

Delineation Phase II Site Assessment Investigation Report Rockville Centre Substation: Site No. V00401-1

October 2007

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS

RLA/JOBS/MTA2229(10/30/07)

Jamaica Station Jamaica, NY 11435-4380 718 558-7400 Tel. Raymond P. Kenny Acting President

October 30, 2007

FILE COPY

Robert DeCandia, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau A 625 Broadway, 11th Floor Albany, NY 12233-7015

Re: LIRR Rockville Centre Substation (NYSDEC VCA No. V00401-1) Delineation Phase II Site assessment Investigation Report

Dear Mr. DeCandia:

Enclosed please find three (3) copies of the draft Final Report entitled:

"Delineation Phase II Site Assessment Investigation Report for LIRR Rockville Centre Substation (NYSDEC VCA No. V00401-1)"

Please be advised that the LIRR will be decommissioning and demolishing the Rockville Centre Substation in October of 2008, and soil removal activities are scheduled to be undertaken shortly thereafter. As we have discussed in the past, the LIRR is eager to remediate this site to allow for construction of a new substation building at the Rockville Centre Substation, which, in turn, will improve service to our customers. With this in mind, we request that the New York State Department of Environmental Conservation (NYSDEC) review the enclosed report as soon as possible so that we may proceed with the site remediation. The LIRR is available to meet, at your convenience, to review any comment or concern the NYSDEC may have.

Please do not hesitate to contact me at (718) 558-3620 if you have any questions. Thank you in advance for your assistance and cooperation in this matter.

Andrew Wilson, P.E.

Project Manager

AW/PSM/csf

cc: Case Attomey (NYSDEC) K. McLaughlin (NYSDOH) D. Miles (NYSDOH) C. Hillenbrand (USEPA) C. Pareja (NCDH) C. Channer (MTA) L. Wunderlich (LIRR) T. Fox (D&B) • 2229WIISC07LTR-21

MTA Long Island Rail Road is an agency of the Metropolitan Transportation Authority, State of New York Peter S. Kalikow, Chairman

METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

DELINEATION PHASE II SITE ASSESSMENT FOR ROCKVILLE CENTRE SUBSTATION (V00401-1)

INVESTIGATION REPORT

Prepared for:

METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

Prepared by:

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK 11797

OCTOBER 2007

+2229\RR0605701.DOC(R03)

LONG ISLAND RAIL ROAD DELINEATION PHASE II SITE ASSESSMENT FOR ROCKVILLE CENTRE SUBSTATION INVESTIGATION REPORT

TABLE OF CONTENTS

Section		Title	Page
Title Pag	ge		
1.0	INTI	RODUCTION	1-1
	1.1	Project Background	1-1
	1.2	Site Description	1-2
	1.3	Summary of Prior Investigations	1-5
2.0	INVI	ESTIGATION METHODS	2-1
	2.1	Introduction	2-1
	2.2	Surface Soil Sampling	2-1
	2.3	Subsurface Soil Sampling	2-5
	2.4	Groundwater Probe Installations and Sampling	2-6
	2.5	Below Grade Structures and Underground Injection Control (UIC)	
		Features	2-6
	2.6	Air Sampling	2-7
3.0	FINI	DINGS	3-1
	3.1	Surface Soil	3-1
	3.2	Subsurface soil	3-5
	3.3	Groundwater	3-6
	3.4	Below Grade Structures and Underground Injection Control (UIC)	
		Features	3-7
	3.5	Waste Characterization	3-10
	3.6	Data Usability Summary Report (DUSR)	3-11
4.0	ROC	CKVILLE CENTRE SUBSTATION - FISH AND WILDLIFE	
	RES	OURCES IMPACT ANALYSIS	4-1
	4.1	Ecology	4-1
		4.1.1 Major Habitat Types	4-1
		4.1.2 Wetlands	4-3
		4.1.3 Mammals	4-3
		4.1.4 Birds	4-3

TABLE OF CONTENTS (continued)

Section		Title	Page
		4.1.5 Reptiles and Amphibians	4-3
		4.1.6 Rare Species and Critical Habitats	4-6
		4.1.7 Biological Associations Found in the Project Vicinity	4-6
		4.1.8 Observations of Stress Potentially Related to Site Contaminants.	4-6
		4.1.9 Habitat Values of Vegetative Zones Within the Project Site	4-12
5.0	QUA	ALITATIVE EXPOSURE ASSESSMENT	5-1
	5.1	Introduction	5-1
	5.2	Properties, Fate and Transport of COPCs at the	
		Rockville Centre Substation	5-2
	5.3	General Substation Conditions	5-4
	5.4	Surface and Subsurface Soil	5-5
	5.5	Groundwater	5-6
	5.6	Air	5-6
	5.7	Future Use of Rockville Centre Substation	5-6
6.0	CON	ICLUSIONS AND RECOMMENDATIONS	6-1
	6.1	Nature and Extent of Contamination	6-1
	6.2	Recommendations	6-2

List of Appendices

P

Existing Initial Site Assessment Analytical DataA
Data Qualifiers/ Delineation Phase II Analytical DataB
Delineation Phase II Boring LogsC
Data Validator ResumeD
LIRR Procedure/Instruction EE03-001E

List of Figures

1-1	Site Location Map	-3
1-2	Site Plan	1-4

TABLE OF CONTENTS (continued)

List of Figures (continued)

2-1 2-2	Sample Location Map2-2 Additional Delineation Sample Location Map2-3
3-1 3-2	Contaminant Concentration Map
6-1 6-2	Proposed Remediation Areas

List of Tables

2-1	Delineation Phase II Site Assessment Summary of Completed Work2-4
4-1	Vegetative Species Observed at and around the
	Rockville Centre Substation
4-2	Mammals Possibly Inhabiting the Rockville Centre Substation Site4-4
4-3	Avifauna Possibly Inhabiting the Rockville Centre Substation Area4-5
4-4	Reptiles and Amphibians Possibly Inhabiting
	the Rockville Centre Substation Site
4-5	Federally Listed or Proposed Threatened or Endangered
	Species in New York State
4-6	Floral and Faunal Associations Observed Within 2.5 Miles
	of the Rockville Centre Substation Site
4-7	Qualitative Habitat Value Analysis Within
	the Rockville Centre Substation Site

This Investigation Report presents the results of the Delineation Phase II Site Assessment, conducted at the Long Island Rail Road (LIRR) Rockville Centre Substation and was completed in accordance with fully executed Voluntary Cleanup Agreement No. V00401-1.

The objectives of the Delineation Phase II Site Assessment included the following:

- Define the nature and extent of impacts to surface and subsurface soil;
- Determine if site-related contaminants have impacted groundwater quality;
- Identify potential impacts to human health and/or the environment associated with site-related contaminants; and
- Obtain sufficient data to determine the need for remedial action and to evaluate remedial alternatives that may be implemented as a final long-term remedy for the site.

Field activities and sampling procedures associated with the Delineation Phase II Site Assessment at the Rockville Centre Substation were completed in accordance with the NYSDEC-approved "Investigation Work Plan," dated June 2005.

The following subsections provide relevant project background information, including detailed descriptions of the Rockville Centre Substation site, as well as a summary of the findings of prior investigation work.

1.1 Project Background

The LIRR designed, constructed and operated substations from the early 1930s through 1951 that utilized mercury rectifiers. These rectifiers allowed the LIRR to receive 60-cycle, alternating current (AC) from local utilities and convert it to direct current (DC) for use as a source of electric power for its locomotives and electric passenger car fleet. The LIRR identified 20 substations located throughout Queens, Nassau and Suffolk Counties that once utilized mercury containing rectifiers, including the Rockville Centre Substation.

It is believed that during the early 1980s, the mercury rectifiers were taken out of service and physically removed from these LIRR substations and replaced with non-mercury containing solid state equipment. However, due to uncertainties surrounding the work practices that may have been employed when managing the operation and maintenance of these mercury rectifiers, the LIRR believed it necessary to conduct environmental assessments at these 20 electric substations to determine the potential effects that may have occurred to the surrounding environment.

In 1999, the LIRR conducted environmental assessments at the 20 electric substations previously utilizing mercury-containing rectifiers. The results of these assessments were documented in a report prepared by Dvirka and Bartilucci Consulting Engineers (D&B), entitled, "Site Assessment of 20 Substations for Mercury Contamination," dated December 2000. Based on the findings of that report, mercury was identified in soil at all 20 substations, including the Rockville Centre Substation, at concentrations above the New York State Department of Environmental Conservation's (NYSDEC's) recommended cleanup objectives (TAGM 4046). In order to further delineate and remediate impacted soil at the 20 substations, the LIRR has agreed to undertake and complete Delineation Phase II Site Assessments under the NYSDEC Voluntary Cleanup Program (VCP). In support of this VCP, the LIRR elected to conduct Delineation Phase II Site Assessment activities at the Rockville Centre Substation.

The report discusses the data gathered as part of the Initial Site Assessment and Delineation Phase II Site Assessment activities at the Rockville Centre Substation.

1.2 Site Description

The Rockville Centre substation is located in Rockville Centre, Nassau County, New York (see Figure 1-1). The substation consists of an approximately 2,500 square foot two-story brick building, as shown on Figure 1-2. An approximately 2,100 square foot transformer yard is

located adjacent to the substation to the south and is enclosed by a chain-linked fence. The substation building and transformer yard is presently utilized to convert alternating current to direct current for the LIRR-Babylon branch. The areas surrounding the substation and the transformer yard are currently utilized as vehicular parking areas.

The Rockville Centre substation is equipped with a basement, sanitary facilities, water service and a utility trench system. The interior of the substation consists of an active solid-state rectifier located over a pit leading to the basement that once serviced a mercury-containing rectifier enclosed by a chain-linked fence. In addition, the substation is equipped with a second pit leading to the basement that is covered with a steel plate which was utilized in conjunction with a second mercury-containing rectifier that has since been removed from the substation. Located in the southeast portion of the basement is a sump pump, which is utilized for flood prevention and discharges outside the east wall of the building to a 4-foot by 10-foot parcel of land in the southeast exterior corner of the substation building. In addition, there is a water meter pit with an earthen bottom that is located off the northwest corner of the substation and is covered with a steel plate.

Based on the results of the Delineation Phase II Site Investigation, the depth to groundwater at this site is approximately 20 feet below grade.

1.3 Summary of Prior Investigations

The LIRR completed an initial environmental site assessment of the Rockville Centre Substation in 1999, as documented in the report entitled, "Site Assessment of 20 Substations for Mercury Contamination," dated December 2000. Investigation methods utilized during this Initial Investigation included a site inspection, mercury vapor measurements, a geophysical survey, an exploratory excavation and drainage determinations. In addition, samples of various environmental media were collected at the site for laboratory analysis. These media included surface soil, subsurface soil and concrete cores. Analytical data from the Initial Investigation is presented in Appendix A of this report. Below is a summary of the findings of the Initial Investigation of the Rockville Centre Substation. Additional details on the Initial Investigation of the Rockville Centre Substation are presented in the previously referenced report "Site Assessment of 20 Substations for Mercury Contamination." Note that the findings of the 1999 investigation were used as the basis for developing the investigation scope of work for the Delineation Phase II Site Assessment investigation.

Drainage Determination

D&B identified the presence and location of three floor drains located in the substation basement. Based on the available LIRR construction drawings, the three floor drains are connected to a dry well located to the west of the substation. Excavation activities were conducted by D&B to locate the dry well and confirm the connection with the interior floor drains. The excavation showed no evidence of a dry well or a discharge pipe exiting from the west wall of the substation building. D&B also excavated a small depression located approximately 10 feet north of the former dry well location in an attempt to locate the dry well. This excavation did not indicate the presence of a dry well or discharge pipe.

Sampling and Analysis

The following subsections describe the findings associated with subsurface soil, surface soil and concrete coring activities. All samples were analyzed for mercury. Samples collected during this phase of the investigation were compared to the TAGM 4046 Recommended Soil Cleanup Objectives (RSCOs), however, as of December 2006, the NYSDEC has mandated new cleanup objectives, and as such, all data will be reevaluated and compared to the newly implemented 6NYCRR Subpart 375 Soil Cleanup Objectives (SCOs) for industrial sites. Sample Locations are included on Figure 2-1. Results for the mercury analysis are provided in Appendix A.

Surface Soil

Five surface soil samples were collected. Four of the collected surface soil samples exhibited detectable concentrations of mercury in exceedance of the SCO for mercury of 5.7

mg/kg, ranging from 16.3 mg/kg to a maximum of 50.8 mg/kg. The maximum concentration of mercury was detected in RCSS-02, collected adjacent to the northwest of the concrete platform to the north of the substation building.

Subsurface Soil

Sixteen subsurface soil samples were collected. Two of the collected subsurface soil samples exhibited detectable concentrations of mercury in exceedance of the SCO for mercury of 5.7 mg/kg, ranging from 10.7 mg/kg to a maximum of 15.9 mg/kg. The maximum concentration of mercury was detected in RCSB-04 (0 to 2 feet), collected inside the substation building, in the rectifier pit.

Concrete

One concrete core sample was collected from the interior of the substation building. Concrete core sample RCCC-01 did not exhibit detectable concentrations of mercury in exceedance of the SCO for mercury of 5.7 mg/kg.

2.0 INVESTIGATION METHODS

2.1 Introduction

This section provides a description of the field activities conducted at the Rockville Centre Substation site as part of the Delineation Phase II Site Assessment. In November of 2005, the initial scope of work was completed in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Work Plan, dated June 2005. Based on the results of the November 2005 sampling, D&B provided the LIRR and the NYSDEC with an initial assessment as to the nature and extent of contamination along with recommendations for additional sampling and analysis. This additional data was needed to sufficiently define the identified elevated mercury and PCB concentrations in site soil and to develop an appropriate remedial plan for the substation. Based on this additionally recommended sampling and further requests for investigation by the NYSDEC, additional sampling and investigation was conducted between March and October 2007.

Sample locations associated with the Delineation Phase II Site Assessment are shown on Figure 2-1. Figure 2-2 shows the locations of the additional delineation points completed based on the results of the November 2005 investigation. In addition, sampling and analysis summaries for the above listed investigation phases are provided in Table 2-1. Laboratory data generated as part of the Delineation Phase II Site Assessment is included in Appendix B.

2.2 Surface Soil Sampling

A total of 45 surface soil samples were collected at the Rockville Centre Substation as part of the Delineation Phase II Site Assessment. Surface soil samples were collected from a depth of 0 to 2 inches bgs. All samples were collected utilizing a dedicated polyethylene scoop and placed into laboratory-supplied glass bottles. Filled sample bottles were then placed into an ice-filled cooler for subsequent shipment. All samples were screened utilizing a mercury vapor analyzer (MVA) for the presence of mercury vapor and a photoionization detector (PID) for the presence of volatile organic compounds (VOCs). In areas of the substation property where the

Table 2-1

LONG ISLAND RAILROAD **DELINEATION PHASE II SITE ASSESSMENT - SEVENTEEN SUBSTATIONS** ROCKVILLE CENTRE (V00401-1) SUMMARY OF COMPLETED WORK

			SOIL PROBES/BORINGS PROBE								Rec					
Location	Sample Designation	SURFACE SOIL SAMPLES**	No. of Probes	No. of Samples	Soil Sampling Interval	No. of Probes	Approximate Total Depth of Probes	Mercury	RCRA Metals	TAL Metals	PCBs	VOCs	SVOCs	USEPA UIC Constituents *	USEPA UIC Constituents *	Comments
North Side of Substation	RCSS-06 through 11 RCSB-09 through 17	6	9	18	2-6' bgs Cont.	•	-	24		-				-	-	No deviations from original scope.
Southwest Corner of Substation	RCSS-12 through 14 RCSB-18 through 21	3	4	4	2-4' bgs Cont.	-	-	7	•	•			-			No deviations from original scope.
	RCSS-15 through 18 RCSB-22 through 25	4	4	8	2-6' bgs Cont.		-	12	-	-	6	-		-	H	Surface soil samples RCSS-15 and 16 and subsurface soil samples RCSB-22 and 23 were re-run for PCBs analysis. due to relatively high PCB concentrations detected in some surrounding surface soil samples.
	RCSS-19 RCSB-26	1	I	ī	2-4' bpb Cont.			2	•	-	-		-	-	-	No deviations from original scope.
Water Meter Pit	RCSS-50 and 51	2		-	-			2	-		-		-	-	-	RCSS -50 and 51 were added, as per the NYSDEC, in order to further delineate the perimeter of the water meter pit. located to the nonthwest of the substation building.
Roof Drains	RCSS- 28 & 29 RCSB-35 & 36	2	2	2	2-4' bgs Cont.		-	4		Н.	-		-	-		Two roof drains were observed and samples were collected for mercury analysis.
Groundwater	RCGP-01 through 03	-	-		-	3	19'	-		6***	-	3	-	-		RCGP-01 was moved east approximately 2 feet, due to site conditions.
Trensformers	RCSS-20 through 23 RCSB-27 through 30	4	4	8	0-4' bgs Cont.	-		~	12		12		12	-	-	No deviations from original scope.
Taibiorniers	RCSS-30 through 49 RCSB-37 through 56	20	20	20	1-2" bgs.		-	-		-	40	-	-	-	-	No deviations from original scope.
Potential Releases	RCSS-24 through 27 RCSB-31 through 34	4	4	4	2-4' bgs Cont.	-		8					-			RCSS-24 and RCSB-31 were moved northwest approximately 2 feet due to utility obstructions.
Dry Well and Rectifier Drains/Piping		-	-		-		-	-		-	-	-	-			A geophysical exploration was conducted in order to locate a dry depicted on LIRR construction drawings as being located off the northwest corner of the substation building. The results of the investigations did not indicate anomalous below grade structure indicative of a drywell structure or drainage piping. A dye and flush test was performed on the three rectifier drains. The discharge point of the drains could not be verified due to apparent clogged pipes.
Lavatory			-	-					-							A dye and flush test was performed on the lavatory. It was established that the discharge point of the lavatory is the sewer system located in the center of Maple Ave., north of the substation building.
Waste Characterization	RCWC-01 through 03	3	3	3	2-4' bgs						-	-		~	6	Waste characterization samples were collected in the footprint of where the proposed replacement substation building is to be installed.
		40	61	68		2	1973	50	12	6	50	2	1 12		6	Total

NOTES: bgs: below ground surface. bpb: below pit bottom.

Cont.: Continuous 2-foot soil sampling -: Not Applicable * USEPA UIC Constituents include VOCs by Method 8260b, RCRA Metals including Mercury by Methods 6010b/7471a, SVOCs by Method 8270c, PCBs by Method 8082, and TPHs by Method 8015b.

** Surface soil samples to be collected at 0-2" interval.

*** Filtered and Unfiltered Samples

ground surface was covered with railroad ballast, this material was removed prior to collecting the surface soil sample, and returned when sampling was completed.

2.3 Subsurface Soil Sampling

A total of 64 subsurface soil samples were collected at the Rockville Centre Substation as part of the Delineation Phase II Site Assessment. All subsurface soil borings were hand-cleared to a depth of five feet below ground surface in order to avoid impacting any underground utilities. Subsurface soil samples less than five feet below ground surface were collected using a decontaminated hand auger, and subsurface soil borings more than five feet below ground surface were collected using a direct push (Geoprobe[®]) sampling technique with a decontaminated probe sampler. The samples were screened for mercury, utilizing an MVA, and for VOCs, utilizing a PID; inspected for staining, discoloration; checked for odors; and logged by a geologist in a dedicated field book. Boring logs are included in Appendix C.

Before commencement of soil probing, all "down-hole" probing equipment (i.e., macrocore samplers, probe rods, etc.) was decontaminated using a steam cleaner/pressure washer and/or Alconox and water prior to use on a daily basis. Soil probe samplers were also decontaminated between each use by thoroughly washing with Alconox and water, using a brush to remove particulate matter or surface film, followed by a thorough rinsing with tap water.

During soil probe installation, an MVA and a PID were used to monitor mercury vapor and VOCs, respectively, in the breathing zone and at the probe holes and boreholes. The PID was calibrated on at least a daily basis, using isobutylene gas at a concentration of 100 parts per million (ppm) in air.

Upon completion of soil probes, recovered sample material that was not retained for laboratory analysis was returned to the borehole from which it came. The remainder of the borehole was filled with clean sand, bentonite pellets and/or concrete, when appropriate. All probe holes were restored at grade with the same material that was originally in place.

2.4 Groundwater Probe Installations and Sampling

Three groundwater probes, consisting of one probe upgradient of the substation building, and two probes downgradient of the substation building were advanced and groundwater samples were collected from these locations. These samples were collected by driving decontaminated probe rods to the designated sample depth and inserting dedicated polyethylene tubing and a decontaminated stainless steel check valve into the rod assembly. The check valve and tubing were then manually oscillated to purge approximately two to three gallons of groundwater prior to sample collection. Each groundwater sample, upon retrieval, was analyzed in the field for pH, conductivity, dissolved oxygen, turbidity, and temperature. Groundwater samples were then collected from the tubing/check valve assembly into laboratory-supplied glass bottles. Any evidence of odors, sheens or the presence of free product was noted. All observations and results were logged in the project field books.

Upon completion, each probe hole was backfilled with clean sand and/or bentonite pellets, as appropriate. All probe holes were restored at grade with the same material that was originally in place.

