

## Delineation Phase II Site Assessment Investigation Report

Cedar Manor Substation: Site No. V00388-2

May 2010



DVIRKA AND BARTILUCCI CONSULTING ENGINEERS

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.





May 20, 2010

Robert H. Filkins, Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau A
625 Broadway, 11th Floor
Albany, NY 12233-7016

Re:

LIRR Cedar Manor (NYSDEC VCA No. V00388-2)

Delineation Phase II Site Assessment Investigation Report

Dear Mr. Filkins:

Enclosed please find two copies of the Final Report entitled:

"Delineation Phase II Site Assessment Investigation Report LIRR Cedar Manor Substation (NYSDEC VCA No. V00388-2)"

Please be advised that the LIRR will be decommissioning the Cedar Manor Substation as part of an overall capital program system upgrade project. In addition, a Remedial Action Work Plan (RAWP) will be submitted to your Department subsequent to your approval of the proposed remedial actions presented in the enclosed document.

Please do not hesitate to contact me at (718) 558-3620 if you have any questions or comments.

Very truly yours,

Andrew Wilson, P.E. Project Manager

AW/SET/kap,jmy

cc: Case Attorney (NYSDEC)

S. Dewes (NYSDEC)

B. Callaghan (NYSDOH)

C. Hillenbrand (USEPA)

C. Channer (MTA)

G. Russo (LIRR)

T. Fox (D&B)

♦2801\Misc10ltr.doc-12(R01)

### METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

## DELINEATION PHASE II SITE ASSESSMENT FOR CEDAR MANOR SUBSTATION (V00388-2)

#### INVESTIGATION REPORT

Prepared for:

## METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

Prepared by:

## DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK 11797

**MAY 2010** 

# LONG ISLAND RAIL ROAD DELINEATION PHASE II SITE ASSESSMENT FOR CEDAR MANOR SUBSTATION INVESTIGATION REPORT

#### TABLE OF CONTENTS

| Section  |            | <u>Title</u>                                                   | <u>Page</u> |  |  |  |  |  |  |
|----------|------------|----------------------------------------------------------------|-------------|--|--|--|--|--|--|
| Title Pa | ge         |                                                                |             |  |  |  |  |  |  |
| 1.0      | INT        | RODUCTION                                                      | 1-1         |  |  |  |  |  |  |
|          | 1.1        | Project Background                                             |             |  |  |  |  |  |  |
|          | 1.2<br>1.3 | Site Description                                               |             |  |  |  |  |  |  |
|          |            | •                                                              |             |  |  |  |  |  |  |
| 2.0      | INV        | ESTIGATION METHODS                                             | 2-1         |  |  |  |  |  |  |
|          | 2.1        | Introduction                                                   |             |  |  |  |  |  |  |
|          | 2.2        | Surface Soil Sampling                                          | 2-1         |  |  |  |  |  |  |
|          | 2.3        | Subsurface Soil Sampling                                       |             |  |  |  |  |  |  |
|          | 2.4        | Groundwater Probe Installations and Sampling                   |             |  |  |  |  |  |  |
|          | 2.5        | Underground Injection Control (UIC) and Below Grade Structures |             |  |  |  |  |  |  |
|          | 2.6        | Air Sampling                                                   | 2-8         |  |  |  |  |  |  |
| 3.0      | FINI       | DINGS                                                          | 3-1         |  |  |  |  |  |  |
|          | 3.1        | Surface Soil                                                   | 3-1         |  |  |  |  |  |  |
|          | 3.2        | Subsurface soil                                                | 3-5         |  |  |  |  |  |  |
|          | 3.3        | Groundwater                                                    | 3-7         |  |  |  |  |  |  |
|          | 3.4        | Underground Injection Control (UIC) and Below Grade Structures | 3-8         |  |  |  |  |  |  |
|          | 3.5        | Waste Characterization                                         | 3-10        |  |  |  |  |  |  |
|          | 3.6        | Data Usability Summary Report (DUSR)                           | 3-10        |  |  |  |  |  |  |
| 4.0      | FISE       | I AND WILDLIFE RESOURCES IMPACT ANALYSIS                       | 4-1         |  |  |  |  |  |  |
|          | 4.1        | Ecology                                                        | 4-1         |  |  |  |  |  |  |
|          |            | 4.1.1 Major Habitat Types                                      | 4-1         |  |  |  |  |  |  |
|          |            | 4.1.2 Wetlands                                                 | 4-3         |  |  |  |  |  |  |
|          |            | 4.1.3 Mammals                                                  | 4-3         |  |  |  |  |  |  |
|          |            | 4.1.4 Birds                                                    | 4-3         |  |  |  |  |  |  |
|          |            | 4.1.5 Fish                                                     | 4-6         |  |  |  |  |  |  |
|          |            | 4.1.6 Reptiles and Amphibians                                  | 4-6         |  |  |  |  |  |  |

#### TABLE OF CONTENTS

| Section   |                                      | <u>Title</u>                                          |                                                           |        |  |  |  |  |  |  |  |  |
|-----------|--------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|--------|--|--|--|--|--|--|--|--|
|           |                                      | 4.1.7                                                 | Rare Species and Critical Habitats                        | 4-6    |  |  |  |  |  |  |  |  |
|           |                                      | 4.1.8                                                 | Biological Associations Found in the Project Vicinity     |        |  |  |  |  |  |  |  |  |
|           |                                      | 4.1.9                                                 | Observations of Stress Potentially Related to             |        |  |  |  |  |  |  |  |  |
|           |                                      |                                                       | Site Contaminants                                         | 4-11   |  |  |  |  |  |  |  |  |
|           |                                      | 4.1.10                                                | Habitat Values of Vegetative Zones within the Project Sit | te4-11 |  |  |  |  |  |  |  |  |
| 5.0       | QUALITATIVE EXPOSURE ASSESSMENT      |                                                       |                                                           |        |  |  |  |  |  |  |  |  |
|           | 5.1                                  | Introdu                                               | ction                                                     | 5-1    |  |  |  |  |  |  |  |  |
|           | 5.2                                  | Propert                                               | ies, Fate and Transport of Mercury at the Cedar Manor     |        |  |  |  |  |  |  |  |  |
|           |                                      | Substat                                               | ion                                                       | 5-2    |  |  |  |  |  |  |  |  |
|           | 5.3                                  | Genera                                                | l Substation Conditions                                   | 5-3    |  |  |  |  |  |  |  |  |
|           | 5.4                                  | Surface                                               | and Subsurface Soil                                       | 5-4    |  |  |  |  |  |  |  |  |
|           | 5.5                                  | Ground                                                | 5-5                                                       |        |  |  |  |  |  |  |  |  |
|           | 5.6                                  |                                                       | 5-5                                                       |        |  |  |  |  |  |  |  |  |
|           | 5.7                                  | Future                                                | Use of the Cedar Manor Substation                         | 5-6    |  |  |  |  |  |  |  |  |
| 6.0       | CONCLUSIONS AND RECOMMENDATIONS      |                                                       |                                                           |        |  |  |  |  |  |  |  |  |
|           | 6.1                                  | Nature                                                | and Extent of Contamination                               | 6-1    |  |  |  |  |  |  |  |  |
|           | 6.2                                  | Recom                                                 | mendations                                                | 6-2    |  |  |  |  |  |  |  |  |
|           |                                      |                                                       |                                                           |        |  |  |  |  |  |  |  |  |
| List of A | ppendi                               | ices                                                  |                                                           |        |  |  |  |  |  |  |  |  |
|           | Exist                                | ing Initial                                           | Site Assessment Analytical Data                           | A      |  |  |  |  |  |  |  |  |
|           | Data                                 | Data Qualifiers/Delineation Phase II Analytical DataB |                                                           |        |  |  |  |  |  |  |  |  |
|           | Delir                                | neation Phase II Boring Logs                          |                                                           |        |  |  |  |  |  |  |  |  |
|           | Data                                 | Validator                                             | Resume                                                    | D      |  |  |  |  |  |  |  |  |
|           | April                                | 2010 Sto                                              | ne Placement Photos                                       | Е      |  |  |  |  |  |  |  |  |
|           | LIRR Procedure/Instruction EE03-001F |                                                       |                                                           |        |  |  |  |  |  |  |  |  |

### TABLE OF CONTENTS (continued)

| List of Figures |                                                                   |
|-----------------|-------------------------------------------------------------------|
|                 |                                                                   |
| 1-1             | Site Location Map1-4                                              |
| 1-2             | Site Plan1-5                                                      |
| 2-1             | Sample Location Map2-2                                            |
| 2-2             | Additional Delineation Sample Location Map2-3                     |
| 3-1             | Mercury Concentration Map3-2                                      |
| 3-2             | Additional Delineation Mercury Concentration Map3-3               |
| 6-1             | Proposed Areas of Remediation Map6-4                              |
| List of Tables  |                                                                   |
| 2-1             | Delineation Phase II Site Assessment Summary of                   |
| 2-1             | Completed Field Activities                                        |
| 4-1             | Cedar Manor Vegetative Species Observed at the Substation Site4-2 |
| 4-2             | Mammals Likely to Inhabit the Cedar Manor Substation Site4-4      |
| 4-3             | Avifauna Likely to Inhabit the Cedar Manor Substation Area4-5     |
| 4-4             | Reptiles and Amphibians Likely to Inhabit the                     |
|                 | Cedar Manor Substation Site                                       |
| 4-5             | Federally Listed or Proposed Threatened or                        |
|                 | Endangered Species in New York State4-8                           |
| 4-6             | Floral and Faunal Associations Observed within                    |
|                 | 2.5 Miles of the Cedar Manor Substation Site4-10                  |
| 4-7             | Qualitative Habitat Value Analysis within the                     |
|                 | Cedar Manor Substation Site4-14                                   |

#### 1.0 INTRODUCTION

This Investigation Report presents the results of the Delineation Phase II Site Assessment, conducted at the Long Island Rail Road (LIRR) Cedar Manor Substation which was completed in accordance with fully executed Voluntary Cleanup Agreement No. V00398-1.

The objectives of the Delineation Phase II Site Assessment included the following:

- Define the nature and extent of impacts to surface and subsurface soil;
- Determine if site-related contaminants have impacted groundwater quality;
- Identify potential impacts to human health and/or the environment associated with site-related contaminants; and
- Obtain sufficient data to determine the need for remedial action and to evaluate remedial alternatives that may be implemented as a final long-term remedy for the site.

Field activities and sampling procedures associated with the Delineation Phase II Site Assessment at the Cedar Manor Substation were completed in accordance with the NYSDEC-approved "Investigation Work Plan" dated June 2005.

The following subsections provide relevant project background information, including detailed descriptions of the Cedar Manor Substation site, as well as a summary of the findings of prior investigation work.

#### 1.1 Project Background

The LIRR designed, constructed and operated substations from the early 1930's through 1951 that utilized mercury rectifiers. These rectifiers allowed the LIRR to receive 60-cycle, alternating current (AC) from local utilities and convert it to direct current (DC) for use as a source of electric power for its locomotives and electric passenger car fleet. The LIRR identified

20 substations located throughout Queens, Nassau and Suffolk Counties that once utilized mercury containing rectifiers, including the Cedar Manor Substation.

It is believed that during the early 1980s, the mercury rectifiers were taken out of service and physically removed from these LIRR substations and replaced with non-mercury containing solid state equipment. However, due to uncertainties surrounding the work practices that may have been employed when managing the operation and maintenance of these mercury rectifiers, the LIRR believed it necessary to conduct environmental assessments at these 20 electric substations to determine the potential effects that may have occurred to the surrounding environment.

Between 1999 and 2000, the LIRR conducted environmental assessments at the 20 electric substations previously utilizing mercury-containing rectifiers. The results of these assessments were documented in a report prepared by Dvirka and Bartilucci Consulting Engineers (D&B), entitled, "Site Assessment of 20 Substations for Mercury Contamination," dated December 2000. Based on the findings of that report, mercury was identified in soil at all 20 substations, including the Cedar Manor Substation, at concentrations above the New York State Department of Environmental Conservation's (NYSDEC's) recommended cleanup objectives (TAGM 4046). In order to further delineate and remediate impacted soil at the 20 substations, the LIRR has agreed to undertake and complete Delineation Phase II Site Assessments under the NYSDEC Voluntary Cleanup Program (VCP). In support of this VCP, the LIRR elected to conduct Delineation Phase II Site Assessment activities at the Cedar Manor Substation.

The report discusses the data generated as part of the Initial Site Assessment and Delineation Phase II Site Assessment activities conducted at the Cedar Manor Substation.

#### 1.2 Site Description

The Cedar Manor substation site is located in Cedar Manor, Queens County, New York and depicted on **Figure 1-1**. The substation consists of an approximately 1,800 square foot one-story brick building shown on **Figure1-2**. An approximately 1,600 square foot transformer yard is located adjacent to the north of the substation building and is enclosed by a chain-link fence. The substation building and transformer yard is presently utilized to convert alternating current to direct current for the LIRR-Far Rockaway branch. There is also a 90 square foot Consolidated Edison transformer area located to the west of the substation. The land surrounding the substation and the transformer yard consists of residential areas.

The Cedar Manor substation is equipped with a basement, sanitary and water services and a utility trench system. The interior of the substation consists of two active solid-state rectifiers located over two pits that lead to the basement that once serviced mercury-containing rectifiers. The substation is also equipped with a water pipe trench with an earthen bottom located in the southwest corner of the substation. It should be noted that the Cedar Manor substation contains a bank of active lead-acid batteries located in a room along the west side of the substation to provide back-up electricity.

The initial site inspection identified two open grate dry wells located to the south of the substation, as well as a water meter pit with an earthen bottom located along the southwest corner of the substation. In addition, a roof drainage line was observed to discharge to surface soil along the east side of the substation. It should also be noted that a clean-out and vent was observed off the northwest corner of the substation.

According to LIRR representatives and available LIRR construction drawings, the Cedar Manor substation was expanded in approximately 1947. The original substation consisted of a rectifier pit and a water trough pit, which are thought to have been backfilled during the substation building expansion, and two new rectifiers were relocated over two new pits which lead to the basement. D&B targeted concrete corings and soil borings in the likely locations of the original rectifier and water trough pits based on a review of the drawings.





**DELINEATION PHASE II SITE ASSESSMENT** 

SITE LOCATION MAP **CEDAR MANOR SUBSTATION (V00388-2)** 

FIGURE 1-1





LONG ISLAND RAIL ROAD
DELINEATION PHASE II SITE ASSESSMENT

SITE PLAN
CEDAR MANOR SUBSTATION (V00388-2)

It should be noted that, according to LIRR representatives, the Cedar Manor substation had been renovated in the last 10 to 15 years. Renovation activities included the installation of new storm water dry wells, the addition of ballast to the substation grounds and interior painting of the substation building.

#### 1.3 Summary of Prior Investigations

The LIRR completed the Initial Site Assessment of the Cedar Manor Substation in 1999, as documented in the report entitled, "Site Assessment of 20 Substations for Mercury Contamination," dated December 2000. Investigation methods utilized during this Initial Site Assessment included a site inspection, mercury vapor measurements and drainage determinations. In addition, samples of various environmental media were collected at the site for laboratory analysis. These media included surface soil, subsurface soil and concrete cores. Analytical data generated from the Initial Site Assessment are presented in Appendix A of this report.

Additional details regarding the Initial Site Assessment of the Cedar Manor Substation are presented in the previously referenced report "Site Assessment of 20 Substations for Mercury Contamination." Note that the findings of the 2000 Initial Site Assessment were utilized as the basis for developing the investigation scope of work for the Delineation Phase II Site Assessment investigation. Below is a summary of the findings of the Initial Site Assessment of the Cedar Manor Substation.

#### **Drainage Determination**

According to available LIRR construction drawings, the existing Cedar Manor substation contains two floor drains in the basement that discharge to the storm sewer in Brinkehoff Avenue. D&B attempted to conduct flush and dye tests, however, the floor drains located in the basement were permanently concrete capped. As a result, the discharge point of these floor drains could not be verified in the field.

#### Sampling and Analysis

The following subsections describe the findings associated with surface soil, subsurface soil and concrete core samples collected from the Cedar Manor Substation during the completed previous investigations. All samples were analyzed for mercury. Samples collected during this phase of the investigation were compared to the TAGM 4046 Recommended Soil Cleanup Objectives (RSCOs); however, as of December 2006, the NYSDEC has mandated new cleanup objectives, and as such, all Initial Site Assessment data has been reevaluated and compared to the NYCRR Subpart 375 Soil Cleanup Objectives (SCOs) for industrial and residential sites. Therefore, all mercury concentration data associated with the soil samples collected from outside the fenced areas of the substation property are compared to the Residential Use SCOs and all soil samples collected from within the fenced areas are compared to the Industrial Use SCOs. Due to the need to compare the sample data to these two separate SCOs, the below discussion has accordingly been divided into two sections. Note that, as per the United States Environmental Protection Agency (USEPA), all soil samples collected from or associated with Underground Injection Control (UIC) structures will be compared to TAGM 4046. Sample locations are provided on Figure 2-1 in Section 2.0. Results for the mercury analysis are provided in Appendix A.

#### Surface Soil

#### Non-Fenced

One surface soil sample (CMSS-03) was collected in the non-fenced area of the Cedar Manor Substation. Mercury was not detected at concentrations exceeding the Residential SCO for mercury of 0.81 mg/kg in the collected surface soil sample.

#### Fenced Area

Three surface soil samples were collected from the fenced area of the Cedar Manor Substation. None of the samples collected from the fenced areas of the Cedar Manor Substation exhibited detectable concentrations of mercury in exceedance of the Industrial SCO for mercury of 5.7 mg/kg.

#### Subsurface Soil

Note that a total of two subsurface soil samples were collected in the fenced areas of the substation property during the Initial Site Assessment. Neither of the two collected samples exhibited detectable concentrations of mercury in exceedance of the Industrial SCO for mercury of 5.7 mg/kg.

#### Concrete

Five concrete core samples were collected from within the substation building. None of the five concrete core samples collected from the Cedar Manor substation exhibited detectable concentrations of mercury in exceedance of the Industrial SCO of 5.7 mg/kg.

#### Underground Injection Control (UIC) and Below Grade Structures

Dry Wells

One sample (CMSB-02 [8 to 10 feet]) was collected from the dry well located approximately 27 feet southwest of the substation building for mercury analysis. Dry well sample CMSB-02 (8 to 10) exhibited a mercury concentration of 2.7 mg/kg, in exceedance of the TAGM SCO for mercury of 0.10 mg/kg.

Two samples (CMSB-03 [8 to 10 feet and 12 to 14 feet]) were collected from the storm water dry well located approximately 14 feet off the southwest corner of the substation building.

Neither of the two collected samples exhibited detectable mercury concentrations in exceedance of the TAGM SCO of 0.10 mg/kg.

Two samples (CMSB-04 [8 to 10 feet and 12 to 14 feet]) were collected from the dry well located approximately 6 feet south of the substation front entrance doors for mercury analysis. Both collected samples exhibited mercury concentrations in exceedance of the TAGM SCO for mercury of 0.10 mg/kg. Dry well samples CMSB-04 (8 to 10 feet and 12 to 14 feet) exhibited mercury concentrations of 1.7 mg/kg and 7.6 mg/kg, respectively.

#### Water Meter Pit

Two samples (CMSB-05 [3.5 to 5.5 feet and 7.5 to 9.5 feet]) were collected from the water meter pit located adjacent to the southwest wall of the substation building. One of the two collected samples (CMSB-05 [3.5 to 5.5 feet]) exhibited a mercury concentration in exceedance of the Industrial SCO for mercury of 5.7 mg/kg at a concentration of 13.8 mg/kg. Note that, as this structure was not designed to accept waste fluids, samples collected from this structure have been compared to the Industrial Use SCOs.

#### West Rectifier

Two samples (CMSB-06 (0 to 2 feet and 4 to 6 feet]) were collected from the rectifier pit located in the western portion of the substation building for mercury analysis. Both collected samples exhibited detectable concentrations of mercury in exceedance of the TAGM SCO for mercury of 0.10 mg/kg. Subsurface soil samples CMSB-06 (0 to 2 feet and 4 to 6 feet) exhibited mercury concentrations of 1.6 mg/kg and 2.3 mg/kg, respectively.

#### East Rectifier

Two samples (CMSB-08 [0 to 2 feet and 4 to 6 feet]) were collected from the rectifier pit located in the eastern portion of the substation building for mercury analysis. One of the two

collected samples, CMSB-08 (0 to 2 feet) exhibited a mercury concentration of 0.19 mg/kg, slightly in exceedance of the TAGM SCO for mercury of 0.10 mg/kg.

#### Interior Sanitary Pipe Trench

Two samples (CMSB-09 (0 to 2 feet and 4 to 6 feet]) were collected from the interior sanitary pipe trench located in the southeast portion of the substation building. Neither of the collected samples exhibited detectable concentrations of mercury in exceedance of the Industrial SCO for mercury of 5.7 mg/kg. Sample CMSB-09 (0 to 2 feet and 4 to 6 feet) exhibited mercury concentrations of 1.9 mg/kg and 0.20 mg/kg, respectively. Note that, as this structure was not designed to accept waste fluids, samples collected from this structure have been compared to the Industrial Use SCOs.

#### Utility Trench Pit

One sample (CMSB-10 (0 to 2 feet]) was collected from the utility trench located in the center of the substation building for mercury analysis. Soil sample CMSB-10 (0 to 2 feet), at a mercury concentration of 3.0 mg/kg, did not exhibit a mercury concentration in exceedance of the Industrial SCO for mercury of 5.7 mg/kg. Note that, as this structure was not designed to accept waste fluids, samples collected from this structure have been compared to the Industrial Use SCOs.

#### 2.0 INVESTIGATION METHODS

#### 2.1 Introduction

This section provides a description of the field activities conducted at the Cedar Manor Substation site as part of the Delineation Phase II Site Assessment. The initial scope of work was completed in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Work Plan, dated June 2005, in November 2005. Based on the results of this sampling, D&B provided the LIRR and the NYSDEC with a July 2006 Preliminary Evaluation as to the nature and extent of contamination along with recommendations for additional sampling and analysis. Based on the findings of the 2005 investigation, additional soil samples were collected in May 2008, March 2009 and May 2009, in areas exhibiting the greatest mercury concentrations. Note that the additionally proposed sampling locations were necessary to sufficiently define the identified elevated mercury concentrations in site soil and to develop an appropriate remedial plan for the substation. All additional sampling at the Cedar Manor Substation was completed by D&B in May of 2009.

Sample locations associated with the Delineation Phase II Site Assessment are depicted on **Figure 2-1**. **Figure 2-2** depicts the locations of the 2008 and 2009 additional delineation sample locations completed based on the results of the 2005 investigation. In addition, a sampling and analysis summary for the above listed investigation phases is provided on **Table 2-1**. Laboratory data generated as part of the Delineation Phase II Site Assessment is included in Appendix B.

#### 2.2 Surface Soil Sampling

A total of 42 surface soil samples were collected at the Cedar Manor Substation as part of the Delineation Phase II Site Assessment. Surface soil samples were collected from a depth of 0 to 2 inches below ground surface. All samples were collected utilizing a dedicated polyethylene scoop and placed into laboratory-supplied glass bottles. Filled sample bottles were then placed into an ice-filled cooler for subsequent shipment to the analytical laboratory.

Dvirka and

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Bartilucci CONSULTING ENGINEERS





SAMPLE LOCATION MAP CEDAR MANOR SUBSTATION (V00388-2)

FIGURE 2-1





LONG ISLAND RAIL ROAD
DELINEATION PHASE II SITE ASSESSMENT

### TABLE 2-1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE ASSESSMENT - SEVENTEEN SUBSTATIONS CEDAR MANOR (V00388-2) SUMMARY OF COMPLETED WORK

|                             |                                          |                           |                  | SOIL              | PROBES/BORINGS                                                                                                                      | GROUNDWATER I    | PROBES                                  | Recommended Analyses |           |                |               |      |   |       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|------------------------------------------|---------------------------|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|----------------------|-----------|----------------|---------------|------|---|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                    | Sample<br>Designation                    | SURFACE SOIL<br>SAMPLES** | No. of<br>Probes | No. of<br>Samples | Soil Samplinş<br>Interval                                                                                                           | No. of<br>Probes | Approximate<br>Total Depth<br>of Probes | Mercury              | Arsenic   | RCRA<br>Metals | TAL<br>Metals | PCBs |   | SVOCs | USEPA UIC<br>Constituents * | Community                                                                                                                                                                                                                                                                                                                                                                                                              |
| Location                    | CMSB-11                                  | SAMPLES                   | 1                | Samples<br>1      | 2-4' bgs                                                                                                                            | -                | of Probes                               | 1                    | Arsenic - | vietais        | - vietais     |      | - | -     | - Constituents              | Comments  No deviations from original scope.                                                                                                                                                                                                                                                                                                                                                                           |
| South Side of<br>Substation | CMSS-05 & 06<br>CMSB-12 & 13             | 2                         | 2                | 4                 | 2-8' bgs Cont. at CMSB-12<br>2-4' bgs at CMSB-13                                                                                    | -                | -                                       | 6                    | -         | -              | -             | -    | - | -     | -                           | No deviations from original scope.                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | CMSB-14                                  |                           | 1                | 1                 | 2-4' bgs                                                                                                                            | -                | -                                       | 1                    | -         | -              | -             |      | - | -     |                             | No deviations from original scope.                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | CMSS-07 & 08<br>CMSB-15 & 16             | 2                         | 2                | 2                 | 2-4' bgs                                                                                                                            | -                | -                                       | 4                    | -         | -              | -             | -    | - | -     | -                           | CMSS-08 and CMSB-16 were moved approximately 2' south due to refusal.                                                                                                                                                                                                                                                                                                                                                  |
|                             | CMSS-24 through 28<br>CMSB-33 through 41 | 5                         | 9                | 21                | 1-2' bgs at CMSB-40, 1-2' and<br>2-4' bgs at CMSB-33 through 36 and<br>1-2' and 2-6' bgs Cont. at CMSB-37<br>through 39 and CMSB-41 | -                | -                                       | 26                   | -         | -              | -             | -    | - | -     | -                           | -                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | CMSS-29 through 32<br>CMSB-43 through 49 | 4                         | 7                | 26                | 1-2' and 2-6' bgs Cont. at CMSB-45<br>through 47 and 1-2' and 2-8' bgs Cont<br>at CMSB-43 & 44 and CMSB-48 &<br>49                  | -                | -                                       | 30                   | -         | -              | -             | -    | - | -     | -                           | -                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | CMSS- 33 & 34<br>CMSB-51 & 52            | 2                         | 2                | 2                 | 1-2' bgs                                                                                                                            | -                | -                                       | 4                    | -         | -              | -             |      | - | -     | -                           | -                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | CMSS-35 through 46<br>CMSB-58 through 69 | 12                        | 12               | 33                | 1-2' and 2-6' bgs Cont. at CMSB-58<br>through 60 and CMSB-62 through 69<br>4-8' bgs Cont. at CMSB-61 and 6-8'<br>bgs at CMSB-59A    |                  | -                                       | 44                   | 5         | -              | -             | 1    | - | -     |                             | CMSS-35 through CMSS-37 and CMSS-39 through 40 were analyzed for arsenic.                                                                                                                                                                                                                                                                                                                                              |
|                             | CMSS-47 & 48<br>CMSB-70 through 73       | 2                         | 4                | 7                 | 1-2' bgs at CMSB-70, 1-2' and<br>2-3' bgs at CMSB-71 and 1-2' and 2-<br>4' bgs at CMSB-72 & 73                                      | -                | -                                       | 9                    | -         | -              | -             | 1    | - | -     | -                           | -                                                                                                                                                                                                                                                                                                                                                                                                                      |
| North Side of<br>Substation | CMSS-09 through 12<br>CMSB-17 through 21 | 4                         | 5                | 5                 | 2-4' bgs                                                                                                                            | -                | -                                       | 9                    | -         | -              | -             |      | - | -     | -                           | CMSS-09 and CMSB-17 were moved approximately 4' east due to utility obstructions. CMSS-10 and CMSB-18 were moved approximately 4' east due to utility obstructions.                                                                                                                                                                                                                                                    |
| East Side of<br>Substation  | CMSB 56 & 57                             | -                         | 2                | 6                 | 1-2' and 2-6' bgs Cont.                                                                                                             | -                | -                                       | 6                    | -         | -              | -             | -    | - | -     | -                           | -                                                                                                                                                                                                                                                                                                                                                                                                                      |
| West Side of<br>Substation  | CMSB-53 through 55                       | -                         | 3                | 9                 | 1-2' and 2-6' bgs Cont.                                                                                                             | -                | -                                       | 9                    | -         | -              | -             | -    | - | -     | -                           | -                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stormwater Dry<br>Wells     | CMSB-02A, 03A and 04A                    |                           | 3                | 11                | 10'-11' bgs. Cont. at CMSB-02A<br>and 10'-20' bgs. at CMSB-03A and<br>04A                                                           | -                | -                                       | 1                    | -         | -              | -             | ,    | - | ,     | 10                          | Soil boring CMSB-02A encountered refusal, due to an apparent solid bottom, at 1' below the dry well bottom in the storm water dry well. This drywell was sampled at a depth of 10' to 11', for mercury only, due to the apparent solid bottom. CMSB-03A was added and sampled for UIC constituents, in the dry well located approximately 15' southwest of the substation.  CMSB-04A was sampled for UIC constituents. |
| Roof Drains                 | CMSS-23<br>CMSB-32                       | 1                         | 1                | 1                 | 2-4' bgs                                                                                                                            | -                | -                                       | 2                    | -         | -              | -             | -    | - | -     |                             | One roof drain was observed and sampled.                                                                                                                                                                                                                                                                                                                                                                               |
| Groundwater                 | CMGP-01 through 03                       | -                         | -                | -                 | -                                                                                                                                   | 3                | 14'                                     | -                    | -         | -              | 6***          | -    | 3 | -     | -                           | CMGP-01 was moved north approximately 20', due to utility obstructions. CMGP-03 was moved northwest approximately 6', due to utility obstructions.                                                                                                                                                                                                                                                                     |
| Potential Releases          | CMSS-13 through 18<br>CMSB-22 through 27 | 6                         | 6                | 6                 | 2-4' bgs                                                                                                                            | -                | -                                       | 12                   | -         | -              | -             | 1    | - | -     | -                           | CMSS-14 and CMSB-23 were moved approximately 4' south due to utility obstructions. CMSS-15 and CMSB-24 were moved approximately 4' east, due to utility obstructions. CMSS-16 and CMSB-25 were moved approximately 5' south due to utility obstructions.                                                                                                                                                               |
| Negative Cable<br>Manhole   | CMSS-19<br>CMSB-28                       | 1                         | 1                | 1                 | 2-4' bgs                                                                                                                            | -                | -                                       | 2                    | -         | -              | -             | -    | - | -     | -                           | No deviations from original scope.                                                                                                                                                                                                                                                                                                                                                                                     |
| Transformers                | CMSS-20 through 22<br>CMSB-29 through 31 | 3                         | 3                | 6                 | 0-4' bgs Cont.                                                                                                                      |                  | -                                       | -                    | -         | 9              | -             | 9    | - | 9     | -                           | No deviations from original scope.                                                                                                                                                                                                                                                                                                                                                                                     |
| NOTES:                      |                                          | 44                        | 64               | 142               | -                                                                                                                                   | 3                | -                                       | 166                  |           | 9              | 6             | 9    | 3 | 9     | 10                          | Totals                                                                                                                                                                                                                                                                                                                                                                                                                 |

NOTES:

bgs: below ground surface.

Cont.: Continuous 2-foot soil sampling

-: Not Applicable

\*\*USEPA UIC Constituents include VOCs by Method 8260b, RCRA Metals including Mercury by Methods 6010b/7471a, SVOCs by Method 8270c, PCBs by Method 8082, and TPHs by Method 8015b.

\*\*\*Surface soil samples to be collected at 0-2" interval.

\*\*\*Filtered and Unfiltered Samples

All samples were screened utilizing a mercury vapor analyzer (MVA) for the presence of mercury vapor and a photoionization detector (PID) for the presence of volatile organic compounds (VOCs). In areas of the substation property where the ground surface was covered with railroad ballast, crushed stone or asphalt, this material was removed prior to collecting the surface soil sample, and returned when sampling was completed.

#### 2.3 Subsurface Soil Sampling

A total of 130 subsurface soil samples were collected at the Cedar Manor Substation as part of the Delineation Phase II Site Assessment. All subsurface soil borings were hand-cleared to a depth of five feet below ground surface in order to avoid impacting any underground utilities. In general, subsurface soil samples collected from less than five feet below ground surface were collected using a decontaminated hand auger and/or post hole digger, and subsurface soil borings collected from more than five feet below ground surface were collected using direct push (Geoprobe®) sampling techniques with a decontaminated probe sampler. The samples were screened for mercury vapor, utilizing a MVA, and for VOCs, utilizing a PID; inspected for staining, discoloration; checked for odors; and logged by a geologist in a dedicated field logbook. Boring logs are provided in Appendix C.

Before commencement of soil probing, all "down-hole" probing equipment (i.e., macro-core samplers, probe rods, etc.) was decontaminated using a steam cleaner/pressure washer and/or Alconox and water prior to use. Soil probe samplers were also decontaminated between each use by thoroughly washing with Alconox and water, using a brush to remove particulate matter or surface film, followed by a thorough rinsing with tap water.

In addition to monitoring VOC and mercury vapor concentrations in the collected soil samples, an MVA and a PID were used to monitor mercury vapor and VOCs, respectively, in the breathing zone and at the probe holes and boreholes. The PID was calibrated on at least a daily basis, using isobutylene gas at a concentration of 100 parts per million (ppm) in air. The MVA was factory-calibrated as per the manufacture's specifications.

Upon completion of the soil probes, recovered sample material which was not retained for laboratory analysis was returned to the borehole from which it came. The remainder of the borehole was filled with clean sand, bentonite pellets and/or concrete, where appropriate. All probe holes were restored to grade with the same material that was originally in place.

#### 2.4 Groundwater Probe Installations and Sampling

Three groundwater probes, consisting of one probe located upgradient of the substation building, and two probes located downgradient of the substation building were advanced and groundwater samples were collected from these locations. The groundwater samples were collected by driving decontaminated probe rods to the designated sample depth and inserting dedicated polyethylene tubing and a decontaminated stainless steel check valve into the rod assembly. The check valve and tubing were then manually oscillated to purge approximately two to three gallons of groundwater prior to sample collection. Each groundwater sample, upon retrieval, was analyzed in the field for pH, conductivity, dissolved oxygen, turbidity, and temperature. Groundwater samples were then collected from the tubing/check valve assembly into laboratory-supplied glass bottles. Any evidence of odors, sheens or the presence of free product was noted. All observations and results were logged in the project field books.

Upon completion, each probe hole was backfilled with clean sand and/or bentonite pellets. All probe holes were restored to grade with the same material that was originally in place.

#### 2.5 Underground Injection Control (UIC) and Below Grade Structures

Four below grade structures were investigated for Underground Injection Control (UIC) applicability as part of the Delineation Phase II Site Assessment. The structures investigated included three dry wells, with one located approximately 27 feet southwest of the substation building, one located approximately 14 feet off the southwest corner of the substation building, and one located approximately 6 feet south of the substation building. In addition, the negative

cable manhole located approximately 5 feet off the northeast corner of the substation building was investigated. The investigations were conducted as follows:

#### **Dry Wells**

As detailed in Section 1.3, mercury was detected in exceedance of its TAGM SCO of 0.10 mg/kg in the storm water dry well located approximately 27 feet southwest of the substation building during the 1999 Initial Investigation. Due to this exceedance, further investigation of this structure was conducted as part of the Delineation Phase II Site Assessment. Soil boring (CMSB-02A) was advanced in the storm water dry well and one sample was collected from 10 to 11 feet (where refusal was encountered) below ground surface for mercury analysis, and compared to the TAGM SCO. Note that, based on visual inspection, this structure is not connected to the substation building by any piping.

As detailed in Section 1.3, two subsurface soil samples were collected from the dry well located approximately 14 feet off the southwest corner of the substation building during the 1999 Initial Investigation. Note that both collected soil samples exhibited mercury concentrations below the TAGM SCO for mercury of 0.10 mg/kg. However, in order to ensure UIC compliance, soil boring (CMSB-03A) was advanced in the dry well as part of the Delineation Phase II Site Assessment and five samples were collected in continuous 2-foot intervals from 10 feet to a maximum of 20 feet below ground surface for mercury, RCRA metals, VOCs, SVOCs, PCBs and TPH analysis and compared to the TAGM SCOs.

As detailed in Section 1.3, mercury was detected in exceedance of its TAGM SCO of 0.10 mg/kg in the dry well located approximately 6 feet south of the substation building during the 1999 Initial Investigation. Due to this exceedance, further investigation of the dry well was conducted as part of the Delineation Phase II Site Assessment. Soil boring (CMSB-04A) was advanced in the dry well and five samples were collected in continuous 2-foot intervals from 10 feet to a maximum of 20 feet below ground surface for mercury, RCRA metals, VOCs, SVOCs, PCBs and TPH analysis and compared to the TAGM SCOs.

#### Negative Cable Manhole

The negative cable manhole located approximately 5 feet off the northeast corner of the substation building was visually inspected for the presence of a solid bottom during the Delineation Phase II Site Assessment. One manhole surface soil sample (CMSS-19) and one subsurface soil sample (CMSB-28 (2 to 4 feet) were collected from a storm water drain identified in this structure for UIC parameter analysis. However, note that as this structure was not designed to accept waste fluids, this structure is not a UIC structure. As such, all samples collected from the negative cable manhole have been compared to the Industrial SCOs.

#### 2.6 Air Sampling

As discussed above, a Jerome MVA was utilized to screen all surface and subsurface soil samples for the presence of mercury vapor, and a PID was utilized to screen all surface and subsurface soil samples for the presence of VOCs. The mercury vapor and VOC results for subsurface soil are summarized on the boring logs provided in Appendix C.

#### 3.0 FINDINGS

The findings from the Initial Site Assessment conducted in 1999, were the basis for the sample locations chosen for the "Delineation Phase II Site Assessment," completed in October 2005, and further delineation activities completed in May 2008, March 2009 and May 2009.

Surface and subsurface soil sample results are compared to the New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Subpart 375 Soil Cleanup Objectives (SCOs) for Industrial (fenced areas) and Residential (non-fenced areas) sites. Soil samples collected from Underground Injection Control (UIC) features are compared to the Technical and Administrative Guidance Memorandum (TAGM) 4046 SCOs. Groundwater sample results are compared to the Class GA Groundwater Standards/Guidance Values listed in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1. Analytical results from the Delineation Phase II Site Assessment are summarized in Appendix B. Boring logs generated from the advancement of subsurface soil borings are provided in Appendix C. A concentration map, provided as **Figure 3-1**, depicts the site-wide mercury concentration data generated from the Initial Site Assessment and the 2005 Delineation Phase II Site Assessment at the Cedar Manor Substation. **Figure 3-2** depicts mercury concentration data generated from the 2008 and 2009 additional delineation samples collected during the Delineation Phase II Site Assessment. The additional delineation soil samples were collected in areas where the greatest mercury concentrations were detected, primarily to the south of the substation building.

Below is a discussion of the evaluation of data generated as part of the Delineation Phase II Site Assessment at the Cedar Manor Substation.

#### 3.1 Surface Soil

#### <u>Metals</u>

A total of 42 surface soil samples were collected for mercury analysis as part of the Delineation Phase II Site Assessment: nine collected from the non-fenced substation area,

Dvirka and

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Bartilucci consulting engineers





MERCURY CONCENTRATION MAP
CEDAR MANOR SUBSTATION (V00388-2)

FIGURE 3-1





LONG ISLAND RAIL ROAD
DELINEATION PHASE II SITE ASSESSMENT

and 33 collected from the fenced substation area. All mercury concentration data associated with the surface soil samples collected from the non-fenced areas are summarized on Table 1 (Residential Use SCO) and soil samples collected from the fenced areas are summarized on Table 2 (Industrial Use SCO), provided in Appendix B. Due to the need to compare the sample data to these two separate SCOs, the below discussion has accordingly been divided into two sections, as follows:

#### Non-Fenced Area

Of the 9 surface soil samples collected in the non-fenced areas of the Cedar Manor Substation, five samples exhibited a detectable concentration of mercury in exceedance of the Residential SCO of 0.81 mg/kg, ranging in concentration from 1.6 mg/kg to a maximum of 10.0 mg/kg. The maximum mercury concentration was detected in surface soil sample CMSS-32, collected adjacent to the south wall of the substation building.

#### Fenced Area

Of the 33 surface soil samples collected in the fenced area of the Cedar Manor Substation, 12 samples exhibited detectable concentrations of mercury in exceedance of the Industrial SCO of 5.7 mg/kg, ranging in concentration from 6.7 mg/kg to a maximum concentration of 97.3 mg/kg. The maximum mercury concentration was detected in surface soil sample CMSS-05, collected adjacent to the southeast corner of the substation building.

In addition to mercury, three surface soil samples were selected for full Resource Conservation and Recovery Act (RCRA) metals. All RCRA metals data associated with the surface soil samples are summarized in Table 3, provided in Appendix B. Four RCRA metals, in addition to mercury, were detected in both of the collected surface soil samples including: arsenic, barium, chromium and lead. However, no RCRA metal was detected at concentrations exceeding the Industrial SCOs in any surface soil sample.

#### Semivolatile Organic Compounds

Three surface soil samples were analyzed for semivolatile organic compounds (SVOCs). All SVOC data associated with the surface soil samples are summarized in Table 4, provided in Appendix B. SVOCs were not detected at concentrations exceeding their respective Industrial SCOs in any of the three collected surface soil samples.

#### Polychlorinated Biphenyls

Three surface soil samples were selected for polychlorinated biphenyls (PCBs) analysis. All PCB concentration data associated with the surface soil samples are summarized in Table 5, provided in Appendix B. PCBs were not found at detectable concentrations in any of the three collected surface soil samples.

#### 3.2 Subsurface Soil

#### Metals

A total of 130 subsurface soil samples were collected for mercury analysis as part of the Delineation Phase II Site Assessment: 20 collected from the non-fenced substation areas, and 110 collected from the fenced substation areas. All mercury concentration data associated with the subsurface soil samples collected from outside the fenced areas are summarized on Table 6 (Residential Use SCO) and soil samples collected from within the fenced areas are summarized on Table 7 (Industrial Use SCO), provided in Appendix B. Due to the need to compare the sample data to these two separate SCOs, the below discussion has accordingly been divided into two sections, as follows:

#### Non-Fenced Area

Ten of the 20 subsurface soil samples collected in the non-fenced areas of the Cedar Manor Substation exhibited concentrations of mercury in exceedance of the Residential SCO of 0.81 mg/kg, ranging in concentration from 0.88 mg/kg to a maximum of 969 mg/kg. The maximum mercury concentration was detected in surface soil sample CMSB-62 (2 to 4 feet), collected approximately 2 feet off the southwest corner of the substation building.

#### Fenced Area

Of the 110 subsurface soil samples collected in the fenced areas of the Cedar Manor Substation, 32 samples exhibited a concentration of mercury in exceedance of the Industrial SCO of 5.7 mg/kg, ranging in concentration from 5.9 mg/kg to a maximum of 55.6 mg/kg. The maximum mercury concentration was detected at CMSB-37 (2 to 4 feet), collected approximately 7 feet south of the substation building.

In addition to mercury, 6 subsurface soil samples were analyzed for full RCRA metals. All RCRA metals data associated with the subsurface soil samples are summarized on Table 8, provided in Appendix B. Four RCRA metals, in addition to mercury, were detected in all of the collected subsurface soil samples, including: arsenic, barium, chromium and lead. However, no RCRA metal was detected at concentrations exceeding the Industrial SCOs in any subsurface soil sample.

#### Semivolatile Organic Compounds

Six subsurface soil samples were analyzed for SVOCs. All SVOC data associated with the subsurface soil samples are summarized in Table 9, included in Appendix B. One or more of several SVOCs were detected in all four collected subsurface soil samples, including acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k) fluoranthene, biphenyl, bis(2-ethylhexyl)phthalate, chrysene, dibenzofuran, di-n-butyl phthalate, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene. However, SVOCs were not detected at concentrations exceeding their respective Industrial SCOs in any of the collected subsurface soil samples.

#### Polychlorinated Biphenyls

Six subsurface soil samples were analyzed for PCBs. All PCB concentration data associated with the subsurface soil samples are summarized in Table 10, included in Appendix B. PCBs were not detected at concentrations exceeding their respective Industrial SCO in any subsurface soil sample.

#### 3.3 Groundwater

A total of three groundwater samples were collected for chemical analysis from the site using a Geoprobe groundwater point sampler. All samples were analyzed for TAL metals (including mercury) and VOCs. All TAL metals concentration data associated with the groundwater samples are summarized in Table 11, included in Appendix B. Due to the highly turbid nature of the groundwater samples, all samples collected for metals analysis included filtered and unfiltered samples.

#### Metals

Mercury, at a concentration of 0.77 ug/l, was detected in unfiltered groundwater sample CMGP-01 at a concentration slightly exceeding its Class GA Standard for mercury of 0.7 ug/l. Mercury was not detected in any of the remaining filtered or unfiltered groundwater samples. Several other metals including antimony, chromium, iron, lead, manganese, sodium, and thallium were detected above their respective Class GA Standards, in one or more unfiltered groundwater sample. However, these same metals were generally either not detected, or detected at lower concentrations in the filtered samples. Due to the high turbidity of the groundwater samples collected using Geoprobe equipment, the metals data associated with the unfiltered samples will be biased high. Therefore, the filtered samples will more closely represent true metal concentrations in groundwater.

