol) 2000 07/20/12 13:00 07/21/12 21:31 ND ug/L 1 Nitrobenzene ND ug/L 100 07/20/12 13:00 07/21/12 21:31 98-95-3 1 Pentachlorophenol ND ug/L 5000 07/20/12 13:00 07/21/12 21:31 87-86-5 1 Pyridine ND ug/L 500 07/20/12 13:00 07/21/12 21:31 110-86-1 1 2,4,5-Trichlorophenol ND ug/L 5000 07/20/12 13:00 07/21/12 21:31 95-95-4 1 2,4,6-Trichlorophenol ND ug/L 100 1 07/20/12 13:00 07/21/12 21:31 88-06-2 Surrogates 89 % 35-114 07/20/12 13:00 07/21/12 21:31 4165-60-0 Nitrobenzene-d5 (S) 1 92 % 07/20/12 13:00 07/21/12 21:31 321-60-8 2-Fluorobiphenyl (S) 43-116 1 Terphenyl-d14 (S) 102 % 33-141 07/20/12 13:00 07/21/12 21:31 1718-51-0 1 Phenol-d6 (S) 34 % 10-110 1 07/20/12 13:00 07/21/12 21:31 13127-88-3 2-Fluorophenol (S) 57 % 21-110 1 07/20/12 13:00 07/21/12 21:31 367-12-4 2,4,6-Tribromophenol (S) 10-123 07/20/12 13:00 07/21/12 21:31 118-79-6 72 % 1

Date: 08/10/2012 11:53 AM REPORT OF LABO

Project: Niacet Characterization


Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

Sample: NEAREA-HSB3ABC-Comp Lab ID: 3073183005 Collected: 07/11/12 15:00 Received: 07/12/12 09:10 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV TCLP	Analytical Method	d: EPA 8260					
Benzene	ND ug/L	50.0	1		07/24/12 04:56	71-43-2	
2-Butanone (MEK)	ND ug/L	5000	1		07/24/12 04:56	78-93-3	
Carbon tetrachloride	ND ug/L	50.0	1		07/24/12 04:56	56-23-5	
Chlorobenzene	ND ug/L	1000	1		07/24/12 04:56	108-90-7	
Chloroform	ND ug/L	500	1		07/24/12 04:56	67-66-3	
1,2-Dichloroethane	ND ug/L	50.0	1		07/24/12 04:56	107-06-2	
1,1-Dichloroethene	ND ug/L	50.0	1		07/24/12 04:56	75-35-4	
Tetrachloroethene	ND ug/L	50.0	1		07/24/12 04:56	127-18-4	
Trichloroethene	ND ug/L	50.0	1		07/24/12 04:56	79-01-6	
Vinyl chloride	ND ug/L	50.0	1		07/24/12 04:56	75-01-4	
Surrogates	•						
1,2-Dichloroethane-d4 (S)	106 %	70-130	1		07/24/12 04:56	17060-07-0	
Toluene-d8 (S)	99 %	70-130	1		07/24/12 04:56	2037-26-5	
4-Bromofluorobenzene (S)	97 %	70-130	1		07/24/12 04:56	460-00-4	
Percent Moisture	Analytical Method	d: ASTM D2974-87					
Percent Moisture	5.9 %	0.10	1		07/20/12 17:53		

(724)850-5600

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

QC Batch: MERP/3729 QC Batch Method:

EPA 7470

Analysis Method:

EPA 7470

Analysis Description:

Matrix: Water

7470 Mercury TCLP

Associated Lab Samples: 3073183001, 3073183005

METHOD BLANK: 465819

Associated Lab Samples:

3073183001, 3073183005

Blank

Reporting

Parameter

Units

Units

Units

Units

ug/L

Result

Limit

Analyzed

Qualifiers

Mercury ug/L

ND

1.0 07/19/12 09:58

LABORATORY CONTROL SAMPLE: 465820

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury ug/L 1.0 101 85-115

MATRIX SPIKE SAMPLE:

465822

Parameter

Parameter

3073164001 Result

Spike Conc.

MS Result

MS % Rec % Rec Limits

Qualifiers

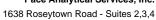
ND 3.2 127 2.5 85-115 M1 Mercury ug/L

ND

SAMPLE DUPLICATE: 465821

Mercury

3073164001 Result


Dup Result

ND

RPD

Qualifiers

Date: 08/10/2012 11:53 AM

(724)850-5600

Greensburg, PA 15601

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

QC Batch: MPRP/8712 Analysis Method: EPA 6010
QC Batch Method: EPA 3005 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 3073183001, 3073183005

METHOD BLANK: 465792 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.050	07/19/12 07:59	_
Barium	mg/L	ND	1.0	07/19/12 07:59	
Cadmium	mg/L	ND	0.050	07/19/12 07:59	
Chromium	mg/L	ND	0.050	07/19/12 07:59	
Lead	mg/L	ND	0.050	07/19/12 07:59	
Selenium	mg/L	ND	0.10	07/19/12 07:59	
Silver	mg/L	ND	0.050	07/19/12 07:59	

LABORATORY	CONTROL	SAMPLE:	465793
------------	---------	---------	--------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	.5	0.49	99	80-120	
Barium	mg/L	.5	.5J	100	80-120	
Cadmium	mg/L	.5	0.50	99	80-120	
Chromium	mg/L	.5	0.49	98	80-120	
Lead	mg/L	.5	0.49	98	80-120	
Selenium	mg/L	.5	0.50	99	80-120	
Silver	mg/L	.25	0.25	101	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	465795		465796
	MS	MSD	

			MS	MSD							
	30	073164001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/L	ND	.5	.5	0.54	0.53	107	106	80-120		
Barium	mg/L	ND	.5	.5	.82J	.81J	95	93	80-120		
Cadmium	mg/L	ND	.5	.5	0.47	0.47	95	94	80-120	1	
Chromium	mg/L	ND	.5	.5	0.47	0.47	94	94	80-120	.5	
Lead	mg/L	ND	.5	.5	0.51	0.51	100	99	80-120	.9	
Selenium	mg/L	ND	.5	.5	0.54	0.55	109	109	80-120	.4	
Silver	mg/L	ND	.25	.25	0.26	0.26	106	104	80-120	1	

MATRIX SPIKE SAMPLE:	465798
MATRIX SPINE SAMPLE:	400/90

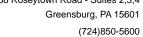
Parameter	Units	3073184004 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	ND	.5	0.55	107	80-120	
Barium	mg/L	ND	.5	1.0	93	80-120	
Cadmium	mg/L	ND	.5	0.47	94	80-120	
Chromium	mg/L	ND	.5	0.50	95	80-120	

Date: 08/10/2012 11:53 AM

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183


MATRIX SPIKE SAMPLE:	465798						
Parameter	Units	3073184004 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
- arameter	Office			Tresuit	70 IXEC	LIIIIII	Qualifiers
Lead	mg/L	ND	.5	0.51	100	80-120	
Selenium	mg/L	ND	.5	0.54	107	80-120	
Silver	mg/L	ND	.25	0.27	107	80-120	

SAMPLE DUPLICATE: 465794

Parameter	Units	3073164001 Result	Dup Result	RPD	Qualifiers
Arsenic	mg/L	ND	.0037J		
Barium	mg/L	ND	.34J		
Cadmium	mg/L	ND	ND		
Chromium	mg/L	ND	ND		
Lead	mg/L	ND	.0083J		
Selenium	mg/L	ND	ND		
Silver	mg/L	ND	ND		

SAMPLE DUPLICATE: 465797

Parameter	Units	3073184004 Result	Dup Result	RPD	Qualifiers
Arsenic	 mg/L	ND ND	.015J		
Barium	mg/L	ND	.54J		
Cadmium	mg/L	ND	.00062J		
Chromium	mg/L	ND	.024J		
Lead	mg/L	ND	.0074J		
Selenium	mg/L	ND	.0034J		
Silver	mg/L	ND	ND		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

QC Batch: MSV/13357 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 3073183001, 3073183005

METHOD BLANK: 467531 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	ND	50.0	07/24/12 02:18	_
1,2-Dichloroethane	ug/L	ND	50.0	07/24/12 02:18	
2-Butanone (MEK)	ug/L	ND	5000	07/24/12 02:18	
Benzene	ug/L	ND	50.0	07/24/12 02:18	
Carbon tetrachloride	ug/L	ND	50.0	07/24/12 02:18	
Chlorobenzene	ug/L	ND	1000	07/24/12 02:18	
Chloroform	ug/L	ND	500	07/24/12 02:18	
Tetrachloroethene	ug/L	ND	50.0	07/24/12 02:18	
Trichloroethene	ug/L	ND	50.0	07/24/12 02:18	
Vinyl chloride	ug/L	ND	50.0	07/24/12 02:18	
1,2-Dichloroethane-d4 (S)	%	103	70-130	07/24/12 02:18	
4-Bromofluorobenzene (S)	%	102	70-130	07/24/12 02:18	
Toluene-d8 (S)	%	100	70-130	07/24/12 02:18	

LABORATORY CONTROL SAMPLE: 467532

Date: 08/10/2012 11:53 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
		 _		/0 IXEC		Qualifiers
1,1-Dichloroethene	ug/L	200	192	96	70-130	
1,2-Dichloroethane	ug/L	200	191	95	70-130	
2-Butanone (MEK)	ug/L	200	204J	102	70-130	
Benzene	ug/L	200	179	90	70-130	
Carbon tetrachloride	ug/L	200	192	96	70-130	
Chlorobenzene	ug/L	200	194J	97	70-130	
Chloroform	ug/L	200	180J	90	70-130	
Tetrachloroethene	ug/L	200	181	90	70-130	
Trichloroethene	ug/L	200	179	89	70-130	
Vinyl chloride	ug/L	200	209	104	70-130	
1,2-Dichloroethane-d4 (S)	%			103	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			99	70-130	

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

QC Batch: OEXT/12149 Analysis Method: EPA 8081

QC Batch Method: EPA 3510 Analysis Description: 8081 GCS TCLP Pesticides

Associated Lab Samples: 3073183001, 3073183005

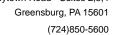
METHOD BLANK: 466179 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	 ug/L	ND	10.0	07/24/12 00:05	
Endrin	ug/L	ND	1.0	07/24/12 00:05	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 00:05	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 00:05	
Methoxychlor	ug/L	ND	100	07/24/12 00:05	
Toxaphene	ug/L	ND	50.0	07/24/12 00:05	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 00:05	
Tetrachloro-m-xylene (S)	%	75	30-150	07/24/12 00:05	

METHOD BLANK: 466181 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	ug/L	ND	10.0	07/24/12 05:33	
Endrin	ug/L	ND	1.0	07/24/12 05:33	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 05:33	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 05:33	
Methoxychlor	ug/L	ND	100	07/24/12 05:33	
Toxaphene	ug/L	ND	50.0	07/24/12 05:33	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 05:33	
Tetrachloro-m-xylene (S)	%	73	30-150	07/24/12 05:33	

METHOD BLANK: 466182 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005

Date: 08/10/2012 11:53 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	ug/L	ND	10.0	07/24/12 06:28	
Endrin	ug/L	ND	1.0	07/24/12 06:28	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 06:28	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 06:28	
Methoxychlor	ug/L	ND	100	07/24/12 06:28	
Toxaphene	ug/L	ND	50.0	07/24/12 06:28	
Decachlorobiphenyl (S)	%	89	30-150	07/24/12 06:28	
Tetrachloro-m-xylene (S)	%	83	30-150	07/24/12 06:28	

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

LABORATORY CONTROL SAMPLE: 466180

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	Office	COIIC.	Conc. Result			Qualifiers
Endrin	ug/L	1.6	1.4	88	57-112	
gamma-BHC (Lindane)	ug/L	1.6	1.4J	88	66-118	
Heptachlor epoxide	ug/L	1.6	1.2	76	66-114	
Methoxychlor	ug/L	1.6	1.3J	81	50-150	
Decachlorobiphenyl (S)	%			80	30-150	
Tetrachloro-m-xylene (S)	%			66	30-150	

MATRIX SPIKE & MATRIX SI	PIKE DUPLICAT	E: 46618	3		466184						
	30	073416001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Endrin	ug/L	ND	1.6	1.6	1.7	1.6	104	102	57-112		
gamma-BHC (Lindane)	ug/L	ND	1.6	1.6	1.7J	1.7J	105	104	66-118		
Heptachlor epoxide	ug/L	ND	1.6	1.6	1.4	1.4	90	89	66-114	1	
Methoxychlor	ug/L	ND	1.6	1.6	1.6J	1.5J	98	96	50-150		
Decachlorobiphenyl (S)	%						77	77	30-150		
Tetrachloro-m-xylene (S)	%						80	80	30-150		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

QC Batch: OEXT/12140 Analysis Method: EPA 8082
QC Batch Method: EPA 3546 Analysis Description: 8082 GCS PCB

Associated Lab Samples: 3073183001, 3073183005

METHOD BLANK: 465907 Matrix: Solid

Associated Lab Samples: 3073183001, 3073183005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND ND	16.7	07/21/12 17:41	
PCB-1221 (Aroclor 1221)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1232 (Aroclor 1232)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1242 (Aroclor 1242)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1248 (Aroclor 1248)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1254 (Aroclor 1254)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1260 (Aroclor 1260)	ug/kg	ND	16.7	07/21/12 17:41	
Decachlorobiphenyl (S)	%	76	30-150	07/21/12 17:41	
Tetrachloro-m-xylene (S)	%	61	30-150	07/21/12 17:41	

LABORATORY CONTROL SAMPLE: 465908

Date: 08/10/2012 11:53 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	167	105	63	55-145	
PCB-1260 (Aroclor 1260)	ug/kg	167	128	77	55-145	
Decachlorobiphenyl (S)	%			73	30-150	
Tetrachloro-m-xylene (S)	%			56	30-150	

MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT	E: 46590	9		465910						
	30	073396001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	ND	172	175	92.1	100	54	57	55-145	9 M3	
PCB-1260 (Aroclor 1260)	ug/kg	ND	172	175	113	115	61	62	55-145	2	
Decachlorobiphenyl (S)	%						48	44	30-150		
Tetrachloro-m-xylene (S)	%						46	48	30-150		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

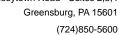
QC Batch: OEXT/12158 Analysis Method: EPA 8270

QC Batch Method: EPA 3510 Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 3073183001, 3073183005

METHOD BLANK: 466539 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	500	07/21/12 16:04	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 16:04	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 16:04	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 16:04	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 16:04	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 16:04	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 16:04	
Hexachlorobenzene	ug/L	ND	100	07/21/12 16:04	
Hexachloroethane	ug/L	ND	500	07/21/12 16:04	
Nitrobenzene	ug/L	ND	100	07/21/12 16:04	
Pentachlorophenol	ug/L	ND	5000	07/21/12 16:04	
Pyridine	ug/L	ND	500	07/21/12 16:04	
2,4,6-Tribromophenol (S)	%	72	10-123	07/21/12 16:04	
2-Fluorobiphenyl (S)	%	75	43-116	07/21/12 16:04	
2-Fluorophenol (S)	%	45	21-110	07/21/12 16:04	
Nitrobenzene-d5 (S)	%	74	35-114	07/21/12 16:04	
Phenol-d6 (S)	%	30	10-110	07/21/12 16:04	
Terphenyl-d14 (S)	%	92	33-141	07/21/12 16:04	

METHOD BLANK: 466543 Matrix: Water

Associated Lab Samples: 3073183001, 3073183005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND ND	500	07/21/12 20:09	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 20:09	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 20:09	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 20:09	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 20:09	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 20:09	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 20:09	
Hexachlorobenzene	ug/L	ND	100	07/21/12 20:09	
Hexachloroethane	ug/L	ND	500	07/21/12 20:09	
Nitrobenzene	ug/L	ND	100	07/21/12 20:09	
Pentachlorophenol	ug/L	ND	5000	07/21/12 20:09	
Pyridine	ug/L	ND	500	07/21/12 20:09	
2,4,6-Tribromophenol (S)	%	59	10-123	07/21/12 20:09	
2-Fluorobiphenyl (S)	%	79	43-116	07/21/12 20:09	
2-Fluorophenol (S)	%	45	21-110	07/21/12 20:09	
Nitrobenzene-d5 (S)	%	74	35-114	07/21/12 20:09	
Phenol-d6 (S)	%	28	10-110	07/21/12 20:09	
Terphenyl-d14 (S)	%	91	33-141	07/21/12 20:09	

Date: 08/10/2012 11:53 AM

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

METHOD BLANK: 466544 Matrix: Water

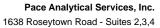
Associated Lab Samples: 3073183001, 3073183005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND ND	500	07/21/12 23:13	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 23:13	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 23:13	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 23:13	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 23:13	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 23:13	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 23:13	
Hexachlorobenzene	ug/L	ND	100	07/21/12 23:13	
Hexachloroethane	ug/L	ND	500	07/21/12 23:13	
Nitrobenzene	ug/L	ND	100	07/21/12 23:13	
Pentachlorophenol	ug/L	ND	5000	07/21/12 23:13	
Pyridine	ug/L	ND	500	07/21/12 23:13	
2,4,6-Tribromophenol (S)	%	73	10-123	07/21/12 23:13	
2-Fluorobiphenyl (S)	%	87	43-116	07/21/12 23:13	
2-Fluorophenol (S)	%	50	21-110	07/21/12 23:13	
Nitrobenzene-d5 (S)	%	76	35-114	07/21/12 23:13	
Phenol-d6 (S)	%	31	10-110	07/21/12 23:13	
Terphenyl-d14 (S)	%	98	33-141	07/21/12 23:13	

LABORATORY CONTROL SAMPLE: 466540

Date: 08/10/2012 11:53 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	500	314J	63	10-95	
2,4,5-Trichlorophenol	ug/L	500	255J	51	10-200	
2,4,6-Trichlorophenol	ug/L	500	359	72	42-132	
2,4-Dinitrotoluene	ug/L	500	319	64	10-133	
2-Methylphenol(o-Cresol)	ug/L	500	327J	65	10-200	
3&4-Methylphenol(m&p Cresol)	ug/L	1000	623J	62	10-200	
Hexachloro-1,3-butadiene	ug/L	500	343	69	38-113	
Hexachlorobenzene	ug/L	500	361	72	58-130	
Hexachloroethane	ug/L	500	329J	66	36-96	
Nitrobenzene	ug/L	500	360	72	41-108	
Pentachlorophenol	ug/L	500	304J	61	13-129	
Pyridine	ug/L	500	ND	31	10-200	
2,4,6-Tribromophenol (S)	%			59	10-123	
2-Fluorobiphenyl (S)	%			73	43-116	
2-Fluorophenol (S)	%			47	21-110	
Nitrobenzene-d5 (S)	%			71	35-114	
Phenol-d6 (S)	%			24	10-110	
Terphenyl-d14 (S)	%			88	33-141	


QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT	E: 46654	1		466542						
	30	073396001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1,4-Dichlorobenzene	ug/L	ND	500	500	359J	361J	72	72	10-95		
2,4,5-Trichlorophenol	ug/L	ND	500	500	365J	306J	73	61	10-200		
2,4,6-Trichlorophenol	ug/L	ND	500	500	403	400	81	80	42-132	.7	
2,4-Dinitrotoluene	ug/L	ND	500	500	357	361	71	72	10-133	1	
-Methylphenol(o-Cresol)	ug/L	ND	500	500	366J	379J	73	76	10-200		
8&4-Methylphenol(m&p Cresol)	ug/L	ND	1000	1000	669J	673J	67	67	10-200		
lexachloro-1,3-butadiene	ug/L	ND	500	500	402	408	80	82	38-113	2	
lexachlorobenzene	ug/L	ND	500	500	398	415	80	83	58-130	4	
lexachloroethane	ug/L	ND	500	500	373J	385J	75	77	36-96		
litrobenzene	ug/L	ND	500	500	422	432	84	86	41-108	3	
entachlorophenol	ug/L	ND	500	500	309J	388J	62	78	13-129		
Pyridine	ug/L	ND	500	500	ND	ND	37	32	10-200		
,4,6-Tribromophenol (S)	%						73	68	10-123		
-Fluorobiphenyl (S)	%						80	81	43-116		
-Fluorophenol (S)	%						49	49	21-110		
litrobenzene-d5 (S)	%						82	82	35-114		
Phenol-d6 (S)	%						27	27	10-110		
erphenyl-d14 (S)	%						87	91	33-141		

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

QC Batch: PMST/3284 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 3073183001, 3073183005

SAMPLE DUPLICATE: 466978

3073184001 Dup
Parameter Units Result Result RPD Qualifiers

Percent Moisture % 11.2 9.6 15

SAMPLE DUPLICATE: 466979

Date: 08/10/2012 11:53 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Percent Moisture
 %
 12.0
 12.3
 2

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project: Niacet Characterization

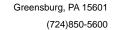
Pace Project No.: 3073183

Sample: NEAREA-HSB2-Grab Lab ID: 3073183002 Collected: 07/11/12 14:10 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	0.0270U ± 0.703 (1.17)	pCi/g	08/07/12 08:03	14952-40-0	
Actinium-228	EPA 901.1m	1.98 ± 0.370 (0.294)	pCi/g	08/07/12 08:03	14331-83-0	
Bismuth-212	EPA 901.1m	2.27 ± 0.744 (0.995)	pCi/g	08/07/12 08:03	14913-49-6	
Bismuth-214	EPA 901.1m	13.3 ± 1.40 (0.527)	pCi/g	08/07/12 08:03	14733-03-0	
Cesium-137	EPA 901.1m	-0.060U ± 0.0800 (0.130)	pCi/g	08/07/12 08:03	10045-97-3	
Cobalt-60	EPA 901.1m	-0.011U ± 0.936 (0.0850)	pCi/g	08/07/12 08:03	10198-40-0	
Lead-210	EPA 901.1m	12.6U ± 32.7 (54.3)	pCi/g	08/07/12 08:03	14255-04-0	
Lead-212	EPA 901.1m	1.59 ± 0.224 (0.194)	pCi/g	08/07/12 08:03	15092-94-1	
Lead-214	EPA 901.1m	13.5 ± 1.46 (0.247)	pCi/g	08/07/12 08:03	15067-28-4	
Potassium-40	EPA 901.1m	4.35 ± 1.23 (0.891)	pCi/g	08/07/12 08:03	13966-00-2	
Protactinium-234M	EPA 901.1m	1.01U ± 5.11 (8.79)	pCi/g	08/07/12 08:03	15100-28-4	
Radium-226	EPA 901.1m	13.4 ± 1.39 (0.194)	pCi/g	08/07/12 08:03	13982-63-3	
Radium-228	EPA 901.1m	1.98U ± 0.370 (2.94)	pCi/g	08/07/12 08:03	15262-20-1	
Thallium-208	EPA 901.1m	0.573J ± 0.136 (0.113)	pCi/g	08/07/12 08:03	14913-50-9	
Thorium-234	EPA 901.1m	0.000U ± 3.61 (6.06)	pCi/g	08/07/12 08:03	15065-10-8	
Uranium-235	EPA 901.1m	1.03 ± 0.203 (0.179)	pCi/g	08/07/12 08:03	15117-96-1	
Thorium-228	HSL-300m	1.77 ± 0.370 (0.128)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	9.26 ± 1.56 (0.090)	pCi/g	07/27/12 13:09	14269-63-7	N2
Thorium-232	HSL-300m	1.49 ± 0.318 (0.052)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	2.34 ± 0.415 (0.105)	pCi/g	07/26/12 16:06	13966-29-5	N2
Uranium-235	HSL-300m	0.195 ± 0.086 (0.056)	pCi/g	07/26/12 16:06	15117-96-1	N2
Uranium-238	HSL-300m	2.40 ± 0.420 (0.061)	pCi/g	07/26/12 16:06		N2


Sample: NEAREA-HSB1-Comp Lab ID: 3073183003Collected: 07/11/12 13:30 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	0.218U ± 0.282 (1.01)	pCi/g	08/07/12 08:37	14952-40-0	
Actinium-228	EPA 901.1m	1.57 ± 0.299 (0.230)	pCi/g	08/07/12 08:37	14331-83-0	
Bismuth-212	EPA 901.1m	2.29 ± 0.975 (0.871)	pCi/g	08/07/12 08:37	14913-49-6	
Bismuth-214	EPA 901.1m	7.09 ± 0.786 (0.474)	pCi/g	08/07/12 08:37	14733-03-0	
Cesium-137	EPA 901.1m	-0.043U ± 0.0620 (0.1000)	pCi/g	08/07/12 08:37	10045-97-3	
Cobalt-60	EPA 901.1m	-0.014U ± 0.719 (0.0720)	pCi/g	08/07/12 08:37	10198-40-0	
Lead-210	EPA 901.1m	15.6U ± 25.7 (42.5)	pCi/g	08/07/12 08:37	14255-04-0	
Lead-212	EPA 901.1m	1.31 ± 0.186 (0.146)	pCi/g	08/07/12 08:37	15092-94-1	
Lead-214	EPA 901.1m	7.03 ± 0.784 (0.177)	pCi/g	08/07/12 08:37	15067-28-4	
Potassium-40	EPA 901.1m	5.18 ± 1.10 (0.671)	pCi/g	08/07/12 08:37	13966-00-2	
Protactinium-234M	EPA 901.1m	9.62 ± 4.86 (4.55)	pCi/g	08/07/12 08:37	15100-28-4	
Radium-226	EPA 901.1m	7.05 ± 0.753 (0.170)	pCi/g	08/07/12 08:37	13982-63-3	
Radium-228	EPA 901.1m	1.57 ± 0.299 (0.230)	pCi/g	08/07/12 08:37	15262-20-1	
Thallium-208	EPA 901.1m	0.461J ± 0.0840 (0.0640)	pCi/g	08/07/12 08:37	14913-50-9	
Thorium-234	EPA 901.1m	-0.063U ± 2.78 (4.69)	pCi/g	08/07/12 08:37	15065-10-8	
Uranium-235	EPA 901.1m	0.606J ± 0.157 (0.143)	pCi/g	08/07/12 08:37	15117-96-1	
Thorium-228	HSL-300m	1.47 ± 0.306 (0.088)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	3.85 ± 0.687 (0.085)	pCi/g	07/27/12 13:09	14269-63-7	N2

Date: 08/10/2012 11:53 AM REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: Niacet Characterization

Pace Project No.: 3073183

Sample: NEAREA-HSB1-Comp Lab ID: 3073183003Collected: 07/11/12 13:30 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Thorium-232	HSL-300m	1.38 ± 0.286 (0.017)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	1.48 ± 0.289 (0.126)	pCi/g	07/26/12 16:06	13966-29-5	N2
Uranium-235	HSL-300m	0.071J ± 0.057 (0.077)	pCi/g	07/26/12 16:06	15117-96-1	N2
Uranium-238	HSL-300m	1.33 ± 0.261 (0.059)	pCi/a	07/26/12 16:06		N2

Sample: NEAREA-HSB3ABC-Comp Lab ID: 3073183005 Collected: 07/11/12 15:00 Received: 07/12/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	0.978J ± 0.594 (0.770)	pCi/g	08/10/12 07:09	14952-40-0	
Actinium-228	EPA 901.1m	0.851J ± 0.358 (0.520)	pCi/g	08/10/12 07:09	14331-83-0	
Bismuth-212	EPA 901.1m	1.06U ± 1.01 (1.61)	pCi/g	08/10/12 07:09	14913-49-6	
Bismuth-214	EPA 901.1m	11.3 ± 1.56 (0.855)	pCi/g	08/10/12 07:09	14733-03-0	
Cesium-137	EPA 901.1m	-0.074U ± 0.115 (0.187)	pCi/g	08/10/12 07:09	10045-97-3	
Cobalt-60	EPA 901.1m	-0.032U ± 3.53 (0.167)	pCi/g	08/10/12 07:09	10198-40-0	
Lead-210	EPA 901.1m	-1.620U ± 87.8 (66.4)	pCi/g	08/10/12 07:09	14255-04-0	
Lead-212	EPA 901.1m	0.824J ± 0.199 (0.222)	pCi/g	08/10/12 07:09	15092-94-1	
Lead-214	EPA 901.1m	12.3 ± 1.68 (0.290)	pCi/g	08/10/12 07:09	15067-28-4	
Potassium-40	EPA 901.1m	5.07 ± 1.57 (1.37)	pCi/g	08/10/12 07:09	13966-00-2	
Protactinium-234M	EPA 901.1m	13.9U ± 11.3 (17.6)	pCi/g	08/10/12 07:09	15100-28-4	
Radium-226	EPA 901.1m	11.8 ± 1.56 (0.310)	pCi/g	08/10/12 07:09	13982-63-3	
Radium-228	EPA 901.1m	$0.851J \pm 0.358 (0.520)$	pCi/g	08/10/12 07:09	15262-20-1	
Thallium-208	EPA 901.1m	0.157J ± 0.1000 (0.155)	pCi/g	08/10/12 07:09	14913-50-9	
Thorium-234	EPA 901.1m	6.42 ± 3.90 (4.93)	pCi/g	08/10/12 07:09	15065-10-8	
Uranium-235	EPA 901.1m	1.29 ± 0.270 (0.213)	pCi/g	08/10/12 07:09	15117-96-1	
Thorium-228	HSL-300m	0.719 ± 0.174 (0.122)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	12.7 ± 2.08 (0.068)	pCi/g	07/27/12 13:09	14269-63-7	N2
Thorium-232	HSL-300m	0.596 ± 0.141 (0.032)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	14.4 ± 2.15 (0.106)	pCi/g	07/26/12 16:04	13966-29-5	N2
Uranium-235	HSL-300m	0.710 ± 0.186 (0.058)	pCi/g	07/26/12 16:04	15117-96-1	N2
Uranium-238	HSL-300m	13.6 ± 2.04 (0.056)	pCi/g	07/26/12 16:04		N2

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

QC Batch: RADC/12641 Analysis Method: EPA 901.1m


QC Batch Method: EPA 901.1m Analysis Description: 901.1 Gamma Spec

Associated Lab Samples: 3073183002, 3073183003

METHOD BLANK: 464107 Matrix: Solid

Associated Lab Samples: 3073183002, 3073183003

Parameter	Act ± Unc (MDC)	Units	Analyzed Qua	lifiers
Actinium-227	$0.203 \pm 0.227 (0.274)$	pCi/g	08/05/12 18:35	
Actinium-228	$0.0210 \pm 0.0360 (0.239)$	pCi/g	08/05/12 18:35	
Bismuth-212	$0.191 \pm 0.454 (0.790)$	pCi/g	08/05/12 18:35	
Bismuth-214	$-0.107 \pm 2.38 (0.445)$	pCi/g	08/05/12 18:35	
Cesium-137	$0.0200 \pm 0.0360 (0.0600)$	pCi/g	08/05/12 18:35	
Cobalt-60	$-0.019 \pm 0.0940 (0.0650)$	pCi/g	08/05/12 18:35	
Lead-210	$5.11 \pm 14.3 (24.7)$	pCi/g	08/05/12 18:35	
Lead-212	-0.044 ± 18.9 (0.0970)	pCi/g	08/05/12 18:35	
Lead-214	$0.0990 \pm 0.0750 (0.114)$	pCi/g	08/05/12 18:35	
Potassium-40	-0.117 ± 0.553 (0.767)	pCi/g	08/05/12 18:35	
Protactinium-234M	$1.73 \pm 3.37 (5.83)$	pCi/g	08/05/12 18:35	
Radium-226	$0.0200 \pm 0.0220 (0.165)$	pCi/g	08/05/12 18:35	
Radium-228	$0.0210 \pm 0.0360 (0.239)$	pCi/g	08/05/12 18:35	
Thallium-208	-0.011 ± 0.0720 (0.0580)	pCi/g	08/05/12 18:35	
Thorium-234	0.148 ± 1.14 (2.01)	pCi/g	08/05/12 18:35	
Uranium-235	$0.000 \pm 0.0370 (0.0660)$	pCi/g	08/05/12 18:35	

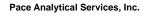
QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

QC Batch: RADC/12666 Analysis Method: EPA 901.1m


QC Batch Method: EPA 901.1m Analysis Description: 901.1 Gamma Spec

Associated Lab Samples: 3073183005

METHOD BLANK: 465563 Matrix: Solid

Associated Lab Samples: 3073183005

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Actinium-227	0.000 ± 0.247 (0.436)	pCi/g	08/07/12 16:20	
Actinium-228	$0.0310 \pm 0.197 (0.371)$	pCi/g	08/07/12 16:20	
Bismuth-212	$0.0390 \pm 0.769 (1.39)$	pCi/g	08/07/12 16:20	
Bismuth-214	$-0.008 \pm 0.449 (0.768)$	pCi/g	08/07/12 16:20	
Cesium-137	$-0.012 \pm 0.0610 (0.0890)$	pCi/g	08/07/12 16:20	
Cobalt-60	-0.049 ± 0.584 (0.117)	pCi/g	08/07/12 16:20	
Lead-210	8.67 ± 15.7 (26.7)	pCi/g	08/07/12 16:20	
Lead-212	$0.001000 \pm 0.00200 (0.154)$	pCi/g	08/07/12 16:20	
Lead-214	-0.145 ± 3.79 (0.228)	pCi/g	08/07/12 16:20	
Potassium-40	-0.232 ± 1.06 (1.36)	pCi/g	08/07/12 16:20	
Protactinium-234M	$-1.060 \pm 8.44 (10.6)$	pCi/g	08/07/12 16:20	
Radium-226	$-0.036 \pm 0.223 (0.273)$	pCi/g	08/07/12 16:20	
Radium-228	$0.0310 \pm 0.197 (0.371)$	pCi/g	08/07/12 16:20	
Thallium-208	-0.011 ± 0.0180 (0.103)	pCi/g	08/07/12 16:20	
Thorium-234	-0.050 ± 3.55 (6.02)	pCi/g	08/07/12 16:20	
Uranium-235	$0.0360 \pm 0.0580 (0.0920)$	pCi/g	08/07/12 16:20	

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL DATA

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

QC Batch: RADC/12675 Analysis Method: HSL-300m

QC Batch Method: HSL-300m Analysis Description: HSL300(AS) Actinides

Associated Lab Samples: 3073183002, 3073183003, 3073183005

METHOD BLANK: 466065 Matrix: Solid

Associated Lab Samples: 3073183002, 3073183003, 3073183005

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Thorium-228	0.152 ± 0.076 (0.099)	pCi/g	07/27/12 13:09	N2
Thorium-230	$0.009 \pm 0.034 (0.071)$	pCi/g	07/27/12 13:09	N2
Thorium-232	-0.004 ± 0.021 (0.034)	pCi/g	07/27/12 13:09	N2
Uranium-234	$0.040 \pm 0.045 (0.076)$	pCi/g	07/26/12 16:04	N2
Uranium-235	$0.008 \pm 0.032 (0.020)$	pCi/g	07/26/12 16:04	N2
Uranium-238	$0.017 \pm 0.025 (0.016)$	pCi/g	07/26/12 16:04	N2

Gamma Spec Quality Control Sample Performance Assessment

Hoover 8/10/2012 12666 Soil Analyst: Date: Worklist: Matrix:

2 Oz Can

Evaluation

Numerical Indicator

Duplicate 2 Sigma CSU

Sample 2 Sigma Duplicate Results

Sample Results

Analytes of Interest Potassium-40 Cobalt-60 Cesium-137

Lead-210 Bismuth-214 Thallium-208

Sample ID:

Duplicate Sample Precision Assessment

#DIV/0! #DIV/0! #DIV/0! #DIV/0i #DI//0i #DIV/0i #DIV/0i #DIV/0i #DIV/O #DIV/0i #DtV/0i

Duplicate Sample ID:

#DIV/01

#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01
#DIV/01

#DIV/0i

Protactinium-234M Lead-214 Radium-226 Actinium-228

Uranium-235 Radium-228 Bismuth-212 Lead-212 Thorium-234 Actinium-227

#DIV/0i #DIV/0i #DIV/0i

Sg am Geometry: Activity Units: Aliquot Units:

 MB Result	2 Sigma CSU	MB MDC	Numerical Indicator	MB Evaluation
-0.232	1.06	1.36	0.429	Pass
-0.049	0.584	0.117	0.164	Pass
-0.012	0.0610	0.0890	0.386	Pass
-0.011	0.0180	0.103	1.198	Pass
8.67	15.7	26.7	1.082	Pass
-0.008	0.449	0.768	0.035	Pass
-0.145	3.79	0.228	0.075	Pass
-0.036	0.223	0.273	0.316	Pass
0.0310	0.197	0.371	0.308	Pass
-1.060	8.44	10.6	0.246	Pass
0.0360	0.0580	0.0920	1.217	Pass
0.0310	0.197	0.371	0.308	Pass
0.0390	0.769	1.39	0.099	Pass
0.001000	0.00200	0.154	0.980	Pass
-0.050	3.55	6.02	0.028	Pass
0.000	0.247	0.436	0000	Pass

	Precision	Evaluation	Pass	Pass	
	Percent	RPD	0.3%	3.2%	
	Numerical Percent	Indicator	0:030	0.327	
	LCSD 2 Sigma	CSO	1.291	0.380	
	CSD	Concentration	768.6	2.775	
ent	LCS 2 Sigma	CSU	1.294	0.388	
ecision Assessm	SOT	Concentration	137 9.925	2.866	
Duplicate LCS Precision Assessment	4 4 4 4 4	Analyte	Cs-137	Co-60	

			THE PERSON NAMED IN COLUMN		
Laboratory Control Sample Assessment	Assessment				Laboratory Control Sample Duplica
	Analyte	Cs-137	Co-60		
	Count Date	8/7/2012	8/7/2012		
	Reference ID	0508-0125Cs	0508-0125Co		
Volume or Mass of	Reference Concentration	10.079	3.048		Referen
Reference Geometry	Reference Uncertainty	0.059	0.059		Refe
•	LCS Concentration	9.9249	2.8656		21
	LCS 2 Sigma CSU	1.294	0.388		3
	Numerical Indicator	0.23	0.91	#VALUE!	_
	Percent Recovery	98.5%	94.0%	#VALUE!	
	LCS Evaluation	Pass	Pass	#VALUE!	

Laboratory Control Sample Duplicate Assessment			
Analyte	Cs-137	Co-60	
Count Date	8/7/2012	8/7/2012	
Reference ID	0508-0125Cs	0508-0125Co	
Reference Concentration	10.079	3.048	
Reference Uncertainty	0.059	0.059	
LCSD Concentration	9.8967	2.775	
LCSD 2 Sigma CSU	1.291	0.380	
Numerical Indicator	0.28	1.39	
Percent Recovery	98.2%	91.0%	
LCSD Evaluation	Pass	Pass	

If the sample or Duplicate sample activity is below the associated MDC, the %RPD evaluation is not applicable and the sample duplicate precision criteria is acceptable.

