# FILE COPY

#### SUBSTATION DELINEATION PHASE II SITE ASSESSMENT OF 17 LIRR SUBSTATIONS

## PRELIMINARY DATA EVALUATION AND RECOMMENDATIONS FOR LIRR ROCKVILLE CENTRE SUBSTATION (NYSDEC VCA No. V00401-1)

**APRIL 2006** 

#### INTRODUCTION



In December 2005, Dvirka and Bartilucci Consulting Engineers (D&B) completed the Delineation Phase II field investigation at the Long Island Rail Road (LIRR) Rockville Centre Substation in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Substation Delineation Phase II Site Assessment Work Plan, dated June 2005. The objective of the Substation Delineation Phase II Site Assessment is to assess the nature and extent of contamination at the 17 LIRR substations with emphasis on mercury contamination associated with the historic use of mercury rectifiers. The objective of this preliminary evaluation of analytical data is to identify areas that may require additional investigation and/or remediation while the field investigation team is available and prior to submission of a final report. This information will assist the LIRR in making timely management decisions with regard to future investigation and/or remedial activities that may be undertaken at each substation.

Provided with this document are the following attachments:

- Attachment 1 Sample Location Map
- Attachment 2 Summary of Completed Field Activities
- Attachment 3 Boring Logs
- Attachment 4 Data Qualifiers/ Summary Analytical Data Tables
- Attachment 5 Proposed Sample Location Map

The analytical data for the surface soil and subsurface soil samples collected at the Rockville Centre Substation were screened utilizing the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 Recommended Soil Cleanup Objectives (RSCOs). Groundwater sample results were screened utilizing the NYSDEC Class GA Groundwater Standards/Guidance Values.

The following is a summary of key findings with regard to contaminant concentrations and distribution in sampled media:

#### **PRELIMINARY EVALUATION**

#### **Surface Soil**

#### <u>Metals</u>

Of the 24 surface soil samples collected, 16 exhibited detectable concentrations of mercury in exceedance of the Recommended Soil Cleanup Objective (RSCO) for mercury (0.1 mg/kg), ranging from 0.106 mg/kg to a maximum of 87.7 mg/kg. However, 12 of these samples exhibited mercury at concentrations of less than 1.0 mg/kg. Two samples exhibited mercury at a concentration of greater than 5.0 mg/kg. One sample, RCSS-19 (at 87.7 mg/kg), located in the water meter pit, on the northwest corner of the substation building, exhibited mercury at a concentration greater than 10.0 mg/kg.

In addition to mercury, four surface soil samples were analyzed for RCRA Metals. Arsenic, lead and selenium were found to exceed their RSCOs (7.5 mg/kg, 400 mg/kg and 2.0 mg/kg, respectively) in one or more of the four surface soil sample locations. The highest concentration of arsenic (41.2 mg/kg) was detected in surface soil sample RCSS-23, located in the transformer yard, approximately 15 feet to the south of the substation building. The highest concentration of lead (6,770 mg/kg) was detected in surface soil RCSS-21, located in the transformer yard, approximately 12 feet to the south of the substation building. The highest

concentration of selenium (2.42 mg/kg) was detected in surface soil sample RCSS-22, located in the transformer yard, approximately 8 feet to the south of the substation building.

#### Semivolatile Organics

Four surface soil samples were analyzed for semivolatile organic compounds (SVOCs). Six SVOCs were detected above their respective RSCOs in surface soil sample RCSS-22: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, 2-methylphenol and 4-methylphenol. Benzo(b)fluoranthene was also detected above its RSCO in surface soil sample RCSS-21. However, no surface soil sample exceeded the RSCO for total SVOCs of 500 mg/kg.

#### <u>PCBs</u>

Four surface soil samples were initially selected for polychlorinated biphenyls (PCBs) analysis, however, due to the elevated PCB levels detected during this investigation, two additional surface soil samples (RCSS-15 and RCSS-16) were also selected for PCB analysis, and are included in this discussion. Aroclor 1260 concentrations exceeded or were equal to the RSCO (1.0 mg/kg) in surface soil samples RCSS-16, RCSS-21, RCSS-22 and RCSS-23, ranging from 1.0 mg/kg to 56.0 mg/kg, with the greatest concentration being detected in RCSS-21. RCSS-21 is located approximately 12 feet south of the substation building, in the transformer yard.

#### **Subsurface Soil**

#### <u>Metals</u>

Forty-five subsurface soil samples were analyzed for mercury with only six samples exhibiting detectable concentrations above the RSCO for mercury (0.1 mg/kg), ranging from a minimum of 0.103 mg/kg to a maximum of 0.825 mg/kg, detected in RCSB-26 (2 to 4 feet), located in the water meter pit on the northwest corner of the substation building.

In addition to mercury, eight subsurface soil samples were also analyzed for RCRA metals. Arsenic was detected at a concentration of 25.3 mg/kg (above its RSCO of 7.5 mg/kg) in subsurface soil sample RCSB-30 (0 to 2 feet), located in the transformer yard, approximately 15 feet to the south of the substation building.

#### Semivolatile Organics

Eight subsurface soil samples were analyzed for SVOCs. SVOCs were not detected at concentrations above the RSCOs for subsurface soil.

#### <u>PCBs</u>

Eight subsurface soil samples were initially selected for polychlorinated biphenyls (PCBs) analysis, however, due to the elevated PCB levels detected during this investigation in the surface soil samples, four additional subsurface soil samples (RCSB-22 [2 to 4 feet] and [4 to 6 feet] and RCSB-23 [2 to 4 feet] and [4 to 6 feet]) were also selected for PCB analysis, and are included in this discussion. PCBs were not detected at concentrations above the RSCOs of 10.0 mg/kg in any subsurface soil sample.

#### Groundwater

A total of three groundwater samples were collected for chemical analysis from the site using a peristaltic pump and Geoprobe groundwater sampling equipment. All samples were analyzed for TAL Metals (including mercury) and VOCs. Due to the turbid nature of the groundwater samples, all samples collected for metals analysis included filtered and unfiltered samples.

#### <u>Metals</u>

Mercury was not detected in any of the filtered or unfiltered groundwater samples collected (RCGP-01, RCGP-02 and RCGP-03).

-4-

Three metals including iron, manganese and sodium were detected above their respective Class GA Standards in one or more unfiltered samples. However, these same metals were either not detected, or detected at much lower concentrations in the filtered samples. Due to the generally high turbidity of the groundwater samples collected using Geoprobe equipment, the metals data associated with the unfiltered samples will be biased high. Therefore, the filtered samples will more closely represent true metal concentrations in groundwater. In filtered groundwater probe RCGP-01, sodium exceeded its Class GA Standard. In filtered groundwater probe RCGP-02, iron exceeded its Class GA Standard. In filtered groundwater probe RCGP-03, iron and sodium exceeded their respective Class GA Standards. Although iron and sodium were above their respective Class GA Standards in one or more filtered samples, these are not considered contaminants of concern.

#### Volatile Organics

VOCs were not detected at concentrations above NYSDEC Class GA Standards.

#### **CONCLUSIONS AND RECOMMENDATIONS**

Based on the findings of the Delineation Phase II Site Assessment of the Rockville Centre Substation, mercury has been detected in surface soil and subsurface soil above the RSCOs. In general, however, mercury concentrations are relatively low as compared to concentrations detected at other facilities. The greatest mercury concentrations were detected in surface soil (RCSS-19, at 87.7 mg/kg) and shallow subsurface soil (RCSB-26 [2 to 4 feet], at 0.825 mg/kg), northwest of the substation building, inside the water meter pit.

While 16 out of 24 surface soil samples were found to exceed the RSCO for mercury of 0.1 mg/kg, only 17% of the samples collected exhibited mercury above 1.0 mg/kg and only one of the samples collected exhibited mercury above 10.0 mg/kg. Only 6 out of 45 subsurface soil samples were found to exceed the RSCO for mercury of 0.1 mg/kg, with 2% of the samples collected exhibiting mercury above 0.5 mg/kg and none of the samples collected exhibiting

mercury above 1.0 mg/kg. Furthermore, based on a review of the groundwater data, groundwater has not been impacted by the presence of mercury in on-site soil.

Based on these findings, D&B recommends that the surface soil in the water meter pit be remediated to reduce or eliminate any contact with, or migration of mercury-contaminated soil. However, further delineation of mercury-impacted soil at the Rockville Centre site is not required.

The analysis of soil samples collected from the transformer yard located south of the substation identified PCBs at a concentration as high as 56.0 mg/kg in surface soil sample RCSS-21. The NYSDEC TAGM criterion for PCBs in surface soil is 1.0 mg/kg. In addition, surface soil sample RCSS-22, located approximately 5 feet northwest of RCSS-21, exhibited a PCB concentration of 17.0 mg/kg, and surface soil sample RCSS-23, located approximately 3 feet southwest of RCSS-21, exhibited a PCB concentration, six additional soil samples were analyzed for PCBs. One of these samples, surface soil sample RCSS-16, located adjacent to the south side of the substation building, in the transformer yard, exhibited PCBs at a concentration of 1.0 mg/kg. This data indicates the potential for a localized PCB "hot spot" in the transformer yard.

Therefore, D&B recommends that additional sampling be performed in the vicinity of RCSS-16, RCSS-21, RCSS-22 and RCSS-23 to determine the extent of PCBs in this area, including the completion of 20 soil sample locations (RCSS-30 through RCSS-49 for surface soil samples and RCSB-37 through RCSB-56 for subsurface soil samples). All samples will be completed in a grid-like fashion, with each sample location in the grid to be spread approximately 3 feet apart, as depicted in Figure 2. At each location, one surface soil sample (0 to 2 inches) and one subsurface soil sample (1 to 2 feet) should be collected. All samples will be analyzed for PCBs.

All soil sampling will be conducted in a manner consistent with the provisions of the approved Investigation Work Plan, dated June 2005. QA/QC samples will be collected as part of the additional sampling program consistent with the approved work plan. All sample analysis

and data validation will be conducted in accordance with the NYSDEC 6/2000 Analytical Services Protocol (ASP).

The analytical data obtained from this recommended supplemental sample collection and analysis program will be evaluated in conjunction with the existing data to determine the extent of PCB contamination at each location, as well as the need for remediation.

Please be advised that the LIRR has scheduled the existing substation building to be taken off-line, abated and demolished in the third quarter of 2007. The substation building footings, existing rectifier, auxiliary transformers, high-tension rack, ducts and manholes will be removed. A new substation building will be constructed in the same footprint as the existing substation building, which will include an eight-foot deep basement. The LIRR will provide the NYSDEC with a proposed site plan in the near future. Waste characterization samples will be collected at up to five locations prior to the construction of the new substation building. Sample locations will be selected in the field, and all waste characterization samples will be collected from shallow borings completed in the areas to be excavated. Waste characterization samples will be analyzed for Toxicity Characteristic Leaching Procedure (TCLP) corrosivity, ignitability, metals (including mercury), PCBs, pesticides/herbicides, reactivity, SVOCs and VOCs.

## **ATTACHMENT 1**

# LIRR ROCKVILLE CENTRE SUBSTATION SAMPLE LOCATION MAP



F:\2229\2229-5A.dwg, LOCATION, 01/31/06 10:16:10 AM, TMcCaff

## **ATTACHMENT 2**

# LIRR ROCKVILLE CENTRE SUBSTATION SUMMARY OF COMPLETED WORK

LONG ISLAND RAILROAD **DELINEATION PHASE II SITE ASSESSMENT - SEVENTEEN SUBSTATIONS** ROCKVILLE CENTRE (V00401-1) SUMMARY OF COMPLETED WORK (11/29/05 through 12/1/05)

|                             |                                          |                           | so               | IL PROBES         | BORINGS                   | GROU             | INDWATER<br>ROBES                       |         |                | Reco          | ommende | d Analys | es    |                             |                                                                                                                                                                                                                     |
|-----------------------------|------------------------------------------|---------------------------|------------------|-------------------|---------------------------|------------------|-----------------------------------------|---------|----------------|---------------|---------|----------|-------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                    | Sample Designation                       | SURFACE SOIL<br>SAMPLES** | No. of<br>Probes | No. of<br>Samples | Soil Sampling<br>Interval | No. of<br>Probes | Approximate<br>Total Depth<br>of Probes | Mercury | RCRA<br>Metals | TAL<br>Metals | PCBs    | VOCs     | SVOCs | USEPA UIC<br>Constituents * | Comments                                                                                                                                                                                                            |
| North Side of<br>Substation | RCSS-06 through 11<br>RCSB-09 through 17 | 6                         | 9                | 18                | 2-6' bgs Cont.            |                  | -                                       | 24      |                |               |         | -        | -     | -                           | No deviations from original scope.                                                                                                                                                                                  |
| Southwest Corner of         | RCSS-12 through 14<br>RCSB-18 through 21 | 3                         | 4                | 4                 | 2-4' bgs Cont.            |                  |                                         | 7       | •              | -             | -       | -        | -     | -                           | No deviations from original scope.                                                                                                                                                                                  |
| Substation                  | RCSS-15 through 18<br>RCSB-22 through 25 | 4                         | 4                | 8                 | 2-6' bgs Cont.            |                  |                                         | 12      |                |               | 6       | -        | -     |                             | Surface soil samples RCSS-15 and 16 and subsurface<br>soil samples RCSB-22 and 23 were re-run for PCBs<br>analysis, due to relatively high PCB concentrations<br>detected in some surrounding surface soil samples. |
| Water Meter Pit             | RCSS-19<br>RCSB-26                       | 1                         | T                | ĩ                 | 2-4' bpb Cont.            |                  |                                         | 2       |                | •             | -       |          |       |                             | No deviations from original scope.                                                                                                                                                                                  |
| Roof Drains                 | RCSS- 28 & 29<br>RCSB-35 & 36            | 2                         | 2                | 2                 | 2-4' bgs Cont.            |                  | -                                       | 4       |                | •             | -       |          | -     |                             | Two roof drains were observed and samples were collected for mercury analysis.                                                                                                                                      |
| Groundwater                 | RCGP-01 through 03                       |                           |                  |                   |                           | 3                | 19'                                     | -       |                | 6***          |         | 3        | -     | -                           | RCGP-01 was moved east approximately 2 fect, due to site conditions.                                                                                                                                                |
| Transformधाउ                | RCSS-20through 23<br>RCSB-27 through 30  | 4                         | 4                | 8                 | 0-4' bgs Cont.            |                  | -                                       | -       | 12             | -             | 12      |          | 12    | -                           | No deviations from original scope.                                                                                                                                                                                  |
| Potential Releases          | RCSS-24 through 27<br>RCSB-31 through 34 | 4                         | 4                | 4                 | 2-4' bgs Cont.            |                  | -                                       | 8       | -              | -             | -       | -        | -     |                             | RCSS-24 and RCSB-31 were moved northwest<br>approximately 2 feet due to utility obstructions.                                                                                                                       |
|                             |                                          | 24                        | 28               | 45                | -                         | 3                | -                                       | 57      | 12             | 6             | 18      | 3        | 12    | 0                           | Total                                                                                                                                                                                                               |

NOTES: bgs: below ground surface.

bpb: below pit bottom.

Cont.: Continuous 2-foot soil sampling

-: Not Applicable

\* USEPA UIC Constituents include VOCs by Method 8260b, RCRA Metals including Mercury by Methods 6010b/7471a, SVOCs by Method 8270c, PCBs by Method 8082, and TPHs by Method 8015b.

\*\* Surface soil samples to be collected at 0-2" interval.