In one or more of the filtered groundwater samples, antimony, iron, manganese, sodium and thallium exceeded their respective Class GA Standards. Although these contaminants were

detected at concentrations above their respective Class GA Standards in one or more of the filtered groundwater samples, these are not contaminants typically associated with substation operations.

#### **Volatile Organics**

All VOC concentration data associated with the groundwater samples are summarized in Table 12, included in Appendix B. VOCs were not detected at concentrations above the Class GA Standards in any groundwater sample.

#### 3.4 Underground Injection Control (UIC) and Below Grade Structures

As described in Section 2.5, four below grade structures were investigated for Underground Injection Control (UIC) applicability as part of the Delineation Phase II Site Assessment, including a dry well located approximately 27 feet southwest of the substation building, a dry well located approximately 14 feet off the southwest corner of the substation building, a dry well located 6 feet south of the substation building, and a negative cable manhole located approximately 5 feet off the northeast corner of the substation building. All analytical data associated with these structures are summarized on Tables 13 through 19, provided in Appendix B. The investigations were conducted as follows:

#### Dry Wells

One soil boring (CMSB-02A) was advanced in the storm water dry well located approximately 27 feet southwest of the substation building, where one soil sample was collected for mercury analysis from 10 to 11 feet below ground surface and compared to the TAGM SCO. All analytical data associated with this structure is summarized on Table 13, provided in Appendix B. Note that refusal was encountered at depth of 11 feet below ground surface. The sample collected from the storm water dry well exhibited a mercury concentration of 2.4 mg/kg, in exceedance of the TAGM SCO for mercury of 0.10 mg/kg. Note that, based on visual inspection, this dry well is not connected to the substation building by any piping.

One soil boring (CMSB-03A) was advanced in the dry well located approximately 14 feet off the southwest corner of the substation building. Five soil samples were collected in continuous 2-foot intervals from 10 feet to a maximum of 20 feet below ground surface for UIC parameter analysis and compared to the TAGM SCOs. All concentration data associated with this structure is summarized on Tables 13 through 18, provided in Appendix B. One of the five collected samples, CMSB-03A (16 to 18 feet), exhibited a mercury concentration of 0.174 mg/kg, in slight exceedance of the TAGM SCO for mercury of 0.10 mg/kg. No other analytes were detected at concentrations exceeding their respective SCOs in any collected soil sample.

One soil boring (CMSB-04A) was advanced inside the dry well located approximately 6 feet south of the substation building. Five soil samples were collected in continuous 2-foot intervals from 10 feet to a maximum of 20 feet below ground surface for UIC parameter analysis and compared to the TAGM SCOs. All concentration data associated with this structure is summarized on Tables 13 through 18, provided in Appendix B. Mercury was detected in exceedance of the TAGM SCO of 0.1 mg/kg in four of the five samples collected from the dry well structure, ranging in concentration from 0.183 mg/kg to a maximum of 0.732 mg/kg. The maximum mercury concentration was detected in CMSB-04A (10 to 12 feet). No other analytes were detected at concentrations exceeding their respective TAGM SCOs in any collected soil sample.

#### Negative Cable Manhole

One soil boring was advanced inside the negative cable manhole located approximately 5 feet off the northwest corner of the substation building. As this structure was not designed to accept waste fluids, this structure is not a UIC structure. One surface soil sample (CMSS-19) and one subsurface soil sample (CMSB-28: collected from a depth of 2 to 4 feet below the manhole bottom) were collected for mercury analysis and compared to the Industrial Use SCO for mercury of 5.7 mg/kg. All mercury concentration data associated with the negative cable manhole samples is summarized on Table 19, provided in Appendix B. Mercury was not

detected at concentrations exceeding its Industrial SCO of 5.7 mg/kg in either of the collected surface or subsurface soil samples.

#### 3.5 Waste Characterization

A total of two soil samples were collected adjacent to the swing-out doors to the south of the substation building for waste characterization analysis as part of the May 2008 sampling event, in order to "pre-characterize" site soil surrounding the substation building. Sample locations were selected in the field and are depicted on Figure 2-2. All waste characterization samples were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals (including mercury), TCLP SVOCs, TCLP VOCs and RCRA waste characteristics (ignitability, reactivity, etc.). Analytical data have been compared to RCRA hazardous waste criteria. All waste characterization data are presented in Tables 20 and 21, provided in Appendix B. Several metals were detected including barium, lead and mercury; however, no analyte was detected at concentrations exceeding the RCRA waste criteria in either of the two collected waste characterization samples.

#### 3.6 Data Usability Summary Report (DUSR)

Surface, subsurface and waste characterization soil samples were collected as part of the Phase II Delineation Site Assessment conducted at the LIRR Cedar Manor Substation, and completed between October 2005, May 2008 and March 2009. The soil samples were primarily analyzed for mercury. Waste characterization samples were analyzed for TCLP metals (including mercury), TCLP SVOCs, TCLP VOCs, RCRA waste characteristics (ignitability, reactivity, etc.), RCRA metals and TCLP pesticides/herbicides.

All soil samples were analyzed by Chemtech, Mountainside, New Jersey. All soil samples were analyzed in accordance with the USEPA SW-846 methods as stipulated in the work plan. The data packages submitted by Chemtech have been reviewed by Ms. Donna Brown, D&B's Quality Assurance/Quality Control Officer. A copy of D&B's data validator resume is provided in Appendix D.

The data packages have been reviewed for completeness and compliance with NYSDEC QA/QC requirements, as well as the requirements for development of Data Usability Summary Reports as listed in Appendix 2B of the Draft DER-10 Technical Guidance for Site Investigations and Remediation dated December 2002. Each data package was reviewed for the following:

- Was a NYSDEC Category B deliverable data package submitted?
- Have all holding times been met?
- Does all QA/C data fall within QA/QC limits and specifications?
- Were appropriate methods followed?
- Does the raw data conform to that reported on the data summary sheets?
- Have the correct data qualifiers been utilized?

NYSDEC ASP Category B deliverable packages have been submitted for all sample delivery groups (SDG) T5228, T5364, T5365, T5376, Z2686, Z2687, Z2688, Z2689, Z2690, A1857, A1864, A1867, A2144 and A2869. The findings of the data review process are summarized below.

All samples were analyzed within the method-specified holding times. The calibrations, surrogate recoveries, internal standard areas, laboratory duplicate and spike recoveries were within QC limits, except for the following:

- In SDG T5228: The serial dilution check sample %D was above QC limits for mercury and were qualified as estimated (J/JU) in all samples.
- In SDG T5364: The serial dilution check sample %D was above QC limits and %R was below QC limits of 80% for mercury and were qualified as estimated (J) in CMSB-21(2-4) and CMSB-20(2-4).
- In SDG T5365: Dilutions were reported for CMSB-30(2-4) for SVOCs. 1,1-Biphenyl was qualified as non-detect (U) in all samples. SVOCs were qualified as estimated (J/UJ) due to laboratory control samples %R, internal areas, MS/MSD

%R and RPDs being outside QC limits. Aroclor 1260 was qualified as estimated (J) in CMSB-30(0-2) due to MS/MSD %R and RPDs being outside QC limits. Numerous metals were qualified as estimated (J/UJ) due to matrix spike being below QC limits or %Ds were above QC limits in the serial dilution.

- In SDG T5376: 2-Nitroaniline was qualified as estimated (UJ) due to laboratory control sample %R below QC limits. SVOCs were qualified as estimated (J/UJ) due to surrogates below QC limits in CMSB-03A(14-16). TPH was qualified as estimated (J) due to surrogates below QC limits in CMSB-03A(16-18). Numerous metals were qualified as estimated (J/UJ) due to matrix spike being above QC limits or %Ds were above QC limits in the serial dilution.
- In SDG Z2686: 1,1-Dichloroethene, vinyl chloride, and several SVOCs in CMWC-01(3) were qualified as estimated (UJ) due to %R below QC limits in the laboratory control sample or %D being above QC limits in the continuing calibration.
- In SDG Z2687: Carbon tetrachloride and several SVOCs in CMWC-01(2-4) were qualified as estimated (UJ) due to %R below QC limits in the laboratory control sample or %D being above QC limits in the continuing calibration. Mercury was qualified as non-detect (U) in CMSB-46(6-8), CMSB-38(2-4) and CMSB-35(2-4). Mercury was qualified as estimated (J/UJ) due to the %Ds being above QC limits in the serial dilution.
- In SDG Z2688: Mercury was qualified as estimated (J) due to matrix spike being above QC limits.
- In SDG Z2689: Mercury was qualified as non-detect (U) in CMSB-48(6-8), CMSB-53(1-2), CMSB-53(4-6), CMSB-54(2-4), CMSB-54(4-6) and CMSB-51(1-2). Mercury was qualified as estimated (J/UJ) due to the %Ds being above QC limits in the serial dilution.
- In SDG A1857: Mercury was qualified as estimated (J/UJ) due %R above QC limits in the laboratory control sample and %Ds were above QC limits in the serial dilution.

No other problems were found with the sample results. All results have been deemed valid and usable, as qualified above, for environmental assessment purposes.

#### 4.0 FISH AND WILDLIFE RESOURCES IMPACT ANALYSIS

#### 4.1 Ecology

This section provides an overall habitat-based assessment of the LIRR Cedar Manor Substation. This assessment conforms to the guidelines contained in Step IIA of the NYSDEC Technical and Administrative Guidance Memorandum entitled, "A Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (October, 1994)." The purpose of this section is to provide a description of the existing ecology of the site, including site specific descriptions of major habitat types with associated wildlife populations, the identification of other significant on-site wildlife resources and provide an evaluation of potential impacts to these resources. The information contained in this section was obtained during the Delineation Phase II Site Assessment and supplemented with data from outside sources, including the NYSDEC, U.S. Fish and Wildlife Service, and New York State Historic Preservation Officer. The field survey for this assessment was conducted during February of 2006.

#### 4.1.1 Major Habitat Types

The Cedar Manor Substation is surrounded by roadways, the railway trestle, and residential/commercial facilities and is located at the northern end of 158th Street. An elevated railroad embankment is immediately to the east, a drop down to 110th Avenue is to the north, and residential development is to the south and west. The transformer yard and substation property surrounding the substation building is largely covered in bluestone and loamy sand with common grasses and vegetation on the south and east sides of the building. Storm water collection drains are on the south side of the building at the end of 158th Street.

A list of vegetative species observed on the substation sites is provided in **Table 4-1**.

#### Table 4-1

### CEDAR MANOR VEGETATIVE SPECIES OBSERVED AT THE SUBSTATION SITE

#### <u>Common Name</u> <u>Scientific Name</u>

Herbaceous Plants

Common ragweed Ambrosia artemisiifolia Common lambsquarters Chenopodium album Chrysanthemum sp. Daisy Chickory Cichorium intybus Crown vetch Coronilla varia Crabgrass Digitaria sp. Linaria vulgaris Butter and eggs Yellow woodsorrel Oxalis stricta

Fall panicum Panicum dichotomiflorum Common reed grass Phragmites communis Ground cherry Physalis heterophylla Pokeweed Phytolacca americana

Broadleaf plantain
Smartweed, Knotweed
Polygonum sp.
Nightshade
Common goldenrod
Early flowering goldenrod
Solidago iuncea
Solidago nemoralis
Stiff goldenrod
Solidago rigida
Common mullein
Verbascum thapsus

Vetch Vicia sp.

Shrubs and Vines

Japanese honeysuckle Lonicera japonica

Virginia creeper Parthenocissus quinquefolia

Poison ivy Rhus radicans
Multiflora rose Rosa multiflora
Catbrier Smilax rotundifolia

Trees

Red maple
Flowering dogwood
White pine
Black cherry
Prunus serotina
White oak
Black oak
Plack oak
Robinia pseudoacacia

#### 4.1.2 Wetlands

There are no wetlands located on f the Cedar Manor substation property.

#### 4.1.3 Mammals

The Cedar Manor Substation is somewhat isolated from large tracks of undeveloped land due to its location within residential and commercial areas. This isolation limits the species of mammals that would inhabit the site to those that are tolerant of human presence and with limited home ranges. It is likely that only small mammals inhabit the areas because of the numerous manmade barriers which would act as deterrents and prohibit larger mammal movement.

The only mammal observed during the site walkover was the gray squirrel (<u>Sciurus carolinensis</u>). In addition, runways and scats were observed that would indicate the presence of Norway rats (<u>Rattus norvegicus</u>), white-footed mice (<u>Peromyscus leucopus</u>), house mice (<u>Mus musculus</u>), cottontail rabbits (<u>Sylvilagus floridanus</u>) and raccoons (<u>Procyon lotor</u>). Probable mammal inhabitants are listed in **Table 4-2**.

#### 4.1.4 Birds

Birds were present and actively feeding in the railway right-of-way and a number of small trees and underbrush adjacent to the substation. Several ground foraging birds were observed on and near the substation grounds including finches (<u>Carpodacus</u> sp.), mockingbirds (<u>Mimus polyglottus</u>), starlings (<u>Sturnus vulgaris</u>) and American robins (<u>Turdus migratorius</u>).

The substation and immediately adjacent grounds and habitats provided no concentrated vegetation stands that would afford feeding opportunities to wintering waterfowl. A subset of the New York State Bird Atlas listing for Suffolk County, New York is presented in **Table 4-3**, providing species observed or expected to utilize the substation and surrounding area.

#### **Table 4-2**

### MAMMALS LIKELY TO INHABIT THE CEDAR MANOR SUBSTATION SITE

| Common Name Scientific Name |
|-----------------------------|
|-----------------------------|

Eastern chipmunk
Gray Squirrel
Cottontail rabbit
White-footed mouse

Tamias striatus
Sciurus carolinensis
Sylvilagus floridanus
Peromyscus leucopus

House mouseMus musculusNorway ratRattus norvegicusRaccoonProcyon lotor

#### **Table 4-3**

### AVIFAUNA LIKELY TO INHABIT THE CEDAR MANOR SUBSTATION AREA

#### <u>Common Name</u> <u>Scientific Name</u>

Canada goose

Mallard

Black duck

Red-tailed hawk

Kestrel

Killdeer

Herring gull

Branta canadensis

Anas platyrhynchos

Anas rubripes

Buteo jamaicensis

Falco sparverius

Charadrius vociferus

Larus argentatus

Great black-backed gull

Mourning dove

Eastern kingbird

American crow

Blue jay

Black-capped chickadee

Tufted titmouse

Larus marinus

Zenaida macroura

Tyrannus tyrannus

Corvus brachyrhynchos

Cyanocitta cristata

Parus atricapillus

Parus bicolor

Tufted titmouse Parus bicolor
White-breasted nuthatch Sitta carolinensis
Red-breasted nuthatch Sitta canadensis
Brown creeper Certhia americana
House wren Troglodytes aedon

House wren Troglodytes aedon
Winter wren Troglodytes troglodytes
Carolina wren Thryothorus ludovicianus
Gray catbird Dumetella carolinensis

Northern mockingbird Mimus polyglottos Eastern bluebird Stalia sialis

American robin

Wood thrush
Cedar waxwing
Solitary vireo
Yellow warbler

Turdus migratorius
Hyocichla mustelina
Bonbycilla cedrorum
Vireo solitarius
Dendroica petechia

Ovenbird Seirus aurocapillus
Common yellowthroat Geothlypis trichas
Common grackle Quiscalus quiscula
European starling Sturnus vulgaris
House sparrow Passer domesticus
Northern cardinal

Northern cardinal Cardinalis Cardinalis Brown-headed cowbird Molothrus ater

House finch
Purple finch
Carpodacus mexicanus
Carpodacus purpureus
American goldfinch
Carduelis tristis

Chipping sparrow Spizella passerina
Field sparrow Spizella pusilla
Song sparrow Melospiza melodia

White-throated sparrow Zonotrichia albicollis

#### 4.1.5 Fish

There is no standing water at the Cedar Manor Substation site; therefore, this site is not suitable to support any fish species.

#### 4.1.6 Reptiles and Amphibians

Reptiles or amphibians were not observed at the Cedar Manor Substation site. The property contains small amounts of discarded construction and illegally dumped materials that would offer cover to snakes common to the area. Low vegetation likely provides habitat for common toad species. **Table 4-4** contains a list of reptiles and amphibians common to the area that could likely inhabit the site and/or surrounding areas.

#### 4.1.7 Rare Species and Critical Habitats

Based on a review of the New York Natural Heritage files maintained at the NYSDEC Wildlife Resources Center, there are no rare species or critical habitats known to occur on or adjacent to the Cedar Manor Substation site. In addition, except for occasional transient individuals, no federally listed or proposed endangered or threatened species exist within a 2-mile radius of the site according to the U.S. Department of the Interior, Fish and Wildlife Service. **Table 4-5** provides a list of all federally listed and proposed threatened or endangered species in New York State.

#### 4.1.8 <u>Biological Associations Found in the Project Vicinity</u>

The areas within a 2.5-mile radius surrounding the Cedar Manor Substation are centrally located within residentially/commercially developed areas with no environmentally sensitive habitats in the immediate area. A typical association of cover types with common dominant species is presented in **Table 4-6**. The biological associations observed are common for the evaluated areas.

#### Table 4-4

### REPTILES AND AMPHIBIANS LIKELY TO INHABIT THE CEDAR MANOR SUBSTATION SITE

| Common Name | Scientific Name |
|-------------|-----------------|
|             |                 |

Box turtle Terrapene carolina
Eastern garter snake Thamnophis sirtalis
Eastern ribbon snake Thamnophis sauritis
Fowler's toad Bufo woodhousei fowleri

#### Table 4-5

### FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

| Common Name           | Scientific Name            | <u>Status</u> | <u>Distribution</u>                     |
|-----------------------|----------------------------|---------------|-----------------------------------------|
| Fishes                |                            |               |                                         |
| Sturgeon, shortnose   | Asipenser brevirostrum     | E             | Hudson River and other                  |
|                       |                            |               | Atlantic coastal rivers                 |
| Reptiles              |                            | <b></b>       |                                         |
| Turtle, Northern bog  | Clemmys muhlenbergii       | T             | Albany, Columbia,<br>Dutchess, Genesee, |
|                       |                            |               | Orange, Oswego, Putnam,                 |
|                       |                            |               | Seneca, Ulster, Wayne, and              |
|                       |                            |               | Westchester Counties                    |
| Turtle, green         | Chelonia mydas             | T             | Oceanic summer visitor                  |
|                       |                            |               | coastal waters                          |
| Turtle, hawksbill     | Eretmochelys imbricata     | E             | Oceanic summer visitor                  |
| m 1 1 1 1 1           | 5                          | -             | coastal waters                          |
| Turtle, leatherback   | Dermochelys coriacea       | E             | Oceanic summer visitor                  |
| Turtle, loggerhead    | Caretta caretta            | T             | coastal waters Oceanic summer visitor   |
| Turne, loggernead     | Carcua carcua              | 1             | coastal waters                          |
| Turtle, Kemp's ridley | Lepidochelys kempii        | Е             | Oceanic summer visitor                  |
| , 1                   | 1 7 1                      |               | coastal waters                          |
| Birds                 |                            |               |                                         |
| Eagle, bald           | Haliaeetus leucocephalus   | T             | Entire state                            |
| Plover, piping        | Charadrius melodus         | E             | Great Lakes Watershed                   |
|                       |                            | T             | Remainder of coastal New York           |
| Curlew, Eskimo        | Numenius borealis          | Е             | Oceanic                                 |
| Tern, roseate         | Sterna dougallii dougallii | E             | Southeastern coastal                    |
| 10111, 1000000        | Sterna dougamir dougamir   | _             | portions of state                       |
| Mammals               |                            |               | r                                       |
| Bat, Indiana          | Myotis sodalis             | E             | Entire State                            |
| Whale, finback        | Balaenoptera physalus      | E             | Oceanic                                 |
| Whale, humpback       | Megaptera novaeangliae     | E             | Oceanic                                 |
| Whale, right          | Eubalaena glacialis        | E             | Oceanic                                 |
| Puma, Eastern         | Puma concolor couguar      | E             | Entire State                            |
| Wolf, Gray            | Canis lupus                | E             | Entire State                            |
| Lynx, Canada          | Lynx canadensis            | T             | Entire State                            |

#### Table 4-5 (continued)

### FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

| Common Name                         | Scientific Name                        | <u>Status</u> | <u>Distribution</u>                                |
|-------------------------------------|----------------------------------------|---------------|----------------------------------------------------|
| Mollusks                            |                                        |               |                                                    |
| Snail, Chittenango ovate amber      | Succinea chittenangoensis              | T             | Madison County                                     |
| Mussel, dwarf wedge                 | Alasmidonta heterodon                  | E             | Orange County - lower<br>Neversink River           |
| Insects                             |                                        |               |                                                    |
| Butterfly, Karner blue              | Lycaeides melissa samuelis             | E             | Albany, Saratoga, Warren, and Schenectady Counties |
| Tiger beetle,<br>Northeastern beach | Cicindela dorsalis dorsalis            | T             | Entire State                                       |
| Beetle, American<br>Burying         | Nichrophorus americanus                | E             | Entire State                                       |
| Plants                              |                                        |               |                                                    |
| Monkshood, northern wild            | Aconitum noveboracense                 | T             | Ulster, Sullivan, and Delaware Counties            |
| Pogonia, small whorled              | Isotria medeoloides                    | T             | Entire State                                       |
| Swamp pink                          | Helonias bullata                       | T             | Staten Island - presumed extirpated                |
| Gerardia, sandplain                 | Agalinis acuta                         | E             | Nassau and Suffolk<br>Counties                     |
| Fern, American hart's-tongue        | Asplenium scolopendrium var. Americana | T             | Onondaga and Madison<br>Counties                   |
| Orchid, eastern prairie fringed     | Platanthera leucophea                  | T             | Not relocated in New York                          |
| Bulrush, northeastern               | Scirpus ancistrochaetus                | E             | Not relocated in New York                          |
| Roseroot, Leedy's                   | Sedum integrifolium ssp.<br>Leedyi     | T             | West shore of Seneca Lake                          |
| Amaranth, seabeach                  | Amaranthus pumilus                     | T             | Atlantic coastal plain beaches                     |
| Chaffseed, American                 | Schwalbea americana                    | E             | Nassau and Suffolk<br>Counties                     |

Table 4-6

FLORAL AND FAUNAL ASSOCIATIONS OBSERVED WITHIN 2.5 MILES OF THE CEDAR MANOR SUBSTATION SITE

| <u>Species</u>         | Grassland/<br>Field | Forested/<br>Grassland/<br><u>Field</u> | <u>Forested</u> | Freshwater<br>Wetlands/<br>Ponds | Estuarine<br><u>Wetlands</u> | Cultivated<br><u>Lawn</u> |
|------------------------|---------------------|-----------------------------------------|-----------------|----------------------------------|------------------------------|---------------------------|
| Plants                 |                     |                                         |                 |                                  |                              |                           |
| Common ragweed         | X                   | X                                       |                 |                                  |                              |                           |
| Daisy                  | X                   | X                                       |                 |                                  |                              |                           |
| Crown vetch            | X                   | X                                       |                 | X                                |                              |                           |
| Fescue                 |                     |                                         |                 |                                  |                              | X                         |
| Goldenrod              | X                   | X                                       |                 | X                                |                              |                           |
| Virginia creeper       |                     | X                                       | X               |                                  |                              | X                         |
| Multiflora rose        | X                   | X                                       |                 | X                                |                              |                           |
| Red maple              |                     |                                         | X               |                                  |                              | X                         |
| Flowering Dogwood      |                     | X                                       | X               |                                  |                              | X                         |
| Black locust           |                     | X                                       | X               |                                  |                              | X                         |
| Animals                |                     |                                         |                 |                                  |                              |                           |
| Striped bass           |                     |                                         |                 |                                  | X                            |                           |
| Gray Squirrel          |                     | X                                       | X               |                                  |                              | X                         |
| Mice/voles/shrews      | X                   | X                                       | X               | X                                |                              | X                         |
| Black Duck             |                     |                                         |                 |                                  | X                            |                           |
| Hawks                  | X                   | X                                       | X               | X                                |                              |                           |
| Finches                |                     | X                                       | X               |                                  |                              | X                         |
| Sparrows               | X                   | X                                       | X               |                                  |                              | X                         |
| Northern spring peeper |                     |                                         |                 | X                                |                              |                           |
| Eastern garter snake   | X                   | X                                       |                 | X                                |                              |                           |

#### 4.1.9 Observations of Stress Potentially Related to Site Contaminants

Other than physically disturbed areas, there were no indications of visibly stressed vegetation that could be attributed to contaminants. Past disturbance and the localized nature of the contaminants in question, containment of overland runoff from ecologically sensitive areas, and retainment of overland runoff to on-site recharge and/or municipal storm/sanitary systems has minimized impacts on any local water bodies or other environmentally sensitive areas. Soil samples from all substations have shown that the majority of the mercury contamination was limited to areas near the south substation entrance door. Data gathered as part of various other investigations at LIRR substation sites where mercury contamination has been detected support a limited migration of mercury contamination to subsurface soil and infiltrating groundwater.

#### 4.1.10 <u>Habitat Values of Vegetative Zones Within the Project Site</u>

The assessment of habitat value provides for assessments of primary functions, such as food chain production, specialized habitat and hydrologic interactions. As part of the analysis, cultural values concerning recreation, aesthetics or other special features must be taken into consideration.

The information gathered during the Delineation Phase II Site Assessment Fish and Wildlife Recourses Impact Analysis conducted in February 2006 can provide for a hierarchy of habitat values for the cover types found at the Cedar Manor Substation. It should be noted that this approach is highly subjective. Those functions assumed to be valuable in relative efficiency or importance are ranked as 3 (high), 2 (moderate), 1 (low) or 0 (non-existent). Specific factors and brief descriptions, which were utilized in the habitat value analysis of the site's qualitative evaluation, are as follows:

• <u>Nutrient Transport Function</u> - Transport of nutrients in detrital-based food chains is strongly dependent on the hydrologic characteristics of the particular ecosystem. For example, wetlands located in lower lying areas export more detrital material than do the higher marsh areas infrequently affected by creek/river overflow. Similarly, detrital transport in the riverine systems is dependent on the river flow regime, especially during periods of peak discharge. In contrast, very little detrital material is

- exported from isolated ponds and marshes, except during periods of episodic overflow resulting from exceptionally high precipitation.
- <u>Food Chain Support</u> This function refers to the secondary productivity values of consumer species that a particular ecosystem can support. Secondary productivity is an overall measure of the efficiency of the habitat in terms of nutrient to transfer higher trophic levels.
- <u>Hydroperiod</u> This factor refers to the frequency of inundation either by river flow runoff or direct precipitation. Areas of good hydrologic linkage help maintain a regular interchange of nutrients and other materials necessary to support diverse flora and fauna.
- <u>Elevational Location</u> From the above, it is apparent that hydrologic relationships will progressively deteriorate as the depth of flooding decreases. The weakest hydrologic linkages exist in those areas physically isolated from other areas in the system.
- <u>Cultural Evaluation</u> This particular factor is difficult to assess in detail because of
  the number of socio-economic considerations, which may be involved. Hence, the
  evaluation in relation to local residential, commercial, or industrial development is
  largely left to the professional judgment of the project personnel on a specific caseby-case basis.
- Recreation Recreation is a vital personal and social need, which provides opportunity for self-expression, physical exercise, and a change of pace from normal or routine activities. Outdoor recreation is a major leisure activity and is growing in national importance with a trend towards a higher standard of living. A significant portion of the total recreational output is water based or water related. As such, greater weight is given to those types of habitats.
- <u>Socio-Economic</u> This factor pertains to benefits, which can be attributed directly to renewable resources, recreational enjoyment, or other features associated with a particular habitat.
- <u>Aesthetics</u> Selected types of habitats are distinctive landscape features which can
  please the aesthetic sense through the intrinsic appreciation of natural beauty.
  Wetlands, or any other type of natural landscape, can also be offensive if their
  features have been adversely modified by incompatible human activities. Aesthetic
  value can be largely determined by the degree of visual diversity and contrast
  between the physical elements, such as landforms, water bodies, vegetation types and
  land use types.
- <u>Food Chain Production</u> This factor determines the growth of vegetation in a habitat and influences the populations and secondary productivity of animals that feed on the plants, or that feed at high trophic levels in the community.

- <u>Primary Productivity</u> Primary productivity is a measure of the stored food potential of the vegetation in excess of that used by the plants in metabolism. This determination provides an overall measure of the energy input directly available to the consumer species. It should be noted that the possible range of productivity values, both within and between particular environments, is extremely variable and dependent on a number of local conditions. For the present analysis, literature values for primary productivity as a function of biomass were utilized.
- Water Purification Factor Through a variety of physical, biological, and chemical
  processes, some habitats function to naturally purify water by removing organic and
  mineral particulate matter from runoff and/or rivers and streams. For example,
  wetlands may be significant in minimizing some of the harmful effects of pollutants
  introduced into natural ecological systems by the activities of man. Thus, wetlands,
  especially when part of riverine or estuarine systems, can be an integral part of water
  quality and pollution control objectives.

Based upon the above factors, a qualitative analysis of the habitat values of the vegetative and aquatic communities are presented in **Table 4-7**. Based upon these results, the habitats surrounding the Cedar Manor Substation site is a moderately low value habitat. Habitat value is limited by the residential and commercial development surrounding the substation property, the lack of wetlands or other environmentally sensitive areas, lack of open undeveloped area, and the lack of recreational opportunities because of the constraints associated with an active electrical substation.

The one potential environmental impact associated with the substation would be contamination of local groundwater. As described in Section 4.1.9, soil sampling has demonstrated that mercury exhibits a limited migration and is concentrated to the surface and shallow subsurface soil from the believed point of discharge. Furthermore, groundwater sampling at the Cedar Manor Substation has demonstrated that groundwater has not been affected by the presence of mercury in on-site soil. Remediation through removal of contaminated soil should be accomplished with no demonstrated impact to local flora, fauna and associated habitats.

#### **Table 4-7**

### QUALITATIVE HABITAT VALUE ANALYSIS WITHIN THE CEDAR MANOR SUBSTATION SITE

| Evaluation Factor         | Relative Efficiency |
|---------------------------|---------------------|
| Food Chain Production     | 1                   |
| Primary Productivity      | 1                   |
| Nutrient Transport        | 0                   |
| Food Chain Support        | 1                   |
| Hydroperiod               | 1                   |
| Elevational Location      | 1                   |
| Cultural Location         | 2                   |
| Recreation                | 0                   |
| Socio-Economic            | 3                   |
| Aesthetics                | 1                   |
| Water Purification Factor | 1                   |
| Totals                    | 12                  |

#### 5.0 QUALITATIVE EXPOSURE ASSESSMENT

#### 5.1 Introduction

The purpose of this exposure assessment is to determine how and when an individual may be exposed to contaminants of potential concern (COPCs) associated with the LIRR Cedar Manor Substation. A COPC is any chemical detected above the NYSDEC cleanup guidelines in a medium, which could produce adverse health effects under the right conditions of dose and exposure. For exposure to occur, there must be a complete "pathway of exposure" where a person can come into contact with contaminants of potential concern. For a pathway to be complete, there must be: (1) a source or medium containing the COPC; (2) a location where human contact could take place (i.e., an exposure point); and (3) a feasible means for the COPC to enter into the person's body. In the case of the LIRR substations, there would be two types of potential receptors, with personnel who work at the facilities considered on-site receptors and individuals who may live or be in close proximity to the substation properties considered off-site receptors. The person who could come into contact with the COPC at an exposure point is called a "receptor." The ways in which the COPC can enter the body are called "routes of exposure." Ingestion (by mouth), dermal (contact with skin) and inhalation (breathing into the lungs) are the routes of exposure considered in this and other human health risk assessments. Consistent with the New York State Department of Health (NYSDOH) and other regulatory agencies, this assessment considers both current and potential future exposures.

As with any exposure assessment, this assessment is not intended to predict disease outcome, but rather, is meant to be used as a tool to make decisions regarding the need for remediation or the institution of precautionary measures, such as limiting the affected area to noncommercial land uses. Given the available information and keeping the purpose of the assessment in mind, the following evaluation for the Cedar Manor Substation is qualitative in nature.

#### 5.2 Properties, Fate and Transport of Mercury at the Cedar Manor Substation

Based on the results of the completed investigations of the Cedar Manor Substation, the COPC is mercury. The following is a summary of the fate and transport properties of mercury in surface and subsurface soil:

The mercury (Hg) found at the Cedar Manor substation is assumed to have entered the soil in the form of liquid elemental mercury that was utilized in mercury-containing rectifiers. Elemental mercury (Hg<sup>0</sup>) is a heavy, silver-white metal with a specific gravity approximately 13.5 times that of water and is the only metal to exist in the liquid phase at room temperature. Hg<sup>0</sup> has a relatively high vapor pressure and is the most volatile of all metals. Overall, however, it is considered only slightly volatile when compared to most liquids. Hg<sup>0</sup> volatilizes into a colorless, odorless and tasteless gas.

Mercury is a naturally occurring element that has been distributed throughout the environment by natural processes. Mercury exists in three possible oxidation states: elemental mercury (Hg<sup>0</sup>), mercurous (Hg<sup>1+</sup>), and mercuric (Hg<sup>2+</sup> or Hg[II]). Atmospheric deposition to the surface from anthropogenic and natural air emissions is considered a major source of mercury in the environment and is primarily in the form of Hg(II), either during precipitation events or adsorbed onto airborne particulates. The mercurous and mercuric forms of mercury will complex and form numerous organic and inorganic compounds. Hg(II) is commonly found as mercuric sulfide (HgS), a stable inorganic species that is essentially insoluble in water and is therefore considered a major long-term sink for mercury in soil. Moderately soluble forms of Hg(II), such as mercuric chloride (HgCl<sub>2</sub>), can potentially contaminate surface soil and groundwater. Both the mercurous and mercuric forms of mercury will adsorb to clay minerals, oxides and organic matter and tend not to leach. Methylmercury (MeHg) is the most widespread organic form of mercury in the environment and is formed from the methylation of inorganic mercury by bacteria in aquatic environments. Methylation is generally negligible in terrestrial soil.

Liquid elemental mercury has a tendency to form globules or beads and therefore is generally not uniformly distributed among soil particles. It will sink under the force of gravity and split up into available pore spaces. Despite this fact,  $Hg^0$  is only slightly soluble in water and, therefore, is unlikely to leach into groundwater via infiltrating precipitation. In fact, spills of liquid mercury to shallow subsurface soil have been found to be persistent in this environment. Elemental mercury is assumed to be removed from unsaturated soil primarily through its potential to volatilize to the soil vapor and the outside air. Although liquid mercury is volatile, the process is not rapid and globules of  $Hg^0$  may persist for a long time before completely volatilizing. In addition, mercury globules can become coated with a stable layer of insoluble HgS, especially in anaerobic conditions, and can remain inert for long periods of time. Mercury vapor released to the outdoor air will dissipate rapidly into the atmosphere.

#### **5.3** General Substation Conditions

This section briefly describes the current and future conditions of the Cedar Manor Substation. The Cedar Manor Substation is actively used by the LIRR to convert alternating current (AC) to direct current (DC) for use in powering the LIRR's electric train fleet. As discussed in Section 1.1, the substation has been used for this purpose since 1948.

The Cedar Manor Substation is located in a residential area; however, the majority of the site is only accessible by authorized LIRR personnel and their subcontractors. In addition, the substation is not occupied by LIRR personnel on a continuous or full-time basis. Under normal operating conditions, access to the substation property only occurs when equipment requires monitoring, maintenance or repair. The substation building is locked at all times and all associated outside electrical equipment (i.e., transformers) are secured by a locked fence. In addition, the property surrounding the substation is bounded by fencing to the north and west and the majority of the south, and by an elevated track berm to the east, limiting public access to the property. Note that residential areas surround the substation building. The majority of the LIRR property immediately surrounding the substation building is covered by crushed stone and asphalt. The transformer yard, located to the north of the substation building is covered with approximately 2 inches of crushed stone. In addition, in April 2010, approximately 2 inches of

crushed stone was installed to the south of the substation building, where mercury was detected in exceedance of the Industrial SCOs in fenced areas and the Residential SCOs in areas of the substation property not currently fenced. Stone installation photos are provided in Appendix E.

The Cedar Manor substation is serviced by public water and on-site groundwater is not used for any purpose.

As part of the LIRR's overall system upgrade in response to increased ridership, the Cedar Manor Substation will be decommissioned as part of the LIRR next Capital Program. Note that new solid-state transformers have already been installed to the north of the existing substation building and all non-solid-state electrical transformers and equipment have been removed. Plans for the future site redevelopment are currently being finalized and will be incorporated into the upcoming RAWP. Tentatively, the existing substation building will remain and be used for storage. After decommissioning of the existing substation building, the LIRR will not be disturbing or excavating in the Cedar Manor Substation property for the foreseeable future.

While elevated mercury concentrations have been detected in surface and subsurface soil to the south and east of the substation building, the LIRR maintains strict control over conducting soil excavation activities within LIRR properties known to contain contaminants in order to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. The LIRR Procedure/Instruction EE03-001, which defines the procedures that must be undertaken prior to conducting excavation activities at LIRR properties, is provided as Appendix F.

#### 5.4 Surface and Subsurface Soil

Elevated concentrations of mercury were detected in surface and subsurface soil to the south of the substation building and in subsurface soil to the east of the substation building. The highest mercury concentrations were detected in subsurface soil located off the southwest corner of the substation building, with a maximum mercury concentration of 969 mg/kg. However,

these areas were covered with approximately 2 inches of crushed stone in April 2010; therefore, direct exposure to site contamination of LIRR workers (on-site receptors) who are required to periodically enter the site for equipment maintenance and repair, and off-site receptors is not expected. In addition, LIRR workers and subcontractors could be potentially exposed to this contaminant source during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed above, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. As residential areas are located surrounding the substation building, it is also possible for the public to be exposed to site contamination via the inhalation of windblown dust particulates and via dermal contact in the event these areas become disturbed. However, as detailed in Section 3.1, elevated mercury concentrations were detected to the south and east of the substation building, where the majority of these areas are secured by a chain-link fence, limiting the potential of public access. In addition, these areas were covered with approximately 2 inches of crushed stone in April 2010, limiting the potential of site soil to become disturbed or airborne.

#### 5.5 Groundwater

As discussed in Section 3.3, groundwater has not been adversely impacted by the presence of mercury in on-site soil. In addition, on-site groundwater is not used as a potable water source or for any other uses. Therefore, groundwater is not considered a potential exposure pathway.

#### 5.6 Air

VOCs were not detected in site soil above their respective SCOs. As a result, inhalation of these contaminants released to the air through volatilization of contaminants from surface soil and subsurface soil does not represent a potential exposure pathway for on-site or off-site receptors. While the volatilization of mercury present in the surface and subsurface soil can occur, this process occurs at a very slow rate and inhalation of mercury vapor from on-site sources is not expected to be a significant exposure pathway. As discussed above, inhalation of

windblown dust of surface soil does represent a potential exposure pathway to on and off-site receptors upon soil disturbance. However, note that areas exhibiting mercury concentrations in exceedance of their respective Industrial and Residential SCOs area currently covered in approximately 2 inches of crushed stone, limiting the potential for soil in these areas to be disturbed or become airborne. In addition, as stated above, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures.

#### 5.7 Future Use of the Cedar Manor Substation

As part of the LIRR's overall system upgrade in response to increased ridership, the Cedar Manor Substation will be decommissioned as part of the next LIRR Capital Program. Note that new solid-state transformers have already been installed to the north of the existing substation building and all non-solid-state electrical transformers and equipment have been removed. As part of the existing substation building decommissioning and site redevelopment, plans for the future site redevelopment are currently being finalized and will be incorporated into the upcoming RAWP. Tentatively, the existing substation building will remain and be used for storage. Subsequent to building abatement, a mercury vapor evaluation, consistent with the October 2006 New York State Department of Health (NYSDOH) Soil Vapor Intrusion Guidance (SVIG), will be performed within the substation building in order to determine whether there exists the potential for mercury vapor intrusion. Based on the mercury evaluation, abatement measures may be undertaken, if warranted, in order to mitigate this potential exposure pathway. All existing substation components will be removed and properly recycled. After decommissioning of the existing substation building, the LIRR will not be disturbing or excavating in the Cedar Manor Substation property for the foreseeable future. In addition, the LIRR intends to remediate the most significant mercury contamination by excavation and off-site disposal. Therefore, this planned site redevelopment will remove the most significant soil contamination, and as a result future exposure to mercury contamination at the Cedar Manor Substation site is not expected.

.

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

This section presents a discussion of the conclusions and recommendations associated with the investigation of the Cedar Manor Substation. Note that the conclusions and recommendations presented take into consideration the findings of the Fish and Wildlife Resources Impact Analysis presented in Section 4.0, and the Qualitative Human Health Exposure Assessment presented in Section 5.0, as well as the intended future use of the Cedar Manor Substation site.

Upon receiving NYSDEC approval of the recommendations for site remediation presented in this investigation report, the LIRR intends to proceed with development of a Remedial Action Work Plan (RAWP) which will detail the selected remedial technologies that will be used to remediate the Cedar Manor Substation.

#### **6.1** Nature and Extent of Contamination

Mercury was detected in surface and subsurface soil at the Cedar Manor Substation. The greatest mercury concentrations were detected in subsurface soil located south of the substation building, with a maximum mercury concentration of 969 mg/kg.

Groundwater has not been impacted by the presence of mercury in on-site soil.

Elevated concentrations of mercury were detected in surface and subsurface soil to the south of the substation building and subsurface soil to the east of the substation building, with the highest concentrations detected in subsurface soil located off the southwest corner of the substation building. However, these areas were covered with approximately 2 inches of crushed stone in April 2010. Therefore, direct exposure to site contamination of LIRR workers (on-site receptors) who are required to periodically enter the site for equipment maintenance and repair, and off-site receptors is possible. In addition, LIRR workers and subcontractors could be potentially exposed to this contaminant source during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed above, the LIRR has in

place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. As residential areas surround the substation building, it is also possible for the public to be exposed to site contamination via windblown dust or dermal contact in the event that these areas are disturbed; however, as detailed in Section 3.1, the majority of areas exhibiting elevated mercury concentrations are secured by a chain-link fence or covered by crushed stone, limiting the potential of public access and exposure. In addition, all areas exhibiting mercury concentrations in exceedance of their respective Industrial and Residential SCOs are currently covered in approximately 2 inches of crushed stone limiting the potential of site soil to become disturbed or airborne.

#### **6.2** Recommendations

As part of the LIRR's overall system upgrade in response to increased ridership, the Cedar Manor Substation will be decommissioned as part of the LIRR next Capital Program. Note that new solid-state transformers have already been installed to the north of the existing substation building and all non-solid-state electrical transformers and equipment have been removed. Plans for the future site redevelopment are currently being finalized and will be incorporated into the upcoming RAWP. Tentatively, the existing substation building will remain and be used for storage. After decommissioning of the existing substation building, the LIRR will not be disturbing or excavating in the Cedar Manor Substation property for the foreseeable future.

Subsequent to building abatement, a mercury vapor evaluation, consistent with the October 2006 New York State Department of Health (NYSDOH) Soil Vapor Intrusion Guidance (SVIG), will be performed within the substation building in order to determine whether there exists the potential for mercury vapor intrusion. Based on the mercury evaluation, abatement measures may be undertaken, if warranted, in order to mitigate this potential exposure pathway. All existing substation components will be removed and properly recycled. After decommissioning of the existing substation building, the LIRR will not be disturbing or excavating in the Cedar Manor Substation property for the foreseeable future. In addition, the LIRR intends to remediate the most significant mercury contamination by excavation and off-site

disposal. Therefore this planned site redevelopment will remove the most significant soil contamination, and as a result future exposure to mercury contamination at the Cedar Manor Substation site is not expected.

#### Site Soil

In order to remediate the highest mercury concentrations detected at the Cedar Manor Substation, the LIRR proposes to excavate soil to the south and east of the substation building to a depth ranging from 1 to 10 feet below ground surface, as depicted on **Figure 6-1**. Note that the terrain inclines south of the substation building, towards the adjacent residential property.

Due to the irregular distribution of mercury in site soil, the remedial excavations of soil exhibiting elevated mercury concentrations have been divided into one 1-foot excavation area, one 2-foot excavation area, one 4-foot excavation area, one 6-foot excavation area and two 10-foot excavation areas. The proposed 1-foot excavation is approximately 227 square feet in total area, and will require the excavation of approximately 9 cubic yards of soil. The proposed 2-foot excavation is approximately 85 square feet in total area, and will require the excavation of approximately 6 cubic yards of soil. The proposed 4-foot excavation area is approximately 39 square feet in total area, and will require the excavation of approximately 6 cubic yards of soil. The proposed 6-foot excavation area is approximately 664 square feet in total area, and will require the excavation of approximately 148 total cubic yards of soil. The proposed 10-foot excavation areas are approximately 77 square feet in total area and will require the excavation of approximately 29 cubic feet of soil. After removal of the soil, post excavation samples will be collected for mercury analysis in order to document the effectiveness of the remediation and any residual mercury remaining.

These areas are approximately 1,092 square feet in total area, and will require the excavation of a combined total of approximately 198 cubic yards of soil. After excavation, the remediated areas will be backfilled with certified clean fill in accordance with the Industrial Use SCOs, at a minimum. Note that, in addition to this site wide soil remediation, the LIRR intends

Dvirka

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Bartilucci CONSULTING ENGINEERS





to close and remediate soil associated with two of the three dry wells located to the south of the substation building and the water meter pit located adjacent to the southwest corner of the substation building, as described below.