Evaluation:

Gamma Spec Quality Control Sample Performance Assessment

Pace Analytical

Hoover 8/8/2012 12641 Soil Analyst: Date: Worklist: Matrix:

8 Oz Can pCi Gram Geometry: Activity Units: Aliquot Units:

Analytes of Interest	MB Result	2 Sigma CSU	MB MDC	Numerical Indicator	MB Evaluation
Potassium-40	-0.117	0.553	0.767	0.415	Pass
Cobalt-60	-0.019	0.0940	0.0650	0.396	Pass
Cesium-137	0.0200	0.0360	0.0600	1.089	Pass
Thallium-208	-0.011	0.0720	0.0580	0.299	Pass
Lead-210	5.11	14.3	24.7	0.700	Pass
Bismuth-214	-0.107	2.38	0.445	0.088	Pass
Lead-214	0.0990	0.0750	0.114	2.587	Pass
Radium-223	0.001000	0.00200	0.342	0.980	Pass
Radium-226	0.0200	0.0220	0.165	1.782	Pass
Actinium-228	0.0210	0.0360	0.239	1.143	Pass
Protactinium-231	-0.733	1.56	2.65	0.921	Pass
Protactinium-234	1.73	3.37	5.83	1.006	Pass
Protactinium-234M	1.73	3.37	5.83	1.006	Pass
Uranium-235	0.000	0.0370	0.0660	0.000	Pass
Radium-228	0.0210	0.0360	0.239	1.143	Pass
Bismuth-212	0.191	0.454	0.790	0.825	Pass
Lead-212	-0.044	18.9	0.0970	0.005	Pass
Thorium-234	0.148	1.14	2.01	0.254	Pass
Actinium-227	0.203	0.227	0.274	1.753	Pass

Laboratory Control Sample Assessment	le Assessment				Laboratory Control Sample Duplicate
	Analyte	Am-241	Cs-137	09-00 Co-60	
	Count Date	8/5/2012	8/5/2012	8/5/2012	
	Reference ID	09-039Am	09-039Cs	09-039Co	
Volume or Mass of	Reference Concentration	1.044	4.931	3.632	Reference
Reference Geometry	Reference Uncertainty	0.059	0.059	0.059	Refere
	LCS Concentration	1.0222	5.5237	3.8859	ISOT
	LCS 2 Sigma CSU	0.525	0.581	0.406	רכי
	Numerical Indicator	80:0	-1.39	-1.21	<u></u>
	Percent Recovery	%0.86	112.0%	107.0%	
	LCS Evaluation	Pass	Pass	Pass	7

Chamboots Camp	Description Association	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Dupitcate Sample Frecision Assessment	rrecision Asses	SIIIGIIK	Sample ID:		Duplicate Sample ID:	ample ID:	
Analytes of Interest	Sample Results	Sample 2 Sigma CSU	Duplicate Results	Duplicate 2 Sigma CSU	Numerical Indicator	% RPD	Evaluation
Potassium-40					#DIV/0i	io/Ala#	#DIV/0i
Cobalt-60					#DIV/0i	#DIV/0i	#DIV/0i
Cesium-137					#DIV/Oi	#DIA/0i	#DIV/0i
Thallium-208					#DIV/Oi	i0/AIQ#	i0/AIQ#
Lead-210					#DIV/0i	#DIVIO:	#DIV/0i
Bismuth-214					#DIV/0i	#DIV/0;	#DIV/0i
Lead-214					#DIV/0i	#DtV/0;	#DIV/0i
Radium-223					#DIV/0i	#DIV/0i	#DIV/0
Radium-226					#DIV/0i	#DIV/0i	:0/AIO#
Actinium-228					#DIV/0i	#DIV/0i	#DIV/0
Protactinium-231					#DIV/0i	#DIV/0i	#DIV/0
Protactinium-234					#DIV/0i	#DIV/0i	#DIV/0i
Protactinium-234M					#DIV/0i	#DIV/0i	#DIV/0
Uranium-235					#DIV/0i	#DIV/0i	#DIA/0i
Radium-228					#DIV/0i	#DIV/Oi	#DIA/0
Bismuth-212					#DIV/0i	#DIA/0i	#D/\/0i
Lead-212					#DIV/0i	#DIV/Gi	#DIV/0i
Thorium-234					#DIV/0i	#DIA/G	#DIV/0i
Actinium-227					#DIV/0i	#DIV/01	#DIV/0i
Duplicate LCS Pr	Duplicate LCS Precision Assessment	ent					
Analyte	LCS Concentration	LCS 2 Sigma CSU	LCSD Concentration	LCSD 2 Sigma CSU	Numerical Indicator	Percent RPD	Precision Evaluation
Am-241	1.022	0.525	1.109	0.508	-0.233	8.1%	Pass
Cs-137	5.524	0.581	5.549	0.583	-0.060	0.5%	Pass
Co-60	3.886	0.406	3.868	0.406	0.060	0.5%	Pass

Laboratory Control Sample Duplicate Assessment			
Analyte	Am-241	Cs-137	Co-60
Count Date	8/6/2012	8/6/2012	8/6/2012
Reference ID	09-039Am	09-039Cs	09-039Co
Reference Concentration	1.044	4.931	3.632
Reference Uncertainty	0.059	0.059	0.059
LCSD Concentration	1.109	5.549	3.8684
LCSD 2 Sigma CSU	0.508	0.583	0.406
Numerical Indicator	-0.25	-2.07	-1,13
Percent Recovery	106.3%	112.5%	106.5%
LCSD Evaluation	Pass	Pass	Pass

If the sample or Duplicate sample activity is below the associated MDC, the "RRPD evaluation is not applicable and the sample duplicate precision criteria is acceptable.

Evaluation:

Assessment 8/10/201211:40 AM

Quality Control Sample Performance Assessment

RCDU Upload

							MS/MSD Dec		
HSL-300m PGH-R-008	_ I _		Assessment						
HSL-	468065		Flag						
Method: SOP:	MB Sample ID:		Critical Value	0.00930	0.02670	0.03950			
LAL 7/30/2012 12675	Soil	sessment	MDC	0.0336	0.0710	0.0986			
Analyst: L Date: 7		Method Blank As	1.96 Sig Unc. MDC	0.0214	0.0344	0.0757			
			Activity	•0.0036	0.0000	0.1520			
ими расайж, сол			Analyte	Thorium-232	Thonum-230	Thorium-228			

,																												int	
Assessment	-	1																										Sample Assessme	
Sample Matrix Spike Control Assessment	Analyte:	Sample Collection Date:	Sample I.D.	Sample MS (.D.	Sample MSD 1.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Conc. (pCl/L):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike uncertainty (calculated):	MSD Spike uncertainty (calculated):	Sample Resuft:	Sample 1.96 Sigma Unc.:	Sample Matrix Spike Result:	Sample MS 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample MSD 1.96 Sigma Unc.:	MS % Recovery:	MSD % Recovery:	MS Assessment:	MSD Assessment:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment	Analygo
•			Assessment										CSD																
ıΩ																													

			TO MAIN C	The test of either the complete designations and residue and selections and	stocilar to classes	ather it either the	Evaluation of duplicate practicion is not on
% RPD Limit:						25.00%	% RPD Limit:
MS/ MSD RPD Assessment:						Pass	Assessment:
MS/MSD Relative Percent Difference:						0.63%	Relative Percent Difference:
Sample Matrix Spike Duplicate 1.96 Sigma Unc.:						z	Either results below MDC?
Sample Matrix Spike Duplicate Result:						0.8320	Duplicate Sample 1.96 Sigms Unc.
Sample Matrix Spike 1.96 Sigma Unc.:						4.8100	Sample Duplicate Result (pCi/L, g, F):
Sample Matrix Spike Result:						0.8300	1.96 Sigma Unc:
Sample MSD I.D.						4.7800	Sample Result (pCi/L, g, F):
Sample MS I.D.		.;				LCSD12675	Duplicate Sample t.D.
Sample 1.D.						LCS12675	Sample I.D.:
Analyte:						Thorium-230	Analyte:
						λ	LCS/LCSD Y or N?:
Matrix Spike/Matrix Spike Duplicate				Assessment	Duplicate Sample Assessment		
MS/MSD Lower % Recovery Limits:					75.00%	75.00%	Lower % Recovery Limits:
MS/MSD Upper % Recovery Limits:					125.00%	125.00%	Upper % Recovery Limits:
MSD Assessment:					Pass	Pass	Assessment:
MS Assessment:					90.77%	90.20%	% Recovery:
MSD % Recovery:					0.832	0.830	1.96 Sigma Unc:
MS % Recovery:					4.810	4.780	Result (pCi/L, g, F):
Sample MSD 1.96 Sigma Unc.:					0.312	0.312	1.96 Sigma Uncertainty (Calculated):
Sample Matrix Spike Duplicate Result:					5.299	5.299	Target Conc. (pCi/L, g, F):
Sample MS 1.96 Sigma Unc.:				·	0.500	0.500	Aliquot Volume (L, g, F):
Sample Matrix Spike Result:					0.100	0.100	Volume Used (mL):
Sample 1.96 Sigma Unc.:					26.497	26.497	Spike Concentration (pCi/L):
Sample Result:					12-018	12-018	Spike I.D.:
MSD Spike uncertainty (calculated):					7/27/12 13:11	7/27/12 13:11	Count Date:
MS Spike uncertainty (calculated):					Thorium-230	Thoriu	Analyte:
MSD Target Conc. (pCi/L, g, F):	CSD	SOT	TCSD T	SOT	CSD	SOT	
MSD Aliquot (L, g, F):				nple Assessment	Laboratory Control Sample Assessmen	Lab	
MS Target Conc.(pCi/l., g, F):							

% RPD Limit: 25.00%
Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

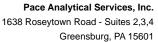
QC_lsoTh_12675_S.xls QC Spread_HGLV1.xls

Quality Control Sample Performance Assessment

RCDU Upload

								SM		
HSL-300m PGH-R-008				Assessment						
#SF -PGH	466065			Flag						
Method: SOP:	MB Sample ID:			Critical Value	0.02810	0.00000	0.00000			
LAL 7/30/2012 12675	Soll		ssessment	MDC	0.0760	0.0204	0.0157			
Analyst: Date: Worklist:	Matrix:		Method Blank Assessment	1.96 Sig Unc.	0.0451	0.0319	0.0246			
				Activity	0.0402	0.0075	0.0173			
www.pacedable.com				Analyte	Uranium-234	Uranium-235	Uranium-238			
		- [ĺ	l		Ι.	

	Sample Matrix Spike Control Assessment	ontrol Assessmen	ı	
	Analyte:			
	Sample Collection Date:			
	Sample I.D.			
	Sample MS I.D.			
	.G.1 GSM eldmeS			
Ξ	∵i∵gʻi ayldS			
	MS/MSD Decay Corrected Spike Conc. (pCi/L):			
	Spike Volume Used in MS (mL):			
	Spike Volume Used in MSD (mL):			
	MS Aliquot (L, g, F):			
1	MS Target Conc.(pCI/L, g, F):			
Ē	MSD Aliquot (L, g, F):			
	MSD Target Conc. (pCi/L, g, F):			
	MS Spike uncertainty (calculated):			
	MSD Spike uncertainty (calculated):			
	Sample Result:			
	Sample 1.96 Sigms Unc.:			
	Sample Matrix Spike Result:			
_	Sample MS 1.96 Sigma Unc.:			
	Sample Matrix Spike Duplicate Result:			
	Sample MSD 1.96 Sigma Unc.:			
	MS % Recovery:			
	MSD % Recovery:			
	MS Assessment:			
	MSD Assessment:			
	MS/MSD Upper % Recovery Limits:			
	MS/MSD Lower % Recovery Limits:			
	Matrix Spike/Matrix Spike Duplicate Sample Assessment	licate Sample Ass	sessment	
. : :	Analyte:			
	Sample I.D.			
ĺ				


							in the state of th	
		Laboratory Control Sample Assessment	mple Assessment				MSD Aliquot (L, g, F):	
	SOT	GSCT	SOT	CSD	SOT	CSD	MSD Target Conc. (pCi/L, g, F):	
Analyte:	Uranit	Uranium-234	Uranium-238	m-238			MS Spike uncertainty (calculated):	
Count Date:	7/27/12 7:56	7/27/12 7:56	7727/12 7:56	7/27/12 7:56			MSD Spike uncertainty (calculated):	
Spike I.D.:	11-041U234	11-041U234	11-041U238	11-041U238			Sample Result:	
Spike Concentration (pCI/L):	46.300	46.300	47,250	47.250			Sample 1.96 Sigms Unc.:	
Volume Used (mL):	0.100	00.0	0.100	0.100			Sample Matrix Spike Result:	
Aliquot Volume (L, g, F):	0.500	0.500	0,500	0.500			Sample MS 1.96 Sigma Unc.:	:::,
Target Conc. (pCi/L, g, F):	9.260	9.260	9.450	9.450			Sample Matrix Spike Duplicate Result:	
1.96 Sigma Uncertainty (Calculated):	0.327	0.327	0.333	0.333			Sample MSD 1.96 Sigma Unc.:	
Result (pCI/L, g, F):	9.770	9.780	10.200	9.810			MS % Recovery:	
1.96 Sigma Unc:	1.800	1.770	1.860	1.770			MSD % Recovery:	
% Recovery:	105.51%	105.62%	107.94%	103.81%			MS Assessment:	
Assessment:	Pass	Pass	Pass	Pass			MSD Assessment:	
Upper % Recovery Limits:	125.00%	125.00%	125.00%	125.00%			MS/MSD Upper % Recovery Limits:	
Lower % Recovery Limits:	75.00%	75.00%	75.00%	75.00%			MS/MSD Lower % Recovery Limits:	
		Duplicate Sample Assessment	Assessment				Matrix Spike/Matrix Spike Duplicat	licat
LCS/LCSD Y or N?:	λ.	χ						
Analyte:	Uranium-234	Uranium-238	4				Analyte:	
Sample I.D.:	LCS12675	LCS12675					Sample I.D.	
Duplicate Sample I.D.	LCSD12675	LCSD12675					Sample MS I.D.	
Sample Result (pCI/L, g, F):	0024.6	10.2000					Sample MSD I.D.	
1.96 Sigma Unc:	1.8000	1.8600					Sample Matrix Spike Result:	
Sample Duplicate Result (pCt/L, g, F):	9.7800	9.8100					Sample Matrix Spike 1.96 Sigma Unc.:	
Duplicate Sample 1.96 Sigma Unc.	1,7700	1,7700					Sample Matrix Spike Duplicate Result:	
Etther results below MDC?	N	Z					Sample Matrix Spike Duplicate 1.96 Sigma Unc.:	
Relative Percent Difference:	0.10%	3.90%					MS/MSD Relative Percent Difference:	
Assessment:	Pass	Pass					MS/ MSD RPD Assessment:	
% RPD LIMIt:	25.00%	25.00%					% RPD Limit:	
	the second of the second	The State of the s	and the second second	7074				

 % RPD Limit:
 25.00%

 Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

QC_IsoU_12675_S.xls QC Spread_HGLV1.xls

(724)850-5600

QUALIFIERS

Project: Niacet Characterization

3073183 Pace Project No.:

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty

(MDC) - Minimum Detectable Concentration

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

WORKORDER QUALIFIERS

WO: 3073183

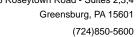
[1] Sample NEAREA-HSB1,2-Comp was received broken.

ANALYTE QUALIFIERS

Date: 08/10/2012 11:53 AM

The response for DCB is high in the closing calibration check standard associated with the analysis of this sample. 1c

Recovery may be biased high.


Relative percent difference between results from each column was greater than 40%. The higher of the two results was C3

reported.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

М3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

N2 The lab does not hold TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Niacet Characterization

Pace Project No.: 3073183

Date: 08/10/2012 11:53 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	EPA 3510 EPA 3510	OEXT/12149 OEXT/12149	EPA 8081 EPA 8081	GCSV/4671 GCSV/4671
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	EPA 3546 EPA 3546	OEXT/12140 OEXT/12140	EPA 8082 EPA 8082	GCSV/4666 GCSV/4666
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	EPA 3005 EPA 3005	MPRP/8712 MPRP/8712	EPA 6010 EPA 6010	ICP/8162 ICP/8162
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	EPA 7470 EPA 7470	MERP/3729 MERP/3729	EPA 7470 EPA 7470	MERC/3584 MERC/3584
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	EPA 3510 EPA 3510	OEXT/12158 OEXT/12158	EPA 8270 EPA 8270	MSSV/4145 MSSV/4145
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	EPA 8260 EPA 8260	MSV/13357 MSV/13357		
3073183001 3073183005	NEAREA-HSB1,2-Comp NEAREA-HSB3ABC-Comp	ASTM D2974-87 ASTM D2974-87	PMST/3284 PMST/3284		
3073183002 3073183003	NEAREA-HSB2-Grab NEAREA-HSB1-Comp	EPA 901.1m EPA 901.1m	RADC/12641 RADC/12641		
3073183005	NEAREA-HSB3ABC-Comp	EPA 901.1m	RADC/12666		
3073183002 3073183003 3073183005	NEAREA-HSB2-Grab NEAREA-HSB1-Comp NEAREA-HSB3ABC-Comp	HSL-300m HSL-300m HSL-300m	RADC/12675 RADC/12675 RADC/12675		

July 23, 2012

Carin Ferris PASI Pittsburgh 1638 Roseytown Road Greensburg, PA 15601

RE: Project 20141447

Project ID: 3073183 / Los Alamos

Dear Carin Ferris:

Enclosed are the analytical results for sample(s) received by the laboratory on July 14, 2012. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerly,

Karen Brown

karen.brown@pacelabs.com

que HPsour

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Laboratory Certifications

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141447

Client: PASI Pittsburgh

Project ID: 3073183 / Los Alamos

Washington Department of Ecology C2078

Oregon Environmental Laboratory Accreditation - LA200001 U.S. Dept. of Agriculture Foreign Soil Import P330-10-00119 Pennsylviania Dept. of Env Protection (NELAC) 68-04202

Texas Commission on Env. Quality (NELAC) T104704405-09-TX Kansas Department of Health and Environment (NELAC) E-10266

Florida Department of Health (NELAC) E87595

Oklahoma Department of Environmental Quality - 2010-139

Illinois Environmental Protection Agency - 0025721

California Env. Lab Accreditation Program Branch - 11277CA Louisiana Dept. of Environmental Quality (NELAC/LELAP) 02006

This report shall not be reproduced, execpt in full, without the written consent of Pace Analytical Services, Inc.

7/23/2012 13:14:11

Sample Cross Reference

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141447

Client: PASI Pittsburgh

Project ID: 3073183 / Los Alamos

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time
NEAREA-HSB1,2-COMP	201004997	Other	11-Jul-12 14:30	14-Jul-12 08:20
NEAREA-HSB3ABC-COMP	201004998	Other	11-Jul-12 15:00	14-Jul-12 08:20

All surrogate recoveries were within QC limits.

Project Narrative

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

	Project: 20141447
Sample Receipt Condition:	
All samples were received in accordance with EPA	a protocol.
Holding Times:	
All holding times were met.	
Blanks:	
All blank results were below reporting limits.	
Laboratory Control Samples:	
All LCS recoveries were within QC limits.	
Matrix Spikes and Duplicates:	
MS or MSD recoveries outside of QC limits are qu	nalified in the Report of Quality Control section.