2.5 Below Grade Structures and Underground Injection Control (UIC) Features

Several below grade structures were investigated for Underground Injection Control (UIC) applicability as part of the Initial Site Investigation and the Delineation Phase II Assessment. These structures included a water meter pit located adjacent to the northwest corner of the substation building, a dry well and associated rectifier piping suspected to be located to the west of the substation building, three floor drains located within the substation building and the substation lavatory. The investigations were conducted as follows:

Water Meter Pit

The water meter pit located adjacent to the northwest corner of the substation building was visually inspected for the presence of a solid bottom and discharge piping during the Initial

Investigation. Two soil samples were collected from this structure during the Delineation Phase II Assessment.

Dry Well

The investigation of the dry well and associated rectifier piping suspected to be located to the west of the substation building was initiated during the Initial Investigation with an investigative excavation. The dry well was not located during the investigation, however, one subsurface soil boring was advanced in a location corresponding to where the dry well is depicted on LIRR construction diagrams, and samples were collected in this location for mercury analysis. The investigation was continued as part of the Phase II Assessment, with a geophysical investigation utilizing an Electromagnetic (EM) survey and a Ground Penetrating Radar (GPR) survey.

Floor Drains

Three floor drains identified in the initial investigation were further investigated through flush testing as part of the Phase II Assessment in October of 2007. Results of the flush test are discussed in Section 3.4.

Lavatory

The substation lavatory was investigated through flush testing as part of the Phase II Assessment in October of 2007. Results of the flush test are discussed in Section 3.4.

2.6 Air Sampling

As discussed above, a Jerome Mercury Vapor analyzer was used to scan all surface and subsurface soil samples for the presence of mercury vapor. The mercury vapor results for subsurface soil are summarized on the boring logs provided in Appendix C.

FINDINGS

The findings from the Initial Site Assessment, conducted in 1999, were the basis for the sample locations chosen for the "Delineation Phase II Site Assessment," completed in November of 2005, and further delineation and investigation activities completed between March and October of 2007.

Soil sample results are compared to the New York State Department of Environmental Conservation (NYSDEC) 6NYCRR Subpart 375 Soil Cleanup Objectives (SCOs) for industrial sites. Groundwater sample results are compared to the Class GA Groundwater Standards/Guidance Values listed in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1. Analytical results from the Delineation Phase II Site Assessment are summarized in Appendix B. Boring logs from the advancement of subsurface soil borings are provided in Appendix C. A concentration map (Figure 3-1) illustrating the site-wide mercury and PCB concentration levels at the Rockville Centre Substation was constructed based on the Initial Site Assessment and the preliminary Delineation Phase II Investigation data. Figure 3-2 depicts the additional Phase II Assessment sample locations located to the south of the substation building, where the greatest PCB concentrations were detected.

Below is a discussion of the evaluation of data generated as part of the Delineation Phase II Site Assessment at the Rockville Centre Substation.

3.1 Surface Soil

Metals

A total of 25 surface soil samples were collected, with three samples exhibiting mercury concentrations in exceedance of its SCO of 5.7 mg/kg. All mercury concentration data associated with the surface soil samples collected as part of the Delineation Phase II Site Investigation at the Rockville Centre Substation are summarized in Table 1, included in Appendix B. Mercury concentrations exceeding the SCO for mercury of 5.7 mg/kg ranged from

ROCKVILLE CENTRE SUBSTATION (V00401-1)

02:11:27 PM 05/29/07 LOCATION 5-20A V2229/R

CMe

a minimum of 7.4 mg/kg to a maximum of 303 mg/kg. The greatest mercury concentrations were detected to the north and west of the water meter pit, located adjacent to the northwest corner of the substation building. Two of the collected samples exhibited mercury at concentrations of greater than 300 mg/kg, including:

- RCSS-50, at 302 mg/kg, located approximately 1-foot north of the water meter pit, adjacent to the northwest corner of the substation building.
- RCSS-51, at 303 mg/kg, located approximately 1-foot west of the water meter pit, adjacent to the northwest corner of the substation building.

Note that, as detailed in Section 3.5, three surface soil samples were collected for waste characterization analysis, with one sample collected from the east, west and north sides of the substation building, respectively. Among several other analytes, total mercury was selected for laboratory analysis, exhibiting concentrations ranging from 27.6 mg/kg to 2,278 mg/kg, detected in surface soil samples RCWC-02 and RCWC-03, respectively. The greatest mercury concentration was detected in surface waste sample RCWC-02, collected adjacent to the north of the concrete platform, north of the substation building.

In addition to mercury, four surface soil samples were analyzed for Resource Conservation and Recovery Act (RCRA) metals. All RCRA metals data associated with the surface soil samples collected at the Rockville Centre Substation are summarized in Table 2, included in Appendix B. Arsenic was detected at concentrations exceeding its SCO of 16.0 mg/kg in three of the four collected samples, with concentrations ranging from 21.0 mg/kg to a maximum of 41.2 mg/kg. The maximum concentration was detected in surface soil sample RCSS-23, located approximately 15 feet south of the substation building. Lead was detected at a concentration of 6,770 mg/kg. RCSS-21 is located approximately 13 feet south of the substation building. There were no other exceedances of the SCOs detected for RCRA metals in the surface soil samples.

Semivolatile Organics

Four surface soil samples were analyzed for semivolatile organic compounds (SVOCs). All SVOC data associated with the surface soil samples collected at the Rockville Centre Substation are summarized in Table 3, included in Appendix B. Benzo(a)pyrene was detected at a concentration exceedings its SCO of 1.1 mg/kg in surface soil sample RCSS-22, at a concentration of 1.9 mg/kg. RCSS-22 is located approximately 8 feet south of the substation building. No other SVOC was detected at concentrations exceeding its respective SCO.

<u>PCBs</u>

Twenty-six surface soil samples were analyzed for polychlorinated biphenyls (PCBs) analysis, with one of the collected samples exhibiting detectable concentrations of total PCBs in exceedance of the SCO for total PBCs of 25.0 mg/kg: RCSS-21, at a concentration of 56.0 mg/kg, located approximately 13 feet south of the substation building. All PCB concentration data associated with the surface soil samples collected at the Rockville Centre Substation are summarized in Table 4, included in Appendix B.

3.2 Subsurface Soil

Metals

Forty-five subsurface soil samples were analyzed for mercury. Mercury was not detected above its SCO of 5.7 mg/kg in any of the subsurface soil samples collected at the Rockville center Substation. All mercury data associated with the subsurface soil samples collected at the Rockville Centre Substation are summarized in Table 5, included in Appendix B.

In addition to mercury, eight subsurface soil samples were also analyzed for RCRA metals. All RCRA metals data associated with the subsurface soil samples collected at the Rockville Centre Substation are summarized in Table 6, included in Appendix B. Arsenic was detected at a concentration exceeding its SCO of 16.0 mg/kg in subsurface soil sample RCSB-30

(0 to 2 feet), at a concentration of 25.3 mg/kg. RCSB-30 is located approximately 15 feet south of the substation building. There were no other exceedances of the SCOs detected for RCRA metals in the subsurface soil samples.

Semivolatile Organics

Eight subsurface soil samples were analyzed for SVOCs. All SVOC data associated with the subsurface soil samples collected at the Rockville Centre Substation are summarized in Table 7, included in Appendix B. Benzo(b)fluoranthene, fluoranthene, phenanthrene and pyrene were detected in one or more of the collected subsurface soil samples. However, no SVOC was detected at concentrations exceeding its respective industrial SCO.

PCBs

Thirty-four subsurface soil samples were analyzed for polychlorinated biphenyls (PCBs) analysis. PCBs were not detected above the SCO for total PCBs of 25.0 mg/kg in any of the subsurface soil samples collected at the Rockville Center Substation. All PCB concentration data associated with the subsurface soil samples collected at the Rockville Centre Substation are summarized in Table 8, included in Appendix B.

3.3 Groundwater

A total of three groundwater samples were collected for chemical analysis from the site using a peristaltic pump and Geoprobe groundwater sampling equipment. All samples were analyzed for TAL Metals (including mercury) and VOCs. Due to the turbid nature of the groundwater samples, all samples collected for metals analysis included filtered and unfiltered samples. Mercury was not detected in any of the filtered or unfiltered groundwater samples collected (RCGP-01, RCGP-02 and RCGP-03). All metals data associated with the groundwater samples collected at the Rockville Centre Substation are summarized in Table 9, included in Appendix B.

Three metals including iron, manganese and sodium were detected above their respective Class GA Standards in one or more unfiltered sample. However, these same metals were either not detected, or detected at much lower concentrations in the filtered samples. Due to the generally high turbidity of the groundwater samples collected using Geoprobe equipment, the metals data associated with the unfiltered samples will be biased high. Therefore, the filtered samples will more closely represent true metal concentrations in groundwater. In filtered groundwater probe RCGP-01, sodium exceeded its Class GA Standard. In filtered groundwater probe RCGP-02, iron exceeded its Class GA Standard. In filtered groundwater probe RCGP-03, iron and sodium exceeded their respective Class GA Standards. Although iron and sodium were above their respective Class GA Standards in one or more filtered samples, these are not considered contaminants of concern.

Volatile Organics

VOCs were not detected at concentrations above NYSDEC Class GA Standards. All VOC data associated with the groundwater samples collected at the Rockville Centre Substation are summarized in Table 10, included in Appendix B.

3.4 Below Grade Structures and Underground Injection Control (UIC) Features

As described in Section 2.5, several below grade structures were investigated for Underground Injection Control (UIC) applicability as part of the Initial Site Investigation and the Delineation Phase II Assessment. These structures included a water meter pit located adjacent to the northwest corner of the substation building, a dry well and associated rectifier piping suspected to be located to the west of the substation building, three floor drains located within the substation building and the substation lavatory. The results from these investigations are as follows:

Water Meter Pit

The water meter pit located adjacent to the northwest corner of the substation building was not designed as a drainage structure, and as such, its primary function is not to accept fluids. Therefore, this is not UIC structure. However, surface soil sample RCSS-19 and subsurface soil sample RCSB-16 (2 to 4 feet) were collected from this structure, and analyzed for mercury. Mercury was detected at a concentration exceeding its SCO of 5.7 mg/kg in surface soil sample RCSS-19, at a concentration of 87.7 mg/kg. All data associated with the surface soil sample collected from the water meter pit is summarized in Table 1, included in Appendix B, and all data associated with the subsurface soil sample collected from the water meter pit is summarized in Table 5, included in Appendix B.

Dry Well

The inspection of the dry well and associated rectifier piping suspected to be located to the west of the substation building was initiated during the Initial Investigation with an investigative excavation. The dry well was not located during the excavation, however, one subsurface soil boring (RCSB-08) was advanced in a location corresponding to where the dry well is depicted on LIRR construction diagrams, where samples were collected from 10 to 12 and 14 to 16 feet below ground surface for mercury analysis. Mercury was not detected in either sample. All data associated with the subsurface soil samples collected in association with the dry well are summarized in Appendix A. The investigation of the dry well and associated rectifier piping was continued as part of the Phase II Assessment, with a geophysical investigation utilizing an Electromagnetic (EM) survey and a Ground Penetrating Radar (GPR) survey. The survey did not indicate the presence of subsurface anomalies consistent with a dry well structure or associated piping on any side of the substation building. Based on the results of the investigations detailed above, it was concluded that the dry well and the piping depicted on LIRR construction drawings was removed and the rectifier piping was then connected to the sewer, along with the lavatory discharge piping. Therefore, further sampling associated with the dry well was not conducted.

Floor Drains

According to LIRR construction drawings the three floor drains located in the substation building discharge to the dry well located off the northwest corner of the substation building. As described above, an excavation and geophysical survey was performed in order to locate this dry well and associated rectifier piping, and no evidence of either of these structures was found in either investigation. In order to further investigate the drainage point of these three floor drains, a dye and flush test was performed on each drain. The results of the dye and flush test indicated that the two southern floor drains were connected to each other. It was also established that the northernmost floor drain was connected to the cleanout located approximately 7 feet to its north. However, a connection between the southern two drains and the northern drain and cleanout could not be made. It is probable that there is a blockage in the drainpipe somewhere between the north and south halves of the substation building. In addition, the discharge point of the cleanout could not be established, as it appeared to be blocked as well. However, it appeared that the cleanout extended to the northeast, and not to the west, where LIRR construction drawings indicate that the drainage pipe from these three floor drains extends. Please note that as the area surrounding the west, north and east sides of the substation building was investigated for the presence of an underground dry well structure utilizing EM and GPR, and the results did not indicate anomalies indicative of a dry well structure, it is possible that the rectifier piping extends to the sewer system.

In addition, please note that, during the August 1999 sampling round, concrete cores were removed from the bottom of the southern drain structures (located beneath the former mercury rectifiers) and subsurface soil samples were collected through the drain bottoms. Mercury concentrations of 15.9 mg/kg and 10.7 mg/kg were detected in the southwest floor drain in the substation building, at 0 to 2 and 4 to 6 feet below ground surface, respectively, exceeding the SCO of 5.7 mg/kg.

3-9

Lavatory

The substation lavatory was investigated through dye and flush testing as part of the Phase II Assessment. Through visual inspection of a manhole located in the center of Maple Avenue, it was confirmed through dye and flush testing that the substation lavatory discharges to the sewer system running beneath Maple Avenue. Sediment was not observed in the manhole, and as a result, samples were not collected from the manhole structure.

3.5 Waste Characterization

In order to "pre-characterize" site soil at the Rockville Centre Substation prior to the undertaking of excavation activities associated with site reconstruction, a total of six soil samples were collected for waste characterization as part of the March 2007 sampling event. Sample locations were chosen in the field based on areas of proposed excavation activities, and are depicted on Figure 2-1. All waste characterization samples were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals (including mercury), TCLP SVOCs, TCLP VOCs, RCRA waste characteristics (ignitability, reactivity, etc.), RCRA metals, total PCBs and TCL pesticides/herbicides and have been compared to RCRA hazardous waste criteria and the SCOs, where appropriate. All waste characterization data are presented in Tables 11 through 15, included in Appendix B. Several metals were detected, including barium, cadmium, chromium, lead, selenium and silver. However, no exceedances of the RCRA waste criteria were detected for any sample collected. Of the RCRA metals analyzed as part of the waste characterization samples, arsenic was detected above its SCO of 16.0 mg/kg in two surface waste samples, at a concentration ranging from 18.1 mg/kg to a maximum of 19.6 mg/kg, detected in surface waste sample RCWC-02 (S). RCWC-02 (S) is located adjacent to the north of the concrete platform to the north of the substation building. Mercury was detected above its SCO of 5.7 mg/kg in two surface waste samples, RCWC-02 (S) and RCWC-03 (S), at a concentration ranging from 27.6 mg/kg to a maximum of 2,278 mg/kg, detected in surface waste sample RCWC-02 (S). Mercury was also detected above its SCO of 5.7 mg/kg in one subsurface waste sample, RCWC-02 (2 to 4

feet), at a concentration of 38.3 mg/kg. None of the waste characterization samples exhibited exceedance of the SCOs for PCBs, pesticides or herbicides.

3.6 Data Usability Summary Report (DUSR)

Surface soil, subsurface soil, groundwater and waste characterization samples were collected as part of the Delineation Phase II Site Assessment at the LIRR Rockville Centre Substation, completed in September of 2005 and between March and October of 2007. The soil samples were primarily analyzed for mercury. Several of the soil samples were analyzed for PCBs, RCRA metals and SVOCs. The groundwater samples were analyzed for TAL metals and VOCs. Six waste characterization samples were analyzed for TCLP metals (including mercury), TCLP SVOCs, TCLP VOCs, RCRA waste characteristics (ignitability, reactivity, etc.), RCRA metals, PCBs and TCL pesticides/herbicides.

Chemtech and Mitkem, subcontractors to Dvirka and Bartilucci Consulting Engineers (D&B), analyzed all samples in accordance with the USEPA SW-846 methods as stipulated in the work plan. The data packages submitted by the analytical laboratories have been reviewed by Ms. Robbin Petrella, D&B's Quality Assurance/Quality Control Officer. Ms. Petrella meets the NYSDEC requirements of a data validator as listed in the Draft DER-10 Technical Guidance for Site Investigation and Remediation, and her resume is included in Appendix D.

The data packages have been reviewed for completeness and compliance with NYSDEC QA/QC requirements, as well as the requirements for development of Data Usability Summary Reports as listed in Appendix 2B of the Draft DER-10 Technical Guidance for Site Investigations and Remediation dated December 2002. Each data package was reviewed for the following:

- Was a NYSDEC Category B deliverable data package submitted?
- Have all holding times been met?
- Does all QA/QC data fall within QA/QC limits and specifications?

- Were appropriate methods followed?
- Does the raw data conform to that reported on the data summary sheets?
- Have the correct data qualifiers been utilized?

NYSDEC ASP Category B deliverable data packages have been submitted for all sample delivery groups (SDG). The findings of the data review process are summarized below.

All samples were analyzed within the method-specified holding times. All surrogate recoveries, internal standard area counts and spike recoveries were within QC limits. Initial and continuing calibrations were analyzed at the method specified frequency.

Several soil samples were reanalyzed at secondary dilutions due to the concentrations of mercury exceeding the instrument's calibration range. The results from the diluted analysis have been included on the data summary tables. Due to the elevated concentrations of mercury in the samples collected in March 2007, the majority of the samples were initially analyzed at a dilution. The sample results have been qualified with a "D" on the Data Summary Tables. A list of Data Qualifiers and Qualified data summary sheets are contained in Appendix B.

Several of the soil samples were required reanalysis of the PCB fraction due to compound concentrations exceeding the instrument calibration range. The requests for the affected aroclor have been taken from the diluted analysis and have been qualified "D" on the data summary tables.

No other problems were found with the sample results. All results have been deemed valid and usable, as qualified above, for environmental assessment purposes.

Section 4
VEGETATIVE SPECIES OBSERVED AT AND AROUND THE ROCKVILLE CENTRE SUBSTATION

Common Name

Scientific Name

Herbaceous Plants

Common ragweed Common lambsquarters Daisy Chickory Crown vetch Crabgrass Butter and eggs Yellow woodsorrel Fall panicum Common reed grass Ground cherry Pokeweed Broadleaf plantain Smartweed, Knotweed Nightshade Common goldenrod Early flowering goldenrod Stiff goldenrod Common mullein Vetch

Shrubs and Vines

Japanese honeysuckle Virginia creeper Poison ivy Multiflora rose Catbrier

Trees

Red maple Flowering dogwood White pine Black cherry White oak Black oak Black locust

Ambrosia artemisiifolia Chenopodium album Chrysanthemum sp. Cichorium intybus Coronilla varia Digitaria sp. Linaria vulgaris **Oxalis** stricta Panicum dichotomiflorum Phragmites communis Physalis heterophylla Phytolacca americana Plantago major Polygonum sp. Solanum dulcamara Solidago juncea Solidago nemoralis Solidago rigida Verbascum thapsus Vicia sp.

Lonicera japonica Parthenocissus quinquefolia Rhus radicans Rosa multiflora Smilax rotundifolia

Acer rubrum Cornus florida Pinus strobus Prunus serotina Quercus alba Quercus velutina Robinia pseudoacacia

+2229\RR0605705(R01)

4.1.2 Wetlands

There are no wetlands located on the Rockville Centre Substation property.

4.1.3 Mammals

The Rockville Centre Substation is somewhat isolated from large tracks of undeveloped land due to its location within residential and commercial areas. This isolation limits the species of mammals that would inhabit the site to those that are tolerant of human presence and with limited home ranges. It is likely that only small manunals inhabit the area because of the numerous manmade barriers which would act as deterrents and prohibit movement. The only mammal observed during the field survey was the gray squirrel (Sciurus carolinensis). In addition, runways and scats were observed that would indicate the presence of Norway rats (Rattus norvegicus), white-footed mice (Peromyscus leucopus), house mouse (Mus musculus), cottontail rabbits (Sylvilagus floridanus), and raccoons (Procyon lotor). Probable mammal inhabitants are listed in Table 4-2.

4.1.4 Birds

Birds were present and actively feeding, on and around the substation property, in the underbrush. Several ground foraging birds observed on and around the substation property, include: finches (<u>Carpodacus</u> sp.), mockingbirds (<u>Mimus polyglottus</u>), starlings (<u>Sturnus vulgaris</u>) and American robins (<u>Turdus migratorius</u>). Although no hawk species were observed, the opportunities for several species to rest and feed near the Substation were present. Table 4-3 contains a list of birds common to the area that possibly inhabit the site and/or surrounding areas.