#### Underground Injection Control (UIC) and Below Grade Structures

Dry Wells

Due to an elevated mercury concentration (2.4 mg/kg, exceeding the TAGM SCO of 0.1 mg/kg) detected in the storm water dry well located approximately 27 feet southwest of the substation building, the LIRR recommends that all sediment accumulated within this structure be removed to the structure's solid bottom. It is anticipated that this storm water dry well contains approximately 3 to 4 cubic feet of sediment based on an anticipated 8-foot diameter dry well structure. As all sediment is recommended to be removed from this structure, the collection of post-remediation soil samples will not be possible. In addition, it is recommended that this structure remain in place in order to manage storm water runoff from 158th Street and the surrounding areas.

Due to elevated mercury concentrations ranging from 0.183 mg/kg to 0.732 mg/kg detected in the dry well located approximately 6 feet south of the substation building, the LIRR recommends that the dry well cover and ring structures, and all soil located within the dry well be removed. In addition, it is recommended that soil be removed from beneath the dry well structure to a depth of 20 feet below ground surface, or as deep as is safely feasible. Note that the bottom of this structure is approximately 8 feet below grade. As such, and based on an anticipated 8-foot diameter dry well structure, it is estimated that approximately 12 cubic yards of soil will be removed from this structure. Following soil removal, all discharge pipes entering this structure will be capped with a concrete plug and one post-excavation soil sample will be collected for UIC parameter analysis.

#### Water Meter Pit

Due to elevated mercury concentrations detected in the water meter pit located adjacent to the southwest corner of the substation building, the LIRR recommends that soil be removed from this structure to a depth of 6 feet below ground surface. Note that, as this structure was not designed to accept waste fluids, samples collected from this structure have been compared to the Industrial Use SCOs. It is estimated that approximately 5 cubic feet of soil will be removed from this structure. Following soil removal, one post-excavation soil sample will be collected from this structure for mercury analysis.

As discussed previously, upon approval of the recommendations described above, the LIRR intends to proceed with the development of a RAWP which will fully detail the methods and procedures that will be employed by the LIRR in order to execute the above recommendations and to allow the LIRR to meet the planned schedule for the Cedar Manor Substation redevelopment. In addition, the RAWP will include provisions for a Community Air Monitoring Plan (CAMP) to be included in the Contractor Health and Safety Plan (CHASP) to be submitted by the remedial contractor to the LIRR and NYSDEC for review and approval. Note that, as will be stated in the RAWP, the CAMP will comply with the requirements of the New York State Department of Health (NYSDOH) Generic CAMP, which will also be included in the RAWP. It is anticipated that the remediation of the Cedar Manor Substation will be conducted in conjunction or immediately following the substation decommissioning.

In addition to the above-referenced site remediation, and in order to further protect the community and LIRR employees, the LIRR has elected to file a Declaration of Covenant and Restrictions for the Cedar Manor property, which will be provided in an upcoming Site Management Plan (SMP).

#### APPENDIX A

## EXISTING INITIAL SITE ASSESSMENT ANALYTICAL DATA

#### **TABLE D-16A**

## LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - CEDAR MANOR-A08 MERCURY

| LOCATION                                                                | i                                | ostation Front<br>oors           | Southwest<br>Storm Water<br>Dry Well | _                                               | Southwest<br>Substation            | Dry Well<br>South of<br>Substation<br>Front Doors | · · · · · · · · · · · · · · · · · · · |                                                    |
|-------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|-------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)<br>DATE OF COLLECTION<br>PERCENT SOLIDS | CMSB-01<br>0-2<br>12/21/99<br>98 | CMSB-01<br>4-6<br>12/21/99<br>99 | CMSB-02<br>8-10<br>12/21/99<br>84    | <b>CMSB-03</b><br><b>8-10</b><br>12/21/99<br>97 | CMSB-03<br>12-14<br>12/21/99<br>97 | CMSB-04<br>8-10<br>12/21/99<br>84                 | Instrument<br>Detection<br>Limits     | Eastern USA<br>Background<br>Levels <sup>(1)</sup> |
| UNITS                                                                   | (mg/kg)                          | (mg/kg)                          | (mg/kg)                              | (mg/kg)                                         | (mg/kg)                            | (mg/kg)                                           | (ug/L)                                | (mg/kg)                                            |
| Mercury                                                                 | 0.046 B                          | 0.051 U                          | 2.7                                  | 0.062 B                                         | 0.045 U                            | 1.7                                               | 0.1                                   | 0.001-0.2                                          |

#### NOTES:

#### **QUALIFIERS:**

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

#### **TABLE D-16A (continued)**

## LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - CEDAR MANOR-A08 MERCURY

| LOCATION                                                       | Dry Well<br>South of<br>Substation | Southwest Ex                         | terior Meter Pit                     |                                  | fier 2 Sub-<br>ment              | East Rectifier 1 Sub- Basement   |                                   |                                                    |
|----------------------------------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------------------------|
| SAMPLE ID SAMPLE DEPTH (ft.) DATE OF COLLECTION PERCENT SOLIDS | CMSB-04<br>12-14<br>12/21/99<br>23 | CMSB-05<br>3.5-5.5<br>12/21/99<br>93 | CMSB-05<br>7.5-9.5<br>12/21/99<br>86 | CMSB-06<br>0-2<br>12/21/99<br>93 | CMSB-06<br>4-6<br>12/21/99<br>94 | CMSB-08<br>0-2<br>12/22/99<br>91 | Instrument<br>Detection<br>Limits | Eastern USA<br>Background<br>Levels <sup>(1)</sup> |
| UNITS                                                          | (mg/kg)                            | (mg/kg)                              | (mg/kg)                              | (mg/kg)                          | (mg/kg)                          | (mg/kg)                          | (ug/L)                            | (mg/kg)                                            |
| Mercury                                                        | 7.6                                | 13.8                                 | 0.10 B                               | 1.6                              | 2.3                              | 0.19                             | 0.1                               | 0.001-0.2                                          |

#### NOTES:

#### **QUALIFIERS:**

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.

 $<sup>^{(1)}</sup>$  Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

#### **TABLE D-16A (continued)**

## LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - CEDAR MANOR-A08 MERCURY

| LOCATION                                      | East Rectifier<br>1 Sub-<br>Basement |                           | terior Sanitary<br>Trench | Central/South-<br>Central Utility<br>Trench in<br>Original<br>Substation |                        |                         |                               |
|-----------------------------------------------|--------------------------------------|---------------------------|---------------------------|--------------------------------------------------------------------------|------------------------|-------------------------|-------------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (ft.)               | CMSB-08<br>4-6                       | CMSB-09<br>0-2            | CMSB-09<br>4-6            | CMSB-10<br>0-2                                                           | CMFB-02                | Instrument<br>Detection | Eastern USA<br>Background     |
| DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | 12/22/99<br>98<br>(mg/kg)            | 12/21/99<br>89<br>(mg/kg) | 12/21/99<br>96<br>(mg/kg) | 12/21/99<br>94<br>(mg/kg)                                                | 12/21/99<br><br>(ug/L) | Limits<br>(ug/L)        | Levels <sup>(1)</sup> (mg/kg) |
| Mercury                                       | 0.071 B                              | 1.9                       | 0.20                      | 3                                                                        | 0.14 U                 | 0.1                     | 0.001-0.2                     |

#### NOTES:

#### **QUALIFIERS:**

U: Constituent analyzed for but not detected.

<sup>(1)</sup> Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

<sup>----:</sup> Not applicable.

#### **TABLE D-16B**

## LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SURFACE SOIL SAMPLING RESULTS - CEDAR MANOR-G07 MERCURY

| LOCATION                          | East of Front<br>Entrance<br>Doors | South of<br>Front<br>Entrance<br>Doors | Southwest<br>Corner of<br>Substation | Northeast<br>Corner of<br>Substation |   |                      |                           |
|-----------------------------------|------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|---|----------------------|---------------------------|
| SAMPLE ID<br>SAMPLE DEPTH (in.)   | CMSS-01<br>0-6                     | CMSS-02<br>0-6                         | CMSS-03<br>0-6                       | CMSS-04<br>0-6                       |   | Instrument Detection | Eastern USA<br>Background |
| DATE OF COLLECTION PERCENT SOLIDS | 12/21/99<br>63                     | 12/21/99<br>89                         | 12/21/99<br>95                       | 12/21/99<br>91                       |   | Limits               | Levels <sup>(1)</sup>     |
| UNITS                             | (mg/kg)                            | (mg/kg)                                | (mg/kg)                              | (mg/kg)                              |   | (ug/L)               | (mg/kg)                   |
| Mercury                           | 2                                  | 2.2                                    | 0.13                                 | 0.41                                 | 1 | 0.1                  | 0.001 - 0.2               |

#### NOTES:

 $<sup>^{\</sup>mbox{\scriptsize (1)}}$  Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

#### **TABLE D-16C**

## LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION CONCRETE CORE SAMPLING RESULTS - CEDAR MANOR-A08 MERCURY

| LOCATION                                                   | West Sub-<br>Basement                       | East Sub-<br>Basement                | Southeast<br>Corner<br>Sanitary Pipe<br>Trench | West/South<br>west Utility<br>Trench in<br>Substation | Central/South-<br>Central Utility<br>Trench in<br>Original<br>Substation |                                   |                                    |
|------------------------------------------------------------|---------------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| SAMPLE ID<br>DATE OF COLLECTION<br>PERCENT SOLIDS<br>UNITS | <b>CMCC-01</b><br>12/21/99<br>97<br>(mg/kg) | CMCC-02<br>12/22/99<br>91<br>(mg/kg) | CMCC-03<br>12/22/99<br>87<br>(mg/kg)           | CMCC-04<br>12/22/99<br>99<br>(mg/kg)                  | CMCC-05<br>12/22/99<br>98<br>(mg/kg)                                     | CMFB-01<br>12/22/99<br><br>(ug/L) | Instrument Detection Limits (ug/L) |
| Mercury                                                    | 0.16                                        | 0.44                                 | 1.2                                            | 4                                                     | 2.7                                                                      | 0.14 U                            | 0.1                                |

#### **NOTES:**

---: Not applicable.

#### **QUALIFIERS:**

U: Constituent analyzed for but not detected.

#### APPENDIX B

## DATA QUALIFIERS/ DELINEATION PHASE II ANALYTICAL DATA

#### Data Flag/Qualifiers:

- U Not Detected. This compound was analyzed-for but not detected. For Organics analysis the reporting limit (lowest standard concentration) is the value listed. For Inorganics analysis, the value listed is the detection limit. For Inorganics analyzed using SW-846 methods, the detection limit is the Method Detection Limit, for Inorganics analyzed using EPA CLP and NY ASP CLP methods, the detection limit is the Instrument Detection Limit.
- J For Organics analysis, this flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B For Organic analyses, this flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a diluted analysis
- E For Organics analysis, this flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for Pesticides/PCB/Herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for Primary and Confirmation analyses. This difference typically indicates an interference, causing one value to be unusually high. The lower of the two values is reported in the Analysis Report.
- A Used to flag Semivolatile Organic Tentatively Identified Compound library search results for compounds identified as aldol condensation byproducts.
- N Used to flag results for Volatile and Semivolatile Organics analysis
  Tentatively Identified Compounds where an analyte has passed the
  identification criteria, and is considered to be positively identified. For
  Inorganics analysis the N flag indicates the matrix spike recovery falls
  outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.

Page: 1 of 2

Date: 08/20/2009

# TABLE 1 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 05/01/2008 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| INSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | GMSS-32<br>CMSS-32<br>05/01/2008 | CMSS-33<br>CMSS-33<br>05/01/2008 | CMSS-34<br>CMSS-34<br>05/01/2008 | CMSS-39<br>CMSS-39<br>03/12/2009 | CMSS-40<br>CMSS-40<br>03/12/2009 |
|------------|---------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| ercury     | (mg/kg)                   | 0.81                           | 10,000D                          | 1.70                             | 9.7D                             | 9.7D                             | 0.570D                           |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
| •          |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                | •                                |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  | •                                |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |
|            |                           |                                |                                  |                                  |                                  |                                  |                                  |

TABLE 1

Page: 2 of 2 Date: 08/20/2009

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

CEDAR MANOR SUBSTATION

SURFACE SOIL SAMPLE RESULTS

RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 05/01/2008 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| DNSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | GMSS-41<br>CMSS-41<br>03/12/2009 | CMSS-45<br>CMSS-45<br>03/12/2009 | CMSS-46<br>CMSS-46<br>03/12/2009 | CMSS-47<br>CMSS-47<br>05/20/2009 |  |
|------------|---------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
| ercury     | (mg/kg)                   | 0.81                           | 0.100DJ                          | 1.6D                             | 0.091DJ                          | 0.657D                           |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                | •                                |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |
|            |                           |                                |                                  |                                  |                                  |                                  |  |

Page: 1 of 7 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/13/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

|                                |                           |                           |                                  |                                  |                                  |                                  | All Control of the Co |
|--------------------------------|---------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSS-05<br>CMSS-05<br>10/13/2005 | CMSS-06<br>CMSS-06<br>10/13/2005 | CMSS-07<br>CMSS-07<br>10/13/2005 | CMSS-08<br>CMSS-08<br>10/13/2005 | CMSS-09<br>CMSS-09<br>10/13/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mercury                        | (mg/kg)                   | 5.7                       | 97.300DJ                         | 5.5DJ                            | 6,8DJ                            | 18.400DJ                         | 0.068UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           | •                                |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           | •                                |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           | •                                |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/kg: milligrams per kilogram |                           |                           |                                  | •                                |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                  |                                  | •                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page: 2 of 7

Date: 08/20/2009

# TABLE 2 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES MERCURY

PERIOD:

From 10/13/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| ONSTITUENT                     | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSS-10<br>CMSS-10<br>10/13/2005 | CMSS-11<br>CMSS-11<br>10/13/2005 | CMSS-12<br>CMSS-12<br>10/13/2005 | CMSS-13<br>CMSS-13<br>10/13/2005 | CMSS-14<br>CMSS-14<br>10/19/2005 |
|--------------------------------|---------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| ercury                         | (mg/kg)                   | 5.7                       | 0.407DJ                          | 0.269DJ                          | 0.069UJ                          | 0.084DJ                          | 3.0D                             |
| •                              |                           |                           |                                  |                                  |                                  |                                  |                                  |
| •                              |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  | •                                |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           | •                                |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
| ng/kg: milligrams per kilogram |                           |                           |                                  |                                  |                                  |                                  |                                  |

Page: 3 of 7

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/13/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSS-15<br>CMSS-15<br>10/13/2005 | CMSS-16<br>CMSS-16<br>10/13/2005 | CMSS-17<br>CMSS-17<br>10/13/2005 | CMSS-18<br>CMSS-18<br>10/13/2005 | CMSS-20<br>CMSS-20<br>10/19/2005 |
|--------------------------------|---------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Mercury                        | (mg/kg)                   | 5.7                       | 0.068UJ                          | 0.071UJ                          | 0.070UJ                          | 0.069UJ                          | 0.252DJ                          |
|                                |                           |                           | ٠                                |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           | •                                |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           | _                                |                                  |                                  |                                  |                                  |
|                                |                           |                           | •                                |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
|                                |                           |                           |                                  |                                  |                                  |                                  |                                  |
| mg/kg: milligrams per kilogram |                           |                           |                                  |                                  |                                  |                                  |                                  |

Page: 4 of 7

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

# SURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/13/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SITE<br>SAMPLE ID | Industrial<br>Use | CMSS-21<br>CMSS-21 | CMSS-22<br>CMSS-22 | CMSS-23<br>CMSS-23 | GMSS-24<br>GMSS-24 | CMSS-25<br>CMSS-25 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CONSTRUCTION OF THE PROPERTY O | DATE              | SCOs              | 10/19/2005         | 10/19/2005         | 10/19/2005         | 05/01/2008         | 05/01/2008         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mg/kg)           | 5.7               | 0.069DJ            | 0.067U             | 0.399D             | 7.2D               | 0.510              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | •                  |                    |                    |                    |                    |

Page: 5 of 7

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| SITE SAMPLE ID DATE (mg/kg) | Industrial Use SCOs 5.7 | CMSS-26<br>CMSS-26<br>05/01/2008 | CMSS-27<br>CMSS-27<br>05/01/2008 | CMSS-28<br>CMSS-28 | CMSS-29<br>CMSS-29 | CMSS-30<br>CMSS-30 |
|-----------------------------|-------------------------|----------------------------------|----------------------------------|--------------------|--------------------|--------------------|
| (mg/kg)                     | 5.7                     |                                  | 54,4,72000                       | 05/01/2008         | 05/01/2008         | 05/01/2008         |
|                             |                         | 6.7D                             | 7.5D                             | 8.2D               | 9.4D               | 7.70               |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         | <del>a</del>                     |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |
|                             |                         |                                  |                                  |                    |                    |                    |

Page: 6 of 7

Date: 08/20/2009

# TABLE 2 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES MERCURY

PERIOD:

From 10/13/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| O,          |                                              |                   |             |                    |                         |                    | THE TAXABLE PROPERTY OF THE PR |                    | AUDITAGE |
|-------------|----------------------------------------------|-------------------|-------------|--------------------|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|
|             |                                              |                   |             |                    | 2 (2 define) (2 define) |                    | 1945A<br>1945A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          |
|             | 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30 | SITE              | Industrial  | CMSS-31<br>CMSS-31 | CMSS-35<br>CMSS-35      | CMSS-36<br>CMSS-36 | CMSS-37<br>CMSS-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CMSS-38<br>CMSS-38 |          |
| CONSTITUENT |                                              | SAMPLE ID<br>DATE | Use<br>SCOs | 05/01/2008         | 03/12/2009              | 03/12/2009         | 03/12/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/12/2009         |          |
| Мегсигу     |                                              | (mg/kg)           | 5.7         | 7.7D               | 3.0D                    | 14.000D            | 0.133D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.806D             |          |

Page: 7 of 7

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/13/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSS-42<br>CMSS-42<br>03/12/2009 | CMSS-43<br>CMSS-43<br>03/12/2009 | CMSS-48<br>CMSS-48<br>05/20/2009 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------|---------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mercury     | (mg/kg)                   | 5.7                       | 49.400D                          | 0.269D                           | 4.6D                             | Charles the Control of the Control o |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  | ·                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  | •                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           | •                                |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                           |                           |                                  |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Page: 1 of 1

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

RCRA METALS

TABLE 3

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

|             | E Carlotte                | Andre school 1 1995<br>1995<br>1995<br>1995 |                                  | 10 - 10 mg (1 mg ( |                                  |
|-------------|---------------------------|---------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Industrial Use SCOs                         | CMSS-20<br>CMSS-20<br>10/19/2005 | CMSS-21<br>CMSS-21<br>10/19/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CMSS-22<br>CMSS-22<br>10/19/2005 |
| Arsenic     | (mg/kg)                   | 16                                          | 3.410                            | 2.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.710                            |
| Barium      | (mg/kg)                   | 10000                                       | 44.2J                            | 31.7J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.9J                            |
| Cadmium     | (mg/kg)                   | 60                                          | 0.038U                           | 0.037U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038U                           |
| Chromium    | (mg/kg)                   | 6800                                        | 11.8J                            | <b>7</b> ,660J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.240J                           |
| Lead        | (mg/kg)                   | 3900                                        | 97.3J                            | 20.0J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.1J                            |
| Selenium    | (mg/kg)                   | 6800                                        | 0.391U                           | 0.380U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.391U                           |
| Silver      | (mg/kg)                   | 6800                                        | 0.090UJ                          | 0.088UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.091UJ                          |

Page: 1 of 4 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

TABLE 4

# SURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

ug/kg: micrograms per kilogram

| CONSTITUENT                   | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMS\$_20<br>CMSS-20<br>10/19/2005 | CMSS-21<br>CMSS-21<br>10/19/2005 | CMSS-22<br>CMSS-22<br>10/19/2005 |  |
|-------------------------------|---------------------------|---------------------------|-----------------------------------|----------------------------------|----------------------------------|--|
| 2,2-oxyblis (1-chloropropane) | (ug/kg)                   |                           | 120U                              | 120U                             | 240U                             |  |
| 2,4,5-Trichlorophenol         | (ug/kg)                   |                           | 110U                              | 110U                             | 230U                             |  |
| 2,4,6-Trichlorophenol         | (ug/kg)                   |                           | 110U                              | 110U                             | 220U                             |  |
| 2,4-Dichlorophenol            | (ug/kg)                   |                           | 1 <b>4</b> 0U                     | 140U                             | 280U                             |  |
| 2,4-Dimethylphenol            | (ug/kg)                   |                           | 120U                              | 120U                             | 240U                             |  |
| 2,4-Dinitrophenol             | (ug/kg)                   | 1.000                     | 640U                              | 630U                             | 1300U                            |  |
| 2,4-Dinitrotoluene            | (ug/kg)                   |                           | 110U                              | 110U                             | 220U                             |  |
| 2,6-Dinitrotoluene            | (ug/kġ)                   | CALABA PARA PARA          | 110U                              | 100U                             | 210U                             |  |
| 2-Chloronaphthalene           | (ug/kg)                   |                           | 120U                              | 120U                             | 250U                             |  |
| 2-Chlorophenol                | <sup>2</sup> (ug/kg)      |                           | 1200                              | 120U                             | 240U                             |  |
| 2-Methylnaphthalene           | (ug/kg)                   |                           | 520J                              | 120U                             | 250U                             |  |
| 3,3-Dichlorobenzidine         | (ug/kg)                   | 100                       | 1300                              | 130U                             | 250U                             |  |
| 4,6-Dinitro-o-cresol          | (ug/kg)                   |                           | 140U                              | 140U                             | 290U                             |  |
| 4-Bromafluorobenzene          | (ug/kg)                   |                           | 110U                              | 110U                             | 220U                             |  |
| 4-Chlorophenylphenyl ether    | (ug/kg)                   |                           | 120U°                             | 120U                             | 240U                             |  |
| Acenaphthene                  | (ug/kg)                   | 1000000                   | 130U                              | <b>1</b> 30U                     | 270U                             |  |
| Acenaphthylene                | (ug/kg)                   | 1000000                   | 120U                              | 120U                             | 240U                             |  |
|                               |                           |                           |                                   |                                  |                                  |  |

Page: 2 of 4

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

TABLE 4

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

| AMPLE TYPE: Soil                  |                           |                                           |                                  |                                  |                                  |           |
|-----------------------------------|---------------------------|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------|
|                                   |                           |                                           |                                  |                                  |                                  |           |
| CONSTITUENT                       | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs                 | CMSS-20<br>CMSS-20<br>10/19/2005 | CMSS-21<br>CMSS-21<br>10/19/2005 | CMSS-22<br>CMSS-22<br>10/19/2005 |           |
| Acetophenone                      | (ug/kg)                   |                                           | 110U                             | 110U                             | 220U                             |           |
| Anthracene:                       | (ug/kg)                   | 1000000                                   | 480J                             | 440J                             | 940J                             | 100 mg/mm |
| Atrazine                          | (ug/kg)                   | 32500 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 110U                             | 110U                             | <b>230</b> U                     |           |
| Benzaldehyde                      | (ug/kg)                   |                                           | 150U                             | 150U                             | 310U                             |           |
| Benzo(a)anthracene                | (ug/kg)                   | 11000                                     | 180J                             | 100U                             | 270J                             |           |
| Benzo(a)pyrene                    | (ug/kg)                   | 1100                                      | 140J                             | 120ÜJ                            | 240UJ                            |           |
| Benzo(b)fluoranthene              | (ug/kg)                   | 11000                                     | 240J                             | 110J                             | 380J                             |           |
| Benzo(ghi)perylene                | (ug/kg)                   | 1000000                                   | 120UJ                            | 120UJ                            | <b>250UJ</b>                     |           |
| Benzo(k)fluoranthene              | (ug/kg)                   | 110000                                    | 160UJ                            | 160UJ                            | 330UJ                            |           |
| Biphenyl                          | (ug/kg)                   |                                           | 460U                             | 450U                             | 900U                             |           |
| Bis(2-chloroethoxy)methane        | (ug/kg)                   |                                           | 120U                             | 120U                             | 240U                             |           |
| Bis(2-chloroethyl)ether           | (ug/kg)                   |                                           | 120U                             | 120U                             | 240U                             |           |
| Bis(2-ethylhexyl)phthalate (BEHP) | (ug/kg)                   |                                           | 700J                             | 730J                             | 1400J                            |           |
| Butyl benzyl phthalate            | (ug/kg)                   | 1000                                      | 120U                             | 120U                             | 2 <b>4</b> 0U                    |           |
| Caprolactam                       | (ug/kg)                   |                                           | 120UJ                            | 120UJ                            | 240UJ                            |           |
| Carbazole                         | (ug/kg)                   |                                           | 230J                             | <b>110</b> U                     | 230U                             |           |
| Chrysene                          | (ug/kg)                   | 110000                                    | 480J                             | 380J                             | 860J                             |           |
|                                   |                           |                                           |                                  |                                  |                                  |           |
| ug/kg: micrograms per kilogram    |                           |                                           |                                  |                                  |                                  |           |

Page: 3 of 4

Date: 08/20/2009

# TABLE 4 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

| ONSTITUENT                | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CMSS-20<br>CMSS-20<br>10/19/2005 | CMSS-21<br>CMSS-21<br>10/19/2005 | CMSS-22<br>CMSS-22<br>10/19/2005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ibenzo(a,h)anthracene     | (ug/kg)                   | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93UJ                             | 92UJ                             | 190UJ                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| benzofuran                | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190J                             | 120U                             | 370J                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| iethyl phthalate          | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130U                             | 130U                             | <b>260</b> U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| imethyl phthalate         | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1201)                            | 120U                             | 240U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Di-n-butyl phthalate      | (ug/kg)                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 470J                             | 470J                             | 230U                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0i-n-octyl phthalate      | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130UJ                            | 120UJ                            | <b>2</b> 50UJ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluoranthene              | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 670J                             | 550J                             | 1300J                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| luorene                   | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390J                             | 120U                             | 780J                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lexachlorobenzene         | (ug/kg)                   | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120U                             | <b>120</b> U                     | 240U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| exachlorobutadiene        | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110U                             | 110U                             | 230U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lexachlorocyclopentadiene | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120U                             | 120U                             | 240U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dexachloroethane          | (ug/kg)                   | The second secon | 130U                             | 120U                             | 250U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ndeno(1,2,3-cd)pyrene     | (ug/kg)                   | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95UJ                             | 93UJ                             | 190UJ                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sophorone                 | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100                             | 110U                             | <b>220</b> U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m-Nitroaniline            | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97U                              | 96U                              | 190U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Naphthalene               | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130U                             | 1300                             | 250U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nitrobenzene              | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160U                             | 160U                             | 330U                             | namenamenten i interneti (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977 |

Page: 4 of 4

Date: 08/20/2009

# TABLE 4 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| DATE   SCOs   10/19/2005   10/19/2005   250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Wil LE 111 L. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                                                                |                   |            |              |                                                                                                                                                                                                                                  | paraetti.                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|-------------------|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                |                   |            |              |                                                                                                                                                                                                                                  |                                         |
| DATE   SCOs   10/19/2005   10/19/2005   10/19/2005   10/19/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SITE      | Industrial                                                                                                     | CMSS-20           | CMSS-21    | CMSS-22      |                                                                                                                                                                                                                                  |                                         |
| No.   No.  | CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE ID | Use                                                                                                            | CMSS-20           | CMSS-21    | CMSS-22      |                                                                                                                                                                                                                                  |                                         |
| N-Nifrosodipropylamine (ug/kg) 100000 120U 120U 250U 250U 250U 250U 250U 250U 250U 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE      | SCOs                                                                                                           | 10/19/2005        | 10/19/2005 | 10/19/2005   |                                                                                                                                                                                                                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)   |                                                                                                                | 120U              | 120U       | 250U         |                                                                                                                                                                                                                                  |                                         |
| Publicaniline   Publicanilin | N-Nitrosodipropylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)   |                                                                                                                | 120U              | 120U       | <b>250U</b>  |                                                                                                                                                                                                                                  |                                         |
| Composition    | o-Cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ug/kg)   | 1000000                                                                                                        | 120U              | 120U       | 250U         |                                                                                                                                                                                                                                  |                                         |
| Public   P | o-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ug/kg)   |                                                                                                                | 95U               | 93U        | 190U         | en de la companya de<br>La companya de la co |                                         |
| P-Chloro-m-cresol (ug/kg) 55000 170U 170U 340U  P-Cresol (ug/kg) 1000000 120U 120U 230U  P-Inenanthrene (ug/kg) 1000000 5503 450J 110U 230U  P-Inenanthrene (ug/kg) 1000000 110U 110U 230U  P-Nitroaniline (ug/kg) 1000000 110U 130U 250U  P-Nitrophenol (ug/kg) 1000000 350J 91UJ 180UJ  P-Yene (ug/kg) 1000000 350J 140J 600U  Total PAHs (ug/kg) 3480 2070 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ug/kg)   |                                                                                                                | 110U              | 110U       | 230U         |                                                                                                                                                                                                                                  | 2012/10/10/09                           |
| PCP (ug/kg) 55000 170U 170U 340U p-Cresol (ug/kg) 1000000 120U 120U 230U Phenanthrene (ug/kg) 1000000 550J* 450J 1100J Phenol (ug/kg) 1000000 110U 110U 230U p-Nitroanlline (ug/kg) 130U 330U 250U p-Nitrophenol (ug/kg) 92UJ 91UJ 180UJ Pyrene (ug/kg) 1000000 350J 140J 600J Total PAHs (ug/kg) 3480 2070 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ug/kg)   |                                                                                                                | 89U               | .87U       | 180U         |                                                                                                                                                                                                                                  |                                         |
| Per (ug/kg) 1000000 120U 120U 230U  Phenanthrene (ug/kg) 1000000 550J • 450J 1100J  Phenol (ug/kg) 1000000 110U 110U 230U  P-Nitroanlline (ug/kg) 130U 250U  P-Nitrophenol (ug/kg) 92UJ 91UJ 180UJ  Pyrene (ug/kg) 1000000 350J 140J 660J  Total PAHs (ug/kg) 3480 2070 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p-Chloro-m-cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ug/kg)   | *                                                                                                              | 100U              | 100U       | <b>210</b> U | annenggin ng pananggapawangga ang panang panggan panggan panang ang panang ang panang panang panang panang pan                                                                                                                   | *2*********                             |
| Phenainthrene         (ug/kg)         1000000         5503 °         450J         1100J           Phenol         (ug/kg)         1000000         110U         110U         230U           p-Nitroaniline         (ug/kg)         130U         130U         250U           p-Nitrophenol         (ug/kg)         92UJ         91UJ         180UJ           Pyrene         (ug/kg)         1000000         350J         140J         500J           Total PAHs         (ug/kg)         3480         2070         6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCP and the second seco | (ug/kg)   | 55000                                                                                                          | 170U              | 170U       | 340U         |                                                                                                                                                                                                                                  |                                         |
| Phenol     (ug/kg)     1000000     110U     110U     230U       p-Nitroaniline     (ug/kg)     130U     130U     250U       p-Nitrophenol     (ug/kg)     92UJ     91UJ     180UJ       Pyrene     (ug/kg)     1000000     350J     140J     600J       Total PAHs     (ug/kg)     3480     2070     6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p-Cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ug/kg)   | 1000000                                                                                                        | 120U              | 120U       | 230U         | anticianaminimina (compositio in anticianaminiminiminiminiminiminiminiminimini                                                                                                                                                   | *********                               |
| p-Nitroaniline (ug/kg) 130U 130U 250U p-Nitrophenol (ug/kg) 92UJ 91UJ 180UJ Pyrene (ug/kg) 1000000 350J 140J 600J Total PAHs (ug/kg) 3480 2070 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)   | 1000000                                                                                                        | 550J <del>*</del> | 450J       | 1100J        |                                                                                                                                                                                                                                  |                                         |
| p-Nitrophenol (ug/kg) 92UJ 91UJ 180UJ  Pyrene (ug/kg) 1000000 350J 140J 600J  Total PAHs (ug/kg) 3480 2070 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)   | 1000000                                                                                                        | 110U              | 110U       | 230U         |                                                                                                                                                                                                                                  | Belon son e                             |
| Pyrene         (ug/kg)         1000000         350J         140J         600J           Total PAHs         (ug/kg)         3480         2070         6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ug/kg)   |                                                                                                                | 130U              | 130U       | <b>2</b> 50U | and the second second second                                                                                                                                                                                                     |                                         |
| Total PAHs (ug/kg) 3480 2070 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ug/kg)   |                                                                                                                | 92UJ              | 91UJ       | 180UJ        |                                                                                                                                                                                                                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)   | 1000000                                                                                                        | 350J              | 140J       | 600J         |                                                                                                                                                                                                                                  |                                         |
| Total Semivolatile Organics (ug/kg) 6050 3720 8900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ug/kg)   | annen menerala di kalendari di 1900 di | 3480              | 2070       | 6230         | a maranamana marana and a tanàna mandri dia mandri mandri mandri mandri mandri mandri mandri mandri mandri man                                                                                                                   | 400000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Semivolatile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ug/kg)   |                                                                                                                | 6050              | 3720       | 8900         |                                                                                                                                                                                                                                  |                                         |

ug/kg: micrograms per kilogram

# Page: 1 of 1 Date: 08/20/2009

# TABLE 5 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSS-20<br>CMSS-20<br>10/19/2005 | CMSS-21<br>CMSS-21<br>10/19/2005 | CMSS-22<br>CMSS-22<br>10/19/2005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|---------------------------|---------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Aroclor 1016              | (ug/kg)                   |                           | 2.9U                             | 2.8U                             | 2.9U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |
| Aroclor 1221              | (ug/kg)                   |                           | 4.5U                             | 4.3U                             | 4.5U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Aroclor 1232              | (ug/kg)                   |                           | 6.7U                             | 6.5U                             | 6.7U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$\$\$7 (FC) 5 1                        |
| Aroclor 1242              | (ug/kg)                   |                           | 5.90                             | 5.BU                             | 5.9U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Aroclor 1248              | (ug/kg)                   |                           | 2.9U                             | 2.8U                             | <b>2.</b> 9U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200000                                  |
| Aroclar 1254              | (ug/kg)                   |                           | 1.90                             | 1.8∪                             | 1,9U                             | 7.<br>18. 18. 18. 18. 18. 18. 18. 18. 18. 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| Aroclor 1260              | (ug/kg)                   |                           | 4.8U                             | 4.6U                             | 4.8U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>99</b> 88888                         |
| Total PCBs (surface soil) | (ug/kg)                   | 25000                     | 0:                               | 0                                | Ó                                | e de la companya de l |                                         |

ug/kg: micrograms per kilogram

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 1 of 4

Date: 08/20/2009

CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

| LE TYPE: Soil |                           |                                |                                       |                                       |                                       |                                       |                                       |
|---------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| NSTITUENT     | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | GMSB-51<br>CMSB-51(1-2)<br>05/01/2008 | CMSB-52<br>CMSB-52(1-2)<br>05/02/2008 | CMSB-61<br>CMSB-61(4-6)<br>03/12/2009 | CMSB-61<br>CMSB-61(6-8)<br>03/12/2009 | CMSB-62<br>CMSB-62(2-4)<br>03/12/2009 |
| ercury        | (mg/kg)                   | 0.81                           | 45.609JD                              | 7.3JD                                 | 1,4DJ                                 | 0.332DJ                               | 969DJ                                 |

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 2 of 4

Date: 08/20/2009

CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 05/01/2008 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| CONSTITUENT                    | SITE SAMPLE ID DATE | Part 375<br>Residental<br>SCOs | CMSB-62<br>CMSB-62(4-6)<br>03/12/2009 | CMSB-62<br>CMSB-62(1-2)<br>03/12/2009 | CMSB-63<br>CMSB-63(1-2)<br>03/12/2009 | CMSB-63<br>CMSB-63(2-4)<br>03/12/2009 | CMSB-63<br>CMSB-63(4-6)<br>03/12/2009 |
|--------------------------------|---------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Mercury                        | (mg/kg)             | 0.81                           | 27.200DJ                              | 19.300DJ                              | 1.7DJ                                 | 0.021UJ                               | 0.047DJ                               |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                | •                                     |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       | •                                     |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                     |                                |                                       |                                       |                                       |                                       |                                       |
| mg/kg: milligrams per kilogram |                     |                                |                                       |                                       |                                       |                                       |                                       |

Page: 3 of 4 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SUBSURFACE SOIL SAMPLE RESULTS

RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| ONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-64<br>CMSB-64(4-6)<br>03/12/2009 | CMSB-64<br>CMSB-64(1-2)<br>03/12/2009 | CMSB-64<br>CMSB-64(2-4)<br>03/12/2009 | CMSB-68<br>CMSB-68(1-2)<br>03/12/2009 | CMSB-68<br>CMSB-68(2-4)<br>03/12/2009 |
|------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| lercury    | (mg/kg)                   | 0.81                           | 0.021UJ                               | 1,4DJ                                 | 0.044DJ                               | 2.3D                                  | 0.186D                                |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       | •                                     |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 4 of 4

Date: 08/20/2009

# CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 05/01/2008 thru 05/20/2009 - Inclusive

| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375 Residental SCOs | CMSB-68<br>CMSB-68(4-6)<br>03/12/2009 | CMSB-69<br>CMSB-69(1-2)<br>03/12/2009 | CMSB-69<br>CMSB-69(2-4)<br>03/12/2009 | CMSB-69<br>CMSB-69(4-6)<br>03/12/2009 | CMSB-70<br>CMSB-70 (1-2)<br>05/20/2009 |
|-------------|---------------------------|--------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| Mercury     | (mg/kg)                   | 0.81                     | 0.055DJ                               | 0.571D                                | 0,880D                                | 0.656D                                | 0,249D                                 |

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 1 of 22

Date: 08/20/2009

CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

| ONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-11<br>CMSB-11(2-4)<br>10/19/2005 | CMSB-12<br>CMSB-12(2-4)<br>10/19/2005 | CMSB-12<br>CMSB-12(4-6)<br>10/19/2005 | CMSB-12<br>CMSB-12(6-8)<br>10/19/2005 | CMSB-13<br>CMSB-13(2-4)<br>10/19/2005 |
|-------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| lercury                       | (mg/kg)                   | 0.81                           | 8.4D                                  | 5.6D                                  | 0.778D                                | 0.134D                                | 32.800D                               |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               | ·                         |                                | a                                     | •                                     |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
| g/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       |                                       |

Page: 2 of 22 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| ONSTITUENT                     | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-14<br>CMSB-14(2-4)<br>10/19/2005 | CMSB-15<br>CMSB-15(2-4)<br>10/19/2005 | CMSB-16<br>CMSB-16(2-4)<br>10/19/2005 | CMSB-17<br>CMSB-17(2-4)<br>10/19/2005 | CMSB-18<br>CMSB-18-(2-4)<br>10/19/2005 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| lercury                        | (mg/kg)                   | 0.81                           | 8/9D                                  | 46.800D                               | 2:4D                                  | 0.331DJ                               | 1.7DJ                                  |
|                                |                           |                                | . <u>.</u>                            |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       | •                                     |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
| ng/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       |                                        |

Page: 3 of 22 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| ONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-19<br>CMSB-19(2-4)<br>10/19/2005 | CMSB-20<br>CMSB-20(2-4)<br>10/19/2005 | CMSB-21<br>CMSB-21(2-4)<br>10/19/2005 | CMSB-22<br>CMSB-22(2-4)<br>10/19/2005 | CMSB-23<br>CMSB-23(2-4)<br>10/19/2005 |
|-------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| lercury                       | (mg/kg)                   | 0.81                           | 0.482DJ                               | 0.386DJ                               | 0.195DJ                               | 4.1JD                                 | 5.9D                                  |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       | 4.                                    |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       | •                                     |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           | ,                              |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
| g/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       |                                       |

Page: 4 of 22

Date: 08/20/2009

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-24<br>CMSB-24(2-4)<br>10/19/2005 | CMSB-25<br>CMSB-25(2-4)<br>10/19/2005 | CMSB-26<br>CMSB-26(2-4)<br>10/19/2005 | CMSB-27<br>CMSB-27(2-4)<br>10/19/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CMSB-29<br>CMSB-29(0-2)<br>10/19/2005 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| lercury                        | (mg/kg)                   | 0.81                           | 0.299DJ                               | 0.727D                                | 2,0D                                  | 0.259D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.321DJ                               |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| •                              |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                | •                                     |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                |                           |                                |                                       |                                       |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| ng/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       | and the second of the second o |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 5 of 22

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

# SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| SAMPLE ID<br>DATE | Residental<br>SCOs | CMSB-29(2-4)<br>10/19/2005 | CMSB-30(0-2)<br>10/19/2005 | CMSB-30(2-4)<br>10/19/2005                                    | CMSB-31(0-2)<br>10/19/2005                                                      | CMSB-31<br>CMSB-31(2-4)<br>10/19/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|--------------------|----------------------------|----------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (mg/kg)           | 0.81               | 0.147DJ                    | 0.177DJ                    | 0.673DJ                                                       | 0.609DJ                                                                         | 0.332DJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                 |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    | _                          |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    | <del>"</del>               |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                    |                            |                            |                                                               |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | DATE               | DATE SCOs                  | DATE SCOs 10/19/2005       | DATE SCOs 10/19/2005 10/19/2005  (mg/kg) 0.81 0.147DJ 0.177DJ | DATE SCOs 10/19/2005 10/19/2005 10/19/2005 (mg/kg) 0.81 0.147DJ 0.177DJ 0.673DJ | DATE SCOs 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 10/19/2005 1 |

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 6 of 22

Date: 08/20/2009

CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| STITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-32<br>CMSB-32(2-4)<br>10/19/2005 | CMSB-33<br>CMSB-33(1-2)<br>05/01/2008 | CMSB-33<br>CMSB-33(2-4)<br>05/01/2008 | CMSB-34<br>CMSB-34(1-2)<br>05/01/2008 | CMSB-34<br>CMSB-34(2-4)<br>05/01/2008 |
|----------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| cury     | (mg/kg)                   | 0.81                           | 1.4D                                  | 39,000D                               | 8.6D                                  | 14.500□                               | 11,300D                               |
|          |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       | •                                     |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       |                                       |                                       |                                       |                                       |
|          |                           | •                              |                                       |                                       |                                       |                                       |                                       |
|          |                           |                                |                                       | ·                                     |                                       |                                       |                                       |
|          |                           |                                | •                                     |                                       |                                       |                                       |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

# SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| ONSTITUENT                     | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-35<br>CMSB-35(1-2)<br>05/01/2008 | CMSB-35<br>CMSB-35(2-4)<br>05/01/2008 | CMSB-36<br>CMSB-36(1-2)<br>05/01/2008 | CMSB-36<br>CMSB-36(2-4)<br>05/01/2008 | CMSB-37<br>CMSB-37(1-2)<br>05/01/2008 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| lercury                        | (mg/kg)                   | 0.81                           | 26.600DJ                              | 0.195UJ                               | 54,100DJ                              | 22.500DJ                              | 9.1D                                  |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                | •                                     |                                       |                                       | •                                     |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                | ·                         |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
| ıg/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       |                                       |

Page: 7 of 22

Date: 08/20/2009

TABLE 7 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

Page: 8 of 22 Date: 08/20/2009

PERIOD:

| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-37<br>CMSB-37(2-4)<br>05/01/2008 | CMSB-37<br>CMSB-37(4-6)<br>05/01/2008 | CMSB-38<br>CMSB-38(1-2)<br>05/01/2008 | CMSB-38<br>CMSB-38(2-4)<br>05/01/2008 | CMSB-38<br>CMSB-38(4-6)<br>05/01/2008 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Mercury                        | (mg/kg)                   | 0.81                           | 55,600DJ                              | 5.0DJ                                 | 18.200DJ                              | 0.213UJ                               | 0.075UJ                               |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       | ·                                     | •                                     |                                       |                                       |
|                                |                           |                                | a                                     | ,                                     |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
| ng/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       | <u> </u>                              |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 9 of 22

Date: 08/20/2009

# CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| DNSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-39<br>CMSB-39(1-2)<br>05/01/2008 | CMSB-39<br>CMSB-39(2-4)<br>05/01/2008 | CMSB-39<br>CMSB-39(4-6)<br>05/01/2008 | CMSB-40<br>CMSB-40(1-2)<br>05/01/2008 | CMSB-41<br>CMSB-41(1-2)<br>05/01/2008 |
|------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| ercury     | (mg/kg)                   | 0.81                           | 26.400JD                              | 4.0JD                                 | 2,0JD                                 | 19.400JD                              | 3.2JD                                 |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       | •                                     |                                       |
|            |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

Page: 10 of 22

Date: 08/20/2009

# SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| ONSTITUENT                     | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-41<br>CMSB-41(2-4)<br>05/01/2008 | CMSB-41<br>CMSB-41(4-6)<br>05/01/2008 | CMSB-43<br>CMSB-43(1-2)<br>05/02/2008 | CMSB-43<br>CMSB-43(2-4)<br>05/02/2008 | CMSB-43<br>CMSB-43(4-6)<br>05/02/2008 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| 1ercury                        | (mg/kg)                   | 0.81                           | 2.0JD                                 | 0.184JD                               | 8.6JD                                 | 2:3JD                                 | 0.620JD                               |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|                                |                           |                                | ·                                     |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
| ıg/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       |                                       |