\*\*\* Filtered and Unfiltered Samples

## **ATTACHMENT 3**

# LIRR ROCKVILLE CENTRE SUBSTATION BORING LOGS

| Р                                                         |                                            | Dv<br>an<br>Ba                         | irka<br>d<br>rtilucc      | ·i               | Project No.<br>Project Nar<br>Ro        | : 2229<br><b>ne:</b> Long Island Railroad<br>ckville Centre Substation     | Boring No.: RCSB-09<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |       |  |  |  |
|-----------------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------|------------------|-----------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|--|--|--|
| Drilling (<br>Driller:<br>Drill Rig:                      | Contr<br>Geo                               | ractor:                                | ULTING ENGI<br>L.A.W.E.S. | NEERS            | Geologist:<br>Drilling Me<br>Drive Hami | Stephen Tauss<br>thod:<br>mer Weight: NA                                   | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: |       |  |  |  |
| Date Sta                                                  | rted:                                      | 11/29/0<br>Soil Sa                     | ample<br>Rec.             | Mercury<br>Vapor | Photo-<br>ionization<br>Detector        | Sample                                                                     | Description                                                                  | USCS  |  |  |  |
| (ft.)                                                     | No.                                        | Type                                   | (inches)                  | $(ma/m^3)$       | (ppm)                                   | Sample Description 00                                                      |                                                                              |       |  |  |  |
| 0' - 2'                                                   | 0                                          | HA                                     | 24                        | 0.000            | 0.0                                     | Brown, fine silty SAND, some medium sand and fine to medium gravel, loose. |                                                                              |       |  |  |  |
| 2' - 4'                                                   | 1                                          | HA                                     | 24                        | 0.000            | 0.0                                     | Brown, fine clayey SAND, some medium sand and fine gravel, loose           |                                                                              |       |  |  |  |
| 4' - 6'                                                   | 2                                          | GP                                     | 24                        | 0.000            | 0.0                                     | Orange-brown, fine to med<br>medium gravel, and clay, I                    | dium SAND, some fine to<br>oose.                                             |       |  |  |  |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | Type:<br>t Spo<br>nd Au<br>oprob<br>ncrete | s:<br>ion<br>iger<br>ie Samj<br>e Core | pler                      |                  |                                         | NOTES:<br>Samples for mercury analy                                        | ysis were collected at 2'-4' and 4                                           | '-6'. |  |  |  |

| d                                             |                                                     | Dv<br>an<br>Ba                        | rirka<br>d<br>Irtilucc | NEERS            | Project No.<br>Project Na<br>Ro                     | : 2229<br>me: Long Island Railroad<br>ckville Centre Substation                              | Boring No.: RCSB-10<br>Sheet _1_ of _1<br>By: Stephen Tauss                  |      |  |  |
|-----------------------------------------------|-----------------------------------------------------|---------------------------------------|------------------------|------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------|--|--|
| Drilling<br>Driller<br>Drill R<br>Date S      | g Conti<br>:<br>ig: Geo                             | probe                                 | L.A.W.E.S.             |                  | Geologist:<br>Drilling Me<br>Drive Ham<br>Date Comp | Stephen Tauss<br>thod:<br>mer Weight: NA<br>bleted: 11/29/05                                 | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: | -    |  |  |
| Depth                                         | n                                                   | Soil Sa                               | ample<br>Rec.          | Mercury<br>Vapor | Photo-<br>ionization<br>Detector                    | Sample                                                                                       | Description                                                                  | USCS |  |  |
| (ft.)                                         | No.                                                 | Туре                                  | (inches)               | $(mg/m^3)$       | (ppm)                                               |                                                                                              |                                                                              |      |  |  |
| 0'-2'                                         | , 0                                                 | HA                                    | 24                     | 0.000            | 0.0                                                 | 0-4" asphalt.<br>4"-2' Brown, silty CLAY and fine SAND, some medium<br>sand and fine gravel. |                                                                              |      |  |  |
| 2' - 4'                                       | ' 1                                                 | HA                                    | 24                     | 0.000            | 0.0                                                 | Orange-brown, fine SAND, some fine gravel and clay.                                          |                                                                              |      |  |  |
| 4' - 6'                                       | 2                                                   | HA                                    | 24                     | 0.000            | 0.0                                                 | Orange-brown, fine SAND<br>gravel.                                                           | , little medium sand and fine                                                |      |  |  |
| Sampl<br>SS = S<br>HA = H<br>GP = C<br>CC = C | e Type<br>plit Spo<br>land Au<br>Geoprot<br>Concret | s:<br>oon<br>Iger<br>oe Sam<br>e Core | pler                   |                  |                                                     | NOTES:<br>Samples for mercury anal                                                           | ysis were collected at 2'-4' and 4                                           |      |  |  |

| O                                       |                                                    | Dv<br>an<br>Ba                                 | virka<br>d<br>Irtilucc    | NEERS                                    | Project No.<br>Project Na<br>R                       | : 2229<br>me: Long Island Railroad<br>ockville Centre Substation | Boring No.: RCSB-11<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |          |  |  |
|-----------------------------------------|----------------------------------------------------|------------------------------------------------|---------------------------|------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|----------|--|--|
| Drillin<br>Driller<br>Drill R<br>Date S | g Cont<br>::<br>Rig: Geo<br>Started                | ractor:                                        | L.A.W.E.S.                |                                          | Geologist:<br>Drilling Me<br>Drive Hami<br>Date Comp | Stephen Tauss<br>thod:<br>mer Weight: NA<br>bleted: 11/29/2005   | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: | -        |  |  |
| Dept<br>(ft.)                           | h No.                                              | Soil Sa                                        | ample<br>Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector<br>(ppm)            | Sample                                                           | Sample Description                                                           |          |  |  |
| 0' - 2                                  | 2' 0                                               | HA                                             | 24                        | 0.000                                    | 0.0                                                  | Brown, fine to medium silt<br>gravel and clay.                   | y SAND, little fine to medium                                                |          |  |  |
| 2' - 4                                  | . 1                                                | HA                                             | 24                        | 0.000                                    | 0.0                                                  | Brown, fine to medium SA medium gravel.                          | ND and CLAY, some fine to                                                    |          |  |  |
| 4' - 6                                  | 5' 2                                               | НА                                             | 24                        | 0.000                                    | 0.0                                                  | Orange-brown, medium S.<br>GRAVEL, some fine sand                | AND and fine to medium                                                       |          |  |  |
| Samp<br>SS = 5<br>HA =<br>GP =<br>CC =  | le Type<br>Split Sp<br>Hand A<br>Geopro<br>Concrel | e <b>s:</b><br>oon<br>uger<br>be Sam<br>e Core | pler                      |                                          |                                                      | NOTES:<br>Samples for mercury analy                              | ysis were collected from 2'-4' an                                            | d 4'-6'. |  |  |

| d                                                       |                                  | Dv<br>an<br>Ba                       | rirka<br>d<br>rtilucc | NEERS                                    | Project No.<br>Project Na<br>Ro                     | : 2229<br>me: Long Island Railroad<br>ckville Centre Substation              | Boring No.: RCSB-12<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |       |  |  |  |
|---------------------------------------------------------|----------------------------------|--------------------------------------|-----------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|--|--|--|
| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta        | Contr<br><br>: Geo<br>rted:      | ractor:<br>probe<br>11/29/0          | L.A.W.E.S.<br>05      |                                          | Geologist:<br>Drilling Me<br>Drive Ham<br>Date Comp | Stephen Tauss<br>• <b>thod:</b><br><b>mer Weight:</b> NA<br>oleted: 11/29/05 | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: | -     |  |  |  |
| Depth<br>(ft)                                           | No                               | Soil Sa                              | Rec.                  | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector<br>(npm)           | Sample                                                                       | e Description                                                                | uscs  |  |  |  |
| 0' - 2'                                                 | 0'-2' 0 HA 24 0.000              |                                      |                       |                                          | 0.0                                                 | Dark brown, silty fine to medium SAND, some fine to medium gravel, loose.    |                                                                              |       |  |  |  |
| 2' - 4'                                                 | 1                                | HA                                   | 24                    | 0.000                                    | 0.0                                                 | Brown, clayey fine to med gravel.                                            | ium SAND, little fine to medium                                              |       |  |  |  |
| 4' - 6'                                                 | 2                                | HA                                   | 24                    | 0.000                                    | 0.0                                                 | Brown, clayey fine to med<br>gravel.                                         | ium SAND, little fine to medium                                              |       |  |  |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Get<br>CC = Col | fype:<br>t Spo<br>nd Au<br>oprob | s:<br>oon<br>ger<br>oe Sam<br>e Core | pler                  |                                          |                                                     | NOTES:<br>Samples for mercury anal                                           | ysis were collected at 2'-4' and 4                                           | '-6'. |  |  |  |

| d                                                         |                                            | Dv<br>an<br>Ba                         | rirka<br>d<br>tilucc | NEERS      | Project No.<br>Project Na<br>Ro        | : 2229<br>me: Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-13<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |       |
|-----------------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------|------------|----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|-------|
| Drilling (<br>Driller:<br>Drill Rig:                      | Contr<br><br>Geo                           | probe                                  | L.A.W.E.S.           |            | Geologist:<br>Drilling Me<br>Drive Ham | Stephen Tauss<br>t <b>hod:</b><br>mer Weight: NA                | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: | -     |
| Date Sta                                                  | rted:                                      | 11/29/0                                | )5                   |            | Date Comp                              | oleted: 11/29/05                                                |                                                                              |       |
|                                                           |                                            | Soil Sa                                | mple                 | Mercury    | Photo-                                 |                                                                 |                                                                              |       |
| Depth                                                     |                                            |                                        | Rec                  | Vapor      | Detector                               | Sample                                                          | Description                                                                  | uscs  |
| (ft.)                                                     | No.                                        | Туре                                   | (inches)             | $(mg/m^3)$ | (ppm)                                  | Campio                                                          | Decemption                                                                   |       |
| 0' - 2'                                                   | 0                                          | HA                                     | 24                   | 0.000      | 0.0                                    | Brown, fine to medium SA<br>loose.                              | ND, little fine to medium gravel,                                            |       |
| 2' - 4'                                                   | 1                                          | HA                                     | 24                   | 0.000      | 0.0                                    | Orange-brown, fine SAND medium gravel and clay.                 | , little medium sand and fine to                                             |       |
| 4' - 6'                                                   | '-6' 2 HA 24 0.000                         |                                        |                      |            | 0.0                                    | Orange-brown, fine SAND<br>medium gravel.                       | , little medium sand and fine to                                             |       |
|                                                           |                                            |                                        |                      |            |                                        |                                                                 |                                                                              |       |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | Type:<br>t Spo<br>nd Au<br>oprob<br>ncrete | s:<br>ion<br>iger<br>be Samj<br>e Core | oler                 |            |                                        | NOTES:<br>Samples for mercury analy                             | vsis were collected at 2'-4' and 4                                           | '-6'. |

| d                                                         |                                          | Dv<br>an<br>Ba                      | virka<br>d<br>Irtilucc    | NEERS                                    | Project No<br>Project Na<br>Ro                      | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation | Boring No.: RCSB-14<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |               |  |  |
|-----------------------------------------------------------|------------------------------------------|-------------------------------------|---------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|---------------|--|--|
| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta          | Contr<br>Geo<br>rted:                    | ractor:<br>probe<br>11/29/0         | L.A.W.E.S.<br>05          |                                          | Geologist:<br>Drilling Me<br>Drive Ham<br>Date Comp | Stephen Tauss<br>ethod:<br>mer Weight: NA<br>bleted: 11/29/05     | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diameter: |               |  |  |
| Depth<br>(ft.)                                            | No.                                      | Soil Sa                             | ample<br>Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector<br>(ppm)           | Sample Description                                                |                                                                              |               |  |  |
| 0' - 2'                                                   | D'-2' 0 HA 24 0.000                      |                                     |                           |                                          | 0.0                                                 | 0-4" Asphalt.<br>4" to 2' Brown, fine to med<br>gravel, loose.    | lium SAND, little fine to medium                                             |               |  |  |
| 2' - 4'                                                   | 1                                        | HA                                  | 24                        | 0.000                                    | 0.0                                                 | Orange-brown fine to med<br>medium gravel, loose.                 | lium SAND, little clay and fine to                                           |               |  |  |
|                                                           | 2                                        |                                     | 24                        | 0.000                                    |                                                     | gravel.                                                           | , and the graver, little medium                                              |               |  |  |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>t Spo<br>d Au<br>oprob<br>crete | s:<br>on<br>ger<br>e Samp<br>e Core | oler                      |                                          |                                                     | NOTES:<br>Samples for mercury analy                               | vsis were collected at 2'-4' and 4                                           | <b>'-6'</b> . |  |  |

| d                                                       |                             | Dv<br>an<br>Ba                        | rtiluco                   | NEERS                                    | Project No<br>Project Na<br>R                       | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation             | Boring No.: RCSB-15<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss      |           |  |  |
|---------------------------------------------------------|-----------------------------|---------------------------------------|---------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|--|--|
| Drilling (<br>Driller:<br>Drill Rig:<br>Date Sta        | Contr<br><br>: Geo<br>rted: | actor:<br>probe<br>11/29/             | L.A.W.E.S.                |                                          | Geologist:<br>Drilling Me<br>Drive Ham<br>Date Comp | Stephen Tauss<br>thod:<br>mer Weight: NA<br>bleted: 11/29/2005                | Boring Completion Depth: 6<br>Ground Surface Elevation:<br>Boring Diameter: | feet<br>  |  |  |
| Depth<br>(ft.)                                          | No.                         | Soil Sa<br>Type                       | ample<br>Rec.<br>(inches) | Mercury<br>Vapor<br>(mg/m <sup>3</sup> ) | Photo-<br>ionization<br>Detector<br>(ppm)           | Sample                                                                        | Description                                                                 | USCS      |  |  |
| 0' - 2'                                                 | 0                           | HA                                    | 24                        | 0.000                                    | 0.0                                                 | Dark brown, fine to medium silty SAND, little fine to medium gravel and clay. |                                                                             |           |  |  |
| 2' - 4'                                                 | 1                           | HA                                    | 24                        | 0.000                                    | 0.0                                                 | Brown, fine to medium SAND and CLAY, some fine to medium gravel.              |                                                                             |           |  |  |
| 4' - 6'                                                 | 2                           | HA                                    | 24                        | 0.000                                    | 0.0                                                 | Orange-brown, medium SA<br>GRAVEL, some fine sand.                            | AND and fine to medium                                                      |           |  |  |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Ger<br>CC = Cor | t Spo<br>nd Au<br>oprob     | s:<br>pon<br>iger<br>pe Sam<br>e Core | pler                      |                                          |                                                     | Samples for mercury analy                                                     | ysis were collected from 2'-4' an                                           | od 4'-6'. |  |  |

|      |            | -          |         |            |            |             |                                                    |                                   |               |
|------|------------|------------|---------|------------|------------|-------------|----------------------------------------------------|-----------------------------------|---------------|
|      |            |            | Dv      | virka      |            | Project No  | .: 2229                                            | Boring No.: RCSB-16               |               |
|      |            |            | an      | d          |            | Project Na  | me: Long Island Railroad                           | Sheet <u>1</u> of <u>1</u>        |               |
|      |            | $\sum_{n}$ |         |            | NEERS      | Ro          | ockville Centre Substation                         | By: Stephen Tauss                 |               |
| Dril | ling       | Cont       | ractor: | L.A.W.E.S. |            | Geologist:  | Stephen Tauss                                      | Boring Completion Depth: 6'       |               |
| Dril | ler: -     |            |         |            |            | Drilling Me | ethod:                                             | Ground Surface Elevation:         | -             |
| Dril | l Ria      | : Geo      | probe   |            |            | Drive Ham   | mer Weight: NA                                     | Boring Diameter:                  |               |
| Dat  | e Sta      | rted:      | 11/29/  | 05         |            | Date Com    | pleted: 11/29/05                                   | 5                                 |               |
|      | 0 0 10     |            | Soil Sa | ample      |            | Photo-      |                                                    |                                   |               |
|      |            |            |         |            | Mercury    | ionization  |                                                    |                                   |               |
| De   | pth        |            |         | Rec.       | Vapor      | Detector    | Sample                                             | Description                       | uscs          |
| (1   | t.)        | No.        | Type    | (inches)   | $(mg/m^3)$ | (ppm)       |                                                    |                                   |               |
| 0'   | - 2'       | 0          | HA      | 24         | 0.000      | 0.0         | 0-4" Asphalt.                                      |                                   |               |
|      |            |            |         |            |            |             | 4"-2' Dark brown, silty fine medium gravel, tight. | to medium SAND, some fine to      |               |
| 2'   | - 4'       | 1          | HA      | 24         | 0.000      | 0.0         | Brown, clayey fine SAND, gravel.                   | some fine gravel, little medium   |               |
| 4'   | - 6'       | 2          | HA      | 24         | 0.000      | 0.0         | Brown, fine SAND, some f                           | ïne gravel, little medium gravel. |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         | 1          |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
|      |            |            |         |            |            |             |                                                    |                                   |               |
| San  | ple Types: |            |         |            |            |             | NOTES:                                             |                                   |               |
| SS = | = Spli     | t Spo      | on      |            |            |             | Samples for mercury analy                          | sis were collected at 2'-4' and 4 | <b>'-6'</b> . |
| HA   | = Har      | nd Au      | ger     |            |            |             |                                                    |                                   |               |
| GP : | = Geo      | oprob      | e Samp  | oler       |            |             |                                                    |                                   |               |
| CC   | = Cor      | ncrete     | e Core  |            |            |             |                                                    |                                   |               |

C

| d                                                                         |                                                                 | Dv<br>an<br>Ba                | virka<br>d<br>Irtilucc | NEERS                | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation           | Boring No.: RCSB-17<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |       |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|------------------------|----------------------|--------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|--|--|
| Drilling (<br>Driller:                                                    | Contr<br>                                                       | ractor:                       | L.A.W.E.S.             |                      | Geologist:<br>Drilling Me      | Stephen Tauss<br><b>thod:</b><br>mor Weight: NA                             | Boring Completion Depth: 6'<br>Ground Surface Elevation:<br>Boring Diamotor: | -     |  |  |
| Date Sta                                                                  | rted.                                                           | 11/30/                        | 05                     |                      | Date Comr                      | leted: 11/30/05                                                             |                                                                              |       |  |  |
| Date Ola                                                                  |                                                                 | Soil Sa                       | ample                  |                      | Photo-                         |                                                                             |                                                                              |       |  |  |
|                                                                           |                                                                 |                               |                        | Mercury              | ionization                     |                                                                             |                                                                              |       |  |  |
| Depth                                                                     |                                                                 |                               | Rec.                   | Vapor                | Detector                       | Sample                                                                      | Description                                                                  | USCS  |  |  |
| (ft.)                                                                     | No.                                                             | Туре                          | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                          |                                                                             |                                                                              |       |  |  |
| 0' - 2'                                                                   | 0                                                               | HA                            | 24                     | 0.000                | 0.003                          | Dark brown, silty fine to medium SAND, little fine to coarse gravel, loose. |                                                                              |       |  |  |
| 2' - 4'                                                                   | 4' 1 HA 24 0.000 0.0 Orange-brown, fine to gravel and medium gr |                               |                        |                      |                                |                                                                             | dium SAND, some clay and fine                                                |       |  |  |
| 4' - 6'                                                                   | 2                                                               | HA                            | 24                     | 0.000                | 0.0                            | Orange-brown, fine to med<br>gravel and medium gravel                       | dium SAND, some clay and fine .                                              |       |  |  |
| <b>SS =</b> Spli<br><b>HA</b> = Har<br><b>GP =</b> Geo<br><b>CC =</b> Cor | t Spo<br>Id Au<br>oprob<br>Icrete                               | on<br>ger<br>e Samp<br>e Core | oler                   |                      |                                | Samples for mercury analy                                                   | rsis were collected at 2'-4' and 4                                           | '-6'. |  |  |