4.1.5 Reptiles and Amphibians

Reptiles or amphibians were not observed at the Rockville Centre Substation site. The property, however, does contain construction materials that would offer cover to snakes common

MAMMALS POSSIBLY INHABITING THE ROCKVILLE CENTRE SUBSTATION SITE

Common Name

Scientific Name

- Eastern chipmunk Gray Squirrel Cottontail rabbit White-footed mouse House mouse Norway rat Raccoon
- Tamias striatus Sciurus carolinensis Sylvilagus floridanus Peromyscus leucopus Mus musculus Rattus norvegicus Procyon lotor

AVIFAUNA POSSIBLY INHABITING THE ROCKVILLE CENTRE SUBSTATION AREA

Common Name

Scientific Name

Canada goose Mallard Black duck Red-tailed hawk Kestrel Killdeer Herring gull Great black-backed gull Mourning dove Eastern kingbird American crow Blue jay Black-capped chickadee Tufted titmouse White-breasted nuthatch Red-breasted nuthatch Brown creeper House wren Winter wren Carolina wren Gray catbird Northern mockingbird Eastern bluebird American robin Wood thrush Cedar waxwing Solitary vireo Yellow warbler Ovenbird Common yellowthroat Common grackle European starling House sparrow Northern cardinal Brown-headed cowbird House finch Purple finch American goldfinch Chipping sparrow Field sparrow Song sparrow White-throated sparrow

Branta canadensis Anas platyrhynchos Anas rubripes Buteo jamaicensis Falco sparverius Charadrius vociferus Larus argentatus Larus marinus Zenaida macroura Tyrannus tyrannus Corvus brachyrhynchos Cyanocitta cristata Parus atricapillus Parus bicolor Sitta carolinensis Sitta canadensis Certhia americana Troglodytes aedon Troglodytes troglodytes Thryothorus ludovicianus Dumetella carolinensis Mimus polyglottos Stalia sialis **Turdus** migratorius Hyocichla mustelina Bonbycilla cedrorum Vireo solitarius Dendroica petechia Seirus aurocapillus Geothlypis trichas Quiscalus quiscula Sturnus vulgaris Passer domesticus Cardinalis cardinalis Molothrus ater Carpodacus mexicanus Carpodacus purpureus Carduelis tristis Spizella passerina Spizella pusilla Melospiza melodia Zonotrichia albicollis

+2229\RR0605705(R01)

to the area. Low vegetation likely provides habitat for common toad species. Table 4-4 contains a list of reptiles and amphibians common to the area that possibly inhabit the site and/or surrounding areas.

4.1.6 Rare Species and Critical Habitats

Based on a review of the New York Natural Heritage files maintained at the NYSDEC Wildlife Resources Center, there are no rare species or critical habitats known to occur on or adjacent to the Rockville Centre Substation. In addition, except for occasional transient individuals, no federally listed or proposed endangered, or threatened species exist within a 2-mile radius of the site according to the U.S. Department of the Interior, Fish and Wildlife Service. Table 4-5 provides a list of all federally listed and proposed threatened or endangered species in New York State.

4.1.7 Biological Associations Found in the Project Vicinity

The area within a 2.5-mile radius surrounding the Rockville Centre Substation is centrally located within residentially/commercially developed areas with no environmentally sensitive habitats in the immediate area. A typical association of cover types with common dominant species is presented in Table 4-6. The biological associations observed are common for the evaluated areas.

4.1.8 Observations of Stress Potentially Related to Site Contaminants

Other than physically disturbed areas, there were no indications of visibly stressed vegetation that could be attributed to contaminants. Past disturbance and the localized nature of the contaminants in question, containment of overland runoff from ecologically sensitive areas, and retainment of overland runoff to on-site recharge and/or municipal storm/sanitary systems has minimized impacts on any local water bodies or other environmentally sensitive areas. The data generated from soil samples collected at the Rockville Centre Substation has shown that mercury contamination was detected adjacent to the north, north east and northwest of the

REPTILES AND AMPHIBIANS POSSIBLY INHABITING THE ROCKVILLE CENTRE SUBSTATION SITE

Common Name

Scientific Name

Box turtle Eastern garter snake Eastern ribbon snake Fowler's toad Terrapene carolina Thamnophis sirtalis Thamnophis sauritis Bufo woodhousei fowleri

FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

Common Name	Scientific Name	Status	Distribution
Fishes			
Sturgeon, shortnose	Asipenser brevirostrum	E	Hudson River and other Atlantic coastal rivers
Reptiles			
Turtle, Northern bog	Clemmys muhlenbergii	Т	Albany, Columbia, Dutchess, Genesee, Orange, Oswego, Putnam, Seneca, Ulster, Wayne, and Westchester Counties
Turtle, green	Chelonia mydas	Т	Oceanic summer visitor coastal waters
Turtle, hawksbill	Eretmochelys imbricata	E	Oceanic summer visitor coastal waters
Turtle, leatherback	Dermochelys coriacea	E	Oceanic summer visitor coastal waters
Turtle, loggerhead	Caretta caretta	Т	Oceanic summer visitor coastal waters
Turtle, Kemp's ridley	Lepidochelys kempii	E	Oceanic summer visitor coastal waters
Birds			
Eagle, bald	Haliaeetus leucocephalus	Т	Entire state
Plover, piping	Charadrius melodus	E	Great Lakes Watershed
		Т	Remainder of coastal New York
Curlew, Eskimo	Numenius borealis	E	Oceanic
Tern, roseate	Sterna dougallii dougallii	E	Southeastern coastal portions of state
Mammals			
Bat, Indiana	Myotis sodalis	E	Entire State
Whale, finback	Balaenoptera physalus	E	Oceanic

♦2229\RR0605705

Table 4-5 (continued)

FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

Common Name	Scientific Name	<u>Status</u>	Distribution
Whale, humpback Whale, right Puma, Eastern	Megaptera novaeangliae Eubalaena glacialis Puma concolor couguar	E E E	Oceanic Oceanic Entire State
Wolf, Gray	Canis lupus	Е	Entire State
Lynx, Canada	Lynx canadensis	Т	Entire State
Mollusks			
Snail, Chittenango ovate amber	Succinea chittenangoensis	Т	Madison County
Mussel, dwarf wedge	Alasmidonta heterodon	E	Orange County - lower Neversink River
Insects			
Butterfly, Karner blue	Lycaeides melissa samuelis	E	Albany, Saratoga, Warren, and Schenectady Counties
Tiger beetle, Northeastern beach	Cicindela dorsalis dorsalis	Т	Entire State
Beetle, American Burying	Nichrophorus americanus	E	Entire State
Plants			
Monkshood, northern wild	Aconitum noveboracense	Т	Ulster, Sullivan, and Delaware Counties
Pogonia, small whorled	Isotria medeoloides	Т	Entire State
Swamp pink	Helonias bullata	Т	Staten Island - presumed extirpated
Gerardia, sandplain	Agalinis acuta	E	Nassau and Suffolk Counties
Fern, American hart's-tongue	Asplenium scolopendrium var. Americana	Т	Onondaga and Madison Counties

◆2229\RR0605705(R01)

Table 4-5 (continued)

FEDERALLY LISTED OR PROPOSED THREATENED OR ENDANGERED SPECIES IN NEW YORK STATE

Common Name	Scientific Name	Status	<u>Distribution</u>
Orchid, estern prairie fringed	Platanthera leucophea	Т	Not relocated in New York
Bulrush, northeastern	Scirpus ancistrochaetus	E	Not relocated in New York
Roseroot, Leedy's	Sedum integrifolium ssp. Leedyi	Т	West shore of Seneca Lake
Amaranth, seabeach	Amaranthus pumilus	Т	Atlantic coastal plain beaches
Chaffseed, American	Schwalbea americana	E	Nassau and Suffolk Counties

+2229\RR0605705(R01)

Table 4-6

FLORAL AND FAUNAL ASSOCIATIONS OBSERVED WITHIN 2.5 MILES OF THE ROCKVILLE CENTRE SUBSTATION SITE

Species	Grassland/ Field	Forested/ Grassland/ Field	Forested	Freshwater Wetlands/ <u>Ponds</u>	Estuarine <u>Wetlands</u>	Cultivated Lawn
Plants						
Common ragweed	х	х				
Daisy	X	Х				
Crown vetch	Х	Х		Х		
Fescue						Х
Goldenrod	Х	Х		Х		
Virginia creeper		Х	Х			Х
Multiflora rose	Х	Х		Х		
Red maple			Х			Х
Flowering Dogwood		Х	Х			Х
Black locust		Х	Х			Х
Animals						
Striped bass					Х	
Gray Squirrel		Х	Х			Х
Mice/voles/shrews	Х	Х	Х	Х		Х
Black Duck					Х	
Hawks	Х	Х	Х	Х		
Finches		Х	Х			Х
Sparrows	Х	Х	Х			Х
Northern spring peeper				Х		
Eastern garter snake	Х	Х		Х		

substation building, and PCB contamination is limited to the center of the transformer yard, south of the substation building. Data gathered as part of various other investigations at LIRR substation sites where mercury and PCB contamination has been detected support a limited migration of mercury and PCB contamination. No contamination has been detected beyond the substation footprints for any of the areas under review.

4.1.9 Habitat Values of Vegetative Zones Within the Project Site

The assessment of habitat values provides for assessments of primary functions, such as food chain production, specialized habitat and hydrologic interactions. As part of the analysis, cultural values concerning recreation, aesthetics or other special features must be taken into consideration.

The information gathered during the survey conducted in February 2006 can provide for a hierarchy of habitat values for the cover types found at the Rockville Centre Substation. It should be noted that this approach is highly subjective. Those functions assumed to be valuable in relative efficiency or importance are ranked as 3 (high), 2 (moderate), 1 (low) or 0 (nonexistent). Specific factors and brief descriptions, which were utilized in the habitat value analysis of the site's qualitative evaluation, are as follows:

- <u>Nutrient Transport Function</u> Transport of nutrients in detrital-based food chains is strongly dependent on the hydrologic characteristics of the particular ecosystem. For example, wetlands located in lower lying areas export more detrital material than do the higher marsh areas infrequently affected by creek/river overflow. Similarly, detrital transport in the riverine systems is dependent on the river flow regime, especially during periods of peak discharge. In contrast, very little detrital material is exported from isolated ponds and marshes, except during periods of episodic overflow resulting from exceptionally high precipitation.
- <u>Food Chain Support</u> This function refers to the secondary productivity values of consumer species that a particular ecosystem can support. Secondary productivity is an overall measure of the efficiency of the habitat in terms of nutrient transfer to higher trophic levels.

- <u>Hydroperiod</u> This factor refers to the frequency of inundation either by river flow runoff or direct precipitation. Areas of good hydrologic linkage help maintain a regular interchange of nutrients and other materials necessary to support diverse flora and fauna.
- <u>Elevational Location</u> Hydrologic relationships will progressively deteriorate as the depth of flooding decreases. The weakest hydrologic linkages exist in those areas physically isolated from other areas in the system.
- <u>Cultural Evaluation</u> This particular factor is difficult to assess in detail because of the number of socio-economic considerations, which may be involved. Hence, the evaluation in relation to local residential, commercial, or industrial development is largely left to the professional judgement of the project personnel on a specific case-by-case basis.
- <u>Recreation</u> Recreation is a vital personal and social need, which provides opportunity for self-expression, physical exercise, and a change of pace from normal or routine activities. Outdoor recreation is a major leisure activity and is growing in national importance with a trend towards a higher standard of living. A significant portion of the total recreational output is water based or water related. As such, greater weight is given to those types of habitats.
- <u>Socio-Economic</u> This factor pertains to benefits, which can be attributed directly to renewable resources, recreational enjoyment, or other features associated with a particular habitat.
- <u>Aesthetics</u> Selected types of habitats are distinctive landscape features, which can please the aesthetic sense through the intrinsic appreciation of natural beauty. Wetlands, or any other type of natural landscape, can also be offensive if their features have been adversely modified by incompatible human activities. Aesthetic value can be largely determined by the degree of visual diversity and contrast between the physical elements, such as landforms, water bodies, vegetation types and land use types.
- <u>Food Chain Production</u> This factor determines the growth of vegetation in a habitat and influences the populations and secondary productivity of animals that feed on the plants, or that feed at high trophic levels in the community.
- <u>Primary Productivity</u> Primary productivity is a measure of the stored food potential of the vegetation in excess of that used by the plants in metabolism. This determination provides an overall measure of the energy input directly available to the consumer species. It should be noted that the possible range of productivity values, both within and between particular environments, is extremely variable and dependent on a number of local conditions. For the present analysis, literature values for primary productivity as a function of biomass were utilized.

• <u>Water Purification Factor</u> - Through a variety of physical, biological, and chemical processes, some habitats function to naturally purify water by removing organic and mineral particulate matter from runoff and/or rivers and streams. For example, wetlands may be significant in minimizing some of the harmful effects of pollutants introduced into natural ecological systems by the activities of man. Thus, wetlands, especially when part of riverine or estuarine systems, can be an integral part of water quality and pollution control objectives.

Based upon the above factors, a qualitative analysis of the habitat values of the vegetative and aquatic communities are presented in Table 4-7. Based upon these results, the habitat surrounding the Rockville Centre Substation is a moderately low value habitat. Habitat value is limited by the residential and commercial development surrounding the substation, the lack of wetlands or other environmentally sensitive areas, lack of open undeveloped area, and the lack of recreational opportunities because of the constraints associated with an active electrical substation.

The one potential environmental impact associated with the substation would be contamination of local groundwater. As described in Section 4.1.8, soil sampling has demonstrated that the primary contaminants involved (mercury and PCBs), exhibit a limited migration and are concentrated to less that a few feet vertically and horizontally from the believed point of discharge. Furthermore, groundwater sampling at the Rockville Centre Substation site has demonstrated that groundwater has not been affected by the presence of mercury in on-site soils. Remediation through removal of contaminated soils should be accomplished with no demonstrated impact to local flora, fauna and associated habitats.

QUALITATIVE HABITAT VALUE ANALYSIS WITHIN THE ROCKVILLE CENTRE SUBSTATION SITE

<u>Evaluation Factor</u>	Relative Efficiency
Food Chain Production	1
Primary Productivity	1
Nutrient Transport	0
Food Chain Support	1
Hydroperiod	1
Elevational Location	1
Cultural Location	2
Recreation	0
Socio-Economic	3
Aesthetics	1
Water Purification Factor	1
Totals	12

£ 2015\RR0605705

5.0

QUALITATIVE EXPOSURE ASSESSMENT

5.1 Introduction

The purpose of this exposure assessment is to determine how and when an individual might be exposed to contaminants of potential concern (COPCs) associated with the LIRR Rockville Centre Substation. A COPC is any chemical detected above the NYSDEC cleanup guidelines in a medium, which could produce adverse health effects under the right conditions of dose and exposure. For exposure to occur, there must be a complete "pathway of exposure" where a person can come into contact with contaminants of potential concern. For a pathway to be complete, there must be: 1) a source or medium containing the COPC; 2) a location where human contact could take place (i.e., an exposure point); and 3) a feasible means for the COPC to enter into the person's body. In the case of the LIRR substations, there would be two types of potential receptors, with personnel who work at the facilities considered on-site receptors and individuals who may live or be in close proximity to the substation properties considered off-site receptors. The person who could come into contact with the COPC at an exposure point is called a "receptor." The ways in which the COPC can enter the body are called "routes of exposure." Ingestion (by mouth), dermal (contact with skin) and inhalation (breathing into the lungs) are the routes of exposure considered in this and other human health risk assessments. Consistent with the New York State Department of Health (NYSDOH) and other regulatory agencies, this assessment considers both current and potential future exposures.

As with any exposure assessment, this assessment is not intended to predict disease outcome, but rather, is meant to be used as a tool to make decisions regarding the need for remediation or the institution of precautionary measures, such as limiting the affected area to nonresidential land uses. Given the available information and keeping the purpose of the assessment in mind, the following evaluation for the Rockville Centre Substation is qualitative in nature.

5.2 Properties, Fate and Transport of COPCs at the Rockville Centre Substation

Based on the results of the completed investigations of the Rockville Centre Substation, the primary COPCs are mercury (Hg) and polychlorinated biphenyls (PCBs) and, to a lesser extent, arsenic and lead. The following is a summary of the fate and transport properties of mercury and PCBs in surface and shallow subsurface soil.

Mercury

The mercury (Hg) found at the Rockville Centre substation is assumed to have entered the soil in the form of liquid elemental mercury that was utilized in mercury-containing rectifiers. Elemental mercury (Hg⁰) is a heavy, silver-white metal with a specific gravity approximately 13.5 times that of water and is the only metal to exist in the liquid phase at room temperature. Hg⁰ has a relatively high vapor pressure and is the most volatile of all metals. Overall, however, it is considered only slightly volatile when compared to most liquids. Hg⁰ volatilizes into a colorless, odorless and tasteless gas.

Mercury is a naturally occurring element that has been distributed throughout the environment by natural processes. Mercury exists in three possible oxidation states: elemental mercury (Hg^{0}), mercurous (Hg^{1+}), and mercuric (Hg^{2+} or Hg[II]). Atmospheric deposition to the surface from anthropogenic and natural air emissions is considered a major source of mercury in the environment and is primarily in the form of Hg(II), either during precipitation events or adsorbed onto airborne particulates. The mercurous and mercuric forms of mercury will complex and form numerous organic and inorganic compounds. Hg(II) is commonly found as mercuric sulfide (HgS), a stable inorganic species that is essentially insoluble in water and is therefore considered a major long term sink for mercury in soils. Moderately soluble forms of Hg(II), such as mercuric chloride ($HgCl_2$), can potentially contaminate surface soil and groundwater. Both the mercurous and mercuric forms of mercury (MeHg) is the most widespread organic form of mercury in the environment and is formed from the methylation of inorganic mercury by bacteria in aquatic environments. Methylation is generally negligible in terrestrial soils.

•2229\RR0605706.DOC(R01)

Liquid elemental mercury has a tendency to form globules or beads and therefore is generally not uniformly distributed among soil particles. It will sink under the force of gravity and split up into available pore spaces. Despite this fact, Hg^0 is only slightly soluble in water and, therefore, is unlikely to leach into groundwater via infiltrating precipitation. In fact, spills of liquid mercury to shallow subsurface soil have been found to be persistent in this environment. Elemental mercury is assumed to be removed from unsaturated soil primarily through its potential to volatilize to the soil vapor and the outside air. Although liquid mercury is volatile, the process is not rapid and globules of Hg^0 may persist for a long time before completely volatilizing. In addition, mercury globules can become coated with a stable layer of insoluble HgS, especially in anaerobic conditions, and can remain inert for a long time. Mercury vapor released to the outdoor air will dissipate rapidly into the atmosphere.

<u>PCBs</u>

PCBs are colorless viscous fluids that are highly insoluble in water. PCBs were manufactured in the United States between 1929 and 1977 and were primarily used in electrical transformers and capacitors as dielectric fluid. PCBs manufactured as dielectric fluids were sold under several trade names, including: Aroclor, Askarel, Pyroclor, Sanotherm and Pyranol. Askarel is also a generic name used for nonflammable dielectric fluids containing PCBs. PCBs have also been used in a variety of other applications, such as: heat transfer and hydraulic fluids, dye carriers in carbonless copy paper, plasticizers in paints, adhesives and chalking compounds, and fillers in investment casting wax. PCBs are currently being inadvertently produced as byproducts during the manufacture of certain organic chemicals. PCBs may be formed when chlorine, carbon, elevated temperatures or catalysts are present together in a process stream. Due to their wide use and stable nature, PCBs are one of the most widely distributed environmental contaminants and can be found primarily in soil and surface water sediments. PCBs have been shown to bio-accumulate in living organisms.

PCBs are highly immobile in the soil/ groundwater environment because of their high affinity for sorbtion to soil and their very low solubility. The tendency of PCBs for adsorption increases with the degree of chlorination and with the organic content of the soil. Because of their insoluble nature, PCBs are not typically found in groundwater at significant concentrations. Furthermore, being immobile in most environments, PCBs are typically found in shallow soil in close proximity to where the contaminant was initially released. PCBs do not readily volatilize when exposed to the atmosphere and, therefore, exposure of PCBs in soil through the inhalation of vapors is not considered a significant concern.

5.3 General Substation Conditions

This section briefly describes the current and future conditions of the Rockville Centre Substation. The Rockville Centre Substation is actively used by the LIRR to convert alternating current (AC) to direct current (DC) for use in powering the LIRR's electric train fleet. As discussed in Section 1.1, the substation has been used for this purpose since 1948.

The substations are only accessible by authorized LIRR personnel and their subcontractors. In addition, the Rockville Centre substation is not occupied by LIRR personnel on a continuous or full-time basis. Under normal operating conditions, access to the substation property only occurs when equipment requires monitoring, maintenance or repair. The substation building is locked at all times and all associated outside electrical equipment (i.e., transformers) are secured by a locked fence. In addition, the property surrounding the substation is fenced and locked, preventing public access to the property. The areas to the north, northeast and northwest of the Rockville Centre Substation are covered by a maintained lawn, and the area to the south of the substation building, in the transformer yard, is covered with approximately two inches of crushed stone.

The Rockville Centre substation is serviced by public water and on-site groundwater is not used for any purpose.

As part of the LIRR's overall system upgrade in response to increased ridership, the Rockville Centre Substation will be decommissioned in the summer of 2008. As part of this decommissioning, all electrical transformers and equipment will be removed from the site and the existing substation building will be demolished. A new substation building will be constructed in the footprint of the existing substation building, which will include an eight-foot deep basement. After installation of the new substation building, the LIRR will not be disturbing or excavating in the Rockville Centre Substation property for the foreseeable future.

While elevated mercury concentrations in soil have been documented to the north, northeast and northwest of the Rockville Centre Substation and PCB concentrations in soil have been documented in the center of the transformer yard to the south of the substation building, the LIRR maintains strict control over conducting soil excavation activities within LIRR properties known to contain contaminants in order to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. Provided as Appendix E is the LIRR Procedure/Instruction EE03-001, which defines the procedures that must be undertaken prior to conducting excavation activities at LIRR properties.