TABLE 7
LONG ISLAND RAIL ROAD - 17 SUBSTATIONS
CEDAR MANOR SUBSTATION
SUBSURFACE SOIL SAMPLE RESULTS
INDUSTRIAL USE SOIL CLEANUP OBJECTIVES
MERCURY

Page: 11 of 22

Date: 08/20/2009

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| Mercury     | (mg/kg)                   | 0.81                           | 0.378JD                               | 2.9DJ                                 | 2,2DJ                                 | 1.8DJ                                 | 0.944DJ                               |
|-------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-43<br>CMSB-43(6-8)<br>05/02/2008 | CMSB-44<br>CMSB-44(1-2)<br>05/02/2008 | CMSB-44<br>CMSB-44(2-4)<br>05/02/2008 | CMSB-44<br>CMSB-44(4-6)<br>05/02/2008 | CMSB-44<br>CMSB-44(6-8)<br>05/02/2008 |
|             |                           |                                |                                       | 2000 P.<br>2000 <u>S</u>              |                                       |                                       |                                       |

mg/kg: milligrams per kilogram

•

Page: 12 of 22 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-45<br>CMSB-45(1-2)<br>05/01/2008 | CMSB-45<br>CMSB-45(2-4)<br>05/01/2008 | CMSB-45<br>CMSB-45(4-6)<br>05/01/2008 | CMSB-46<br>CMSB-46(2-4)<br>05/01/2008 | CMSB-46<br>CMSB-46(4-6)<br>05/01/2008 |
|-------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Mercury     | (mg/kg)                   | 0.81                           | 33.700JD                              | 0.194JD                               | 0.082JD                               | 31.700DJ                              | 1,2DJ                                 |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
| •           |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |
|             |                           |                                |                                       |                                       |                                       |                                       |                                       |

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 13 of 22

Date: 08/20/2009

CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| ONSTITUENT | SITÉ<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-46<br>CMSB-46(1-2)<br>05/01/2008 | CMSB-46<br>CMSB-46(6-8)<br>05/01/2008 | CMSB-47<br>CMSB-47(1-2)<br>05/01/2008 | CMSB-47<br>CMSB-47(2-4)<br>05/01/2008 | CMSB-47<br>CMSB-47(4-6)<br>05/01/2008 |
|------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| lercury    | (mg/kg)                   | 0.81                           | 7. <b>4</b> DJ                        | 0.326UJ                               | 10.100DJ                              | 8.3DJ                                 | 6.6DJ                                 |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |
|            |                           |                                |                                       |                                       |                                       |                                       |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

Page: 14 of 22

Date: 08/20/2009

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

| ONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-48<br>CMSB-48(1-2)<br>05/02/2008 | CMSB-48<br>CMSB-48(2-4)<br>05/02/2008 | CMSB-48<br>CMSB-48(4-6)<br>05/02/2008 | CMSB-48<br>CMSB-48(6-8)<br>05/02/2008 | CMSB-49<br>CMSB-49(1-2)<br>05/02/2008 |
|-------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| ercury                        | (mg/kg)                   | 0.81                           | 23.700DJ                              | 1:6DJ                                 | 1,0DJ                                 | 0.211UJ                               | 3:7JD                                 |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                | •                                     |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
| g/kg: milligrams per kilogram |                           |                                |                                       |                                       | 44,4,44                               |                                       |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 15 of 22

Date: 08/20/2009

# CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| Mercury     | (mg/kg)   | 0.81       | 10.500JD     | 5.1DJ        | 10,600DJ     | 0.198UJ      | 0.079UJ      |
|-------------|-----------|------------|--------------|--------------|--------------|--------------|--------------|
|             | DATE      | SCOs       | 05/02/2008   | 05/02/2008   | 05/02/2008   | 05/02/2008   | 05/02/2008   |
| CONSTITUENT | SAMPLE ID | Residental | CMSB-49(2-4) | CMSB-49(4-6) | CMSB-49(6-8) | CMSB-53(1-2) | CMSB-53(2-4) |
|             | SITE      | Part 375   | CMSB-49      | CMSB-49      | CMSB-49      | CMSB-53      | CMSB-53      |
|             |           |            |              |              |              |              |              |
|             |           |            |              |              |              |              |              |
|             |           |            | 100          |              |              |              |              |

Page: 16 of 22 Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

# SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-53<br>CMSB-53(4-6)<br>05/02/2008 | CMSB-54<br>CMSB-54(1-2)<br>05/02/2008 | CMSB-54<br>CMSB-54(2-4)<br>05/02/2008 | CMSB-54<br>CMSB-54(4-6)<br>05/02/2008 | CMSB-55<br>CMSB-55(1-2)<br>05/02/2008 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Mercury                        | (mg/kg)                   | 0.81                           | 0.212UJ                               | 0.073UJ                               | 0.136UJ                               | 0.113UJ                               | 0.129UJ                               |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                | a                                     |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       | · ·                                   |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                       |
| ng/kg: milligrams per kilogram |                           |                                | ,                                     |                                       | <del></del>                           |                                       |                                       |

Page: 17 of 22

Date: 08/20/2009

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

# CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-55<br>CMSB-55(2-4)<br>05/02/2008 | CMSB-55<br>CMSB-55(4-6)<br>05/02/2008   | CMSB-56<br>CMSB-56(1-2)<br>05/02/2008 | CMSB-56<br>CMSB-56(2-4)<br>05/02/2008 | CMSB-56<br>CMSB-56(4-6)<br>05/02/2008 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Mercury                        | (mg/kg)                   | 0.81                           | 0.075UJ                               | 0.072UJ                                 | 1.70                                  | 0.679D                                | 0.115D                                |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                | a                                     |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
|                                |                           |                                |                                       |                                         |                                       |                                       |                                       |
| ng/kg: milligrams per kilogram |                           |                                |                                       | *************************************** |                                       |                                       |                                       |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 18 of 22

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

# SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

| MPLE TYPE: Soil |           |            |              |              |              | -            |              |
|-----------------|-----------|------------|--------------|--------------|--------------|--------------|--------------|
| The second of   |           |            |              |              |              |              |              |
|                 |           |            |              |              |              |              |              |
|                 | SITE      | Part 375   | CMSB-57      | CMSB-57      | CMSB-57      | CMSB-58      | CMSB-58      |
| CONSTITUENT     | SAMPLE ID | Residental | CMSB-57(1-2) | CMSB-57(2-4) | CMSB-57(4-6) | CMSB-58(1-2) | CMSB-58(2-4) |
|                 | DATE      | SCOs       | 05/02/2008   | 05/02/2008   | 05/02/2008   | 03/12/2009   | 03/12/2009   |
| Mercury         | (mg/kg)   | 0.81       | 1.1D         | 0.559D       | 0.077U       | 34.500D      | 1.6D         |
|                 |           |            |              |              |              |              |              |
|                 |           |            |              |              |              |              |              |
|                 |           |            |              |              |              |              |              |
|                 |           |            |              |              |              |              |              |
|                 |           |            |              |              |              |              |              |

# LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 19 of 22

Date: 08/20/2009

# CEDAR MANOR SUBSTATION

SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

|             | 10 (10 m)<br>10 (10 m)<br>10 (10 m) |                        |                         |                         |                         |                         |                            |
|-------------|-------------------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID                   | Part 375<br>Residental | CMSB-58<br>CMSB-58(4-6) | CMSB-59<br>CMSB-59(1-2) | CMSB-59<br>CMSB-59(2-4) | CMSB-59<br>CMSB-59(4-6) | CMSB-59A<br>CMSB-59A (6-8) |
|             | DATE                                | SCOs                   | 03/12/2009              | 03/12/2009              | 03/12/2009              | 03/12/2009              | 05/20/2009                 |
| Mercury     | (mg/kg)                             | 0.81                   | 0.021U                  | 18.200D                 | 19.400D                 | 49.400D                 | 0.257D                     |

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 20 of 22

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

#### SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

| ONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-60<br>CMSB-60(1-2)<br>03/12/2009 | CMSB-60<br>CMSB-60(2-4)<br>03/12/2009 | CMSB-60<br>CMSB-60(4-6)<br>03/12/2009 | CMSB-65<br>CMSB-65(1-2)<br>03/12/2009 | CMSB-65<br>CMSB-65(2-4)<br>03/12/2009 |
|-------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| lercury                       | (mg/kg)                   | 0.81                           | 11.200D                               | 1,40                                  | 0.021U                                | 0.644D                                | 2.6D                                  |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                | á ,                                   |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
|                               |                           |                                |                                       |                                       |                                       |                                       |                                       |
| g/kg: milligrams per kilogram |                           |                                |                                       |                                       |                                       |                                       |                                       |

## TABLE 7 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

Page: 21 of 22 Date: 08/20/2009

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

SAMPLE TYPE:

Soil

| ONSTITUENT                     | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-65<br>CMSB-65(4-6)<br>03/12/2009 | CMSB-66<br>CMSB-66(1-2)<br>03/12/2009 | CMSB-66<br>CMSB-66(2-4)<br>03/12/2009 | CMSB-66<br>CMSB-66(4-5)<br>03/12/2009 | CMSB-71<br>CMSB-71 (1-2)<br>05/20/2009 |
|--------------------------------|---------------------------|--------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| 1 dercury                      | (mg/kg)                   | 0.81                           | 0.021U                                | 0.380D                                | 0.025DJ                               | 0.021U                                | 0.118D                                 |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                | vo.                                   |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                | æ                                     |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                | •                         |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
|                                |                           |                                |                                       |                                       |                                       |                                       | ٠                                      |
|                                |                           |                                |                                       |                                       |                                       |                                       |                                        |
| ng/kg: milligrams per kilogram |                           |                                |                                       | -                                     |                                       |                                       |                                        |

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 22 of 22

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

#### SUBSURFACE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 05/20/2009 - Inclusive

| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Part 375<br>Residental<br>SCOs | CMSB-71<br>CMSB-71 (2-3)<br>05/20/2009 | CMSB-72<br>CMSB-72 (1-2)<br>05/20/2009 | CMSB-72<br>CMSB-72 (2-4)<br>05/20/2009 | CMSB-73<br>CMSB-73 (1-2)<br>05/20/2009 | CMSB-73<br>CMSB-73 (2-4)<br>05/20/2009 |
|-------------|---------------------------|--------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Mercury     | (mg/kg)                   | 0.81                           | 0.022U                                 | 1.3D                                   | 1.20                                   | 0.308D                                 | 1.5D                                   |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                | ,                                      |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                | ٩                                      |                                        |                                        | ı                                      |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        |                                        |                                        |                                        |
|             |                           |                                |                                        |                                        | W                                      |                                        |                                        |

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

## SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

RCRA METALS

Page: 1 of 2

Date: 08/20/2009

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

|             | 1122                      |                     |                                       |                                       |                                       |                                       |                                       |
|-------------|---------------------------|---------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Industrial Use SCOs | GMSB-29<br>CMSB-29(0-2)<br>10/19/2005 | CMSB-29<br>CMSB-29(2-4)<br>10/19/2005 | CMSB-30<br>CMSB-30(0-2)<br>10/19/2005 | CMSB-30<br>CMSB-30(2-4)<br>10/19/2005 | CMSB-31<br>CMSB-31(0-2)<br>10/19/2005 |
| Arsenic     | (mg/kg)                   | 16                  | 3.940                                 | 3.540                                 | 3.730                                 | 3.560                                 | 3.550                                 |
| Barium      | (mg/kg)                   | 10000               | 52,2J                                 | 35.7J                                 | 52.4J                                 | 42.6J                                 | 46.5J                                 |
| Cadmium     | (mg/kg)                   | 60                  | 0.038U                                | 0.038U                                | 0.037U                                | 0.037U                                | 0.037U                                |
| Chromium    | (mg/kg)                   | 6800                | 14.6J                                 | 8:670J                                | 10.2J                                 | 11,2J                                 | L009.8                                |
| Lead .      | (mg/kg)                   | 3900                | 96.3J                                 | 25.2J                                 | 48.7J                                 | 52.1J                                 | 33.8J                                 |
| Selenium    | (mg/kg)                   | 6800                | 0.394U                                | 0.392U                                | 0.377U                                | 0,383U                                | 0,381U                                |
| Silver      | (mg/kg)                   | 6800                | 0.091UJ                               | 0.091UJ                               | 0.087UJ                               | 0.089UJ                               | 0.088UJ                               |

Page: 2 of 2

Date: 08/20/2009

# TABLE 8 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES RCRA METALS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

|             |                           |                           | er a programme                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|-------------|---------------------------|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | GMSB-31<br>CMSB-31(2-4)<br>10/19/2005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| Arsenic     | (mg/kg)                   | 16                        | 2.500                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| Barium      | (mg/kg)                   | 10000                     | 57.4J                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| Cadmium     | (mg/kg)                   | 60                        | 0.037U                                | C Vigigigia de la Principio del Colorida de Colorida d |                                                    |
| Chromium    | (mg/kg)                   | 6800                      | 10.5J <sub>n</sub>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| Lead        | (mg/kg)                   | 3900                      | 24.8J                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kai kiin ka ja |
| Selenium    | (mg/kg)                   | 6800                      | 0.378U                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| Silver      | (mg/kg)                   | 6800                      | 0.087UJ                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |

mg/kg: milligrams per kilogram

0

Page: 1 of 8 Date: 08/20/2009

# TABLE 9 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                   | SITE<br>SAMPLE ID | Industrial<br>Use  | CMSB-29<br>CMSB-29(0-2) | CMSB-29<br>CMSB-29(2-4) | CMSB-30<br>CMSB-30(0-2) | CMSB-30<br>CMSB-30(2-4) | CMSB-31<br>CMSB-31(0-2) |
|-------------------------------|-------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                               | DATE              | SCOs               | 10/19/2005<br>120U      | 10/19/2005<br>61U       | 10/19/2005<br>58U       | 10/19/2005<br>120U      | 10/19/2005<br>58U       |
| 2,2-oxyblis (1-chloropropane) | (ug/kg)           |                    |                         |                         |                         | 110U                    | 55U                     |
| 2,4,5-Trichlorophenol         | (ug/kg)           |                    | 120U                    | 58U                     | 55U                     |                         |                         |
| 2,4,6-Trichlorophenol         | (ug/kg)           |                    | 110U                    | 56U                     | 53U                     | 110U                    | 53U                     |
| 2,4-Dichlorophenol            | (ug/kg)           | Paragraphy Comment | 140U                    | 700                     | 67U                     | 140U                    | 66U                     |
| 2,4-Dimethylphenol            | (ug/kg)           |                    | 120U                    | 60U                     | 57U                     | 120U                    | 57U                     |
| 2,4-Dinitrophenol             | (ug/kg)           |                    | 650U                    | 330U                    | 310U                    | 630U                    | 310U                    |
| 2,4-Dinitrotoluene            | (ug/kg)           |                    | 110U                    | 56U                     | 53U                     | 110U                    | 53U                     |
| 2,6-Dinitrotoluene            | (ug/kg)           |                    | 1100                    | 54U                     | 51U                     | 100ሀ                    | 510                     |
| 2-Chloronaphthalene           | (ug/kg)           |                    | 130U                    | 63U                     | 60U                     | <b>120</b> U            | <b>60</b> U             |
| 2-Chlorophenol                | (ug/kg)           |                    | 1200                    | 61Ü                     | 58U                     | 120U                    | 57U                     |
| 2-Methylnaphthalene           | (ug/kg)           |                    | 130U                    | 64U                     | 60U                     | 730J                    | 60U                     |
| 3,3-Dichlorobenzidine         | (ug/kg)           |                    | 130U                    | 65U                     | 62U                     | 130U                    | 610                     |
| 4,6-Dinitro-o-cresol          | (ug/kg)           |                    | 150U                    | 74U                     | 70U                     | 140U                    | 70U                     |
| 4-Bromafluorobenzene          | (ug/kg)           |                    | 110U                    | 57U                     | 5 <b>4</b> U            | 110U                    | 540                     |
| 4-Chlorophenylphenyl ether    | (ug/kg)           |                    | 120U                    | 60U                     | 57U                     | 120U                    | 57U                     |
| Acenaphthene                  | (ug/kg)           | 1000000            | 140U                    | 68U                     | 6 <b>4</b> U            | 2900                    | 64U                     |
| Acenaphthylene                | (ug/kg)           | 1000000            | 120U                    | 62U                     | 59U                     | 120J                    | 58U                     |

Page: 2 of 8 Date: 08/20/2009

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                       | SITE SAMPLE ID DATE | Industrial<br>Use<br>SCOs | CMSB-29<br>CMSB-29(0-2)<br>10/19/2005 | CMSB-29<br>CMSB-29(2-4)<br>10/19/2005 | CMSB-30<br>CMSB-30(0-2)<br>10/19/2005 | CMSB-30<br>CMSB-30(2-4)<br>10/19/2005 | CMSB-31<br>CMSB-31(0-2)<br>10/19/2005 |
|-----------------------------------|---------------------|---------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Acetophenone                      | (ug/kg)             |                           | 110U                                  | 56U                                   | 53U                                   | 110U                                  | 52U                                   |
| Anthracene                        | (ug/kg)             | 1000000                   | 480J                                  | 240J                                  | 230J                                  | 4200                                  | 230J                                  |
| Atrazine                          | (ug/kg)             |                           | 120U                                  | 58U                                   | 55U                                   | 110U                                  | 55U                                   |
| Benzaldehyde                      | (ug/kg)             |                           | 160Ü                                  | 78U                                   | <b>74</b> U                           | 150U                                  | 740                                   |
| Benzo(a)anthracene                | (ug/kg)             | 11000                     | 110U                                  | 64J                                   | 56J                                   | 2200J                                 | 82J                                   |
| Benzo(a)pyrene                    | (ug/kg)             | 1100                      | 120U                                  | 610                                   | 58U                                   | 700J                                  | 59J                                   |
| Benzo(b)fluoranthene              | (ug/kg)             | 11000                     | 130J                                  | 75J                                   | 88J                                   | 1400                                  | 82J                                   |
| Benzo(ghi)perylene                | (ug/kg)             | 1000000                   | 130U                                  | 63U                                   | 60U                                   | 250J                                  | 59UJ                                  |
| Benzo(k)fluoranthene              | (ug/kg)             | 110000                    | 170U                                  | 84U                                   | 80U                                   | 370J                                  | 79UJ                                  |
| Biphenyl                          | (ug/kg)             |                           | 470U                                  | 240U                                  | 230U                                  | 560U                                  | 220U                                  |
| Bis(2-chloroethoxy)methane        | (ug/kg)             |                           | 130U                                  | 63U                                   | 59U                                   | 120U                                  | 59U                                   |
| Bis(2-chloroethyl)ether           | (ug/kg)             |                           | 120U                                  | 60U                                   | 57U                                   | 1200                                  | 57Ú                                   |
| Bis(2-ethylhexyl)phthalate (BEHP) | (ug/kg)             |                           | 720J                                  | 360J                                  | 350J                                  | 710J                                  | 370J                                  |
| Butyl benzyl phthalate            | (ug/kg)             |                           | 120U                                  | 62U                                   | 59U                                   | 120Ü                                  | 58U                                   |
| Caprolactam                       | (ug/kg)             |                           | 120UJ                                 | 61UJ                                  | 58UJ                                  | 120UJ                                 | 58UJ                                  |
| Carbazole                         | (ug/kg)             |                           | 120U                                  | 58U                                   | 55U                                   | 530J                                  | 55U                                   |
| Chrysene                          | (ug/kg)             | 110000                    | 420J                                  | 220J                                  | 220J                                  | 2000J                                 | 240J                                  |
| 1                                 |                     |                           |                                       |                                       |                                       |                                       |                                       |

Page: 3 of 8

Date: 08/20/2009

# TABLE 9 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSB-29<br>CMSB-29(0-2)<br>10/19/2005 | CMSB-29<br>CMSB-29(2-4)<br>10/19/2005 | CMSB-30<br>CMSB-30(0-2)<br>10/19/2005 | CMSB-30<br>CMSB-30(2-4)<br>10/19/2005 | CMSB-31<br>CMSB-31(0-2)<br>10/19/2005 |  |
|---------------------------|---------------------------|---------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|
| Dibenzo(a,h)anthracene    | (ug/kg)                   | 1100                      | 96U                                   | 48U                                   | 45U                                   | 93U                                   | 45UJ                                  |  |
| Dibenzofuran              | (ug/kg)                   | 1000000                   | 190J                                  | 63U                                   | 600                                   | 1200                                  | 90J                                   |  |
| Diethyl phthalate         | (ug/kg)                   |                           | 130U                                  | 66U                                   | 62U                                   | 130U                                  | 62U                                   |  |
| Dimethyl phthalate        | (ug/kg)                   |                           | 120U                                  | 61U                                   | 58U                                   | 1200                                  | 58U                                   |  |
| Di-n-butyl phthalate      | (ug/kg)                   |                           | 120U                                  | 240J                                  | 55U                                   | 110U                                  | 230J                                  |  |
| Di-n-octyl phthalate      | (ug/kg)                   |                           | 130U                                  | 65U                                   | <b>62</b> U                           | 1300                                  | 61UJ                                  |  |
| Fluoranthene              | (ug/kg)                   | 1000000                   | 590J                                  | 330J                                  | 350J                                  | 13000D                                | 320J                                  |  |
| Fluorene                  | (ug/kg)                   | 1000000                   | 400J                                  | 64U                                   | 61U                                   | 2500J                                 | 190J                                  |  |
| Hexachlorobenzene         | (ug/kg)                   | 12000                     | 120U                                  | 61U                                   | 58U                                   | 120U                                  | 57U                                   |  |
| Hexachlorobutadiene       | (ug/kg)                   |                           | 120U                                  | 590                                   | 56U                                   | 110U                                  | 55U                                   |  |
| Hexachlorocyclopentadiene | (ug/kg)                   |                           | 120U                                  | 61U                                   | 58U                                   | 120U                                  | 57U                                   |  |
| Hexachloroethane          | (ug/kg)                   |                           | 130U                                  | 65U                                   | 61U                                   | 1900                                  | 61Ú                                   |  |
| Indeno(1,2,3-cd)pyrene    | (ug/kg)                   | 11000                     | 97U                                   | 48U                                   | 46U                                   | 94U                                   | 46UJ                                  |  |
| Isophorone                | (ug/kg)                   |                           | 110U                                  | 57U                                   | 540                                   | 110U                                  | 5 <b>4</b> U                          |  |
| m-Nitroaniline            | (ug/kg)                   |                           | 99U ◆                                 | 50U                                   | <b>47</b> U                           | 96U                                   | <b>4</b> 7U                           |  |
| Naphthalene               | (ug/kg)                   | 1000000                   | 130U                                  | 65U                                   | 62U                                   | 590J                                  | 610                                   |  |
| Nitrobenzene              | (ug/kg)                   |                           | 170U                                  | 83U                                   | 79U                                   | 160U                                  | 78U                                   |  |

# TABLE 9 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

|                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Programme<br>Programme<br>Company     | e para pagina di di                   | Service Service                       |                                       |                                       |
|-----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CMSB-29<br>CMSB-29(0-2)<br>10/19/2005 | CMSB-29<br>CMSB-29(2-4)<br>10/19/2005 | CMSB-30<br>CMSB-30(0-2)<br>10/19/2005 | CMSB-30<br>CMSB-30(2-4)<br>10/19/2005 | CMSB-31<br>CMSB-31(0-2)<br>10/19/2005 |
| N-Nitrosodiphenylamine      | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130U                                  | 63U                                   | 60U                                   | 120U                                  | 59U                                   |
| N-Nitrosodipropylamine      | (ug/kg)                   | The state of the s | 130U                                  | 63U                                   | 60U                                   | 120U                                  | 59U                                   |
| o-Cresol                    | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130ປຶ                                 | 63U                                   | 60U                                   | 120U                                  | 60U                                   |
| o-Nitroaniline              | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97U                                   | 48U                                   | <b>4</b> 6U                           | 94U                                   | 46U                                   |
| o-Nitrophenol               | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120U                                  | 59U                                   | 56U                                   | 110U                                  | 55U                                   |
| p-Chloroaniline             | (ug/kg)                   | 4.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91U                                   | <b>45</b> U                           | 43U                                   | BBU                                   | 430                                   |
| p-Chloro-m-cresol           | (ug/kg)                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110U                                  | 53U                                   | 50U                                   | 100U                                  | 50U                                   |
| POP                         | (ug/kg)                   | 55000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180U                                  | 88U - 1                               | 84U                                   | 170U                                  | 83U                                   |
| p-Cresol                    | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120U                                  | 60U                                   | 57U                                   | 120U                                  | 57U                                   |
| Phenanthrene                | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500J                                  | 260J                                  | 230J                                  | 14000D                                | 280J                                  |
| Phenol                      | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120U                                  | 58U                                   | 55U                                   | 110U                                  | <b>54</b> U                           |
| p-Nitroaniline              | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130U                                  | 65U                                   | 62U                                   | 130U                                  | 61U                                   |
| p-Nitrophenol               | (ug/kg)                   | anten verinan en 1000 (1100 1100 1100 1100 1100 1100 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95UJ                                  | 47UJ                                  | 45UJ                                  | 91UJ                                  | 44UJ                                  |
| Pyrene                      | (ug/kg)                   | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200J                                  | 110J                                  | 160J                                  | 7000DJ                                | 200J                                  |
| Total PAHs                  | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2910                                  | 1299                                  | 1334                                  | 51230                                 | 1683                                  |
| Total Semivolatile Organics | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3630                                  | 2139                                  | 1684                                  | 54960                                 | 2675                                  |

Page: 5 of 8

Date: 08/20/2009

# TABLE 9 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE: Soil

| DNSTITUENT                  | SITE<br>SAMPLE ID | Industrial<br>Use | CMSB-31<br>CMSB-31(2-4) |                                                                                  |  |
|-----------------------------|-------------------|-------------------|-------------------------|----------------------------------------------------------------------------------|--|
|                             | DATE              | SCOs              | 10/19/2005              |                                                                                  |  |
| 2-oxyblis (1-chloropropane) | (ug/kg)           |                   | 58U                     |                                                                                  |  |
| 1,5-Trichlorophenol         | (ug/kg)           | 50 (March 1987)   | 55U                     |                                                                                  |  |
| -,6-Trichlorophenol         | (ug/kg)           |                   | 53U                     |                                                                                  |  |
| 4-Dichlorophenol            | (ug/kg)           |                   | 66U                     |                                                                                  |  |
| 4-Dimethylphenol            | (ug/kg)           |                   | 57U                     |                                                                                  |  |
| 4-Dinitrophenol             | (ug/kg)           |                   | 3100                    |                                                                                  |  |
| 4-Dinitrotoluene            | (ug/kg)           |                   | 53U <b>2</b>            |                                                                                  |  |
| 6-Dinitrotoluene            | (ug/kg)           |                   | 51U                     | 2                                                                                |  |
| -Chloronaphthalene          | (ug/kg)           |                   | 59U                     |                                                                                  |  |
| -Chlorophenol               | (ug/kg)           |                   | 57Ü                     |                                                                                  |  |
|                             |                   |                   |                         |                                                                                  |  |
| -Methylnaphthalene          | (ug/kg)           |                   | 60U                     |                                                                                  |  |
| 3-Dichlorobenzidine         | (ug/kg)           |                   | 61U                     | 2000                                                                             |  |
| 6-Dinitro-o-cresol          | (ug/kg)           |                   | 69U                     |                                                                                  |  |
| -Bromofluorobenzene         | (ug/kg)           |                   | 53Ü                     |                                                                                  |  |
| -Chlorophenylphenyl ether   | (ug/kg)           |                   | 57U                     |                                                                                  |  |
| cenaphthene                 | (ug/kg)           | 1000000           | 64U                     |                                                                                  |  |
| cenaphthylene               | (ug/kg)           | 1000000           | 58U                     | a aparan sana mankangan kan manana ang mananan na kan kan kan kan kan kan kan ka |  |
|                             |                   |                   |                         |                                                                                  |  |

Page: 6 of 8

Date: 08/20/2009

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| NSTITUENT                      | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSB-31<br>CMSB-31(2-4)<br>10/19/2005 |   |
|--------------------------------|---------------------------|---------------------------|---------------------------------------|---|
| etophenone                     | (ug/kg)                   |                           | 52U                                   |   |
| thracene                       | (ug/kg)                   | 1000000                   | 220J                                  |   |
| azine                          | (ug/kg)                   |                           | 55U                                   |   |
| nzaldehyde                     | (ug/kg)                   |                           | <b>73</b> U                           |   |
| nzo(a)anthracene               | (ug/kg)                   | 11000                     | 61J                                   |   |
| nzo(a)pyrene                   | (ug/kg)                   | 1100                      | 57U                                   |   |
| nzo(b)fluoranthene             | (ug/kg)                   | 11000                     | <b>49</b> J                           |   |
| nzo(ghi)perylene               | (ug/kg)                   | 1000000                   | 590                                   |   |
| nzo(k)fluoranthene             | (ug/kg)                   | 110000                    | <b>79</b> U                           |   |
| henyl                          | (ug/kg)                   |                           | 220U**                                |   |
| (2-chloroethoxy)methane        | (ug/kg)                   |                           | 59U                                   |   |
| (2-chloroethyl)ether           | (ug/kg)                   |                           | 57Ü                                   |   |
| (2-ethylhexyl)phthalate (BEHP) | (ug/kg)                   |                           | 340J                                  |   |
| tyl benzyl phthalate           | (ug/kg)                   |                           | 58U                                   |   |
| prolactam                      | (ug/kg)                   |                           | 58UJ                                  |   |
| rbazole                        | (ug/kg)                   |                           | 55U                                   |   |
| rysene                         | (ug/kg)                   | 110000                    | 210J                                  |   |
|                                |                           |                           |                                       | • |

Page: 7 of 8 Date: 08/20/2009

TABLE 9

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS
CEDAR MANOR SUBSTATION
SUBSURFACE SOIL SAMPLE RESULTS
INDUSTRIAL USE SOIL CLEANUP OBJECTIVES
SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT               | SITE<br>SAMPLE ID | Industrial<br>Use | CMSB-31<br>CMSB-31(2-4) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|-------------------|-------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dibenzo(a,h)anthracene    | DATÉ (ug/kg)      | SGOs<br>1100      | 10/19/2005<br>45U       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dibenzofuran              | (ug/kg)           | 1000000           | 59U                     | Contract Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | (ug/kg)           |                   | 62U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diethyl phthalate         |                   |                   | 58U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dimethyl phthalate        | (ug/kg)           | New Co.           | 55U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Di-n-butyl phthalate      | (ug/kg)           |                   | 61U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Di-n-octyl phthalate      | (ug/kg)           |                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluoranthene              | (ug/kg)           | 1000000           | 290J                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluorene                  | (ug/kg)           | 1000000           | 1901                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -lexachlorobenzene        | (ug/kg)           | 12000             | 57U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| łexachlorobutadiene       | (ug/kg)           |                   | 55U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lexachlorocyclopentadiene | (ug/kġ)           |                   | 57U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hexachloroethane          | (ug/kg)           | Acceptance        | 61U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ndeno(1,2,3-cd)pyrene     | (ug/kg)           | 11000             | <b>45</b> U             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sophorone                 | (ug/kg)           | 1000              | 540                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| m-Nitroaniline            | (ug/kg)           |                   | 47U                     | . All the contract of the cont |
| /aphthalene               | (ug/kg)           | 1000000           | 61U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vitrobenzene              | (ug/kg)           |                   | 78U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page: 8 of 8 Date: 08/20/2009

#### TABLE 9

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS
CEDAR MANOR SUBSTATION
SUBSURFACE SOIL SAMPLE RESULTS
INDUSTRIAL USE SOIL CLEANUP OBJECTIVES
SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| 200                        | 100 Billion (100 B |                   |                         |             |   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|-------------|---|
| 200 m                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |             |   |
|                            | SITE<br>SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indústrial<br>Use | GMSB-31<br>CMSB-31(2-4) | A Parameter |   |
| ONSTITUENT                 | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SCOs              | 10/19/2005              |             |   |
| -Nitrosodiphenylamine      | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 59U 🥷                   | -,-         |   |
| -Nitrosodipropylamine      | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 59U                     |             |   |
| -Cresol                    | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000000           | 59U                     |             |   |
| -Nitroaniline              | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | <b>4</b> 5U             |             |   |
| -Nitrophenol               | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 55U                     |             |   |
| -Chloroaniline             | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 43U                     |             |   |
| -Chloro-m-cresol           | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 49U                     | W (1)       |   |
| CP                         | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55000             | 83U                     |             |   |
| -Cresol                    | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000000           | 56U                     |             |   |
| henanthrene                | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000000           | 260J                    |             |   |
| henol                      | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000000           | <b>54</b> U             |             | - |
| -Nitroaniline              | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 61U                     |             |   |
| -Nitrophenol               | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 44UJ                    |             |   |
| yrene:                     | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000000           | Lee                     |             |   |
| otal PAHs                  | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 1379                    |             |   |
| otal Semivolatile Organics | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 2000                    |             |   |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | đ                       |             |   |

Page: 1 of 2 Date: 08/20/2009

## TABLE 10 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| State of the state |                           |                           |                                       |                                       |                                       |                                       |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSB-29<br>CMSB-29(0-2)<br>10/19/2005 | CMSB-29<br>CMSB-29(2-4)<br>10/19/2005 | CMSB-30<br>CMSB-30(0-2)<br>10/19/2005 | CMSB-30<br>CMSB-30(2-4)<br>10/19/2005 | CMSB-31<br>CMSB-31(0-2)<br>10/19/2005 |
| Aroclor 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | 2.9U                                  | 2.9U                                  | 2.8U                                  | 2.8U                                  | 2.8U                                  |
| Aroclor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | <b>4</b> ,6Ü                          | 4.5U                                  | 4.3U                                  | 4.4U                                  | 4.3U                                  |
| Aroclor 1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | 6.8U                                  | 6.8U                                  | 6.4U                                  | 6.5U                                  | 6.5U                                  |
| Aroclor 1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | 6.1U                                  | 6.0U                                  | 5.7U                                  | 5,8U                                  | 5,8U                                  |
| Aroclor 1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | 3.00 ື                                | 2.9U                                  | 2.8U                                  | 2.8U                                  | 2.8U                                  |
| Aroclor 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | 1.9U                                  | 1.9Ü                                  | 1.8U                                  | 1.8U                                  | 1.8U                                  |
| Aroclor 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   |                           | 4.9U                                  | 4.9U                                  | 20J                                   | <b>4.7</b> U                          | 4.6U                                  |
| Total PCBs (subsurface soil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                   | 25000                     | 0==                                   | ,0                                    | 20                                    | 0                                     | 0                                     |

Page: 2 of 2 Date: 08/20/2009

#### TABLE 10

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS
CEDAR MANOR SUBSTATION
SUBSURFACE SOIL SAMPLE RESULTS
INDUSTRIAL USE SOIL CLEANUP OBJECTIVES
POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| September 1997               |                           |                           |                                       |  |
|------------------------------|---------------------------|---------------------------|---------------------------------------|--|
| CONSTITUENT                  | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSB-31<br>CMSB-31(2-4)<br>10/19/2005 |  |
| Aroclor 1016                 | (ug/kg)                   |                           | · 2.7U                                |  |
| Aroclor 1221                 | (ug/kg)                   | 100                       | 4,3U                                  |  |
| Aroclor 1232                 | (ug/kg)                   | 2.000                     | 6.4U                                  |  |
| Aroclor 1242                 | (ug/kg)                   |                           | 5.7U                                  |  |
| Aroclor 1248                 | (ug/kg)                   | 33.                       | 2.8U                                  |  |
| Aroclor 1254                 | (ug/kg)                   |                           | 1.8U                                  |  |
| Aroclor 1260                 | (ug/kg)                   |                           | 4.6U·                                 |  |
| Total PCBs (subsurface soil) | (ug/kg)                   | 25000                     | 0 <b>a</b>                            |  |

Page: 1 of 4 Date: 08/20/2009

# TABLE 11 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION GROUNDWATER SAMPLE RESULTS TOGS GA STANDARDS AND GUIDANCE VALUES TAL METALS AND MERCURY

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Water

| 120 A       |                           | A-124         |                                  |                                     |                                  |                                     |                                  |
|-------------|---------------------------|---------------|----------------------------------|-------------------------------------|----------------------------------|-------------------------------------|----------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | CMGP-01<br>CMGP-01<br>10/20/2005 | CMGP-01<br>CMGP-01(F)<br>10/20/2005 | CMGP-02<br>CMGP-02<br>10/20/2005 | CMGP-02<br>CMGP-02(F)<br>10/20/2005 | CMGP-03<br>CMGP-03<br>10/20/2005 |
| luminum     | (ug/l)                    |               | 7020                             | 189                                 | 210                              | 138                                 | 290                              |
| ntimony     | (ug/l)                    | 3             | 7.0                              | 4.8                                 | 5.9                              | 5.2                                 | 6.1                              |
| rsenic      | (ug/l)                    | 25            | 3.3U                             | 3.3U                                | 3.3U                             | 3.3U                                | 3.3U                             |
| arium (1)   | (ug/l)                    | 1000          | 153                              | 56,8                                | 36.8                             | 37.8                                | 14.5                             |
| eryllium    | (ug/l)                    | 3             | 0.30                             | 0.09U                               | 0.09U                            | 0.09U                               | 0.09U                            |
| admium      | (ug/l)                    | 5             | 0,33U                            | 0.33U                               | 0.33U                            | 0.33U                               | 0.33U                            |
| alcium      | (ug/l)                    |               | 79200J                           | 72600J                              | 58300J                           | 60800J                              | 26700J                           |
| nromium     | (ug/l)                    | 50            | 165                              | 1,2                                 | 1.6                              | 0,38                                | 3.6                              |
| balt        | (ug/l)                    |               | 16.3                             | 4.1                                 | 1.9                              | 1.3                                 | 0.54                             |
| opper       | (ug/l).                   | 200           | 61.5                             | 4.3                                 | 5.9                              | 4.7                                 | 4.5                              |
| n           | (ug/l)                    | 300           | 41200                            | 277                                 | 2380                             | 556                                 | 1430                             |
| ad          | (ug/l)                    | 25            | 53.4 ↔                           | 2.8U                                | 2.8U                             | 2.8U                                | 2.8U                             |
| agnesium    | (ug/l)                    | 35000         | 13600J                           | 10800J                              | 6800J                            | 7300J                               | 2730J                            |
| anganese    | (ug/l)                    | 300           | 1560J                            | R19J                                | 293J                             | 307J                                | 120J                             |
| ercury      | (ug/l)                    | 0.7           | a,7700J                          | 0.1600J                             | 0.0300UJ                         | 0.1600J                             | 0.0300UJ                         |
| ckel        | (ug/l)                    | 100           | 59.6                             | 11.7                                | 9,8                              | 7.0                                 | 4.0                              |
| otassium    | (ug/l)                    |               | 11200J                           | 10000J                              | 4590J                            | 4940J                               | 2800J                            |

ug/l: micrograms per liter

Page: 2 of 4 Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION GROUNDWATER SAMPLE RESULTS

TOGS GA STANDARDS AND GUIDANCE VALUES

TAL METALS AND MERCURY

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Water

|             |                           |               |                                  | 549                                 |                                  |                                     |                                  |
|-------------|---------------------------|---------------|----------------------------------|-------------------------------------|----------------------------------|-------------------------------------|----------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | CMGP-01<br>CMGP-01<br>10/20/2005 | CMGP-01<br>CMGP-01(F)<br>10/20/2005 | GMGP-02<br>GMGP-02<br>10/20/2005 | CMGP-02<br>CMGP-02(F)<br>10/20/2005 | CMGP-03<br>CMGP-03<br>10/20/2005 |
| Selenium    | (ug/l)                    | 10            | 9.6                              | 6.5                                 | 3.0U                             | 3.0U                                | 3.0U                             |
| Silver      | (ug/l)                    | 50            | 1,6U                             | 1,6U                                | 1.6U                             | 1.6U                                | 1.60                             |
| Sodium      | (ug/l)                    | 20000         | 134000                           | 133000                              | 8620                             | 9010                                | 3810                             |
| Thallium    | (ug/l)                    | 0.5           | 3.10                             | 6.9                                 | 4,8                              | 3.10                                | 10,4                             |
| Vanadium    | (ug/l)                    |               | 17.1                             | 0.70U                               | 0.70U                            | 0.70U                               | 0.70U                            |
| Zinc        | (ug/l)                    | 2000          | 231                              | 23.0                                | 24.1                             | 15.4                                | 15.9                             |

ug/l: micrograms per liter

TABLE 11 Page: 3 of 4 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS Date: 08/20/2009

#### CEDAR MANOR SUBSTATION **GROUNDWATER SAMPLE RESULTS**

#### TOGS GA STANDARDS AND GUIDANCE VALUES

TAL METALS AND MERCURY

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Water

|                            | SITE              | NYSDEC  | CMGP-03                  |
|----------------------------|-------------------|---------|--------------------------|
| CONSTITUENT                | SAMPLE ID<br>DATE | SCG     | CMGP-03(F)<br>10/20/2005 |
| Aluminum                   | (ug/l)            |         | 144                      |
| Antimony                   | (ug/l)            | 3       | 10.4                     |
| Arsenic                    | (ug/l)            | . 25    | 3.30                     |
| Barium                     | (ug/l)            | 1000    | 11.9                     |
| Beryllium                  | (ug/l)            | 3       | 0.09U                    |
| Cadmium                    | (ug/l)            | 5       | 0.33U<br>24800J          |
| Calcium  Chromium          | (ug/l)            | 50      | 0.47                     |
| Cobalt                     | (ug/l) .          | <b></b> | 2.0                      |
| Copper                     | (ug/l)            | 200     | 5.8                      |
| Iron                       | (ug/l)            | 300     | 211                      |
| Lead                       | (ug/l)            | 25      | 2.80                     |
| Magnesium                  | (ug/l)            | 35000   | 2600J                    |
| Manganese                  | (ug/l)            | 300     | 90.4J                    |
| Mercury                    | (ug/l)            | 0.7     | 0.1700J                  |
| Nickel                     | × (ug/l)          | 100     | 3.5                      |
| Potassium                  | (ug/l)            |         | 2640J                    |
|                            |                   |         |                          |
| ug/l: micrograms per liter |                   |         | a                        |
|                            |                   |         |                          |
|                            |                   |         |                          |

Page: 4 of 4 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS Date: 08/20/2009

CEDAR MANOR SUBSTATION

GROUNDWATER SAMPLE RESULTS

TOGS GA STANDARDS AND GUIDANCE VALUES

TAL METALS AND MERCURY

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Water

ug/l: micrograms per liter

Page: 1 of 3

Date: 08/20/2009

### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

## GROUNDWATER SAMPLE RESULTS TOGS GA STANDARDS AND GUIDANCE VALUES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Water

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | CMGP-01<br>CMGP-01<br>10/20/2005 | CMGP-02<br>CMGP-02<br>10/20/2005 | CMGP-03<br>CMGP-03<br>10/20/2005 |
|---------------------------|---------------------------|---------------|----------------------------------|----------------------------------|----------------------------------|
| 1,1,1-Trichloroethane     | (ug/l)                    | 5             | 0.32U                            | 0.32U                            | 0.32U                            |
| 1,1,2,2-Tetrachloroethane | (ug/l)                    | 5             | 0.30U                            | 0.30U                            | 0,30U                            |
| 1,1,2-Trichloroethane     | (ug/l)                    | 1             | 0.41U                            | 0.41U                            | 0.41U .                          |
| 1,1-Dichloroethane        | (ug/l) ·                  | 5             | 0.38U                            | 0,38U                            | 0,38U                            |
| 1,1-Dichloroethylene      | (ug/l)                    | 5             | 0.42U                            | 0.42U                            | 0.42U                            |
| 1,2,4-Trichlorobenzene    | (ug/l)                    | 5             | 0.46U                            | 0:46U                            | 0.46U                            |
| 1,2-Dichloroethane        | (ug/l)                    | 0.6           | 0.34U                            | 0.34U                            | 0.34U                            |
| 1,2-Dichloropropane       | (ug/l)                    | 1.00          | 0.40U                            | 0.40U                            | 0,40U                            |
| 2-Hexanone                | (ug/l)                    | 50            | 1.7U                             | 1.7U                             | 1.7∪                             |
| Acetone                   | (ug/l)                    | 50            | 2.30                             | 2.30                             | 2.3U                             |
| Benzene                   | (ug/l)                    | 1.0           | 0.39U                            | 0.39U                            | 0.39U                            |
| Benzene, 1-methylethyl-   | (ug/l)                    | 5             | 0.44U                            | 0.44U                            | 0.44U                            |
| Bromodichloromethane      | (ug/l)                    | 50            | 0.33U                            | 0.33U                            | 0.33U                            |
| Bramoform                 | (ug/l)                    | 50            | 0,32U                            | 0.32U                            | 0,320                            |
| Carbon disulfide          | (ug/l)                    | 60            | 0.40U                            | 0.40U                            | 0.40U                            |
| Carbon tetrachloride      | (ug/l)                    | 5             | 1.10                             | 1,10                             | 1,10                             |
| Chlorobenzene             | (ug/l)                    | 5             | 0.47U                            | 0.47U                            | 0.47U                            |

ug/l: micrograms per liter

#### Page: 2 of 3 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS Date: 08/20/2009 CEDAR MANOR SUBSTATION

#### GROUNDWATER SAMPLE RESULTS TOGS GA STANDARDS AND GUIDANCE VALUES **VOLATILE ORGANIC COMPOUNDS**

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

ug/l: micrograms per liter

Water

| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | G<br>CMGP-01<br>CMGP-01<br>10/20/2005 | CMGP-02<br>CMGP-02<br>10/20/2005 | CMGP-03<br>CMGP-03<br>10/20/2005 |           |
|-----------------------------|---------------------------|---------------|---------------------------------------|----------------------------------|----------------------------------|-----------|
| Chloroethane                | (ug/l)                    | 5             | 0.83U                                 | 0.83U                            | 0.83U                            |           |
| Chloroform                  | (идЛ)                     | 7             | 0.33U                                 | 0.33U                            | 0.33U                            |           |
| cis-1,2-Dichloroethylene    | (ug/l)                    | 5             | 0.29U                                 | 0.29U                            | 0.29U                            |           |
| cis-1,3-Dichlaropropene     | (ug/l)                    | 0.4           | 0.36∪                                 | 0.36U                            | 0,36U                            | 7.00 mg/s |
| Cyclohexane                 | (ug/l)                    |               | 0.36U                                 | 0.36U                            | 0.36U                            |           |
| DBCP                        | (ug/l)                    | 0.04          | 0.38U                                 | 0.38U                            | 0.38U                            |           |
| Dibromochloromethane        | (ug/l)                    | 50            | 0.26U                                 | 0.26U                            | <b>0.2</b> 6U                    |           |
| Dichlorodifluoromethane     | (ug/l)                    | 5             | 0.17U                                 | 0,17U                            | 0.17U                            |           |
| EDB                         | (ug/l)                    | 0.0006        | 0.32U                                 | 0.32U                            | 0.32U                            |           |
| Ethene, 1,2-dichloro-, (E)- | (ug/l)                    | 5             | 0.40U                                 | 0.40U                            | 0.40U                            |           |
| Ethylbenzene                | (ug/l)                    | 5             | 0.45U                                 | 0.45U                            | 0.45U                            |           |
| Freon 113                   | (ug/l)                    |               | 1.3U                                  | 1,3Ü                             | 1,3U                             |           |
| m-Dichlorobenzene           | (ug/l)                    | 3             | 0.50U                                 | 0.50U                            | 0.50U                            |           |
| Methyl Acetate              | (ug/l)                    |               | فا0,200                               | 0.20U                            | 0.20U                            |           |
| Methyl bromide              | (ug/l)                    | 5             | 0.41U                                 | 0.41U                            | 0.41U                            |           |
| Methyl chloride             | (ug/l)                    | 5             | 0.34U                                 | 0.34U                            | 0.34U                            |           |
| Methyl ethyl ketone         | (ug/l)                    | 50            | 1.1U                                  | 1.1U                             | 1.1U                             |           |
|                             |                           |               |                                       |                                  |                                  |           |