Ì

Û

|   | d                                             |                        | Dv<br>an<br>Ba                | rirka<br>d<br>rtilucc | NEERS                | Project No.<br>Project Nai<br>Ro | : 2229<br><b>ne:</b> Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-18<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |   |  |  |
|---|-----------------------------------------------|------------------------|-------------------------------|-----------------------|----------------------|----------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|---|--|--|
|   | Drilling (                                    | Contr                  | actor:                        | L.A.W.E.S.            |                      | Geologist:                       | Stephen Tauss                                                          | Boring Completion Depth: 4'                                            |   |  |  |
|   | Driller:                                      |                        |                               |                       |                      | Drilling Me                      | thod:                                                                  | Ground Surface Elevation:                                              | - |  |  |
|   | Drill Rig:                                    | Geo                    | probe                         |                       |                      | Drive Ham                        | mer Weight: NA                                                         | Boring Diameter:                                                       |   |  |  |
|   | Date Sta                                      | rted:                  | 11/30/0                       | 05                    |                      | Date Comp                        | leted: 11/30/05                                                        |                                                                        |   |  |  |
| 8 |                                               |                        | Soil Sa                       | ample                 |                      | Photo-                           |                                                                        |                                                                        |   |  |  |
|   |                                               |                        |                               |                       | Mercury              | ionization                       |                                                                        |                                                                        |   |  |  |
|   | Depth                                         |                        | _                             | Rec.                  | Vapor                | Detector                         | Sample Description                                                     |                                                                        |   |  |  |
|   | (ft.)                                         | No.                    | Туре                          | (inches)              | (mg/m <sup>°</sup> ) | (ppm)                            | Drawn fine to medium eithe CANID, some fine to medium                  |                                                                        |   |  |  |
|   | 0' - 2'                                       | - 2 0 HA 24 0.000      |                               |                       |                      | 0.0                              | gravel, tight.                                                         |                                                                        |   |  |  |
|   | 2' - 4'                                       | 1                      | HA                            | 24                    | 0.000                | 0.0                              | Orange-brown, fine to clay<br>and fine to medium gravel                | ey SAND, little medium sand                                            |   |  |  |
|   |                                               |                        |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   |                                               |                        |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   |                                               |                        |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   |                                               |                        |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   |                                               |                        |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   |                                               | 7                      |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   |                                               |                        |                               |                       |                      |                                  |                                                                        |                                                                        |   |  |  |
|   | Sample                                        | Vne                    | 5.                            |                       |                      |                                  | NOTES                                                                  |                                                                        |   |  |  |
|   | SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>d Au<br>oprob | on<br>ger<br>e Samp<br>e Core | bler                  |                      |                                  | Samples for mercury analy                                              | vsis were collected at 2'-4'.                                          |   |  |  |

1

| d                                                       |                                  | Dv<br>an<br>Ba            | irka<br>d<br>rtiluco | NEERS      | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-19<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |          |  |  |  |
|---------------------------------------------------------|----------------------------------|---------------------------|----------------------|------------|--------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|----------|--|--|--|
| Drilling (<br>Driller: -                                | Contr<br>                        | actor:                    | L.A.W.E.S.           |            | Geologist:<br>Drilling Me      | Stephen Tauss<br>thod:                                           | Boring Completion Depth: 4'<br>Ground Surface Elevation:               |          |  |  |  |
| Drill Rig                                               | : Geo                            | probe                     |                      |            | Drive Ham                      | mer Weight: NA                                                   | Boring Diameter:                                                       |          |  |  |  |
| Date Sta                                                | rted:                            | 11/30/0                   | )5<br>               | 1          | Date Comp                      | bleted: 11/30/05                                                 |                                                                        | 1        |  |  |  |
|                                                         |                                  | 2011 22                   | ampie                | Mercury    | ionization                     | Photo-<br>nization                                               |                                                                        |          |  |  |  |
| Depth                                                   |                                  |                           | Rec.                 | Vapor      | Detector                       | Sample                                                           | Description                                                            | USC      |  |  |  |
| (ft.)                                                   | No.                              | Type                      | (inches)             | $(ma/m^3)$ | (mag)                          |                                                                  |                                                                        |          |  |  |  |
| 0" - 8"                                                 | 0                                | HA                        | 8                    | 0.000      | 0.0                            | Dark brown, fine to mediu                                        | m SAND, some fine to medium                                            |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                | gravel and slag.                                                 |                                                                        |          |  |  |  |
| 8" - 2'                                                 | 0                                | HA                        | 16                   | 0.000      | 0.0                            | Brown, fine to medium CL medium gravel.                          | AY and SAND, little fine to                                            |          |  |  |  |
| 2' - 4'                                                 | 1                                | HA                        | 24                   | 0.000      | 0.0                            | Brown, fine to medium CL medium gravel.                          | AY and SAND, little fine to                                            |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                |                                                                  |                                                                        |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                |                                                                  |                                                                        |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                |                                                                  |                                                                        |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                |                                                                  |                                                                        |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                |                                                                  |                                                                        |          |  |  |  |
|                                                         |                                  |                           |                      |            |                                |                                                                  |                                                                        |          |  |  |  |
| Sample <sup>-</sup><br>SS = Spli<br>HA = Har<br>GP = Ge | Types<br>t Spo<br>nd Au<br>oprob | s:<br>on<br>ger<br>e Samp | bler                 | 1          | 1                              | NOTES:<br>Samples for mercury anal                               | ysis were collected at 2'-4'.                                          | <u>.</u> |  |  |  |

-

| d                                                        |                                           | Dv<br>an<br>Ba            | rirka<br>d<br>Irtilucc | NEERS   | Project No<br>Project Na<br>Ro         | .: 2229<br>me: Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-27<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |      |  |  |
|----------------------------------------------------------|-------------------------------------------|---------------------------|------------------------|---------|----------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|------|--|--|
| Drilling (<br>Driller:<br>Drill Rig:                     | Contr<br><br>Geo                          | ractor:                   | L.A.W.E.S.             |         | Geologist:<br>Drilling Me<br>Drive Ham | Stephen Tauss<br>thod:<br>mer Weight: NA                         | Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: |      |  |  |
| Date Sta                                                 | rted:                                     | 12/1/08<br>Soil Sa        | ample                  | Mercury | Date Comp<br>Photo-<br>ionization      | bleted: 12/1/05                                                  |                                                                              |      |  |  |
| Depth                                                    | No                                        | Type                      | Rec.                   | Vapor   | Detector                               | Sample                                                           | e Description                                                                | USCS |  |  |
| 0" - 5"                                                  | 0                                         | HA                        | 5                      | 0.000   | 0.0                                    | Dark brown, silty fine to m slag and fine gravel.                | edium SAND, some clay and                                                    |      |  |  |
| 5" - 2'                                                  | 0                                         | HA                        | 19                     | 0.000   | 0.0                                    | Brown, clayey fine SAND, medium gravel.                          | some medium sand and fine to                                                 |      |  |  |
| 2' - 4'                                                  | 1                                         | НА                        | 24                     | 0.000   | 0.0                                    | Dark brown, fine to medium SAND, little fine to medium gravel.   |                                                                              |      |  |  |
|                                                          |                                           |                           |                        |         |                                        |                                                                  |                                                                              |      |  |  |
|                                                          |                                           |                           |                        |         |                                        |                                                                  |                                                                              |      |  |  |
|                                                          |                                           |                           |                        |         |                                        |                                                                  |                                                                              |      |  |  |
|                                                          |                                           |                           |                        |         |                                        |                                                                  |                                                                              |      |  |  |
| Sample <sup>-</sup><br>SS = Spli<br>HA = Har<br>GP = Geo | f <b>ype</b> s<br>t Spo<br>nd Au<br>oprob | s:<br>on<br>ger<br>e Samp | bler                   |         |                                        | NOTES:<br>Samples for mercury anal                               | ysis were collected at 2'-4'.                                                |      |  |  |

| d                                                         |                                      | Dv<br>an<br>Ba                      | rirka<br>d<br>rtilucc | NEERS                | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation | Boring No.: RCSB-28<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss       |      |  |  |
|-----------------------------------------------------------|--------------------------------------|-------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|------|--|--|
| Drilling (<br>Driller:                                    | Contr                                | actor:                              | L.A.W.E.S.            |                      | Geologist:<br>Drilling Me      | Stephen Tauss<br><b>thod:</b>                                     | Boring Completion Depth: 4'<br>Ground Surface Elevation:<br>Boring Diameter: |      |  |  |
| Drill Rig:<br>Data Sta                                    | Geo                                  |                                     | -                     |                      | Drive Ham                      | mer weight: NA                                                    | Boring Diameter:                                                             |      |  |  |
| Date Sta                                                  | rtea:                                | Soil Sa                             | mnlo                  | <u> </u>             | Photos                         |                                                                   |                                                                              |      |  |  |
|                                                           |                                      | 5011 52                             | mpie                  | Mercury              | ionization                     |                                                                   |                                                                              |      |  |  |
| Depth                                                     |                                      |                                     | Rec.                  | Vapor                | Detector                       | Sample                                                            | e Description                                                                | USCS |  |  |
| (ft.)                                                     | No.                                  | Туре                                | (inches)              | (mg/m <sup>3</sup> ) | (ppm)                          |                                                                   |                                                                              |      |  |  |
| 0" - 2"                                                   | 0                                    | HA                                  | 2                     | 0.000                | 0.0                            | Dark brown, silty fine to m fine to medium gravel.                | edium SAND, some slag and                                                    |      |  |  |
| 2" - 2'                                                   | 0                                    | HA                                  | 22                    | 0.000                | 0.0                            | Brown, clayey fine to med medium gravel, tight.                   | ium SAND, some fine to                                                       |      |  |  |
| 2' - 4'                                                   | 1                                    | HA                                  | 24                    | 0.000                | 0.0                            | Orange-brown, fine to medium SAND, some fine to medium gravel.    |                                                                              |      |  |  |
|                                                           |                                      |                                     |                       |                      |                                |                                                                   |                                                                              |      |  |  |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | Types<br>t Sport<br>and Aug<br>oprob | s:<br>on<br>ger<br>e Samı<br>e Core | oler                  |                      |                                | NOTES:<br>Samples for mercury anal                                | ysis were collected at 2'-4'.                                                |      |  |  |

| d                                    |                         | Dv<br>an<br>Ba    | rirka<br>d<br>rtilucc | NEERS                         | Project No<br>Project Na<br>Ro         | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation                                                            | Boring No.: RCSB-29<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |
|--------------------------------------|-------------------------|-------------------|-----------------------|-------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|
| Drilling (<br>Driller:<br>Drill Rig: | <b>Contr</b><br><br>Geo | probe             | L.A.W.E.S.            |                               | Geologist:<br>Drilling Me<br>Drive Ham | Beologist: Stephen TaussBoring Completion Depthrilling Method:Ground Surface Elevationrive Hammer Weight: NABoring Diameter: |                                                                        |      |
| Date Sta                             | rted:                   | 12/1/0<br>Soil Sa | 5<br>ample            | Mercury                       | Date Comp<br>Photo-<br>ionization      | bleted: 12/1/05                                                                                                              |                                                                        | ]    |
| Depth<br>(ft.)                       | No.                     | Туре              | Rec.<br>(inches)      | Vapor<br>(mg/m <sup>3</sup> ) | Detector<br>(ppm)                      | Sample                                                                                                                       | e Description                                                          | USCS |
| 0" - 6"                              | 0                       | HA                | 6                     | 0.000                         | 0.0                                    | Dark brown, fine to mediu<br>gravel.                                                                                         | m SAND, some slag and fine                                             |      |
| 6" - 2'                              | 0                       | HA                | 18                    | 0.000                         | 0.0                                    | Brown, fine to medium SA gravel.                                                                                             | ND, some fine to medium                                                |      |
| 2' - 4'                              | 3                       | НА                | 24                    | 0.000                         | 0.0                                    | Brown-gray, clayey fine to medium SAND, some fine gravel, slight hydrocarbon odor.                                           |                                                                        |      |
| Sample Types:<br>SS = Split Spoon    |                         |                   |                       |                               |                                        | NOTES:<br>Samples for mercury anal                                                                                           | ysis were collected at 2'-4'.                                          |      |

| d                                                         |                                  | Dv<br>an<br>Ba                        | virka<br>d<br>Intilucc | NEERS      | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation | Boring No.: RCSB-30<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |
|-----------------------------------------------------------|----------------------------------|---------------------------------------|------------------------|------------|--------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|------|
| Drilling (                                                | Contr                            | ractor:                               | L.A.W.E.S.             |            | Geologist: Stephen Tauss       |                                                                   | Boring Completion Depth: 4'                                            |      |
| Driller: -                                                | -                                |                                       |                        |            | Drilling Me                    | ethod:                                                            | Ground Surface Elevation:                                              | -    |
| Drill Rig                                                 | Geo                              | probe                                 |                        |            | Drive Ham                      | mer Weight: NA                                                    | Boring Diameter:                                                       |      |
| Date Sta                                                  | e Started: 12/1/05               |                                       |                        |            | Date Comp                      | oleted: 12/1/05                                                   |                                                                        |      |
|                                                           |                                  | Soil Sa                               | ample                  |            | Photo-                         |                                                                   |                                                                        |      |
|                                                           |                                  |                                       |                        | Mercury    | ionization                     |                                                                   |                                                                        |      |
| Depth                                                     |                                  |                                       | Rec.                   | Vapor      | Detector                       | Sample                                                            | e Description                                                          | USCS |
| (ft.)                                                     | No.                              | Туре                                  | (inches)               | $(mg/m^3)$ | (ppm)                          |                                                                   |                                                                        |      |
| 0' - 1'                                                   | 0                                | HA                                    | 12                     | 0.000      | 0.0                            | Orange-dark brown, silty f<br>slag and fine gravel.               | ine to medium SAND, some                                               |      |
| 1' - 2'                                                   | 0                                | HA                                    | 12                     | 0.000      | 0.0                            | Brown, clayey fine to med                                         | ium SAND, some fine gravel.                                            |      |
| 2' - 4'                                                   |                                  | HA                                    | 24                     | 0.000      | 0.0                            | Brown, clayey fine to med                                         | ium SAND, some fine gravel.                                            |      |
| Sample T<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | Types<br>t Spo<br>nd Au<br>oprob | s:<br>oon<br>ger<br>be Samp<br>e Core | bler                   |            | L                              | <b>NOTES:</b><br>Samples for mercury anal                         | ysis were collected at 2'-4'.                                          |      |

| d              |         | Dv<br>an<br>Ba | rirka<br>d<br>artilucc | NEERS      | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-31<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |
|----------------|---------|----------------|------------------------|------------|--------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|------|
| Drilling       | Contr   | actor:         | L.A.W.E.S.             |            | Geologist:                     | Stephen Tauss                                                    | Boring Completion Depth: 4'                                            |      |
| Driller:       |         |                |                        |            | Drilling Me                    | thod:                                                            | Ground Surface Elevation:                                              | -    |
| Drill Rid      | a: Geo  | probe          |                        |            | Drive Ham                      | mer Weight: NA                                                   | Boring Diameter:                                                       |      |
| Date St        | artod:  | 11/30/         | 05                     |            | Date Comr                      | leted: 11/30/05                                                  |                                                                        |      |
| Dute of        |         | Soil S         | amplo                  |            | Photo-                         |                                                                  |                                                                        |      |
|                |         | 5011 56        | inpie                  | Mercury    | ionization                     |                                                                  |                                                                        |      |
| Denth          | -       |                | Rec                    | Vapor      | Detector                       | Sample                                                           | Description                                                            | USCS |
| (ft.)          | No      | Type           | (inches)               | $(ma/m^3)$ | (ppm)                          |                                                                  | Decemption                                                             |      |
| 0' - 2'        | 0       | НД             | 24                     | 0.000      | 0.0                            | Brown silty fine SAND so                                         | me fine to medium gravel                                               |      |
| 2' - 4'        | 1       | HA             | 24                     | 0.000      | 0.0                            | Orange-brown, clayey fine<br>and fine to medium gravel           | SAND, some medium sand                                                 |      |
| Sample         | Type    | 5:             |                        |            |                                | NOTES:                                                           |                                                                        |      |
| SS = Sp        | lit Spo | on             |                        |            |                                | Samples for mercury analy                                        | sis were collected at 2'-4'.                                           |      |
| HA = Ha        | and Au  | iger           |                        |            |                                |                                                                  |                                                                        |      |
| GP = G         | eoprob  | e Sam          | pler                   |            |                                |                                                                  |                                                                        |      |
| <b>CC</b> = Co | oncrete | e Core         |                        |            |                                |                                                                  |                                                                        | _    |

|                  | d                                         |                                   | Dv<br>an<br>Ba                   | rirka<br>d<br>rtilucc | NEERS   | Project No.<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ockville Centre Substation | Boring No.: RCSB-32<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |
|------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------|---------|---------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|------|
| D                | rilling (                                 | Contr                             | actor:                           | L.A.W.E.S.            |         | Geologist:                      | Stephen Tauss                                                     | Boring Completion Depth: 4'                                            |      |
| D                | riller:                                   | -                                 |                                  |                       |         | <b>Drilling Me</b>              | thod:                                                             | Ground Surface Elevation:                                              | -    |
| D                | rill Rig:                                 | Geo                               | probe                            |                       |         | Drive Ham                       | Drive Hammer Weight: NA Boring Diameter:                          |                                                                        |      |
| D                | ate Sta                                   | rted:                             | 11/30/0                          | 05                    |         | Date Comp                       | oleted: 11/30/05                                                  |                                                                        |      |
|                  |                                           | Soil Sample                       |                                  |                       |         | Photo-                          |                                                                   |                                                                        |      |
|                  |                                           | _                                 |                                  |                       | Mercury | ionization                      |                                                                   |                                                                        |      |
| 1                | Depth                                     |                                   |                                  | Rec.                  | Vapor   | Detector                        | Sample                                                            | e Description                                                          | USCS |
|                  | (ft.)                                     | No.                               | Туре                             | (inches)              | (mg/m³) | (ppm)                           |                                                                   |                                                                        |      |
|                  | 0' - 2'                                   | 0                                 | HA                               | 24                    | 0.000   | 0.0                             | Dark brown-brown, silty fir medium gravel.                        | ne SAND, little clay and fine to                                       |      |
|                  | 2' - 4'                                   | 1                                 | HA                               | 24                    | 0.000   | 0.0                             | Brown, fine to medium SA<br>gravel, loose.                        | ND, some fine to medium                                                |      |
| S                | ample                                     | VDe                               | S:                               |                       |         |                                 | NOTES:                                                            |                                                                        |      |
| S<br>H<br>G<br>C | S = Spli<br>A = Har<br>P = Geo<br>C = Cor | t Spo<br>nd Au<br>oprob<br>ncrete | ion<br>iger<br>ie Samj<br>e Core | oler                  |         |                                 | Samples for mercury analy                                         | ysis were collected at 2'-4'.                                          |      |