5.4 Surface and Subsurface Soil

Elevated concentrations of mercury were detected in surface and shallow subsurface soil to the north, northeast and northwest of the Rockville Centre Substation. The highest mercury concentrations were detected in surface soil located adjacent to the concrete platform to the north of the substation building, with a maximum mercury concentration of 2,278 mg/kg. Elevated concentrations of PCBs were detected in surface soil to the south of the Rockville Centre Substation. The highest PCB concentrations were detected in surface soil located to the south of the substation building, with a maximum total PCB concentration of 56.0 mg/kg. The highest arsenic and lead concentrations of 41.2 mg/kg and 6,770 mg/kg, respectively. However, as the areas to the north, northeast and northwest of the Substation building, in the transformer yard is covered with approximately two inches of crushed stone, direct exposure to mercury, PCB, arsenic and lead contamination of LIRR workers (on-site receptors) who are required to periodically enter the site for equipment maintenance and repair is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contaminant source during

excavation activities as the result of dermal contact and inhalation of windblown dust. However, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. In addition, as described above, the Rockville Centre Substation property is secured on all sides, eliminating the potential of trespassers entering the site.

5.5 Groundwater

As discussed in Section 3.3, groundwater has not been adversely impacted by the presence of mercury in on-site soil. In addition, on-site groundwater is not used as a potable water source or for any other uses. Therefore, groundwater is not considered a potential exposure pathway.

5.6 Air

VOCs were not detected in site soil. As a result, inhalation of contaminants released to the air through volatilization of contaminants from surface soil and subsurface soil does not represent a potential exposure pathway for on-site or off-site receptors. However, as discussed above, inhalation of windblown dust of surface soil does represent a potential for exposure to off-site receptors. While volatilization of mercury present in the surface and subsurface soil can occur, this process occurs at a very slow rate and inhalation of mercury vapor from on-site sources is not expected to be a significant exposure pathway.

5.7 Future Use of Rockville Centre Substation

As discussed in Section 5.3, the LIRR will be decommissioning and demolishing the Rockville Centre Substation as part of their overall system upgrade, in the summer of 2008. In addition to the excavation of site soil as part of the installation of the new substation building, the LIRR intends to remediate the most significant mercury contamination by excavation and off-site disposal. Therefore this planned site redevelopment will remove the most significant soil

contamination, and as a result future exposure to mercury, PCB, arsenic and lead contamination at the Rockville Centre Substation site is not expected.

◆2229\RR0605706.DOC(R01)

6.0

CONCLUSIONS AND RECOMMENDATIONS

This section presents a discussion of the conclusions and recommendations associated with the investigation of the Rockville Centre Substation. It is important to note that the conclusions and recommendations presented take into consideration the completed Fish and Wildlife Resources Impact Analysis presented in Section 4.0, the findings of the Qualitative Human Health Exposure Assessment presented in Section 5.0, as well as the intended future use of the Rockville Centre Substation site.

Note that, upon receiving NYSDEC approval of the recommendations for site remediation presented in this investigation report, the LIRR intends to quickly proceed with development of a Remedial Action Work Plan (RAWP) that will detail the selected remedial technologies that will be used to remediate the Rockville Centre Substation.

6.1 Nature and Extent of Contamination

Mercury was detected in surface and subsurface soil at the Rockville Centre Substation. Mercury concentrations in exceedance of the SCO for mercury of 5.7 mg/kg have been identified in surface soil collected in areas surrounding the substation building, with the greatest mercury concentrations detected adjacent to the concrete platform, north of the substation building at concentrations of up to 2,278 mg/kg. PCBs were detected in surface soil at the Rockville Centre Substation. Total PCB concentrations in one surface soil sample (RCSS-21) collected in the center of the transformer yard located to the south of the substation building have been identified in exceedance of the SCO for total PCBs of 25.0 mg/kg, at a concentration of 56.0 mg/kg. Note that RCSS-21, collected in the center of the transformer yard, also exhibited a lead concentration of 6,770 mg/kg, exceeding the SCO for lead of 3,900 mg/kg. Arsenic was detected in surface and subsurface soil at the Rockville Centre Substation. Concentrations of arsenic in exceedance of the SCO for arsenic of 16.0 mg/kg have been identified in surface soil collected in the transformer yard ranging in concentration from 21.0 mg/kg to 41.2 mg/kg, with the greatest arsenic concentration detected in surface soil sample RCSS-23, located in the center of the transformer yard. Arsenic has also been detected in exceedance of its SCO at a concentration of

25.3 mg/kg in subsurface soil sample RCSB-30 (0 to 2 feet), located in the center of the transformer yard.

Groundwater has not been impacted by the presence of mercury, arsenic and lead in on-site soil.

The substation property, including the areas exhibiting mercury, PCB, lead and arsenic contamination, is located within a large fenced in area. In addition, as the areas to the north, northeast and northwest of the Rockville Centre Substation are covered by a maintained lawn, and the transformer yard to the south of the substation building is covered with approximately two inches of crushed stone, direct exposure to mercury, PCB, arsenic and lead contamination of LIRR workers (on-site receptors) who are required to periodically enter the site for equipment maintenance and repair is highly unlikely. LIRR workers and subcontractors could be potentially exposed to this contaminant source during excavation activities as the result of dermal contact and inhalation of windblown dust. However, as discussed in Section 5.4, the LIRR has in place procedures to avoid the excavation and handling of contaminated soil without undertaking appropriate health and safety measures. In addition, as described above, the Rockville Centre Substation property is secured on all sides, eliminating the potential of trespassers entering the site.

6.2 **Recommendations**

The LIRR plans to decommission and demolish the existing substation building by the fall of 2008 and replace it with a new substation building as part of the planned site redevelopment, included in the overall system upgrade. The LIRR intends to remediate the most significant mercury, PCB, lead and arsenic contamination by excavation and off-site disposal. Therefore, this planned site remediation will remove the most significant soil contamination, and as a result, future exposure to mercury, PCB, arsenic and lead contamination at the Rockville Centre Substation site is not expected.

6-2

In order to remediate the highest mercury concentrations detected in the Rockville Centre Substation, the LIRR proposes to excavate soil surrounding the substation building to a depth ranging from 1-foot to 5 feet below ground surface (bgs), as depicted on Figure 6-1. Due to the irregular distribution of mercury in the soil, the excavation area has been divided into four separate excavation areas. Three of the four proposed excavation areas are located to the north, east and west of the substation building and are proposed to be excavated to a depth of 1-foot below ground surface. The proposed 1-foot excavations are approximately 589 square feet in total area, and will require the excavation of approximately 22 cubic yards of soil. The fourth proposed excavation area, located to the north of the substation building, is proposed to be excavated to a depth of 5 feet below ground surface. The proposed 5-foot excavation is approximately 75 square feet in area, and will require the excavation of approximately 14 cubic yards of soil. These areas are approximately 664 square feet in total area, and will require the excavation of a combined total of approximately 36 cubic yards of soil. After removal of the soil, post excavation samples will be collected for mercury analysis in order to document the effectiveness of the remediation and any residual mercury remaining. After excavation, the remediated areas will be backfilled with clean fill.

In order to remediate the highest PCB, arsenic and lead concentrations detected in the Rockville Centre Substation, the LIRR proposes to excavate soil to the south of the substation building to a depth ranging from 1 to 3 feet bgs, as depicted on Figure 6-2. This excavation area is approximately 310 square feet in total area and will require the excavation of approximately 15 cubic yards of soil. After removal of the soil, post excavation samples will be collected for PCB, arsenic and lead analysis in order to document the effectiveness of the remediation and any residual PCB, arsenic and lead remaining. After excavation, the remediated areas will be backfilled with clean fill.

Due to a mercury concentration of 87.7 mg/kg detected in the surface soil of the water meter pit located at the northwest corner of the substation building, the LIRR recommends that

soil be removed from this structure to a depth of 2 feet below the pit bottom. It is anticipated that approximately 8 cubic feet of soil will be removed from this structure via guzzler extraction, prior to the demolition of the substation building. As subsurface soil samples were previously collected and documented at concentrations below the SCOs at a depth of 2 to 4 feet below the pit bottom in this structure, the LIRR feels post excavation sampling is not warranted. Upon completion of the soil removal, the water meter pit will not be backfilled, as this structure will be removed as part of the building demolition.

In order to remediate the elevated mercury concentrations detected in the southwest floor drain, the LIRR recommends that the soil beneath this structure be removed to a depth of 8 feet below the drain bottom, via guzzler extraction, prior to the demolition of the substation building. It is anticipated that approximately 8 cubic feet of soil will be removed from beneath this structure. Upon completion of the soil removal, an end point sample will be collected, and clean fill will be backfilled into the excavation. Due to this structure's function as a drain, the end point sample will be collected for UIC parameter analysis. The LIRR will attempt to remove the maximum amount of contaminated soil as is feasible without undermining the substation foundation.

In addition, if the dry well and associated rectifier drain piping are encountered upon removal of the substation building, these structures will be investigated for UIC applicability and contaminant concentration and subsequently closed in accordance with the applicable Nassau County Department of Health (NCDOH) regulations.

As discussed previously, upon approval of the recommendations described above, the LIRR intends to quickly proceed with the development of a RAWP that will fully detail the methods and procedures that will be employed by the LIRR in order to execute the above recommendations and to allow the LIRR to meet the planned schedule for the Rockville Centre Substation redevelopment. It is anticipated that the remediation of the Rockville Centre Substation will be conducted in conjunction or immediately following the substation decommissioning.

6-6

TABLE D-5B

LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SURFACE SOIL SAMPLING RESULTS - ROCKVILLE CENTRE-S07 MERCURY

LOCATION	East of Northeast Concrete Steps	East of North Concrete Platform	South of Southwest Concrete Steps	West of Southwest Concrete Platform	West of North Concrete Platform		
SAMPLE ID SAMPLE DEPTH (in.)	RCSS-01 0-6	RC\$\$-02 0-6	RCSS-03 0-6	RCSS-04 0-6	RCSS-05 0-6	Instrument Detection	Eastern USA Background
DATE OF COLLECTION PERCENT SOLIDS UNITS	7/27/99 80 (mg/kg)	7/27/99 75 (mg/kg)	7/27/99 84 (mg/kg)	7/27/99 83 (mg/kg)	7/27/99 88 (mg/kg)	Limits (ug/L)	Levels ⁽¹⁾ (mg/kg)
Mercury	22.8	50.8	4.3	16.3	21.5	0.1	0.001 - 0.2

:

NOTES:

⁽¹⁾ Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

1

TABLE D-5A

LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - ROCKVILLE CENTRE-S07 MERCURY

LOCATION	North of North Concrete		Southeast Exterior Corner of		Northwest Utility Manhole			
	Plat	form	Substation					
SAMPLE ID	RCSB-01	RCSB-01	RCSB-02	RCSB-02	RCSB-03	RCSB-03	Instrument	Eastern USA
SAMPLE DEPTH (ft.)	0-2	4-6	0-2	4-6	8.5-10.5	12.5-14.5	Detection	Background
DATE OF COLLECTION	7/27/99	7/27/99	7/27/99	8/2/99	7/27/99	7/27/99	Limits	Levels ⁽¹⁾
PERCENT SOLIDS	81	98	74	83	92	95		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Mercury	1.4	0.049 U	0.081 B	0.050 U	0.19	0.046 U	0.1	0.001 - 0.2

NOTES:

⁽¹⁾ Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

QUALIFIERS:

U: Constituent analyzed for but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

2

TABLE D-5A (continued)

LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - ROCKVILLE CENTRE-S07 MERCURY

LOCATION	West Rectifier Pit		Northwest Water Meter Pit		South of Southwest Concrete			
			14) 14		Steps			
SAMPLE ID	RCSB-04	RCSB-04	RCSB-05	RCSB-05	RCSB-06	RCSB-06	Instrument	Eastern USA
SAMPLE DEPTH (ft.)	0-2	4-6	4-6	8-10	0-2	4-6	Detection	Background
DATE OF COLLECTION	8/2/99	8/2/99	8/2/99	8/2/99	8/2/99	8/2/99	Limits	Levels ⁽¹⁾
PERCENT SOLIDS	90	87	88	96	88	88		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Mercury	15.9	10.7	0.057 B	1.2	1.4	0.17	0.1	0.001 - 0.2

NOTES:

⁽¹⁾ Background level for mercury provided in NYSDEC TAGM 4046 Appendix A.

QUALIFIERS:

B: Constituent concentration is less than the CRDL, but greater than the IDL.

TABLE D-5A (continued)

LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION SOIL BORING SAMPLING RESULTS - ROCKVILLE CENTRE-S07 MERCURY

LOCATION	East Re	ctifier Pit	Northwest Suspect Dry Well Location		а.			
SAMPLE ID SAMPLE DEPTH (ft.)	RCSB-07 0-2	RCSB-07 4-6	RCSB-08 10-12	RCSB-08 14-16	RCFB-01	RCFB-02	Instrument Detection	Eastern USA Background
DATE OF COLLECTION PERCENT SOLIDS UNITS	8/2/99 88 (mg/kg)	8/2/99 98 ' (mg/kg)	8/2/99 93 (mg/kg)	8/2/99 85 (mg/kg)	7/27/99 (ug/L)	7/27/99 (ug/L)	Limits (ug/L)	Levels ⁽¹⁾ (mg/kg)
Mercury	0.047 U	0.041 U	0.043 U	0.051 U	0.15 U	0.16 U	0.1	0.001 - 0.2

NOTES:

⁽¹⁾ Background level for mercury provided in NYSDEC TAGM 4046 Appendix A. ----: Not applicable.

QUALIFIERS:

U: Constituent analyzed for but not detected.

TABLE D-5C

LONG ISLAND RAIL ROAD SUBSTATION INVESTIGATION CONCRETE CORE SAMPLING RESULTS - ROCKVILLE CENTRE-S07 MERCURY

LOCATION	East Rectifier				
	Pit				
SAMPLE ID	RCCC-01	RCFB-03			Instrument
DATE OF COLLECTION	8/2/99	8/2/99	1		Detection
PERCENT SOLIDS	97				Limits
UNITS	(mg/kg)	(ug/L)			(ug/L)
					2
Mercury	3.5	0.10 U			0.1

NOTES:

----: Not applicable.

QUALIFIERS:

U: Constituent analyzed for but not detected.

N

12

APPENDIX B

DATA QUALIFIERS/ DELINEATION PHASE II ANALYTICAL DATA

• 2229\RR0605701.DOC

Data Flag/Qualifiers:

- U Not Detected. This compound was analyzed-for but not detected. For Organics analysis the reporting limit (lowest standard concentration) is the value listed. For Inorganics analysis, the value listed is the detection limit.
 For Inorganics analyzed using SW-846 methods, the detection limit is the Method Detection Limit, for Inorganics analyzed using EPA CLP and NY ASP CLP methods, the detection limit is the Instrument Detection Limit.
- J For Organics analysis, this flag indicates an estimated value due to either
 - the compound was detected below the reporting limit, or
 - estimated concentration for Tentatively Identified Compound
- B For Organic analyses, this flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a diluted analysis
- E For Organics analysis, this flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for Pesticides/PCB/Herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for Primary and Confirmation analyses. This difference typically indicates an interference, causing one value to be unusually high. The **lower** of the two values is reported in the Analysis Report.
- A Used to flag Semivolatile Organic Tentatively Identified Compound library search results for compounds identified as aldol condensation byproducts.
- N Used to flag results for Volatile and Semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.

Page: 1 of 6
Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

 PERIOD:
 From 11/29/2005 thru 03/05/2007 - Inclusive

 SAMPLE TYPE:
 Soil

	SITE	6NYCRR Part 375	RCSS-06	RCSS-07	RCSS-08	RCSS-09	RCSS-10
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-06	RCSS-07	RCSS-08	RCSS-09	RCSS-10
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.067UD	0.066UD	0.066UD	0.063BD	0.117D

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 3 of 6
Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive

Soil

SAMPLE TYPE:

CONSTITUENT		6NYCRR Part 375	RCSS-16	RCSS-17	RCSS-18	RCSS-19	RCSS-20
CONSTITUENT	DATE	SCOs	11/30/2005	11/30/2005	11/30/2005	11/29/2005	12/01/2005
Mercury	(mg/kg)	5.7	0.926	0.071U	0.089BJ	[87.700]D	0.066U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

and an owner where the second s	with some so	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	and the second second
and the second s	and the second s		-

Page: 5 of 6 Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSS-26	RCSS-27	RCSS-28	RCSS-29	RCSS-50
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-26	RCSS-27	RCSS-28	RCSS-29	RCSS-50
	DATE	SCOs	11/29/2005	11/29/2005	11/30/2005	11/30/2005	03/05/2007
Mercury	(mg/kg)	5.7	0.196D	0.257D	[7.4]D	0.910D	[302]D

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

10.00	_		1.00
- 16			- 2
- 38			- 1
-			

1

Page: 1 of 1 Date: 05/30/2007

TABLE 2 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS RCRA METALS less MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive Soil

SAMPLE TYPE:

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005	RCSS-23 RCSS-23 12/01/2005
Arsenic	(mg/kg)	16	[21.0]	13.8	[23.4]	[41.2]
Barium	(mg/kg)	10000	151	259	157	110
Cadmium	(mg/kg)	60	0.037U	0.040U	6.930	0.161B
Chromium	(mg/kg)	6800	24.7	36.6	45.7	22.7
Lead	(mg/kg)	3900	144	[6770]	2390	202
Selenium	(mg/kg)	6800	2.080	2.170	2.420	2.110
Silver	(mg/kg)	6800	1.910	2.130	6.950	

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 3 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005	RCSS-23 RCSS-23 12/01/2005
2,2-oxyblis (1-chloropropane)	(ug/kg)		60U	1600U	360U	140U
2.4,5-Trichlorophenol	(ug/kg)		57U	1500U .	340U	120U
2,4,6-Trichlorophenol	(ug/kg)		55U	1500U	330U	120U
2,4-Dichlorophenol	(ug/kg)		69U	1900U	410U	150U
2.4-Dimethylphenol	(ug/kg)		59U	1600U	2100J	140U
2.4-Dinitrophenol	(ug/kg)		320U	8700U	1900U	720U
2,4-Dinitrotoluene	(ug/kg)		55U	1500U	330U	120U
2.6-Dinitrotoluene	(ug/kg)	±.	53U	1400U	310U	120U
2-Chloronaphthalene	(ug/kg)		62U	1700U	370U	140U
2-Chlorophenol	(ug/kg)		60U	1600U	350U	140U
2-Methylnaphthalene	(ug/kg)		63U	1700U	370U	140U
3.3-Dichlorobenzidine	(ug/kg)		64U	1700U	380U	140U
4.6-Dinitro-o-cresol	(ug/kg)		73U	2000U	430U	160U
4-Bromofluorobenzene	(ug/kg)		56U	1500U	330U	120U
4-Chlorophenyl phenyl ether	(ug/kg)		59U	1600U	350U	140U
Acenaphthene	(ug/kg)	1000000	67U	1800U	400U	140U
Acenaphthylene	(ug/kg)	1000000	61U	1600U	360U	140U
Acetophenone	(ug/kg)		55U	1500U	330U	110J
Anthracene	(ug/kg)	1000000	56U	1500U	1100J	120U
Atrazine	(ug/kg)		71J	1500U	340U	120U
Benzaldehyde	(ug/kg)		77U	2100U	460U	160U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 1 of 4

Date: 05/30/2007

TABLE 3 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

Page: 3 of 4 Date: 05/30/2007

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLEID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005	RCSS-23 RCSS-23 12/01/2005
Hexachlorobenzene	(ug/kg)	12000	60U	1600U	360U	140U
Hexachlorobutadiene	(ug/kg)		58U	1600U	340U	140U
Hexachlorocyclopentadiene	(ug/kg)		60U	1600U	350U	140U
Hexachloroethane	(ug/kg)		64U	1700U	380U	140U
Indeno(1.2,3-cd)pyrene	(ug/kg)	11000	47U	1300U	280U	110U
Isophorone	(ug/kg)		56U	1500U	330U	120U
m-Nitroaniline	(ug/kg)		49U	1300U	290U	110U
Naphthalene	(ug/kg)	1000000	64U	1700U	710J	140U
Nitrobenzene	(ug/kg)		82U	2200U	490U	170U
N-Nitrosodiphenylamine	(ug/kg)		62U	1700U	370U	140U
N-Nitrosodipropylamine	(ug/kg)		62U	1700U	370U	140U
o-Cresol	(ug/kg)	1000000	62U	1700U	1100J	140U
o-Nitroanlline	(ug/kg)		47U	1300U	280U	110U
o-Nitrophenol	(ug/kg)		58U	1600U	340U	140U
p-Chloroaniline	(ug/kg)		45U	1200U	260U	90U
p-Chloro-m-cresol	(ug/kg)		52U	1400U	310U	110U
PCP	(ug/kg)	55000	87U	2300U	510U	190U
p-Cresol	(ug/kg)	1000000	59U	1600U	5700	140U
Phenanthrene	(ug/kg)	1000000	60U	1600U	4400	140U
Phenol	(ug/kg)	1000000	57U	1500U	340U	120U
p-Nitroaniline	(ug/kg)		64U	1700U	380U	140U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-15 RCSS-15 11/30/2005	RCSS-16 RCSS-16 11/30/2005	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005
Aroclor 1016	(ug/kg)		3.0U	3.4U	2.9U	3.1U	3.4U
Aroclor 1221	(ug/kg)		4.7U	5.2U	4.4U	4.8U	5.3U
Aroclor 1232	(ug/kg)		7.1U	7.8U	6.6U	7.2U	7.9U
Arocior 1242	(ug/kg)		6.3U	7.0U	5.9U	6.4U	7.0U
Aroclor 1248	(ug/kg)		3.1U	3.4U	2.9U	3.1U	3.4U
Aroclor 1254	(ug/kg)		2.0U	2.2U	1.9U	2.0U	2.2U
Aroclor 1260	(ug/kg)		620D	1000D	58	56000D	17000D
Total PCBs (surface soil)	(ug/kg)	25000	620	1000	58	[56000]	17000