Page: 3 of 3 Date: 08/20/2009

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION GROUNDWATER SAMPLE RESULTS

TOGS GA STANDARDS AND GUIDANCE VALUES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/20/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Water

|                              |                           |               |                                  | 1.00                             |                                  |                                                           |
|------------------------------|---------------------------|---------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------|
| CONSTITUENT                  | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | CMGP-01<br>CMGP-01<br>10/20/2005 | CMGP-02<br>CMGP-02<br>10/20/2005 | CMGP-03<br>CMGP-03<br>10/20/2005 |                                                           |
| Methyl isobutylketone (MIBK) | (ug/l)                    |               | 1.6U                             | 1.6U                             | 1.6U                             |                                                           |
| Methylcyclohexane            | (ug/l)                    |               | 0,34نځ                           | 0.34U                            | 0,34U                            |                                                           |
| Methylene chloride           | (ug/l)                    | 5             | 0.43U                            | 0.43U                            | 0.43U                            |                                                           |
| Methyltert-butylether        | (ug/l)                    | 10            | 0.28U                            | 0,2BÜ                            | 0.28U                            |                                                           |
| o-Dichlorobenzene            | (ug/l)                    | 3             | 0.44U                            | 0.44U                            | 0.44U                            |                                                           |
| o-Xylene                     | (ug/l)                    | 5 4 5         | 0,46U                            | 0.46U                            | 0.46U                            |                                                           |
| p-Dichlorobenzene            | (ug/l)                    | 3             | 0.54U                            | 0.54U                            | 0.54U                            |                                                           |
| s-Xylene                     | (ug/l)                    | 5             | 1,2U                             | 1,2U                             | 1.2U                             |                                                           |
| tyrene                       | (ug/l)                    | 5             | 0.41U                            | 0.41U                            | 0. <b>4</b> 1U                   |                                                           |
| etrachloroethylene           | (ug/l)                    | 5             | 0.48U                            | 0.48U                            | 0.48U                            |                                                           |
| Toluene                      | (ug/l)                    | 5             | 0.36U                            | 0.36U                            | <b>0.36</b> U                    |                                                           |
| rans-1,3-Dichloropropene     | (ug/l)                    | 0.4           | 0.32U                            | 0.32U                            | 0.32U                            |                                                           |
| Trichloroethylene            | (ug/l)                    | 5             | 0.46U                            | 0.46U                            | 0.46U                            | aanna aan in dhaan ah |
| Trichlorofluoromethane       | (ug/l)                    | 5             | 0,220                            | 0.22U                            | 0.22U                            |                                                           |
| /inyl chloride               | (ug/l)                    | 2             | 0.33U                            | 0.33U                            | 0.33U                            |                                                           |
| TOTAL VOLATILE ORGANICS      | (ug/l)                    |               | 0                                | 0                                | 0                                |                                                           |

e

ug/l: micrograms per liter

Page: 1 of 3

Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

| ONSTITUENT | SITÉ<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-02A<br>CMSB-02A(10-11)<br>10/19/2005 | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20<br>10/20/2005 |
|------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| lercury    | (mg/kg)                   | 0.10               | <b>2.4</b> DJ                             | 0.061U                                    | 0.061U                                    | 0:174JD                                   | 0.059ป                                   |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    | n                                         |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           | ,                  |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           | ·                                         |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           | ·                  |                                           |                                           |                                           |                                           |                                          |

Page: 2 of 3 Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS
TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

| ONSTITUENT | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12<br>10/20/2005 |
|------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| lercury    | (mg/kg)                   | 0.10               | 0.061U                                    | 0.536JD                                   | 0.078JD                                   | 0.183JD                                   | 0.732JD                                  |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           | •                                         |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    | e                                         |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           | •                  |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |
|            |                           |                    |                                           |                                           |                                           |                                           |                                          |

Page: 3 of 3

Date: 08/20/2009

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

| DATE    | RSCOs   | CMSB-04A(12-14)<br>10/20/2005 |  |     |
|---------|---------|-------------------------------|--|-----|
| (mg/kg) | 0.10    | 0.611JD                       |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
| ·       |         |                               |  |     |
|         |         | •                             |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  |     |
|         |         |                               |  | 4.5 |
|         | (mg/kg) | (mg/kg) 0.10                  |  |     |

Page: 1 of 2

Date: 08/20/2009

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

## DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

RCRA METALS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

|             | entrantia                 | 11 Supplement      |                                           |                                           |                                           |                                           |                                           |
|-------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
| Arsenic     | (mg/kg)                   | 7.5                | ០.40ប៉                                    | 0.42U                                     | 0.42U                                     | 0.41U                                     | 0.41U                                     |
| Barium      | (mg/kg)                   | 300                | 13.1                                      | 20.2                                      | 15.6                                      | 13,9                                      | 19.3                                      |
| Cadmium     | (mg/kg)                   | 10                 | 0.03U                                     | 0.03U                                     | 0.04U                                     | 0.03U                                     | 0.03U                                     |
| Chromium    | (mg/kg)                   | 50                 | 7.3                                       | 8.6                                       | 7.8                                       | 5,0                                       | 7,9                                       |
| Lead        | (mg/kg)                   | 400                | 2,3                                       | 3,4                                       | 4.7                                       | 3.7                                       | 4.6                                       |
| Manganese   | (mg/kg)                   |                    |                                           | 144(34)03-40                              |                                           |                                           |                                           |
| Selenium    | (mg/kg)                   | 2                  | 0.35U                                     | 0.36U                                     | 0.36U                                     | 0.36U                                     | 0.49                                      |
| Silver      | (mg/kg)                   | 199                | 0,19                                      | 0.27                                      | 0.41                                      | 0.29                                      | 0.50                                      |

### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 2 of 2

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

RCRA METALS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

|             | 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                    |                                           |                                           |                                           | Property of the Control of the Contr |                                           |
|-------------|-----------------------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE               | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
| Arsenic     | (mg/kg)                                 | 7.5                | 1.5                                       | 0.40U                                     | 0.41U                                     | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.41U                                     |
| Barium      | (mg/kg)                                 | 300                | 16.1                                      | 31.0                                      | 18.4                                      | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.0                                      |
| Cadmium     | (mg/kg)                                 | 10                 | 0.03U                                     | 0.03U                                     | 0.03U                                     | 0.03U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03U                                     |
| Chromium    | (mg/kg)                                 | 50                 | 8.1                                       | 7.1                                       | 10.8                                      | 9,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,9                                       |
| Lead        | (mg/kg)                                 | 400                | 43.5                                      | 7.4                                       | 7.1                                       | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.4                                       |
| Manganese   | (mg/kg)                                 |                    |                                           |                                           | 295J                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Selenium    | (mg/kg)                                 | 2                  | 0.82                                      | 0.35U                                     | 0.68                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87                                      |
| Silver      | (mg/kg)                                 |                    | 0,40                                      | 0.57                                      | 0.64                                      | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,51                                      |

mg/kg: milligrams per kilogram

a

Page: 1 of 6

Date: 08/20/2009

# TABLE 15 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
|---------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1,1,1-Trichloroethane     | (ug/kg)                   | 800                | 0.44U                                     | 0.44U                                     | 0.44U                                     | 0.43U                                     | 2.2U                                      |
| 1,1,2,2-Tetrachloroethane | (ug/kg)                   | 600                | 0,33Ų                                     | 0.33U                                     | 0.33U                                     | 0,32U                                     | 1.6U                                      |
| 1,1,2-Trichloroethane     | (ug/kg)                   |                    | 0.31U                                     | 0.31U                                     | 0.31U                                     | 0.31U                                     | 1.5U                                      |
| 1,1-Dichloroethane        | (ug/kg)                   | 200                | 0.28U                                     | 0,29U                                     | 0.28U                                     | 0,28U                                     | 1,40                                      |
| 1,1-Dichloroethylene      | (ug/kg)                   | 400                | 0.60U                                     | 0.61U                                     | 0.61U                                     | 0.60U                                     | 3.0U                                      |
| 1,2,4-Trichlorobenzene    | (ug/kg)                   | 3400               | 0.72U                                     | 0.73Ü                                     | 0.72U                                     | 0.71U                                     | 3.6U                                      |
| 1,2-Dichloroethane        | (ug/kg)                   | 100                | 0.32U                                     | 0.33U                                     | 0.32U                                     | 0.32U                                     | 1.6U                                      |
| 1,2-Dichloropropane       | (ug/kg)                   |                    | 0.42U                                     | 0.42U                                     | 0.42U                                     | 0.41ป                                     | 2.1U                                      |
| 2-Hexanone                | (ug/kg)                   | •                  | 3.8U                                      | 3.8U                                      | 3.8U                                      | 3.8U                                      | 19U                                       |
| Acetone                   | (ug/kg)                   | 200                | 3.50                                      | 3.6U                                      | 3.6U                                      | 3.5U                                      | <b>5</b> 3J                               |
| Benzene                   | (ug/kg)                   | 60                 | 0.42U                                     | 0.42U                                     | 0.42U                                     | 0.41U                                     | 2.1U                                      |
| Benzene, 1-methylethyl-   | (ug/kg)                   |                    | 0.44U                                     | 0,44U                                     | 0.44U                                     | 0.43U                                     | 2.20                                      |
| Bromodichloromethane      | (ug/kg)                   |                    | 0.35U                                     | 0.36U                                     | 0.35U                                     | 0.35U                                     | 1.7U                                      |
| Bromoform                 | (ug/kg)                   |                    | 0.33U                                     | 0.33U                                     | 0.33U                                     | 0.321                                     | 1.6U                                      |
| Carbon disulfide          | (ug/kg)                   | 2700               | 0.39U                                     | 0.39U                                     | 0.39U                                     | 0.38U                                     | 1.9U                                      |
| Carbon tetrachloride      | (ug/kg)                   | 600                | 0.47U                                     | 0.47U                                     | 0.47U                                     | 0,46U                                     | 2.3U                                      |
| Chlorobenzene             | (ug/kg)                   | 1700               | 0.38U                                     | 0.38U                                     | 0.38∪                                     | 0.38U                                     | 1.9U                                      |

Page: 2 of 6 Date: 08/20/2009

## TABLE 15 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| PATRIC CONTROL OF THE | SITE              | TAGM 4046       | CMSB-03A                      | CMSB-03A                      | CMSB-03A                      | CMSB-03A                      | CMSB-03A                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE ID<br>DATE | RSCOs           | CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A(10-12)<br>10/20/2005 |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)           | 1900            | 2.2U                          | 2.3U                          | 2.3U                          | 2.2U                          | 11U                           |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ug/kg)           | 300             | 0.37U                         | 0.37U                         | 0.37U                         | 0.36U                         | 1.8U                          |
| cis-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ug/kg)           |                 | 0.34U                         | 0,35U                         | 0.34U                         | 0.34U                         | 1.7U                          |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/kg)           |                 | 0.35U                         | 0,35U                         | 0.35U                         | 0.3 <b>4</b> U                | 1.7U                          |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ug/kg)           |                 | 0.34U                         | 0.34U                         | 0.34U                         | 0.34U                         | 1.7U                          |
| DBCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)           |                 | 0.99ปี                        | 1.00                          | 1.00                          | 0.980                         | 4.9U                          |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)           |                 | 0.24U                         | 0.24U                         | 0.24U                         | 0.24U                         | 1.2U                          |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/kg)           | 1991 (No. 1991) | 0,90U                         | 0.91U                         | 0.91U                         | 0,89U                         | <b>4</b> ,5U                  |
| EDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/kg)           |                 | 0.42U                         | 0.43U                         | 0.43U                         | 0.42U                         | <b>2.1</b> U                  |
| Ethene, 1,2-dichloro-, (E)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ug/kg)           | 300             | 0.67U                         | 0.6BU                         | 0.68U                         | 0,66U                         | 3,3U                          |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)           | 5500            | 0.37U                         | 0.38U                         | 0.37U                         | 0.37U                         | 1.8U                          |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ug/kg)           | (edication)     | 0.70U                         | 0.710                         | 0.70U                         | 0.690                         | 3.5U                          |
| m-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ug/kg)           | 1600            | 0.59U                         | 0.59U                         | 0.59U                         | 0.58U                         | <b>2</b> ,9U                  |
| Methyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ug/kg)           |                 | 0.910                         | D.92U                         | 0.91U                         | 0.90U                         | 4.5U                          |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ug/kg)           |                 | 2.1U                          | 2.2U                          | 2.1U                          | 2.1U                          | <b>11</b> U                   |
| Methyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ug/kg)           |                 | 0.90U                         | 0.91U                         | 0.90U                         | 0,89Ü                         | 4,41)                         |
| Methyl ethyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/kg)           | 300             | 3.0U                          | 3.0U                          | 3.0U                          | 2.9U                          | 15U                           |

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 3 of 6

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

## DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                  | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
|------------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Methyl isobutylketone (MIBK) | (ug/kg)                   | 1000               | 2.1U                                      | 2.1U                                      | 2.1U                                      | 2.1U                                      | 10U                                       |
| Methylcyclohexane            | ¹ (ug/kg)                 |                    | 0.44U                                     | 0.45U                                     | 0,44U                                     | 0.44U                                     | 2.2U                                      |
| Methylene chloride           | (ug/kg)                   | 100                | 1.9U                                      | 1.9U                                      | 1.9U                                      | 1.9U                                      | 9.5U                                      |
| Methyltert-butylether        | (ug/kg)                   |                    | 0.39U                                     | 0,39U                                     | 0.39U                                     | 0.38U                                     | 1,9U                                      |
| o-Dichlorobenzene            | (ug/kg)                   | 7900               | 0.41U                                     | 0.41U                                     | 0.41U                                     | 0.40U                                     | 2.0U                                      |
| o-Xylene                     | (ug/kg)                   | Section 2015       | 0.40U                                     | 0.41U                                     | 0.41U                                     | 0.40U                                     | 2.0U                                      |
| p-Dichlorobenzene            | (ug/kg)                   | 8500               | 0.57U                                     | 0.58U                                     | 0.58U                                     | 0.57U                                     | 2.8U                                      |
| p-Xylene                     | (ug/kg)                   |                    | 0.91U                                     | 0.92U                                     | 0.91U                                     | 0.90U                                     | 4.5U                                      |
| Styrene                      | (ug/kg)                   |                    | 0.48นู                                    | 0.49U                                     | 0.49U                                     | 0.48U                                     | 2.4U                                      |
| Tetrachloroethylene          | (ug/kg)                   | 1400               | 0.77U                                     | 0.7BU                                     | 0.77U                                     | 0,76υ                                     | 3,8U                                      |
| Toluene                      | (ug/kg)                   | 1500               | 0.43U                                     | 0.43U                                     | 0.43U                                     | 0.42U                                     | <b>2.1</b> U                              |
| trans-1,3-Dichloropropene    | (ug/kg)                   | 1000               | 0.38U                                     | 0.39U                                     | 0.38U                                     | 0.38U                                     | 1.9U                                      |
| Trichloroethylene            | (ug/kg)                   | 700                | 0.32U                                     | 0.33U                                     | 0.33U                                     | 0.32U                                     | 1.6U                                      |
| Trichlorofluoromethane       | (ug/kg)                   |                    | 1,3Ü                                      | 1.30                                      | 1.30                                      | 1,3U                                      | 6.5U                                      |
| Vinyl chloride               | (ug/kg)                   | 200                | 0.86U                                     | 0.87U                                     | 0.87U                                     | 0.86U                                     | 4.3U                                      |
| TOTAL VOLATILE ORGANICS      | (ug/kg)                   | 10000              | 0.0                                       | 0.0                                       | 0.0                                       | 0.0                                       | 53                                        |

Page: 4 of 6

Date: 08/20/2009

### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### **CEDAR MANOR SUBSTATION**

## DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 1,1,1-Trichloroethane     | (ug/kg)                   | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.45U                                     | 0.43U                                     | 0.44U                                     | 0.44U                                     | 0.44U                                     |
| 1,1,2,2-Tetrachloroethane | (ug/kg)                   | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,33U                                     | 0,32U                                     | <b>0.33</b> U                             | 0,33U                                     | 0.33U                                     |
| 1,1,2-Trichloroethane     | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31U                                     | 0.30U                                     | 0.31U                                     | 0.31U                                     | 0.31U                                     |
| 1,1-Dichloroethane        | (ug/kg)                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.29U                                     | 0,28U                                     | 0,28U                                     | 0,28U                                     | 0 <b>.2</b> 8U                            |
| 1,1-Dichloroethylene      | (ug/kg)                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61U                                     | 0.59U                                     | 0.60U                                     | 0.60U                                     | 0.61U                                     |
| 1,2,4-Trichlorobenzene    | (ug/kg)                   | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,73U                                     | 0.71U                                     | 0.72U                                     | 0.72U                                     | 0.72U                                     |
| 1,2-Dichloroethane        | (ug/kg)                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.33U                                     | 0.32U                                     | 0.32U                                     | 0.32U                                     | 0.32U                                     |
| 1,2-Dichloropropane       | (ug/k <b>g</b> )          | Committee of the Commit | 0.42U                                     | 0.41U                                     | 0.42U                                     | 0.42U                                     | 0.42U                                     |
| 2-Hexanone                | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8∪                                      | <b>3.7</b> U                              | 3.8U                                      | 3.8U                                      | 3.8U                                      |
| Acetone                   | (ug/kg)                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.60                                      | 3,5U                                      | 3.5U                                      | 3,50                                      | 3.6U                                      |
| Benzene                   | (ug/kg)                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.43U                                     | 0.41U                                     | 0.42U                                     | 0.42U                                     | 0.42U                                     |
| Benzene, 1-methylethyl-   | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.44U                                     | 0.43U                                     | 0.44U                                     | 0.44U                                     | 0.44U                                     |
| Bromodichloromethane      | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36ሆ                                     | 0.35U                                     | 0.35U                                     | 0.35U                                     | 0.35U                                     |
| Bromoform                 | (ug/kg)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,33U                                     | 0,32U                                     | 0.33U                                     | 0.33U                                     | 0,33U                                     |
| Carbon disulfide          | (ug/kg)                   | 2700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.39U                                     | 0.38U                                     | 0.39U                                     | 0.39U                                     | 0,39U                                     |
| Carbon tetrachloride      | (ug/kg)                   | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.47U                                     | 0.46U                                     | 0.470                                     | 0.47ม                                     | 0.47U                                     |
| Chlorobenzene             | (ug/kg)                   | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.39U                                     | 0.37U                                     | 0.38U                                     | 0.38U                                     | 0.38U                                     |

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION Page: 5 of 6

Date: 08/20/2009

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

|                             |                           |                    |                                           |                                           | 100 miles                                 |                                           |                                           |
|-----------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
| Chloroethane                | (ug/kg)                   | 1900               | 2.3U                                      | 2.2U                                      | 2.2U                                      | 2.2U                                      | 2.3U                                      |
| Chloroform                  | (ug/k <b>g</b> )          | 300                | 0,37U                                     | 0,36U                                     | 0.37U                                     | 0.37∪                                     | 0.37U                                     |
| cis-1,2-Dichloroethylene    | (ug/kg)                   |                    | 0.35U                                     | 0.34U                                     | 0.34U                                     | 0.34U                                     | 0.34U                                     |
| cis-1,3-Dichloropropene     | (ug/kg)                   |                    | 0.350                                     | 0.34U                                     | 0,35U                                     | 0.35U                                     | 0,35U                                     |
| Cyclohexane                 | (ug/kg)                   |                    | 0.35U                                     | 0.33U                                     | 0.34U                                     | 0.34U                                     | 0.34U                                     |
| DBCP                        | (ug/kg)                   |                    | 1.00                                      | 0.97U                                     | 0.99U                                     | 0.99U                                     | 1.00                                      |
| Dibromochloromethane        | (ug/kg)                   |                    | 0.25U                                     | 0.24U                                     | 0.24U                                     | 0.24U                                     | 0.24U                                     |
| Dichlorodifluoromethane     | (ug/kg)                   |                    | 0.91U                                     | 0.880                                     | 0.90U                                     | 0.90U                                     | 0.90U                                     |
| EDB                         | (ug/kg)                   |                    | 0.43U                                     | 0.42U                                     | 0.42U                                     | 0.42U                                     | 0.42U                                     |
| Ethene, 1,2-dichloro-, (E)- | (ug/kg)                   | 300                | 0.68U                                     | D:66U                                     | 0.67U                                     | 0.670                                     | 0.68U                                     |
| Ethylbenzene                | (ug/kg)                   | 5500               | 0.38U                                     | 0.37U                                     | 0.37U                                     | 0.37U                                     | 0.37U                                     |
| Freon 113                   | (ug/kg)                   |                    | 0.71U                                     | 0.69U                                     | 0.70U                                     | 0.70U                                     | 0.70U                                     |
| m-Dichlorobenzene           | (ug/kg)                   | 1600               | 0.59U                                     | 0.58U                                     | 0.59U                                     | 0.59U                                     | 0.59U                                     |
| Methyl Acetate              | (ug/kg)                   |                    | 0.92U                                     | 0.89U                                     | 0,91U                                     | 0,91U                                     | 0.91ป                                     |
| Methyl bromide              | (ug/kg)                   |                    | <b>2.2</b> U                              | 2.1U                                      | 2.1U                                      | 2.1U                                      | 2.1U                                      |
| Methyl chloride             | (ug/kg)                   |                    | 0.910                                     | 0,880                                     | 0.90U                                     | 0.90U                                     | 0,90U                                     |
| Methyl ethyl ketone         | (ug/kg)                   | 300                | 3.0U                                      | 2.9U                                      | 3.0U                                      | 3.0U                                      | 3.0U                                      |
|                             |                           |                    |                                           |                                           |                                           |                                           | (                                         |

### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

Page: 6 of 6

Date: 08/20/2009

#### CEDAR MANOR SUBSTATION

## DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

VOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                     | SITE<br>SAMPLE ID | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16) | CMSB-04A<br>CMSB-04A(16-18) | CMSB-04A<br>CMSB-04A(18-20) | CMSB-04A<br>CMSB-04A(10-12) | CMSB-04A<br>CMSB-04A(12-14) |
|---------------------------------|-------------------|--------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                                 | DATE              |                    | 10/20/2005                  | 10/20/2005                  | 10/20/2005                  | 10/20/2005                  | 10/20/2005                  |
| Methyl isobutylketone (MIBK)    | (ug/kg)           | 1000               | 2.1U                        | 2.0U                        | 2.1U                        | 2.1U                        | 2.1U                        |
| Methylcyclohexane               | (ug/kg)           |                    | 0.45U                       | 0.43U                       | 0.44U                       | 0,44U                       | 0.44U                       |
| Methylene chloride              | (ug/kg)           | 100                | 1.9U                        | 1.9U                        | 1.9U                        | 1.9U                        | 1.9U                        |
| Methyltert-butylether           | (ug/kg)           |                    | 0.39U                       | 0.38U                       | 0,39U                       | 0.39U                       | 0,39U                       |
| o-Dichlorobenzene               | (ug/kg)           | 7900               | 0.41U                       | 0.40U                       | 0. <b>4</b> 1U              | 0.41U                       | 0.41U                       |
| o-Xylene                        | (ug/kg)           |                    | 0.41U                       | 0.40U                       | 0.41U                       | 0.40U                       | 0.41U                       |
| p-Dichlorobenzene               | (ug/kg)           | 8500               | 0.58U                       | 0.56U                       | -0.57U                      | 0.57U                       | 0.58U                       |
| p-Xylene                        | (ug/kg)           |                    | 0.92U                       | 0.89Ŭ                       | 0.91U                       | 0.91U                       | 0.91U                       |
| Styrene                         | (ug/kg)           |                    | 0.49U                       | 0.48U                       | 0.49U                       | 0.48U                       | 0.49U                       |
| Tetrachloroethylene             | (ug/kg)           | 1400               | 0.78U                       | 0.75U                       | 0.77U                       | 0.77U                       | 0.77U                       |
| Toluene                         | (ug/kg)           | 1500               | 0.43U                       | 0.42U                       | 0.43U                       | 0.43U                       | 0.43U                       |
| trans-1,3-Dichloropropene       | (ug/kg)           | 10000              | 0.39U 🌉 🥌                   | 0.37U                       | 0.38U                       | 0.36U                       | 0.38U                       |
| Trichloroethylene               | (ug/kg)           | 700                | 0.33U                       | 0.32U                       | 0.32U                       | 0.32U                       | 0.33U                       |
| Trich <b>lorofl</b> uoromethane | (ug/kg)           |                    | 1.3U                        | 1,90                        | 1.3U                        | 1,3U                        | 1.3U                        |
| vinyl chloride                  | (ug/kg)           | 200                | 0.88U                       | 0.85U                       | 0.87U                       | 0.86U                       | 0.87U                       |
| TOTAL VOLATILE ORGANICS         | (ug/kg)           | 10000              | 0.0                         | 0.0                         | 0.0                         | 0.0                         | 0.0                         |

Page: 1 of 8 Date: 08/20/2009

## TABLE 16 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

## TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                   | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
|-------------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 2,2-oxyblis (1-chloropropane) | (ug/kg)                   |                    | 55U                                       | 56UJ                                      | 56U                                       | 55U                                       | 55U                                       |
| 2,4,5-Trichlorophenol         | (ug/kg)                   | 100                | 52U                                       | 53UJ                                      | 53U                                       | 52U                                       | 52U                                       |
| 2,4,6-Trichlorophenol         | (ug/kg)                   |                    | 50U                                       | 51UJ                                      | 51U                                       | 50U                                       | 50U                                       |
| 2,4-Dichlorophenol            | (ug/kg)                   | 400                | 63U                                       | 64UJ                                      | 64U                                       | 63U                                       | 63U                                       |
| 2,4-Dimethylphenol            | (ug/kg)                   |                    | 54U                                       | 55UJ                                      | 55U                                       | 54U                                       | 54U                                       |
| 2,4-Dinitrophenol             | (ug/kg)                   | 200                | <b>2</b> 90U                              | 30001                                     | 300U                                      | 290U                                      | 290U                                      |
| 2,4-Dinitrotoluene            | (ug/kg)                   |                    | 50U                                       | 51UJ                                      | 51U                                       | 50U                                       | 50U                                       |
| 2,6-Dinitrotoluene            | (ug/kg)                   | 1000               | 48U                                       | 49UJ                                      | 490                                       | 48U                                       | 48Ú                                       |
| 2-Chloronaphthalene           | (ug/kg)                   |                    | 57U                                       | 57UJ                                      | 58U                                       | 56U                                       | 56U                                       |
| 2-Chlorophenol                | (ug/kg)                   | 800                | 55U                                       | 55UJ                                      | 55U                                       | 540                                       | 54U                                       |
| 2-Methylnaphthalene           | (ug/kg)                   | 36400              | 57U                                       | 58UJ                                      | 58U                                       | 57U                                       | 57U                                       |
| 3,3-Dichlorobenzidine         | (ug/kg)                   |                    | 59U                                       | 59UJ                                      | 59U                                       | 58Ü                                       | 58U                                       |
| 4,6-Dinitro-o-cresol          | (ug/kg)                   |                    | 66U                                       | 67UJ                                      | 67U                                       | 66U                                       | 66U                                       |
| 4-Bromofluorobenzene          | (ug/kg)                   |                    | 51U                                       | 52UJ                                      | 52U                                       | 51U                                       | 51U                                       |
| 4-Chlorophenylphenyl ether    | (ug/kg)                   |                    | 54U                                       | 55UJ                                      | 55U                                       | 54U                                       | 54U                                       |
| Acenaphthene                  | (ug/kg)                   | 50000              | 61U                                       | 61UJ                                      | 62U                                       | 600                                       | 610                                       |
| Acenaphthylene                | (ug/kg)                   | 41000              | 56U                                       | 56UJ                                      | 56U                                       | <b>55</b> U                               | 55U                                       |
|                               |                           |                    |                                           |                                           |                                           |                                           |                                           |

### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

## DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

|                                   | The state of the s |                    | F 700                                     |                                           | 7 (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |                                           |                                           |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|
| CONSTITUENT                       | SITE<br>SAMPLE ID<br>DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005    | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
| Acetophenone                      | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 50U                                       | 51UJ                                      | 51U                                          | 50U                                       | 50U                                       |
| Anthracene                        | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50000              | 52U                                       | 52UJ                                      | 52U                                          | 51U                                       | 51U                                       |
| Atrazine                          | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 52U                                       | 53UJ                                      | 53U                                          | 52U                                       | 52U                                       |
| Benzaldehyde                      | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 70U                                       | 71UJ                                      | 710                                          | 70Ü                                       | 70U                                       |
| Benzo(a)anthracene                | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 224              | <b>4</b> 8U                               | 48UJ                                      | 49U                                          | 48U                                       | <b>4</b> 8U                               |
| Benzo(a)pyrene                    | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                 | 55U                                       | 55UJ                                      | .55U                                         | 54ป                                       | 5 <b>4</b> Ü                              |
| Benzo(b)fluoranthene              | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1100               | 38U                                       | 38UJ                                      | 38U                                          | 37U                                       | 37U                                       |
| Benzo(ghl)perylene                | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50000              | 57U                                       | 57UJ                                      | 57U                                          | 56U                                       | 56 <b>U</b>                               |
| Benzo(k)fluoranthene              | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1100               | 75U                                       | 76UJ                                      | 76U                                          | 75U                                       | 75U                                       |
| Biphenyl                          | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 56U                                       | 57UJ                                      | 57U                                          | 56U                                       | 56U                                       |
| Bis(2-chloroethoxy)methane        | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 56U                                       | 57UJ                                      | 57U                                          | 56U                                       | 56U                                       |
| Bis(2-chloroethyl)ether           | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 540                                       | 55UJ                                      | 55U                                          | 54U                                       | 5 <b>4</b> U                              |
| Bis(2-ethylhexyl)phthalate (BEHP) | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50000              | 66U                                       | 66UJ                                      | 120J                                         | 65U ·                                     | 65U                                       |
| Butyl benzyl phthalate            | - (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50000              | 55U                                       | 56UJ                                      | 56U                                          | 55U                                       | 55U                                       |
| Caprolactam                       | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 55U                                       | 56UJ                                      | 56U                                          | 55U                                       | 55U                                       |
| Carbazole                         | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 52U                                       | 53UJ                                      | 53Ü                                          | 520                                       | 52U                                       |
| Chrysene                          | (ug/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400                | 61U                                       | 62UJ                                      | 62U                                          | 61U                                       | 61U                                       |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                           |                                           |                                              | •                                         |                                           |

ug/kg: micrograms per kilogram

Page: 2 of 8

Date: 08/20/2009

Page: 3 of 8

Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

## DRY WELL SUBSURFACE SOIL SAMPLE RESULTS TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
|---------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Dibenzo(a,h)anthracene    | (ug/kg)                   | 14                 | 43U                                       | 43UJ                                      | 43U                                       | 43Ų                                       | 43U                                       |
| Dibenzofuran              | (úg/kg)                   | 6200               | 57U                                       | 57UJ                                      | 57U                                       | 56U                                       | 56U                                       |
| Diethyl phthalate         | (ug/kg)                   | 7100               | 59U                                       | 60UJ                                      | 60U                                       | 59U                                       | 59U                                       |
| Dimethyl phthalate        | (ug/kg)                   | 2000               | 55U                                       | 56UJ                                      | 56U                                       | 55U                                       | 55U                                       |
| Di-n-butyl phthalate      | (ug/kg)                   | 8100               | 52U                                       | 53UJ                                      | 53U                                       | 52U                                       | 52U                                       |
| Di-n-octyl phthalate      | (ug/kg)                   | 50000              | 58U                                       | 59UJ                                      | 59U                                       | 58U                                       | 58U                                       |
| Fluoranthene              | (ug/kg)                   | 50000              | 51U                                       | 51UJ                                      | 52U                                       | 51U                                       | 51U                                       |
| Fluorene                  | (ug/kg)                   | 50000              | 58U                                       | 58UJ                                      | 58U                                       | 57U                                       | 57U                                       |
| Hexachiorobenzene         | (ug/kg)                   | 410                | 55U                                       | 55UJ                                      | 55U                                       | 54U                                       | 54U .                                     |
| Hexachlorobutadiene       | (ug/kg)                   |                    | 53U                                       | 53UJ                                      | 53U                                       | 52U                                       | 52U                                       |
| Hexachlorocyclopentadiene | (ug/kg)                   |                    | 55U                                       | 55UJ                                      | 55U                                       | 54U                                       | 54U                                       |
| Hexachloroethane          | (ug/kg)                   |                    | 58U                                       | 59UJ                                      | 59U                                       | 58U                                       | 58U                                       |
| Indeno(1,2,3-cd)pyrene    | (ug/kg)                   | 3200               | <b>43</b> U                               | <b>44</b> UJ                              | <b>44</b> U                               | 43U                                       | 43U                                       |
| Isophorone                | (ug/kg)                   | 4400               | <b>51</b> U                               | 52UJ                                      | 52U                                       | 51U                                       | 51U                                       |
| m-Nitroaniline            | (ug/kg)                   | 500                | <b>45U </b> ◆                             | 45UJ                                      | <b>45</b> U                               | 44U                                       | 44U                                       |
| Naphthalene               | (ug/kg)                   | 13000              | 58U                                       | 59UJ                                      | 59U                                       | 58U                                       | 58U                                       |
| Nitrobenzene              | (ug/kg)                   | 200                | 75U                                       | 75UJ                                      | 76U                                       | 74U                                       | 74U                                       |

Page: 4 of 8 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS Date: 08/20/2009 CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
|-----------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| N-Nitrosodiphenylamine      | (ug/kg)                   |                    | 56U                                       | 57UJ                                      | 57U                                       | 56U                                       | 56U                                       |
| N-Nitrosodipropylamine      | (ug/kg)                   |                    | 57U                                       | 57UJ                                      | 57U                                       | 56U                                       | 56U                                       |
| o-Cresol                    | (ug/kg)                   | 100                | 57U °                                     | 57UJ                                      | 58U                                       | 56U                                       | 57U                                       |
| o-Nitroaniline              | (ug/kg)                   | 430                | 43UJ                                      | 44ÚJ                                      | 44UJ                                      | 49UJ                                      | 43UJ                                      |
| o-Nitrophenol               | (ug/kg)                   | 330                | 53U                                       | 53UJ                                      | 53U                                       | 52U                                       | 52U                                       |
| p-Chloroaniline             | (ug/kg)                   | 220                | <b>41</b> U                               | 41UJ                                      | 410                                       | 40Ü                                       | 410                                       |
| p-Chloro-m-cresol           | (ug/kg)                   | 240                | <b>4</b> 7U                               | 48UJ                                      | 48U                                       | 47U                                       | 47U                                       |
| PCP                         | (ug/kg)                   | 1000               | 79Ü                                       | 800J                                      | 80U                                       | 79U                                       | 79U                                       |
| p-Cresol                    | (ug/kg)                   | 900                | 54U                                       | 54UJ                                      | 55U                                       | 54U                                       | 54U                                       |
| Phenanthrene                | (ug/kg)                   | 50000              | <b>54</b> U                               | 55UJ                                      | 55U                                       | 5 <b>4</b> U                              | 54U                                       |
| Phenol                      | (ug/kg)                   | 30                 | 52U                                       | 52UJ                                      | 52U                                       | 51U                                       | 52U                                       |
| p-Nitroaniline              | (ug/kg)                   | 1949               | 58U                                       | 59UJ                                      | 59U                                       | 58U                                       | 58U                                       |
| p-Nitrophenol               | (ug/kg)                   | 100                | 42U                                       | 43UJ                                      | 43U                                       | <b>42</b> U                               | 42U                                       |
| Pyrene                      | (ug/kg)                   | 50000              | 60Ü                                       | 61ปป                                      | 61U                                       | 60U                                       | 60U                                       |
| Total PAHs                  | (ug/kg)                   | 500000             | 0                                         | 0                                         | 0                                         | 0                                         | 0                                         |
| Total Semivolatile Organics | (ug/kg)                   | 500000             | 0                                         | 0                                         | 120                                       | 0.0                                       | 0                                         |

Page: 5 of 8 Date: 08/20/2009

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

#### DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

|                               |                           |                                                                                                                |                                           |                                           | 27 (28)                                   |                                           |                                           |
|-------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| CONSTITUENT                   | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSGOs                                                                                             | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
| 2,2-oxyblis (1-chloropropane) | (ug/kg)                   |                                                                                                                | 56U                                       | 54U                                       | 55U                                       | 55U                                       | 55U                                       |
| 2,4,5-Trichlorophenol         | (ug/kg)                   | 100                                                                                                            | 53U                                       | 510                                       | 52U                                       | 52U                                       | 52U.                                      |
| 2,4,6-Trichlorophenol         | (ug/kg)                   |                                                                                                                | 51U                                       | 49U                                       | 50U                                       | 50U                                       | 50U                                       |
| 2,4-Dichlorophenal            | (ug/kg)                   | 400                                                                                                            | 64U                                       | 62U                                       | 63U                                       | 63U                                       | 63U                                       |
| 2,4-Dimethylphenol            | (ug/kg)                   |                                                                                                                | 55U                                       | 53U                                       | 5 <b>4</b> U                              | 54U                                       | 54U                                       |
| 2,4-Dinitrophenol             | (ug/kg)                   | 200                                                                                                            | 300U                                      | 290U                                      | 290U                                      | 290U                                      | 290U                                      |
| 2,4-Dinitrotoluene            | (ug/kg)                   | et (1967) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1966) (1 | 51U <b>*</b>                              | <b>49</b> U                               | 50U                                       | 50U                                       | 50U                                       |
| 2,6-Dinitrotoluene            | (ug/kg)                   | 1000                                                                                                           | 49U                                       | 48U                                       | 48U                                       | 48U                                       | 48U                                       |
| 2-Chloronaphthalene           | (ug/kg)                   |                                                                                                                | 58U                                       | 56U                                       | 57U                                       | 57U                                       | 56U                                       |
| 2-Chlorophenol                | (ug/kg)                   | 800                                                                                                            | 55U                                       | 54U                                       | 54U                                       | 54U                                       | 54U                                       |
| 2-Methylnaphthalene           | (ug/kg)                   | 36400                                                                                                          | 58U                                       | 56U                                       | 57U                                       | 57U                                       | 57U                                       |
| 3,3-Dichlorobenzidine         | (ug/kg)                   |                                                                                                                | 59U                                       | 58U                                       | 58U                                       | 58U                                       | 58U                                       |
| 4,6-Dinitro-o-cresol          | (ug/kg)                   |                                                                                                                | <b>67</b> U                               | 65U                                       | 66U                                       | 66U                                       | 66U                                       |
| 4-Bromofluorobenzene          | (ug/kg)                   |                                                                                                                | 52U                                       | 500                                       | <b>51</b> U                               | 510                                       | 51Ü                                       |
| 4-Chlorophenylphenyl ether    | (ug/kg)                   |                                                                                                                | <b>55</b> U                               | 53U                                       | 54U                                       | 54U                                       | 54U                                       |
| Acenaphthene                  | (ug/kg)                   | 50000                                                                                                          | 62Ü                                       | 60U                                       | 61U                                       | 61U                                       | 61U                                       |
| Acenaphthylene                | (ug/kg)                   | 41000                                                                                                          | 56U                                       | 55U                                       | 55U                                       | 55U                                       | 55U                                       |

ug/kg: micrograms per kilogram

•

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

Page: 6 of 8

Date: 08/20/2009

#### DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                       | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
|-----------------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Acetophenone                      | (ug/kg)                   |                    | 51U                                       | 49U                                       | 50U                                       | 50U                                       | 50U                                       |
| Anthracene                        | (ug/kg)                   | 50000              | 52U                                       | 51U                                       | 510                                       | 51U                                       | 51U                                       |
| Atrazine                          | (ug/kg)                   |                    | 53U                                       | 52U                                       | 52U                                       | 52U                                       | 52U                                       |
| Benzaldehyde                      | (ug/kg)                   |                    | 71U                                       | 69U                                       | 70U                                       | 70U                                       | 70U                                       |
| Benzo(a)anthracene                | (ug/kg)                   | 224                | 49U                                       | 47U                                       | 48U.                                      | 48U                                       | 48U                                       |
| Benzo(a)pyrene                    | (ug/kg)                   | 61                 | 56U                                       | 54U                                       | 55U                                       | 55U                                       | 54U                                       |
| Benzo(b)fluoranthene              | (ug/kg)                   | 1100               | 38U                                       | 37U                                       | 38U                                       | 38U                                       | 37U                                       |
| Benzo(ghl)perylene                | (ug/kg)                   | 50000              | 57U                                       | 56U                                       | 56U                                       | 56U                                       | 56U                                       |
| Benzo(k)fluoranthene              | (ug/kg)                   | 1100               | 76U                                       | <b>74</b> U                               | 75U                                       | 75U                                       | 75U                                       |
| Biphenyl                          | (ug/kg)                   |                    | 57U 🕈                                     | 55U                                       | 56U                                       | 56U                                       | 56U                                       |
| Bis(2-chloroethoxy)methane        | (ug/kg)                   |                    | 57U                                       | 55U                                       | 56U                                       | 56U                                       | 56U                                       |
| Bis(2-chloroethyl)ether           | (ug/kg)                   |                    | 55U                                       | 53U                                       | 54U                                       | 54Ú                                       | 54U                                       |
| Bis(2-ethylhexyl)phthalate (BEHP) | (ug/kg)                   | 50000              | 67U                                       | 65U                                       | 65U                                       | 66U                                       | 65U                                       |
| Butyl benzyl phthalate            | (ug/kg)                   | 50000              | 56U                                       | 54U                                       | 55U                                       | 55U                                       | 55U                                       |
| Caprolactam                       | (ug/kg)                   |                    | 56U                                       | 54U                                       | 55U                                       | 55U                                       | 55U                                       |
| Carbazole                         | (ug/kg)                   |                    | 53U                                       | 510                                       | 52U                                       | 52U                                       | 52U                                       |
| Chrysene                          | (ug/kg)                   | 400                | 62U                                       | 60U                                       | 61U                                       | 61U                                       | 61U                                       |
|                                   |                           |                    |                                           |                                           |                                           |                                           |                                           |