| d                                                         |                                                       | Dv<br>an<br>Ba                   | rirka<br>d<br>Irtilucc | NEERS      | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-33<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |  |  |
|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------|------------------------|------------|--------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|------|--|--|
| Drilling (                                                | Contra                                                | actor:                           | L.A.W.E.S.             |            | Geologist:                     | Stephen Tauss Boring Completion Depth: 4'                        |                                                                        |      |  |  |
| Driller:                                                  | -                                                     |                                  |                        |            | Drilling Me                    | Method: Ground Surface Elevation:                                |                                                                        |      |  |  |
| Drill Rig:                                                | Geop                                                  | orobe                            |                        |            | Drive Ham                      | mer Weight: NA                                                   | Boring Diameter:                                                       |      |  |  |
| Date Sta                                                  | rted:                                                 | 11/30/0                          | 05                     |            | Date Comp                      | oleted: 11/30/05                                                 |                                                                        |      |  |  |
|                                                           |                                                       | Soil Sa                          | mple                   |            | Photo-                         |                                                                  |                                                                        | 1    |  |  |
|                                                           |                                                       |                                  |                        | Mercurv    | ionization                     |                                                                  |                                                                        |      |  |  |
| Depth                                                     |                                                       |                                  | Rec.                   | Vapor      | Detector                       | Sample                                                           | Description                                                            | USCS |  |  |
| (ft.)                                                     | No                                                    | Type                             | (inches)               | $(ma/m^3)$ | (ppm)                          |                                                                  |                                                                        |      |  |  |
| 0' - 2'                                                   | 0                                                     | HΔ                               | 24                     | 0.000      | 00                             | Dark brown silty fine to me                                      | dium SAND some fine to                                                 |      |  |  |
| 0 - 2                                                     |                                                       |                                  | 24                     | 0.000      | 0.0                            | medium gravel and clay.                                          |                                                                        |      |  |  |
| 2 - 4                                                     |                                                       |                                  | 24                     | 0.000      |                                | gravel, loose.                                                   | AD, Some line to medicin                                               |      |  |  |
| Sample 7<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t <b>ypes</b><br>t Spoo<br>nd Aug<br>oprobe<br>ncrete | :<br>on<br>ger<br>e Samp<br>Core | oler                   |            |                                | NOTES:<br>Samples for mercury analy                              | ysis were collected at 2'-4'.                                          |      |  |  |

l

| d                                                       |                                            |                                     | virka<br>d<br>Irtilucc | NEERS                | Project No<br>Project Na<br>Ro | .: 2229<br>me: Long Island Railroad<br>ckville Centre Substation                         | Boring No.: RCSB-34<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |
|---------------------------------------------------------|--------------------------------------------|-------------------------------------|------------------------|----------------------|--------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|
| Drilling (                                              | Contr                                      | actor:                              | L.A.W.E.S.             |                      | Geologist:                     | Stephen Tauss                                                                            | Boring Completion Depth: 4'                                            |      |
| Driller: -                                              |                                            |                                     |                        |                      | Drilling Me                    | thod:                                                                                    | Ground Surface Elevation:                                              | _    |
| Drill Rig                                               | Rig: Geoprobe                              |                                     |                        |                      | Drive Ham                      | mer Weight: NA                                                                           | Boring Diameter:                                                       |      |
| Date Sta                                                | rted:                                      | 11/30/0                             | 05                     |                      | Date Comp                      | oleted: 11/30/05                                                                         |                                                                        |      |
|                                                         |                                            | Soil Sa                             | ample                  |                      | Photo-                         |                                                                                          |                                                                        |      |
|                                                         |                                            |                                     |                        | Mercury              | ionization                     |                                                                                          |                                                                        |      |
| Depth                                                   |                                            |                                     | Rec.                   | Vapor                | Detector                       | Sample                                                                                   | Description                                                            | USCS |
| (ft.)                                                   | No.                                        | Туре                                | (inches)               | (mg/m <sup>3</sup> ) | (ppm)                          |                                                                                          |                                                                        |      |
| 0' - 2'<br>2' - 4'                                      | 0                                          | HA                                  | 24                     | 0.000                | 0.0                            | Brown, silty clayey fine SA<br>fine to medium gravel, tigh<br>Brown, clayey fine to medi | ND, some medium sand and<br>it.                                        |      |
|                                                         |                                            |                                     |                        |                      |                                |                                                                                          |                                                                        |      |
| Sample<br>SS = Spli<br>HA = Har<br>GP = Geo<br>CC = Cor | t Spo<br>t Spo<br>nd Au<br>oprob<br>ncrete | s:<br>on<br>ger<br>e Samp<br>e Core | bler                   |                      |                                | Samples for mercury analy                                                                | vsis were collected at 2'-4'.                                          |      |

| d                                         |                                  | Dv<br>an<br>Ba            | irka<br>d<br>rtilucc | NEERS      | Project No<br>Project Na<br>Ro | .: 2229<br><b>me:</b> Long Island Railroad<br>ockville Centre Substation | Boring No.: RCSB-35<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |     |
|-------------------------------------------|----------------------------------|---------------------------|----------------------|------------|--------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| Drilling                                  | Contr                            | actor:                    | L.A.W.E.S.           |            | Geologist:                     | Stephen Tauss                                                            | Boring Completion Depth: 4'                                            |     |
| Driller: -                                |                                  |                           |                      |            | Drilling Me                    | thod:                                                                    | Ground Surface Elevation:                                              | -   |
| Drill Rig                                 | : Geo                            | probe                     |                      |            | Drive Ham                      | mer Weight: NA                                                           | Boring Diameter:                                                       |     |
| Date Started: 11/30/05                    |                                  |                           |                      |            | Date Comp                      | oleted: 11/30/05                                                         |                                                                        |     |
|                                           |                                  | Soil Sa                   | Imple                | Mercury    | Photo-<br>ionization           |                                                                          |                                                                        |     |
| Depth                                     |                                  |                           | Rec.                 | Vapor      | Detector                       | Sample                                                                   | Description                                                            | USC |
| (ft.)                                     | No.                              | Туре                      | (inches)             | $(mg/m^3)$ | (ppm)                          |                                                                          |                                                                        |     |
| 0' - 2'                                   | 0                                | HA                        | 24                   | 0.000      | 0.0                            | Dark brown, silty fine SAN sand, little fine gravel.                     | D, some clay and medium                                                |     |
| 2' - 4'                                   | 1                                | HA                        | 24                   | 0.000      | 0.0                            | Brown, CLAY, and fine sa                                                 | nd.                                                                    |     |
|                                           |                                  |                           |                      |            |                                |                                                                          |                                                                        |     |
|                                           |                                  |                           |                      |            |                                |                                                                          |                                                                        |     |
| Sample<br>SS = Spl<br>IA = Hai<br>GP = Ge | Types<br>t Spo<br>nd Au<br>oprob | s:<br>on<br>ger<br>e Samr | bler                 |            | æ                              | NOTES:<br>Samples for mercury analy                                      | ysis were collected at 2'-4'.                                          |     |

| d                |        | Dv<br>an<br>Ba | rirka<br>d<br>rtilucc | NEERS      | Project No.<br>Project Na<br>Ro | : 2229<br>me: Long Island Railroad<br>ckville Centre Substation | Boring No.: RCSB-36<br>Sheet <u>1</u> of <u>1</u><br>By: Stephen Tauss |      |
|------------------|--------|----------------|-----------------------|------------|---------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|------|
| Drilling         | Contr  | actor:         | L.A.W.E.S.            |            | Geologist:                      | Stephen Tauss                                                   | Boring Completion Depth: 4'                                            |      |
| Driller: -       |        |                |                       |            | <b>Drilling Me</b>              | thod:                                                           | Ground Surface Elevation:                                              | -    |
| Drill Rig        | : Geo  | probe          |                       |            | Drive Ham                       | mer Weight: NA                                                  | Boring Diameter:                                                       |      |
| Date Sta         | rted:  | 11/30/0        | 05                    |            | Date Comp                       | leted: 11/30/05                                                 |                                                                        |      |
|                  |        | Soil Sa        | ample                 |            | Photo-                          |                                                                 |                                                                        | 1    |
|                  |        |                |                       | Mercury    | ionization                      |                                                                 |                                                                        |      |
| Depth            |        |                | Rec.                  | Vapor      | Detector                        | Sample                                                          | Description                                                            | USCS |
| (ft.)            | No.    | Type           | (inches)              | $(mq/m^3)$ | (mgg)                           |                                                                 | ·                                                                      |      |
| 0' - 2'          | 0      | HA             | 24                    | 0.000      | 0.0                             | Brown-dark brown, silty cla                                     | avey fine to medium SAND.                                              |      |
|                  |        |                |                       |            |                                 | some fine gravel.                                               | , ,                                                                    |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
| 01 41            |        |                | ~                     | 0.000      |                                 |                                                                 |                                                                        |      |
| 2 - 4            | 1      | НА             | 24                    | 0.000      | 0.0                             | Brown, fine SAND and CL                                         | AY, little fine gravel.                                                |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
|                  |        |                |                       |            |                                 |                                                                 |                                                                        |      |
| Sample           | Туре   | s:             |                       |            |                                 | NOTES:                                                          |                                                                        |      |
| 5 <b>S</b> = Spl | it Spo | on             |                       |            |                                 | Samples for mercury anal                                        | ysis were collected at 2'-4'.                                          |      |
| HA = Hai         | nd AL  | iger           | alor                  |            |                                 |                                                                 |                                                                        |      |
|                  | oprot  | e Samp         | Jiel                  |            |                                 |                                                                 |                                                                        |      |
|                  | ncret  | e Core         |                       |            |                                 |                                                                 |                                                                        |      |

1

## **ATTACHMENT 4**

# LIRR ROCKVILLE CENTRE SUBSTATION DATA QUALIFIERS/CHEMICAL DATA TABLES

#### Data Flag/Qualifiers:

- U Not Detected. This compound was analyzed-for but not detected. For Organics analysis the reporting limit (lowest standard concentration) is the value listed. For Inorganics analysis, the value listed is the detection limit. For Inorganics analyzed using SW-846 methods, the detection limit is the Method Detection Limit, for Inorganics analyzed using EPA CLP and NY ASP CLP methods, the detection limit is the Instrument Detection Limit.
- J For Organics analysis, this flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B For Organic analyses, this flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a diluted analysis
- E For Organics analysis, this flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for Pesticides/PCB/Herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for Primary and Confirmation analyses. This difference typically indicates an interference, causing one value to be unusually high. The **lower** of the two values is reported in the Analysis Report.
- A Used to flag Semivolatile Organic Tentatively Identified Compound library search results for compounds identified as aldol condensation byproducts.
- N Used to flag results for Volatile and Semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- \* For Inorganics analysis the \* flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.

#### TABLE 1 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                         | 1000       |            | annorschu "An ann - 20 1.<br>Ar 1-1 - Annors |            |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|------------|------------|----------------------------------------------|------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SITE       | New Street and Sector   | RCSS-06    | RCSS-07    | RCSS-08                                      | RCSS-09    | RCSS-10    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE ID  | NYSDEC                  | RCSS-06    | RCSS-07    | RCSS-08                                      | RCSS-09    | RCSS-10    |
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE       | SCG                     | 11/29/2005 | 11/29/2005 | 11/29/2005                                   | 11/29/2005 | 11/29/2005 |
| 1000年1月1日の1000年1月1日の1000日の1000日の1000日の1000日の1000日の1000日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100日の100100000000 | DEPTH (ft) | ol in the second second | 0.00       | 0.00       | 0.00                                         | 0.00       | 0.00       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mg/kg)    | 0.10                    | 0.067 U    | 0.066 U    | 0.066 U                                      | 0.063 B    | [0.117]    |

mg/kg: milligram/kilogram

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 1 of 5 Date: 01/24/2006
PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

| Mercury                                                                                                         | (mg/kg)    | 0.10         | [0.185]    | [0.266]    | [0.247]    | [0.106] B  | [0.675]    |
|-----------------------------------------------------------------------------------------------------------------|------------|--------------|------------|------------|------------|------------|------------|
| 1.4.1.11111-1.4.111111-1.4.1111111-1.4.111111-1.4.11111-1.4.11111-1.4.11111-1.4.11111-1.4.11111-1.4.11111-1.4.1 | DEPTH (ft) |              | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| CONSTITUENT                                                                                                     | DATE       | SCG          | 11/29/2005 | 11/29/2005 | 11/30/2005 | 11/29/2005 | 11/30/2005 |
|                                                                                                                 | SAMPLE ID  | NYSDEC       | RCSS-11    | RCSS-12    | RCSS-13    | RCSS-14    | RCSS-15    |
|                                                                                                                 | SITE       | 1. 其他是自己的问题。 | RCSS-11    | RCSS-12    | RCSS-13    | RCSS-14    | RCSS-15    |
|                                                                                                                 |            |              |            |            |            |            |            |

mg/kg: milligram/kilogram

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[]: Value exceeds NYSDEC SCG

Page: 2 of 5 Date: 01/24/2006



Page: 3 of 5 Date: 01/24/2006

# PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|                                                                 | SITE       |        | RCSS-16    | RCSS-17    | RCSS-18    | RCSS-19    | RCSS-20    |
|-----------------------------------------------------------------|------------|--------|------------|------------|------------|------------|------------|
| a 155 Automotion and Automatical and Statistics and Automatical | SAMPLE ID  | NYSDEC | RCSS-16    | RCSS-17    | RCSS-18    | RCSS-19    | RCSS-20    |
| CONSTITUENT                                                     | DATE       | SCG    | 11/30/2005 | 11/30/2005 | 11/30/2005 | 11/29/2005 | 12/01/2005 |
|                                                                 | DEPTH (ft) |        | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| Mercury                                                         | (mg/kg)    | 0.10   | [0.926]    | 0.071 U    | 0.089 B    | [87.700]   | 0.066 U    |

mg/kg: milligram/kilogram

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[]: Value exceeds NYSDEC SCG

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|             | dimensional and the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | it in the second second | The Markey         | 11. 机械 13. 动脉 19. 3 |                    |       |
|-------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|--------------------|---------------------|--------------------|-------|
|             | SITE<br>SAMPLE ID                 | NYSDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RCSS-21<br>RCSS-21 | RCSS-22<br>RCSS-22      | RCSS-23<br>RCSS-23 | RCSS-24<br>RCSS-24  | RCSS-25<br>RCSS-25 | 11. 1 |
| CONSTITUENT | DATE                              | SCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/01/2005         | 12/01/2005              | 12/01/2005         | 11/30/2005          | 11/29/2005         |       |
| (1) · · · · | DEPTH (ft)                        | No. of Street, | 0.00               | 0.00                    | 0.00               | 0.00                | 0.00               | Real  |
| Mercury.    | (mg/kg)                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [0.247]            | [1.1]                   | 0.066 U            | [3.2]               | [0.182]            |       |

mg/kg: milligram/kilogram

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 4 of 5 Date: 01/24/2006





Page: 5 of 5 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|             |            |        |            |            | . P        |            |
|-------------|------------|--------|------------|------------|------------|------------|
|             | SITE       |        | RCSS-26    | RCSS-27    | RCSS-28    | RCSS-29    |
|             | SAMPLE (D  | NYSDEC | RCSS-26    | RCSS-27    | RCSS-28    | RCSS-29    |
| CONSTITUENT | DATE       | SCG    | 11/29/2005 | 11/29/2005 | 11/30/2005 | 11/30/2005 |
|             | DEPTH (ft) |        | 0.00       | 0.00       | 0.00       | 0.00       |
| Mercury     | (mg/kg)    | 0.10   | [0.196]    | [0.257]    | [7.4]      | [0.910]    |

mg/kg: milligram/kilogram

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|             |                                         | Real Manager Shows                   |                                          | and a specific of                        | ~ 一般的时期                                  | NHE 1991 24 PERMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-----------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC SOIL<br>CLEANUP<br>OBJECTIVES | RCSS-20<br>RCSS-20<br>12/01/2005<br>0.00 | RCSS-21<br>RCSS-21<br>12/01/2005<br>0.00 | RCSS-22<br>RCSS-22<br>12/01/2005<br>0.00 | RCSS-23<br>RCSS-23<br>12/01/2005<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Arsenic     | (mg/kg)                                 | 7.5                                  | [21.0]                                   | [13.8]                                   | [23.4]                                   | [41.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Barium      | (mg/kg)                                 | 300                                  | 151                                      | 259                                      | 157                                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cadmium     | (mg/kg)                                 | 10                                   | 0.037 U                                  | 0.040 U                                  | 6.930                                    | 0.161 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium    | (mg/kg)                                 | 50                                   | 24.7                                     | 36.6                                     | 45.7                                     | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lead        | (mg/kg)                                 | 400                                  | 144                                      | [6770]                                   | [2390]                                   | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Selenium    | (mg/kg)                                 | 2                                    | [2.080]                                  | [2.170]                                  | [2.420]                                  | [2.110]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silver      | (mg/kg)                                 |                                      | 1.910                                    | 2.130                                    | 6.950                                    | THE CONTRACTOR OF A DECEMBER OF A DECEMB |