QC Cross Reference

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141447

Analytical Method	Batch	Sample used for QC
EPA 8151	188683	Batch sample from another client

Narrative1 7/23/2012 13:15:26

For the sample used as the original for the DUP or MS/MSD for the batch:

Sample Results

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Client: PASI Pittsburgh

Client ID: NEAREA-HSB1,2-COMP Project: 20141447

Project ID: 3073183 / Los Alamos Site: None

Lab ID: 201004997 (TCLP) Matrix: Other % Moisture: n/a

Description: None Prep Level: TCLP Batch: 188683

Method: EPA 8151 (TCLP)

8151 Herbs TCLP Collected: 11-Jul-12 Received: 14-Jul-12

Prepared: 19-Jul-12

Units: mg/L

					Reporting		
CAS No.	Analyte	Dilution	Result	Qu	Limit	Reg Limit	Analysis
94-75-7	2,4-D	1	ND		0.0200	10.0	20-Jul-12 20:54 SPP1
93-72-1	2,4,5-TP (Silvex)	1	ND		0.0200	1.00	20-Jul-12 20:54 SPP1

page 6 of 15

Sample Results

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Client: PASI Pittsburgh

Client ID: NEAREA-HSB3ABC-COMP Project: 20141447

Project ID: 3073183 / Los Alamos Site: None

Description: None Prep Level: TCLP Batch: 188683

Method: EPA 8151 (TCLP)

8151 Herbs TCLP Collected: 11-Jul-12 Received: 14-Jul-12

Prepared: 19-Jul-12

Units: mg/L

					Reporting		
CAS No.	Analyte	Dilution	Result	Qu	Limit	Reg Limit	Analysis
94-75-7	2.4-D	1	ND		0.0200	10.0	20-Jul-12 21:16 SPP1
93-72-1	2,4,5-TP (Silvex)	1	ND		0.0200	1.00	20-Jul-12 21:16 SPP1

Surrogate Recovery

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Batch: <u>188683</u> **Project:** <u>20141447</u>

Method: TCLP GC Semivolatile Organics

Lab ID	Sample ID	Qu	Sur 1 %Rec	Sur 2 %Rec	Sur 3 %Rec	Sur 4 %Rec	Sur 5 %Rec	Sur 6 %Rec	Sur 7 %Rec	Sur 8 %Rec
201006296	188683 BLANK 1		53	52						
201006479	188683 BLANK 2		90	87						
201006297	188683 LCS 1		135	128						
201004997	NEAREA-HSB1,2-COMP		107	92						
201004998	NEAREA-HSB3ABC-COMP		92	92						
201006298	PUMA-SV-12 MS 1		44	44						
201006299	PUMA-SV-12 MSD 1		101	102						
	QC limits:		10-166	10-166						

Sur 1: 2,4-DCPA (Conf)(S) Sur 2: 2,4-DCPA (S)

 $[\]ensuremath{^*}$ denotes surrogate recovery outside of QC limits.

Quality Control

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Batch: <u>188683</u> Project: <u>20141447</u> LCS: <u>20100629</u> <u>20-Jul-12</u> <u>17:41</u>

Method: TCLP GC Semivolatile Organics MS: 20100629 20-Jul-12 18:45

Units: mg/L MSD: 20100629 20-Jul-12 19:07

Original for MS: Batch Sample 201005267

Parameter Name	LCS Spike	LCS Found	LCS %Rec	MS Spike	Sample Found	MS Found	MSD Found	MS %Rec	MSD %Rec	RPD		Limits MS/MSD	Max RPD	Qu
2,4-D 2,4,5-TP (Silvex)	0.200 0.0200	0.178 0.0187	89 93	0.200 0.0200		0.0691 0.00763	0.169 0.0182	35 38	85 91		10-159 30-165		27 20	

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Blank ID: <u>188683 BLANK 1</u> **Project:** <u>20141447</u>

Lab ID: 201006296

Prep Level: TCLP Batch: 188683

Method: TCLP GC Semivolatile Organics

Prepared: 19-Jul-12

				Units:	mg/L
				Reportin	g
CAS Num	b Analyte	Dilution	Result	Qu Limit	Analysis
94-75-7	2,4-D	1	ND	0.02	00 20-Jul-12 16:58 SPP1
93-72-1	2,4,5-TP (Silvex)	1	ND	0.02	00 20-Jul-12 16:58 SPP1

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Blank ID: <u>188683 BLANK 2</u> **Project:** <u>20141447</u>

Lab ID: 201006479

Prep Level: TCLP Batch: 188683

Method: TCLP GC Semivolatile Organics

Prepared: 19-Jul-12

				Units:	mg/L
				Reportir	ng
CAS Num	b Analyte	Dilution	Result	Qu Limit	Analysis
94-75-7	2,4-D	1	ND	0.02	00 20-Jul-12 17:19 SPP1
93-72-1	2,4,5-TP (Silvex)	1	ND	0.02	00 20-Jul-12 17:19 SPP1

Definitions/Qualifiers

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141447

Value	Description
J	This estimated value for the analyte is below the adjusted reporting limit but above the instrument reporting limit.
U	The analyte was analyzed for but not detected at the reporting limit or method detection limit indicated.
В	This analyte was detected in the method blank.
E	The sample concentration is above the linear calibrated range of the analysis.
LCS	Laboratory Control Sample.
MS(D)	Matrix Spike (Duplicate).
DUP	Sample Duplicate.
RPD	Relative Percent Difference.

Chains of Custody

Chain of Custody

Wo	Workorder: 3073183	Workorder	Workorder Name: Niacet Character	Charactenzation	ion		Owner Received Date:	ived Date:	7/12/2012	1	Results Requested By:	By: 7/26/2012	2012
TO AV		の合作がある。自動では、	Subcontract 10	act lo				新加州的	Request	Requested Analysis	では、現場の経験を	のなりの	
Cari Pacc 1638 Gree Phor	Carin Ferris Pace Analytical Services, Inc. 1638 Roseytown Road Greensburg, PA 15601 Phone (724)850-5600 Fax (999)999-9999		Pace 1000 Suite St. R Phon	Pace Analytical New Orleans 1000 Riverbend Blvd Suite F St. Rose, LA 70087 Phone 1(504)469-0333	w Orleans vd 7 3333		٠.	Sobicides Tr					
(fe	E. C. (2) (5) (6)	Sample Type	Collect Date/Time	EablD	(O)	Preserved	Preserved Containers	- S'K'&- I - 7'E- PH&7QL-				LAB USE ONLY	ONLY
-	NEAREA-HSB1,2-Comp	S.	7/11/2012 14:30	3073183001	Þ	1		ファマ			4	9990	47
N	NEAREA-HSB3ABC-Comp	PS	7/11/2012 15:00	3073183005	Sold	7					S	677	0 0 0 0
က	an contention A Black.												9
4			,										
гo		****											
	を開発する 100mm 100m	多种的基础			Control of the second				- 100 miles	Com	Comments		
Trant	Transfers Released By	;	Date/Time	Received By	f By		Date/Time	ше					
-	- DAY	/	7 573 1	1400	(,						
7	7	AN ON			July 9)	211H112	0220					
က		. (
00	Cooler Temperature on Receipt	ceipt 〜, C	ກວ ວຸ	Custody Seal	O or N		Received on Ice	n Ice (Y)or	Z	Sam	Samples Intact	N or N	
					·								

^pace Analytical

Sample Condition

1000 Riverbend, Blvd., Suite F St. Rose, LA 70087 ☐ Pace Courier ✓ Fed X ☐ Hackbarth Courier: ☐ UPS D DHL □ USPS □ Other □ Customer Custody Seal on Cooler/Box Present: Custody Seals Intact: □Yes □No [see COC] Therm Fisher IR 1 Therometer D Therm Fisher IR 2 Blue None Type of Ice: Samples on ice: [see COC] Used: □ Therm Fisher IR 4 Date and initials of person examining Cooler Temperature: [see COC] Temp should be above freezing to 6°C contents: Temp must be measured from Temperature blank when present Comments: Temperature Blank Present"? ØYes_□No □N/A Chain of Custody Present: √□No □N/A Chain of Custody Complete: ZYes □No □N/A Chain of Custody Relinquished: ₽No □N/A Sampler Name & Signature on COC: ZY98 □No □N/A 5 Samples Arrived within Hold Time: ¹□No □N/A 6 Sufficient Volume: ÆYes ∠□No □N/A ØYes □No Correct Containers Used: □N/A Filtered voi. Rec. for Diss. tests □Yes ZINo □N/A ZYes □No Sample Labels match COC: □N/A 10 All containers received within manafacture's ∕□Yes □No □N/A precautionary and/or expiration dates. All containers needing preservation have been Æ Yes □No □N/A checked (except VOA, coliform, & O&G). 12 All containers preservation checked found to be in If No, was preserative added? □Yes □No ∕⊡Yes □No □N/A compliance with EPA recommendation. If added record lot no.: HNO3 13 H2SO4 Samples checked for dechlorination: □n/a ☐Yes Æ No 14 Headspace in VOA Vials (>6mm): ☐Yes /☐Nor □N/A Trip Blank Present: □Yes /□M6 □N/A 16 Trip Blank Custody Seals Present □Yes ⟨□No □N/A 17 Pace Trip Blank Lot # (if purchased): N/A 18 Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution:

ALLC003rev.06, 28Jul2010 - mod

Pace Analytical www.pacelans.com

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Keculted Project Information:	Invoice Information:	Z.	,
Company: MTA	Report TO AMOS MODILE	SAMOS.	Modele S	1581819
Address 35 5 AT W. DV 13	Copy To:		REGULATORY AGENCY	ICY
1005		Address: 756 Youk	MONDAY 200 " NPDES F GR	ND WATER
10 1×10 00	3	Reference: West of UNICA	,01 R HCRA	RA (" OTHER
Fax:	Project Name: Nig Cat CHDR. ACPCI	TXIW Manager:	4308 Site	
	Project Number: 1176,002	Pace Profile #:	STATE:	
			Requeste Analysis Filtered (Y/N)	
Section D Matrix Codes Required Client information MATRIX / CODE	(Helic	Preservatives	1/2	
P. W. W. P.	FOR DW COMPOSITE COMPOSITE END/GRAB START END/GRAB START END/GRAB	SOLLECTION	0/15 - 0 9/2 0 1	(N/A)
SAMPLE ID Oil Wipe (A-Z, 0-9 /, -) Air Sample IOS MUST BE UNIQUE Chinar	CODE (8	Pavred bevre e	771 57 VII 67 V7	3073 183
illew#	XIRTAM EJAMAS DATE	Officer Methand Massaco Hasso Huo3 Huo3 Huo3 Huo3 Huo3 Huo3 Hoo Huo3 Huo3	A A A A A A A A A A A A A A A A A A A	ida ee Bace Project No./ Lab I.D.
1 NEDON - 4561 1 - COMP	54 C 7-11-12 2:30	X - 24/5	X	100
NEALM - HSR7	54 67-1-12 2:1	X 1 3,05	X	300
3 NEARON - HSB1 - COND	1.30pm	X	XXX	503
1NE NUA - 45 B 12 - CC	OMO SUCJ-11-12 2:30pm	X	X	- COL
NEPROA - 45B	いない		XXX	2000 #K
1VE HIGH - HX15 5 HIS	3000		~	
NE MUR- HS B3ABC	-apstc/-11-12 > ga			>
111				7.5
ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	DATE TIME ACCEPTED	CEPTED BY / AFFILIATION DATE TIME	SAMPLE CONDITIONS
			0160 61-62-2	NX 4 7 5:8/0
	SAMPLER NAME AND	AND SIGNATURE		191
)	ORIGINAL PRINT Name	THE OF SAMPLER	DATE Signed	Temp in °C Received (Custody Custody (V/N) Sealed Cod (V/N)
)	3

Sample Condition Upon Receipt

Pace Analytical Client Name	: LATA	Project # <u>30+3163</u>
Courier: Fed Ex UPS USPS Clie Tracking #87024608182/ MST	rR	Proj. Due Date: Proj. Name:
Custody Seal on Cooler/Box Present	no Seals	s intact: 🖊 yes 🗌 no
Packing Material: - Bubble Wrap Bubble	e Bags` 🔲 None	Other
Thermometer Used 5 6 7	Type of Ice: We	
Cooler Temperature Temp should be above freezing to 6°C Very Mi		is Frozen: Yes No Date and Initials of person examining contents:
Chain of Custody Present:	✓DYes □No □N/A	1.
Chain of Custody Filled Out:	✓ Yes □No □NVA	2.
Chain of Custody Relinquished:	□Yes ØNo □N/A	3.
Sampler Name & Signature on COC:	ØYes □No □N/A	4
Samples Arrived within Hold Time:	□Yes □No □N/A	5.
Short Hold Time Analysis (<72hr):	□Yes □M6 □N/A	6.
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.
Sufficient Volume:	_EYes □No □N/A	8.
Correct Containers Used:	✓ Tyes □No □N/A	9.
-Pace Containers Used:	PYes □No □N/A	
Containers Intact:	□Yes ☑No □N/A	10. HSB 1, 2-comp received broken
Filtered volume received for Dissolved tests	□Yes □No ☑ÑA	at - 1
Sample Labels match COC:	DX6s DNo DNA	12.
-Includes date/time/ID/Analysis Matrix	<u>Sh</u> .	
All containers needing preservation have been checked.	□Yes □No ØNA	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ∠N/A	
exceptions: VOA, collform, TOC, O&G, WI-DRO (water)	☐Yes ☐No	initial when Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □MA	14.
Headspace in VOA Vials (>6mm):	□Yes □No □N/A	15.
Trip Blank Present:	□Yes □No ∕□N/A	16.
Trip Blank Custody Seals Present	□Yes □No □N/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution: Person Contacted: TWCS (Comments/ Resolution: POYCHEC TMES CO		Field Data Required? Y / N Time: 7/3/(3)
emilled times all	701 PC	BS Supre Just 120 Tol
Project Manager Review:	s Sen	Date: 71818

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Project Number: 2773/83

4.	
	3
	Z.
	<u>a</u>
•	Ĭ
	3CB
(4)	ź.
•	1
-	•

									 ,	 	3
Other											<u>s</u>
Other											/2012).xl
SoldiS								•			4 15Ma)
Cubitainer (500 ml / 4L)		-				- -					k (C016-
Radchem Nalgene (1/2 gal. / 1 gal.L)											SCURF Back (C016-4 15May2012).xls
Radchem Nalgene (125 / 250 / 500 / 1L).									 		ಬ್
Mipes / swipe/ smearl filter			i		-	·-					
Bacleria (120 ml)											
(lm 003) abilius					 						
Cyanide (250 ml)				,					 	 	,
(Im 0£ Im 04) AOV											
(1г) нат				·							
O & G (1L)											
V bevieseig preserved Y Neserved N		<u> </u>									
ziejaM letoT	!										•
(lm 03S) XOT		<u> </u>				-					
TOC (40 ml / 250 ml)		· -									
Phenolics (250 ml)						<u>-</u>					
Nutrient (250 \ 500)											
Organics (1L)			<u>-</u> _				·		<u>-</u>		1
Сһетіѕіу (250 / 500 / 1L)					新						
Soil kit (2 SB, 1M, soil jar)	050					39.		,			
Glass Jar (120/ 250) 500 / (L)	\ \	-		7	7	7	3				1
Matrix Code	35					7	\rightarrow				
		Ce	W	F	√	\.	10				
ltem No.	8	00	003	$ \mathcal{E} $	g	E C	8				

Quality Assurance Data Review Qualifiers in EDD SDG No. 3073114 EDD Review SM 8/13/12 Project Name: EDD in Site DB Sampling Date: Review Date: Laboratory: ano A Mal Reviewer Signature: Acceptable Comments / Qualifications Matrix Review Item Sounde BUDGIOS- HSBI-Grab was Soil / Sed/ Air Compare Chain of Custody received broken inside a GW/SW/)Other to Data Received The laboratory saluged the sample Soil / Sed/ Air Sample Hold Times GW/3W/Other NA VOCs only Trip Blank Soil / Sed/ Air Sample Reporting Limits GW/SW/Other Soil / Sed/ Air Surrogate Compound GW/SWI)Other Recoveries for Organic Analyses Soil / Sed/ Air Method Blank GWI SWI Other Soil / Sed/ Air Laboratory Control Sample GW (\$W) Other Recoveries Soil / Sed/ Air Matrix Spike/Spike Duplicate GW/SW/Other Recoveries and RPDs Soil / Sed/ Air Duplicate Sample GW/ GW/ Other Relative Percent Difference Soil / Sed/ Air Initial and Continuing GW/SW/Other Calibration COCY Απy TICS Additional Comments: dever it was cross contaminated a) for PAD ambisis. food a rade source

Howard Because the dutside of the side of califion, the reviewer has RAD dota for this sample as estimated

NR = Not Reported

NSS = Not a Site Sample, fab batch QC used

Greensburg, PA 15601 (724)850-5600

August 08, 2012

Mr. James Moore Los Alamos Technical Associates, Inc. 756 Park Meadow Road Westerville, OH 43081

RE: Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Dear Mr. Moore:

Enclosed are the analytical results for sample(s) received by the laboratory on July 11, 2012. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

The samples were subcontracted to Pace Analytical Services, Inc., 1000 Riverbend Blvd., Suite F, St. Rose, LA 70087 for TCLP Herbicides analysis. Results of the analysis are reported on the Pace Analytical, New Orleans data tables.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carin a Ferris

Carin Ferris

carin.ferris@pacelabs.com Project Manager

Enclosures

cc: Accounts Payable, Los Alamos Technical Associates, Inc.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4 Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification
California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH 0694

Delaware Certification

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification

Idaho Certification

Illinois/PADEP Certification

Indiana/PADEP Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana/TNI Certification #: LA080002 Louisiana/TNI Certification #: 4086

Maine Certification #: PA0091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification Missouri Certification #: 235

Montana Certification #: Cert 0082

Nevada Certification

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification

New York/TNI Certification #: 10888 North Carolina Certification #: 42706

Oregon/TNI Certification #: PA200002

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188

Utah/TNI Certification #: ANTE

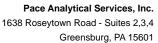
Virgin Island/PADEP Certification
Virginia Certification #: 00112

Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia Certification #: 143
Wisconsin/PADEP Certification

Wyoming Certification #: 8TMS-Q


1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE ANALYTE COUNT

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
3073114001	BLD6102-HSB1-COMP	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073114002	BLD6102-HSB1-GRAB	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073114003	BLD6102-HSB234-COMP	EPA 901.1m	AEH	16	PASI-PA
		HSL-300m	LAL	6	PASI-PA
3073114004	BLD6102-HSB234-COMP	EPA 8081	CWB	8	PASI-PA
		EPA 8082	SJG	10	PASI-PA
		EPA 6010	CTS	7	PASI-PA
		EPA 7470	MJO	1	PASI-PA
		EPA 8270	SPL	18	PASI-PA
		EPA 8260	JAS	13	PASI-PA
		ASTM D2974-87	AJC	1	PASI-PA

(724)850-5600

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 8081

Description: 8081 GCS Pesticides, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8081. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

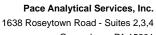
All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 8082 Description: 8082 GCS PCB

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8082. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

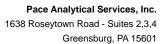
QC Batch: OEXT/12140

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3073396001

M3: Matrix spike recovery was outside laboratory control limits due to matrix interferences.