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

Page: 7 of 8

Date: 08/20/2009

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

|                           |                           |                    |                                           | Berger of the second                      |                                           |                                           |                                           |
|---------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
| Dibenzo(a,h)anthracene    | (ug/kg)                   | 14                 | 44U                                       | 42U                                       | <b>43</b> U                               | 43U                                       | 43U                                       |
| Dibenzofuran              | (ug/kg)                   | 6200               | 57Ü                                       | 56U                                       | 56U                                       | 56U                                       | 56U                                       |
| Diethyl phthalate         | (ug/kg)                   | 7100               | 60U                                       | 58U                                       | 59U                                       | 59U                                       | 59U                                       |
| Dimethyl phthalate        | (ug/kg)                   | 2000               | 56U                                       | 54U                                       | <b>55</b> U                               | 55U                                       | 55U                                       |
| Di-n-butyl phthalate      | (ug/kg)                   | 8100               | 53U                                       | 51U                                       | 5 <b>2</b> U                              | 52U                                       | 52U                                       |
| Di-n-octyl phthalate      | (ug/kg)                   | 50000              | 59U                                       | 57U                                       | 58U                                       | 58U                                       | 58U                                       |
| Fluoranthene              | (ug/kg)                   | 50000              | 52U                                       | 50U                                       | 51U                                       | 51U                                       | 51U                                       |
| Fluorene                  | (ug/kg)                   | 50000              | 59U                                       | 57U                                       | 58Ú                                       | 58U                                       | 57U                                       |
| Hexachlorobenzene         | (ug/kg)                   | 410                | 56U                                       | 54U                                       | 55U                                       | 55U                                       | 54U                                       |
| Hexachlorobutadiene       | (ug/kg)                   |                    | <b>53</b> U                               | 52U                                       | <b>52</b> U                               | 53U                                       | 52U                                       |
| Hexachlorocyclopentadiene | (ug/kg)                   |                    | 55U                                       | 54U                                       | 54U                                       | 54U                                       | 54U                                       |
| Hexachloroethane          | (ug/kg)                   | Maria P            | 59U                                       | 57U                                       | 58U                                       | 58U                                       | 58U                                       |
| Indeno(1,2,3-cd)pyrene    | (ug/kg)                   | 3200               | <b>44</b> U                               | 43U                                       | <b>43</b> U                               | <b>43</b> U                               | <b>43</b> U                               |
| Isophorone                | (ug/kg)                   | 4400               | 52U °                                     | 51U                                       | 51U                                       | 51U                                       | 51U                                       |
| m-Nitroaniline            | (ug/kg)                   | 500                | <b>4</b> 5U                               | <b>44</b> U                               | <b>44</b> U                               | 44U                                       | 44U                                       |
| Naphthalene               | (ug/kg)                   | 13000              | 59U                                       | 57U                                       | 58U                                       | 58U                                       | 58U                                       |
| Nitrobenzene              | (ug/kg)                   | 200                | 76U                                       | 73U                                       | 74U                                       | 75U                                       | 7 <b>4</b> U                              |

Page: 8 of 8 Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

#### DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES SEMIVOLATILE ORGANIC COMPOUNDS

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

PERIOD:

Soil

| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16<br>10/20/2005 | CMSB-04A<br>i) CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
|-----------------------------|---------------------------|--------------------|------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| N-Nitrosodiphenylamine      | (ug/kg)                   |                    | 57U <b>.</b>                             | 55U                                          | 56U                                       | 56U                                       | 56U                                       |
| N-Nitrosodipropylamine      | (ug/kg)                   |                    | 58U                                      | 56U                                          | 57U                                       | 57Ü                                       | 56Ü                                       |
| o-Cresol                    | (ug/kg)                   | 100                | 58U                                      | 56U                                          | 57U                                       | 57U                                       | 57U                                       |
| o-Nitroaniline              | (ug/kg)                   | 430                | 44UJ                                     | 43UJ                                         | 43UJ                                      | 43UJ                                      | 43UJ                                      |
| o-Nitrophenol               | (ug/kg)                   | 330                | 53U                                      | 5 <b>2</b> U                                 | 52U                                       | 53U                                       | 52U                                       |
| p-Chloroaniline             | (ug/kg)                   | 220                | 41U                                      | <b>4</b> 0U                                  | 41U                                       | 41U                                       | 41U                                       |
| p-Chloro-m-cresol           | (ug/kg)                   | 240                | 48U                                      | <b>4</b> 6U                                  | 47U                                       | 47U                                       | 47U                                       |
| PCP                         | (ug/kg)                   | 1000               | 80U                                      | 78U                                          | <b>79</b> U                               | 79U                                       | 79U                                       |
| p-Cresol                    | (ug/kg)                   | 900                | 55U                                      | 53U                                          | 5 <b>4</b> U                              | 54U                                       | 54U                                       |
| Phenanthrene                | (ug/kg)                   | 50000              | 550                                      | 54U 153 163 163                              | 54U -                                     | 540                                       | 540                                       |
| Phenol                      | (ug/kg)                   | 30                 | 53U                                      | 51U                                          | <b>52</b> U                               | 52U                                       | 52U                                       |
| p-Nitroaniline              | (ug/kg)                   |                    | 59U                                      | 57U                                          | 58U                                       | 580 (580)                                 | 58U                                       |
| p-Nitrophenol               | (ug/kg)                   | 100                | <b>43</b> U                              | <b>42</b> U                                  | <b>42</b> U                               | 42U                                       | 42U                                       |
| Pyrene                      | (ug/kg)                   | 50000              | 61U                                      | 59U                                          | 60U                                       | 60U                                       | 60U                                       |
| Total PAHs                  | (ug/kg)                   | 500000             | 0                                        | 0                                            | 0                                         | 0                                         | . 0                                       |
| Total Semivolatile Organics | (ug/kg)                   | 500000             | 0                                        | 0                                            | 0                                         | 0.1                                       | 0                                         |
|                             |                           |                    |                                          |                                              |                                           |                                           |                                           |

Date: 08/20/2009

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

#### DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                  | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12)<br>10/20/2005 |
|------------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Aroclor 1016                 | (ug/kg)                   | 10000              | 2.6U                                      | 2.6U                                      | 2.6U                                      | 2.6U                                      | 2.6U                                      |
| Aroclor 1221                 | (ug/kg)                   | 10000              | 4.1Ü                                      | 4,10                                      | 4,10                                      | 4.0U                                      | 4.1U                                      |
| Aroclor 1232                 | (ug/kg)                   | 10000              | 6.1U                                      | 6.1U                                      | 6.2U                                      | 6.0U                                      | 6.1U                                      |
| Aroclor 1242                 | (ug/kg)                   | 10000              | 5.40                                      | 5.40                                      | 5,5U                                      | 6.4U                                      | 5,4U                                      |
| Aroclor 1248                 | (ug/kg)                   | 10000              | 2.6U <sup>9</sup>                         | 2.6U                                      | 2.7U                                      | 2.6U                                      | <b>2.6U</b>                               |
| Aroclor 1254                 | (ug/kg)                   | 10000              | 1.70                                      | 1.7U                                      | 1.7U                                      | 1.7U                                      | 1.7U                                      |
| Aroclor 1260                 | (ug/kg)                   | 10000              | 4.4U                                      | <b>4.4</b> U                              | 4.4U                                      | 4.3U                                      | 4.4U                                      |
| Total PCBs (subsurface soil) | (ug/kg)                   | 10000              | 0,0                                       | 0.0                                       | 0.0                                       | 0.0                                       | 0,0                                       |

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

#### DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                  | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(10-12)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
|------------------------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Aroclor 1016                 | (ug/kg)                   | 10000              | 2.6U                                      | 2.6U                                      | 2.6U                                      | 2.7U                                      | 2.7U                                      |
| Aroclor 1221                 | (ug/kg)                   | 10000              | 4.1U                                      | 4.0U                                      | 4.0U                                      | 4.1U                                      | 4.10                                      |
| Aroclor 1232                 | (ug/kg)                   | 10000              | 6.1U                                      | 5.9U                                      | 6.0U                                      | 6.2U                                      | 6.2U                                      |
| Aroclor 1242                 | (ug/kg)                   | 10000              | 5.4U                                      | 5.3U                                      | 5.4U                                      | 5.5Ü                                      | 5.50                                      |
| Aroclor 1248                 | (ug/kg)                   | 10000              | 2.6U                                      | 2.6U                                      | 2.6U                                      | 2.7U                                      | <b>2.7</b> U                              |
| Aroclor 1254                 | (ug/kg)                   | 10000              | 1.70                                      | 1.70                                      | 1.70                                      | 1.7U                                      | 1.70                                      |
| Aroclor 1260                 | (ug/kg)                   | 10000              | <b>4.4</b> U                              | 4.2U                                      | 4.3U                                      | 4.4U                                      | 4.4U                                      |
| Total PCBs (subsurface soil) | (ug/kg)                   | 10000              | 0.0                                       | 0.0                                       | 0.0                                       | 0.0                                       | 0.0                                       |

ug/kg: micrograms per kilogram

Page: 2 of 2

Date: 08/20/2009

Page: 1 of 2 Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES

TOTAL PETROLEUM HYDROCARBONS (TPH)

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

| NSTITUENT | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-03A<br>CMSB-03A(12-14)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(14-16)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(16-18)<br>10/20/2005 | GMSB-03A<br>CMSB-03A(18-20)<br>10/20/2005 | CMSB-03A<br>CMSB-03A(10-12<br>10/20/2005 |
|-----------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| Н         | (ug/kg)                   |                    | 6615U                                     | 6677U                                     | 349000J                                   | 10800                                     | 10700                                    |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    | <b>.</b>                                  |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |
|           |                           |                    |                                           |                                           |                                           |                                           |                                          |

Page: 2 of 2

Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

DRY WELL SUBSURFACE SOIL SAMPLE RESULTS

TAGM RECOMMENDED SOIL CLEANUP OBJECTIVES TOTAL PETROLEUM HYDROCARBONS (TPH)

PERIOD:

From 10/19/2005 thru 10/20/2005 - Inclusive

SAMPLE TYPE:

| ONSTITUENT | SITE<br>SAMPLE ID<br>DATE | TAGM 4046<br>RSCOs | CMSB-04A<br>CMSB-04A(14-16)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(16-18)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(18-20)<br>10/20/2005 | CMSB-04A<br>CMSB-04A(12-14)<br>10/20/2005 |
|------------|---------------------------|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| PH         | (ug/kg)                   |                    | 6676U                                     | 6518U                                     | 6661U                                     | 6653U                                     |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |
|            |                           |                    | a                                         |                                           |                                           |                                           |
|            |                           |                    | •                                         |                                           |                                           |                                           |
|            |                           |                    |                                           |                                           |                                           |                                           |

Page: 1 of 1

Date: 08/20/2009

LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

CEDAR MANOR SUBSTATION

NEGATIVE CABLE MANHOLE SOIL SAMPLE RESULTS

INDUSTRIAL USE SOIL CLEANUP OBJECTIVES

MERCURY

PERIOD:

From 10/19/2005 thru 10/19/2005 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT                    | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMSB-28<br>CMSB-28(2-4)<br>10/19/2005 | CMSS-19<br>CMSS-19<br>10/19/2005 | The second secon |
|--------------------------------|---------------------------|---------------------------|---------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mercury                        | (mg/kg)                   | 5.7                       | 0.062UJ                               | 0.084DJ                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           | a                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                           |                           |                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ng/kg: milligrams per kilogram |                           |                           | · · · · · · · · · · · · · · · · · · · |                                  | <br>mana mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Page: 1 of 3 Date: 08/20/2009

# TABLE 20 LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION WASTE CHARACTERIZATION SAMPLE RESULTS TOXICITY CHARACTERISTÎC LEACHING PROCEDURE

PERIOD:

From 05/01/2008 thru 05/01/2008 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT              | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMWC-01<br>CMWC-01(3)<br>05/01/2008 | CMWC-01<br>CMWC-01(2-4)<br>05/01/2008 |              |                                                                                      | E Carlotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|---------------------------|---------------------------|-------------------------------------|---------------------------------------|--------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,1-Dichloroethylene ()  | (ug/l)                    |                           | 3.4UJ                               | 3.4U                                  |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane ()    | (ug/l)                    |                           | 2.00                                | 2.00                                  |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,5-Trichlorophenol () | (ug/l)                    |                           | 0.380U                              | 0.380U                                |              | Sur Vittler (destruite vers de la lace de la Sur | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,4,6-Trichlorophenol () | (ug/l):                   |                           | 0,350U                              | 0,350U                                |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4-D ()                 | (ug/l)                    |                           | 0.246U                              | 0.246U                                |              |                                                                                      | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,4-Dinitrotoluene ()    | (ug/l)                    |                           | 0.340UJ                             | 0.340UJ                               |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic ()               | (ug/l)                    |                           | 54.0U                               | 54.0U                                 |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barium ()                | (ug/l)                    | era e                     | 939                                 | 768                                   | 300 P (1998) |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene ()               | (ug/l)                    |                           | 1.8U                                | 1.8U                                  |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cadmium ()               | (ug/l)                    |                           | 9.0000                              | 9.000U                                |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbon tetrachloride ()  | (ug/l)                    |                           | 1.4U                                | 1.4UJ                                 |              |                                                                                      | - 11-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chlordane ()             | (ug/l)                    |                           | 0.1914U                             | 0.1914U                               | 1587         |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chlorobenzene ()         | (ug/l)                    |                           | 1.4U                                | 1,4U                                  |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroform ()            | (ug/l)                    |                           | 2.2U                                | 2.20                                  | 4. 2         |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium ()              | (ug/l)                    |                           | 14.0U                               | 14.0U                                 |              |                                                                                      | TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER |
| Endrin ()                | (ug/l)                    |                           | 0.0069U                             | 0,0069U                               |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heptachlor ()            | (ug/l)                    |                           | 0.0227U                             | 0.0227U                               |              |                                                                                      | - Andrews Section 1 - 1 and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                           |                           |                                     |                                       |              |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page: 2 of 3 Date: 08/20/2009

### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

WASTE CHARACTERIZATION SAMPLE RESULTS
TOXICITY CHARACTERISTIC LEACHING PROCEDURE

PERIOD:

From 05/01/2008 thru 05/01/2008 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT            | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | GMWC-01<br>CMWC-01(3)<br>05/01/2008 | CMWC-01<br>CMWC-01(2-4)<br>05/01/2008 |                |                                         |
|------------------------|---------------------------|---------------------------|-------------------------------------|---------------------------------------|----------------|-----------------------------------------|
| Heptachlor epoxide ()  | (ug/l)                    |                           | 0.0121U                             | 0.0121U                               |                | *************************************** |
| Hexachlorobenzene ()   | (ug/l)                    | Section 1                 | 0.270U                              | 0.270U                                | 17.77<br>18.88 |                                         |
| Hexachlorobutadiene () | (ug/l)                    |                           | 0.390UJ                             | 0.390UJ                               |                |                                         |
| Hexachloroethane ()    | (ug/l)                    | 300 NOTES                 | 0.230UJ                             | 0.230UJ                               |                |                                         |
| Lead ()                | (ug/l)                    |                           | 31.0U                               | 205                                   |                |                                         |
| Lindane ()             | (ug/l)                    |                           | 0.0071U                             | 0.0071U                               |                |                                         |
| Mercury ()             | (ug/l)                    |                           | 0.63U                               | 3.2                                   |                |                                         |
| Methoxychlor ()        | (ug/l)                    |                           | 0.0072U                             | 0.0072U                               |                |                                         |
| Methyl ethyl ketone () | (ug/l)                    |                           | 9.7U                                | 9.7U                                  |                |                                         |
| Nitrobenzene ()        | (ug/l)                    |                           | 0.330U                              | 0.330U                                |                |                                         |
| o-Cresol ()            | (ug/l)                    |                           | 0.360U                              | 0.360U                                | ,              |                                         |
| PCP ()                 | (ug/l)                    |                           | 0.520UJ                             | 0.520UJ                               |                |                                         |
| p-Cresol ()            | (ug/l)                    |                           | 0.390U                              | 0.390U                                |                |                                         |
| p-Dichlorobenzene ()   | (ug/l)                    |                           | 0,30001                             | 0.300UJ                               |                |                                         |
| Pyridine ()            | (ug/l)                    |                           | 1.5U                                | 1.5U                                  |                |                                         |
| Selenium ()            | (идЛ)                     |                           | 45.0U                               | 45.0U                                 |                |                                         |
|                        | (ug/l)                    |                           | 17.0U                               | 17.0U                                 |                |                                         |

Page: 3 of 3

Date: 08/20/2009

#### LONG ISLAND RAIL ROAD - 17 SUBSTATIONS CEDAR MANOR SUBSTATION

## WASTE CHARACTERIZATION SAMPLE RESULTS

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

PERIOD:

From 05/01/2008 thru 05/01/2008 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT            | SITE Industrial SAMPLE ID Use DATE SCOS | CMWC-01<br>CMWC-01(3)<br>05/01/2008 | CMWC-01<br>CMWC-01(2-4)<br>05/01/2008 |
|------------------------|-----------------------------------------|-------------------------------------|---------------------------------------|
| Silvex ()              | (ug/l)                                  | 0.159ปู                             | 0.159U                                |
| Tetrachloroethylene () | (ug/l)                                  | <b>4.8</b> U                        | 3 4.8U                                |
| Toxaphene ()           | (ug/l)                                  | 0.0900U                             | 0.0900U .                             |
| Trichloroethylene ()   | (ug/l)                                  | 1.7U                                | 1.70                                  |
| /inyl chloride ()      | (ug/l)                                  | 1.5UJ                               | 1.5U                                  |

ug/l: micrograms per liter

Page: 1 of 1

Date: 08/20/2009

## LONG ISLAND RAIL ROAD - 17 SUBSTATIONS

#### CEDAR MANOR SUBSTATION

## WASTE CHARACTERIZATION SAMPLE RESULTS

RCRA CHARACTERISTICS

PERIOD:

From 05/01/2008 thru 05/01/2008 - Inclusive

SAMPLE TYPE:

Soil

| CONSTITUENT       | SITE<br>SAMPLE ID<br>DATE | Industrial<br>Use<br>SCOs | CMWC-01<br>CMWC-01(3)<br>05/01/2008 | CMWC-01<br>CMWC-01(2-4)<br>05/01/2008 |  |
|-------------------|---------------------------|---------------------------|-------------------------------------|---------------------------------------|--|
| O::::             | /·\                       |                           | 0.10                                |                                       |  |
| Corrosivity       | (ppm)                     |                           | 6.40                                | 7.20                                  |  |
| Cyanide(reactive) | (ppm)<br>(mg/kg)          |                           | 6.40<br>10,00U                      | 7.20<br>10.00U                        |  |
|                   |                           |                           |                                     |                                       |  |

mg/kg: milligrams per kilogram ppm: parts per million

a

#### APPENDIX C

## **DELINEATION PHASE II BORING LOGS**



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-02A

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: --Drive Hammer Weight: NA

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 11'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta  |      |         |          |         | Date Completed: 10/19/05 |                                                      |      |  |  |
|-----------|------|---------|----------|---------|--------------------------|------------------------------------------------------|------|--|--|
|           |      | Soil Sa | ample    |         | Photo-                   |                                                      |      |  |  |
|           |      |         |          | Mercury | ionization               |                                                      |      |  |  |
| Depth     |      |         | Rec.     | Vapor   | Detector                 | Sample Description                                   | USCS |  |  |
| (ft.)     | No.  | Type    | (inches) | (mg/m³) | (ppm)                    |                                                      |      |  |  |
| 0' - 10'  | 0    | -       | _        | -       | -                        | Void.                                                |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          | ,       |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
| 10' - 11' | 1    | HA      | 12       | 0.000   | 0.0                      | Black, silty fine SAND, some medium sand and fine to |      |  |  |
|           |      |         |          |         |                          | medium gravel.                                       |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          | e '     |                          | đ                                                    |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         | •        |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      | -    |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          | ` · · · · · · · · · · · · · · · · · · ·              |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
|           |      |         |          |         |                          |                                                      |      |  |  |
| Sample 1  | ypes | »:      |          |         |                          | NOTES:                                               |      |  |  |
| ee - enli |      |         |          |         |                          | Sample for mercury analysis was collected at 10'-11' |      |  |  |

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

Sample for mercury analysis was collected at 10'-11'.



Project Name: Long Island Railroad

Cedar Manor Substation

**Boring No.: CMSB-03A** 

Sheet \_1\_ of \_1\_ By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe Date Started: 10/19/05 **Geologist:** Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** Date Completed: 10/19/05

**Boring Completion Depth: 20'** Ground Surface Elevation: ---

Boring Diameter: ---

|                |     | Soil Sa | ample            | Mercury          | Photo-<br>ionization |                                                                                             |      |
|----------------|-----|---------|------------------|------------------|----------------------|---------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.) | No. | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector<br>(ppm)    | Sample Description                                                                          | USCS |
| 0' - 8'        | 0   | -       | -                | -                | -                    | Void.                                                                                       |      |
| 8' - 10'       | 0   | GP      | 24               | 0.000            | 0.0                  | Blackish-brown, fine to medium silty SAND and BALLAST and fine to medium GRAVEL, some clay. |      |
| 10' - 12'      | 1   | GP      | 24               | 0.000            | 0.0                  | Brown, fine to medium SAND, some fine to medium gravel and fine sand.                       |      |
| 12' - 14'      | 2   | GP      | 24               | 0.000            | 0.0                  | Same as above.                                                                              |      |
| 14' - 16'      | 3   | GP      | 24               | 0.000            | 0.0                  | Same as above.                                                                              |      |
| 16' - 18'      | 4   | GP      | 24               | 0.000            | 0.0                  | Same as above.                                                                              |      |
| 18' - 20'      | 5   | GP      | 24               | 0.000            | 0.0                  | Same as above.                                                                              |      |
|                |     |         |                  |                  |                      |                                                                                             |      |
|                |     |         |                  |                  |                      |                                                                                             |      |
|                |     |         |                  |                  |                      |                                                                                             |      |

Sample Types:

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

**CC** = Concrete Core

NOTES:

Samples for UIC constituent analysis were collected at 10'-12',

12'-14', 14'-16', 16'-18' and 18'-20'.



Project Name: Long Island Railroad

Cedar Manor Substation **Boring No.: CMSB-04A** 

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

**Drill Rig:** Geoprobe **Date Started:** 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

**Boring Completion Depth:** 20' **Ground Surface Elevation:** ---

Boring Diameter: ---

|                   |     | Soil Sa                  | ample            | Mercury          | Photo-<br>ionization |                                                        |      |
|-------------------|-----|--------------------------|------------------|------------------|----------------------|--------------------------------------------------------|------|
| Depth<br>(ft.)    | No. | Туре                     | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector             | Sample Description                                     | uscs |
| 0' - 10'          | 0   | HA                       |                  | 0.000            | 0.0                  | Void.                                                  |      |
| 10' - 12'         | 1   | НА                       | 24               | 0.000            | 0.0                  | Brown, fine to medium SAND, some fine gravel and clay. |      |
| 12' - 14'         | 2   | GP                       | 24               | 0.000            | 0.0                  | Same as above.                                         |      |
| 14' - 16'         | 3   | GP                       | 24               | 0.000            | 0.0                  | Same as above.                                         |      |
| <b>1</b> 6' - 18' | 4   | GP                       | 24               | 0.000            | 0.0                  | Same as above.                                         |      |
| 18' - 20'         | 5   | GP                       | 24               | 0.000            | 0.0                  | Same as above.                                         |      |
|                   | *   | A province of the second |                  |                  |                      |                                                        |      |
|                   |     | 1                        |                  |                  |                      |                                                        |      |
|                   |     |                          |                  |                  |                      |                                                        |      |
|                   |     |                          | 7                |                  |                      |                                                        |      |
|                   |     |                          |                  |                  |                      |                                                        |      |

Sample Types:

SS = Split Spoon

**HA** = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

NOTES:

Samples for UIC constituent analysis were collected at 10'-12', 12'-14', 14'-16', 16'-18' and 18'-20'.



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-11

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta            | rted:  | 10/19/0 | 05       |                      | Date Completed: 10/19/05 |                                                                                               |      |  |
|---------------------|--------|---------|----------|----------------------|--------------------------|-----------------------------------------------------------------------------------------------|------|--|
|                     |        | Soil Sa | ample    |                      | Photo-                   |                                                                                               |      |  |
|                     |        |         |          | Mercury              | ionization               |                                                                                               |      |  |
| Depth               |        |         | Rec.     | Vapor                | Detector                 | Sample Description                                                                            | USCS |  |
| (ft.)               | No.    | Туре    | (inches) | (mg/m <sup>3</sup> ) | (ppm)                    |                                                                                               |      |  |
| 0' - 2'             | 0      | HA      | 24       | 0.000                | 0.0                      | 0-6" BLUESTONE. 6"-2' Blackish-brown, silty, fine to medium SAND, some fine to medium gravel. |      |  |
| 2' - 4'             | 1      | НА      | 24       | 0.000                | 0.0                      | Brown, fine to medium SAND, some fine to medium gravel.                                       |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
|                     |        | e       |          |                      |                          | •                                                                                             |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
|                     |        |         |          |                      |                          |                                                                                               |      |  |
| Sample <sup>1</sup> | Type   | 6:      |          |                      |                          | NOTES:                                                                                        |      |  |
| Sample<br>SS = Spl  | it Spc | on      |          |                      |                          | Sample for mercury analysis was collected at 2'-4'.                                           |      |  |

**HA** = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-12

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 8'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta  | rted: | 10/19/  | 05       |         | Date Comp  | oleted: 10/19/05                                                  |                                    |         |
|-----------|-------|---------|----------|---------|------------|-------------------------------------------------------------------|------------------------------------|---------|
|           |       | Soil Sa | ample    |         | Photo-     |                                                                   |                                    |         |
|           |       |         | -        | Mercury | ionization |                                                                   |                                    |         |
| Depth     |       |         | Rec.     | Vapor   | Detector   | Sample D                                                          | escription                         | USCS    |
| (ft.)     | No.   | Туре    | (inches) | (mg/m³) | (ppm)      | ·                                                                 | •                                  |         |
| 0' - 2'   | 0     | ΗA      | 24       | 0.000   | 0.0        | 0-6" BLUESTONE. "6-2' Brown, silty fine to medi<br>medium gravel. | ium SAND, some fine to             |         |
| 2' - 4'   | 1     | НА      | 24       | 0.000   | 0.0        | Brown, fine to medium SANE<br>GRAVEL.                             | D, some fine to medium             |         |
| 4' - 6'   | 2     | GP      | 24       | 0.000   | 0.0        | Brown, fine to medium SAND                                        | ), little fine to medium gravel.   |         |
| 6' - 8'   | 3     | GP      | 24       | 0.000   | 0.0        | Same as above.                                                    |                                    |         |
|           |       |         |          |         |            |                                                                   | •                                  |         |
|           |       |         |          |         |            |                                                                   |                                    |         |
|           |       | -       |          |         |            |                                                                   |                                    |         |
|           |       |         |          |         |            |                                                                   | ·                                  |         |
|           |       |         |          |         |            |                                                                   |                                    |         |
|           |       |         |          |         |            |                                                                   | ·                                  |         |
| Sample 7  | rvpes | <br>}:  |          |         |            | NOTES:                                                            |                                    |         |
| SS = Spli |       |         |          |         |            |                                                                   | s were collected at 2'-4', 4'-6' a | and 6'- |

8'.

**HA** = Hand Auger **GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-13

Sheet 1 of 1

By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

|                                                     |       |         |          |         |            | ate Completed. 10/19/03                                       |      |  |  |
|-----------------------------------------------------|-------|---------|----------|---------|------------|---------------------------------------------------------------|------|--|--|
|                                                     | ľ     | Soil Sa | ample    |         | Photo-     | •                                                             |      |  |  |
|                                                     |       |         |          | Mercury | ionization |                                                               |      |  |  |
| Depth                                               |       |         | Rec.     | Vapor   | Detector   | Sample Description                                            | USCS |  |  |
| (ft.)                                               | No.   | Туре    | (inches) | (mg/m³) | (ppm)      |                                                               |      |  |  |
| 0' - 2'                                             | 0     | HA      | 24       | 0.000   | 0.0        | Brown, silty fine to medium SAND, some fine to medium gravel. |      |  |  |
| 2' - 4'                                             | 1     | НА      | 24       | 0.005   | 0.0        | Brown, silty fine to medium SAND, little fine gravel.         |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          | ·       | e          |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
|                                                     |       |         |          |         |            |                                                               |      |  |  |
| Sample                                              |       |         |          |         |            | NOTES:                                                        |      |  |  |
| <b>SS =</b> Spl<br><b>HA =</b> Ha<br><b>GP =</b> Ge | nd Âu | ıger    | pler     |         |            | Sample for mercury analysis was collected at 2'-4'.           |      |  |  |

CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-14

Sheet <u>1</u> of <u>1</u> By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

**Drill Rig:** Geoprobe **Date Started:** 10/19/05

**Geologist:** Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta  | ate Started. 10/19/05 |         |          |         |          | Date Completed. 10/19/05                                                        |     |  |  |
|-----------|-----------------------|---------|----------|---------|----------|---------------------------------------------------------------------------------|-----|--|--|
|           | l                     | Soil Sa | ample    |         | Photo-   |                                                                                 |     |  |  |
|           |                       |         |          | Mercury |          |                                                                                 |     |  |  |
| Depth     |                       |         | Rec.     | Vapor   | Detector | Sample Description                                                              | USC |  |  |
| (ft.)     | No.                   | Туре    | (inches) | (mg/m³) | (ppm)    |                                                                                 |     |  |  |
| 0' - 2'   | 0                     | HA      | 24       | 0. 021  | 0.0      | Brown, silty fine to medium SAND and fine to medium GRAVEL, some coarse gravel. |     |  |  |
| 2' - 4'   | 1                     | НА      | 24       | 0.008   | 0.0      | Brown, fine to medium SAND, little fine to medium gravel.                       |     |  |  |
|           |                       |         |          |         |          |                                                                                 |     |  |  |
|           |                       |         |          |         |          |                                                                                 |     |  |  |
|           |                       |         |          |         |          | 4                                                                               | •   |  |  |
|           |                       |         |          |         |          |                                                                                 |     |  |  |
|           |                       | ,       |          |         |          |                                                                                 |     |  |  |
|           |                       |         |          |         |          |                                                                                 |     |  |  |
|           |                       |         | ·        |         |          |                                                                                 |     |  |  |
|           |                       |         |          |         |          |                                                                                 |     |  |  |
|           |                       |         |          |         |          |                                                                                 |     |  |  |
| Sample 1  | -<br>Funa             |         | :        |         |          | NOTES:                                                                          |     |  |  |
| SS = Spli |                       |         |          |         |          | Sample for mercury analysis was collected at 2'-4'.                             | ,   |  |  |

HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-15

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta | ate Started. 10/19/05 |                                              |          |         |            | Meteu. 10/10/00                                       | 1    |
|----------|-----------------------|----------------------------------------------|----------|---------|------------|-------------------------------------------------------|------|
|          |                       | Soil Sa                                      | ample    |         | Photo-     |                                                       |      |
|          |                       |                                              |          | Mercury | ionization |                                                       |      |
| Depth    |                       |                                              | Rec.     | Vapor   | Detector   | Sample Description                                    | USCS |
| (ft.)    | No.                   | Туре                                         | (inches) | (mg/m³) | (ppm)      |                                                       |      |
| 0' - 2'  | 0                     | НА                                           | 24       | 0.009   | 0.0        | Brown, silty fine to medium SAND, some fine to medium |      |
|          |                       |                                              |          |         |            | gravel.                                               |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
| 2' - 4'  | 1                     | HA                                           | 24       | 0.000   | 0.0        | Brown, fine to medium SAND, some fine gravel.         |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          | •                     |                                              |          |         |            | e                                                     |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            | · ·                                                   |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            | ·                                                     |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          |                       |                                              |          |         |            |                                                       |      |
|          | İ                     |                                              |          |         |            |                                                       |      |
| Sample   | Type                  | <u>.                                    </u> | L        |         |            | NOTES:                                                |      |
| campie.  | . Jhe.                | <b>-</b> .                                   |          |         |            | O to fee                                              |      |

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

Sample for mercury analysis was collected at 2'-4'.



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-16

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---Drive Hammer Weight: NA

Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta |      |         |          |                      | Date Completed. 10/19/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |      |  |
|----------|------|---------|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|--|
|          |      | Soil Sa | ample    | 1                    | Photo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | *    |  |
|          |      |         |          | Mercury              | ionization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |      |  |
| Depth    |      |         | Rec.     | Vapor                | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Description                                  | USCS |  |
| (ft.)    | No.  | Туре    | (inches) | (mg/m <sup>3</sup> ) | (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |      |  |
| 0' - 2'  | 0    | HA      | 24       | 0.009                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Brown, silty fine to medium SAND and fine to medium |      |  |
| -        |      | 1       |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gravel.                                             |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                                                   |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
| 2' - 4'  | 1    | HA      | 24       | 0.000                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Brown, fine to medium SAND and fine gravel.         |      |  |
|          |      |         |          | ,                    | and the second s |                                                     |      |  |
|          |      |         |          |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 1    |  |
|          |      |         | e        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                   |      |  |
|          |      |         | •        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
|          |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |      |  |
| Sample   | Type | s:      |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTES:                                              |      |  |
| SS = Spl |      |         |          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample for mercury analysis was collected at 2'-4'. |      |  |

HA = Hand Auger

**GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-17

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

**Geologist:** Stephen Tauss **Drilling Method:** ---

Drive Hammer Weight: NA Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Ota                            | ale Started. 10/19/05 |         |          |         |            | Date Completed. 10/19/00                                                      |     |  |  |
|-------------------------------------|-----------------------|---------|----------|---------|------------|-------------------------------------------------------------------------------|-----|--|--|
|                                     |                       | Soil Sa | ample    |         | Photo-     |                                                                               | İ   |  |  |
|                                     |                       |         |          | Mercury | ionization |                                                                               |     |  |  |
| Depth                               |                       |         | Rec.     | Vapor   | Detector   | Sample Description                                                            | USC |  |  |
| (ft.)                               | No.                   | Type    | (inches) | (mg/m³) | (ppm)      |                                                                               |     |  |  |
| 0' - 2'                             | 0                     | HA      | 24       | 0.000   | 0.0        | 0-4" BLUESTONE. 4"-2' Brown, fine to medium SAND, some fine to medium gravel. |     |  |  |
| 2' - 4'                             | 1                     | НА      | 24       | 0.000   | 0.0        | Same as above.                                                                |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         |          |         | ,          |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
| ,                                   |                       |         |          | C       |            | e                                                                             |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         | ·        |         | ,          |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
|                                     |                       |         |          | ,       |            |                                                                               |     |  |  |
|                                     |                       |         |          |         |            |                                                                               |     |  |  |
| <b>Sample</b> 7<br><b>SS =</b> Spli |                       |         |          |         |            | NOTES: Sample for mercury analysis was collected at 2'-4'.                    |     |  |  |

HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-18

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

**Geologist:** Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

|                                   | Soil Sample |      |                  | Mercury       | Photo-<br>ury ionization |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------------------------|-------------|------|------------------|---------------|--------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Depth<br>(ft.)                    | No.         | Туре | Rec.<br>(inches) | Vapor (mg/m³) | Detector<br>(ppm)        | Sample Description                                                                  | uscs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 0' - 2'                           | 0           | HA   | 24               | 0.000         | 0.0                      | 0-3" BLUESTONE. 3"-2' Brown, silty fine to medium SAND, some fine to medium gravel. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2' - 4'                           | 1           | НА   | 24               | 0.000         | 0.0                      | Same as above.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |             |      |                  |               |                          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |             |      |                  |               |                          | · •                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   | :           |      |                  |               |                          |                                                                                     | T TO THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF  |  |  |
|                                   |             |      |                  |               |                          |                                                                                     | Acceptance of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con |  |  |
| ,                                 |             |      |                  |               |                          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |             |      |                  |               |                          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample 7<br>SS = Spli<br>HA = Har | Spo         | on   |                  |               |                          | NOTES: Sample for mercury analysis was collected at 2'-4'.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

**GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation

**Boring No.: CMSB-19** 

Sheet \_1\_ of \_1\_ By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe Date Started: 10/19/05 Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** Date Completed: 10/19/05

**Boring Completion Depth: 4**' Ground Surface Elevation: ---

**Boring Diameter: ---**

|         | Soil Sample |          |          |         |            | Dhate Completed: 10/10/00                                                           |         |  |  |
|---------|-------------|----------|----------|---------|------------|-------------------------------------------------------------------------------------|---------|--|--|
|         |             | Son Sa   | ampie    | Banner. | Photo-     |                                                                                     |         |  |  |
| D 41.   |             | ı        | D        | Mercury | ionization | Sample Description                                                                  | USC     |  |  |
| Depth   | N           | <b>-</b> | Rec.     | Vapor   | Detector   | Sample Description                                                                  | USCS    |  |  |
| (ft.)   | No.         |          | (inches) | (mg/m³) | (ppm)      | O OF PULLFOTONE                                                                     |         |  |  |
| 0' - 2' | 0           | HA       | 24       | 0.000   | 0.0        | 0-6" BLUESTONE. 6"-2' Brown, silty fine to medium SAND, some fine to medium gravel. |         |  |  |
| 2' - 4' | · 1         | НА       | 24       | 0.000   | 0.0        | Same as above.                                                                      |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
| ę       |             |          |          | ·       |            | •                                                                                   |         |  |  |
| ·       |             |          |          |         | ·          |                                                                                     |         |  |  |
|         | :           |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            |                                                                                     |         |  |  |
|         |             |          |          |         |            | NOTES: Sample for mercury analysis was collected at 2'-4'.                          | <u></u> |  |  |

SS = Split Spoon

**HA** = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-20

Sheet <u>1</u> of <u>1</u> By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

**Drill Rig:** Geoprobe **Date Started:** 10/19/05

**Geologist:** Stephen Tauss

**Drilling Method: ---**

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4' Ground Surface Elevation: ---

Boring Diameter: ---

|                | Soil Sample Mercury |      |                  |               | Photo-<br>ionization |                                                                              |   |  |
|----------------|---------------------|------|------------------|---------------|----------------------|------------------------------------------------------------------------------|---|--|
| Depth<br>(ft.) | No.                 | Туре | Rec.<br>(inches) | Vapor (mg/m³) | Detector             | Sample Description                                                           |   |  |
| 0' - 2'        | 0                   | HA   | 24               | 0.000         | <b>(ppm)</b><br>0.0  | Dark-brown, silty fine to medium SAND, some fine to                          |   |  |
| 0 - 2.         |                     | 11/1 | 27               | 0.000         | 0.0                  | medium gravel.                                                               |   |  |
| 2' - 4'        | 1                   | НА   | 24               | 0.000         | 0.0                  | Dark-brown, silty fine to medium SAND, some to little fine to medium gravel. |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     | €    |                  |               |                      | ¢                                                                            |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
|                |                     |      |                  |               |                      | ·                                                                            |   |  |
|                |                     |      |                  |               |                      |                                                                              |   |  |
| amnla 7        |                     |      |                  |               |                      | NOTES:                                                                       | , |  |

Sample Types:

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

NOTES:

Sample for mercury analysis was collected at 2'-4'.



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-21 Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta         | rtea:  |         |          | <del></del> | Date Completed: 10/19/05 |                                                                              |        |
|------------------|--------|---------|----------|-------------|--------------------------|------------------------------------------------------------------------------|--------|
|                  |        | Soil Sa | ample    |             | Photo-                   |                                                                              |        |
|                  |        |         |          | Mercury     | ionization               |                                                                              | 1,,,,, |
| Depth            | ļ      |         | Rec.     | Vapor       | Detector                 | Sample Description                                                           | USC    |
| (ft.)            | No.    | Туре    | (inches) | (mg/m³)     | (ppm)                    | 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                      |        |
| 0' - 2'          | 0      | HA      | 24       | 0.000       | 0.0                      | Dark brown, silty fine to medium SAND, some fine to medium gravel.           |        |
| 2' - 4'          | 1      | НА      | 24       | 0.000       | 0.0                      | Dark brown, silty fine to medium SAND, some to little fine to medium gravel. |        |
|                  |        |         |          | ***         |                          |                                                                              |        |
|                  |        |         |          |             |                          |                                                                              |        |
|                  |        |         |          | •           |                          | <b>.</b>                                                                     |        |
|                  |        |         |          |             |                          |                                                                              |        |
|                  |        |         |          |             |                          |                                                                              |        |
|                  |        | :       |          |             |                          | •                                                                            |        |
|                  |        |         |          |             |                          |                                                                              |        |
|                  |        |         |          |             |                          |                                                                              |        |
|                  |        |         |          |             |                          | NOTES: Sample for margury analysis was collected at 2' 4'                    |        |
| Sample SS = Spli | it Spo | on      |          |             |                          | NOTES: Sample for mercury analysis was collected at 2'-4'.                   |        |

**GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-22

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta                          |     | Soil Sa |                  | Maraum                      | Photo-            | 70.000                                                                                     |      |
|-----------------------------------|-----|---------|------------------|-----------------------------|-------------------|--------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)                    | No. | Туре    | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | Detector<br>(ppm) | Sample Description                                                                         | uscs |
| 0' - 2'                           | 0   | HA      | 24               | 0.000                       | 0.0               | 0-6" Ballast.<br>6"-2' Dark brown, silty fine to medium SAND and fine to<br>medium GRAVEL. |      |
| 2' - 4'                           | 1   | HA      | 24               | 0.000                       | 0.0               | Brown, silty fine to medium SAND, some fine to medium gravel.                              |      |
|                                   |     |         |                  |                             |                   |                                                                                            |      |
|                                   |     |         |                  |                             | e                 | e                                                                                          |      |
|                                   |     | ·       |                  |                             |                   |                                                                                            |      |
|                                   |     |         |                  |                             |                   |                                                                                            |      |
|                                   |     |         |                  |                             |                   |                                                                                            |      |
|                                   |     |         |                  |                             |                   |                                                                                            |      |
|                                   |     |         |                  |                             |                   |                                                                                            |      |
| Sample Types:<br>SS = Split Spoon |     |         |                  |                             |                   | NOTES: Sample for mercury analysis was collected at 2'-4'.                                 | J    |

HA = Hand Auger

**GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-23

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta       | rtea: | 10/19/0 | J5       |         |            | npietea: 10/19/05                   |                           |                                              |
|----------------|-------|---------|----------|---------|------------|-------------------------------------|---------------------------|----------------------------------------------|
|                |       | Soil Sa | ample    |         | Photo-     |                                     |                           |                                              |
|                |       |         |          | Mercury | ionization |                                     |                           |                                              |
| Depth          |       |         | Rec.     | Vapor   | Detector   | Sample                              | Description               | USCS                                         |
| (ft.)          | No.   | Туре    | (inches) | (mg/m³) | (ppm)      |                                     |                           |                                              |
| 0' - 2'        | 0     | ĤA      | 24       | 0.000   | 0.0        | Brown, silty fine to medium gravel. | SAND, some fine to coarse |                                              |
| 2' - 4'        | 1     | HA      | 24       | 0.000   | 0.0        | Brown, silty fine to medium gravel. | SAND, some fine to medium |                                              |
|                |       |         |          |         |            |                                     |                           |                                              |
|                |       |         |          |         |            | e                                   |                           |                                              |
|                |       |         | ·        |         |            |                                     |                           |                                              |
|                |       |         |          |         |            |                                     |                           | NE PARAMANANANANANANANANANANANANANANANANANAN |
|                |       |         |          |         |            |                                     |                           |                                              |
|                |       |         |          |         |            |                                     |                           |                                              |
|                |       |         |          |         |            |                                     |                           |                                              |
| Cample '       | Type  | L       |          |         | L          | NOTES:                              |                           | I                                            |
| Sample '       |       |         |          |         |            | Sample for mercury analysi          | s was collected at 2'-4'  |                                              |
| SS = Spl       |       |         |          |         |            | Sample for mercury analysi<br>      | s was concucu at 2 -4.    |                                              |
| HA = Hai       |       |         | -1       |         |            |                                     |                           |                                              |
| <b>GP =</b> Ge |       | e Sam   | pier     |         |            |                                     |                           |                                              |
|                |       |         |          |         |            |                                     |                           |                                              |

CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-24

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: --Drive Hammer Weight: NA

**Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta         |     | Soil Sa |                  | Mercury       | Photo-<br>ionization |                                                                                     |      |
|------------------|-----|---------|------------------|---------------|----------------------|-------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)   | No. | Туре    | Rec.<br>(inches) | Vapor (mg/m³) | Detector<br>(ppm)    | Sample Description                                                                  | USCS |
| 0' - 2'          | 0   | НА      | 24               | 0.000         | 0.0                  | 0-4" BLUESTONE.<br>4"-2' Brown, fine to medium SAND, some fine to medium<br>gravel. |      |
| 2' - 4'          | 1   | НА      | 24               | 0.000         | 0.0                  | Same as above.                                                                      |      |
|                  |     |         |                  |               |                      |                                                                                     |      |
|                  | ę   |         |                  | ,             |                      |                                                                                     |      |
|                  |     | ·       |                  |               |                      |                                                                                     |      |
|                  |     |         |                  |               |                      |                                                                                     |      |
|                  |     |         |                  |               |                      |                                                                                     |      |
| Sample SS = Spli |     |         |                  |               |                      | NOTES: Sample for mercury analysis was collected at 2'-4'.                          |      |

SS = Split Spoon
HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation

**Boring No.: CMSB-25** 

Sheet \_1\_ of \_1\_ By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe Date Started: 10/19/05 **Geologist:** Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** Date Completed: 10/19/05

**Boring Completion Depth: 4**' Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta | ite Started: 10/19/05 |         |          |          |            | Date Completed. 10/19/03                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------|-----------------------|---------|----------|----------|------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          |                       | Soil Sa | ample    |          | Photo-     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       |         |          | Mercury  | ionization |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Depth    |                       |         | Rec.     | Vapor    | Detector   | Sample Description                                            | USCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (ft.)    | No.                   | Туре    |          | (mg/m³)  | (ppm)      | ·                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0' - 2'  | 0                     | НА      | 24       | 0.000    | 0.0        | Brown, silty fine to medium SAND, some fine to medium gravel. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2' - 4'  | 1                     | НА      | 24       | 0.000    | 0.0        | Same as above.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       |         |          |          |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| *.       |                       |         |          |          |            | ·                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       |         | • .      |          |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       | -       |          |          |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       | -       |          |          |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       |         |          |          |            |                                                               | Period Property and the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t |  |
|          |                       |         |          |          |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                       |         |          |          |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sample ' | Types                 | <br>s:  | <u>.</u> | <u> </u> |            | NOTES:                                                        | .,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

**CC** = Concrete Core

Sample for mercury analysis was collected at 2'-4'.