mg/kg: milliogram/kilogram

Page: 1 of 1 Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

| CONSTITUENT                   | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSS-20<br>RCSS-20<br>12/01/2005<br>0.00 | RCSS-21<br>RCSS-21<br>12/01/2005<br>0.00 | RCSS-22<br>RCSS-22<br>12/01/2005<br>0.00 | RCSS-23<br>RCSS-23<br>12/01/2005<br>0.00 |
|-------------------------------|-----------------------------------------|---------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 2,2-oxybils (1-chloropropane) | (ug/kg)                                 |               | 60 U                                     | 1600 U                                   | 360 U                                    | 140 U                                    |
| 2,4,5-Trichlorophenol         | (ug/kg)                                 | 100           | 57 U                                     | 1500 U                                   | 340 U                                    | 120 U                                    |
| 2,4,6-Trichlorophenol         | (ug/kg)                                 |               | 55 U                                     | 1500 U                                   | 330 U                                    | 120 U                                    |
| 2,4-Dichlorophenol            | (ug/kg)                                 | 400           | 69 U                                     | 1900 U                                   | 410 U                                    | 150 U                                    |
| 2,4-Dimethylphenol            | (ug/kg)                                 |               | 59 U                                     | 1600 U                                   | 2100 J                                   | 140 U                                    |
| 2,4-Dinitrophenol             | (ug/kg)                                 | 200           | 320 U                                    | 8700 U                                   | 1900 U                                   | 720 U                                    |
| 2,4-Dinitrotoluene            | (ug/kg)                                 |               | 55 U                                     | 1500 U                                   | 330 U                                    | 120 U                                    |
| 2,6-Dinitrotoluene            | (ug/kg)                                 | 1000          | 53 U                                     | 1400 U                                   | 310 U                                    | 120 U                                    |
| 2-Chloronaphthalene           | (ug/kg)                                 |               | 62 U                                     | 1700 U                                   | 370 U                                    | 140 U                                    |
| 2-Chlorophenol                | (ug/kg)                                 | 800           | 60 U                                     | 1600 U                                   | 350 U                                    | 140 U                                    |
| 2-Methylnaphthalene           | (ug/kg)                                 | 36400         | 63 U                                     | 1700 U                                   | 370 U                                    | 140 U                                    |
| 3,3-Dichlorobenzidine         | (ug/kg)                                 |               | 64 U                                     | 1700 U                                   | 380 U                                    | 140 U                                    |
| 4,6-Dinitro-o-cresol          | (ug/kg)                                 |               | 73 U                                     | 2000 U                                   | 430 U                                    | 160 U                                    |
| 4-Bromofluorobenzene          | (ug/kg)                                 |               | 56 U                                     | 1500 U                                   | 330 U                                    | 120 U                                    |
| 4-Chlorophenyl phenyl ether   | (ug/kg)                                 |               | 59 U                                     | 1600 U                                   | 350 U                                    | 140 U                                    |
| Acenaphthene                  | (ug/kg)                                 | 50000         | 67 U                                     | 1800 U                                   | 400 U                                    | 140 U                                    |
| Acenaphthylene                | (ug/kg)                                 | 41000         | 61 U                                     | 1600 U                                   | 360 U                                    | 140 U                                    |
| Acetophenone                  | (ug/kg)                                 |               | 55 U                                     | 1500 U                                   | 330 U                                    | 110 J                                    |
| Anthracene                    | (ug/kg)                                 | 50000         | 56 U                                     | 1500 U                                   | 1100 J                                   | 120 U                                    |
| Atrazine                      | (ug/kg)                                 |               | 71 J                                     | 1500 U                                   | 340 U                                    | 120 U                                    |
| Benzaldehyde                  | (ug/kg)                                 |               | 77 U                                     | 2100 U                                   | 460 U                                    | 160 U                                    |

ug/kg: microgram/kilogram

[]=Greater than Action Level The following qualifier(s) exist: CLP Q: U, J =Not analyzed

Page: 1 of 4 Date: 03/24/2006

Page: 2 of 4 Date: 03/24/2006

#### PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|                                   | SITE       | Million Holes of the | RCSS-20 | RCSS-21  | RCSS-22  | RCSS-23 |
|-----------------------------------|------------|----------------------|---------|----------|----------|---------|
| CONSTITUENT                       | SAMPLE ID  | NYSDEC               | RCSS-20 | RCSS-21  | RCSS-22  | RCSS-23 |
|                                   | DEPTH (ft) |                      | 0.00    | 0.00     | 0.00     | 0.00    |
| Benzo(a)anthracene                | (ug/kg)    | 224                  | 52 U    | 1400 U   | [2100] J | 110 U   |
| Benzo(a)pyrene                    | (ug/kg)    | 61                   | 60 U    | 1600 U   | [1900] J | 140 U   |
| Benzo(b)fluoranthene              | (ug/kg)    | 1100                 | 240 J   | [6200] J | [2800]   | 91 U    |
| Benzo(ghi)perylene                | (ug/kg)    | 50000                | 62 U    | 1700 U   | 580 J    | 140 U   |
| Benzo(k)fluoranthene              | (ug/kg)    | 1100                 | 82 U    | 2200 U   | 490 U    | 170 U   |
| Biphenyl                          | (ug/kg)    |                      | 62 U    | 1700 U   | 370 U    | 140 U   |
| Bis(2-chloroethoxy)methane        | (ug/kg)    |                      | 62 U    | 1700 U   | 370 U    | 140 U   |
| Bis(2-chloroethyl)ether           | (ug/kg)    |                      | 59 U    | 1600 U   | 350 U    | 140 U   |
| BIs(2-ethylhexyl)phthalate (BEHP) | (ug/kg)    | 50000                | 72 U    | 1900 U   | 1000 J   | 150 U   |
| Butyl benzyl phthalate            | (ug/kg)    | 50000                | 60 U    | 1600 U   | 360 U    | 140 U   |
| Caprolactam                       | (ug/kg)    |                      | 60 U    | 1600 U   | 360 U    | 140 U   |
| Carbazole                         | (ug/kg)    |                      | 57 U    | 1500 U   | 620 J    | 120 U   |
| Chrysene                          | (ug/kg)    | 400                  | 67 U    | 1800 U   | [2200]   | 140 U   |
| Dibenzo(a,h)anthracene            | (ug/kg)    | 14                   | 47 U    | 1300 U   | 280 U    | 110 U   |
| Dibenzofuran                      | (ug/kg)    | 6200                 | 62 U    | 1700 U   | 370 U    | 140 U   |
| Diethyl phthalate                 | (ug/kg)    | 7100                 | 65 U    | 1700 U   | 380 U    | 140 U   |
| Dimethyl phthalate                | (ug/kg)    | 2000                 | 60 U    | 1600 U   | 360 U    | 140 U   |
| Di-n-butyl phthalate              | (ug/kg)    | 8100                 | 120 J   | 1500 U   | 1600 J   | 120 U   |
| Di-n-octyl phthalate              | (ug/kg)    | 50000                | 64 U    | 1700 U   | 380 U    | 140 U   |
| Fluoranthene                      | (ug/kg)    | 50000                | 81 J    | 1500 U   | 3800     | 120 U   |
| Fluorene                          | (ug/kg)    | 50000                | 63 U    | 1700 U   | 500 J    | 140 U   |

ug/kg: microgram/kilogram

[]=Greater than Action Level The following qualifier(s) exist: CLP Q: U, J =Not analyzed

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG     | RCSS-20<br>RCSS-20<br>12/01/2005<br>0.00 | RCSS-21<br>RCSS-21<br>12/01/2005<br>0.00 | RCSS-22<br>RCSS-22<br>12/01/2005<br>0.00 | RCSS-23<br>RCSS-23<br>12/01/2005<br>0.00 |
|---------------------------|-----------------------------------------|-------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Hexachlorobenzene         | (ug/kg)                                 | 410               | 60 U                                     | 1600 U                                   | 360 U                                    | 140 U                                    |
| Hexachlorobutadiene       | (ug/kg)                                 |                   | 58 U                                     | 1600 U                                   | 340 U                                    | 140 U                                    |
| Hexachlorocyclopentadiene | (ug/kg)                                 |                   | 60 U                                     | 1600 U                                   | 350 U                                    | 140 U                                    |
| Hexachloroethane          | (ug/kg)                                 | Han Alexandra and | 64 U                                     | 1700 U                                   | 380 U                                    | 140 U                                    |
| Indeno(1,2,3-cd)pyrene    | (ug/kg)                                 | 3200              | 47 U                                     | 1300 U                                   | 280 U                                    | 110 U                                    |
| Isophorone                | (ug/kg)                                 | 4400              | 56 U                                     | 1500 U                                   | 330 U                                    | 120 U                                    |
| 3-Nitroaniline            | (ug/kg)                                 | 500               | 49 U                                     | 1300 U                                   | 290 U                                    | 110 U                                    |
| Naphthalene               | (ug/kg)                                 | 13000             | 64 U                                     | 1700 U                                   | 710 J                                    | 140 U                                    |
| Nitrobenzene              | (ug/kg)                                 | 200               | 82 U                                     | 2200 U                                   | 490 U                                    | 170 U                                    |
| N-Nitrosodiphenylamine    | (ug/kg)                                 |                   | 62 U                                     | 1700 U                                   | 370 U                                    | 140 U                                    |
| N-Nitrosodipropylamine    | (ug/kg)                                 |                   | 62 U                                     | 1700 U                                   | 370 U                                    | 140 U                                    |
| 2-Methylphenol            | (ug/kg)                                 | 100               | 62 U                                     | 1700 U                                   | [1100] J                                 | 140 U                                    |
| 2-Nitroaniline            | (ug/kg)                                 | 430               | 47 U                                     | 1300 U                                   | 280 U                                    | 110 U                                    |
| 2-Nitrophenol             | (ug/kg)                                 | 330               | 58 U                                     | 1600 U                                   | 340 U                                    | 140 U                                    |
| 4-Chloroanillne           | (ug/kg)                                 | 220               | 45 U                                     | 1200 U                                   | 260 U                                    | 90 U                                     |
| 4-Chloro-3-methylphenol   | (ug/kg)                                 | 240               | 52 U                                     | 1400 U                                   | 310 U                                    | 110 U                                    |
| Pentachlorophenol         | (ug/kg)                                 | 1000              | 87 U                                     | 2300 U                                   | 510 U                                    | 190 U                                    |
| 4-Methylphenol            | (ug/kg)                                 | 900               | 59 U                                     | 1600 U                                   | [5700]                                   | 140 U                                    |
| Phenanthrene              | (ug/kg)                                 | 50000             | 60 U                                     | 1600 U                                   | 4400                                     | 140 U                                    |
| Phenol                    | (ug/kg)                                 | 30                | 57 U                                     | 1500 U                                   | 340 U                                    | 120 U                                    |
| Benzenamine, 4-nitro-     | (ug/kg)                                 |                   | 64 U                                     | 1700 U                                   | 380 U                                    | 140 U                                    |

ug/kg: microgram/kilogram

[]=Greater than Action Level The following qualifier(s) exist: CLP Q: U, J =Not analyzed

Page: 3 of 4 Date: 03/24/2006

Page: 4 of 4 Date: 03/24/2006

## PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|                                                                                                                 |            |        |            |            | (注意)。如此此意识 | 1.181年3月末日 |           |
|-----------------------------------------------------------------------------------------------------------------|------------|--------|------------|------------|------------|------------|-----------|
|                                                                                                                 | SITE       |        | RCSS-20    | RCSS-21    | RCSS-22    | RCSS-23    |           |
| in a second s | SAMPLE ID  | NYSDEC | RCSS-20    | RCSS-21    | RCSS-22    | RCSS-23    |           |
| CONSTITUENT                                                                                                     | DATE       | SCG    | 12/01/2005 | 12/01/2005 | 12/01/2005 | 12/01/2005 |           |
| 一部に ない 「「「「「「「」」」」                                                                                              | DEPTH (ft) |        | 0.00       | 0.00       | 0.00       | 0.00       |           |
| 4-Nitrophenol                                                                                                   | (ug/kg)    | 100    | 46 U       | 1300 U     | 280 U      | 97 U       |           |
| Pyrene                                                                                                          | (ug/kg)    | 50000  | 78 J       | 1800 U     | 5500       | 140 U      |           |
| Total PAHs                                                                                                      | (ug/kg)    | 500000 | 399        | 6200       | 25590      | 0          |           |
| Total Semivolatile Organics                                                                                     | (ug/kg)    | 500000 | 590        | 6200       | 37710      | 110        | 是是是由市民的问题 |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: J, U =Not analyzed

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive Soil

SAMPLE TYPE:

| CONSTITUENT  | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSS-15<br>RCSS-15<br>11/30/2005<br>0.00 | RCSS-16<br>RCSS-16<br>11/30/2005<br>0.00 | RCSS-20<br>RCSS-20<br>12/01/2005<br>0.00 | RCSS-21<br>RCSS-21<br>12/01/2005<br>0.00 | RCSS-22<br>RCSS-22<br>12/01/2005<br>0.00 |
|--------------|-----------------------------------------|---------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Aroclor 1016 | (ug/kg)                                 | 1000          | 3.0 U                                    | 3.4 U                                    | 2.9 U                                    | 3.1 U                                    | 3.4 U                                    |
| Aroclor 1221 | (ug/kg)                                 | 1000          | 4.7 U                                    | 5.2 U                                    | 4.4 U                                    | 4.8 U                                    | 5.3 U                                    |
| Aroclor 1232 | (ug/kg)                                 | 1000          | 7.1 U                                    | 7.8 U                                    | 6.6 U                                    | 7.2 U                                    | 7.9 U                                    |
| Aroclor 1242 | (ug/kg)                                 | 1000          | 6.3 U                                    | 7.0 U                                    | 5.9 U                                    | 6.4 U                                    | 7.0 U                                    |
| Aroclor 1248 | (ug/kg)                                 | 1000          | 3.1 U                                    | 3.4 U                                    | 2.9 U                                    | 3.1 U                                    | 3.4 U                                    |
| Aroclor 1254 | (ug/kg)                                 | 1000          | 2.0 U                                    | 2.2 U                                    | 1.9 U                                    | 2.0 U                                    | 2.2 U                                    |
| Aroclor 1260 | (ug/kg)                                 | 1000          | 620 D                                    | [1000] D                                 | 58                                       | [56000] D                                | [17000] D                                |
| Total PCBs   | (ug/kg)                                 | 1000          | 620                                      | [1000]                                   | 58                                       | [56000]                                  | [17000]                                  |

ug/kg: microgram/kilogram

Page: 1 of 2 Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

| CONSTITUENT  | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSS-23<br>RCSS-23<br>12/01/2005<br>0.00 |
|--------------|-----------------------------------------|---------------|------------------------------------------|
| Aroclor 1016 | (ug/kg)                                 | 1000          | 2.9 U                                    |
| Aroclor 1221 | (ug/kg)                                 | 1000          | 4.5 U                                    |
| Aroclor 1232 | (ug/kg)                                 | 1000          | 6.7 U                                    |
| Aroclor 1242 | (ug/kg)                                 | 1000          | 6.0 U                                    |
| Aroclor 1248 | (ug/kg)                                 | 1000          | 2.9 U                                    |
| Aroclor 1254 | (ug/kg)                                 | 1000          | 1.9 U                                    |
| Aroclor 1260 | (ug/kg)                                 | 1000          | [2000] D                                 |
| Total PCBs   | (ug/kg)                                 | 1000          | [2000]                                   |

ug/kg: microgram/kilogram

F

Page: 2 of 2 Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive Soil

SAMPLE TYPE:

|             |            |        |              |              | 14 A         |              |              |
|-------------|------------|--------|--------------|--------------|--------------|--------------|--------------|
|             | SITE       |        | RCSB-09      | RCSB-09      | RCSB-10      | RCSB-10      | RCSB-11      |
| 9           | SAMPLE ID  | NYSDEC | RCSB-09(2-4) | RCSB-09(4-6) | RCSB-10(2-4) | RCSB-10(4-6) | RCSB-11(2-4) |
| CONSTITUENT | DATE       | SCG    | 11/29/2005   | 11/29/2005   | 11/29/2005   | 11/29/2005   | 11/29/2005   |
|             | DEPTH (ft) |        | 4.00         | 6.00         | 4.00         | 6.00         | 4.00         |
| Mercury     | (mg/kg)    | 0.10   | 0.062 U      | 0.061 U      | 0.065 U      | 0.061 U      | [0.127]      |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 1 of 9 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|                     | 30/1                                  |            |        |              |              |              |                                 |              |
|---------------------|---------------------------------------|------------|--------|--------------|--------------|--------------|---------------------------------|--------------|
|                     |                                       |            |        |              |              |              | বা হয়েন্দ প্রয়োগন (সাঁচ<br>নি |              |
| n in a difference - |                                       | SITE       |        | RCSB-11      | RCSB-12      | RCSB-12      | RCSB-13                         | RCSB-13      |
| D                   | 「「ないない」などの意思を見なるという。                  | SAMPLE ID  | NYSDEC | RCSB-11(4-6) | RCSB-12(2-4) | RCSB-12(4-6) | RCSB-13(2-4)                    | RCSB-13(4-6) |
| CONSTITUENT         | Distance of the forest forest burgers | DATE       | SCG    | 11/29/2005   | 11/29/2005   | 11/29/2005   | 11/29/2005                      | 11/29/2005   |
|                     | 一些性情的。"马克尔特的是他们的                      | DEPTH (ft) |        | 6.00         | 4.00         | 6.00         | 4.00                            | 6.00         |
| Mercury             |                                       | (mg/kg)    | 0.10   | 0.061 U      | 0.066 U      | [0.103] B    | 0.063 U                         | 0.060 U      |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