- MS (Lab ID: 465909)
 - PCB-1016 (Aroclor 1016)

Additional Comments:


Analyte Comments:

QC Batch: OEXT/12140

1c: The response for DCB is high in the closing calibration check standard associated with the analysis of this sample. Recovery may be biased high.

- BLD6102-HSB234-COMP (Lab ID: 3073114004)
 - Decachlorobiphenyl (S)

REPORT OF LABORATORY ANALYSIS

(724)850-5600

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 6010

Description: 6010 MET ICP, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

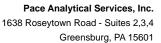
All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 7470

Description: 7470 Mercury, TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 7470. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MERP/3729

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3073164001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 465822)
 - Mercury

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 8270

Description: 8270 MSSV TCLP Sep Funnel **Client:** Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

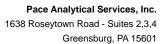
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 8260
Description: 8260 MSV TCLP

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

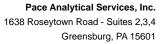
All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: MSV/13346

L0: Analyte recovery in the laboratory control sample (LCS) was outside QC limits.


- LCS (Lab ID: 466778)
 - Vinyl chloride

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/13346

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: EPA 901.1m

Description: 901.1 Gamma Spec

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

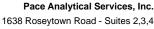
General Information:

3 samples were analyzed for EPA 901.1m. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: HSL-300m

Description: HSL300(AS) Actinides

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

General Information:

3 samples were analyzed for HSL-300m. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

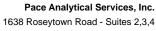
Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:


Analyte Comments:

QC Batch: RADC/12675

N2: The lab does not hold TNI accreditation for this parameter.

- BLANK (Lab ID: 466065)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- BLD6102-HSB1-COMP (Lab ID: 3073114001)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- BLD6102-HSB1-GRAB (Lab ID: 3073114002)
 - Thorium-228
 - Thorium-230
 - Thorium-232
 - Uranium-234
 - Uranium-235
 - Uranium-238
- BLD6102-HSB234-COMP (Lab ID: 3073114003)
 - Thorium-228
 - Thorium-230

REPORT OF LABORATORY ANALYSIS

Greensburg, PA 15601 (724)850-5600

PROJECT NARRATIVE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Method: HSL-300m

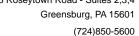
Description: HSL300(AS) Actinides

Client: Los Alamos Technical Associates, Inc

Date: August 08, 2012

Analyte Comments:

QC Batch: RADC/12675


N2: The lab does not hold TNI accreditation for this parameter.

• BLD6102-HSB234-COMP (Lab ID: 3073114003)

Thorium-232Uranium-234Uranium-235

• Uranium-238

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Sample: BLD6102-HSB234-COMP Lab ID: 3073114004 Collected: 07/10/12 15:30 Received: 07/11/12 09:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8081 GCS Pesticides, TCLP Analytical Method: EPA 8081 Preparation Method: EPA 3510 07/19/12 14:00 07/24/12 03:44 58-89-9 gamma-BHC (Lindane) ND ug/L 10.0 ND ug/L Chlordane (Technical) 10.0 07/19/12 14:00 07/24/12 03:44 57-74-9 ND ug/L 1.0 07/19/12 14:00 07/24/12 03:44 72-20-8 Endrin 1 Heptachlor epoxide ND ug/L 0.50 1 07/19/12 14:00 07/24/12 03:44 1024-57-3 07/19/12 14:00 07/24/12 03:44 72-43-5 Methoxychlor ND ug/L 100 1 Toxaphene ND ug/L 50.0 07/19/12 14:00 07/24/12 03:44 8001-35-2 1 Surrogates Decachlorobiphenyl (S) 83 % 30-150 1 07/19/12 14:00 07/24/12 03:44 2051-24-3 Tetrachloro-m-xylene (S) 73 % 30-150 07/19/12 14:00 07/24/12 03:44 877-09-8 **8082 GCS PCB** Analytical Method: EPA 8082 Preparation Method: EPA 3546 PCB-1016 (Aroclor 1016) ND ug/kg 17.4 07/19/12 10:00 07/23/12 23:53 12674-11-2 PCB-1221 (Aroclor 1221) ND ug/kg 17.4 07/19/12 10:00 07/23/12 23:53 11104-28-2 PCB-1232 (Aroclor 1232) ND ug/kg 17.4 07/19/12 10:00 07/23/12 23:53 11141-16-5 1 PCB-1242 (Aroclor 1242) ND ug/kg 17.4 07/19/12 10:00 07/23/12 23:53 53469-21-9 1 PCB-1248 (Aroclor 1248) ND ug/kg 17.4 07/19/12 10:00 07/23/12 23:53 12672-29-6 1 84.3 ug/kg 07/19/12 10:00 07/23/12 23:53 11097-69-1 PCB-1254 (Aroclor 1254) 17.4 1 PCB-1260 (Aroclor 1260) 66.6 ug/kg 17.4 07/19/12 10:00 07/23/12 23:53 11096-82-5 1 PCB, Total 07/19/12 10:00 07/23/12 23:53 1336-36-3 151 ug/kg 17.4 1 Surrogates Tetrachloro-m-xylene (S) 43 % 30-150 07/19/12 10:00 07/23/12 23:53 877-09-8 07/19/12 10:00 07/23/12 23:53 2051-24-3 Decachlorobiphenyl (S) 37 % 30-150 1 1c 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3005 ND mg/L 0.050 07/18/12 14:00 07/19/12 08:48 7440-38-2 Arsenic ND ma/L Barium 1.0 1 07/18/12 14:00 07/19/12 08:48 7440-39-3 Cadmium ND mg/L 0.050 07/18/12 14:00 07/19/12 08:48 7440-43-9 1 ND mg/L 0.050 Chromium 07/18/12 14:00 07/19/12 08:48 7440-47-3 1 ND mg/L 0.050 07/18/12 14:00 07/19/12 08:48 7439-92-1 Lead 1 Selenium ND mg/L 0.10 07/18/12 14:00 07/19/12 08:48 7782-49-2 1 Silver ND mg/L 0.050 1 07/18/12 14:00 07/19/12 08:48 7440-22-4 7470 Mercury, TCLP Analytical Method: EPA 7470 Preparation Method: EPA 7470 ND ug/L 1.0 07/18/12 14:38 07/19/12 10:29 7439-97-6 Mercury 8270 MSSV TCLP Sep Funnel Analytical Method: EPA 8270 Preparation Method: EPA 3510 1,4-Dichlorobenzene ND ug/L 500 07/20/12 13:00 07/21/12 20:50 106-46-7 1 2,4-Dinitrotoluene ND ug/L 100 1 07/20/12 13:00 07/21/12 20:50 121-14-2 Hexachloro-1,3-butadiene ND ug/L 100 1 07/20/12 13:00 07/21/12 20:50 87-68-3 Hexachlorobenzene ND ug/L 100 1 07/20/12 13:00 07/21/12 20:50 118-74-1 Hexachloroethane ND ug/L 500 07/20/12 13:00 07/21/12 20:50 67-72-1 1 ND ug/L 2000 2-Methylphenol(o-Cresol) 1 07/20/12 13:00 07/21/12 20:50 95-48-7 ND ug/L 2000 3&4-Methylphenol(m&p Cresol) 1 07/20/12 13:00 07/21/12 20:50 ND ua/L Nitrobenzene 100 1 07/20/12 13:00 07/21/12 20:50 98-95-3 Pentachlorophenol ND ug/L 5000 07/20/12 13:00 07/21/12 20:50 87-86-5

Date: 08/08/2012 04:08 PM

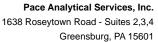
REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Sample: BLD6102-HSB234-COMP Lab ID: 3073114004 Collected: 07/10/12 15:30 Received: 07/11/12 09:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV TCLP Sep Funnel Analytical Method: EPA 8270 Preparation Method: EPA 3510 500 Pyridine ND ug/L 07/20/12 13:00 07/21/12 20:50 110-86-1 ND ug/L 5000 2,4,5-Trichlorophenol 1 07/20/12 13:00 07/21/12 20:50 95-95-4 2,4,6-Trichlorophenol ND ug/L 100 07/20/12 13:00 07/21/12 20:50 88-06-2 1 Surrogates 82 % 07/20/12 13:00 07/21/12 20:50 4165-60-0 Nitrobenzene-d5 (S) 35-114 1 2-Fluorobiphenyl (S) 82 % 43-116 07/20/12 13:00 07/21/12 20:50 321-60-8 1 99 % Terphenyl-d14 (S) 33-141 1 07/20/12 13:00 07/21/12 20:50 1718-51-0 Phenol-d6 (S) 33 % 10-110 07/20/12 13:00 07/21/12 20:50 13127-88-3 1 2-Fluorophenol (S) 47 % 21-110 1 07/20/12 13:00 07/21/12 20:50 367-12-4 2,4,6-Tribromophenol (S) 69 % 10-123 07/20/12 13:00 07/21/12 20:50 118-79-6 8260 MSV TCLP Analytical Method: EPA 8260 Benzene ND ug/L 50.0 1 07/22/12 06:50 71-43-2 2-Butanone (MEK) ND ug/L 5000 07/22/12 06:50 78-93-3 1 ND ug/L Carbon tetrachloride 50.0 1 07/22/12 06:50 56-23-5 Chlorobenzene ND ug/L 1000 07/22/12 06:50 108-90-7 1 Chloroform ND ug/L 500 07/22/12 06:50 67-66-3 1 1,2-Dichloroethane ND ug/L 50.0 07/22/12 06:50 107-06-2 1 ND ug/L 1.1-Dichloroethene 50.0 07/22/12 06:50 75-35-4 1 07/22/12 06:50 127-18-4 Tetrachloroethene ND ug/L 50.0 1 Trichloroethene ND ug/L 50.0 1 07/22/12 06:50 79-01-6 Vinyl chloride ND ug/L 50.0 07/22/12 06:50 75-01-4 Surrogates 1,2-Dichloroethane-d4 (S) 100 % 70-130 07/22/12 06:50 17060-07-0 1 Toluene-d8 (S) 99 % 70-130 07/22/12 06:50 2037-26-5 1 4-Bromofluorobenzene (S) 100 % 70-130 07/22/12 06:50 460-00-4 1 **Percent Moisture** Analytical Method: ASTM D2974-87


0.10

1

07/20/12 17:39

6.2 %

Percent Moisture

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: MERP/3729

QC Batch Method: EPA 7470 Analysis Method:

EPA 7470

Analysis Description:

7470 Mercury TCLP

Associated Lab Samples: 3073114004

METHOD BLANK: 465819

Matrix: Water

ND

Associated Lab Samples:

3073114004

Blank Result Reporting

Parameter

LABORATORY CONTROL SAMPLE:

Parameter

Units

Units

Units

Limit

Analyzed

Qualifiers

Mercury ug/L

465820

Spike

Conc.

LCS Result

ND

ND

LCS % Rec % Rec Limits

Qualifiers

Mercury

ug/L

ug/L

ug/L

1.0

101

1.0 07/19/12 09:58

85-115

127

MATRIX SPIKE SAMPLE:

465822

Parameter

Parameter

Units

3073164001 Result

Spike Conc.

2.5

ND

MS Result

MS % Rec % Rec Limits

85-115 M1

Qualifiers

Mercury

SAMPLE DUPLICATE: 465821

3073164001 Result

Dup Result

RPD

3.2

Qualifiers

Date: 08/08/2012 04:08 PM

Mercury

REPORT OF LABORATORY ANALYSIS

Page 15 of 32

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: MPRP/8712 Analysis Method: EPA 6010 QC Batch Method: EPA 3005 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 3073114004

METHOD BLANK: 465792 Matrix: Water

Associated Lab Samples: 3073114004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.050	07/19/12 07:59	
Barium	mg/L	ND	1.0	07/19/12 07:59	
Cadmium	mg/L	ND	0.050	07/19/12 07:59	
Chromium	mg/L	ND	0.050	07/19/12 07:59	
Lead	mg/L	ND	0.050	07/19/12 07:59	
Selenium	mg/L	ND	0.10	07/19/12 07:59	
Silver	mg/L	ND	0.050	07/19/12 07:59	

ı	ABORATORY	CONTROL	CVMDI E.	465793
L	_ABURATURY	CONTROL	SAIVIPLE:	405/93

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	.5	0.49	99	80-120	
Barium	mg/L	.5	.5J	100	80-120	
Cadmium	mg/L	.5	0.50	99	80-120	
Chromium	mg/L	.5	0.49	98	80-120	
Lead	mg/L	.5	0.49	98	80-120	
Selenium	mg/L	.5	0.50	99	80-120	
Silver	mg/L	.25	0.25	101	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	465795		465796
	MS	MSD	

			MS	MSD							
	30	073164001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/L	ND	.5	.5	0.54	0.53	107	106	80-120		
Barium	mg/L	ND	.5	.5	.82J	.81J	95	93	80-120		
Cadmium	mg/L	ND	.5	.5	0.47	0.47	95	94	80-120	1	
Chromium	mg/L	ND	.5	.5	0.47	0.47	94	94	80-120	.5	
Lead	mg/L	ND	.5	.5	0.51	0.51	100	99	80-120	.9	
Selenium	mg/L	ND	.5	.5	0.54	0.55	109	109	80-120	.4	
Silver	mg/L	ND	.25	.25	0.26	0.26	106	104	80-120	1	

MATRIX SPIKE SAMPLE:	465798

Parameter	Units	3073184004 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	ND	.5	0.55	107	80-120	
Barium	mg/L	ND	.5	1.0	93	80-120	
Cadmium	mg/L	ND	.5	0.47	94	80-120	
Chromium	mg/L	ND	.5	0.50	95	80-120	

Date: 08/08/2012 04:08 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

MATRIX SPIKE SAMPLE:	465798						
Parameter	Units	3073184004 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Lead	 mg/L	ND	.5	0.51	100	80-120	
Selenium	mg/L	ND	.5	0.54	107	80-120	
Silver	mg/L	ND	.25	0.27	107	80-120	

SAMPLE DUPLICATE: 465794

Parameter	Units	3073164001 Result	Dup Result	RPD	Qualifiers
Arsenic	 mg/L	ND ND	.0037J		
Barium	mg/L	ND	.34J		
Cadmium	mg/L	ND	ND		
Chromium	mg/L	ND	ND		
Lead	mg/L	ND	.0083J		
Selenium	mg/L	ND	ND		
Silver	mg/L	ND	ND		

SAMPLE DUPLICATE: 465797

Parameter	Units	3073184004 Result	Dup Result	RPD	Qualifiers
Arsenic	 mg/L	ND ND	.015J		
Barium	mg/L	ND	.54J		
Cadmium	mg/L	ND	.00062J		
Chromium	mg/L	ND	.024J		
Lead	mg/L	ND	.0074J		
Selenium	mg/L	ND	.0034J		
Silver	mg/L	ND	ND		

Pace Analytical www.pacelabs.com

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: MSV/13346 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV TCLP

Associated Lab Samples: 3073114004

METHOD BLANK: 466777 Matrix: Water

Associated Lab Samples: 3073114004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloroethene	ug/L	ND	50.0	07/20/12 12:09	_
1,2-Dichloroethane	ug/L	ND	50.0	07/20/12 12:09	
2-Butanone (MEK)	ug/L	ND	5000	07/20/12 12:09	
Benzene	ug/L	ND	50.0	07/20/12 12:09	
Carbon tetrachloride	ug/L	ND	50.0	07/20/12 12:09	
Chlorobenzene	ug/L	ND	1000	07/20/12 12:09	
Chloroform	ug/L	ND	500	07/20/12 12:09	
Tetrachloroethene	ug/L	ND	50.0	07/20/12 12:09	
Trichloroethene	ug/L	ND	50.0	07/20/12 12:09	
Vinyl chloride	ug/L	ND	50.0	07/20/12 12:09	
1,2-Dichloroethane-d4 (S)	%	123	70-130	07/20/12 12:09	
4-Bromofluorobenzene (S)	%	90	70-130	07/20/12 12:09	
Toluene-d8 (S)	%	96	70-130	07/20/12 12:09	

LABORATORY CONTROL SAMPLE: 466778


Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualificis
1,1-Dichloroethene	ug/L	200	188	94	70-130	
1,2-Dichloroethane	ug/L	200	188	94	70-130	
2-Butanone (MEK)	ug/L	200	168J	84	70-130	
Benzene	ug/L	200	152	76	70-130	
Carbon tetrachloride	ug/L	200	223	112	70-130	
Chlorobenzene	ug/L	200	161J	80	70-130	
Chloroform	ug/L	200	175J	87	70-130	
Tetrachloroethene	ug/L	200	191	96	70-130	
Trichloroethene	ug/L	200	179	89	70-130	
Vinyl chloride	ug/L	200	267	134	70-130 L	_0
1,2-Dichloroethane-d4 (S)	%			128	70-130	
4-Bromofluorobenzene (S)	%			91	70-130	
Toluene-d8 (S)	%			95	70-130	

LABORATORY CONTROL SAMPLE: 467395

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1-Dichloroethene	ug/L	200	216	108	70-130	
1,2-Dichloroethane	ug/L	200	225	112	70-130	
2-Butanone (MEK)	ug/L	200	188J	94	70-130	
Benzene	ug/L	200	228	114	70-130	
Carbon tetrachloride	ug/L	200	203	102	70-130	
Chlorobenzene	ug/L	200	225J	113	70-130	

Date: 08/08/2012 04:08 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

LABORATORY CONTROL SAMP	PLE: 467395					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
		 _				Qualificis
Chloroform	ug/L	200	218J	109	70-130	
Tetrachloroethene	ug/L	200	223	112	70-130	
Trichloroethene	ug/L	200	223	111	70-130	
Vinyl chloride	ug/L	200	198	99	70-130	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
4-Bromofluorobenzene (S)	%			98	70-130	
Toluene-d8 (S)	%			101	70-130	

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: OEXT/12149 Analysis Method: EPA 8081

QC Batch Method: EPA 3510 Analysis Description: 8081 GCS TCLP Pesticides

Associated Lab Samples: 3073114004

METHOD BLANK: 466179 Matrix: Water

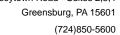
Associated Lab Samples: 3073114004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chlordane (Technical)	ug/L	ND ND	10.0	07/24/12 00:05	
Endrin	ug/L	ND	1.0	07/24/12 00:05	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 00:05	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 00:05	
Methoxychlor	ug/L	ND	100	07/24/12 00:05	
Toxaphene	ug/L	ND	50.0	07/24/12 00:05	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 00:05	
Tetrachloro-m-xylene (S)	%	75	30-150	07/24/12 00:05	

METHOD BLANK: 466181 Matrix: Water

Associated Lab Samples: 3073114004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chlordane (Technical)	ug/L	ND	10.0	07/24/12 05:33	
Endrin	ug/L	ND	1.0	07/24/12 05:33	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 05:33	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 05:33	
Methoxychlor	ug/L	ND	100	07/24/12 05:33	
Toxaphene	ug/L	ND	50.0	07/24/12 05:33	
Decachlorobiphenyl (S)	%	84	30-150	07/24/12 05:33	
Tetrachloro-m-xylene (S)	%	73	30-150	07/24/12 05:33	