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-26

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

**Geologist:** Stephen Tauss **Drilling Method:** ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta                                             | Jale Staffed: 10/19/05                                    |      |               |                  |                      | Date Completed. 10/19/05                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------|-----------------------------------------------------------|------|---------------|------------------|----------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                      | Soil Sample                                               |      |               | Mercury          | Photo-<br>ionization |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Depth<br>(ft.)                                       | No.                                                       | Туре | Rec. (inches) | Vapor<br>(mg/m³) | Detector (ppm)       | Sample Description                                              | USC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 0' - 2'                                              | 0                                                         | НА   | 24            | 0.000            | 0.0                  | Brownish-gray, fine to coarse SAND, some fine to medium gravel. | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |  |  |
| 2' - 4'                                              | 1                                                         | НА   | 24            | 0.000            | 0.0                  | Brown, silty fine to medium SAND, some to little fine gravel.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      | Annua pro pitro de la la la la la la la la la la la la la |      |               | •                |                      | •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                                                           |      |               |                  |                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                                                           |      |               |                  |                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                      |                                                           |      |               |                  |                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample Types:<br>SS = Split Spoon<br>HA = Hand Auger |                                                           |      |               |                  |                      | NOTES: Sample for mercury analysis was collected at 2'-4'.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

**GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-27

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta | rted: | 10/19/  | 05       |         | Date Completed: 10/19/05 |                                                                       |          |
|----------|-------|---------|----------|---------|--------------------------|-----------------------------------------------------------------------|----------|
|          |       | Soil Sa | ample    |         | Photo-                   |                                                                       |          |
|          |       |         |          | Mercury | ionization               |                                                                       |          |
| Depth    |       |         | Rec.     | Vapor   | Detector                 | Sample Description                                                    | USC      |
| (ft.)    | No.   | Туре    | (inches) | (mg/m³) | (ppm)                    |                                                                       |          |
| 0' - 2'  | 0     | НА      | 24       | 0.000   | 0.0                      | Grayish-brown, silty fine to medium SAND, some fine to medium gravel. |          |
| 2' - 4'  | 1     | HA      | 24       | 0.000   | 0.0                      | Brown, fine to medium SAND, some fine to medium gravel.               |          |
|          |       |         | ·        |         |                          |                                                                       |          |
|          |       |         |          |         | ę                        |                                                                       | <b>8</b> |
|          |       |         |          |         |                          |                                                                       |          |
|          |       |         |          |         |                          |                                                                       |          |
|          |       |         |          |         |                          |                                                                       |          |
|          |       |         |          |         |                          |                                                                       |          |
| 01- 7    |       |         |          |         |                          | NOTES                                                                 | <u> </u> |
|          |       |         |          |         |                          | NOTES: Sample for mercury analysis was collected at 2'-4'             |          |

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

Sample for mercury analysis was collected at 2'-4'.



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-28

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

|                 |       | 10/19/0 |          |                      | Date Completed: 10/19/05 |                                                       |          |
|-----------------|-------|---------|----------|----------------------|--------------------------|-------------------------------------------------------|----------|
|                 |       | Soil Sa | ample    |                      | Photo-                   |                                                       |          |
|                 |       |         | :        | Mercury              | ionization               | ·                                                     |          |
| Depth           |       |         | Rec.     | Vapor                | Detector                 | Sample Description                                    | USC      |
| (ft.)           | No.   | Туре    | (inches) | (mg/m <sup>3</sup> ) | (ppm)                    |                                                       | 1.       |
| 0' - 2'         | 0     | НА      | 24       | 0.000                | 0.0                      | Brownish-tan, fine to medium SAND, trace fine gravel. |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
| 2' - 4'         | 1     | HA      | 24       | 0.000                | 0.0                      | Same as above.                                        |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       | ļ        |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          | ·                                                     |          |
|                 |       |         |          |                      |                          |                                                       |          |
| . •             |       |         |          |                      |                          | e                                                     |          |
|                 |       |         |          |                      |                          | ·                                                     |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       | ·       |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          | ·                                                     |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          | <u> </u>                                              |          |
|                 |       |         |          |                      |                          |                                                       |          |
|                 |       |         |          |                      |                          |                                                       | <u> </u> |
| Sample '        |       |         |          |                      |                          | NOTES:                                                |          |
| <b>SS =</b> Spl |       |         |          |                      |                          | Sample for mercury analysis was collected at 2'-4'.   |          |
| IA = Hai        | nd Au | ger     |          |                      |                          |                                                       |          |

**GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-29

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

**Drill Rig:** Geoprobe **Date Started:** 10/19/05

Geologist: Stephen Tauss
Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

|                |      | Soil Sa | ample            | Mercury          | Photo-<br>ionization | ·                                                                                 |      |
|----------------|------|---------|------------------|------------------|----------------------|-----------------------------------------------------------------------------------|------|
| Depth<br>(ft.) | No.  | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector<br>(ppm)    | Sample Description                                                                | uscs |
| 0' - 2'        | 1    | HA      | 24               | 0.000            | 0.0                  | 0-3" BALLAST. 3"-2' Brown, silty fine to medium SAND, some fine to coarse gravel. |      |
| 2' - 4'        | 2    | НА      | 24               | 0.000            | 0.0                  | Brown, fine to medium SAND, some fine to medium gravel and clay.                  |      |
|                |      |         |                  |                  |                      |                                                                                   |      |
|                |      |         |                  |                  |                      |                                                                                   |      |
|                |      | e       |                  |                  |                      | •                                                                                 |      |
|                |      |         |                  |                  |                      |                                                                                   |      |
|                |      |         |                  |                  |                      |                                                                                   |      |
|                |      |         | ,                |                  |                      |                                                                                   |      |
|                |      |         |                  |                  |                      |                                                                                   |      |
| Sample         | Type | e-      |                  |                  |                      | NOTES:                                                                            |      |

Sample Types:

SS = Split Spoon

HA = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

Samples for PCB, RCRA Metals and SVOC analysis were

collected at 0-2' and 2'-4'.



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-30

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

**Geologist:** Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta       |          |        |          |         |            | Date Completed. 10/19/03                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------|----------|--------|----------|---------|------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                |          | Soil S | ample    |         | Photo-     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                | <u> </u> |        |          | Mercury | ionization |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Depth          | Ì        |        | Rec.     | Vapor   | Detector   | Sample Description                                            | USC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| (ft.)          | No.      | Type   | (inches) | (mg/m³) | (ppm)      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 0' - 2'        | 1        | HA     | 24       | 0.000   | 0.0        | Brown, silty fine to medium SAND and fine to medium GRAVEL.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2' - 4'        | 2        | НА     | 24       | 0.000   | 0.0        | Brown, silty fine to medium SAND, some fine to medium gravel. | THE WAY THE THE THE THE THE THE THE THE THE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |          |        |          |         |            |                                                               | STATISTICS OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF  |  |  |
|                |          |        |          | E       |            | ę                                                             | THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT O |  |  |
|                |          |        |          |         |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |          |        |          |         |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |          |        |          |         |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |          |        |          |         |            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |          |        |          |         |            | ·                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample         |          |        |          |         |            | NOTES:                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| <b>S</b> = Spl | it Spo   | on     |          |         |            | Samples for PCB, RCRA Metals and SVOC analysis were           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

collected at 0-2' and 2'-4'.

HA = Hand Auger



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-31

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

**Drill Rig:** Geoprobe **Date Started:** 10/19/05

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta         | rted:  |         |          |         |            | pleted: 10/19/05                                                                                                         |      |  |
|------------------|--------|---------|----------|---------|------------|--------------------------------------------------------------------------------------------------------------------------|------|--|
|                  |        | Soil Sa | ample    | ļ ·     | Photo-     |                                                                                                                          |      |  |
|                  |        |         |          | Mercury | ionization |                                                                                                                          |      |  |
| Depth            |        |         | Rec.     | Vapor   | Detector   | Sample Description                                                                                                       | USCS |  |
| (ft.)            | No.    | Туре    | (inches) | (mg/m³) |            |                                                                                                                          |      |  |
| 0' - 2'          | 1      | HA      | 24       | 0.000   | 0.0        | 0-4" Grayish brown, silty fine to medium SAND. 4"-2' Grayish brown, silty fine to medium SAND and fine to coarse GRAVEL. |      |  |
| 2' - 4'          | 2      | НА      | 24       | 0.000   | 0.0        | Brown, fine to medium SAND, some fine to medium gravel.                                                                  |      |  |
|                  |        |         |          |         |            |                                                                                                                          |      |  |
|                  |        |         |          |         | •          | •                                                                                                                        |      |  |
|                  |        | ,       |          |         |            |                                                                                                                          |      |  |
|                  |        |         |          |         |            |                                                                                                                          |      |  |
|                  |        |         |          |         |            |                                                                                                                          |      |  |
|                  |        |         |          |         |            |                                                                                                                          |      |  |
|                  |        |         |          |         |            |                                                                                                                          |      |  |
| Sample SS = Spli | it Spo | on      |          |         | 1          | NOTES: Samples for PCB, RCRA Metals and SVOC analysis were collected at 0-2' and 2'-4'.                                  |      |  |



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-32

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe

Date Started: 10/19/05

Geologist: Stephen Tauss

Drilling Method: --Drive Hammer Weight: NA

Date Completed: 10/19/05

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

| Dute Ota                                             |       | Soil Sa |                  | Mercury       | Photo-   | 70.00                                                         |      |
|------------------------------------------------------|-------|---------|------------------|---------------|----------|---------------------------------------------------------------|------|
| Depth<br>(ft.)                                       | No.   | Туре    | Rec.<br>(inches) | Vapor (mg/m³) | Detector | Sample Description                                            | USCS |
| 0' - 2'                                              | 0     | HA      | 24               | 0.000         | 0.0      | Brown, silty fine to medium SAND, some fine to medium gravel. |      |
| 2' - 4'                                              | 1     | HA      | 24               | 0.000         | 0.0      | Same as above.                                                |      |
|                                                      |       |         |                  |               |          |                                                               |      |
|                                                      |       |         |                  |               |          |                                                               |      |
| e                                                    |       |         |                  |               |          | ¢                                                             |      |
|                                                      |       |         |                  |               |          |                                                               |      |
|                                                      |       |         |                  |               |          | ·                                                             |      |
|                                                      |       |         |                  |               |          |                                                               |      |
|                                                      |       |         |                  |               |          |                                                               |      |
|                                                      | -     |         |                  |               |          | NOTES.                                                        |      |
| <b>Sample</b><br><b>SS =</b> Spli<br><b>HA</b> = Har | t Spo | on      |                  |               |          | NOTES: Sample for mercury analysis was collected at 2'-4'.    |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-33

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

**Geologist:** Stephen Tauss **Drilling Method:** ---

Drive Hammer Weight: NA

Ground Surface Elevation: --Boring Diameter: ---

Boring Completion Depth: 4'

Date Completed: 5/1/08

| Date Ott         |      | Soil Sa | ample            | Mercury          | Photo-<br>ionization                    |                                                                                                                                       |      |
|------------------|------|---------|------------------|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)   | No.  | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector<br>(ppm)                       | Sample Description                                                                                                                    | uscs |
| 0' - 1'          | 1    | HA      | 12               | 0.000            | 0.0                                     | 0-4" crushed STONE<br>4"-1' brown, fine to medium SAND, some fine to medium<br>gravel, little brick, loose, dry, no odor or staining. |      |
| 1' - 2'          | 2    | НА      | 12               | 0.000            | 0.0                                     | Brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                              |      |
| 2' - 4'          | 3    | НА      | 24               | 0.000            | 0.0                                     | Brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                              |      |
|                  |      | e       |                  |                  |                                         | e                                                                                                                                     |      |
|                  |      |         |                  |                  | ·                                       |                                                                                                                                       |      |
|                  |      |         |                  |                  |                                         |                                                                                                                                       |      |
|                  |      |         |                  |                  |                                         |                                                                                                                                       |      |
| Sample '         | Type | 6.      |                  |                  | 111111111111111111111111111111111111111 | NOTES:                                                                                                                                |      |
| SS = Split Spoon |      |         |                  |                  |                                         | Sample collected at 1'-2' Sample collected at 2'-4'                                                                                   |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-34

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/1/08

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 5/1/08

Boring Completion Depth: 4'
Ground Surface Elevation: ---

Boring Diameter: ---

|                 |     | Soil Sa | ample            | Mercury          | Photo-<br>ionization | ÷                                                                                                                               | AMMANA PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT |
|-----------------|-----|---------|------------------|------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)  | No. | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector<br>(ppm)    | Sample Description                                                                                                              | uscs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0' - 1'         | 1   | НА      | 12               | 0.000            | 0.0                  | 0-4" crushed STONE 4"-1' brown, fine to medium SAND, some fine to medium gravel, little brick fragments, loose, dry, no odor or |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1' - 2'         | 2   | HA      | 12               | 0.000            | 0.0                  | staining. Brown, fine to medium SAND, some fine to medium gravel, little brick fragments, loose, dry, no odor or staining.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2' - 4'         | 3   | НА      | 24               | 0.000            | 0.0                  | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |     |         |                  |                  |                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |     |         | t                |                  |                      | • .                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |     |         |                  |                  |                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |     |         |                  |                  |                      |                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |     |         |                  |                  |                      | ·                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |     |         |                  |                  |                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |     |         |                  |                  |                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample SS = Spl |     |         |                  |                  |                      | NOTES: Sample collected at 1'-2'                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Sample collected at 2'-4'

HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-35** 

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08 Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

|                |     | Soil Sa | ample            | Photo-<br>Mercury ionization |                |                                                                                                                                           |                                         |
|----------------|-----|---------|------------------|------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Depth<br>(ft.) | No. | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³)             | Detector (ppm) | Sample Description                                                                                                                        | USCS                                    |
| 0' - 1'        | 1   | НА      | 12               | 0.000                        | 0.0            | 0-4" crushed STONE 4"-1' Brown, fine to medium SAND, some fine to medium gravel, little brick fragments, loose, dry, no odor or staining. |                                         |
| 1' - 2'        | 2   | НА      | 12               | 0.000                        | 0.0            | Brown, fine to medium SAND, some fine to medium gravel, little brick fragments, loose, dry, no odor or staining.                          |                                         |
| 2' - 4'        | 3   | НА      | 24               | 0.000                        | 0.0            | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                                         |                                         |
|                |     |         |                  |                              |                |                                                                                                                                           |                                         |
|                |     |         |                  |                              |                | •                                                                                                                                         |                                         |
|                |     |         |                  |                              |                |                                                                                                                                           | *************************************** |
|                |     |         |                  |                              |                |                                                                                                                                           |                                         |
|                |     |         |                  |                              |                |                                                                                                                                           |                                         |
|                |     |         |                  |                              |                |                                                                                                                                           | :                                       |
|                |     |         |                  |                              |                |                                                                                                                                           |                                         |
| Sample Soli    |     |         |                  |                              | ,              | NOTES: Samples collected at 1'-2'                                                                                                         |                                         |

Samples collected at 2'-4'

**HA** = Hand Auger **GP** = Geoprobe Sampler **CC** = Concrete Core



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-36

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 5/1/08

Boring Completion Depth: 4'
Ground Surface Elevation: ---

| Date Sta                                             |                         | 5/4/09              |          |                  | Date Com                         | pleted: 5/1/08                                                                    |                           |      |
|------------------------------------------------------|-------------------------|---------------------|----------|------------------|----------------------------------|-----------------------------------------------------------------------------------|---------------------------|------|
| Date 219                                             | iteu:                   | _                   |          | 1                | <u> </u>                         | // // // // // // // // // // // // //                                            | <u> </u>                  | 1    |
| Depth                                                |                         | Soil Sa             | Rec.     | Mercury<br>Vapor | Photo-<br>ionization<br>Detector | Sample                                                                            | Description               | USCS |
| (ft.)                                                | No.                     | Type                | (inches) | (mg/m³)          | (ppm)                            |                                                                                   |                           |      |
| 0' - 1'                                              | 1                       | HA                  | 12       | 0.000            | 0.0                              | 0-4" crushed STONE<br>4"-1' Brown, fine to mediun<br>gravel, some brick, loose, o | dry, no odor or staining. |      |
| 1' - 2'                                              | 2                       | HA                  | 12       | 0.000            | 0.0                              | Orange brown, fine to med medium gravel, loose, dry,                              |                           |      |
| 2' - 4'                                              | 3                       | НА                  | 24       | 0.000            | 0.0                              | Orange brown, fine to med<br>medium gravel, loose, dry,                           |                           |      |
|                                                      |                         |                     |          |                  |                                  | t                                                                                 |                           | e    |
|                                                      |                         |                     |          |                  |                                  |                                                                                   |                           |      |
|                                                      |                         |                     |          |                  |                                  |                                                                                   |                           |      |
|                                                      |                         |                     |          |                  |                                  |                                                                                   |                           |      |
| Sample SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samj | oler     |                  |                                  | NOTES:<br>Sample collected at 1'-2'<br>Sample collected at 2'-4'                  |                           |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-37

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

**Geologist:** Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 5/1/08

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

Boring Diameter: ---

| Date Sta        | iteu. |        |          | ·       | ·        | Jieleu. 5/ 1/06                                                                                   | .,,  |
|-----------------|-------|--------|----------|---------|----------|---------------------------------------------------------------------------------------------------|------|
|                 |       | Soil S | ample    |         | Photo-   |                                                                                                   |      |
|                 |       | ·      | ·        | Mercury |          |                                                                                                   |      |
| Depth           |       |        | Rec.     | Vapor   | Detector | Sample Description                                                                                | USCS |
| (ft.)           | No.   |        | (inches) | (mg/m³) | (ppm)    |                                                                                                   |      |
| 0' - 1'         | 1     | HA     | 12       | 0.000   | 0.0      | 0-4" crushed STONE                                                                                |      |
|                 |       |        |          |         | Í        | 4"-1' Brown, fine to medium SAND, some fine to medium                                             |      |
|                 |       |        |          |         |          | gravel, little brick fragments, loose, dry, no odor or staining.                                  |      |
| 1' - 2'         | 2     | НА     | 12       | 0.000   | 0.0      | Brown, fine to medium SAND, some fine to medium                                                   |      |
|                 | ~     | '"`    | ·        | 0.000   | 0.0      | gravel, little brick fragments, loose, dry, no odor or                                            |      |
|                 |       |        |          |         |          | staining.                                                                                         |      |
| 01 41           | _     |        | 0.4      | 0.000   | 0.0      | Oranga hassar fine to madisum CANID little fine to                                                |      |
| 2' - 4'         | 3     | HA     | 24       | 0.000   | 0.0      | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining. |      |
|                 |       |        |          |         |          | Thedium graver, loose, dry, no odor or staining.                                                  |      |
| 4'-6'           | 4     | HA     | 24       | 0.000   | 0.0      | Orange brown, fine to medium SAND, little fine to                                                 |      |
|                 |       |        |          |         |          | medium gravel, loose, dry, no odor or staining.                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 | •     |        | :        |         |          | •                                                                                                 |      |
|                 |       |        |          |         | ,        |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   | •    |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 |       |        |          |         |          |                                                                                                   |      |
|                 | -     |        |          |         |          | · ·                                                                                               |      |
|                 |       |        |          |         |          |                                                                                                   |      |
| Sample 7        |       |        |          |         |          | NOTES:                                                                                            |      |
| <b>S</b> = Spli |       |        |          |         |          | Sample collected at 1'-2'                                                                         |      |
| HA = Har        |       |        | nio#     |         |          | Sample collected at 2'-4' Sample collected at 4'-6'                                               |      |
| <b>GP</b> = Ge  | •     | e Samp | DIEF     |         |          | oampie collected at 4 -0                                                                          |      |



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-38** 

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08

Boring Completion Depth: 6' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Ota                          |        | Soil Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ample            |                             | Photo-                          |                                                                                                   |      |
|-----------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)                    | No.    | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | ionization<br>Detector<br>(ppm) | Sample Description                                                                                | uscs |
| 0' - 1'                           | 1      | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12               | 0.000                       | 0.0                             | Brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.          |      |
| 1' - 2'                           | 2      | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining. |      |
| 2' - 4'                           | 3      | НА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining. |      |
| 4'-6'                             | 4      | НА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining. |      |
|                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                |                             |                                 | €                                                                                                 |      |
|                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                                 |                                                                                                   |      |
|                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                                 |                                                                                                   |      |
|                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             | ·                               |                                                                                                   |      |
|                                   |        | A PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                  |                             |                                 |                                                                                                   |      |
| Sample <sup>*</sup>               | Туре   | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                             |                                 | NOTES:                                                                                            |      |
| <b>SS =</b> Spl<br><b>HA =</b> Ha | it Spo | oon<br>iger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                             |                                 | Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6'                     |      |

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-39

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08

Boring Completion Depth: 6'
Ground Surface Elevation: ---

**Boring Diameter: ---**

|           |       | Soil Sample |          |         | Photo-     |                                                                                                                                |       |
|-----------|-------|-------------|----------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
|           |       | I           |          | Mercury | ionization | O-wayla Danasistian                                                                                                            | 11000 |
| Depth     |       | _           | Rec.     | Vapor   | Detector   | Sample Description                                                                                                             | USCS  |
| (ft.)     | No.   | Type        | (inches) | (mg/m³) | (ppm)      | o di La La Talia                                                                                                               |       |
| 0' - 1'   | 1     | HA          | 12       | 0.000   | 0.0        | 0-4" crushed STONE<br>4"-1' Brown, fine to medium SAND, fine to medium<br>gravel, some brick, loose, dry, no odor or staining. |       |
| 1' - 2'   | 2     | НА          | 12       | 0.000   | 0.0        | Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                |       |
| 2' - 4'   | 3     | НА          | 24       | 0.000   | 0.0        | Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                |       |
| 4'-6'     | 4     | НА          | 24       | 0.000   | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                              |       |
|           |       |             |          |         | e          | τ                                                                                                                              |       |
|           |       |             |          |         |            |                                                                                                                                |       |
|           |       |             |          |         |            |                                                                                                                                |       |
|           |       |             |          |         |            | ·                                                                                                                              |       |
|           |       |             |          |         |            |                                                                                                                                |       |
|           |       |             |          |         | :<br>:     |                                                                                                                                |       |
| Sample :  | Гуре  | s: .        |          | •       |            | NOTES:                                                                                                                         |       |
| SS = Spli |       |             | •        |         |            | Sample collected at 1'-2'                                                                                                      |       |
| HA = Har  | nd Àu | ger         |          |         |            | Sample collected at 2'-4'                                                                                                      |       |
| GP = Ge   | oprob | e Sam       | pler     |         |            | Sample collected at 4'-6'                                                                                                      |       |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-40

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor: Zebra** 

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---Drive Hammer Weight: NA

Date Completed: 5/1/08

Boring Completion Depth: 2' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta         | l tea. | Soil S | ample |                  | Photo-                 | Neted. 0/1/00                                                                                                     |      |
|------------------|--------|--------|-------|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------|------|
| Depth            |        |        | Rec.  | Mercury<br>Vapor | ionization<br>Detector | Sample Description                                                                                                | USCS |
| (ft.)            | No.    |        |       | (mg/m³)          | (ppm)                  |                                                                                                                   |      |
| 0' - 1'          | 1      | HA     | 12    | 0.000            | 0.0                    | 0-4" crushed STONE 4"-1' Brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining. |      |
| 1' - 2'          | 2      | НА     | 12    | 0.000            | 0.0                    | Brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                          |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
| •                |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
| €                |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       | -                |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
|                  |        |        |       |                  |                        |                                                                                                                   |      |
| • ••             |        |        |       |                  |                        | NOTES:                                                                                                            |      |
| <b>3S</b> = Spli |        |        |       |                  |                        | Sample collected at 1'-2'                                                                                         |      |
| HA = Hai         |        |        | olor  |                  |                        |                                                                                                                   |      |
| <b>SP</b> = Ge   |        |        | piei  |                  |                        |                                                                                                                   |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-41

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

|                                                           | Soil Sample             |                     |                  |                             | Photo-                          | neted. 3/1/00                                                                                                           |      |
|-----------------------------------------------------------|-------------------------|---------------------|------------------|-----------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)                                            | No.                     | Туре                | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | ionization<br>Detector<br>(ppm) | Sample Description                                                                                                      | uscs |
| 0' - 1'                                                   | 1                       | HA                  | 12               | 0.000                       | 0.0                             | 0-4" Crushed STONE<br>4"-1' Brown, fine to medium SAND, some fine to medium<br>gravel, loose, dry, no odor or staining. |      |
| 1' - 2'                                                   | 2                       | НА                  | 12               | 0.000                       | 0.0                             | Brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                |      |
| 2' - 4'                                                   | 3                       | НА                  | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                       |      |
| 4' - 6'                                                   | 4                       | НА                  | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                       |      |
|                                                           |                         |                     |                  |                             |                                 | <b>€</b>                                                                                                                |      |
|                                                           |                         |                     |                  |                             | ,                               |                                                                                                                         | -    |
|                                                           |                         |                     |                  |                             |                                 |                                                                                                                         |      |
|                                                           |                         |                     |                  |                             |                                 |                                                                                                                         |      |
| :                                                         |                         |                     |                  |                             |                                 |                                                                                                                         |      |
|                                                           |                         |                     |                  |                             |                                 |                                                                                                                         |      |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samı | oler             |                             |                                 | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6'                                    |      |



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-43** 

Sheet \_1\_ of \_1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/2/08

Driller: ---Drill Rig: --- **Geologist:** Stephen Tauss **Drilling Method: ---**

**Drive Hammer Weight: NA** 

**Boring Diameter: ---**

**Boring Completion Depth: 8**'

Ground Surface Elevation: ---

Date Completed: 5/2/08

|                                          |                          | Soil Sample           |          |               | Photo-                 |                                                                                                                | ,    |
|------------------------------------------|--------------------------|-----------------------|----------|---------------|------------------------|----------------------------------------------------------------------------------------------------------------|------|
| D 41-                                    |                          | 1                     | Rec.     | Mercury       | ionization<br>Detector | Sample Description                                                                                             | USCS |
| Depth                                    | No.                      | Type                  | (inches) | Vapor (mg/m³) | (ppm)                  | Sample Description                                                                                             | 0303 |
| (ft.)<br>0' - 1'                         | 1                        | Type<br>HA            | 12       | 0.000         | 0.0                    | 0-4" crushed STONE                                                                                             |      |
| 0 - 1                                    | '                        |                       | 12       | 0.000         | 0.0                    | 4"-1' Brown fine to medium SAND and fine to medium gravel, loose, moist, no odor or staining.                  |      |
| 1' - 2'                                  | 2                        | НА                    | 12.      | 0.000         | 0.0                    | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.             |      |
| 2'-4'                                    | 3                        | НА                    | 24       | 0.000         | 0.0                    | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.             |      |
| 4'-6'                                    | 4                        | НА                    | 24       | 0.000         | 0.0                    | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.             |      |
| 6'-8'                                    | 5                        | НА                    | 24       | 0.000         | 0.0                    | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.             |      |
|                                          |                          |                       |          |               |                        |                                                                                                                |      |
| Sample SS = Spli<br>HA = Har<br>GP = Ger | it Spo<br>nd Au<br>oprob | oon<br>iger<br>oe Sam | pler     |               |                        | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6' Sample collected at 6'-8' |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-44

Sheet \_1\_ of \_1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 5/2/08

Boring Completion Depth: 8'
Ground Surface Elevation: ---

| D. 4 0                                               |                         | F10100             |          |                  | Doto O                           | data de Elgino                                                                                                 |                                                |      |
|------------------------------------------------------|-------------------------|--------------------|----------|------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| Date Sta                                             | rted:                   |                    |          |                  |                                  | leted: 5/2/08                                                                                                  |                                                |      |
| Depth                                                |                         | Soil S             | Rec.     | Mercury<br>Vapor | Photo-<br>ionization<br>Detector | Sample                                                                                                         | Description                                    | uscs |
| (ft.)                                                | No.                     |                    | (inches) | (mg/m³)          | (ppm)                            |                                                                                                                |                                                |      |
| 0' - 1'                                              | 1                       | НА                 | 12       | 0.000            | 0.0                              | gravel, loose, moist, no odo                                                                                   |                                                |      |
| 1' - 2'                                              | 2                       | НА                 | 12       | 0.000            | 0.0                              | Orange brown fine to medion gravel, loose, moist, no odd                                                       | um SAND, little fine to medium or or staining. |      |
| 2'-4'                                                | 3                       | HA                 | 24       | 0.000            | 0.0                              | Orange brown fine to medion gravel, loose, moist, no odd                                                       | um SAND, little fine to medium or or staining. |      |
| 4'-6'                                                | 4                       | НА                 | 24       | 0.000            | 0.0                              | Orange brown fine to medion gravel, loose, moist, no odd                                                       | um SAND, little fine to medium or or staining. |      |
| 6'-8'                                                | 5                       | НА                 | - 24     | 0.000            | 0.0                              | Orange brown fine to medi<br>gravel, loose, moist, no odd                                                      | um SAND, little fine to medium or or staining. |      |
| Sample SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Sam | oler     |                  |                                  | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6' Sample collected at 6'-8' |                                                |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-45

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

**Geologist:** Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08 Boring Completion Depth: 6' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta        | rtea. |        |          |                      | ·          | ipieteu. 5/1/06                                      |      |  |  |
|-----------------|-------|--------|----------|----------------------|------------|------------------------------------------------------|------|--|--|
|                 |       | Soil S | ample    |                      | Photo-     | ·                                                    |      |  |  |
|                 |       |        |          | Mercury              | ionization |                                                      |      |  |  |
| Depth           |       |        | Rec.     | Vapor                | Detector   | Sample Description                                   | USCS |  |  |
| (ft.)           | No.   | Type   | (inches) | (mg/m <sup>3</sup> ) | (ppm)      |                                                      |      |  |  |
| 0' - 1'         | 1     | HA     | 12       | 0.000                | 0.0        | 0-4" crushed STONE                                   |      |  |  |
|                 |       |        |          |                      |            | 4"-1' Brown, fine to medium SAND, fine to medium     |      |  |  |
|                 |       |        | ŀ        |                      |            | gravel, some brick, loose, dry, no odor or staining. |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
| 1' - 2'         | 2     | HA     | 12       | 0.000                | 0.0        | Orange brown, fine to medium SAND, some fine to      |      |  |  |
|                 |       |        |          |                      |            | medium gravel, loose, dry, no odor or staining.      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
| 01 41           |       |        |          | 0.000                | 0.0        | Orange brown, fine to medium SAND, some fine to      |      |  |  |
| 2' - 4'         | 3     | HA     | 24       | 0.000                | . 0.0      | medium gravel, loose, dry, no odor or staining.      |      |  |  |
|                 |       |        |          |                      |            | Thediam graver, loose, dry, no odor or staining.     |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
| 4'-6'           | 4     | НА     | 24       | 0.000                | 0.0        | Orange brown, fine to medium SAND, little fine to    |      |  |  |
|                 |       |        |          |                      |            | medium gravel, loose, dry, no odor or staining.      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
| €               |       |        |          |                      |            | e .                                                  |      |  |  |
|                 |       | ·      |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      | '    |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       | ļ      |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
|                 |       |        |          |                      |            |                                                      |      |  |  |
| Sample          |       |        |          |                      |            | NOTES:                                               |      |  |  |
| <b>SS</b> = Spl |       |        |          |                      |            | Sample collected at 1'-2'                            |      |  |  |
| HA = Hai        |       |        |          |                      |            | Sample collected at 2'-4'                            |      |  |  |
| GP = Ge         | oprob | e Sam  | pler     |                      |            | Sample collected at 4'-6'                            |      |  |  |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-46

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08

Boring Completion Depth: 8'
Ground Surface Elevation: ---

| Date Sta                                                  | neu.                    | 3/1/06              |          | ,       | ļ          | Jieteu. 3/ 1/06                                                                                                                                                                   |                                         |
|-----------------------------------------------------------|-------------------------|---------------------|----------|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                           |                         | Soil Sa             | ample    |         | Photo-     |                                                                                                                                                                                   |                                         |
|                                                           |                         |                     |          | Mercury | ionization |                                                                                                                                                                                   |                                         |
| Depth                                                     |                         |                     | Rec.     | Vapor   | Detector   | Sample Description                                                                                                                                                                | USCS                                    |
| (ft.)                                                     | No.                     | Type                | (inches) | (mg/m³) | (ppm)      |                                                                                                                                                                                   | ,                                       |
| 0' - 1'                                                   | 1                       | НА                  | 12       | 0.000   | 0.0        | 0-4" crushed STONE 4"-1' brown, fine to medium SAND, some fine to medium                                                                                                          |                                         |
| 1' - 2'                                                   | 2                       | НА                  | 12       | 0.000   | 0.0        | gravel, little brick fragments, loose, dry, no odor or staining. Brown, fine to medium SAND, some fine to medium gravel, little brick fragments, loose, dry, no odor or staining. | T I I I I I I I I I I I I I I I I I I I |
| 2' - 4'                                                   | 3                       | HA                  | 24       | 0.000   | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                                                                                 |                                         |
| 4'-6'                                                     | 4                       | НА                  | 24       | 0.000   | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                                                                                 |                                         |
| 6'-8'                                                     | 5                       | HA                  | 24       | 0.000   | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                                                                                 |                                         |
|                                                           |                         |                     |          |         |            |                                                                                                                                                                                   |                                         |
|                                                           |                         |                     |          | ·       |            |                                                                                                                                                                                   |                                         |
|                                                           |                         |                     |          |         |            |                                                                                                                                                                                   |                                         |
|                                                           |                         |                     |          |         |            |                                                                                                                                                                                   |                                         |
| Sample 1<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>nd Au<br>oprob | on<br>ger<br>e Samp | oler     |         |            | NOTES: Samples collected at 1'-2' Samples collected at 2'-4' Samples collected at 4'-6' Samples collected at 6'-8'                                                                |                                         |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-47

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/1/08

Driller: ---Drill Rig: --- Geologist: Stephen Tauss
Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

**Boring Diameter: ---**

| Date Ota                                 |                | Soil Sa   | ample            |                             | Photo-                          |                                                                                                                          |      |
|------------------------------------------|----------------|-----------|------------------|-----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)                           | No.            | Туре      | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | ionization<br>Detector<br>(ppm) | Sample Description                                                                                                       | uscs |
| 0' - 1'                                  | 1              | HA        | 12               | 0.000                       | 0.0                             | 0-4" crushed STONE 4"-1' Brown, fine to medium SAND, fine to medium gravel, some brick, loose, dry, no odor or staining. |      |
| 1' - 2'                                  | 2              | НА        | 12               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                          |      |
| 2' - 4'                                  | 3              | НА        | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                          |      |
| 4'-6'                                    | 4              | НА        | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                        |      |
|                                          |                |           |                  | ē                           |                                 | <b>e</b>                                                                                                                 |      |
|                                          |                |           |                  |                             |                                 |                                                                                                                          |      |
|                                          |                |           |                  |                             |                                 |                                                                                                                          |      |
| ·                                        |                |           |                  |                             |                                 |                                                                                                                          |      |
|                                          |                |           |                  |                             |                                 |                                                                                                                          |      |
|                                          |                |           |                  |                             |                                 |                                                                                                                          |      |
| Sample SS = Spli<br>HA = Har<br>GP = Geo | t Spo<br>nd Au | on<br>ger | oler             |                             |                                 | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6'                                     |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-48

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 5/2/08

Boring Completion Depth: 8'
Ground Surface Elevation: ---

Boring Diameter: ---

| Dim rug.  |          |          |          |          |            |                                                     |                                |     |
|-----------|----------|----------|----------|----------|------------|-----------------------------------------------------|--------------------------------|-----|
| Date Sta  | rted:    | 5/2/08   |          |          | Date Comp  | oleted: 5/2/08                                      |                                |     |
|           |          | Soil S   |          |          | Photo-     | Photo-                                              |                                |     |
|           |          | 000      |          | Mercury  | ionization |                                                     |                                |     |
| Depth     | <u> </u> |          | Rec.     | Vapor    | Detector   | Sample                                              | Description                    | USC |
| (ft.)     | No.      | Type     | (inches) | (mg/m³)  | (ppm)      | Gampie                                              | becompaid:                     | 000 |
|           |          |          |          |          |            | O 4" arrighted STONE                                |                                |     |
| 0' - 1'   | 1        | HA       | 12       | 0.000    | 0.0        | 0-4" crushed STONE<br>4"-1' Brown fine to medium    | CAND and fine to madium        |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            | gravel, loose, moist, no odd                        | or staining.                   |     |
| 1' - 2'   | 2        | НА       | 12       | 0.000    | 0.0        | Orange brown fine to media                          | um SAND, little fine to medium |     |
| 1 - 2     | -        | 11/      | 12       | 0.000    | 0.0        | gravel, loose, moist, no odd                        |                                |     |
|           |          |          |          |          |            | graver, 10030, moist, no ode                        | or staining.                   |     |
|           |          |          |          |          |            |                                                     |                                |     |
| 2'-4'     | 3        | HA       | 24       | 0.000    | 0.0        | Orange brown fine to media                          | um SAND, little fine to medium |     |
|           |          | ` " '    |          |          |            | gravel, loose, moist, no odo                        |                                |     |
|           |          |          |          |          |            |                                                     | •                              |     |
| 4'-6'     | 4        | HA       | 24       | 0.000    | 0.0        | Orange brown fine to media                          | um SAND, little fine to medium |     |
|           |          |          |          |          | i          | gravel, loose, moist, no odo                        |                                |     |
|           |          |          |          |          |            |                                                     | · ·                            |     |
|           |          |          |          |          |            |                                                     |                                |     |
| 6'-8' •   | 5        | HA       | 24       | 0.000    | 0.0        |                                                     | um SAND, little fine to medium |     |
|           |          |          |          |          |            | gravel, loose, moist, no odo                        | or or staining.                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     | * *                            |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          | 1        |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
|           |          |          |          |          |            |                                                     |                                |     |
| <b></b>   | F        | <u> </u> |          | <u> </u> | <u> </u>   | NOTES.                                              |                                |     |
| Sample 7  |          |          |          |          |            | NOTES:                                              |                                |     |
| SS = Spli |          |          |          |          |            | Sample collected at 1'-2' Sample collected at 2'-4' |                                |     |
| HA = Har  |          |          | mlar     |          |            | Sample collected at 4'-6'                           |                                |     |
| GP = Ge   | opror    | e Sam    | pier     |          |            | Sample collected at 4 -0                            |                                |     |

Sample collected at 6'-8'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-49

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/2/08

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/2/08

Boring Completion Depth: 8'
Ground Surface Elevation: ---

| Duto Ota                                               |     | Soil Sa | ample            | Mercury       | Photo-<br>ionization |                                                                                                                        |      |
|--------------------------------------------------------|-----|---------|------------------|---------------|----------------------|------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)                                         | No. | Туре    | Rec.<br>(inches) | Vapor (mg/m³) | Detector<br>(ppm)    | Sample Description                                                                                                     | uscs |
| 0' - 1'                                                | 1   | HA      | 12               | 0.000         | 0.0                  | 0-4" crushed STONE<br>4"-1' Brown fine to medium SAND and fine to medium<br>gravel, loose, moist, no odor or staining. |      |
| 1' - 2'                                                | 2   | НА      | 12               | 0.000         | 0.0                  | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.                     |      |
| 2'-4'                                                  | 3   | НА      | 24               | 0.000         | 0.0                  | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.                     |      |
| 4'-6'                                                  | 4   | НА      | 24               | 0.000         | 0.0                  | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.                     |      |
| 6'-8'                                                  | 5   | на      | • 24             | 0.000         | 0.0                  | Orange brown fine to medium SAND, little fine to medium gravel, loose, moist, no odor or staining.                     |      |
|                                                        |     |         |                  |               |                      | ,                                                                                                                      |      |
| SS = Split Spoon HA = Hand Auger GP = Geoprobe Sampler |     |         |                  |               |                      | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6' Sample collected at 6'-8'         |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-51

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/1/08

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 5/1/08

Boring Completion Depth: 2'
Ground Surface Elevation: ---

**Boring Diameter: ---**

|                       |     | Soil Sample |                  | Mercury          | Photo-<br>ionization |                                                                                                                           |      |
|-----------------------|-----|-------------|------------------|------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.)        | No. | Туре        | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector<br>(ppm)    | Sample Description                                                                                                        | uscs |
| 0' - 1'               | 1   | НА          | 12               | 0.000            | 0.0                  | 0-6" crushed STONE<br>6"-1' brown, fine to medium SAND, little fine to medium<br>gravel, loose, dry, no odor or staining. |      |
| 1' - 2'               | 2   | НА          | 12               | 0.000            | 0.0                  | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                                |      |
|                       |     |             |                  |                  |                      |                                                                                                                           |      |
|                       |     |             |                  |                  |                      |                                                                                                                           | -    |
| -                     |     |             |                  | € .              |                      | €                                                                                                                         |      |
|                       |     |             |                  |                  |                      |                                                                                                                           |      |
|                       |     |             |                  |                  | ·                    |                                                                                                                           |      |
|                       |     |             |                  |                  |                      |                                                                                                                           |      |
|                       |     | -           |                  |                  |                      |                                                                                                                           |      |
| Sample 7<br>SS = Spli |     |             |                  |                  |                      | NOTES: Sample collected at 1'-2'                                                                                          |      |

HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-52

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/2/08

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/2/08 Boring Completion Depth: 2' Ground Surface Elevation: ---

Boring Diameter: ---

|                |      | Soil Sa | ample            | Mercury          | Photo-<br>ionization |                                                                                                                         |      |
|----------------|------|---------|------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.) | No.  | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector (ppm)       | Sample Description                                                                                                      | USCS |
| 0' - 1'        | 1    | HA      | 12               | 0.000            | 0.0                  | 0-4" crushed STONE<br>4"-1' Brown, fine to medium SAND and fine to medium<br>gravel, loose, moist, no odor or staining. | _    |
| 1' - 2'        | 2    | НА      | 12               | 0.000            | 0.0                  | Brown, fine to medium SAND and fine to medium gravel, loose, moist, no odor or staining.                                |      |
|                |      |         |                  |                  |                      |                                                                                                                         |      |
|                |      |         |                  |                  |                      |                                                                                                                         |      |
|                |      |         |                  |                  | ¢                    | e                                                                                                                       |      |
|                |      |         |                  |                  |                      |                                                                                                                         |      |
|                |      |         |                  |                  |                      |                                                                                                                         |      |
|                |      | :       |                  |                  |                      |                                                                                                                         |      |
|                |      |         |                  |                  |                      |                                                                                                                         |      |
| Sample T       | Fync |         |                  |                  |                      | NOTES:                                                                                                                  |      |

Sample collected at 1'-2'

Sample Types: SS = Split Spoon

HA = Hand Auger

**GP =** Geoprobe Sampler



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-53

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/2/08

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA

Ground Surface Elevation: --Boring Diameter: ---

**Boring Completion Depth: 6** 

Date Completed: 5/2/08

| Date Sta            | i tea. | Soil Sa | ample    | 1                    | Photo-                 | Neteu. UZIU                                                                                                             |      |
|---------------------|--------|---------|----------|----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| Depth               |        |         | Rec.     | Mercury<br>Vapor     | ionization<br>Detector | Sample Description                                                                                                      | USCS |
| (ft.)               | No.    |         | (inches) | (mg/m <sup>3</sup> ) | (ppm)                  | **                                                                                                                      |      |
| 0' - 1'             | 1      | HA      | 12       | 0.000                | 0.0                    | 0-4" crushed STONE<br>4"-1' Brown, fine to medium SAND, some fine to medium<br>gravel, loose, dry, no odor or staining. |      |
| 1' - 2'             | 2      | НА      | 12       | 0.000                | 0.0                    | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                              |      |
| 2'-4'               | 3      | HA      | 24       | 0.000                | 0.0                    | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                       |      |
| 4'-6'               | 4      | НА      | 24       | 0.000                | 0.0                    | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                       |      |
| ¢                   |        |         |          |                      |                        | e                                                                                                                       |      |
|                     |        |         |          |                      |                        |                                                                                                                         |      |
|                     |        |         |          |                      |                        |                                                                                                                         |      |
|                     |        |         |          |                      |                        |                                                                                                                         | .    |
|                     |        |         |          |                      |                        |                                                                                                                         |      |
|                     |        |         |          |                      |                        |                                                                                                                         |      |
| Sample <sup>*</sup> | Types  | s:      |          |                      |                        | NOTES:                                                                                                                  |      |
| <b>SS</b> = Spl     | it Spo | on      |          |                      |                        | Sample collected at 1'-2'                                                                                               |      |
| HA = Hai            |        |         | olor     |                      |                        | Sample collected at 2'-4' Sample collected at 4'-6'                                                                     |      |
| GP = Ge             | obtop  | e sam   | Dier     |                      |                        | Cample Collected at 4 -0                                                                                                |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-54

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/2/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 5/2/08