-

Page: 2 of 9 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|             |            |        | 1            |              |              |              |              |
|-------------|------------|--------|--------------|--------------|--------------|--------------|--------------|
|             | SITE       |        | RCSB-14      | RCSB-14      | RCSB-15      | RCSB-15      | RCSB-16      |
|             | SAMPLE ID  | NYSDEC | RCSB-14(2-4) | RCSB-14(4-6) | RCSB-15(2-4) | RCSB-15(4-6) | RCSB-16(2-4) |
| CONSTITUENT | DATE       | SCG    | 11/29/2005   | 11/29/2005   | 11/29/2005   | 11/29/2005   | 11/29/2005   |
|             | DEPTH (ft) |        | 4.00         | 6.00         | 4.00         | 6.00         | 4.00         |
| Mercury     | (mg/kg)    | 0.10   | 0.065 U      | 0.059 U      | [0.131]      | 0.061 U      | 0.066 U      |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 3 of 9 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | THE STREET |              | 的理想的原因。      |              |              |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|--------------|--------------|--------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SITE       |            | RCSB-16      | RCSB-17      | RCSB-17      | RCSB-18      | RCSB-19      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID  | NYSDEC     | RCSB-16(4-6) | RCSB-17(2-4) | RCSB-17(4-6) | RCSB-18(2-4) | RCSB-19(2-4) |
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE       | SCG        | 11/29/2005   | 11/30/2005   | 11/30/2005   | 11/30/2005   | 11/30/2005   |
| the president and the second se | DEPTH (ft) |            | 6.00         | 4.00         | 6.00         | 4.00         | 4.00         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mg/kg)    | 0.10       | 0.063 U      | 0.066 U      | 0.060 U      | 0.075 U      | 0.067 U      |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 4 of 9 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|             |            |        |              |              |              |              | Weine Station of Station |
|-------------|------------|--------|--------------|--------------|--------------|--------------|--------------------------|
|             | SITE       |        | RCSB-20      | RCSB-21      | RCSB-22      | RCSB-22      | RCSB-23                  |
| CONSTITUENT | SAMPLE ID  | NYSDEC | RCSB-20(2-4) | RCSB-21(2-4) | RCSB-22(2-4) | RCSB-22(4-6) | RCSB-23(2-4)             |
|             | DEPTH (ft) | 300    | 4.00         | 4.00         | 4.00         | 6.00         | 4.00                     |
| Mercury     | (mg/kg)    | 0.10   | [0.460]      | 0.068 U      | 0.067 U      | 0.068 U      | 0.064 U                  |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 5 of 9 Date: 01/24/2006

 PERIOD:
 From 11/29/2005 thru 12/01/2005 - Inclusive

 SAMPLE TYPE:
 Soil

|             | State and the                           |               | and the second second                         |                                               |                                               |                                               |                                               |        |
|-------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-23<br>RCSB-23(4-6)<br>11/30/2005<br>6.00 | RCSB-24<br>RCSB-24(2-4)<br>11/30/2005<br>4.00 | RCSB-24<br>RCSB-24(4-6)<br>11/30/2005<br>6.00 | RCSB-25<br>RCSB-25(2-4)<br>11/30/2005<br>4.00 | RCSB-25<br>RCSB-25(4-6)<br>11/30/2005<br>6.00 | 一、一次時能 |
| Mercury     | (mg/kg)                                 | 0.10          | 0.070 U                                       | 0.062 U                                       | 0.067 U                                       | 0.066 U                                       | 0.066 U                                       |        |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 6 of 9 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

6

| 001                                      |            |        |              |              |              |              |                          |
|------------------------------------------|------------|--------|--------------|--------------|--------------|--------------|--------------------------|
| an a | n n n n    |        |              |              |              |              | al allem 10 to 2 to a la |
|                                          | SITE       |        | RCSB-26      | RCSB-27      | RCSB-27      | RCSB-28      | RCSB-28                  |
|                                          | SAMPLE ID  | NYSDEC | RCSB-26(2-4) | RCSB-27(0-2) | RCSB-27(2-4) | RCSB-28(0-2) | RCSB-28(2-4)             |
| CONSTITUENT                              | DATE       | SCG    | 11/29/2005   | 12/01/2005   | 12/01/2005   | 12/01/2005   | 12/01/2005               |
|                                          | DEPTH (ft) |        | 4.00         | 2.00         | 4.00         | 2.00         | 4.00                     |
| Mercury                                  | (mg/kg)    | 0.10   | [0.825]      | 0.062 U      | 0.063 U      | 0.066 U      | 0.063 U                  |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Deee

Page: 7 of 9 Date: 01/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|             | SITE       |        | RCSB-29      | RCSB-29      | RCSB-30      | RCSB-30      | RCSB-31      |
|-------------|------------|--------|--------------|--------------|--------------|--------------|--------------|
|             | SAMPLE ID  | NYSDEC | RCSB-29(0-2) | RCSB-29(2-4) | RCSB-30(0-2) | RCSB-30(2-4) | RCSB-31(2-4) |
| CONSTITUENT | DATE       | SCG    | 12/01/2005   | 12/01/2005   | 12/01/2005   | 12/01/2005   | 11/30/2005   |
|             | DEPTH (ft) |        | 2.00         | 4.00         | 2.00         | 4.00         | 4.00         |
| Mercury     | (mg/kg)    | 0.10   | 0.068 U      | 0.065 U      | 0.066 U      | 0.068 U      | 0.074 U      |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

Page: 8 of 9

Date: 01/24/2006

[ ]: Value exceeds NYSDEC SCG

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|             | 上版句 "这种形式" |        |              | Hard States of States of States |              |              |              |
|-------------|------------|--------|--------------|---------------------------------|--------------|--------------|--------------|
|             | SITE       |        | RCSB-32      | RCSB-33                         | RCSB-34      | RCSB-35      | RCSB-36      |
|             | SAMPLE ID  | NYSDEC | RCSB-32(2-4) | RCSB-33(2-4)                    | RCSB-34(2-4) | RCSB-35(2-4) | RCSB-36(2-4) |
| CONSTITUENT | DATE       | SCG    | 11/30/2005   | 11/30/2005                      | 11/30/2005   | 11/30/2005   | 11/30/2005   |
|             | DEPTH (ft) |        | 4.00         | 4.00                            | 4.00         | 4.00         | 4.00         |
| Mercury     | (mg/kg)    | 0.10   | 0.065 U      | 0.065 U                         | 0.068 U      | [0.105] B    | 0.066 U      |

mg/kg: milligrams/kilogram

Qualifers defined in Attachment 4: Data Flag/Qualifiers

Page: 9 of 9

Date: 01/24/2006

[ ]: Value exceeds NYSDEC SCG

 PERIOD:
 From 11/29/2005 thru 12/01/2005 - Inclusive

 SAMPLE TYPE:
 Soil

| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-27<br>RCSB-27(0-2)<br>12/01/2005<br>2.00 | RCSB-27<br>RCSB-27(2-4)<br>12/01/2005<br>4.00 | RCSB-28<br>RCSB-28(0-2)<br>12/01/2005<br>2.00 | RCSB-28<br>RCSB-28(2-4)<br>12/01/2005<br>4.00 | RCSB-29<br>RCSB-29(0-2)<br>12/01/2005<br>2.00 |
|-------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Arsenic     | (mg/kg)                                 | 7.5           | 3.600                                         | 3.250                                         | 6.020                                         | 2.760                                         | 4.430                                         |
| Barium      | (mg/kg)                                 | 300           | 24.0                                          | 18.2 B                                        | 48.0                                          | 20.5 B                                        | 38.1                                          |
| Cadmium     | (mg/kg)                                 | 10            | 0.036 U                                       | 0.036 U                                       | 0.037 U                                       | 0.036 U                                       | 0.039 U                                       |
| Chromium    | (mg/kg)                                 | 50            | 8.390                                         | 7.730                                         | 10.7                                          | 9.110                                         | 12.5                                          |
| Lead        | (mg/kg)                                 | 400           | 21.1                                          | 7.310                                         | 50.5                                          | 9.400                                         | 16.2                                          |
| Selenium    | (mg/kg)                                 | 2             | 0.938 B                                       | 1.370                                         | 1.150                                         | 0.836 B                                       | 1.040 B                                       |
| Silver      | (mg/kg)                                 |               | 0.446 B                                       | 0.347 B                                       | 0.175 B                                       | 0.360 B                                       | 0.092 U                                       |

mg/kg: milligram/kilogram

The following qualifier(s) exist: CLP C: B, U =Not analyzed

Page: 1 of 2 Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|             | Called States States                    |               |                                               |                                               |                                               |
|-------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-29<br>RCSB-29(2-4)<br>12/01/2005<br>4.00 | RCSB-30<br>RCSB-30(0-2)<br>12/01/2005<br>2.00 | RCSB-30<br>RCSB-30(2-4)<br>12/01/2005<br>4.00 |
| Arsenic     | (mg/kg)                                 | 7.5           | 4.460                                         | [25.3]                                        | 1.650                                         |
| Barium      | (mg/kg)                                 | 300           | 36.5                                          | 71                                            | 13.4 B                                        |
| Cadmium     | (mg/kg)                                 | 10            | 0.130 B                                       | 0.127 B                                       | 0.038 U                                       |
| Chromium    | (mg/kg)                                 | 50            | 10.4                                          | 13.5                                          | 4.670                                         |
| Lead        | (mg/kg)                                 | 400           | 18.3                                          | 132                                           | 4.500                                         |
| Selenium    | (mg/kg)                                 | 2             | 0.769 B                                       | 1.48                                          | 0.613 B                                       |
| Silver      | (mg/kg)                                 |               | 0.528 B                                       |                                               | 0.091 U                                       |

mg/kg: milligram/kilogram

Page: 2 of 2

Date: 03/24/2006

Page: 1 of 8 Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|                               |                                         |               |                                               |                                               |                                               | ·····································         |                                               |
|-------------------------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| CONSTITUENT                   | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-27<br>RCSB-27(0-2)<br>12/01/2005<br>2.00 | RCSB-27<br>RCSB-27(2-4)<br>12/01/2005<br>4.00 | RCSB-28<br>RCSB-28(0-2)<br>12/01/2005<br>2.00 | RCSB-28<br>RCSB-28(2-4)<br>12/01/2005<br>4.00 | RCSB-29<br>RCSB-29(0-2)<br>12/01/2005<br>2.00 |
| 2,2-oxyblis (1-chloropropane) | (ug/kg)                                 |               | 58 U                                          | 57 U                                          | 60 U                                          | 58 U                                          | 61 U                                          |
| 2,4,5-Trichlorophenol         | (ug/kg)                                 | 100           | 55 U                                          | 54 U                                          | 57 U                                          | 55 U                                          | 58 U                                          |
| 2,4,6-Trichlorophenol         | (ug/kg)                                 |               | 53 U                                          | 52 U                                          | 55 U                                          | 53 U                                          | 56 U                                          |
| 2,4-Dichlorophenol            | (ug/kg)                                 | 400           | 67 U                                          | 65 U                                          | 69 U                                          | 66 U                                          | 71 U                                          |
| 2,4-Dimethylphenol            | (ug/kg)                                 |               | 57 U                                          | 56 U                                          | 59 U                                          | 57 U                                          | 61 U                                          |
| 2,4-Dinitrophenol             | (ug/kg)                                 | 200           | 310 U                                         | 300 U                                         | 320 U                                         | 310 U                                         | 330 U                                         |
| 2,4-Dinitrotoluene            | (ug/kg)                                 |               | 53 U                                          | 52 U                                          | 55 U                                          | 53 U                                          | 56 U                                          |
| 2,6-Dinitrotoluene            | (ug/kg)                                 | 1000          | 51 U                                          | 50 U                                          | 53 U                                          | 51 U                                          | 54 U                                          |
| 2-Chloronaphthalene           | (ug/kg)                                 |               | 60 U                                          | 59 U                                          | 62 U                                          | 59 U                                          | 63 U                                          |
| 2-Chlorophenol                | (ug/kg)                                 | 800           | 58 U                                          | 56 U                                          | 59 U                                          | 57 U                                          | 61 U                                          |
| 2-Methylnaphthalene           | (ug/kg)                                 | 36400         | 60 U                                          | 59 U                                          | 62 U                                          | 60 U                                          | 64 U                                          |
| 3,3-Dichlorobenzidine         | (ug/kg)                                 |               | 62 U                                          | 61 U                                          | 64 U                                          | 61 U                                          | 65 U                                          |
| 4,6-Dinitro-o-cresol          | (ug/kg)                                 |               | 70 U                                          | 69 U                                          | 72 U                                          | 70 U                                          | 74 U                                          |
| 4-Bromofluorobenzene          | (ug/kg)                                 |               | 54 U                                          | 53 U                                          | 56 U                                          | 54 U                                          | 57 U                                          |
| 4-Chlorophenyl phenyl ether   | (ug/kg)                                 |               | 57 U                                          | 56 U                                          | 59 U                                          | 57 U                                          | 60 U                                          |
| Acenaphthene                  | (ug/kg)                                 | 50000         | 64 U                                          | 63 U                                          | 66 U                                          | 64 U                                          | 68 U                                          |
| Acenaphthylene                | (ug/kg)                                 | 41000         | 59 U                                          | 57 U                                          | 60 U                                          | 58 U                                          | 62 U                                          |
| Acetophenone                  | (ug/kg)                                 |               | 53 U                                          | 52 U                                          | 54 U                                          | 52 U                                          | 56 U                                          |
| Anthracene                    | (ug/kg)                                 | 50000         | 54 U                                          | 53 U                                          | 56 U                                          | 54 U                                          | 58 U                                          |
| Atrazine                      | (ug/kg)                                 |               | 55 U                                          | 54 U                                          | 57 U                                          | 55 U                                          | 58 U                                          |
| Benzaldehyde                  | (ug/kg)                                 |               | 74 ∪                                          | 73 U                                          | 76 U                                          | 74 U                                          | 78 U                                          |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U =Not analyzed

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

|                                                                                                                 |            |        |              |              |              |              | 「美国の高いなど」また。 |
|-----------------------------------------------------------------------------------------------------------------|------------|--------|--------------|--------------|--------------|--------------|--------------|
|                                                                                                                 | SITE       |        | RCSB-27      | RCSB-27      | RCSB-28      | RCSB-28      | RCSB-29      |
| second and the second secon | SAMPLE ID  | NYSDEC | RCSB-27(0-2) | RCSB-27(2-4) | RCSB-28(0-2) | RCSB-28(2-4) | RCSB-29(0-2) |
| CONSTITUENT                                                                                                     | DATE       | SCG    | 12/01/2005   | 12/01/2005   | 12/01/2005   | 12/01/2005   | 12/01/2005   |
|                                                                                                                 | DEPTH (ff) |        | 2.00         | 4.00         | 2.00         | 4.00         | 2.00         |
| Benzo(a)anthracene                                                                                              | (ug/kg)    | 224    | 51 U         | 50 U         | 52 U         | 50 U         | 53 U         |
| Benzo(a)pyrene                                                                                                  | (ug/kg)    | 61     | 58 U         | 57 U         | 59 U         | 57 U         | 61 U         |
| Benzo(b)fluoranthene                                                                                            | (ug/kg)    | 1100   | 210 J        | 200 J        | 230 J        | 200 J        | 42 U         |
| Benzo(ghi)perylene                                                                                              | (ug/kg)    | 50000  | 60 U         | 59 U         | 61 U         | 59 U         | 63 U         |
| Benzo(k)fluoranthene                                                                                            | (ug/kg)    | 1100   | 79 U         | 78 U         | 82 U         | 79 U         | 84 U         |
| Biphenyl                                                                                                        | (ug/kg)    |        | 59 U         | 58 U         | 61 U         | 59 U         | 63 U         |
| Bis(2-chloroethoxy)methane                                                                                      | (ug/kg)    |        | 59 U         | 58 U         | 61 U         | 59 U         | 63 U         |
| Bis(2-chloroethyl)ether                                                                                         | (ug/kg)    |        | 57 U         | 56 U         | 59 U         | 57 U         | 60 U         |
| Bis(2-ethylhexyl)phthalate (BEHP)                                                                               | (ug/kg)    | 50000  | 69 U         | 68 U         | 71 U         | 69 U         | 73 U         |
| Butyl benzyl phthalate                                                                                          | (ug/kg)    | 50000  | 58 U         | 57, U        | 60 U         | 58 U         | 62 U         |
| Caprolactam                                                                                                     | (ug/kg)    |        | 58 U         | 57 U         | 60 U         | 58 U         | 61 U         |
| Carbazole                                                                                                       | (ug/kg)    |        | 55 U         | 54 U         | 57 U         | 55 U         | 58 U         |
| Chrysene                                                                                                        | (ug/kg)    | 400    | 65 U         | 64 U         | 67 U         | 64 U         | 68 U         |
| Dibenzo(a,h)anthracene                                                                                          | (ug/kg)    | 14     | 45 U         | 44 U         | 47 U         | 45 U         | 48 U         |
| Dibenzofuran                                                                                                    | (ug/kg)    | 6200   | 60 U         | 59 U         | 61 U         | 59 U         | 63 U         |
| Diethyl phthalate                                                                                               | (ug/kg)    | 7100   | 62 U         | 61 U         | 64 U         | 62 U         | 66 U         |
| Dimethyl phthalate                                                                                              | (ug/kg)    | 2000   | 58 U         | 57 U         | 60 U         | 58 U         | 61 U         |
| Di-n-butyl phthalate                                                                                            | (ug/kg)    | 8100   | 55 U         | 54 U         | 57 U         | 55 U         | 58 U         |
| Di-n-octyl phthalate                                                                                            | (ug/kg)    | 50000  | 61 U         | 60 U         | 63 U         | 61 U         | 65 U         |
| Fluoranthene                                                                                                    | (ug/kg)    | 50000  | 54 U         | 53 U         | 87 J         | 53 U         | 57 U         |
| Fluorene                                                                                                        | (ug/kg)    | 50000  | 61 U         | 60 U         | 63 U         | 60 U         | 64 U         |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U, J =Not analyzed