METHOD BLANK: 466182 Matrix: Water

Associated Lab Samples: 3073114004

Date: 08/08/2012 04:08 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
		- -			
Chlordane (Technical)	ug/L	ND	10.0	07/24/12 06:28	
Endrin	ug/L	ND	1.0	07/24/12 06:28	
gamma-BHC (Lindane)	ug/L	ND	10.0	07/24/12 06:28	
Heptachlor epoxide	ug/L	ND	0.50	07/24/12 06:28	
Methoxychlor	ug/L	ND	100	07/24/12 06:28	
Toxaphene	ug/L	ND	50.0	07/24/12 06:28	
Decachlorobiphenyl (S)	%	89	30-150	07/24/12 06:28	
Tetrachloro-m-xylene (S)	%	83	30-150	07/24/12 06:28	

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Date: 08/08/2012 04:08 PM

LABORATORY CONTROL SAMPLE: 466180

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Endrin	 ug/L	1.6	1.4	88	57-112	
gamma-BHC (Lindane)	ug/L	1.6	1.4J	88	66-118	
Heptachlor epoxide	ug/L	1.6	1.2	76	66-114	
Methoxychlor	ug/L	1.6	1.3J	81	50-150	
Decachlorobiphenyl (S)	%			80	30-150	
Tetrachloro-m-xylene (S)	%			66	30-150	

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 46618	3		466184						
	30	073416001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Endrin	ug/L	ND	1.6	1.6	1.7	1.6	104	102	57-112		
gamma-BHC (Lindane)	ug/L	ND	1.6	1.6	1.7J	1.7J	105	104	66-118		
Heptachlor epoxide	ug/L	ND	1.6	1.6	1.4	1.4	90	89	66-114	1	
Methoxychlor	ug/L	ND	1.6	1.6	1.6J	1.5J	98	96	50-150		
Decachlorobiphenyl (S)	%						77	77	30-150		
Tetrachloro-m-xylene (S)	%						80	80	30-150		

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: OEXT/12140 Analysis Method: EPA 8082
QC Batch Method: EPA 3546 Analysis Description: 8082 GCS PCB

Associated Lab Samples: 3073114004

METHOD BLANK: 465907 Matrix: Solid

Associated Lab Samples: 3073114004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1221 (Aroclor 1221)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1232 (Aroclor 1232)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1242 (Aroclor 1242)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1248 (Aroclor 1248)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1254 (Aroclor 1254)	ug/kg	ND	16.7	07/21/12 17:41	
PCB-1260 (Aroclor 1260)	ug/kg	ND	16.7	07/21/12 17:41	
Decachlorobiphenyl (S)	%	76	30-150	07/21/12 17:41	
Tetrachloro-m-xylene (S)	%	61	30-150	07/21/12 17:41	

LABORATORY CONTROL SAMPLE: 465908

Date: 08/08/2012 04:08 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	167	105	63	55-145	
PCB-1260 (Aroclor 1260)	ug/kg	167	128	77	55-145	
Decachlorobiphenyl (S)	%			73	30-150	
Tetrachloro-m-xylene (S)	%			56	30-150	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 465910 465909 MS MSD MSD 3073396001 Spike Spike MS MS MSD % Rec % Rec **RPD** Parameter Units Result Conc. Conc. Result Result % Rec Limits Qual PCB-1016 (Aroclor 1016) ND 9 M3 ug/kg 172 175 92.1 100 57 55-145 ND PCB-1260 (Aroclor 1260) 172 175 113 115 61 62 55-145 2 ug/kg Decachlorobiphenyl (S) % 30-150 48 44 Tetrachloro-m-xylene (S) % 46 48 30-150

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: OEXT/12158 Analysis Method: EPA 8270

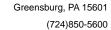
QC Batch Method: EPA 3510 Analysis Description: 8270 TCLP MSSV

Associated Lab Samples: 3073114004

METHOD BLANK: 466539 Matrix: Water

Associated Lab Samples: 3073114004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	500	07/21/12 16:04	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 16:04	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 16:04	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 16:04	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 16:04	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 16:04	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 16:04	
Hexachlorobenzene	ug/L	ND	100	07/21/12 16:04	
Hexachloroethane	ug/L	ND	500	07/21/12 16:04	
Nitrobenzene	ug/L	ND	100	07/21/12 16:04	
Pentachlorophenol	ug/L	ND	5000	07/21/12 16:04	
Pyridine	ug/L	ND	500	07/21/12 16:04	
2,4,6-Tribromophenol (S)	%	72	10-123	07/21/12 16:04	
2-Fluorobiphenyl (S)	%	75	43-116	07/21/12 16:04	
2-Fluorophenol (S)	%	45	21-110	07/21/12 16:04	
Nitrobenzene-d5 (S)	%	74	35-114	07/21/12 16:04	
Phenol-d6 (S)	%	30	10-110	07/21/12 16:04	
Terphenyl-d14 (S)	%	92	33-141	07/21/12 16:04	


METHOD BLANK: 466543 Matrix: Water

Associated Lab Samples: 3073114004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND ND	500	07/21/12 20:09	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 20:09	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 20:09	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 20:09	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 20:09	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 20:09	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 20:09	
Hexachlorobenzene	ug/L	ND	100	07/21/12 20:09	
Hexachloroethane	ug/L	ND	500	07/21/12 20:09	
Nitrobenzene	ug/L	ND	100	07/21/12 20:09	
Pentachlorophenol	ug/L	ND	5000	07/21/12 20:09	
Pyridine	ug/L	ND	500	07/21/12 20:09	
2,4,6-Tribromophenol (S)	%	59	10-123	07/21/12 20:09	
2-Fluorobiphenyl (S)	%	79	43-116	07/21/12 20:09	
2-Fluorophenol (S)	%	45	21-110	07/21/12 20:09	
Nitrobenzene-d5 (S)	%	74	35-114	07/21/12 20:09	
Phenol-d6 (S)	%	28	10-110	07/21/12 20:09	
Terphenyl-d14 (S)	%	91	33-141	07/21/12 20:09	

Date: 08/08/2012 04:08 PM

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

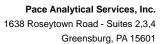
METHOD BLANK: 466544 Matrix: Water

Associated Lab Samples: 3073114004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dichlorobenzene	ug/L	ND	500	07/21/12 23:13	
2,4,5-Trichlorophenol	ug/L	ND	5000	07/21/12 23:13	
2,4,6-Trichlorophenol	ug/L	ND	100	07/21/12 23:13	
2,4-Dinitrotoluene	ug/L	ND	100	07/21/12 23:13	
2-Methylphenol(o-Cresol)	ug/L	ND	2000	07/21/12 23:13	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	2000	07/21/12 23:13	
Hexachloro-1,3-butadiene	ug/L	ND	100	07/21/12 23:13	
Hexachlorobenzene	ug/L	ND	100	07/21/12 23:13	
Hexachloroethane	ug/L	ND	500	07/21/12 23:13	
Nitrobenzene	ug/L	ND	100	07/21/12 23:13	
Pentachlorophenol	ug/L	ND	5000	07/21/12 23:13	
Pyridine	ug/L	ND	500	07/21/12 23:13	
2,4,6-Tribromophenol (S)	%	73	10-123	07/21/12 23:13	
2-Fluorobiphenyl (S)	%	87	43-116	07/21/12 23:13	
2-Fluorophenol (S)	%	50	21-110	07/21/12 23:13	
Nitrobenzene-d5 (S)	%	76	35-114	07/21/12 23:13	
Phenol-d6 (S)	%	31	10-110	07/21/12 23:13	
Terphenyl-d14 (S)	%	98	33-141	07/21/12 23:13	

LABORATORY CONTROL SAMPLE: 466540

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	500	314J	63	10-95	
2,4,5-Trichlorophenol	ug/L	500	255J	51	10-200	
2,4,6-Trichlorophenol	ug/L	500	359	72	42-132	
2,4-Dinitrotoluene	ug/L	500	319	64	10-133	
2-Methylphenol(o-Cresol)	ug/L	500	327J	65	10-200	
3&4-Methylphenol(m&p Cresol)	ug/L	1000	623J	62	10-200	
Hexachloro-1,3-butadiene	ug/L	500	343	69	38-113	
Hexachlorobenzene	ug/L	500	361	72	58-130	
Hexachloroethane	ug/L	500	329J	66	36-96	
Nitrobenzene	ug/L	500	360	72	41-108	
Pentachlorophenol	ug/L	500	304J	61	13-129	
Pyridine	ug/L	500	ND	31	10-200	
2,4,6-Tribromophenol (S)	%			59	10-123	
2-Fluorobiphenyl (S)	%			73	43-116	
2-Fluorophenol (S)	%			47	21-110	
Nitrobenzene-d5 (S)	%			71	35-114	
Phenol-d6 (S)	%			24	10-110	
Terphenyl-d14 (S)	%			88	33-141	



QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 46654	1		466542						
			MS	MSD							
	30	073396001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1,4-Dichlorobenzene	ug/L	ND	500	500	359J	361J	72	72	10-95		
2,4,5-Trichlorophenol	ug/L	ND	500	500	365J	306J	73	61	10-200		
2,4,6-Trichlorophenol	ug/L	ND	500	500	403	400	81	80	42-132	.7	
2,4-Dinitrotoluene	ug/L	ND	500	500	357	361	71	72	10-133	1	
2-Methylphenol(o-Cresol)	ug/L	ND	500	500	366J	379J	73	76	10-200		
3&4-Methylphenol(m&p Cresol)	ug/L	ND	1000	1000	669J	673J	67	67	10-200		
Hexachloro-1,3-butadiene	ug/L	ND	500	500	402	408	80	82	38-113	2	
Hexachlorobenzene	ug/L	ND	500	500	398	415	80	83	58-130	4	
lexachloroethane	ug/L	ND	500	500	373J	385J	75	77	36-96		
Vitrobenzene	ug/L	ND	500	500	422	432	84	86	41-108	3	
Pentachlorophenol	ug/L	ND	500	500	309J	388J	62	78	13-129		
Pyridine	ug/L	ND	500	500	ND	ND	37	32	10-200		
2,4,6-Tribromophenol (S)	%						73	68	10-123		
2-Fluorobiphenyl (S)	%						80	81	43-116		
-Fluorophenol (S)	%						49	49	21-110		
litrobenzene-d5 (S)	%						82	82	35-114		
Phenol-d6 (S)	%						27	27	10-110		
Terphenyl-d14 (S)	%						87	91	33-141		

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

QC Batch: PMST/3283 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 3073114004

SAMPLE DUPLICATE: 466967

3073229001 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 65.0 65.1 .05

SAMPLE DUPLICATE: 466968

 Percent Moisture
 Units
 3073229003 Result Result Result RPD
 Qualifiers

 Percent Moisture
 %
 66.8
 66.2
 .9

ANALYTICAL RESULTS

Project: NIACET CHARACTERIZATION

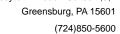
Pace Project No.: 3073114

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	-0.726U ± 0.433 (0.691)	pCi/g	08/03/12 13:30	14952-40-0	
Actinium-228	EPA 901.1m	1.34 ± 0.261 (0.167)	pCi/g	08/03/12 13:30	14331-83-0	
Bismuth-212	EPA 901.1m	1.69 ± 0.488 (0.611)	pCi/g	08/03/12 13:30	14913-49-6	
Bismuth-214	EPA 901.1m	3.88 ± 0.442 (0.337)	pCi/g	08/03/12 13:30	14733-03-0	
Cesium-137	EPA 901.1m	0.116J ± 0.0400 (0.0420)	pCi/g	08/03/12 13:30	10045-97-3	
Cobalt-60	EPA 901.1m	-0.011U ± 0.114 (0.0470)	pCi/g	08/03/12 13:30	10198-40-0	
Lead-210	EPA 901.1m	11.3U ± 20.4 (33.8)	pCi/g	08/03/12 13:30	14255-04-0	
Lead-212	EPA 901.1m	1.20 ± 0.157 (0.106)	pCi/g	08/03/12 13:30	15092-94-1	
Lead-214	EPA 901.1m	4.02 ± 0.455 (0.113)	pCi/g	08/03/12 13:30	15067-28-4	
Potassium-40	EPA 901.1m	8.90 ± 1.23 (0.500)	pCi/g	08/03/12 13:30	13966-00-2	
Protactinium-234M	EPA 901.1m	0.164U ± 5.96 (5.18)	pCi/g	08/03/12 13:30	15100-28-4	
Radium-226	EPA 901.1m	3.94 ± 0.429 (0.124)	pCi/g	08/03/12 13:30	13982-63-3	
Radium-228	EPA 901.1m	1.34 ± 0.261 (0.167)	pCi/g	08/03/12 13:30	15262-20-1	
Thallium-208	EPA 901.1m	$0.453J \pm 0.0780 (0.0500)$	pCi/g	08/03/12 13:30	14913-50-9	
Thorium-234	EPA 901.1m	-0.773U ± 2.28 (3.80)	pCi/g	08/03/12 13:30	15065-10-8	
Uranium-235	EPA 901.1m	$0.375J \pm 0.0840 (0.0800)$	pCi/g	08/03/12 13:30	15117-96-1	
Thorium-228	HSL-300m	1.28 ± 0.267 (0.068)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	4.41 ± 0.767 (0.043)	pCi/g	07/27/12 13:09	14269-63-7	N2
Thorium-232	HSL-300m	1.02 ± 0.221 (0.016)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	1.77 ± 0.336 (0.154)	pCi/g	07/26/12 16:05	13966-29-5	N2
Uranium-235	HSL-300m	0.080 ± 0.058 (0.070)	pCi/g	07/26/12 16:05	15117-96-1	N2
Uranium-238	HSL-300m	1.97 ± 0.359 (0.074)	pCi/g	07/26/12 16:05		N2

Sample: BLD6102-HSB1-GRAB Lab ID: 3073114002 Collected: 07/10/12 14:00 Received: 07/11/12 09:10 Matrix: Solid


PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	12.5 ± 2.55 (3.58)	pCi/g	08/04/12 21:02	14952-40-0	
Actinium-228	EPA 901.1m	126 ± 12.8 (1.92)	pCi/g	08/04/12 21:02	14331-83-0	
Bismuth-212	EPA 901.1m	139 ± 15.4 (5.94)	pCi/g	08/04/12 21:02	14913-49-6	
Bismuth-214	EPA 901.1m	646 ± 65.2 (3.35)	pCi/g	08/04/12 21:02	14733-03-0	
Cesium-137	EPA 901.1m	-0.040U ± 0.456 (0.743)	pCi/g	08/04/12 21:02	10045-97-3	
Cobalt-60	EPA 901.1m	0.0610U ± 0.0620 (0.472)	pCi/g	08/04/12 21:02	10198-40-0	
Lead-210	EPA 901.1m	227U ± 187 (237)	pCi/g	08/04/12 21:02	14255-04-0	
Lead-212	EPA 901.1m	112 ± 11.7 (1.01)	pCi/g	08/04/12 21:02	15092-94-1	
Lead-214	EPA 901.1m	647 ± 66.9 (1.38)	pCi/g	08/04/12 21:02	15067-28-4	
Potassium-40	EPA 901.1m	13.1 ± 4.46 (3.87)	pCi/g	08/04/12 21:02	13966-00-2	
Protactinium-234M	EPA 901.1m	0.000U ± 32.4 (53.6)	pCi/g	08/04/12 21:02	15100-28-4	
Radium-226	EPA 901.1m	645 ± 65.2 (1.07)	pCi/g	08/04/12 21:02	13982-63-3	
Radium-228	EPA 901.1m	126 ± 12.8 (1.92)	pCi/g	08/04/12 21:02	15262-20-1	
Thallium-208	EPA 901.1m	36.9 ± 3.76 (0.473)	pCi/g	08/04/12 21:02	14913-50-9	
Thorium-234	EPA 901.1m	48.1 ± 17.3 (24.4)	pCi/g	08/04/12 21:02	15065-10-8	
Uranium-235	EPA 901.1m	44.3 ± 4.64 (0.917)	pCi/g	08/04/12 21:02	15117-96-1	
Thorium-228	HSL-300m	31.6 ± 5.06 (0.069)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	196 ± 31.2 (0.047)	pCi/g	07/27/12 13:09	14269-63-7	N2

Date: 08/08/2012 04:08 PM

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Sample: BLD6102-HSB1-GRAB Lab ID: 3073114002 Collected: 07/10/12 14:00 Received: 07/11/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Thorium-232	HSL-300m	31.6 ± 5.07 (0.026)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	47.1 ± 7.54 (0.357)	pCi/g	07/26/12 16:05	13966-29-5	N2
Uranium-235	HSL-300m	2.53 ± 0.605 (0.143)	pCi/g	07/26/12 16:05	15117-96-1	N2
Uranium-238	HSL-300m	48.2 ± 7.71 (0.137)	pCi/g	07/26/12 16:05		N2

Sample: BLD6102-HSB234-COMP Lab ID: 3073114003 Collected: 07/10/12 15:00 Received: 07/11/12 09:10 Matrix: Solid

PWS: Site ID: Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Actinium-227	EPA 901.1m	2.08U ± 0.871 (2.44)	pCi/g	08/05/12 08:03	14952-40-0	,
Actinium-228	EPA 901.1m	2.08U ± 0.871 (2.44)	pCi/g	08/05/12 08:03	14331-83-0	
Bismuth-212	EPA 901.1m	14.9 ± 2.75 (2.21)	pCi/g	08/05/12 08:03	14913-49-6	
Bismuth-214	EPA 901.1m	87.0 ± 8.83 (1.21)	pCi/g	08/05/12 08:03	14733-03-0	
Cesium-137	EPA 901.1m	-0.019U ± 0.0930 (0.149)	pCi/g	08/05/12 08:03	10045-97-3	
Cobalt-60	EPA 901.1m	-0.058U ± 0.208 (0.193)	pCi/g	08/05/12 08:03	10198-40-0	
Lead-210	EPA 901.1m	79.3U ± 75.9 (96.3)	pCi/g	08/05/12 08:03	14255-04-0	
Lead-212	EPA 901.1m	11.5 ± 1.24 (0.388)	pCi/g	08/05/12 08:03	15092-94-1	
Lead-214	EPA 901.1m	89.9 ± 9.32 (0.500)	pCi/g	08/05/12 08:03	15067-28-4	
Potassium-40	EPA 901.1m	8.00 ± 2.29 (1.71)	pCi/g	08/05/12 08:03	13966-00-2	
Protactinium-234M	EPA 901.1m	0.000U ± 12.9 (21.7)	pCi/g	08/05/12 08:03	15100-28-4	
Radium-226	EPA 901.1m	87.2 ± 8.85 (0.394)	pCi/g	08/05/12 08:03	13982-63-3	
Radium-228	EPA 901.1m	12.3 ± 1.36 (0.615)	pCi/g	08/05/12 08:03	15262-20-1	
Thallium-208	EPA 901.1m	4.19 ± 0.490 (0.209)	pCi/g	08/05/12 08:03	14913-50-9	
Thorium-234	EPA 901.1m	15.2 ± 4.48 (10.6)	pCi/g	08/05/12 08:03	15065-10-8	
Uranium-235	EPA 901.1m	6.37 ± 0.734 (0.341)	pCi/g	08/05/12 08:03	15117-96-1	
Thorium-228	HSL-300m	8.72 ± 1.44 (0.104)	pCi/g	07/27/12 13:09	14274-82-9	N2
Thorium-230	HSL-300m	56.9 ± 9.08 (0.053)	pCi/g	07/27/12 13:09	14269-63-7	N2
Thorium-232	HSL-300m	8.60 ± 1.42 (0.035)	pCi/g	07/27/12 13:09	7440-29-1	N2
Uranium-234	HSL-300m	11.1 ± 1.68 (0.105)	pCi/g	07/26/12 16:05	13966-29-5	N2
Uranium-235	HSL-300m	0.421 ± 0.138 (0.075)	pCi/g	07/26/12 16:05	15117-96-1	N2
Uranium-238	HSL-300m	11.2 ± 1.70 (0.066)	pCi/g	07/26/12 16:05		N2