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

| Soil Sample Photo- |       |         |          |                      |            | Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Joseph Jo |      |  |
|--------------------|-------|---------|----------|----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                    |       | 2011 29 | ampie    | Mercury              | ionization |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
| Depth              |       | ·       | Rec.     | Vapor                | Detector   | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | USCS |  |
| (ft.)              | No.   | Туре    | (inches) | (mg/m <sup>3</sup> ) | (ppm)      | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0303 |  |
| 0' - 1'            | 1     | HA      | 12       |                      | 0.0        | 0-4" crushed STONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |
| 0 - 1              | 1     | ПА      | 12       | 0.000                | 0.0        | 4"-1' Brown, fine to medium SAND, some fine to medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |  |
|                    |       |         |          |                      |            | gravel, loose, dry, no odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |  |
|                    |       |         |          |                      |            | graver, loose, dry, no odor or stairning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |  |
| 1' - 2'            | 2     | НА      | 12       | 0.000                | 0.0        | Brown, fine to medium SAND, little fine to medium gravel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |  |
| ' -                | -     | , .     | 12       | 0.000                | 0.0        | loose, dry, no odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |  |
|                    |       |         |          |                      |            | losse, any, no such or examing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
| 2'-4'              | 3     | HA      | 24       | 0.000                | 0.0        | Orange brown, fine to medium SAND, little fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |
|                    |       |         |          |                      |            | medium gravel, loose, dry, no odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
| 4'-6'              | 4     | HA      | 24       | 0.000                | 0.0        | Orange brown, fine to medium SAND, little fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |  |
|                    |       |         |          |                      |            | medium gravel, loose, dry, no odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       | _       |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       | e       |          |                      |            | ę.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      | i          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         | ı        |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       | j       |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|                    |       |         |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
| ample 1            |       |         |          |                      |            | NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |  |
| SS = Spli          |       |         |          |                      |            | Sample collected at 1'-2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |  |
| <b>IA</b> = Har    |       |         |          |                      |            | Sample collected at 2'-4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |  |
| SP = Ged           |       |         | oler     |                      |            | Sample collected at 4'-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |  |
| CC = Cor           | orete | Core    |          |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-55** 

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/2/08

Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 5/2/08

Boring Completion Depth: 6'
Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Ota                            |     | Soil S | ample    |                  | Photo-              | 700001 0/200                                                                                                                                                                                                            |      |
|-------------------------------------|-----|--------|----------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Depth                               |     |        | Rec.     | Mercury<br>Vapor | Detector            | Sample Description                                                                                                                                                                                                      | uscs |
| (ft.)                               | No. |        | (inches) | (mg/m³)          | <b>(ppm)</b><br>0.0 | 0-2" crushed STONE                                                                                                                                                                                                      |      |
| 0' - 1'                             | 2   | НА     | 12       | 0.000            | 0.0                 | 2"-1' Brown, fine to medium SAND, some fine to medium gravel, little brick fragments, loose, dry, no odor or staining.  Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining. |      |
| 2'-4'                               | 3   | HA .   | 24       | 0.000            | 0.0                 | Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                                                                                                         |      |
| 4'-6'                               | 4   | НА     | 24       | 0.000            | 0.0                 | Orange brown, fine to medium SAND, some fine to medium gravel, loose, dry, no odor or staining.                                                                                                                         |      |
|                                     |     |        | e        |                  |                     | σ                                                                                                                                                                                                                       |      |
|                                     |     | -      |          |                  |                     |                                                                                                                                                                                                                         |      |
| ,                                   |     |        |          |                  |                     | ·                                                                                                                                                                                                                       |      |
|                                     |     |        |          |                  |                     |                                                                                                                                                                                                                         |      |
|                                     |     |        |          |                  |                     |                                                                                                                                                                                                                         |      |
| Sample 1                            |     |        |          |                  |                     | NOTES:                                                                                                                                                                                                                  |      |
| <b>SS =</b> Spli<br><b>HA</b> = Har |     |        |          |                  |                     | Sample collected at 1'-2' Sample collected at 2'-4'                                                                                                                                                                     |      |
| GP = Ge                             |     |        | oler     |                  |                     | Sample collected at 4'-6'                                                                                                                                                                                               |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-56

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/2/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/2/08

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

**Boring Diameter: ---**

| Date Sta        | iteu. | JIZIOU  |          | <del>,</del>         | Date Comp  | Jieteu. Jizioo                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|-------|---------|----------|----------------------|------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |       | Soil Sa | ample    |                      | Photo-     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         |          | Mercury              | ionization |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth           |       |         | Rec.     | Vapor                | Detector   | Sample Description                                                                                             | USC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (ft.)           | No.   | Туре    | (inches) | (mg/m <sup>3</sup> ) | (ppm)      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0' - 1'         | 1     | HA      | 12       | 0.000                | 0.0        | Brown, fine to medium SAND, little fine to medium gravel and brick fragments, loose, dry, no odor or staining. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1' - 2'         | 2     | НА      | 12       | 0.000                | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2'-4'           | 3     | НА      | 24       | 0.000                | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4'-6'           | 4     | НА      | 24       | 0.000                | 0.0        | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         |          |                      | c          | e                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         |          |                      |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         | ,        |                      |            | ·                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         |          |                      |            | ·                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         |          |                      |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |       |         |          |                      |            |                                                                                                                | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|                 |       |         |          |                      |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Spli     |       |         |          | <u> </u>             |            | NOTES:<br>Sample collected at 1'-2'                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>iA</b> = Har | nd Au |         |          |                      |            | Sample collected at 2'-4'                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-57

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/2/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/2/08

Boring Completion Depth: 6' Ground Surface Elevation: ---

**Boring Diameter: ---**

|                                                                    |     | Soil Sa | ample            |                             | Photo-                          |                                                                                                                |     |
|--------------------------------------------------------------------|-----|---------|------------------|-----------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|-----|
| Depth<br>(ft.)                                                     | No. | Туре    | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | ionization<br>Detector<br>(ppm) | Sample Description                                                                                             | usc |
| 0' - 1'                                                            | 1   | HA      | 12               | 0.000                       | 0.0                             | Brown, fine to medium SAND, little fine to medium gravel and brick fragments, loose, dry, no odor or staining. |     |
| 1' - 2'                                                            | 2   | НА      | 12               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.              |     |
| 2'-4'                                                              | 3   | НА      | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.              |     |
| 4'-6'                                                              | 4   | HA      | 24               | 0.000                       | 0.0                             | Orange brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.              |     |
|                                                                    | ,   |         |                  |                             |                                 | •                                                                                                              | E   |
|                                                                    |     |         |                  |                             |                                 | ·                                                                                                              |     |
|                                                                    |     |         |                  |                             |                                 |                                                                                                                |     |
|                                                                    |     |         |                  |                             | -<br>-                          |                                                                                                                |     |
|                                                                    |     | :       |                  |                             | -                               |                                                                                                                |     |
|                                                                    |     |         |                  |                             |                                 |                                                                                                                |     |
| _                                                                  |     |         |                  |                             |                                 |                                                                                                                |     |
| ample Types: S = Split Spoon IA = Hand Auger SP = Geoprobe Sampler |     |         |                  |                             |                                 | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6'                           |     |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-58

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 3/12/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 3/12/09

Boring Completion Depth: 6' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta       |     | Soil S |                  | Moroune                     | Photo-                          | Noted. William                                                                                       |     |
|----------------|-----|--------|------------------|-----------------------------|---------------------------------|------------------------------------------------------------------------------------------------------|-----|
| Depth<br>(ft.) | No. | Туре   | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | ionization<br>Detector<br>(ppm) | Sample Description                                                                                   | usc |
| 0'-1'          | 1   | HA     | 12               | 0.000                       | 0.0                             | Brown, fine to medium SAND, some fine to medium gravel and ballast, loose, dry, no odor or staining. |     |
| 1'-2'          | 2   | НА     | 12               | 0.000                       | 0.0                             | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.           |     |
| 2'-4'          | 3   | НА     | 24               | 0.000                       | 0.0                             | Same as above.                                                                                       |     |
| 4'-6'          | 4   | НА     | 24               | 0.000                       | 0.0                             | Same as above.                                                                                       |     |
|                | e   |        |                  |                             |                                 | e                                                                                                    |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
|                |     |        |                  |                             |                                 |                                                                                                      |     |
| ample Spli     |     |        | <u></u>          | <u> </u>                    |                                 | NOTES:<br>Sample collected at 1'-2'                                                                  | 1   |

SS = Split Spoon HA = Hand Auger

**GP** = Geoprobe Sampler

CC = Concrete Core

Sample collected at 1'-2'

Sample collected at 2'-4'

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-59

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor: Zebra** 

Date Started: 3/12/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 3/12/09

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

Boring Diameter: ---

| -                                    |        | Soil Sa | ample            | Mercury       | Photo-<br>ionization |                                                                                                      |     |
|--------------------------------------|--------|---------|------------------|---------------|----------------------|------------------------------------------------------------------------------------------------------|-----|
| Depth<br>(ft.)                       | No.    | Туре    | Rec.<br>(inches) | Vapor (mg/m³) | Detector             | Sample Description                                                                                   | USC |
| 0'-1'                                | 1      | HA      | 12               | 0.000         | 0.0                  | Brown, fine to medium SAND, some fine to medium gravel and ballast, loose, dry, no odor or staining. |     |
| 1'-2'                                | 2      | НА      | 12               | 0.000         | 0.0                  | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.           |     |
| 2'-4'                                | 3      | НА      | 24               | 0.000         | 0.0                  | Same as above.                                                                                       |     |
| 4'-6'                                | 4      | HA.     | 24               | 0.000         | 0.0                  | Same as above.                                                                                       |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         | e                |               |                      | e                                                                                                    |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      |                                                                                                      |     |
|                                      |        |         |                  |               |                      | NOTEO                                                                                                |     |
| Sample Soli<br>SS = Spli<br>HA = Har | it Spc | on      |                  |               |                      | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6'                 |     |

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-59A** 

Sheet \_1\_ of \_1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/20/09

Driller: ---Drill Rig: --- **Geologist:** Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/20/09

Boring Completion Depth: 8'
Ground Surface Elevation: ---

|                                                        |     | Soil Sa |                  | Maraumi                     | Photo-<br>ionization | Noted. 0/20/00                                                                                                 |     |
|--------------------------------------------------------|-----|---------|------------------|-----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|-----|
| Depth<br>(ft.)                                         | No. | Туре    | Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m³) | Detector<br>(ppm)    | Sample Description                                                                                             | USC |
| 1'-2'                                                  | 1   | HA      | 12               | 0.000                       | 0.0                  | Brown, fine to medium SAND, some fine to medium gravel and ballast, loose, dry, no odor or staining.           |     |
| 1'-2'                                                  | 2   | НА      | 12               | 0.000                       | 0.0                  | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                     |     |
| 2'-4'                                                  | 3   | НА      | 24               | 0.000                       | 0.0                  | Same as above.                                                                                                 |     |
| 4'-6'                                                  | 4   | НА      | 24               | 0.000                       | 0.0                  | Same as above.                                                                                                 |     |
| 6'-8'                                                  | 5   | НА      | 24               | 0.000                       | 0.0                  | Same as above.                                                                                                 |     |
|                                                        |     |         |                  | e                           |                      | e                                                                                                              |     |
|                                                        |     |         | ·                |                             |                      |                                                                                                                |     |
|                                                        |     |         |                  |                             |                      | ·                                                                                                              |     |
|                                                        |     |         |                  |                             |                      |                                                                                                                |     |
|                                                        |     |         |                  |                             |                      |                                                                                                                |     |
|                                                        |     |         |                  |                             |                      |                                                                                                                |     |
|                                                        |     |         |                  |                             |                      |                                                                                                                |     |
|                                                        |     |         |                  |                             |                      |                                                                                                                |     |
| SS = Split Spoon HA = Hand Auger SP = Geoprobe Sampler |     |         |                  |                             |                      | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6' Sample collected at 6'-8' |     |



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-60** 

Sheet <u>1</u> of <u>1</u> By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** Date Completed: 3/12/09

**Boring Diameter: ---**

**Boring Completion Depth: 6** 

Ground Surface Elevation: ---

Date Started: 3/12/09

|                |          | Soil Sa    | ample          |                               | Photo-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|----------------|----------|------------|----------------|-------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                | <u> </u> | ·          |                | Mercury                       | ionization          | Commis Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | USCS   |
| Depth          |          | <b>T</b>   | Rec.           | Vapor                         | Detector            | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | USCS   |
| (ft.)<br>0'-1' | No.      | Type<br>HA | (inches)<br>12 | (mg/m <sup>3</sup> )<br>0.000 | <b>(ppm)</b><br>0.0 | Brown, fine to medium SAND and GRAVEL and ballast,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l<br>I |
| 0'-1'          | 1        | HA         | 12             | 0.000                         | 0.0                 | loose, dry, no odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                |          |            |                |                               |                     | indicate the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 1'-2'          | 2        | HA         | 12             | 0.000                         | 0.0                 | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
|                |          |            |                |                               |                     | loose, dry, no odor or stanning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 2'-4'          | 3        | НА         | 24             | 0.000                         | 0.0                 | Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 4'-6'          | 4        | HA         | 24             | 0.000                         | 0.0                 | Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 4 -0           | 4        | na         | 24             | 0.000                         | 0.0                 | Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                |          |            | ·              |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          | ¢          |                |                               |                     | <b>e</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                |          |            |                |                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Sample '       | Type     | s:         | <u> </u>       |                               |                     | NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |

Sample Types:

SS = Split Spoon HA = Hand Auger

**GP** = Geoprobe Sampler

**CC** = Concrete Core

Sample collected at 1'-2'

Sample collected at 2'-4'

Sample collected at 4'-6'



Project Name: Long Island Railroad

Cedar Manor Substation

Boring No.: CMSB-61

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA

Boring Completion Depth: 8' Ground Surface Elevation: ---

| <b>Date Sta</b>                                        | rted: | 3/12/09 | 9        |         | Date Comp  | pleted: 3/12/09                                                                                                |      |
|--------------------------------------------------------|-------|---------|----------|---------|------------|----------------------------------------------------------------------------------------------------------------|------|
|                                                        |       | Soil Sa | ample    |         | Photo-     |                                                                                                                |      |
|                                                        |       |         |          | Mercury | ionization |                                                                                                                |      |
| Depth                                                  |       | ,       | Rec.     | Vapor   | Detector   | Sample Description                                                                                             | USCS |
| (ft.)                                                  | No.   | Туре    | (inches) | (mg/m³) | (ppm)      |                                                                                                                |      |
| 0' - 1'                                                | 1     | HA      | 12       | 0.000   | 0.0        | Brown, fine to medium SAND and fine to medium GRAVEL and ballast, loose, dry, no odor or staining.             |      |
| 1' - 2'                                                | 2     | НА      | 12       | o.000   | 0.0        | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.                     |      |
| 2'-4'                                                  | 3     | НА      | 24       | 0.000   | 0.0        | Same as above.                                                                                                 |      |
| 4'-6'                                                  | 4     | НА      | 24       | 0.000   | 0.0        | Same as above.                                                                                                 |      |
| 6'-8'                                                  | 5     | НА      | 24       | 0.000   | 0.0        | Same as above.                                                                                                 |      |
|                                                        |       |         |          |         |            |                                                                                                                |      |
| SS = Split Spoon HA = Hand Auger GP = Geoprobe Sampler |       |         |          |         |            | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4'-6' Sample collected at 6'-8' |      |



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-62

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: --Drill Rig: ---

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 3/12/09

Boring Completion Depth: 6' Ground Surface Elevation: ---

**Boring Diameter: ---**

| Date Sta         | rted: | 3/12/09 | 9        |         | Date Completed: 3/12/09 |                                                                                      |                                                    |          |  |
|------------------|-------|---------|----------|---------|-------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|----------|--|
|                  |       | Soil S  |          |         | Photo-                  |                                                                                      |                                                    |          |  |
|                  |       |         | •        | Mercury | ionization              |                                                                                      |                                                    |          |  |
| Depth            |       |         | Rec.     | Vapor   | Detector                | Sample l                                                                             | Description                                        | USC      |  |
| (ft.)            | No.   | Type    | (inches) | (mg/m³) | (ppm)                   |                                                                                      |                                                    |          |  |
| 1'-2'            | 1     | HA      | 12       | 0.000   | 0.0                     | Brown, fine to medium SAN and ballast, loose, dry, no o                              | ID, little fine to medium gravel odor or staining. |          |  |
| 1'-2'            | 2     | НА      | 12       | 0.000   | 0.0                     | Brown, fine to medium SAN<br>loose, dry, no odor or staini                           | ID, little fine to medium gravel, ng.              |          |  |
| 2'-4'            | 3     | НА      | 24       | 0.000   | 0.0                     | Same as above.                                                                       |                                                    |          |  |
| 4'-6'            | 4     | HA      | 24       | 0.000   | 0.0                     | Same as above.                                                                       |                                                    |          |  |
|                  |       |         |          |         |                         | e                                                                                    |                                                    | ε        |  |
|                  |       |         |          |         | ·                       |                                                                                      |                                                    |          |  |
|                  |       |         |          |         |                         |                                                                                      |                                                    |          |  |
|                  |       |         |          |         |                         |                                                                                      |                                                    |          |  |
| Sample SS = Spli | t Spo | on      |          |         |                         | NOTES: Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4' 6' | ·                                                  | <u> </u> |  |

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-63** 

Sheet <u>1</u> of <u>1</u> By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 3/12/09

Driller: ---Drill Rig: --- **Geologist:** Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** 

Ground Surface Elevation: ---Boring Diameter: ---

**Boring Completion Depth: 6**'

Date Completed: 3/12/09

|                    | -       | Soil Sample |          | Mercury | Photo-<br>ionization |                                                                                                        |      |
|--------------------|---------|-------------|----------|---------|----------------------|--------------------------------------------------------------------------------------------------------|------|
| Depth              |         |             | Rec.     | Vapor   | Detector             | Sample Description                                                                                     | USCS |
| (ft.)              | No.     | Type        | (inches) | (mg/m³) | (ppm)                |                                                                                                        |      |
| 0'-1'              | 1       | НА          | 12       | 0.000   | 0.0                  | Brown, fine to medium SAND, little fine to medium gravel and ballast, loose, dry, no odor or staining. |      |
| 1'-2'              | 2       | НА          | 12       | 0.000   | 0.0                  | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.             |      |
| 2'-4'              | 3       | НА          | 24       | 0.000   | 0.0                  | Same as above.                                                                                         |      |
| 4'-6'              | 4       | НА          | 24       | 0.000   | 0.0                  | Same as above.                                                                                         |      |
|                    |         |             |          |         |                      |                                                                                                        |      |
|                    |         |             | e        |         |                      | e                                                                                                      |      |
|                    |         |             |          |         |                      |                                                                                                        |      |
|                    |         | ·           |          |         |                      |                                                                                                        |      |
|                    |         |             |          |         |                      | ·                                                                                                      |      |
|                    |         |             |          |         |                      |                                                                                                        |      |
|                    |         |             |          |         |                      | ·                                                                                                      |      |
|                    |         |             |          |         |                      |                                                                                                        |      |
|                    |         |             |          |         |                      |                                                                                                        |      |
|                    |         |             |          |         |                      |                                                                                                        |      |
| Sample<br>SS = Spl | lit Spo | on          | L        |         |                      | NOTES:<br>Sample collected at 1'-2'                                                                    |      |
| HA = Ha            |         | iger        |          |         |                      | Sample collected at 2'-4' Sample collected at 4'-6'                                                    |      |

**GP** = Geoprobe Sampler

**CC** = Concrete Core

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-64

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 3/12/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight:** NA **Date Completed:** 3/12/09

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

**Boring Diameter: ---**

| Date Sta        | ileu. | Soil S   |          |         | Photo-   | Jeteu. 3/12/03                                            | 1   |
|-----------------|-------|----------|----------|---------|----------|-----------------------------------------------------------|-----|
|                 | j .   | 0011 01  | ampic    | Mercury |          |                                                           | ]   |
| Depth           |       | <u> </u> | Rec.     | Vapor   | Detector | Sample Description                                        | usc |
| (ft.)           | No.   | Туре     | (inches) | (mg/m³) |          | Campio Bosciption                                         |     |
| 0'-1'           | 1     | HA       | 12       | 0.000   | 0.0      | Brown, fine to medium SAND, some fine to medium           |     |
| <b>U</b> -1     | '     | '"`      | '-       | 0.000   | 0.0      | gravel, little ballast, loose, dry, no odor or staining.  |     |
|                 |       |          |          |         |          | graven, male banded, reces, ary, no each or etaining.     |     |
|                 |       |          |          |         |          |                                                           |     |
| 1'-2'           | 2     | HA       | 12       | 0.000   | 0.0      | Brown, fine to medium SAND, little fine to medium gravel, |     |
|                 |       |          |          |         |          | loose, dry, no odor or staining.                          | Ì   |
| 2'-4'           | 3     | НА       | 24       | 0.000   | 0.0      | Same as above.                                            |     |
| Z <del>-4</del> | ٦     | ''^      | 24       | 0.000   | 0.0      | Same as above.                                            |     |
|                 |       |          |          |         |          | ·                                                         |     |
| 4'-6'           | 4     | HA       | 24       | 0.000   | 0.0      | Same as above.                                            |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         | ε        |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          | ·                                                         |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          |                                                           |     |
|                 |       |          |          |         |          | ·                                                         |     |
|                 |       |          |          |         |          |                                                           |     |
| Sample 7        | Tynes |          |          |         |          | NOTES:                                                    |     |
| SS = Spli       | t Spo | on       |          |         |          | Sample collected at 1'-2'                                 |     |
| HA = Har        |       |          |          |         |          | Sample collected at 2'-4'                                 |     |
| 3D - O-         | 1-    | - 0      | .1       |         |          | Cample callected at 4' 6'                                 |     |

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-65

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: --- **Geologist:** Stephen Tauss **Drilling Method:** ---

Drive Hammer Weight: NA Date Completed: 3/12/09

Ground Surface Elevation: --Boring Diameter: ---

**Boring Completion Depth:** 6'

Date Started: 3/12/09

| Date Sta       |      | Soil Sa |                  |                  | Photo-<br>ionization |                                                                                                      |      |
|----------------|------|---------|------------------|------------------|----------------------|------------------------------------------------------------------------------------------------------|------|
| Depth<br>(ft.) | No.  | Туре    | Rec.<br>(inches) | Vapor<br>(mg/m³) | Detector<br>(ppm)    | Sample Description                                                                                   | uscs |
| 0'-1'          | 1    | HA      | 12               | 0.000            | 0.0                  | Brown, fine to medium SAND, some fine to medium gravel and ballast, loose, dry, no odor or staining. |      |
| 1'-2'          | 2    | НА      | 12               | 0.000            | 0.0                  | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.           |      |
| 2'-4'          | 3    | НА      | 24               | 0.000            | 0.0                  | Same as above.                                                                                       |      |
| 4'-6'          | 4    | НА      | 24               | 0.000            | 0.0                  | Same as above.                                                                                       |      |
|                |      |         |                  |                  |                      | ,                                                                                                    |      |
|                |      | ,       | ŗ                |                  |                      | E                                                                                                    |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
|                |      |         |                  | September 1      |                      |                                                                                                      |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
|                |      |         |                  |                  |                      |                                                                                                      |      |
| Sample         | Туре | s:      |                  |                  |                      | NOTES:                                                                                               |      |

SS = Split Spoon HA = Hand Auger

**GP** = Geoprobe Sampler

**CC** = Concrete Core

Sample collected at 1'-2'

Sample collected at 2'-4'

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-66** 

Sheet \_1\_ of \_1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 3/12/09

Driller: ---Drill Rig: --- **Geologist:** Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** Date Completed: 3/12/09

**Boring Completion Depth:** 6' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta  | ileu.   |          |          | · · · · · · · · · · · · · · · · · · · |            | Neteu. 3/ 12/03                                           | ,    |
|-----------|---------|----------|----------|---------------------------------------|------------|-----------------------------------------------------------|------|
|           | 1       | Soil S   | ample    |                                       | Photo-     |                                                           |      |
|           |         |          |          | Mercury                               | ionization |                                                           |      |
| Depth     |         |          | Rec.     | Vapor                                 | Detector   | Sample Description                                        | USCS |
| (ft.)     | No.     | Туре     | (inches) | (mg/m <sup>3</sup> )                  | (ppm)      |                                                           |      |
| 0'-1'     | 1       | HA       | 12       | 0.000                                 | 0.0        | Dark Brown, fine to medium SAND, some fine to medium      |      |
|           |         |          | 1        |                                       |            | gravel and ballast, loose, dry, no odor or staining.      | İ    |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
| 1'-2'     | 2       | HA       | 12       | 0.000                                 | 0.0        | Brown, fine to medium SAND, little fine to medium gravel, |      |
|           |         |          |          |                                       |            | loose, dry, no odor or staining.                          |      |
| <b></b>   |         | ١        |          | 0.000                                 |            |                                                           |      |
| 2'-4'     | 3       | HA       | 24       | 0.000                                 | 0.0        | Same as above.                                            |      |
|           |         |          |          |                                       |            |                                                           |      |
| 4'-6'     | 4       | HA       | 24       | 0.000                                 | 0.0        | Same as above.                                            |      |
| 4-0       | "       | ''^      | 24       | 0.000                                 | 0.0        | Same as above.                                            |      |
|           |         | ]        |          |                                       |            |                                                           | Ī    |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       | E          | ¢                                                         |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         | <u> </u> |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            | ,                                                         |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         | ·        |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       | ·          |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            |                                                           |      |
|           |         |          |          |                                       |            | ·                                                         |      |
|           |         | i<br>į   |          |                                       |            |                                                           |      |
|           | <b></b> |          |          |                                       |            | NOTES.                                                    |      |
| Sample '  |         |          |          |                                       |            | NOTES:<br>Sample collected at 1'-2'                       |      |
| SS = Spli |         |          |          |                                       |            | Sample collected at 1-2 Sample collected at 2'-4'         |      |
| HA = Har  | iu Au   | yeı      |          |                                       |            | Cample collected at 2 -4                                  |      |

**GP** = Geoprobe Sampler **CC** = Concrete Core

Sample collected at 2'-4' Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-68** 

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor: Zebra** 

Date Started: 3/12/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA
Date Completed: 3/12/09

**Boring Completion Depth:** 6' **Ground Surface Elevation:** ---

Boring Diameter: ---

|             |             |                              |                                                       |                                                    | neteu. 3/12/03                                                                                           |                                                                                      |
|-------------|-------------|------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Soil Sample |             |                              |                                                       | Photo-                                             |                                                                                                          |                                                                                      |
|             |             |                              | Mercury                                               |                                                    |                                                                                                          |                                                                                      |
|             |             | Rec.                         | Vapor                                                 | Detector                                           | Sample Description                                                                                       | USC                                                                                  |
| No.         | Type        | (inches)                     | (mg/m <sup>3</sup> )                                  | (ppm)                                              |                                                                                                          |                                                                                      |
| 1           | HA          | 12                           | 0.000                                                 | 0.0                                                | Brown, fine to medium SAND, some fine to medium gravel, little ballast, loose, dry, no odor or staining. |                                                                                      |
| 2           | НА          | 12                           | 0.000                                                 | 0.0                                                | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.               |                                                                                      |
| 3           | ΗÁ          | 24                           | 0.000                                                 | 0.0                                                | Same as above.                                                                                           |                                                                                      |
| 4           | НА          | 24                           | 0.000                                                 | 0.0                                                | Same as above.                                                                                           |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             | €           |                              |                                                       |                                                    | e                                                                                                        |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    | ·                                                                                                        |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    |                                                                                                          |                                                                                      |
|             |             |                              |                                                       |                                                    | NOTES: Sample collected at 1'-2'                                                                         |                                                                                      |
|             | No. 1 2 3 4 | No. Type 1 HA 2 HA 3 HA 4 HA | No. Type (inches)  1 HA 12  2 HA 12  3 HA 24  4 HA 24 | No.   Type   Rec.   Vapor (inches)   Vapor (mg/m³) | Soil Sample                                                                                              | Soil Sample   Mercury   Vapor   Vapor   (inches)   Vapor   (ing/m²)   Detector (ppm) |

SS = Split Spoon

**HA** = Hand Auger **GP** = Geoprobe Sampler

**CC** = Concrete Core

Sample collected at 1'-2'

Sample collected at 2'-4'

Sample collected at 4'-6'



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-69

Sheet <u>1</u> of <u>1</u>
By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 3/12/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 3/12/09

Boring Completion Depth: 6' Ground Surface Elevation: ---

**Boring Diameter: ---**

| Duto Ota                            | Soil Sample |           |          |                  | Photo-                 | pieceu. or izioo                                                                                         |     |
|-------------------------------------|-------------|-----------|----------|------------------|------------------------|----------------------------------------------------------------------------------------------------------|-----|
| Depth                               |             |           | Rec.     | Mercury<br>Vapor | ionization<br>Detector | Sample Description                                                                                       | USC |
| (ft.)                               | No.         | Type      | (inches) | (mg/m³)          | (ppm)                  |                                                                                                          |     |
| 0'-1'                               | 1           | HA        | 12       | 0.000            | 0.0                    | Brown, fine to medium SAND, some fine to medium gravel, little ballast, loose, dry, no odor or staining. |     |
| 1'-2'                               | 2           | НА        | 12       | 0.000            | 0.0                    | Brown, fine to medium SAND, little fine to medium gravel, loose, dry, no odor or staining.               |     |
| 2'-4'                               | 3           | НА        | 24       | 0.000            | 0.0                    | Same as above.                                                                                           |     |
| 4'-6'                               | 4           | НА        | 24       | 0.000            | 0.0                    | Same as above.                                                                                           |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
| ٠                                   |             |           |          | €                |                        | 6                                                                                                        |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
|                                     |             |           | •        |                  | ·                      |                                                                                                          |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
|                                     |             |           |          |                  |                        |                                                                                                          |     |
| Sample <sup>1</sup>                 | Гурез       | <b>S:</b> |          |                  |                        | NOTES:                                                                                                   |     |
| <b>3S =</b> Spli<br><b>HA</b> = Har | t Spo       | on        |          |                  |                        | Sample collected at 1'-2' Sample collected at 2'-4' Sample collected at 4' 6'                            |     |

CC = Concrete Core

**GP** = Geoprobe Sampler

Sample collected at 4'-6'



Project Name: Long Island Railroad

Cedar Manor Substation Boring No.: CMSB-70

Sheet \_1\_ of \_1\_ By: Stephen Tauss

**Drilling Contractor:** L.A.W.E.S.

Driller: ---

Drill Rig: Geoprobe
Date Started: 5/20/09

Geologist: Stephen Tauss

**Drilling Method: ---**

Drive Hammer Weight: NA
Date Completed: 5/20/09

Boring Completion Depth: 2' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta                                              | rted:          | 5/20/09   | 9        | _       | Date Comp  | pleted: 5/20/09                                                                                        |      |
|-------------------------------------------------------|----------------|-----------|----------|---------|------------|--------------------------------------------------------------------------------------------------------|------|
|                                                       |                | Soil Sa   | ample    |         |            |                                                                                                        |      |
|                                                       |                |           |          | Mercury | ionization |                                                                                                        |      |
| Depth                                                 |                |           | Rec.     | Vapor   | Detector   | Sample Description                                                                                     | USCS |
| (ft.)                                                 | No.            | Туре      | (inches) | (mg/m³) | (ppm)      |                                                                                                        |      |
| 0' - 1'                                               | 1              | HA        | 12       | 0.000   | 0.0        | 0-6" BALLAST. 6"-2' Brown, silty fine to medium SAND, some fine to coarse gravel, loose, dry, no odor. |      |
| 1' - 2'                                               | 2              | НА        | 12       | 0.000   | 0.0        | Brown, silty fine to medium SAND, some fine to coarse gravel, loose, dry, no odor.                     |      |
|                                                       |                |           |          |         |            |                                                                                                        |      |
| ¢                                                     |                |           |          |         |            | e e                                                                                                    |      |
|                                                       |                |           | ·        |         |            |                                                                                                        |      |
|                                                       |                |           |          |         |            |                                                                                                        |      |
|                                                       |                |           |          |         |            |                                                                                                        |      |
|                                                       |                |           |          |         |            |                                                                                                        |      |
| Sample <sup>1</sup>                                   | Γγpes          | ·<br>3:   |          |         |            | NOTES:                                                                                                 |      |
| <b>SS =</b> Spli<br><b>HA</b> = Har<br><b>GP =</b> Ge | t Spo<br>nd Au | on<br>ger | oler     |         |            | Samples collected at 1'-2'.                                                                            |      |

CC = Concrete Core



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-71

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Driller: ---Drill Rig: ---

Date Started: 5/20/09

Geologist: Stephen Tauss

Drilling Method: --Drive Hammer Weight: NA

Date Completed: 5/20/09

Boring Completion Depth: 4'
Ground Surface Elevation: ---

**Boring Diameter: ---**

|                | Soil Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          | Mercury         | Photo-<br>ionization |                                                                                        | USCS |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------------------|----------------------------------------------------------------------------------------|------|
| Depth          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Vapor    |                 | Sample Description   |                                                                                        |      |
| (ft.)          | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Туре | (inches) | (mg/m³)         | (ppm)                | •                                                                                      |      |
| 0'-1'          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HA   | 12       | 0.000           | 0.0                  | Brown, fine to medium SAND and fine to medium GRAVEL, loose, dry, no odor or staining. |      |
| 1'-2'          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | НА   | 12       | 0.000           | 0.0                  | Brown, fine to medium SAND and fine to medium GRAVEL, loose, dry, no odor or staining. |      |
| 2'-4'          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | НА   | 24       | 0.000           | 0.0                  | Same as above.                                                                         |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | - CANALATA - 17 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | €               |                      | ¢                                                                                      |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                 |                      |                                                                                        |      |
|                | A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |      |          |                 |                      |                                                                                        |      |
| Sample         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | I        | I               |                      | NOTES:                                                                                 |      |
| <b>SS =</b> Sp | lit Spo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oon  |          |                 |                      | Sample collected at 1'-2'                                                              |      |

Sample collected at 2'-4'

HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core



Project Name: Long Island Railroad

Substation

Boring No.: CMSB-72

Sheet <u>1</u> of <u>1</u>

By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/20/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/20/09

Boring Completion Depth: 3' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta | irteu. 5/20/09 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Completed. 3/20/03 |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------|----------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          |                | Soil S | ample    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Photo-                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Depth    |                |        | Rec.     | Vapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detector                | Sample Description                                                                     | USC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (ft.)    | No.            | Type   | (inches) | (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ppm)                   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0'-1'    | 1              | HA     | 12       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                     | Brown, fine to medium SAND and fine to medium GRAVEL, loose, dry, no odor or staining. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1'-2'    | 2              | НА     | 12       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                     | Brown, fine to medium SAND and fine to medium GRAVEL, loose, dry, no odor or staining. | West for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |  |
| 2'-3'    | 3              | НА     | 24       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                     | Same as above.<br>Refusal at 3'.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        | 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| τ        |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| :        |                |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                | :      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sample   | ypes           | s:     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | NOTES:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

SS = Split Spoon HA = Hand Auger

**GP =** Geoprobe Sampler

CC = Concrete Core

Sample collected at 1'-2' Sample collected at 2'-3'



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-73** 

Sheet \_1\_ of \_1 By: Stephen Tauss

**Drilling Contractor:** Zebra

Date Started: 5/20/09

Driller: ---Drill Rig: --- Geologist: Stephen Tauss

Drilling Method: ---

**Drive Hammer Weight: NA** Date Completed: 5/20/09

**Boring Completion Depth: 4**' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Ota | Soil Sample |      |          |                      | Photo-     | 100001.0720100                                                                         |      |
|----------|-------------|------|----------|----------------------|------------|----------------------------------------------------------------------------------------|------|
|          |             |      |          | Mercury              | ionization |                                                                                        |      |
| Depth    |             |      | Rec.     | Vapor                | Detector   | Sample Description                                                                     | USCS |
| (ft.)    | No.         | Type | (inches) | (mg/m <sup>3</sup> ) | (ppm)      |                                                                                        |      |
| 0'-1'    | 1           | НА   | 12       | 0.000                | 0.0        | Brown, fine to medium SAND and fine to medium GRAVEL, loose, dry, no odor or staining. |      |
| 1'-2'    | 2           | HA   | 12       | 0.000                | 0.0        | Brown, fine to medium SAND and fine to medium GRAVEL, loose, dry, no odor or staining. |      |
| 2'-4'    | 3           | НА   | 24       | 0.000                | 0.0        | Same as above.                                                                         |      |
|          |             |      |          | ·                    |            |                                                                                        |      |
|          |             |      | e        |                      |            | τ                                                                                      |      |
|          |             |      |          |                      | ·          |                                                                                        | ,    |
|          |             |      |          |                      |            |                                                                                        |      |
|          |             |      |          |                      |            |                                                                                        |      |
|          |             |      |          |                      |            |                                                                                        |      |
|          |             |      |          |                      |            |                                                                                        |      |
|          | r.          |      |          |                      | :          |                                                                                        |      |
| Sample   | Гуре        | s:   |          | J                    |            | NOTES:                                                                                 |      |

**GP =** Geoprobe Sampler **CC** = Concrete Core

SS = Split Spoon

HA = Hand Auger

Sample collected at 1'-2' Sample collected at 2'-4'



Project Name: Long Island Railroad

Substation

**Boring No.: CMSB-WC-01** 

Sheet 1 of 1 By: Stephen Tauss

**Drilling Contractor: Zebra** 

Driller: ---Drill Rig: ---

Date Started: 5/1/08

Geologist: Stephen Tauss

Drilling Method: ---

Drive Hammer Weight: NA Date Completed: 5/1/08

Boring Completion Depth: 4' Ground Surface Elevation: ---

Boring Diameter: ---

| Date Sta           | iteu.  |        |          | <b>,</b> |            | netea. of 1700                                            | T        |
|--------------------|--------|--------|----------|----------|------------|-----------------------------------------------------------|----------|
|                    |        | Soil S | ample    | <b> </b> | Photo-     |                                                           |          |
|                    |        | 1      | T        | Mercury  | ionization |                                                           |          |
| Depth              |        |        | Rec.     | Vapor    | Detector   | Sample Description                                        | USCS     |
| (ft.)              | No.    |        | (inches) | (mg/m³)  | (ppm)      |                                                           | <u> </u> |
| 0' - 1'            | 1      | HA     | 12       | 0.000    | 0.0        | 0-4" crushed STONE                                        |          |
|                    |        |        |          |          |            | 4"-1' Brown, fine to medium SAND, some fine to medium     |          |
|                    |        |        |          |          |            | gravel, little brick fragments, loose, dry, no odor or    |          |
| 1' - 2'            | 2      | HA     | 12       | 0.000    | 0.0        | staining. Brown, fine to medium SAND, some fine to medium |          |
| 1 - 2              | ~      | '''    | 12       | 0.000    | 0.0        | gravel, little brick fragments, loose, dry, no odor or    |          |
|                    |        |        |          |          |            | staining.                                                 |          |
|                    |        |        |          |          |            |                                                           |          |
| 2' - 4'            | 3      | HA     | 24       | 0.000    | 0.0        | Orange brown, fine to medium SAND, little fine to         |          |
|                    |        |        |          |          |            | medium gravel, loose, dry, no odor or staining.           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        | ,      |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
|                    |        |        |          |          |            |                                                           |          |
| Sample             | Type   | c.     | <u> </u> |          |            | NOTES:                                                    | I        |
| sample<br>SS = Spl |        |        |          |          |            | Samples collected at 2'-4'                                |          |
| - υρι              | ic Opc |        |          |          |            | Complete Control of L                                     |          |

HA = Hand Auger
GP = Geoprobe Sampler
CC = Concrete Core

## APPENDIX D

# DATA VALIDATOR RESUME

# **DONNA M. BROWN**

#### **GEOLOGIST III**

#### **EDUCATION**

N.Y. Institute of Technology, Westbury, New York, M.S. (Environmental Technology) - 2000 State University of New York at Stony Brook, B.S. (Geology) - 1992

### **PROFESSIONAL EXPERIENCE**

Ms. Brown has over 16 years of experience in project management, data validation, data management and field geology. She has worked as the site geologist at a variety of commercial and industrial sites. She has prepared and conducted Phase I and Phase II Environmental Site Assessments in accordance with the American Society for Testing and Materials Standards, federal, state and local agencies, as well as with the guidelines established by various lending institutions. Her experience with field activities include supervision of the installation of groundwater monitoring wells, temporary well points, and soil borings in support of subsurface investigations; groundwater and soil sampling for quantitative analysis; obtaining water level measurements; and utilizing portable field instruments.

Ms. Brown developed and managed the Data Validation and Data Management Group for the northeast region of a worldwide environmental consulting firm and was responsible for coordination of validation work load for over 40 projects. In addition, she was responsible for training data validators, providing cost estimates for validation work, preparation of Quality Assurance Project Plans (QAPPs) and Sampling and Analysis Plans (SAPs), validation of data in accordance with the USEPA National Functional Guidelines, USEPA Region II and III, New York State Department of Environmental Conservation (NYSDEC) ASP, New Jersey Department of Environmental Protection, and USEPA Hazardous Waste Support. Ms. Brown also managed and maintained over 20 projects in the GIS/Key database system, interfaced with the analytical laboratories to ensure the successful transfer of electronic laboratory data into the database system; and manipulation of geologic, laboratory, and hydrogeologic data within the Fox Pro, GIS/Key, MS Access, Grapher, Surfer, and AutoCAD programs.

In addition, Ms. Brown is trained in and utilized Environmental Visualization System (EVS) software. EVS software enables the user to provide three-dimensional animations to illustrate subsurface technical issues.

Ms. Brown was responsible for performing data validation of chemical data collected on and offsite at a clean fill demolition debris site and at several aerospace industrial client sites on Long Island utilizing the following protocols:

- USEPA Contract Laboratory Program National Functional Guidelines Organic and Inorganic;
- USEPA Hazardous Waste Support Branch, Validating Air Samples; and
- USEPA Region II, Volatile Organics Analysis of Ambient Air in Canisters By Method T0-15.

In addition, she updated GIS/Key database for chemistry and water level data, proved tables, graphs, and figures associated with project reports; conducted water level and water quality sampling; and prepared quarterly groundwater quality monitoring reports.

She also was responsible for performing data validation of chemical data collected at automotive industry owned sites in New Jersey using New Jersey Department of Environmental Protection Quality Assurance Data Validation of Analytical Deliverables TCL-Organics and TAL-Inorganics, and USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organics Analysis of Ambient Air in Canisters By Method TO-15.

As a Project Manager she was responsible for client communications, coordination of field sampling, reviewed and interpreted geologic, hydrogeologic, and chemistry data, report preparation, maintained the database, and data validation for former chemical site in upstate New York.

Ms. Brown was responsible for maintaining the database which contains information from over 20 years of quarterly groundwater monitoring wells and four recovery well; performed data validation of chemical data using USEPA Contract Laboratory Program National Functional Guidelines Organic and Inorganic; proved tables, graphs, and figures associated with project reports, and updated GIS/Key database for chemistry and water level data at a chemical manufacturing site in Albuquerque, New Mexico.

## APPENDIX E

# APRIL 2010 STONE PLACEMENT PHOTOS



Stone installation area located south of the substation.



Stone installed in the non-fenced area south of the substation building.



Stone installed in the fenced area south of the swing-out doors on the south side of the substation building.

## APPENDIX F

# LIRR PROCEDURE/INSTRUCTION EE03-001



Procedure/Instruction: EE03-001

EXCAVATING SOILS AT RAILROAD LOCATIONS

Effective DATE: August 11, 2003

#### A. Introduction:

At existing railroad shops, yards, substations, right-of-ways and other locations, past operations may have resulted in the chance of soils containing very low levels of chemical substances. Examples may include; trace levels of metals around old painted structures, oils and greases around train yards and repair locations, greasy or sooty compounds left from coal ash ("clinker").

This Procedure/Instruction has been prepared to eliminate any risk that may be posed to LIRR workers who must dig in these locations. It is to be applied on a case by case basis, with any questions referred to Department Management and System Safety.

### B. Required Steps/Actions:

- 1. The first step of any LIRR excavation, regarding the soil composition and possible presence of contaminates, is to review the current System Safety Environmental Audit Map. This map includes all LIRR sites with documented soil contaminates. If your site appears on the map in red it may have soil concerns that could affect your project, contact System Safety before proceeding. If your site is not shown or is shown in black (does not have soil concerns) proceed to Step 2 as follows;
- 2. When digging at an existing railroad facility, the recommended procedures include:
  - a. Wherever possible excavate with mechanical means, such as backhoes, ditch-witches or excavators.
  - b. Wash facilities must be available for use by workers at the end of the task, before breaks, before meals, or at the end-of-shift. For field operations, wet-wipes are acceptable for fulfilling this requirement.
  - c. Where hand digging must be used, workers must be instructed to brush soil from clothing and shoes. Disposable coveralls, shoe coverings and gloves should be made available upon workers request. Work clothing should be laundered.
  - d. All equipment should be cleaned before leaving the worksite. The preferred method is hosing down with water, removing any clumps of dirt and soil. If water is not available, equipment should be brushed clean of any dirt and soil using a broom or stiff brush. Disposable items can be placed in the trash, no special disposal is necessary.
- 3. Where evidence of soil contamination is found, such as an odor, a stain or visible contaminant, the soil feels greasy, or results from laboratory analysis indicate a contaminant;
  - a. Stop any excavation work or only excavate by mechanical means and
  - b. Immediately Contact System Safety (information below) to assess the situation.
- C. Regulations or Policy References: LIRR Corporate Environmental Policy; Section IV, B, 5

D. System Safety Contacts: Environmental Engineer:

718-558-3252 718-558-3081

Environmental Field Engineer:

E. Forms & Attachments:

None.