Page: 2 of 8 Date: 03/24/2006

Page: 3 of 8 Date: 03/24/2006

#### PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive Soil

SAMPLE TYPE:

| and substituting of the second se |                                         |               |                                               |                                               |                                               |                                               |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-27<br>RCSB-27(0-2)<br>12/01/2005<br>2.00 | RCSB-27<br>RCSB-27(2-4)<br>12/01/2005<br>4.00 | RCSB-28<br>RCSB-28(0-2)<br>12/01/2005<br>2.00 | RCSB-28<br>RCSB-28(2-4)<br>12/01/2005<br>4.00 | RCSB-29<br>RCSB-29(0-2)<br>12/01/2005<br>2.00 |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/kg)                                 | 410           | 58 U                                          | 57 ∪                                          | 59 U                                          | 57 U                                          | 61 U                                          |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ug/kg)                                 |               | 56 U                                          | 54 U                                          | 57 U                                          | 55 U                                          | 59 U                                          |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ug/kg)                                 |               | 58 U                                          | 56 U                                          | 59 U                                          | 57 U                                          | 61 U                                          |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                 |               | 61 U                                          | 60 U                                          | 63 U                                          | 61 U                                          | 65 U                                          |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                                 | 3200          | 46 U                                          | 45 U                                          | 47 U                                          | 46 U                                          | 48 U                                          |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ug/kg)                                 | 4400          | 54 U                                          | 53 U                                          | 56 U                                          | 54 U                                          | 57 U                                          |
| 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)                                 | 500           | 47 U                                          | 46 U                                          | 48 U                                          | 47 U                                          | 50 U                                          |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ug/kg)                                 | 13000         | 62 U                                          | 60 U                                          | 64 U                                          | 61 U                                          | 65 U                                          |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/kg)                                 | 200           | 79 U                                          | 77 U                                          | 81 U                                          | 78 U                                          | 83 U                                          |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                                 |               | 59 U                                          | 58 U                                          | 61 U                                          | 59 U                                          | 6 <b>3</b> U                                  |
| N-Nitrosodipropylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                                 |               | 60 U                                          | 59 U                                          | 62 U                                          | 59 U                                          | 63 U                                          |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)                                 | 100           | 60 U                                          | 59 U                                          | 62 U                                          | 60 U                                          | 63 U                                          |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)                                 | 430           | 46 U                                          | 45 U                                          | 47 U                                          | 46 U                                          | 48 U                                          |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/kg)                                 | 330           | 56 U                                          | 54 U                                          | 57 U                                          | 55 U                                          | 59 U                                          |
| 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ug/kg)                                 | 220           | 43 U                                          | 42 U                                          | 44 U                                          | 43 U                                          | 45 U                                          |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ug/kg)                                 | 240           | 50 U                                          | 49 U                                          | 51 U                                          | 50 U                                          | 53 U                                          |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/kg)                                 | 1000          | 84 U                                          | 82 U                                          | 86 U                                          | 83 U                                          | 88 U                                          |
| 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)                                 | 900           | 57 U                                          | 56 U                                          | 59 U                                          | 57 U                                          | 60 U                                          |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/kg)                                 | 50000         | 58 U                                          | 56 U                                          | 69 J                                          | 57 U                                          | 61 U                                          |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/kg)                                 | 30            | 55 U                                          | 54 U                                          | 56 U                                          | 54 U                                          | 58 U                                          |
| 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)                                 |               | 62 U                                          | 60 U                                          | 64 U                                          | 61 U                                          | 65 U                                          |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U, J =Not analyzed

#### PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

|                             |                                         |               | A STATISTICS AND A STAT | and the state of the second                   |                                               |                                               |                                               |
|-----------------------------|-----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-27<br>RCSB-27(0-2)<br>12/01/2005<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RCSB-27<br>RCSB-27(2-4)<br>12/01/2005<br>4.00 | RCSB-28<br>RCSB-28(0-2)<br>12/01/2005<br>2.00 | RCSB-28<br>RCSB-28(2-4)<br>12/01/2005<br>4.00 | RCSB-29<br>RCSB-29(0-2)<br>12/01/2005<br>2.00 |
| 4-Nitrophenol               | (ug/kg)                                 | 100           | 45 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44 U                                          | 46 U                                          | 44 U                                          | 47 ∪                                          |
| Pyrene                      | (ug/kg)                                 | 50000         | 64 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63 U                                          | 71 J                                          | 63 U                                          | 67 U                                          |
| Total PAHs                  | (ug/kg)                                 | 500000        | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                           | 475                                           | 200                                           | 0                                             |
| Total Semivolatile Organics | (ug/kg)                                 | 500000        | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                           | 457                                           | 20.0                                          | 0                                             |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U, J =Not analyzed

Page: 4 of 8 Date: 03/24/2006

 PERIOD:
 From 11/29/2005 thru 12/01/2005 - Inclusive

 SAMPLE TYPE:
 Soil

|                               | <b>新闻的学校</b> 的问题                        | a name                   |                                               |                                               |                                               |
|-------------------------------|-----------------------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| CONSTITUENT                   | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG            | RCSB-29<br>RCSB-29(2-4)<br>12/01/2005<br>4.00 | RCSB-30<br>RCSB-30(0-2)<br>12/01/2005<br>2.00 | RCSB-30<br>RCSB-30(2-4)<br>12/01/2005<br>4.00 |
| 2,2-oxyblis (1-chloropropane) | (ug/kg)                                 |                          | 59 U                                          | 120 U                                         | 62 U                                          |
| 2,4,5-Trichlorophenol         | (ug/kg)                                 | 100                      | 56 U                                          | 120 U                                         | 59 U                                          |
| 2,4,6-Trichlorophenol         | (ug/kg)                                 |                          | 54 U                                          | 110 U                                         | 57 U                                          |
| 2,4-Dichlorophenol            | (ug/kg)                                 | 400                      | 68 U                                          | 140 U                                         | 72 U                                          |
| 2,4-Dimethylphenol            | (ug/kg)                                 |                          | 58 U                                          | 120 U                                         | 61 U                                          |
| 2,4-Dinitrophenol             | (ug/kg)                                 | 200                      | 310 U                                         | 640 U                                         | 330 U                                         |
| 2,4-Dinitrotoluene            | (ug/kg)                                 |                          | 54 U                                          | 110 U                                         | 57 U                                          |
| 2,6-Dinitrotoluene            | (ug/kg)                                 | 1000                     | 52 U                                          | 110 U                                         | 55 U                                          |
| 2-Chloronaphthalene           | (ug/kg)                                 |                          | 61 U                                          | 130 U                                         | 64 U                                          |
| 2-Chlorophenol                | (ug/kg)                                 | 800                      | 59 U                                          | 120 U                                         | 62 U                                          |
| 2-Methylnaphthalene           | (ug/kg)                                 | 36400                    | 61 U                                          | 130 U                                         | 65 U                                          |
| 3,3-Dichlorobenzidine         | (ug/kg)                                 | Posted Striker role up 1 | 63 U                                          | 130 U                                         | 66 U                                          |
| 4,6-Dinitro-o-cresol          | (ug/kg)                                 |                          | 71 U                                          | 150 U                                         | 75 U                                          |
| 4-Bromofluorobenzene          | (ug/kg)                                 |                          | 55 U                                          | 110 U                                         | 58 U                                          |
| 4-Chlorophenyl phenyl ether   | (ug/kg)                                 |                          | 58 U                                          | 120 U                                         | 61 U                                          |
| Acenaphthene                  | (ug/kg)                                 | 50000                    | 66 U                                          | 140 U                                         | 69 U                                          |
| Acenaphthylene                | (ug/kg)                                 | 41000                    | 60 U                                          | 130 U                                         | 63 U                                          |
| Acetophenone                  | (ug/kg)                                 |                          | 54 U                                          | 110 U                                         | 57 U                                          |
| Anthracene                    | (ug/kg)                                 | 50000                    | 55 U                                          | 110 U                                         | 58 U                                          |
| Atrazine                      | (ug/kg)                                 |                          | 56 U                                          | 120 U                                         | 59 U                                          |
| Benzaldehyde                  | (ug/kg)                                 |                          | 76 U                                          | 160 U                                         | 79 U                                          |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U =Not analyzed

Page: 5 of 8 Date: 03/24/2006

### TABLE 7

#### LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

Page: 6 of 8 Date: 03/24/2006

## PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

| CONSTITUENT                       | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-29<br>RCSB-29(2-4)<br>12/01/2005<br>4.00 | RCSB-30<br>RCSB-30(0-2)<br>12/01/2005<br>2.00 | RCSB-30<br>RCSB-30(2-4)<br>12/01/2005<br>4.00 |
|-----------------------------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Benzo(a)anthracene                | (ug/kg)                                 | 224           | 51 U                                          | 110 U                                         | 54 U                                          |
| Benzo(a)pyrene                    | (ug/kg)                                 | 61            | 59 U                                          | 120 U                                         | 62 U                                          |
| Benzo(b)fluoranthene              | (ug/kg)                                 | 1100          | 220 J                                         | 82 U                                          | 43 U                                          |
| Benzo(ghi)perylene                | (ug/kg)                                 | 50000         | 61 U                                          | 130 U                                         | 64 U                                          |
| Benzo(k)fluoranthene              | (ug/kg)                                 | 1100          | 81 U                                          | 170 U                                         | 85 U                                          |
| Biphenyl                          | (ug/kg)                                 |               | 61 U                                          | 130 U                                         | 64 U                                          |
| Bis(2-chloroethoxy)methane        | (ug/kg)                                 |               | 60 U                                          | 130 U                                         | 64 U                                          |
| Bis(2-chloroethyl)ether           | (ug/kg)                                 |               | 58 U                                          | 120 U                                         | 61 U                                          |
| Bis(2-ethylhexyl)phthalate (BEHP) | (ug/kg)                                 | 50000         | 71 U                                          | 150 U                                         | 74 U                                          |
| Butyl benzyl phthalate            | (ug/kg)                                 | 50000         | 59 U                                          | 120 U                                         | 63 U                                          |
| Caprolactam                       | (ug/kg)                                 |               | 59 U                                          | 120 U                                         | 62 U                                          |
| Carbazole                         | (ug/kg)                                 |               | 56 U                                          | 120 U                                         | 59 U                                          |
| Chrysene                          | (ug/kg)                                 | 400           | 66 U                                          | 140 U                                         | 69 U                                          |
| Dibenzo(a,h)anthracene            | (ug/kg)                                 | 14            | 46 U                                          | 90 U                                          | 49 U                                          |
| Dibenzofuran                      | (ug/kg)                                 | 6200          | 61 U                                          | 130 U                                         | 64 U                                          |
| Diethyl phthalate                 | (ug/kg)                                 | 7100          | 64 U                                          | 130 U                                         | 67 U                                          |
| Dimethyl phthalate                | (ug/kg)                                 | 2000          | 59 U                                          | 120 U                                         | 62 U                                          |
| Di-n-butyl phthalate              | (ug/kg)                                 | 8100          | 56 U                                          | 120 U                                         | 59 U                                          |
| Di-n-octyl phthalate              | (ug/kg)                                 | 50000         | 63 U                                          | 130 U                                         | 66 U                                          |
| Fluoranthene                      | (ug/kg)                                 | 50000         | 60 J                                          | 110 U                                         | 58 U                                          |
| Fluorene                          | (ug/kg)                                 | 50000         | 62 U                                          | 130 U                                         | 65 U                                          |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U, J =Not analyzed

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | NYSDEC           | RCSB-29<br>RCSB-29(2-4)<br>12/01/2005 | RCSB-30<br>RCSB-30(0-2)<br>12/01/2005 | RCSB-30<br>RCSB-30(2-4)<br>12/01/2005 |
|---------------------------|---------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                           | DEPTH (ft)                | ·张平国王的书子。 75.    | 4.00                                  | 2.00                                  | 4.00                                  |
| Hexachlorobenzene         | (ug/kg)                   | 410              | 59 U                                  | 120 U                                 | 62 U                                  |
| Hexachlorobutadiene       | (ug/kg)                   | Service Services | 57 U                                  | 120 U                                 | 60 U                                  |
| Hexachlorocyclopentadiene | (ug/kg)                   |                  | 59 U                                  | 120 U                                 | 62 U                                  |
| Hexachloroethane          | (ug/kg)                   |                  | 63 U                                  | 130 U                                 | 66 U                                  |
| Indeno(1,2,3-cd)pyrene    | (ug/kg)                   | 3200             | 47 U                                  | 90 U                                  | 49 U                                  |
| Isophorone                | (ug/kg)                   | 4400             | 55 U                                  | 110 U                                 | 58 U                                  |
| 3-Nitroaniline            | (ug/kg)                   | 500              | 48 U                                  | 100 U                                 | 50 U                                  |
| Naphthalene               | (ug/kg)                   | 13000            | 63 U                                  | 130 U                                 | 66 U                                  |
| Nitrobenzene              | (ug/kg)                   | 200              | 80 U                                  | 170 U                                 | 84 U                                  |
| N-Nitrosodiphenylamine    | (ug/kg)                   |                  | 61 U                                  | 130 U                                 | 64 U                                  |
| N-Nitrosodipropylamine    | (ug/kg)                   |                  | 61 U                                  | 130 U                                 | 64 U                                  |
| 2-Methylphenol            | (ug/kg)                   | 100              | 61 U                                  | 130 U                                 | 64 U                                  |
| 2-Nitroaniline            | (ug/kg)                   | 430              | 47 ∪                                  | 90 U                                  | 49 U                                  |
| 2-Nitrophenol             | (ug/kg)                   | 330              | 57 U                                  | 120 U                                 | 60 U                                  |
| 4-Chloroaniline           | (ug/kg)                   | 220              | 44 ∪                                  | 90 U                                  | 46 U                                  |
| 4-Chloro-3-methylphenol   | (ug/kg)                   | 240              | 51 U                                  | 110 U                                 | 53 U                                  |
| Pentachlorophenol         | (ug/kg)                   | 1000             | 85 U                                  | 170 U                                 | 90 U                                  |
| 4-Methylphenol            | (ug/kg)                   | 900              | 58 U                                  | 120 U                                 | 61 U                                  |
| Phenanthrene              | (ug/kg)                   | 50000            | 59 U                                  | 120 U                                 | 62 U                                  |
| Phenol                    | (ug/kg)                   | 30               | 56 U                                  | 120 U                                 | 59 U                                  |
| 4-Nitroaniline            | (ug/kg)                   |                  | 63 U                                  | 130 U                                 | 66 U                                  |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U =Not analyzed

Page: 7 of 8 Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

SAMPLE TYPE: Soil

| CONSTITUENT                 | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-29<br>RCSB-29(2-4)<br>12/01/2005<br>4.00 | RCSB-30<br>RCSB-30(0-2)<br>12/01/2005<br>2.00 | RCSB-30<br>RCSB-30(2-4)<br>12/01/2005<br>4.00 |
|-----------------------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 4-Nitrophenol               | (ug/kg)                                 | 100           | 46 U                                          | 90 U                                          | 48 U                                          |
| Pyrene                      | (ug/kg)                                 | 50000         | 65 U                                          | 140 U                                         | 68 U                                          |
| Total PAHs                  | (ug/kg)                                 | 500000        | 280                                           | 0                                             | 0                                             |
| Total Semivolatile Organics | (ug/kg)                                 | 500000        | 280                                           | 0                                             | 0                                             |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U =Not analyzed

Page: 8 of 8

Date: 03/24/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

#### SAMPLE TYPE: Soil

|              |                                         |               |                                               | 아파, 참 위험(현) 등 (                                         |                                               |                                               |                                               |
|--------------|-----------------------------------------|---------------|-----------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| CONSTITUENT  | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-22<br>RCSB-22(2-4)<br>11/30/2005<br>4.00 | RC <b>\$</b> B-22<br>RCSB-22(4-6)<br>11/30/2005<br>6.00 | RCSB-23<br>RCSB-23(2-4)<br>11/30/2005<br>4.00 | RCSB-23<br>RCSB-23(4-6)<br>11/30/2005<br>6.00 | RCSB-24<br>RCSB-24(2-4)<br>11/30/2005<br>4.00 |
| Aroclor 1016 | (ug/kg)                                 | 10000         | 3.0 U                                         | 2.8 U                                                   | 2.9 U                                         | 2.9 U                                         | 2.9 U                                         |
| Aroclor 1221 | (ug/kg)                                 | 10000         | 4.6 U                                         | 4.3 U                                                   | 4.4 U                                         | 4.4 U                                         | 4.4 U                                         |
| Aroclor 1232 | (ug/kg)                                 | 10000         | 6.9 U                                         | 6.4 U                                                   | 6.6 U                                         | 6.6 U                                         | 6.6 U                                         |
| Aroclor 1242 | (ug/kg)                                 | 10000         | 6.1 U                                         | 5.7 U                                                   | 5.9 U                                         | 5.9 U                                         | 5.9 U                                         |
| Aroclor 1248 | (ug/kg)                                 | 10000         | 3.0 U                                         | 2.8 U                                                   | 2.9 U                                         | 2.9 U                                         | 2.9 U                                         |
| Aroclor 1254 | (ug <sup>7</sup> kg)                    | 10000         | 1.9 U                                         | 1.8 U                                                   | 1.9 U                                         | 59                                            | 1.9 U                                         |
| Aroclor 1260 | (ug/kg)                                 | 10000         | 28                                            | 24                                                      | 40                                            | 4.7 U                                         | 40                                            |
| Total PCBs   | (ug/kg)                                 | 10000         | 28                                            | 24                                                      | 40                                            | 59                                            | 40                                            |

ug/kg: microgram/kilogram

The following qualifier(s) exist: CLP Q: U =Not analyzed

Page: 1 of 3 Date: 03/27/2006

PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive SAMPLE TYPE: Soil

| CONSTITUENT  | SITE<br>SAMPLE ID<br>DATE<br>DEPTH (ft) | NYSDEC<br>SCG | RCSB-24<br>RCSB-24(4-6)<br>11/30/2005<br>6.00 | RCSB-27<br>RCSB-27(0-2)<br>12/01/2005<br>2.00 | RCSB-27<br>RCSB-27(2-4)<br>12/01/2005<br>4.00 | RCSB-28<br>RCSB-28(0-2)<br>12/01/2005<br>2.00 | RCSB-28<br>4CSB-28(2-4)<br>12/01/2005<br>4.00 |
|--------------|-----------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Aroclor 1016 | (ug/kg)                                 | 10000         | 2.9 U                                         | 2.8 U                                         | 2.7 U                                         | 2.8 U                                         | 2.7 U                                         |
| Aroclor 1221 | (ug/kg)                                 | 10000         | 4.5 U                                         | 4.3 U                                         | 4.2 U                                         | 4.4 U                                         | 4.2 U                                         |
| Aroclor 1232 | (ug/kg)                                 | 10000         | 6.8 U                                         | 6.4 U                                         | 6.3 U                                         | 6.6 U                                         | 6.3 U                                         |
| Aroclor 1242 | (ug/kg)                                 | 10000         | 6.0 U                                         | 5.7 U                                         | 5.6 U                                         | 5.9 U                                         | 5.6 U                                         |
| Aroclor 1248 | (ug/kg)                                 | 10000         | 2.9 U                                         | 2.8 U                                         | 2.7 U                                         | 2.9 U                                         | 2.7 U                                         |
| Aroclor 1254 | (ug/kg)                                 | 10000         | 59                                            | 1.8 U                                         | 1.8 U                                         | 1.9 U                                         | 1.8 U                                         |
| Aroclor 1260 | (ug/kg)                                 | 10000         | 4.9 U                                         | 4.6 U                                         | 4.5 U                                         | 1000 D                                        | 89                                            |
| TotalPCBs    | (ug/kg)                                 | 10000         | 59                                            | 0                                             | 0                                             | 1000                                          | 89                                            |