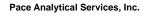
QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Date: 08/08/2012 04:08 PM

QC Batch: RADC/12641 Analysis Method: EPA 901.1m


QC Batch Method: EPA 901.1m Analysis Description: 901.1 Gamma Spec

Associated Lab Samples: 3073114001, 3073114002, 3073114003

METHOD BLANK: 464107 Matrix: Solid

Associated Lab Samples: 3073114001, 3073114002, 3073114003

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Actinium-227	$0.203 \pm 0.227 (0.274)$	pCi/g	08/05/12 18:35	
Actinium-228	$0.0210 \pm 0.0360 (0.239)$	pCi/g	08/05/12 18:35	
Bismuth-212	$0.191 \pm 0.454 (0.790)$	pCi/g	08/05/12 18:35	
Bismuth-214	$-0.107 \pm 2.38 (0.445)$	pCi/g	08/05/12 18:35	
Cesium-137	$0.0200 \pm 0.0360 (0.0600)$	pCi/g	08/05/12 18:35	
Cobalt-60	$-0.019 \pm 0.0940 (0.0650)$	pCi/g	08/05/12 18:35	
Lead-210	$5.11 \pm 14.3 (24.7)$	pCi/g	08/05/12 18:35	
Lead-212	-0.044 ± 18.9 (0.0970)	pCi/g	08/05/12 18:35	
Lead-214	$0.0990 \pm 0.0750 (0.114)$	pCi/g	08/05/12 18:35	
Potassium-40	-0.117 ± 0.553 (0.767)	pCi/g	08/05/12 18:35	
Protactinium-234M	$1.73 \pm 3.37 (5.83)$	pCi/g	08/05/12 18:35	
Radium-226	$0.0200 \pm 0.0220 (0.165)$	pCi/g	08/05/12 18:35	
Radium-228	$0.0210 \pm 0.0360 (0.239)$	pCi/g	08/05/12 18:35	
Thallium-208	$-0.011 \pm 0.0720 (0.0580)$	pCi/g	08/05/12 18:35	
Thorium-234	0.148 ± 1.14 (2.01)	pCi/g	08/05/12 18:35	
Uranium-235	$0.000 \pm 0.0370 (0.0660)$	pCi/g	08/05/12 18:35	

QUALITY CONTROL DATA

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Date: 08/08/2012 04:08 PM

QC Batch: RADC/12675 Analysis Method: HSL-300m

QC Batch Method: HSL-300m Analysis Description: HSL300(AS) Actinides

Associated Lab Samples: 3073114001, 3073114002, 3073114003

METHOD BLANK: 466065 Matrix: Solid

Associated Lab Samples: 3073114001, 3073114002, 3073114003

Parameter	Act ± Unc (MDC)	Units	Analyzed	Qualifiers
Thorium-228	0.152 ± 0.076 (0.099)	pCi/g	07/27/12 13:09	N2
Thorium-230	$0.009 \pm 0.034 (0.071)$	pCi/g	07/27/12 13:09	N2
Thorium-232	-0.004 ± 0.021 (0.034)	pCi/g	07/27/12 13:09	N2
Uranium-234	$0.040 \pm 0.045 (0.076)$	pCi/g	07/26/12 16:04	N2
Uranium-235	$0.008 \pm 0.032 (0.020)$	pCi/g	07/26/12 16:04	N2
Uranium-238	$0.017 \pm 0.025 (0.016)$	pCi/g	07/26/12 16:04	N2

Pace Analytical

Quality Control Sample Performance Assessment

RCDU Upload

Sample Matrix Spike Control Assessment	Analyte:	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Conc. (pCI/L):	Spike Volume Used in MS (mL);	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):
			Assessment								
466065			Flag								
MB Sample ID:			Critical Value	0.02810	0,00000	0.00000					
75		essment	MDC	0.0760	0.0204	0.0157					
		Method Blank Ass	1.96 Sig Unc.	0.0451	0.0319	0:0246					
			Activity	0.0402	0.0075	0.0173					
			Analyte	Uranium-234	Uranium-235	Uranium-238					
	466065	Soil MB Sample ID: 466065	Soil MB Sample ID: 466065 Blank Assessment Sa	Matrix: Soil MB Sample ID: 466065 Method Blank Assessment Activity 1.36 Sig Unc. MDC Critical Value Flag Assessment Sa	Matrix: Soil MB Sample ID: 466065 Activity 1.96 Sig Unc. MDC Critical Value Flag Assessment 0.0402 0.0451 0.0780 0.02810 Assessment Sa	Matrix: Soil MB Sample ID: 466065 Method Blank Assessment Activity 1.36 Sig Unc. MDC Critical Value Flag Assessment Sa 0.0402 0.0402 0.0451 0.0249 0.0244 0.00000 0.0204 0.00000	Matrix: Soil MB Sample ID: 466065 Method Blank Assessment Activity 1.36 Sig Unc. Critical Value Flag Assessment Sa 0.0402 0.0451 0.0269 0.02000 0.02000 0.02000 0.0173 0.0246 0.0157 0.00000 0.00000 0.00000	Matrix: Soil MB Sample ID: 466065 Method Blank Assessment Flag Assessment Sa Activity 1.96 Sig Unc. MDC Critical Value Flag Assessment Sa 0.0402 0.0462 0.0264 0.02640 0.0264 0.0204 0.00000 0.0173 0.0246 0.0157 0.00000 MS/MSD Decay Corrected	Matrix: Sol MB Sample ID: 466065 Accessment Sample ID: Accessment Sample ID: Accessment Sample ID: Accessment Sample ID: MDC Critical Value Flag Accessment Sample ID: Sample ID: <td>Matrix: Sol MB Sample ID: 466065 Accessment Sample ID: Sample Volum Spike Volum Spike Volum</td> <td>Matrix: Sol MB Sample ID: 466065 Method Blank Assessment Flag Assessment Sa Activity 1.36 Sig Unc. Critical Value Flag Assessment Sa 0.0402 0.0451 0.0760 0.02810 MS/MSD Decay Corrected 0.0173 0.0246 0.0157 0.00000 MS/MSD Decay Corrected Spike Volt Spike Volt Spike Volt</td>	Matrix: Sol MB Sample ID: 466065 Accessment Sample ID: Sample Volum Spike Volum Spike Volum	Matrix: Sol MB Sample ID: 466065 Method Blank Assessment Flag Assessment Sa Activity 1.36 Sig Unc. Critical Value Flag Assessment Sa 0.0402 0.0451 0.0760 0.02810 MS/MSD Decay Corrected 0.0173 0.0246 0.0157 0.00000 MS/MSD Decay Corrected Spike Volt Spike Volt Spike Volt

Spike Volume Used in MSD (mL):	MS Aliquot (L. g. F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F);	MSD Target Conc. (pCi/L, g, F):	MS Spike uncertainty (calculated):	MSD Spike uncertainty (calculated):	Sample Result:	Sample 1.96 Sigma Unc.:	Sample Matrix Spike Result:	Sample MS 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample MSD 1.96 Sigma Unc.:	MS % Recovery:	MSD % Recovery:	MS Assessment:	MSD Assessment:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment		Analyte:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Sample Matrix Spike 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample Matrix Spike Duplicate 1.96 Sigma Unc.:	MS/MSD Relative Percent Difference:	MS/ MSD RPD Assessment:	% RPD Limit:
				CSD																											
				LCS	1.0																										
				LCSD	n-238	7/27/12 7:56	11-041U238	47.250	0.100	0.500	9.450	0,333	9.810	1,770	103.81%	Pass	125.00%	75.00%	100												
			iple Assessment	rcs	Uranlum-238	7/27/12 7:56	11-041U238	47,250	0.100	0.500	9.450	0.333	10,200	1.860	107.94%	Pass	125.00%	75.00%	Assessment												
			Laboratory Control Sample Assessment	LCSD	1-234	7/27/12 7:56	11-041U234	46.300	0,100	0.500	9.260	0.327	9.780	1.770	105.62%	Pass	125.00%	75.00%	Duplicate Sample Assessment	, A	Uranium-238	LCS12675	LCSD12675	10.2000	1.8600	9:8100	1,7700	z	3,90%	Pass	25.00%
			Labo	rcs	Uranium-234	7/27/12 7:56	11-041U234	46.300	0.100	0.500	9.260	0.327	9.770	1.800	105.51%	Pass	125.00%	75.00%		¥	Uranium-234	LCS12675	LCSD12675	9.7700	1.8000	9.7800	1.7700	z	0.10%	Pass	25.00%
					Analyte:	Count Date:	Spike LD.:	Spike Concentration (pCI/L):	Volume Used (mL):	Aliquot Volume (L. g. F):	Target Conc. (pCi/L, g, F):	1.96 Sigma Uncertainty (Calculated):	Result (pCi/L, g, F):	1.96 Sigma Unc.	% Recovery:	Assessment:	Upper % Recovery Limits:	Lower % Recovery Limits:		LCS/LCSD Y or N?:	Analyte:	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCI/L, g, F):	1.96 Sigma Unc.	Sample Duplicate Result (pCi/L, g, F);	Duplicate Sample 1.96 Sigma Unc.	Either results below MDC?	Relative Percent Difference:	Assessment:	% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

X8/5/12

Quality Control Sample Performance Assessment

RCDU Upload

					MS/MSD			
	Assessment							
	Flag							
	Critical Value	0.00930	0.02670	0:03950				
sessment	MDC	0.0336	0.0710	0.0986				
Method Blank As	1.96 Sig Unc.	0.0214	0.0344	0.0757				
	Activity	-0.0036	0.0000	0.1520				
	Analyte	Thorium-232	Thorium-230	Thorium-228				
	Method Blank Assessment	Method Blank Assessment Activity 1.96 Sig Unc. MDC Critical Value Flag	Method Blank Assessment Activity 1.36 Sig Unc. MDC Critical Value Flag -0.0036 0.0214 0.0336 0.00930	Method Blank Assessment Activity 1.96 Sig Unc. MDC Critical Value Flag -0.0036 0.0214 0.0336 0.00930 0.0244 0.0710 0.02670	Method Blank Assessment Activity 1.96 Sig Unc. MDC Critical Value Flag -0.0036 0.0214 0.0336 0.00930 0.0090 0.0090 0.0354 0.0710 0.02600 0.0360 0.1520 0.0757 0.0986 0.03950	Activity 1.96 Sig Unc. MDC Critical Value Flag Assessment -0.0036 0.0214 0.0336 0.00830 0.00830 0.00830 0.0090 0.0344 0.0710 0.02670 0.03950 0.1520 0.0757 0.0986 0.03959	Method Blank Assessment Activity 1.96 Sig Unc. MDC Critical Value Flag Assessment -0.0036 0.0214 0.0336 0.00830 0.00830 0.0090 0.0344 0.0770 0.02670 0.03950 0.1520 0.0757 0.0986 0.03950	Activity 1.96 Sig Unc. MDC Critical Value Flag Assessment -0.0036 0.0214 0.0336 0.00930 8 0.00930 0.0094 0.0090 0.0344 0.0710 0.02670 0.03950 0.03950 0.03950

			-																	7								ıţ												
Sample Matrix Spike Control Assessment	Analyte:	Sample Collection Date:	Sample I.D.	Sample MS LD.	Sample MSD I.D.	Spike I.D.;	MS/MSD Decay Corrected Spike Conc. (pCi/L):	Spike Volume Used in MS (mL);	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike uncertainty (calculated):	MSD Spike uncertainty (calculated):	Sample Result:	Sample 1.96 Sigma Unc.:	Sample Matrix Spike Result:	Sample MS 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample MSD 1.96 Sigma Unc.:	MS % Recovery:	MSD % Recovery:	MS Assessment:	MSD Assessment:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	Matrix Spike/Matrix Spike Duplicate Sample Assessment	3	Analyte:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Sample Matrix Spike 1.96 Sigma Unc.:	Sample Matrix Spike Duplicate Result:	Sample Matrix Spike Duplicate 1.96 Sigma Unc.:	MS/MSD Relative Percent Difference:	MS/ MSD RPD Assessment:	% RPD Limit:
			Assessment										CSD																								The second of			
466065			Flag										rcs																											
MB Sample ID:			Critical Value	0.00930	0.02670	0:03950							TCSD																											
200		essment	MDC	0.0336	0.0710	9860.0	0					rol Sample Assessment	SOT			0												ssessment												
Matrix: SC		Method Blank Assessment	1.96 Sig Unc.	0.0214	0.0344	0.0757						Laboratory Control Sam	CSD	-230	7/27/12 13:11	12-018	26,497	0,100	0.500	5.299	0.312	4.810	0.832	%22.06	Pass	125.00%	75.00%	Duplicate Sample Assessment												
8			Activity	-0.0036	0.0000	0.1520						Labor	SOT	Thorium-230	7727/12 13:11	12-018	26 497	0.100	0.500	5.299	0.312	4.780	0.830	90.20%	Pass	25.00%	75.00%	1	>	Thorium-230	LCS12675	LCSD12675	4.7800	0.8300	4.8100	0.8320	z	0.63%	Pass	000000
			Analyte	Thorium-232	Thorium-230	Thorium-228								Analyte:	Count Date:	Spike LD.:	Spike Concentration (pCi/L):	Volume Used (mL):	Aliquot Volume (L. g. F):	Target Conc. (pCi/L, g, F):	1.96 Sigma Uncertainty (Calculated):	Result (pCi/L, g, F):	1.96 Sigma Unc:	% Recovery:	Assessment:	Upper % Recovery Limits:	Lower % Recovery Limits:		LCS/LCSD Y or N?:	Analyte:	Sample LD.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	1.96 Sigma Unc:	Sample Dublicate Result (pCi/L. g, F):	Duplicate Sample 1.96 Sigma Unc.	Either results below MDC?	Relative Percent Difference:	Assessment:	-4: -: 1 CCC /o

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

1 of 1

Gamma Spec Quality Control Sample Performance Assessment

Hoover 8/8/2012 Analyst: Date: PCi Gram Activity Units: Aliquot Units:

8 Oz Can 12641 Soil Worklist: Matrix: Geometry:

Evaluation

% RPD

Numerical Indicator

Duplicate 2 Sigma CSU

Sample 2 Sigma Duplicate Results

Sample Results

Analytes of Interest

Potassium-40

Thallium-208 Bismuth-214

Lead-210

Cesium-137 Cobalt-60

Lead-214 Radium-223 Radium-226

Sample ID:

Duplicate Sample Precision Assessment

#DIV/0i #DIV/0i #DIV/0i #DIV/0i #DIV/0! #DIV/0 #DIV/0i #DIV/0! #DIV/0i #DIV/0i #DIV/0i

Duplicate Sample ID:

#DIV/0i #DIV/0i

#DIV/0i #DIV/0i #DIV/0i

#DIV/0I

#DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0i #DIV/0i #DIV/0i #DIV/0I #DIV/0i #DIV/0i

#DIV/0! #DIV/0! #DIV/0!

#DIV/0i

#DIV/0i

#DIV/0! #DIV/0! #DIV/0!

#DIV/0i #DIV/0i

#DIV/0! #DIV/0!

Protactinium-234N Protactinium-234 Protactinium-231

Actinium-228

Uranium-235

Radium-228 Bismuth-212

Lead-212 Thorium-234

#DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0!

#DIV/0!

#DIV/0i #DIV/0! #DIV/0i #DIV/0!

#DIV/0i

Method Blank Assessment	sment				
Analytes of Interest	MB Result	2 Sigma CSU	MB MDC	Numerical Indicator	MB Evaluation
Potassium-40	-0.117	0.553	0.767	0.415	/ Pass /
Cobalt-60	-0.019	0.0940	0.0650	0.396	/ Pass //
Cesium-137	0.0200	0.0360	0.0600	1.089	Pass
Thallium-208	-0.011	0.0720	0.0580	0.299	Pass
Lead-210	5 11	14.3	24.7	0.700	Pass
Bismulh-214	-0.107	2.38	0.445	0.088	Pass
Lead-214	0.0990	0.0750	0.114	2.587	Pass
Radium-223	0.001000	0.00200	0.342	0.980	Pass
Radium-226	0.0200	0.0220	0.165	1.782	Pass
Actinium-228	0.0210	0.0360	0 239	1.143	Pass
Protactinium-231	-0.733	1.56	2.65	0.921	Pass
Protactinium-234	1.73	3.37	5.83	1.006	Pass
Protactinium-234M	1.73	3.37	5.83	1.006	Pass
Uranium-235	0.000	0.0370	0.0660	0.000	Pass
Radium-228	0.0210	0.0360	0.239	1.143	Pass
Bismuth-212	0.191	0.454	0.790	0.825	Pass
Lead-212	-0.044	18.9	0.0970	0.005	Pass
Thorium-234	0.148	1.14	2.01	0.254	Pass
Actinium-227	0.203	0.227	0.274	1.753	Pass
					>
)

Pass Pass Pass	Actinium-227					#DIV/0i
Pass	Duplicate LCS P	Duplicate LCS Precision Assessment	ent			
Pass /	Analyte	LCS Concentration	LCS 2 Sigma CSU	LCSD Concentration	LCSD 2 Sigma CSU	Numerical Indicator
\	Am-241	1.022	0.525	1.109	0.508	-0.233
)	Cs-137	5.524	0.581	5.549	0.583	-0.060
	Co-60	3.886	0.406	3.868	0.406	0.060
	Laboratory Con	Laboratory Control Sample Duplicate Assessment	ate Assessment			
Co-60			Analyte	Am-241	Cs-137	Co-60
8/5/2012			Count Date	8/6/2012	8/6/2012	8/6/2012
09-039Co			Reference ID	09-039Am	09-039Cs	09-039Co
3.632		Refere	Reference Concentration	1.044	4.931	3.632
0.059		Refe	Reference Uncertainty	0.059	0.059	0.059
3.8859		9	LCSD Concentration	1,109	5.549	3.8684
0.406)T	LCSD 2 Sigma CSU	0.508	0.583	0.406
-1.21		_	Numerical Indicator	-0.25	-2.07	-1 13
107.0%			Percent Recovery	106.3%	112,5%	106.5%
Pass			LCSD Evaluation	Pass	Pass	Pass

4.931

0.059 5.5237 0.581 -1.99

0.059 1.0222 0.525 0.08 98.0% Pass

LCS Concentration
LCS 2 Sigma CSU
Numerical Indicator
Percent Recovery
LCS Evaluation

12.0% Pass

8/5/2012 09-039Cs

Am-241 8/5/2012

Analyte Count Date

Laboratory Control Sample Assessment

09-039Am

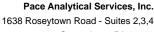
Reference ID Reference Concentration Reference Uncertainty

> Reference Geometry Volume or Mass of

1.044

Precision Evaluation

Percent RPD


Pass / Pass Pass

8.1% 0.5% 0.5%

> If the sample or Duplicate sample activity is below the associated MDC, the %RPD evaluation is not applicable and the sample duplicate precision criteria is acceptable. Evaluation:

Gamma QCC 12641.xls Gamma QC_V1

1 of 1

Pace Analytical www.pacelabs.com

Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty

(MDC) - Minimum Detectable Concentration

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

BATCH QUALIFIERS

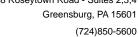
Batch: MSV/13346

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 08/08/2012 04:08 PM

The response for DCB is high in the closing calibration check standard associated with the analysis of this sample.