Page: 2 of 3 Date: 03/27/2006

Page: 3 of 3 Date: 03/27/2006

### PERIOD: From 11/29/2005 thru 12/01/2005 - Inclusive

#### SAMPLE TYPE: Soil

| <ul> <li>And the state of t</li></ul> | negalaise an anna an a | althermouth   |                                       |                                       |                                       |                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SITE<br>SAMPLE ID<br>DATE                         | NYSDEC<br>SCG | RCSB-29<br>RCSB-29(0-2)<br>12/01/2005 | RCSB-29<br>RCSB-29(2-4)<br>12/01/2005 | RCSB-30<br>RCSB-30(0-2)<br>12/01/2005 | RCSB-30<br>RCSB-30(2-4)<br>12/01/2005 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEPTH (ft)                                        |               | 2.00                                  | 4.00                                  | 2.00                                  | 4.00                                  |  |
| Aroclor 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 2.9 U                                 | 2.8 U                                 | 3.0 U                                 | 3.0 U                                 |  |
| Aroclor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 4.5 U                                 | 4.4 U                                 | 4.6 U                                 | 4.6 U                                 |  |
| Aroclor 1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 6.8 U                                 | 6.6 U                                 | 6.9 U                                 | 6.9 U                                 |  |
| Aroclor 1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 6.0 U                                 | 5.9 U                                 | 6.1 U                                 | 6.1 U                                 |  |
| Aroclor 1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 2.9 U                                 | 2.8 U                                 | 3.0 U                                 | 3.0 U                                 |  |
| Aroclor 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 1.9 U                                 | 1.9 U                                 | 1.9 U                                 | 1.9 U                                 |  |
| Aroclor 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/kg)                                           | 10000         | 270                                   | 77                                    | 600 D                                 | 170                                   |  |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/kg)                                           | 10000         | 270                                   | 77                                    | 600                                   | 170                                   |  |

ug/kg: microgram/kilogram

#### TABLE 9 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS TAL METALS & MERCURY

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

|             | and indiana and           |               |                                 |                                   |                                  |                                   |                                  |
|-------------|---------------------------|---------------|---------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|
| CONSTITUENT | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | RCGP-01<br>RCGP-1<br>11/30/2005 | RCGP-01<br>RCGP-01F<br>11/30/2005 | RCGP-02<br>RCGP-02<br>12/01/2005 | RCGP-02<br>RCGP-02F<br>12/01/2005 | RCGP-03<br>RCGP-03<br>12/01/2005 |
| Aluminum    | (ug/i)                    |               | 5210                            | 128 B                             | 5770                             | 168 B                             | 532                              |
| Antimony    | (ug/!)                    | 3             | 3.170 U                         | 3.170 U                           | 3.170 U                          | 3.170 U                           | 3.170 U                          |
| Arsenic     | (ug/I)                    | 25            | 7.790 B                         | 3.320 U                           | 6.070 B                          | 3.320 U                           | 3.320 U                          |
| Barium      | (ug/l)                    | 1000          | 29.6 B                          | 5.070 B                           | 111 B                            | 69.6 B                            | 31.0 B                           |
| Beryllium   | (ug/l)                    | 3             | 0.580 B                         | 0.300 B                           | 0.730 B                          | 0.380 B                           | 0.410 B                          |
| Cadmium     | (ug/l)                    | 5             | 0.327 U                         | 0.327 U                           | 0.327 U                          | 0.410 B                           | 0.327 U                          |
| Calcium     | (ug/l)                    |               | 34800                           | 29500                             | 8530                             | 6640                              | 30300                            |
| Chromium    | (ug/l)                    | 50            | 28.0                            | 0.343 U                           | 25.3                             | 0.860 B                           | 3.000 B                          |
| Cobalt      | (ug/l)                    |               | 14.2 B                          | 3.750 B                           | 11.5 B                           | 3.620 B                           | 3.040 B                          |
| Copper      | (ug/l)                    | 200           | 29.8                            | 5.730 B                           | 27.6                             | 4.170 B                           | 4.860 B                          |
| Iron        | (ug/l)                    | 300           | [16700]                         | 296                               | [11900]                          | [559]                             | [1620]                           |
| Lead        | (ug/l)                    | 25            | 15.0                            | 2.440 B                           | 10.0                             | 2.670 B                           | 3.020 B                          |
| Magnesium   | (ug/l)                    | 35000         | 4520 B                          | 3140 B                            | 3590 B                           | 1630 B                            | 4130 B                           |
| Manganese   | (ug/l)                    | 300           | [574]                           | 124                               | 227                              | 55.4                              | 86.6                             |
| Mercury     | (ug/l)                    | 0.7           | 0.0300 U                        | 0.0300 U                          | 0.0300 U                         | 0.0300 U                          | 0.0300 U                         |
| Nickel      | (ug/l)                    | 100           | 1.560 U                         | 1.560 U                           | 1.560 U                          | 1.560 U                           | 1.560 U                          |
| Potassium   | (ug/l)                    |               | 5860                            | 4290 B                            | 19300                            | 18400                             | 8460                             |
| Selenium    | (ug/l)                    | 10            | 3.650 B                         | 3.410 B                           | 3.040 U                          | 3.040 U                           | 3.040 U                          |
| Silver      | (ug/l)                    | 50            | 1.640 U                         | 1.640 U                           | 1.640 U                          | 1.640 U                           | 1.640 U                          |
| Sodium      | (ug/l)                    | 20000         | [66500]                         | [56000]                           | 1780 B                           | 1520 B                            | [34700]                          |
| Thallium    | (ug/I)                    | 0.5           | 3.050 U                         | 3.050 U                           | 3.050 U                          | 3.050 U                           | 3.050 U                          |

ug/L: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 1 of 4 Date: 03/17/2006

#### Page: 2 of 4 Date: 03/17/2006

#### TABLE 9 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS TAL METALS & MERCURY

# PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

| and the second se | mitter andet | a.     |            | 100        |                    |            |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|------------|------------|--------------------|------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CITE         | NYSDEC |            | BCCB 01    | BCCD 02            | BCCB 02    |            |
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE ID    | SCG    | RCGP-07    | RCGP-01    | RCGP-02<br>RCGP-02 | RCGP-02    | RCGP-03    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE         |        | 11/30/2005 | 11/30/2005 | 12/01/2005         | 12/01/2005 | 12/01/2005 |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/l)       |        | 19.8 B     | 0.701 U    | 17.0 B             | 0.701 U    | 0.701 U    |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ug/l)       | 2000   | 45.3       | 17.7 B     | 121                | 58.0       | 43.3       |

ug/L: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

#### TABLE 9 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS TAL METALS & MERCURY

### PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive

SAMPLE TYPE: Water

| and definition of the second sec |                           |               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | RCGP-03<br>RCGP-03F<br>12/02/2005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/l)                    |               | 81.9 B                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/I)                    | 3             | 3.170 U                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/l)                    | 25            | 3.320 U                           | A Description of the second seco                                                                                                                                                                                                                                             |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/l)                    | 1000          | 25.8 B                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ug/l)                    | 3             | 0.360 B                           | and a second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/l)                    | 5             | 0.327 U                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/l)                    |               | 27900                             | 1. The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/l)                    | 50            | 0.500 B                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/l)                    |               | 2.400 B                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/l)                    | 200           | 3.640 U                           | and the second s |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ug/l)                    | 300           | [439]                             | a listed - south - status surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ug/l)                    | 25            | 2.650 B                           | a service of the definition of the service of the s |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ug/l)                    | 35000         | 3740 B                            | the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ug/I)                    | 300           | 55.0                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/l)                    | 0.7           | 0.0300 U                          | and and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/l)                    | 100           | 1.560 U                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ug/I)                    |               | 7590                              | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/l)                    | 10            | 3.760 B                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/l)                    | 50            | 1.640 U                           | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/l)                    | 20000         | [31600]                           | And the second of the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/l)                    | 0.5           | 3.050 U                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ug/L: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 3 of 4 Date: 03/17/2006
### Page: 4 of 4 Date: 03/17/2006

### TABLE 9 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS TAL METALS & MERCURY

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

| CONSTITUENT      | SITE NYSDEC<br>SAMPLE ID SCG<br>DATE | RCGP-03<br>RCGP-03F<br>12/02/2005 |  |  |  |
|------------------|--------------------------------------|-----------------------------------|--|--|--|
| Vanadium<br>Zinc | (ug/l)<br>(ug/l) 2000                | 0.701 U<br>34.0                   |  |  |  |

ug/L: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

### TABLE 10 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS (VOCs)

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

| CONSTITUENT               | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | RCGP-01<br>RCGP-1<br>11/30/2005 | RCGP-02<br>RCGP-02<br>12/01/2005 | RCGP-03<br>RCGP-03<br>12/01/2005 |  |
|---------------------------|---------------------------|---------------|---------------------------------|----------------------------------|----------------------------------|--|
| 1,1,1-Trichloroethane     | (ug/l)                    | 5             | 0.32 U                          | 0.32 U                           | 0.32 U                           |  |
| 1,1,2,2-Tetrachloroethane | (ug/l)                    | 5             | 0.30 U                          | 0.30 U                           | 0.30 U                           |  |
| 1,1,2-Trichloroethane     | (ug/l)                    | 1             | 0.41 U                          | 0.41 U                           | 0.41 U                           |  |
| 1,1-Dichloroethane        | (ug/I)                    | 5             | 0.38 U                          | 0.38 U                           | 0.38 U                           |  |
| 1,1-Dichloroethylene      | (ug/l)                    | 5             | 0.42 U                          | 0.42 U                           | 0.42 U                           |  |
| 1,2,4-Trichlorobenzene    | (ug/l)                    | 5             | 0.46 U                          | 0.46 U                           | 0.46 U                           |  |
| 1,2-Dichloroethane        | (ug/l)                    | 0.6           | 0.34 U                          | 0.34 U                           | 0.34 U                           |  |
| 1,2-Dichloropropane       | (ug/l)                    | 1             | 0.40 U                          | 0.40 U                           | 0.40 U                           |  |
| 2-Hexanone                | (ug/l)                    | 50            | 1.7 U                           | 1.7 U                            | 1.7 U                            |  |
| Acetone                   | (ug/l)                    | 50            | 2.3 U                           | 2.3 U                            | 2.3 U                            |  |
| Benzene                   | (ug/l)                    | 1.0           | 0.39 U                          | 0.39 U                           | 0.39 U                           |  |
| Benzene, 1-methylethyl-   | (ug/l)                    | 5             | 0.44 U                          | 0.44 U                           | 0.44 U                           |  |
| Bromodichloromethane      | (ug/l)                    | 50            | 0.33 U                          | 0.33 U                           | 0.33 U                           |  |
| Bromoform                 | (ug/l)                    | 50            | 0.32 U                          | 0.32 U                           | 0.32 U                           |  |
| Carbon disulfide          | (ug/l)                    |               | 0.40 U                          | 0.40 U                           | 0.40 U                           |  |
| Carbon tetrachloride      | (ug/l)                    | 5             | 1.1 U                           | 1.1 U                            | 1.1 U                            |  |
| Chlorobenzene             | (ug/l)                    | 5             | 0.47 U                          | 0.47 U                           | 0.47 U                           |  |
| Chloroethane              | (ug/l)                    | 5             | 0.83 U                          | 0.83 U                           | 0.83 U                           |  |
| Chloroform                | (ug/l)                    | 7             | 0.33 U                          | 0.33 U                           | 0.33 U                           |  |
| cis-1,2-Dichloroethylene  | (ug/l)                    | 5             | 0.29 U                          | 0.29 U                           | 0.29 U                           |  |
| cis-1,3-Dichloropropene   | (ug/l)                    | 0.4           | 0.36 U                          | 0.36 U                           | 0.36 U                           |  |

ug/l: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 1 of 3 Date: 03/17/2006

### TABLE 10 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS (VOCs)

# PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

|                              |                           |               | 而利用的                            |                                  |                                  |  |
|------------------------------|---------------------------|---------------|---------------------------------|----------------------------------|----------------------------------|--|
| CONSTITUENT                  | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG | RCGP-01<br>RCGP-1<br>11/30/2005 | RCGP-02<br>RCGP-02<br>12/01/2005 | RCGP-03<br>RCGP-03<br>12/01/2005 |  |
| Cyclohexane                  | (ug/l)                    |               | 0.36 U                          | 0.36 U                           | 0.36 U                           |  |
| DBCP                         | (ug/l)                    | 0.04          | 0.38 U                          | 0.38 U                           | 0.38 U                           |  |
| Dibromochloromethane         | (ug/l)                    | 50            | 0.26 U                          | 0.26 U                           | 0.26 U                           |  |
| Dichlorodifluoromethane      | (ug/l)                    | 5             | 0.17 U                          | 0.17 U                           | 0.17 U                           |  |
| EDB                          | (ug/l)                    | 0.0006        | 0.32 U                          | 0.32 U                           | 0.32 U                           |  |
| Ethene, 1,2-dichloro-, (E)-  | (ug/l)                    | 5             | 0.40 U                          | 0.40 U                           | 0.40 U                           |  |
| Ethylbenzene                 | (ug/l)                    | 5             | 0.45 U                          | 0.45 U                           | 0.45 U                           |  |
| Freon 113                    | (ug/l)                    |               | 1.3 U                           | 1.3 U                            | 1.3 U                            |  |
| m-Dichlorobenzene            | (ug/I)                    | 3             | 0.50 U                          | 0.50 U                           | 0.50 U                           |  |
| Methyl Acetate               | (ug/l)                    |               | 0.20 U                          | 0.20 U                           | 0.20 U                           |  |
| Methyl bromide               | (ug/l)                    | 5             | 0.41 U                          | 0.41 U                           | 0.41 U                           |  |
| Methyl chloride              | (ug/l)                    | 5             | 0.34 U                          | 0.34 U                           | 0.34 U                           |  |
| Methyl ethyl ketone          | (ug/l)                    | 50            | 1.1 U                           | 1.1 U                            | 1.1 U                            |  |
| Methyl isobutylketone (MIBK) | (ug/l)                    |               | 1.6 U                           | 1.6 U                            | 1.6 U                            |  |
| Methylcyclohexane            | (ug/l)                    |               | 0.34 U                          | 0.34 U                           | 0.34 U                           |  |
| Methylene chloride           | (ug/l)                    | 5             | 0.43 U                          | 0.43 U                           | 0.43 U                           |  |
| Methyltert-butylether        | (ug/I)                    | 10            | 0.28 U                          | 0.28 U                           | 0.28 U                           |  |
| o-Dichlorobenzene            | (ug/I)                    | 3             | 0.44 U                          | 0.44 U                           | 0.44 U                           |  |
| o-Xylene                     | (ug/l)                    |               | 0.46 U                          | 0.46 U                           | 0.46 U                           |  |
| p-Dichlorobenzene            | (ug/l)                    | 3             | 0.54 U                          | 0.54 U                           | 0.54 U                           |  |
| p-Xylene                     | (ug/l)                    |               | 1.2 U                           | 1.2 U                            | 1.2 U                            |  |

ug/l: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

Page: 2 of 3 Date: 03/17/2006

### Page: 3 of 3 Date: 03/17/2006

### TABLE 10 LONG ISLAND RAILROAD - 17 SUBSTATIONS ROCKVILLE CENTRE SUBSTATION GROUNDWATER SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS (VOCs)

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

| and a stand of the | and the second            | e contra c |                                 |                                  |                                  |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|---|--|
| CONSTITUENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SITE<br>SAMPLE ID<br>DATE | NYSDEC<br>SCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCGP-01<br>RCGP-1<br>11/30/2005 | RCGP-02<br>RCGP-02<br>12/01/2005 | RCGP-03<br>RCGP-03<br>12/01/2005 |   |  |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/I)                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.41 U                          | 0.41 U                           | 0.41 U                           |   |  |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/l)                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.48 U                          | 0.48 U                           | 0.48 U                           |   |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/l)                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.36 U                          | 0.36 U                           | 0.36 U                           |   |  |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ug/l)                    | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.32 U                          | 0.32 U                           | 0.32 U                           |   |  |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ug/l)                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.46 U                          | 0.46 U                           | 0.46 U                           |   |  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ug/l)                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.22 U                          | 0.22 U                           | 0.22 U                           |   |  |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ug/l)                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.33 U                          | 0.33 U                           | 0.33 U                           |   |  |
| TOTAL VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/l)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                               | 0                                | 0                                | 關 |  |

ug/l: micrograms/liter

Qualifiers defined in Attachment 4: Data Flag/Qualifiers

[ ]: Value exceeds NYSDEC SCG

### **ATTACHMENT 5**

## LIRR ROCKVILLE CENTRE SUBSTATION PROPOSED SAMPLE LOCATION MAP



INNt4ICADwork/2229/2229-21A.dwg, LOCATION, 04/06/06 12:20:46 PM, STauss