Recovery may be biased high.

LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

N2 The lab does not hold TNI accreditation for this parameter.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NIACET CHARACTERIZATION

Pace Project No.: 3073114

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
3073114004	BLD6102-HSB234-COMP	EPA 3510	OEXT/12149	EPA 8081	GCSV/4671
3073114004	BLD6102-HSB234-COMP	EPA 3546	OEXT/12140	EPA 8082	GCSV/4666
3073114004	BLD6102-HSB234-COMP	EPA 3005	MPRP/8712	EPA 6010	ICP/8162
3073114004	BLD6102-HSB234-COMP	EPA 7470	MERP/3729	EPA 7470	MERC/3584
3073114004	BLD6102-HSB234-COMP	EPA 3510	OEXT/12158	EPA 8270	MSSV/4145
3073114004	BLD6102-HSB234-COMP	EPA 8260	MSV/13346		
3073114004	BLD6102-HSB234-COMP	ASTM D2974-87	PMST/3283		
3073114001 3073114002 3073114003	BLD6102-HSB1-COMP BLD6102-HSB1-GRAB BLD6102-HSB234-COMP	EPA 901.1m EPA 901.1m EPA 901.1m	RADC/12641 RADC/12641 RADC/12641		
3073114001 3073114002 3073114003	BLD6102-HSB1-COMP BLD6102-HSB1-GRAB BLD6102-HSB234-COMP	HSL-300m HSL-300m HSL-300m	RADC/12675 RADC/12675 RADC/12675		

July 23, 2012

Carin Ferris PASI Pittsburgh 1638 Roseytown Road Greensburg, PA 15601

RE: Project 20141448

Project ID: 3073114 / Los Alamos

Dear Carin Ferris:

Enclosed are the analytical results for sample(s) received by the laboratory on July 14, 2012. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerly,

Karen Brown

karen.brown@pacelabs.com

que HPsour

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Laboratory Certifications

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141448

Client: PASI Pittsburgh

Project ID: 3073114 / Los Alamos

Washington Department of Ecology C2078

Oregon Environmental Laboratory Accreditation - LA200001 U.S. Dept. of Agriculture Foreign Soil Import P330-10-00119 Pennsylviania Dept. of Env Protection (NELAC) 68-04202

Texas Commission on Env. Quality (NELAC) T104704405-09-TX Kansas Department of Health and Environment (NELAC) E-10266

Florida Department of Health (NELAC) E87595

Oklahoma Department of Environmental Quality - 2010-139

Illinois Environmental Protection Agency - 0025721

California Env. Lab Accreditation Program Branch - 11277CA Louisiana Dept. of Environmental Quality (NELAC/LELAP) 02006

This report shall not be reproduced, execpt in full, without the written consent of Pace Analytical Services, Inc.

7/23/2012 13:16:48

Sample Cross Reference

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141448

Client: PASI Pittsburgh

Project ID: 3073114 / Los Alamos

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time	
BLD6102-HSB234-COMP	201004999	Other	10-Jul-12 15:30	14-Jul-12 08:20	

CrossRef 7/23/2012 13:16:49

Project Narrative

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

	Project: 20141448
Sample Receipt Condition:	
All samples were received in accordance with EPA p	rotocol.
Holding Times:	
All holding times were met.	
Blanks:	
All blank results were below reporting limits.	
Laboratory Control Samples:	
All LCS recoveries were within QC limits.	
Matrix Spikes and Duplicates:	
MS or MSD recoveries outside of QC limits are qual-	ified in the Report of Quality Control section.
Surrogates:	
All surrogate recoveries were within QC limits.	

QC Cross Reference

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141448

Analytical Method	Batch	Sample used for QC
EPA 8151	188683	Batch sample from another client

Narrative1 7/23/2012 13:17:26

For the sample used as the original for the DUP or MS/MSD for the batch:

Sample Results

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Client: PASI Pittsburgh

Client ID: BLD6102-HSB234-COMP Project: 20141448

Project ID: 3073114 / Los Alamos Site: None

Description: None **Prep Level:** TCLP **Batch:** 188683

Method: EPA 8151 (TCLP)

8151 Herbs TCLP Collected: 10-Jul-12 Received: 14-Jul-12

Prepared: 19-Jul-12

Units: mg/L

Reporting CAS No. Analyte Dilution Result Limit **Reg Limit** Analysis Qu 94-75-7 2,4-D 1 ND 0.0200 10.0 20-Jul-12 21:37 SPP1 93-72-1 2,4,5-TP (Silvex) ND 0.0200 1.00 20-Jul-12 21:37 SPP1

Surrogate Recovery

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Batch: <u>188683</u> **Project:** <u>20141448</u>

Method: TCLP GC Semivolatile Organics

Lab ID	Sample ID	Qu	Sur 1 %Rec	Sur 2 %Rec	Sur 3 %Rec	Sur 4 %Rec	Sur 5 %Rec	Sur 6 %Rec	Sur 7 %Rec	Sur 8 %Rec
201006296	188683 BLANK 1		53	52						
201006479	188683 BLANK 2		90	87						
201006297	188683 LCS 1		135	128						
201004999	BLD6102-HSB234-COMP		89	86						
201006298	PUMA-SV-12 MS 1		44	44						
201006299	PUMA-SV-12 MSD 1		101	102						
	QC limits:		10-166	10-166						

Sur 1: 2,4-DCPA (Conf)(S) Sur 2: 2,4-DCPA (S)

 $[\]ensuremath{^*}$ denotes surrogate recovery outside of QC limits.

Quality Control

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Method: TCLP GC Semivolatile Organics MS: 20100629 20-Jul-12 18:45

Units: mg/L MSD: 20100629 20-Jul-12 19:07

Original for MS: Batch Sample 201005267

Parameter Name	LCS Spike	LCS Found	LCS %Rec	MS Spike	Sample Found	MS Found	MSD Found	MS %Rec	MSD %Rec	RPD	•	Limits MS/MSD	Max RPD	Qu
2,4-D 2,4,5-TP (Silvex)	0.200 0.0200	0.178 0.0187	89 93	0.200 0.0200		0.0691 0.00763	0.169 0.0182	35 38	85 91		10-159 30-165	10-167	27 20	

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Blank ID: <u>188683 BLANK 1</u> **Project:** <u>20141448</u>

Lab ID: 201006296

Prep Level: TCLP Batch: 188683

Method: TCLP GC Semivolatile Organics

Prepared: 19-Jul-12

				Units:	mg/L
				Reportin	g
CAS Num	b Analyte	Dilution	Result	Qu Limit	Analysis
94-75-7	2,4-D	1	ND	0.02	00 20-Jul-12 16:58 SPP1
93-72-1	2,4,5-TP (Silvex)	1	ND	0.02	00 20-Jul-12 16:58 SPP1

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Blank ID: <u>188683 BLANK 2</u> **Project:** <u>20141448</u>

Lab ID: 201006479

Prep Level: TCLP Batch: 188683

Method: TCLP GC Semivolatile Organics

Prepared: 19-Jul-12

				Units:	mg/L
				Reportir	ng
CAS Num	b Analyte	Dilution	Result	Qu Limit	Analysis
94-75-7	2,4-D	1	ND	0.02	00 20-Jul-12 17:19 SPP1
93-72-1	2,4,5-TP (Silvex)	1	ND	0.02	00 20-Jul-12 17:19 SPP1

Definitions/Qualifiers

Pace Analytical Services, Inc. 1000 Riverbend Blvd. Suite F St. Rose, LA 70087 (504) 469-0333

Project: 20141448

Value	Description
J	This estimated value for the analyte is below the adjusted reporting limit but above the instrument reporting limit.
U	The analyte was analyzed for but not detected at the reporting limit or method detection limit indicated.
В	This analyte was detected in the method blank.
E	The sample concentration is above the linear calibrated range of the analysis.
LCS	Laboratory Control Sample.
MS(D)	Matrix Spike (Duplicate).
DUP	Sample Duplicate.
RPD	Relative Percent Difference.

Chains of Custody

Chain of Custody

20141448 PASI-PILI

Workorder:	3073114	Workorder Name: NIACET CHARACTERIZATION	RACTERIZATION	Owner Received Date:	7	7/11/2012 Results	Results Requested By:	y: 7/26/2012
Carin Ferris Pace Analyti 1638 Rosey	Carin Ferris Pace Analytical Services, Inc. 1638 Roseytown Road	Pace Analy 1000 Riveri Suite F	Pace Analytical New Orleans 1000 Riverbend Blvd Suite F					
Greensbi Phone (7 Fax (999)	Greensburg, PA 15601 Phone (724)850-5600 Fax (999)999-9999	St. Rose, LA Phone 1(504)	St. Rose, LA 70087 Phone 1(504)469-0333	> Priord	97			
				Preserved Containers	1- -3			
Item Sar	Sample ID Type	Sample Collect Type Date/Time Lab.ID	Matrix Devieseend	d1/1_	ト'さ ト'さ			YINO HSILBA
-	BLD6102-HSB234-COMP PS	5:30	3073114004 Solid 1	7	1			
2								
3								
4								NAME OF THE PROPERTY OF THE PR
2								
							Comments	
Transfers	Released By	Je Je	Received By	Date/Time				a circumstant
-		90H1 GER			(
2	NO PAIL		MAR	- 7/14/12 C	8			
e7				/ [/ .				
Cooler	Cooler Temperature on Receipt ≠, U	°C Custody Seal	Seal (Y) or N	Received on Ice	(y or N		Samples Intact/	Øor N

ace Analyticai

Sample Cond

1000 Riverbend, Blvd., Suite F St. Rose, LA 70087 □ Pace Courier □ Hackbarth Z Fed X □ UPS Courier: □ DHL □ USPS □ Customer □ Other Custody Seal on Cooler/Box Present: [see COC] Custody Seals intact: ✓Yes □No Therm Fisher IR 1 **Therometer** □ Therm Fisher IR 2 Type of Ice: None Samples on ice: [see COC] Used: Therm Fisher IR 4 Date and initials of person examining Cooler Temperature: [see COC] Temp should be above freezing to 6°C contents: Temp must be measured from Temperature blank when present Comments: Temperature Blank Present"? es_ DNo DN/A Chain of Custody Present: √DNo □N/A Chain of Custody Complete: □N/A _□No Chain of Custody Relinquished: ✓ Yes □ No. □N/A Sampler Name & Signature on COC: ☑Yes □No □N/A Samples Arrived within Hold Time: ZYes □No □N/A 6 Sufficient Volume: ZÍYes. □No □N/A Correct Containers Used: ☑Yes □No -□N/A Filtered vol. Rec. for Diss, tests ☐Yes ZNo □N/A Sample Labels match COC: ZYes □No □N/A All containers received within manafacture's ZYes □No □N/A precautionary and/or expiration dates. All containers needing preservation have been ZÜYes □No □N/A checked (except VOA, coliform, & O&G). 12 All containers preservation checked found to be in If No, was preserative added? □Yes □No ☑Yes □No □N/A compliance with EPA recommendation. If added record lot no.: HNO3 H2SO4 Samples checked for dechlorination: ☐Yes ZNo □N/A 14 □Yes ZNo Headspace in VOA Vials (>6mm): □N/A Trip Blank Present: ☐Yes ☑No ∕□n/a 16 Trip Blank Custody Seals Present ☐Yes ØNo □N/A 17 Pace Trip Blank Lot # (if purchased): N/A 18 Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com

Required	Required Client Information:	Required Project Information:	ect Info	ormation	٠				-	Invoice information.	į												
Company:	LATA	Report To:	R	SAMOS		Moske			Attention:	4	SAACS	`	Moore							,	581	581820	
Address: 3	3 WASHINEAN AWA	Copy To:	S	2502	S	41062			Сотра	<u>100</u>	F	47					ULATO	REGULATORY AGENCY	ENCY				
4	I I								C:seappy	756	~	MK ANDOW RD	300%	, R0		 201	NPDES	L.	GROUN	GROUND WATER	L	DRINKING WATER	WATER
Email To:	JMOORE WATA . COM	Purchase Order No.:	er No.:						Pace Quote Reference:	e e e	名型	WATERVILLE	x. 04	<u></u>		r	UST	-	RCRA		L	OTHER .	
Phone.	Fax:	Project Name:		NIA	CET	CLIRE	RETR	C(13A	Pace Project Manager:	ject			-	43081	σį		Site Location	uc					
Request	NA	Project Number:	 ایز	2	0.003				Pace Profile #:	file #:						/ 57k	STATE:	üi					
													H	8	queste	Anal	ysis Fil	Requested Analysis Filtered (Y/N)	(N.				
Sec	Section D Matrix Codes Required Client Information MATRIX 1 CODE				ŏ	COLLECTED	Q			Pr	Preservatives	tives	N/A		- / -) -						:	
	P. W. W. D. S.	MM ← N N N N N N N N N N N N N N N N N N	-CEAB C-CO		COMPOSITE	3	COMPOSITE	COLLECTION					1	₩ ₩	41	enstren				(N/A) i			
٧,	SAMPLE ID WIPE (A-Z, 0-9 / -/-) Sample IDS MUST BE UNIQUE Tissue Other			- \				TA 9M9T	ЯЗИІАТИ	Devi			jesī zie	₩ ∀)	पर्श प गुरा प	. tot				Chlorine	603	3073114	ゴ
# M3TI		XISTAM	SAMPLE	DATE	TE TIME		DATE TIN	SAMPLE SAMPLE	# OE CO	HNO ³ H ⁵ 2O [†] Nublese	HCI	NaOH Na ₂ S ₂ O ₃	Other	חוק בייון	HOTE	१ ७४				Residua	Pace P	oject No	Pace Project No./ Lab I.D.
<u>~</u>	8201107-45B1- comp	51	רוכ	¥ζ.	10-12 13	300	SAME	3	1	×				X	X						00		
2 3	ーく	15	ې	کم	12 CLI-01-4	· <u>\$</u>	Sane	Š	_	×				त्रे	X						8		
3 5	BUOL 102 - HS & 234 - COMP	25	U L	÷ †	05 Ci-01	<u> </u>	No.	3		V				X	X	_					3		
3	BLOLIOZ - 1358 234 - COMP		7)-r	-6-13 3 3	3	7	è	_	×											3	-	
-	Biplice - 45\$ 234-com	2	۲	7	10-12-34	4	<u> </u>	7	-	X	+	+	T		‡	*	-		-	†	7		
9 /											+	+	1		+		+						
80				_																			
6			_			<u> </u>		-		1					_			_					
2 :			-	_	+			+		+	\perp	+				-			_				
F 2			+	-		+			<u> </u>	+	+	+	T		+	+-	T	+-	+				
-	ADDITIONAL COMMENTS	T T	ELING	UISHED	RELINQUISHED BY / AFFILIATION	IATION		DATE	1 ME	<u></u>	1	ACCE	PTED B	Y / AFFIL	ACCEPTED BY / AFFILIATION		DATE	F 	J. J.		SAMPLE	SAMPLE CONDITIONS	MS POX
											am a	Amando Shray		1 [PAC	<u>9</u>	4	<u>5</u>		ဗီ			X
		_			SAM	SAMPLER NAME AND	ME AND SI	SIGNATURE	<u>"</u>		`	,				1		-		+	(1		tasti
	0	ORIGINAL	,			PRIN	PRINT Name of S	SAMPLER:		350	2	3	270	ート	DATE Signed	(٩	!		niqmeT	Pice (Y/N	oD belee (N/Y)	ampies In (V/V)
												P			•		6						

Sample Condition Upon Receipt

<i>P</i>		
Face Analytical Client Name:	LAT	A Project # 3673114
1		
Courier: Fed Ex UPS USPS Client	t Commercial	
Tracking #: 87 62 4606 5070		Proj. Due Date:
Custody Seal on Cooler/Box Present: yes	no Seals	intact: I yes I no
Packing Material: Bubble Wrap	Bags None	Other
Thermometer Used 5 6 7	Type of Ice: (Wet	Blue None Samples on ice, cooling process has begun
Cooler Temperature \. \?° C	Biological Tissue	is Frozen: Yes No Date and Initials of Gerson examining contents;
Temp should be above freezing to 6°C		Comments:
Chain of Custody Present:	ÚYes □No □N/A	1.
Chain of Custody Filled Out:	☑Yes □No □N/A	2.
Chain of Custody Relinquished:	□Yes ☑No □N/A	3.
Sampler Name & Signature on COC:	☑Yes ☐No ☐N/A	4.
Samples Arrived within Hold Time:	ØYes □No □N/A	5.
Short Hold Time Analysis (<72hr):	□Yes □No ☑N/A	6.
Rush Turn Around Time Requested:	□Yes □No □N/A	7.
Sufficient Volume:	⊠Yes □No □N/A	8.
Correct Containers Used:	ØYes □No □N/A	9.
-Pace Containers Used:	□Yes ☐No □N/A	
Containers Intact:	□Yes ØNo □N/A	10.5ee below.
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.
Sample Labels match COC:	☑Yes □No □N/A	12.
-Includes date/time/ID/Analysis Matrix:	<u> SL</u> .	
All containers needing preservation have been checked.	□Yes □No ☑N/A	13.
All containers needing preservation are found to be in	□Yes □No □N/A	
compliance with EPA recommendation.		lested when I have a had a
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes ☑No .	Initial when Completed Lot # of added preservative
Samples checked for dechlorination:	□Yes □No ☑N/A	14.
Headspace in VOA Vials (>6mm):	□Yes □No ☑N/A	15.
Trip Blank Present:	□Yes □No □N/A	16.
Trip Blank Custody Seals Present	□Yes □No ☑N/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
· · · · · · · · · · · · · · · · · ·	Date/	
Comments/ Resolution: 5000/E B	LD10102	-H5B1-GRAB Was broken
Salvaced sample from	<u>bubble</u>	baa but it is contaminated
with cooler water		J
Kicked My an	MASIS	7/13/10
	<u> </u>	Morte.
Project Manager Parisons (CO): ~~	> Zan'	Date: 716/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Project Number: 273/19

Pace Analytical

					т						1		1
Other													ي [
TerhO								,			_		2012).xl
oolqiZ													4 15May
Cubitainer (500 ml / 4L)													(C016
Radchem Nalgene (1/2 gal. / 1 gal.L)													SCURF Back (C018-4 15May2012).xls
Radchem Nalgene (125 / 250 / 500 / 1L)													SCL
Wipes I swipel smearl filter					·								
Bacteria (120 ml)													
Suifide (500 ml)									-				
Cyanide (250 ml)				·									,
(Im 0£ Im 0+) AOV									-				
(лг) нат													
० ४ ७ (१८)													
Dissolved Metals preserved Y									_				
sisteM lstoT								-					
(lm 02S) XOT							-						
TOC (40 ml / 250 ml)		_											
Phenolics (250 ml)													1
Nutrient (250 / 500)		,			_								1
Organics (1L)													
Chemistry (250 / 500 / 1L)													
Soil kit (2 SB, 1M, soil jar)				- COm				,					1
(17) (003) (250) set essio			>										
Matrix Code	3				>								
·	-(6	-4-	10								
ltem No.	8	→	8	8	8	}			,				
1		I	, —	,	ı	•		1	I	L	1	1	l .