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 1 of 6

Date: 05/30/2007

1000		
1000		

Page: 3 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-34 RCSS-34 03/05/2007	RCSS-35 RCSS-35 03/05/2007	RCSS-36 RCSS-36 03/05/2007	RCSS-37 RCSS-37 03/05/2007	RCSS-38 RCSS-38 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	5.7U	2.9U	2.8U	2.9U
Aroclor 1221	(ug/kg)		4.4U	8.9U	4.4U	4.4U	4.4U
Aroclor 1232	(ug/kg)		6.6U	13U	6.6U	6.6U	6.6U
Aroclor 1242	(ug/kg)		5.9U	12U	5.9U	5.8U	5.9U
Aroclor 1248	(ug/kg)		2.9U	5.7U	2.9U	2.8U	2.9U
Aroclor 1254	(ug/kg)		1.9U	3.7U	1.9U	1.8U	1.9U
Aroclor 1260	(ug/kg)		140	640	350	1400D	5000D
Total PCBs (surface soil)	(ug/kg)	25000	140	640	350	1400	5000

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

100			- 16
			- 65
	-		

Page: 5 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-44 RCSS-44 03/05/2007	RCSS-45 RCSS-45 03/05/2007	RCSS-46 RCSS-46 03/05/2007	RCSS-47 RCSS-47 03/05/2007	RCSS-48 RCSS-48 03/05/2007
Aroclor 1016	(ug/kg)		15U	3.1U	2.8U	3.0U	30U
Aroclor 1221	(ug/kg)		23U	4.8U	4.4U	4.7U	46U
Aroclor 1232	(ug/kg)		34U	7.1U	6.6U	7.1U	69U
Aroclor 1242	(ug/kg)		30U	6.3U	5.8U	6.3U	61U
Aroclor 1248	(ug/kg)		15U	3.1U	2.8U	3.1U	30U
Aroclor 1254	(ug/kg)		9.5U	2.0U	1.8U	2.0U	19U
Aroclor 1260	(ug/kg)		2500D	310	200	53	2600
Total PCBs (surface soil)	(ug/kg)	25000	2500	310	200	53	2600

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE	6NYCRR Part 375	RCSB-09	RCSB-09	RCSB-10	RCSB-10	RCSB-11
	SAMPLE ID	Industrial Use	RCSB-09(2-4)	RCSB-09(4-6)	RCSB-10(2-4)	RCSB-10(4-6)	RCSB-11(2-4)
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.062UD	0.061UD	0.065UD	0.061UD	0.127D

mg/kg: milligram/kilogram SCO: Soll Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 3 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSB-14	RCSB-14	RCSB-15	RCSB-15	RCSB-16
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-14(2-4)	RCSB-14(4-6)	RCSB-15(2-4)	RCSB-15(4-6)	RCSB-16(2-4)
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.065UD	0.059UD	0.131D	0.061UD	0.066UD

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 5 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE IF SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSB-20	RCSB-21	RCSB-22	RCSB-22	RCSB-23
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-20(2-4)	RCSB-21(2-4)	RCSB-22(2-4)	RCSB-22(4-6)	RCSB-23(2-4)
	DATE	SCOs	11/30/2005	11/30/2005	1 1/30/2005	11/30/2005	11/30/2005
Mercury	(mg/kg)	5.7	0.460	0.068UD	0.067U	0.068U	0.064U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSB-26	RCSB-27	RCSB-27	RCSB-28	RCSB-28
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-26(2-4)	RCSB-27(0-2)	RCSB-27(2-4)	RCSB-28(0-2)	RCSB-28(2-4)
	DATE	SCOs	11/29/2005	12/01/2005	12/01/2005	12/01/2005	12/01/2005
Mercury	(mg/kg)	5.7	0.825D	0.062U	0.063U	0.066U	0.063U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 7 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Indusive SAMPLE TYPE: Soil

			2				
	SITE	6NYCRR Part 375	RCSB-32	RCSB-33	RCSB-34	RCSB-35	RCSB-36
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-32(2-4)	RCSB-33(2-4)	RCSB-34(2-4)	RCSB-35(2-4)	RCSB-36(2-4)
	DATE	SCOs	11/30/2005	11/30/2005	11/30/2005	11/30/2005	11/30/2005
Mercury	(mg/kg)	5.7	0.065UD	0.065UD	0.068UD	0.105BD	0.066UD

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 9 of 9 Date: 05/30/2007

Page: 1 of 2 Date: 05/30/2007

TABLE 6 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS RCRA METALS IESS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

						2.4	
CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
Arsenic	(mg/kg)	16	3.600	3.250	6.020	2.760	4.430
Barium	(mg/kg)	10000	24.0	18.2B	48.0	20.5B	38.1
Cadmium	(mg/kg)	60	0.036U	0.036U	0.037U	0.036U	0.039U
Chromium	(mg/kg)	6800	8.390	7.730	10.7	9.110	12.5
Lead	(mg/kg)	3900	21.1	7.310	50.5	9.400	16.2
Selenium	(mg/kg)	6800	0.938B	1.370	1.150	0.836B	1.040B
Silver	(mg/kg)	6800	0.446B	0.347B	0.175B	0.360B	0.092U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 8 Date: 05/30/2007

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
2.2-oxyblis (1-chloropropane)	(ug/kg)		58U	57U	60U	58U	61U
2,4,5-Trichlorophenol	(ug/kg)		55U	54U	57U	55U	58U
2,4,6-Trichlorophenol	(ug/kg)		53U	52U	55U	53U	56U
2,4-Dichlorophenol	(ug/kg)		67U	65U	69U	66U	71U
2,4-Dimethylphenol	(ug/kg)		57U	56U	59U	57U	61U
2.4-Dinitrophenol	(ug/kg)		310U	300U	320U	310U	330U
2.4-Dinitrotoluene	(ug/kg)		53U	52U	55U	53U	56U
2.6-Dinitrotoluene	(ug/kg)		51U	50U	53U	51U	54U
2-Chloronaphthalene	(ug/kg)		60U	59U	62U	59U	63U
2-Chlorophenol	(ug/kg)		58U	56U	59U	57U	61U
2-Methylnaphthalene	(ug/kg)		60U	59U	62U	60U	64U
3,3-Dichlorobenzidine	(ug/kg)		62U	61U	64U	61U	65U
4,6-Dinitro-o-cresol	(ug/kg)		70U	69U	72U	70U	74U
4-Bromofluorobenzene	(ug/kg)		54U	53U	56U	54U	57U
4-Chlorophenyl phenyl ether	(ug/kg)		57U	56U	59U	57U	60U
Acenaphthene	(ug/kg)	1000000	64U	63U	66U	64U	68U
Acenaphthylene	(ug/kg)	1000000	59U	57U	60U	58U	62U
Acetophenone	(ug/kg)		53U	52U	54U	52U	56U
Anthracene	(ug/kg)	1000000	54U	53U	56U	54U	58U
Atrazine	(ug/kg)		55U	54U	57U	55U	58U
Benzaldehyde	(ug/kg)		74U	73U	76U	74U	78U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 3 of 8 Date: 05/30/2007

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
Hexachlorobenzene	(ug/kg)	12000	58U	57U	59U	57U	61U
Hexachlorobutadiene	(ug/kg)		56U	54U	57U	55U	59U
Hexachlorocyclopentadiene	(ug/kg)		58U	56U	59U	57U	61U
Hexachloroethane	(ug/kg)		61U	60U	63U	61U	65U
Indeno(1,2,3-cd)pyrene	(ug/kg)	11000	46U	45U	47U	46U	48U
Isophorone	(ug/kg)		54U	53U	56U	54U	57U
m-Nitroaniline	(ug/kg)		47∪	46U	48U	47U	50U
Naphthalene	(ug/kg)	1000000	62U	60U	64U	61U	65U
Nitrobenzene	(ug/kg)		79U	77U	81U	78U	83U
N-Nitrosodiphenylamine	(ug/kg)		59U	58U	61U	59U	63U
N-Nitrosodipropylamine	(ug/kg)		60U	59U	62U	59U	63U
o-Cresol	(ug/kg)	100000	60U	59U	62U	60U	63U
o-Nitroaniline	(ug/kg)		46U	45U	47U	46U	48U
o-Nitrophenol	(ug/kg)		56U	54U	57U	55U	59U
p-Chloroaniline	(ug/kg)		43U	42U	44U	43U	45U
p-Chloro-m-cresol	(ug/kg)		50U	49U	51U	50U	53U
PCP	(ug/kg)	55000	84U	82U	86U	83U	88U
p-Cresol	(ug/kg)	100000	57U	56U	59U	57U	60U
Phenanthrene	(ug/kg)	100000	58U	56U	69J	57U	61U
Phenol	(ug/kg)	100000	55U	54U	56U	54U	58U
p-Nitroaniline	(ug/kg)		62U	60U	64U	61U	65U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 5 of 8 Date: 05/30/2007

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID	6NYCRR Part 375 Industrial Use	RCSB-29 RCSB-29(2-4)	RCSB-30 RCSB-30(0-2)	RCSB-30 RCSB-30(2-4)
		SCOs	12/01/2005	12/01/2005	12/01/2005
2.2-oxybiis (1-chloropropane)	(ug/kg)		590	1200	620
2,4,5-Trichlorophenol	(ug/kg)		56U	120U	59U
2.4,6-Trichlorophenol	(ug/kg)		54U	110U	57U
2.4-Dichlorophenol	(ug/kg)		68U	140U	72U
2.4-Dimethylphenol	(ug/kg)		58U	120U	61U
2.4-Dinitrophenol	(ug/kg)		310U	640U	330U
2.4-Dinitrotoluene	(ug/kg)		54U	110U	57U
2.6-Dinitrotoluene	(ug/kg)		52U	110U	55U
2-Chloronaphthalene	(ug/kg)		61U	130U	64U
2-Chlorophenol	(ug/kg)		59U	120U	62U
2-Methylnaphthalene	(ug/kg)		61U	130U	65U
3.3-Dichlorobenzidine	(ug/kg)		63U	130U	66U
4,6-Dinitro-o-cresol	(ug/kg)		71U	150U	75U
4-Bromofluorobenzene	(ug/kg)		55U	110U	58U
4-Chlorophenyl phenyl ether	(ug/kg)		58U	120U	61U
Acenaphthene	(ug/kg)	1000000	66U	140U	69U
Acenaphthylene	(ug/kg)	1000000	60U	130U	63U
Acetophenone	(ug/kg)		54U	110U	57U
Anthracene	(ug/kg)	1000000	55U	110U	58U
Atrazine	(ug/kg)		56U	120U	59U
Benzaldehyde	(ug/kg)		76U	160U	79U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

nexachiorobenzene (ug/kg) 12000 590 1200 620	
Hexachlorobutadiene (ug/kg) 57U 120U 60U	
Hexachlorocyclopentadiene (ug/kg) 59U 120U 62U	
Hexachloroethane (ug/kg) 63U 130U 66U	
Indeno(1,2,3-cd)pyrene (ug/kg) 11000 47U 90U 49U	
lsophorone (ug/kg) 55U 110U 58U	
m-Nitroaniline (ug/kg) 48U 100U 50U	
Naphthalene (ug/kg) 100000 63U 130U 66U	
Nitrobenzene (ug/kg) 80U 170U 84U	
N-Nitrosodiphenylamine (ug/kg) 61U 130U 64U	
N-Nitrosodipropylamine (ug/kg) 61U 130U 64U	
o-Cresol (ug/kg) 100000 61U 130U 64U	
o-Nitroaniline (ug/kg) 47U 90U 49U	
o-Nitrophenol (ug/kg) 57U 120U 60U	
p-Chloroaniline (ug/kg) 44U 90U 46U	
p-Chloro-m-cresol (ug/kg) 51U 110U 53U	
PCP (ug/kg) 55000 85U 170U 90U	
p-Cresol (ug/kg) 100000 58U 120U 61U	
Phenanthrene (ug/kg) 100000 59U 120U 62U	
Phenol (ug/kg) 100000 56U 120U 59U	
p-Nitroaniline (ug/kg) 63U 130U 66U	

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 7 of 8 Date: 05/30/2007

1	1.00	and the second

Page: 1 of 7 Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-22 RCSB-22(2-4) 11/30/2005	RCSB-22 RCSB-22(4-6) 11/30/2005	RCSB-23 RCSB-23(2-4) 11/30/2005	RCSB-23 RCSB-23(4-6) 11/30/2005	RCSB-24 RCSB-24(2-4) 11/30/2005
Aroclor 1016	(ug/kg)		3.0U	2.8U	2.9U	2.9U	2.9U
Aroclor 1221	(ug/kg)		4.6U	4.3U	4.4U	4.4U	4.4U
Aroclor 1232	(ug/kg)		6.9U	6.4U	6.6U	6.6U	6.6U
Aroclor 1242	(ug/kg)		6.1U	5.7U	5.9U	5.9U	5.9U
Aroclor 1248	(ug/kg)		3.0U	2.8U	2.9U	2.9U	2.9U
Arocior 1254	(ug/kg)		1.9U	1.8U	1.9U	59	1.9U
Aroclor 1260	(ug/kg)		28	24	40	4.7U	40
Total PCBs (subsurface soil)	(ug/kg)	25000	28	24	40	59	40

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 6
Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE I SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

Mercury	(mg/kg)	5.7	0.067UD	0.066UD	0.066UD	0.063BD	0.117D
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-06	RCSS-07	RCSS-08	RCSS-09	RCSS-10
	SITE	6NYCRR Part 375	RCSS-06	RCSS-07	RCSS-08	RCSS-09	RCSS-10

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 2 of 6 Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

ONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-11 RCSS-11 11/29/2005	RCSS-12 RCSS-12 11/29/2005	RCSS-13 RCSS-13 11/30/2005	RCSS-14 RCSS-14 11/29/2005	RCSS-15 RCSS-15 11/30/2005
erCury	(mg/kg)	5.7	0.185D	0.266D	0.247D	0.106BD	0.675
/kg: milligram/kilogram				Qualifier	s defined in Appendix	B: Data Flag/Qualifier:	S
D: Soil Cleanup Objective				[]: Value	e exceeds 6 NYCRR F	Part 375 Industrial Use	SCO

Page: 3 of 6
Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE	6NYCRR Part 375	RCSS-16	RCSS-17	RCSS-18	RCSS-19	RCSS-20
	SAMPLE ID	Industrial Use	RCSS-16	RCSS-17	RCSS-18	RCSS-19	RCSS-20
	DATE	SCOs	11/30/2005	11/30/2005	11/30/2005	11/29/2005	12/01/2005
Mercury	(mg/kg)	5.7	0.926	0.071U	0.089BJ	[87,700]D	0.066U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 4 of 6 Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSS-21	RCSS-22	RCSS-23	RCSS-24	RCSS-25
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-21	RCSS-22	RCSS-23	RCSS-24	RCSS-25
	DATE	SCOs	12/01/2005	12/01/2005	12/01/2005	11/30/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.247	1.1	0.066U	3.2D	0.182D

.

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 5 of 6
Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

Mercury	(mg/kg)	5.7	0.196D	0.257D	[7.4]D	0.910D	[302]D
	DATE	SCOs	11/29/2005	11/29/2005	11/30/2005	11/30/2005	03/05/2007
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-26	RCSS-27	RCSS-28	RCSS-29	RCSS-50
	SITE	6NYCRR Part 375	RCSS-26	RCSS-27	RCSS-28	RCSS-29	RCSS-50

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 6 of 6 Date: 05/30/2007

TABLE 1 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Indusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-51 RCSS-51 03/05/2007
Mercury	(mg/kg)	5.7	[303]D
	60 -		
ng/kg: milligram/kilogram SCO: Soil Cleanup Objective			Qualifiers defined in Appendix B: Data Flag/Qualifiers []: Value exceeds 6 NYCRR Part 375 Industrial Use SCO
			••

-	And in case of a
	Sec. 1

Page: 1 of 1 Date: 05/30/2007

TABLE 2 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS RCRA METALS IESS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID	6NYCRR Part 3 7 5 Industrial Use	RCSS-20 RCSS-20	RCSS-21 RCSS-21	RCSS-22 RCSS-22	RCSS-23 RCSS-23
		SCUs	12/01/2005	12/01/2005	12/01/2005	12/01/2005
Arsenic	(mg/kg)	16	[21.0]	13.8	[23.4]	[41.2]
Barium	(mg/kg)	10000	151	259	157	110
Cadmium	(mg/kg)	60	0.037U	0.040U	6.930	0.161B
Chromium	(mg/kg)	6800	24.7	36.6	45.7	22.7
Lead	(mg/kg)	3900	144	[6770]	2390	202
Selenium	(mg/kg)	6800	2.080	2.170	2.420	2.110
Silver	(mg/kg)	6800	1.910	2.130	6.950	

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 3 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005	RCSS-23 RCSS-23 12/01/2005
2,2-oxyblis (1-chloropropane)	(ug/kg)		60U	1600U	360U	140U
2.4.5-Trichlorophenol	(ug/kg)		57U	1500U	340U	120U
2,4,6-Trichlorophenol	(ug/kg)		55U	1500U	330U	120U
2,4-Dichlorophenol	(ug/kg)		69U	1900U	410U	150U
2.4-Dimethylphenol	(ug/kg)		59U	1600U	2100J	140U
2.4-Dinitrophenol	(ug/kg)		320U	8700U	1900U	720U
2.4-Dinitrotoluene	(ug/kg)		55U	1500U	330U	120U
2,6-Dinitrotoluene	(ug/kg)		53U	1400U	310U	120U
2-Chloronaphthalene	(ug/kg)		62U	1700U	370U	140U
2-Chlorophenol	(ug/kg)		60U	1600U	350U	140U
2-Methylnaphthalene	(ug/kg)		63U	1700U	370U	140U
3.3-Dichlorobenzldine	(ug/kg)		64U	1700U	380U	140U
4.6-Dinitro-o-cresol	(ug/kg)		73U	2000U	430U	160U
4-Bromofluorobenzene	(ug/kg)		56U	1500U	330U	120U
4-Chlorophenyl phenyl ether	(ug/kg)		59U	1600U	350U	140U
Acenaphthene	(ug/kg)	1000000	67U	1800U	400U	140U
Acenaphthylene	(ug/kg)	1000000	61U	1600U	360U	140U
Acetophenone	(ug/kg)		55U	1500U	330U	110J
Anthracene	(ug/kg)	1000000	56U	1500U	1100J	120U
Atrazine	(ug/kg)		71J	1500U	340U	120U
Benzaldehyde	(ug/kg)		77U	2100U	460U	160U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 1 of 4 Date: 05/30/2007

Page: 2 of 4 Date: 05/30/2007

TABLE 3 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive

SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSS-20	RCSS-21	RCSS-22	RCSS-23
CONSTITUENT	SAMPLE ID DATE	Industrial Use SCOs	RCSS-20 12/01/2005	RCSS-21 12/01/2005	12/01/2005	12/01/2005
Benzo(a)anthracene	(ug/kg)	11000	52U	1400U	2100J	110U
Benzo(a)pyrene	(ug/kg)	1100	60U	1600U	[1900]J	140U
Benzo(b)fluoranthene	(ug/kg)	11000	240J	6200J	2800	91U
Benzo(ghi)perylene	(ug/kg)	1000000	62U	1700U	580J	140U
Benzo(k)fluoranthene	(ug/kg)	110000	82U	2200U	490U	170U
Biphenyl	(ug/kg)		62∪	1700U	370U	140U
Bis(2-chloroethoxy)methane	(ug/kg)		62U	1700U	370U	140U
Bis(2-chloroethyl)ether	(ug/kg)		59U	1600U	350U	140U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)		72U	1900U	1000J	150U
Butyl benzyl phthalate	(ug/kg)		60U	1600U	360U	140U
Caprolactam	(ug/kg)		60U	1600U	360U	140U
Carbazole	(ug/kg)		57U	1500U	620J	120U
Chrysene	(ug/kg)	110000	67U	1800U	2200	140U
Dibenzo(a,h)anthracene	(ug/kg)	1100	47U	1300U	280U	110U
Dibenzofuran	(ug/kg)	1000000	62U	1700U	370U	140U
Diethyl phthalate	(ug/kg)		65U	1700U	380U	140U
Dimethyl phthalate	(ug/kg)		60U	1600U	360U	140U
Di-n-butyl phthalate	(ug/kg)		120J	1500U	1600J	120U
Di-n-octyl phthalate	(ug/kg)		64U	1700U	380U	140U
Fluoranthene	(ug/kg)	1000000	81J	1500U	3800	120U
Fluorene	(ug/kg)	1000000	63U	1700U	500J	140U

-

ug/kg: microgram/kilogram

SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

1000

TABLE 3 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive Soil

SAMPLE TYPE:

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005	RCSS-23 RCSS-23 12/01/2005
Hexachlorobenzene	(ug/kg)	12000	60U	1600U	360U	140U
Hexachlorobutadiene	(ug/kg)		58U	1600U	340U	140U
Hexachlorocyclopentadiene	(ug/kg)		60U	1600U	350U	140U
Hexachloroethane	(ug/kg)		64U	1700U	380U	140U
Indeno(1.2.3-cd)pyrene	(ug/kg)	11000	47U	1300U	280U	110U
Isophorone	(ug/kg)		56U	1500U	330U	120U
m-Nitroaniline	(ug/kg)		49U	1300U	290U	110U
Naphthalene	(ug/kg)	1000000	64U	1700U	710J	140U
Nitrobenzene	(ug/kg)		82U	2200U	490U	170U
N-Nitrosodlphenylamine	(ug/kg)		62U	1700U	370U	140U
N-Nitrosodlpropylamlne	(ug/kg)		62U	1700U	370U	140U
o-Cresol	(ug/kg)	1000000	62U	1700U	1100J	140U
o-Nitroaniline	(ug/kg)		47U	1300U	280U	110U
o-Nitrophenol	(ug/kg)		58U	1600U	340U	140U
p-Chloroaniline	(ug/kg)		45U	1200U	260U	90U
p-Chloro-m-cresol	(ug/kg)		52U	1400U	310U	110U
PCP	(ug/kg)	55000	87U	2300U	510U	190U
p-Cresol	(ug/kg)	1000000	59U	1600U	5700	140U
Phenanthrene	(ug/kg)	1000000	60U	1600U	4400	140U
Phenol	(ug/kg)	1000000	57U	1500U	340U	120U
p-Nitroaniline	(ug/kg)		64U	1700U	380U	140U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined In Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 3 of 4 Date: 05/30/2007

TABLE 3 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSS-20	RCSS-21	RCSS-22	RCSS-23
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-20	RCSS-21	RCSS-22	RCSS-23
	DATE	SCOs	12/01/2005	12/01/2005	12/01/2005	12/01/2005
p-Nitrophenol	(ug/kg)		46U	1300U	280U	97U
Pyrene	(ug/kg)	1000000	78J	1800U	5500	140U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 4 of 4 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-15 RCSS-15 11/30/2005	RCSS-16 RCSS-16 11/30/2005	RCSS-20 RCSS-20 12/01/2005	RCSS-21 RCSS-21 12/01/2005	RCSS-22 RCSS-22 12/01/2005
Aroclor 1016	(ug/kg)		3.0U	3.4U	2.9U	3.1U	3.4U
Aroclor 1221	(ug/kg)		4.7U	5.2U	4.4U	4.8U	5.3U
Aroclor 1232	(ug/kg)		7.1U	7.8U	6.6U	7.2U	7.9U
Aroclor 1242	(ug/kg)		6.3U	7.0U	5.9U	6.4U	7.0U
Aroclor 1248	(ug/kg)		3.1U	3.4U	2.9U	3.1U	3.4U
Aroclor 1254	(ug/kg)		2.0U	2.2U	1.9U	2.0U	2.2U
Aroclor 1260	(ug/kg)		620D	1000D	58	56000D	170000
Total PCBs (surface soil)	(ug/kg)	25000	620	1000	58	[56000]	17000

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 1 of 6

Date: 05/30/2007

Page: 2 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 3 7 5 Industrial Use SCOs	RCSS-23 RCSS-23 12/01/2005	RCSS-30 RCSS-30 03/05/2007	RCSS-31 RCSS-31 03/05/2007	RCSS-32 RCSS-32 03/05/2007	RCSS-33 RCSS-33 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	2.9U	2.9U	2.9U	3.0U
Aroclor 1221	(ug/kg)		4.5U	4.5U	4.5U	4.6U	4.7∪
Aroclor 1232	(ug/kg)		6. 7 ∪	6.8U	6.7U	6.8U	7.0U
Arocior 1242	(ug/kg)		6.0U	6.0U	6.0U	6.1U	6.2U
Aroclor 1248	(ug/kg)		2.9U	2.9U	2.9U	2.9U	3.0U
Aroclor 1254	(ug/kg)		1.9U	1.9U	1.9U	1.9U	2.0U
Aroclor 1260	(ug/kg)		2000D	92	260	90	81
Total PCBs (surface soil)	(ug/kg)	25000	2000	92	260	90	81

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers
_	-	100	1.000	
			100	
1000			and the second second	

Page: 3 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSS-34	RCSS-35	RCSS-36	RCSS-37	RCSS-38
CONSTITUENT	SAMPLE ID	Industrial Use	RCSS-34	RCSS-35	RCSS-36	RCSS-37	RCSS-38
	DATE	SCOs	03/05/2007	03/05/2007	03/05/2007	03/05/2007	03/05/2007
Aroclor 1016	(ug/kg)		2.9U	5.7U	2.9U	2.8U	2.9U
Aroclor 1221	(ug/kg)		4.4U	8.9U	4.4U	4.4U	4.4U
Aroclor 1232	(ug/kg)		6.6U	13U	6.6U	6.6U	6.6U
Aroclor 1242	(ug/kg)		5.9U	12U	5.9U	5.8U	5.9U
Aroclor 1248	(ug/kg)		2.9U	5.7U	2.9U	2.8U	2.9U
Aroclor 1254	(ug/kg)		1.9U	3.7U	1.9U	1.8U	1.9U
Aroclor 1260	(ug/kg)		140	640	350	1400D	5000D
Total PCBs (surface soil)	(ug/kg)	25000	140	640	350	1400	5000

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 4 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-39 RCSS-39 03/05/2007	RCSS-40 RCSS-40 03/05/2007	RCSS-41 RCSS-41 03/05/2007	RCSS-42 RCSS-42 03/05/2007	RCSS-43 RCSS-43 03/05/2007
Aroclor 1016	(ug/kg)		3.0U	29U	3.1U	2.8U	3.0U
Arocior 1221	(ug/kg)		4.7∪	46U	4.9U	4.4U	4.7U
Aroclor 1232	(ug/kg)		7.0U	68U	7.3U	6.6U	7.0U
Aroclor 1242	(ug/kg)		6.2U	61U	6.5U	5.8U	6.2U
Aroclor 1248	(ug/kg)		3.0U	29U	3.1U	2.8U	3.0U
Aroclor 1254	(ug/kg)		2.0U	19U	2.0U	1.9U	2.0U
Aroclor 1260	(ug/kg)		770D	1600	8000D	630D	5.0U
Total PCBs (surface soil)	(ug/kg)	25000	770	1600	8000	630	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

COLUMN TO A	the second second	100 million (100 m
	ALC: NO	Suma and

Page: 5 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-44 RCSS-44 03/05/2007	RCSS-45 RCSS-45 03/05/2007	RCSS-46 RCSS-46 03/05/2007	RCSS-47 RCSS-47 03/05/2007	RCSS-48 RCSS-48 03/05/2007
Aroclor 1016	(ug/kg)		15U	3.1U	2.8U	3.0U	30U
Aroclor 1221	(ug/kg)		23U	4.8U	4.4U	4.7U	46U
Aroclor 1232	(ug/kg)		34U	7.1U	6.6U	7.1U	69U
Aroclor 1242	(ug/kg)		30U	6.3U	5.8U	6.3U	61U
Aroclor 1248	(ug/kg)		15U	3.1U	2.8U	3.1U	30U
Aroclor 1254	(ug/kg)		9.5U	2.0U	1.8U	2.0U	19U
Aroclor 1260	(ug/kg)		2500D	310	200	53	2600
Total PCBs (surface soil)	(ug/kg)	25000	2500	310	200	53	2600

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 6 of 6 Date: 05/30/2007

TABLE 4 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSS-49 RCSS-49 03/05/2007
	Aroclor 1016	(ug/kg)		3.1U
	Aroclor 1221	(ug/kg)		4.7U
	Aroclor 1232	(ug/kg)		7.1U
	Aroclor 1242	(ug/kg)		6.3U
	Aroclor 1248	(ug/kg)		3.1U
	Aroclor 1254	(ug/kg)		2.0U
	Aroclor 1260	(ug/kg)		360
ĺ	Total PCBs (surface soil)	(ug/kg)	25000	360
i				

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSB-09	RCSB-09	RCSB-10	RCSB-10	RCSB-11
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-09(2-4)	RCSB-09(4-6)	RCSB-10(2-4)	RCSB-10(4-6)	RCSB-11(2-4)
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.062UD	0.061UD	0.065UD	0.061UD	0.127D

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 2 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

 PERIOD:
 From 11/29/2005 thru 03/05/2007 - Inclusive

 SAMPLE TYPE:
 Soil

	SITE	6NYCRR Part 375	RCSB-11	RCSB-12	RCSB-12	RCSB-13	RCSB-13
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-11(4-6)	RCSB-12(2-4)	RCSB-12(4-6)	RCSB-13(2-4)	RCSB-13(4-6)
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.061UD	0.066UD	0.103BD	0.063UD	0.060UD

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 3 of 9

Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	CITE			DOSP 14	DOSP 15	DOCD 15	
CONSTITUENT	SAMPLE ID	Industrial Use	RCSB-14 RCSB-14(2-4)	RCSB-14 RCSB-14(4-6)	RCSB-15 RCSB-15(2-4)	RCSB-15 RCSB-15(4-6)	RCSB-16 RCSB-16(2-4)
	DATE	SCOs	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
Mercury	(mg/kg)	5.7	0.065UD	0.059UD	0.131D	0.061UD	0.066UD

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 4 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-16 RCSB-16(4-6) 11/29/2005	RCSB-17 RCSB-17(2-4) 11/30/2005	RCSB-17 RCSB-17(4-6) 11/30/2005	RCSB-18 RCSB-18(2-4) 11/30/2005	RCSB-19 RCSB-19(2-4) 11/30/2005
ercury	(mg/kg)	5.7	0.063UD	0.066UD	0.060UD	0.075UD	0.067UD
5							
/kg: milligram/kilogram				Qualifiers	defined in Appendix B	: Data Flag/Qualifiers	
CO: Soil Cleanup Objective				[]: Value	exceeds 6 NYCRR Pa	rt 375 Industrial Use S	CO

1	-		18
			10

Page: 5 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

SITE 6NYCRR Part 375 RCSB-20 RCSB-21 RCSB-22 RCSB-22 RCSB-23 CONSTITUENT SAMPLE ID Industrial Use RCSB-20(2-4) RCSB-21(2-4) RCSB-22(2-4) RCSB-22(4-6) RCSB-23(2-4) DATE SCOs 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 (mg/kg) 5.7 0.460 0.068UD 0.067U 0.068U 0.064U Mercury

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 6 of 9 Date: 05/30/2007

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

Mercury		(mg/kg)	5.7	0.070U	0.062U	0.067U	0.066U	0.066U
CONSTITUENT	ΞJ	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use	RCSB-23 RCSB-23(4-6)	RCSB-24 RCSB-24(2-4)	RCSB-24 RCSB-24(4-6)	RCSB-25 RCSB-25(2-4)	RCSB-25 RCSB-25(4-6)

5

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

.

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive

SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCSB-26	RCSB-27	RCSB-27	RCSB-28	RCSB-28
CONSTITUENT	SAMPLEID	Industrial Use	RCSB-26(2-4)	RCSB-27(0-2)	RCSB-27(2-4)	RCSB-28(0-2)	RCSB-28(2-4)
	DATE	SCOs	11/29/2005	12/01/2005	12/01/2005	12/01/2005	12/01/2005
Mercury	(mg/kg)	5.7	0.825D	0.062U	0.063U	0.066U	0.063U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 7 of 9

Date: 05/30/2007

TABLE 5

Date: 05/30/2007

Page: 8 of 9

LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(0-2) 12/01/2005	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005	RCSB-31 RCSB-31(2-4) 11/30/2005
Mercury	(mg/kg)	5.7	0.068U	0.065U	0.066U	0.068U	0.074UD
			54				
mg/kg: milligram/kilogram SCO: Soil Cleanup Objective				Qualifiers	defined in Appendix E	3: Data Flag/Qualifiers	
				[]: Value	exceeds 6 NYCRR Pa	art 375 Industrial Use S	SCO

TABLE 5 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

			±1				
CONSTITUENT	SITE SAMPLE ID	6NYCRR Part 375 Industrial Use	RCSB-32 RCSB-32(2-4)	RCSB-33 RCSB-33(2-4)	RCSB-34 RCSB-34(2-4)	RCSB-35 RCSB-35(2-4)	RCSB-36 RCSB-36(2-4)
	DATE	SCOs	1 1/30/2005	11/30/2005	11/30/2005	1 1/30/2005	11/30/2005
Mercury	(mg/kg)	5.7	0.065UD	0.065UD	0.068UD	0.105BD	0.066UD

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 9 of 9

Date: 05/30/2007

Page: 1 of 2 Date: 05/30/2007

TABLE 6 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS RCRA METALS less MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
Arsenic	(mg/kg)	16	3.600	3.250	6.020	2.760	4.430
Barium	(mg/kg)	10000	24.0	18.2B	48.0	20.5B	38.1
Cadmium	(mg/kg)	60	0.036U	0.036U	0.037U	0.036U	0.039U
Chromium	(mg/kg)	6800	8.390	7.730	10.7	9.110	12.5
Lead	(mg/kg)	3900	21.1	7.310	50.5	9.400	16.2
Selenium	(mg/kg)	6800	0.938B	1.370	1.150	0.836B	1.040B
Silver	(mg/kg)	6800	0.446B	0.347B	0.175B	0.360B	0.092U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 2 of 2 Date: 05/30/2007

TABLE 6 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS RCRA METALS IESS MERCURY

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005
Arsenic	(mg/kg)	16	4.460	[25.3]	1.650
Barium	(mg/kg)	10000	36.5	71	13.4B
Cadmium	(mg/kg)	60	0.130B	0.127B	0.038U
Chromium	(mg/kg)	6800	10.4	13.5	4.670
Lead	(mg/kg)	3900	18.3	132	4.500
Selenium	(mg/kg)	6800	0.769B	1.48	0.613B
Silver	(mg/kg)	6800	0.528B		0.091U

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 8 Date: 05/30/2007

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
2.2-oxyblis (1-chloropropane)	(ug/kg)		58U	57U	60U	58U	61U
2.4.5-Trichlorophenol	(ug/kg)		55U	54U	57U	55U	58U
2,4,6-Trichlorophenol	(ug/kg)		53U	52U	55U	53U	56U
2.4-Dichlorophenol	(ug/kg)		67U	65U	69U	66U	71U
2.4-Dimethylphenol	(ug/kg)		57U	56U	59U	57U	61U
2.4-Dinitrophenol	(ug/kg)		310U	300U	320U	310U	330U
2,4-Dinitrotoluene	(ug/kg)		53U	52U	55U	53U	56U
2.6-Dinitrotoluene	(ug/kg)		51U	50U	53U	51U	54U
2-Chloronaphthalene	(ug/kg)		60U	59U	62U	59U	63U
2-Chlorophenol	(ug/kg)		58U	56U	59U	57U	61U
2-Methylnaphthalene	(ug/kg)		60U	59U	62U	60U	64U
3.3-Dichlorobenzidlne	(ug/kg)		62U	61U	64U	61U	65U
4,6-Dinitro-o-cresol	(ug/kg)		70U	69U	72U	70U	74U
4-Bromofluorobenzene	(ug/kg)		54U	53U	56U	54U	57U
4-Chlorophenyl phenyl ether	(ug/kg)		57U	56U	59U	57U	60U
Acenaphthene	(ug/kg)	100000	64U	63U	66U	64U	68U
Acenaphthylene	(ug/kg)	1000000	59U	57U	60U	58U	62U
Acetophenone	(ug/kg)		53U	52U	54U	52U	56U
Anthracene	(ug/kg)	1000000	54U	53U	56U	54U	58U
Atrazine	(ug/kg)		55U	54U	57U	55U	58U
Benzaldehyde	(ug/kg)		74U	73U	76U	74U	78U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
Benzo(a)anthracene	(ug/kg)	11000	51U	50U	52U	50U	53U
Benzo(a)pyrene	(ug/kg)	1100	58U	57U	59U	57U	61U
Benzo(b)fluoranthene	(ug/kg)	11000	210J	200J	230J	200J	42U
Benzo(ghi)perylene	(ug/kg)	1000000	60U	59U	61U	59U	63U
Benzo(k)fluoranthene	(ug/kg)	110000	79U	78U	82U	79U	84U
Biphenyl	(ug/kg)		59U	58U	61U	59U	63U
Bis(2-chloroethoxy)methane	(ug/kg)		59U	58U	61U	59U	63U
Bis(2-chloroethyl)ether	(ug/kg)		57U	56U	59U	57U	60U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)		69U	68U	71U	69U	73U
Butyl benzyl phthalate	(ug/kg)		58U	57U	60U	58U	62U
Caprolactam	(ug/kg)		58U	57U	60U	58U	61U
Carbazole	(ug/kg)		55U	54U	57U	55U	58U
Chrysene	(ug/kg)	110000	65U	64U	67U	64U	68U
Dibenzo(a,h)anthracene	(ug/kg)	1100	45U	44U	47∪	45U	48U
Dibenzofuran	(ug/kg)	1000000	60U	59U	61U	59U	63U
Diethyl phthalate	(ug/kg)		62U	61U	64U	62U	66U
Dimethyl phthalate	(ug/kg)		58U	57U	60U	58U	61U
Di-n-butyl phthalate	(ug/kg)		55U	54U	57U	55U	58U
Di-n-octyl phthalate	(ug/kg)		61U	60U	63U	61U	65U
Fluoranthene	(ug/kg)	1000000	54U	53U	87J	53U	57U
Fluorene	(ug/kg)	1000000	61U	60U	63U	60U	64U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

1

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
Hexachlorobenzene	(ug/kg)	12000	58U	57U	59U	57U	61U
Hexachlorobutadiene	(ug/kg)		56U	54U	57U	55U	59U
Hexachlorocyclopentadiene	(ug/kg)		58U	56U	59U	57U	61U
Hexachloroethane	(ug/kg)		61U	60U	63U	61U	65U
Indeno(1,2,3-cd)pyrene	(ug/kg)	11000	46U	45U	47U	46U	48U
Isophorone	(ug/kg)		54U	53U	56U	54U	57U
m-Nitroaniline	(ug/kg)		47U	46U	48U	47U	50U
Naphthalene	(ug/kg)	1000000	62U	60U	64U	61U	65U
Nitrobenzene	(ug/kg)		79U	77U	81U	78U	83U
N-Nitrosodiphenylamine	(ug/kg)		59U	58U	61U	59U	63U
N-Nitrosodipropylamlne	(ug/kg)		60U	59U	62U	59U	63U
o-Cresol	(ug/kg)	1000000	60U	59U	62U	60U	63U
o-Nitroanillne	(ug/kg)		46U	45U	47U	46U	48U
o-Nitrophenol	(ug/kg)		56U	54U	57U	55U	59U
p-Chloroaniline	(ug/kg)		43U	42U	44U	43U	45U
p-Chloro-m-cresol	(ug/kg)		50U	49U	51U	50U	53U
PCP	(ug/kg)	55000	84U	82U	86U	83U	88U
p-Cresol	(ug/kg)	1000000	57U	56U	59U	57U	60U
Phenanthrene	(ug/kg)	1000000	58U	56U	69J	57U	61U
Phenol	(ug/kg)	1000000	55U	54U	56U	54U	58U
p-Nitroaniline	(ug/kg)		62U	60U	64U	61U	65U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 3 of 8 Date: 05/30/2007

TABLE 7

LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 RCSB-28(2-4) 12/01/2005	RCSB-29 RCSB-29(0-2) 12/01/2005
p-Nitrophenol	(ug/kg)		45U	44U	46U	44U	47U
Pyrene	(ug/kg)	1000000	64U	63U	71J	63U	67U

1

The second

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

1

Page: 5 of 8 Date: 05/30/2007

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005
2.2-oxyblis (1-chloropropane)	(ug/kg)		59U	120U	62U
2,4,5-Trichlorophenol	(ug/kg)		56U	120U	59U
2,4,6-Trichlorophenol	(ug/kg)		54U	110U	57U
2.4-Dichlorophenol	(ug/kg)		68U	140U	72U
2.4-Dimethylphenol	(ug/kg)		58U	120U	61U
2.4-Dinitrophenol	(ug/kg)		310U	640U	330U
2,4-Dinitrotoluene	(ug/kg)		54U	110U	57U
2,6-Dinitrotoluene	(ug/kg)		52U	110U	55U
2-Chloronaphthalene	(ug/kg)		61U	130U	64U
2-Chlorophenol	(ug/kg)		59U	120U	62U
2-Methylnaphthalene	(ug/kg)		61U	130U	65U
3,3-Dichlorobenzidine	(ug/kg)		63U	130U	66U
4,6-Dinitro-o-cresol	(ug/kg)		71U	150U	75U
4-Bromofluorobenzene	(ug/kg)		55U	110U	58U
4-Chlorophenyl phenyl ether	(ug/kg)		58U	120U	61U
Acenaphthene	(ug/kg)	1000000	66U	140U	69U
Acenaphthylene	(ug/kg)	1000000	60U	130U	63U
Acetophenone	(ug/kg)		54U	110U	57U
Anthracene	(ug/kg)	1000000	55U	110U	58U
Atrazine	(ug/kg)		56U	120U	59U
Benzaldehyde	(ug/kg)		76U	160U	79U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 7

LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005
Benzo(a)anthracene	(ug/kg)	11000	51U	110U	54U
Benzo(a)pyrene	(ug/kg)	1100	59U	120U	62U
Benzo(b)fluoranthene	(ug/kg)	11000	220J	82U	43U
Benzo(ghi)perylene	(ug/kg)	1000000	61U	130U	64U
Benzo(k)fluoranthene	(ug/kg)	110000	81U	170U	85U
Biphenyl	(ug/kg)		61U	130U	64U
Bis(2-chloroethoxy)methane	(ug/kg)		60U	130U	64U
Bis(2-chloroethyl)ether	(ug/kg)		58U	120U	61U
Bis(2-ethylhexyl)phthalate (BEHP)	(ug/kg)		71U	150U	74U
Butyl benzyl phthalate	(ug/kg)		59U	120U	63U
Caprolactam	(ug/kg)		59U	120U	62U
Carbazole	(ug/kg)		56U	120U	59U
Chrysene	(ug/kg)	110000	66U	140U	69U
Dibenzo(a,h)anthracene	(ug/kg)	1100	46U	90U	49U
Dibenzofuran	(ug/kg)	1000000	61U	130U	64U
Diethyl phthalate	(ug/kg)		64U	130U	67U
Dimethyl phthalate	(ug/kg)		59U	120U	62U
Di-n-butyl phthalate	(ug/kg)		56U	120U	59U
Di-n-octyl phthalate	(ug/kg)		63U	130U	66U
Fluoranthene	(ug/kg)	1000000	60J	110U	58U
Fluorene	(ug/kg)	1000000	62U	130U	65U

1

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 7 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005
Hexachlorobenzene	(ug/kg)	12000	59U	120U	62U
Hexachlorobutadiene	(ug/kg)		57U	120U	60U
Hexachlorocyclopentadiene	(ug/kg)		59U	120U	62U
Hexachloroethane	(u9/kg)		63U	130U	66U
Indeno(1,2,3-cd)pyrene	(ug/kg)	11000	47U	90U	49U
Isophorone	(ug/kg)		55U	110U	58U
m-Nitroaniline	(ug/kg)		48U	100U	50U
Naphthalene	(ug/kg)	1000000	63U	130U	66U
Nitrobenzene	(ug/kg)		80U	170U	84U
N-Nitrosodiphenylamine	(ug/kg)		61U	130U	64U
N-Nitrosodipropylamine	(ug/kg)		61U	130U	64U
o-Cresol	(ug/kg)	1000000	61U	130U	64U
o-Nitroaniline	(ug/kg)		47U	90U	49U
o-Nitrophenol	(ug/kg)		57U	120U	60U
p-Chloroaniline	(ug/kg)		44U	90U	46U
p-Chloro-m-cresol	(ug/kg)		51U	110U	53U
PCP	(ug/kg)	55000	85U	170U	90U
p-Cresol	(ug/kg)	1000000	58U	120U	61U
Phenanthrene	(ug/kg)	100000	59U	120U	62U
Phenol	(ug/kg)	1000000	56U	120U	59U
p-Nitroaniline	(ug/kg)		63U	130U	66U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 7 of 8 Date: 05/30/2007

TABLE 7

LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005
p-Nitrophenol	(ug/kg)		46U	90U	48U
Pyrene	(ug/kg)	1000000	65U	140U	68U

ug/kg: mlcrogram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-22 RCSB-22(2-4) 11/30/2005	RCSB-22 RCSB-22(4-6) 11/30/2005	RCSB-23 RCSB-23(2-4) 11/30/2005	RCSB-23 RCSB-23(4-6) 11/30/2005	RCSB-24 RCSB-24(2-4) 11/30/2005
Aroclor 1016	(ug/kg)		3.0U	2.8U	2.9U	2.9U	2.9U
Aroclor 1221	(ug/kg)		4.6U	4.3U	4.4U	4.4U	4.4U
Aroclor 1232	(ug/kg)		6.9U	6.4U	6.6U	6.6U	6.6U
Aroclor 1242	(ug/kg)		6.1U	5.7U	5.9U	5.9U	5.9U
Aroclor 1248	(ug/kg)		3.0U	2.8U	2.9U	2.9U	2.9U
Aroclor 1254	(ug/kg)		1.9U	1.8U	1.9U	59	1.9U
Aroclor 1260	(ug/kg)		28	24	40	4.7U	40
Total PCBs (subsurface soil)	(ug/kg)	25000	28	24	40	59	40

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 1 of 7

Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-24 RCSB-24(4-6) 11/30/2005	RCSB-27 RCSB-27(0-2) 12/01/2005	RCSB-27 RCSB-27(2-4) 12/01/2005	RCSB-28 RCSB-28(0-2) 12/01/2005	RCSB-28 4CSB-28(2-4) 12/01/2005
Aroclor 1016	(ug/kg)		2.9U	2.8U	2.7U	2.8U	2.7U
Aroclor 1221	(ug/kg)		4.5U	4.3U	4.2U	4.4U	4.2U
Aroclor 1232	(ug/kg)		6.8U	6.4U	6.3U	6.6U	6.3U
Aroclor 1242	(ug/kg)		6.0U	5.7U	5.6U	5.9U	5.6U
Aroclor 1248	(ug/kg)		2.9U	2.8U	2.7U	2.9U	2.7U
Aroclor 1254	(ug/kg)		59	1.8U	1.8U	1.9U	1.8U
Aroclor 1260	(ug/kg)		4.9U	4.6U	4.5U	1000D	89
Total PCBs (subsurface soil)	(ug/kg)	25000	59	0	0	1000	89

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

1.4		_
80		
- 12		
	-	-

Page: 3 of 7 Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-29 RCSB-29(0-2) 12/01/2005	RCSB-29 RCSB-29(2-4) 12/01/2005	RCSB-30 RCSB-30(0-2) 12/01/2005	RCSB-30 RCSB-30(2-4) 12/01/2005	RCSB-37 RCSB-37(1-2) 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	2.8U	3.0U	3.0U	2.8U
Aroclor 1221	(ug/kg)		4.5U	4.4U	4.6U	4.6U	4.4U
Aroclor 1232	(ug/kg)		6.8U	6.6U	6.9U	6.9U	6.5U
Aroclor 1242	(ug/kg)		6.0U	5.9U	6.1U	6.1U	5.8U
Aroclor 1248	(ug/kg)		2.9U	2.8U	3.0U	3.0U	2.8U
Aroclor 1254	(ug/kg)		1.9U	1.9U	1.9U	1.9U	1.8U
Aroclor 1260	(ug/kg)		270	77	600D	170	4.7U
Total PCBs (subsurface soil)	(ug/kg)	25000	270	77	600	170	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 4 of 7 Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-38 RCSB-38(1-2) 03/05/2007	RCSB-39 RCSB-39(1-2) 03/05/2007	RCSB-40 RCSB-40(1-2) 03/05/2007	RCSB-41 RCSB-41(1-2) 03/05/2007	RCSB-42 RCSB-42(1-2) 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	2.9U	2.8U	2.8U	2.7U
Aroclor 1221	(ug/kg)		4.5U	4.5U	4.4U	4.4U	4.3U
Aroclor 1232	(ug/kg)		6.8U	6.7U	6.6U	6.5U	6.4U
Aroclor 1242	(ug/kg)		6.0U	6.0U	5.8U	5.8U	5.7U
Aroclor 1248	(ug/kg)		2.9U	2.9U	2.8U	2.8U	2.8U
Aroclor 1254	(ug/kg)		1.9U	1.9U	1.8U	37	1.8U
Aroclor 1260	(ug/kg)		4.8U	4.8U	4.7U	4.7U	4,6U
Total PCBs (subsurface soil)	(ug/kg)	25000	0	0	0	37	0

1

-

1

ug/kg: mlcrogram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 5 of 7 Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-43 RCSB-43(1-2) 03/05/2007	RCSB-44 RCSB-44(1-2) 03/05/2007	RCSB-45 RCSB-45(1-2) 03/05/2007	RCSB-46 RCSB-46(1-2) 03/05/2007	RCSB-47 RCSB-47 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	2.8U	2.9U	2.9U	2.8U
Aroclor 1221	(ug/kg)		4.4U	4.4U	4.5U	4.5U	4.3U
Aroclor 1232	(ug/kg)		6.6U	6.5U	6. 7 U	6.7U	6.4U
Aroclor 1242	(ug/kg)		5.9U	5.8U	5.9U	6.0U	5.7U
Aroclor 1248	(ug/kg)		2.9U	2.8U	2.9U	2.9U	2.8U
Aroclor 1254	(ug/kg)		1.9U	1.8U	1.9U	1.9U	1.8U
Aroclor 1260	(ug/kg)		4.8U	4.7U	4.8U	4.8U	4.6U
Total PCBs (subsurface soil)	(ug/kg)	25000	0	0	0	0	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 6 of 7 Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 11/29/2005 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-48 RCSB-48(1-2) 03/05/2007	RCSB-49 RCSB-49(1-2) 03/05/2007	RCSB-50 RCSB-50(1-2) 03/05/2007	RCSB-51 RCSB-51(1-2) 03/05/2007	RCSB-52 RCSB-52(1-2) 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	2.9U	2.8U	2.8U	2.8U
Aroclor 1221	(ug/kg)		4.4U	4.4U	4.4U	4.4U	4.3U
Aroclor 1232	(ug/kg)		6.6U	6.6U	6.6U	6.6U	6.5U
Aroclor 1242	(ug/kg)		5.9U	5.9U	5.8U	5.8U	5.8U
Aroclor 1248	(ug/kg)		2.9U	2.9U	2.8U	2.8U	2.8U
Aroclor 1254	(ug/kg)		1.9U	1.9U	1.8U	1.9U	1.8U
Aroclor 1260	(ug/kg)		95	4.8U	4.7U	60	4.6U
Total PCBs (subsurface soil)	(ug/kg)	25000	95	0	0	60	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 7 of 7 Date: 05/30/2007

TABLE 8 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION SUBSURFACE SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

 PERIOD:
 From 11/29/2005 thru 03/05/2007 - Inclusive

 SAMPLE TYPE:
 Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCSB-53 RCSB-53(1-2) 03/05/2007	RCSB-54 RCSB-54(1-2) 03/05/2007	RCSB-55 RCSB-55(1-2) 03/05/2007	RCSB-56 RCSB-56(1-2) 03/05/2007
Aroclor 1016	(ug/kg)		2.9U	2.8U	2.7U	2.7U
Aroclor 1221	(ug/kg)		4.5U	4.4U	4.2U	4.2U
Aroclor 1232	(ug/kg)		6.7U	6.6U	6.3U	6.2U
Aroclor 1242	(ug/kg)		5.9U	5.8U	5.6U	5.5U
Aroclor 1248	(ug/kg)		2.9U	2.8U	2.7U	2.7U
Aroclor 1254	(ug/kg)		1.9U	1.8U	1.8U	1.8U
Aroclor 1260	(ug/kg)		81	4.7U	4.5U	4.5U
Total PCBs (subsurface soil)	(ug/kg)	25000	81	0	0	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 4 Date: 05/30/2007

TABLE 9 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS TARGET ANAYLTE LIST (TAL) METALS

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

	SITE	NYSDEC	RCGP-01	RCGP-01	RCGP-02	RCGP-02	RCGP-03
CONSTITUENT	SAMPLE ID	SCG	RCGP-1	RCGP-01F	RCGP-02	RCGP-02F	RCGP-03
Aluminum				1000	52701/2003	12/01/2003	520
Aluminum	(ug/I)		5210	128B	5770	168B	532
Antimony	(ug/l)	3	3.170U	3.170U	3.170U	3.170U	3.170U
Arsenic	(ug/I)	25	7.790B	3.320U	6.070B	3.320U	3.320U
Barium	(ug/l)	1000	29.6B	5.070B	111B	69.6B	31.0B
Beryllium	(ug/I)	3	0.580B	0.300B	0.730B	0.380B	0.410B
Cadmium	(ug/l)	5	0.327U	0.327U	0.327U	0.410B	0.327U
Calcium	(ug/l)		34800	29500	8530	6640	30300
Chromium	(ug/l)	50	28.0	0.343U	25.3	0.860B	3.000B
Cobalt	(ug/l)		14.2B	3.750B	11.5B	3.620B	3.040B
Copper	(ug/l)	200	29.8	5.730B	27.6	4.170B	4.860B
Iron	(ug/l)	300	[16700]	296	[11900]	[559]	[1620]
Lead	(ug/l)	25	15.0	2.440B	10.0	2.670B	3.020B
Magnesium	(ug/l)	35000	4520B	3140B	3590B	1630B	4130B
Manganese	(ug/l)	300	[574]	124	227	55.4	86.6
Mercury	(ug/I)	0.7	0.0300U	0.0300U	0.0300U	0.0300U	0.0300U
Nickel	(ug/l)	100	1.560U	1.560U	1.560U	1.560U	1.560U
Potassium	(ug/l)		5860	4290B	19300	18400	8460
Selenium	(ug/l)	10	3.650B	3.410B	3.040U	3.040U	3.040U
Silver	(ug/l)	50	1.640U	1.640U	1.640U	1.640U	1.640U
Sodium	(ug/l)	20000	[66500]	[56000]	1780B	1520B	[34700]

ug/l: micrograms/liter

NYSDEC SCG: NYSDEC Class GA Groundwater Standards

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards

TABLE 9 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS TARGET ANAYLTE LIST (TAL) METALS

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

CONSTITUENT	SITE SAMPLE ID DATE	NYSDEC SCG	RCGP-01 RCGP-1 11/30/2005	RCGP-01 RCGP-01F 11/30/2005	RCGP-02 RCGP-02 12/01/2005	RCGP-02 RCGP-02F 12/01/2005	RCGP-03 RCGP-03 12/01/2005
Thallium	(ug/l)	0.5	3.050U	3.050U	3.050U	3.050U	3.050U
Vanadium	(ug/l)		19.8B	0.701U	17.0B	0.701U	0.701U
Zinc	(ug/l)	2000	45.3	17.7B	121	58.0	43.3

-

ug/I: micrograms/liter NYSDEC SCG: NYSDEC Class GA Groundwater Standards Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards

TABLE 9 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS TARGET ANAYLTE LIST (TAL) METALS

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

	SITE	NYSDEC	RCGP-03
CONSTITUENT	SAMPLE ID	SCG	RCGP-03F
	DATE		12/02/2005
Aluminum	(ug/l)		81.9B
Antimony	(ug/l)	3	3.170U
Arsenic	(ug/i)	25	3.320U
Barium	(ug/l)	1000	25.8B
Beryllium	(ug/l)	3	0.360B
Cadmium	(ug/l)	5	0.327U
Calcium	(ug/l)		27900
Chromium	(ug/l)	50	0.500B
Cobalt	(ug/l)		2.400B
Copper	(ug/l)	200	3.640U
Iron	(ug/l)	300	[439]
Lead	(ug/l)	25	2.650B
Magnesium	(ug/l)	35000	3740B
Manganese	(ug/l)	300	55.0
Mercury	(ug/l)	0.7	0.0300U
Nickel	(ug/l)	100	1.560U
Potassium	(ug/l)		7590
Selenium	(ug/l)	10	3.760B
Silver	(ug/l)	50	1.640U
Sodium	(ug/l)	20000	[31600]
Thallium	(ug/l)	0.5	3.050U

ug/l: micrograms/liter

NYSDEC SCG: NYSDEC Class GA Groundwater Standards

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards

Page: 3 of 4 Date: 05/30/2007

Page: 4 of 4 Date: 05/30/2007

TABLE 9 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS TARGET ANAYLTE LIST (TAL) METALS

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

	SITE	NYSDEC	RCGP-03
CONSTITUENT	SAMPLE ID	SCG	RCGP-03F
	DATE		12/02/2005
Vanadium	(ug/I)		0.701U
Vanadium Zinc	(ug/l) (ug/l)	2000	0.701U 34.0

ug/l: micrograms/liter NYSDEC SCG: NYSDEC Class GA Groundwater Standards

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards
Page: 1 of 3 Date: 05/30/2007

TABLE 10 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive Water

SAMPLE TYPE:

CONSTITUENT	SITE SAMPLE ID DATE	NYSDEC SCG	RCGP-01 RCGP-1 11/30/2005	RCGP-02 RCGP-02 12/01/2005	RCGP-03 RCGP-03 12/01/2005
1,1,1-Trichloroethane	(ug/l)	5	0.32U	0.32U	0.32U
1,1,2,2-Tetrachloroethane	(ug/i)	5	0.30U	0.30U	0.30U
1.1,2-Trichloroethane	(ug/l)	1	0.41U	0.41U	0.41U
1,1-Dichloroethane	(ug/l)	5	0.38U	0.38U	0.38U
1.1-Dichloroethylene	(ug/i)	5	0.42U	0.42U	0.42U
1,2,4-Trichlorobenzene	(ug/l)	5	0.46U	0.46U	0.46U
1,2-Dichloroethane	(ug/l)	0.6	0.34U	0.34U	0.34U
1,2-Dichloropropane	(ug/1)	1	0.40U	0.40U	0.40U
2-Hexanone	(ug/l)	50	1.7U	1.7U	1.7U
Acetone	(ug/l)	50	2.3U	2.3U	2.3U
Benzene	(ug/l)	1.0	0.39U	0.39U	0.39U
Benzene, 1-methylethyl-	(ug/l)	5	0.44U	0.44U	0.44U
Bromodichloromethane	(ug/l)	50	0.33U	0.33U	0.33U
Bromoform	(ug/I)	50	0.32U	0.32U	0.32U
Carbon disulfide	(ug/I)		0.40U	0.40U	0.40U
Carbon tetrachloride	(ug/l)	5	1.1U	1.1U	1.1U
Chlorobenzene	(ug/l)	5	0.47U	0.47U	0.47U
Chloroethane	(ug/l)	5	0.83U	0.83U	0.83U
Chloroform	(ug/l)	7	0.33U	0.33U	0.33U
cis-1,2-Dichloroethylene	(ug/l)	5	0.29U	0.29U	0.29U
cis-1,3-Dichloropropene	(ug/l)	0.4	0.36U	0.36U	0.36U

ug/I: micrograms/liter

NYSDEC SCG: NYSDEC Class GA Groundwater Standards

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards

TABLE 10 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

PERIOD: From 11/30/2005 thru 12/02/2005 - Inclusive SAMPLE TYPE: Water

CONSTITUENT	SITE SAMPLE ID DATE	NYSDEC SCG	RCGP-01 RCGP-1 1 1/30/2005	RCGP-02 RCGP-02 12/01/2005	RCGP-03 RCGP-03 12/01/2005
Cyclohexane	(ug/l)		0.36U	0.36U	0.36U
1.2-Dibromo-3-chloropropane	(ug/l)	0.04	0.38U	0.38U	0.38U
Dibromochloromethane	(ug/l)	50	0.26U	0.26U	0.26U
Dichlorodifluoromethane	(ug/l)	5	0.17U	0.17U	0.17U
1,2-Dibromoethane	(ug/l)	0.0006	0.32U	0.32U	0.32U
trans-1,2-Dichloroethylene	(ug/l)	5	0.40U	0.40U	0.40U
Ethylbenzene	(ug/l)	5	0.45U	0.45U	0.45U
Freon 113	(ug/l)		1.3U	1.3U	1.3U
1.3-Dichlorobenzene	(ug/ł)	3	0.50U	0.50U	0.50U
Methyl Acetate	(ug/l)		0.20U	0.20U	0.20U
Methyl bromide	(ug/l)	5	0.41U	0.41U	0.41U
Methyl chloride	(ug/l)	5	0.34U	0.34U	0.34U
Methyl ethyl ketone	(ug/I)	50	1.1U	1.1U	1.1U
Methyl isobutylketone (MIBK)	(ug/l)		1.6U	1.6U	1.6U
Methylcyclohexane	(ug/l)		0.34U	0.34U	0.34U
Methylene chloride	(ug/l)	5	0.43U	0.43U	0.43U
Methyltert-butylether	(ug/l)	10	0.28U	0.28U	0.28U
1,2-Dichlorobenzene	(ug/l)	3	0.44U	0.44U	0.44U
o-Xylene	(ug/ł)		0.46U	0.46U	0.46U
1,4-Dichlorobenzene	(ug/l)	3	0.54U	0.54U	0.54U
p-Xylene	(ug/l)		1.2U	1.2U	1.2U

-

ug/l: micrograms/llter

NYSDEC SCG: NYSDEC Class GA Groundwater Standards

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards

TABLE 10 LONG ISLAND RAILROAD **DELINEATION PHASE II SITE INVESTIGATION** ROCKVILLE CENTER SUBSTATION GROUNDWATER PROBE SAMPLE RESULTS VOLATILE ORGANIC COMPOUNDS

Page: 3 of 3 Date: 05/30/2007

From 11/30/2005 thru 12/02/2005 - Inclusive PERIOD: Water

SAMPLE TYPE:

CONSTITUENT	SITE SAMPLE ID DATE	NYSDEC SCG	RCGP-01 RCGP-1 11/30/2005	RCGP-02 RCGP-02 12/01/2005	RCGP-03 RCGP-03 12/01/2005
Styrene	(ug/l)	5	0.41U	0.41U	0.41U
Tetrachloroethylene	(ug/l)	5	0.48U	0.48U	0.48U
Toluene	(ug/l)	5	0.36U	0.36U	0.36U
Trans-1,3-Dichloropropene	(ug/l)	0.4	0.32U	0.32U	0.32U
Trichloroethylene	(ug/I)	5	0.46U	0.46U	0.46U
Trichlorofluoromethane	(ug/l)	5	0.22U	0.22U	0.22U
Vinyl chloride	(ug/l)	2	0.33U	0.33U	0.33U

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds NYSDEC Class GA Groundwater Standards

Page: 1 of 4 Date: 05/30/2007

LONG ISLAND RAILROAD DELINEATION PHASE I SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) PARAMETERS

TABLE 11

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE		RCWC-01	RCWC-01	RCWC-02	RCWC-02	
	DATE	US-TCLP/C	03/05/2007	03/05/2007	03/05/2007	03/05/2007	03/05/2007
1,1-Dichloroethylene ()	(ug/l)	700	2.1U	2.1U	2.1U	2.10	2.1U
1,2-Dichloroethane ()	(ug/l)	500	1.7U	1.7U	1.7U	1.7U	1.7U
2,4,5-Trichlorophenol ()	(ug/l)	400000	1.7U	1.7U	1.7U	1.7U	1.7U
2,4,6-Trichlorophenol ()	(ug/l)	2000	1.6U	1.6U	1.6U	1.6U	1.6U
2.4-D ()	(ug/l)	10000	1.670U	1.670U	1.670U	1.670U	1.670U
2,4-Dinitrotoluene ()	(ug/l)	130	1.7U	1.7U	1.7U	1.7U	1.7U
Arsenic ()	(ug/l)	5000	31.0U	31.0U	31.0U	31.0U	31.0U
Barium ()	(ug/l)	100000	345J	349J	762	288J	298J
Benzene ()	(ug/l)	500	1.9U	1.9U	1.9U	1.9U	1.9U
Cadmium ()	(ug/l)	1000	13.0J	9.000U	23.4J	9.000U	16.8J
Carbon tetrachloride ()	(ug/l)	500	5.7U	5.7U	5.7U	5.7U	5.7U
Chlordane ()	(ug/l)	30	0.2734U	0.2734U	0.2734U	0.2734U	0.2734U
Chlorobenzene ()	(ug/l)	100000	2.3U	2.3U	2.3U	2.3U	2.3U
Chloroform ()	(ug/l)	6000	1.7U	1.7U	1.7U	1.7U	1.7U
Chromium ()	(ug/l)	5000	10.0J	6.000U	11.0J	6.000U	18.3J
Endrin ()	(ug/l)	20	0.0099U	0.0099U	0.0099U	0.0099U	0.0099U
Heptachlor ()	(ug/l)	8.0	0.0324U	0.0324U	0.0324U	0.0324U	0.0324U
Heptachlor epoxide ()	(ug/l)	8.0	0.0173U	0.0173U	0.0173U	0.0173U	0.0173U
Hexachlorobenzene ()	(ug/l)	130	1.8U	1.8U	1.8U	1.8U	1.8U
Hexachlorobutadlene ()	(ug/l)	500	1.9U	1.9U	1.9U	1.9U	1.9U
Hexachloroethane ()	(ug/l)	3000	1.7U	1,7U	1.7U	1.7U	1.7U

ug/l: microgram/liter USTCLP/C: TCLP Regulatory Levels

Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 2 of 4 Date: 05/30/2007

TABLE 11 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) PARAMETERS

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive Soil

SAMPLE	TYPE:	5

CONSTITUENT	SITE		RCWC-01	RCWC-01	RCWC-02	RCWC-02	RCWC-03
		US-TCLP/C	03/05/2007	03/05/2007	03/05/2007	03/05/2007	03/05/2007
lead ()	(ug/l)	5000	89.3	74 5	854	96.5	65.2
Lindane ()	(ug/l)	400	0.0101U	0.0101U	0.0101U	0.0101U	0.0101U
Mercury ()	(ug/l)	200	1 08499990	1 08499991	1 08499990	1.08499990	1.0849999U
Methoxychlor ()	(ug/l)	10000	0.010211	0.010211	0.010211	0.010211	0.010211
Methodychiol ()		200000	5 711	5 711	5.711	5 711	5 711
	(ug/l)	200000	5.70	5.70	5.70	5.70	0.70
Nitrobenzene ()	(ug/I)	2000	2.20	2.20	2.20	2.20	2.20
2-Methylphenol ()	(ug/l)	200000	2.1U	2.1U	2.1U	2.1U	2.1U
Pentachlorophenol ()	(ug/l)	100000	2.3U	2.3U	2.3U	2.3U	2.3U
4-Methylphenol ()	(ug/l)	200000	1.9U	1.9U	1.9U	1.9U	1.9U
1,4-Dichlorobenzene ()	(ug/l)	7500	1.7U	1.7U	1.7U	1.7U	1.7U
Pyridine ()	(ug/l)	5000	1.4U	1.4U	1.4U	1.4U	1.4U
Selenium ()	(ug/l)	1000	21.0U	26.6J	21.0U	21.0U	21.0U
Silver ()	(ug/I)	5000	6.000U	6.000U	6.000U	6.000U	16.5J
Silvex ()	(ug/l)	1000	1.670U	1.670U	1.670U	1.670U	1.670U
Tetrachloroethylene ()	(ug/l)	700	2.4U	2.4U	2.4U	2.4U	2.4U
Toxaphene ()	(ug/l)	500	0.1286U	0.1286U	0.1286U	0.1286U	0.1286U
Trichloroethylene ()	(ug/l)	500	2.3U	2.3U	2.3U	2.3U	2.3U
Vinyl chloride ()	(ug/I)	200	1.6U	1 <i>.</i> 6U	1.6U	1.6U	1.6U

1

ug/l: microgram/liter USTCLP/C: TCLP Regulatory Levels Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 11 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) PARAMETERS

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive Soil

SAMPLE TYPE:

	SITE		RCWC-03
CONSTITUENT	SAMPLE ID		RCWC-03(2-4)
	DATE	US-TCLP/C	03/05/2007
1,1-Dichloroethylene ()	(ug/l)	700	2.1U
1,2-Dichloroethane ()	(ug/l)	500	1.7U
2,4,5-Trichlorophenol ()	(ug/l)	400000	1.7U
2,4,6-Trichlorophenol ()	(ug/I)	2000	1.6U
2.4-D ()	(ug/l)	10000	1.670U
2,4-Dinitrotoluene ()	(ug/l)	130	1.7U
Arsenic ()	(ug/I)	5000	31.0U
Barium ()	(ug/l)	100000	310J
Benzene ()	(ug/l)	500	1.9U
Cadmium ()	(ug/I)	1000	9.000U
Carbon tetrachloride ()	(ug/l)	500	5.7U
Chlordane ()	(ug/l)	30	0.2734U
Chlorobenzene ()	(ug/I)	100000	2.3U
Chloroform ()	(ug/I)	6000	1.7U
Chromium ()	(ug/l)	5000	10.7J
Endrin ()	(ug/l)	20	0,0099U
Heptachlor ()	(ug/l)	8.0	0.0324U
Heptachlor epoxide ()	(ug/l)	8.0	0.0173U
Hexachlorobenzene ()	(ug/l)	130	1.8U
Hexachlorobutadiene ()	(ug/I)	500	1.9U
Hexachloroethane ()	(ug/l)	3000	1.7U

ug/I: microgram/liter USTCLP/C: TCLP Regulatory Levels Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 3 of 4 Date: 05/30/2007

TABLE 11

Page: 4 of 4 Date: 05/30/2007

LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) PARAMETERS

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE		RCWC-03
CONSTITUENT	SAMPLE ID		RCWC-03(2-4)
	DATE	03-1CLP/C	03/03/2007
Lead ()	(ug/I)	5000	34.2J
Lindane ()	(ug/l)	400	0.0101U
Mercury ()	(ug/l)	200	1.0849999U
Methoxychlor ()	(ug/l)	10000	0.0102U
Methyl ethyl ketone ()	(ug/l)	200000	5.7U
Nitrobenzene ()	(ug/I)	2000	2.2U
2-Methylphenol ()	(ug/l)	200000	2.1U
Pentachlorophenol ()	(ug/l)	100000	2.3U
4-Methylphenol ()	(ug/i)	200000	1.9U
1,4-Dichlorobenzene ()	(ug/l)	7500	1.7U
Pyridine ()	(ug/l)	5000	1.4U
Selenium ()	(ug/l)	1000	21.0U
Silver ()	(ug/l)	5000	6.000U
Silvex ()	(ug/l)	1000	1.670U
Tetrachloroethylene ()	(ug/l)	700	2.4U
Toxaphene ()	(ug/l)	500	0.1286U
Trichloroethylene ()	(ug/l)	500	2.3U
Vinyl chloride ()	(ug/l)	200	1.6U

1

Qualifiers defined in Appendix B: Data Flag/Qualifiers

-	1	
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER	- C	
	AL	
and the second se	10	

Page: 1 of 1 Date: 05/30/2007

TABLE 12 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	RCWC-01 RCWC-01(S) 03/05/2007	RCWC-01 RCWC-01(2-4) 03/05/2007	RCWC-02 RCWC-02(S) 03/05/2007	RCWC-02 RCWC-02(2-4) 03/05/2007	RCWC-03 RCWC-03(S) 03/05/2007	RCWC-03 RCWC-03(2-4) 03/05/2007
Corrosivity (as pH)	(ppm)	7.1	5.2	7.2	5.6	5.7	6.8
Reactive Cyanide	(mg/kg)	10.00U	10.00U	10.00U	10.00U	10.00U	10.00U
Ignitability (degrees F)	(ppm)	140	140	140	140	140	140
Reactive Sulfide	(mg/kg)	40.00U	40.00U	40.00U	40.00U	40.00U	40.00U

mg/kg: milligram/kilogram

Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 1 of 2 Date: 05/30/2007

TABLE 13 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS RCRA METALS

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive Soil

SAMPLE TYPE:

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCWC-01 RCWC-01(S) 03/05/2007	RCWC-01 RCWC-01(2-4) 03/05/2007	RCWC-02 RCWC-02(S) 03/05/2007	RCWC-02 RCWC-02(2-4) 03/05/2007	RCWC-03 RCWC-03(S) 03/05/2007
Arsenic	(mg/kg)	16	[18.1]	3.650	[19.6]	2.150	11.7
Barium	(mg/kg)	10000	64.3	28.5	228	13.4	49.4
Cadmium	(mg/kg)	60	1.010	0.228J	6.000	0.065U	0.989
Chromium	(mg/kg)	6800	15.2	10.5	35.5	10.2	20.6
Lead	(mg/kg)	3900	230	18.9	1480	19.3	176
Mercury	(mg/kg)	5.7	0.040UD	0.049JD	[2278.87]	[38:300]D	[27.600]D
Selenium	(mg/kg)	6800	0.538J	0.559J	0.952J	0.194U	0.846J
Silver	(mg/kg)	6800	0.392J	0.229J	40.4	0.194U	0.879

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 2 of 2 Date: 05/30/2007

TABLE 13 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS RCRA METALS

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCWC-03 RCWC-03(2-4) 03/05/2007
Arsenic	(mg/kg)	16	3.360
Barium	(mg/kg)	10000	31.6
Cadmium	(mg/kg)	60	0.264J
Chromium	(mg/kg)	6800	11.3
Lead	(mg/kg)	3900	17.8
Mercury	(mg/kg)	5.7	0.056JD
Selenium	(mg/kg)	6800	0.203U
Silver	(mg/kg)	6800	0.298J

mg/kg: milligram/kilogram SCO: Soil Cleanup Objective

1

1

1

1

Qualifiers defined in Appendix B: Data Flag/Qualifiers

TABLE 14 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCWC-01 RCWC-01(S) 03/05/2007	RCWC-01 RCWC-01(2-4) 03/05/2007	RCWC-02 RCWC-02(S) 03/05/2007	RCWC-02 RCWC-02(2-4) 03/05/2007	RCWC-03 RCWC-03(S) 03/05/2007
Aroclor 1016	(ug/kg)		3.0U	2.8U	3.1U	2.7U	3.1U
Aroclor 1221	(ug/kg)		4.7U	4.3U	4.8U	4.2U	4.9U
Aroclor 1232	(ug/kg)		7.0U	6.5U	7.2U	6.3U	7.3U
Aroclor 1242	(ug/kg)		6.3U	5.7U	6.4U	5.6U	6.5U
Aroclor 1248	(ug/kg)		3.0U	2.8U	3.1U	2.7U	3.2U
Aroclor 1254	(ug/kg)		2.0U	1.8U	1400D	1.8U	2.1U
Aroclor 1260	(ug/kg)		5.0U	4.6U	5.1U	4.5U	5.2U
Total PCBs (subsurface soil)	(ug/kg)	25000	0	0	1400	0	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 1 of 2 Date: 05/30/2007

TABLE 14 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCWC-03 RCWC-03(2-4) 03/05/2007
Aroclor 1016	(ug/kg)		2.8U
Aroclor 1221	(ug/kg)		4.4U
Aroclor 1232	(ug/kg)		6.6U
Aroclor 1242	(ug/kg)		5.9U
Aroclor 1248	(ug/kg)		2.9U
Aroclor 1254	(ug/kg)		1.9U
Aroclor 1260	(ug/kg)		4.7U
Total PCBs (subsurface soil)	(ug/kg)	25000	0

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 2 of 2 Date: 05/30/2007

Page: 1 of 4 Date: 05/30/2007

TABLE 15 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS PESTICIDES AND HERBICIDES

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

	SITE	6NYCRR Part 375	RCWC-01	RCWC-01	RCWC-02	RCWC-02	RCWC-03
CONSTITUENT	DATE	Industrial Use SCOs	RCWC-01(S) 03/05/2007	RCWC-01(2-4) 03/05/2007	03/05/2007	RCWC-02(2-4) 03/05/2007	03/05/2007
2,4.5-T	(ug/kg)		42.3U	38.7U	43.0U	36.9U	43.4U
2.4-D	(ug/kg)		42.3U	38.7U	43.0U	36.9U	43.4U
2.4-DB	(ug/kg)		42.3U	38.7U	43.0U	36.9U	43.4U
4,4-DDD	(ug/kg)	180000	0.85U	0.76U	0.86U	0.75U	0.86U
4,4-DDE	(ug/kg)	120000	0.95U	0.86U	0.97U	0.84U	0.97U
4,4-DDT	(ug/kg)	94000	0.87U	0.79U	0.89U	0.77U	3.9P
Aldrin	(ug/kg)	1400	1.5U	1.3U	1.5U	1.3U	1.5U
alpha-BHC	(ug/kg)	6800	0.77U	0.70U	0.79U	0.68U	0.79U
alpha-Chlordane	(ug/kg)		1.0U	0.91U	1.0U	0.89U	1.0U
beta-BHC	(ug/kg)	14000	1.1U	0.95U	1.1U	0.93U	1.1U
delta-BHC	(ug/kg)	100000	2.0U	1.8U	2.0U	1.7U	2.0U
Dicamba	(ug/kg)		42.3U	38.7U	43.0U	36.9U	43.4U
Dichlorprop	(ug/kg)		42.3U	38.7U	43.0U	36.9U	43.4U
Dieldrin	(ug/kg)	2800	0.99U	0.90U	1.0U	0.88U	1.0U
Dinoseb	(ug/kg)		42.3U	38. 7 U	43.0U	36.9U	43.4U
Endosulfan I	(ug/kg)	920000	1.1U	0.96U	1.1U	0.94U	1.1U
Endosulfan II	(ug/kg)	920000	1.1U	1.0U	1.2U	1.0U	1.2U
Endosulfan sulfate	(ug/kg)	920000	1.3U	1.2U	1.3U	1.1U	1.3U
Endrin	(ug/kg)	410000	1.0U	0.93U	1.0U	0.91U	1.0U
Endrin aldehyde	(ug/kg)		1.2U	1.1U	1.2U	1.1U	1.2U
Endrin ketone	(ug/kg)		0.99U	0.90U	1.0U	0.88U	1.0U

ug/kg: microgram/kllogram SCO: Soil Cleanup Objective Qualifiers defined in Appendix B: Data Flag/Qualifiers

Page: 2 of 4 Date: 05/30/2007

TABLE 15 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS PESTICIDES AND HERBICIDES

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCWC-01 RCWC-01(S) 03/05/2007	RCWC-01 RCWC-01(2-4) 03/05/2007	RCWC-02 RCWC-02(S) 03/05/2007	RCWC-02 RCWC-02(2-4) 03/05/2007	RCWC-03 RCWC-03(S) 03/05/2007
gamma-Chlordane	(ug/kg)		1.1U	0.95U	1.1U	0.93U	1.1U
Heptachlor	(ug/kg)	29000	1.1U	1.0U	1.1U	0.99U	1.1U
Heptachlor epoxide	(ug/kg)		1.3U	1.2U	1.3U	1.1U	1.3U
Lindane	(ug/kg)	23000	0.87U	0.78U	0.88U	0.77U	0.89U
Methoxychlor	(ug/kg)		1.0U	0.94U	1.1U	0.92U	1.1U
Silvex	(ug/kg)	1000000	42.3U	38.7U	43.0U	36.9U	43.4U
Toxaphene	(ug/kg)		4.3U	3.9U	4.4U	3.8U	4.4U

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

1

1

1

Qualifiers defined in Appendix B: Data Flag/Qualifiers

6

1

1

TABLE 15 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS PESTICIDES AND HERBICIDES

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

SITE 6NYCRR Part 375 RCWC-03 CONSTITUENT SAMPLE ID Industrial Use RCWC-03(2-4) DATE SCOs 03/05/2007 2,4.5-T 38.6U (ug/kg) 2.4-D (ug/kg) 38.6U 2.4-DB 38.6U (ug/kg) 4,4-DDD 180000 0.77U (ug/kg) 4.4-DDE 120000 0.87U (ug/kg) 4,4-DDT (ug/kg) 94000 0.79U Aldrin (ug/kg) 1400 1.4U alpha-BHC 6800 0.70U (ug/kg) alpha-Chlordane 0.92U (ug/kg) beta-BHC 0.96U (ug/kg) 14000 delta-BHC (ug/kg) 1000000 1.8U Dicamba 38.6U (ug/kg) Dichlorprop (ug/kg) 38.6U Dieldrin 2800 0.91U (ug/kg) Dinoseb (ug/kg) 38.6U Endosulfan I (ug/kg) 920000 0.97U Endosulfan II (ug/kg) 920000 1.0U Endosulfan sulfate (ug/kg) 920000 1.2U Endrín (ug/kg) 410000 0.94U Endrin aldehyde (ug/kg) 1.1U Endrin ketone (ug/kg) 0.91U

ug/kg: microgram/kilogram

SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

[]: Value exceeds 6 NYCRR Part 375 Industrial Use SCO

Page: 3 of 4 Date: 05/30/2007

Page: 4 of 4 Date: 05/30/2007

TABLE 15 LONG ISLAND RAILROAD DELINEATION PHASE II SITE INVESTIGATION ROCKVILLE CENTRE SUBSTATION WASTE CHARACTERIZATION SOIL SAMPLE RESULTS PESTICIDES AND HERBICIDES

PERIOD: From 03/05/2007 thru 03/05/2007 - Inclusive SAMPLE TYPE: Soil

CONSTITUENT	SITE SAMPLE ID DATE	6NYCRR Part 375 Industrial Use SCOs	RCWC-03 RCWC-03(2-4) 03/05/2007
gamma-Chlordane	(ug/kg)		0.96U
Heptachlor	(ug/kg)	29000	1.0U
Heptachlor epoxide	(ug/kg)		1.2U
Lindane	(ug/kg)	23000	0.79U
Methoxychlor	(ug/kg)		0.95U
Silvex	(ug/kg)	1000000	38.6U
Toxaphene	(ug/kg)		3.9U
1			

ug/kg: microgram/kilogram SCO: Soil Cleanup Objective

Qualifiers defined in Appendix B: Data Flag/Qualifiers

APPENDIX C

DELINEATION PHASE II BORING LOGS

◆2229\RR0605701.DOC

-		٦	Dv	irka		Project No	: 2229	Boring No.: RCSB-09			
-			$\sim 2n$	d		Project Na	me: Long Island Railroad	Sheet _1_ of _1_			
		\bigcap		u		Ro	ckville Centre Substation	By: Stephen Tauss			
1		\sim	/ Bd	SULTING ENGL	NEERS						
-	Drilling	Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 6'			
	Driller: -					Drilling Me	thod:	Ground Surface Elevation:			
	Drill Rig	: Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:			
-	Date Sta	rted:	11/29/0	05		Date Comp	oleted: 11/29/05				
			Soil Sa	ample		Photo-					
					Mercury	ionization					
	Depth			Rec.	Vapor	Detector	Sample	Description	USCS		
	(ft.)	No.	Туре	(inches)	(mg/m°)	(ppm)					
	0' - 2'	0	HA	24	0.000	0.0	Brown, fine silty SAND, so	me medium sand and fine to			
P							medium gravel, 1005e.				
-											
	2' - 4'	1	HA	24	0.000	0.0	Brown, fine clayey SAND,	some medium sand and fine			
13							gravel, loose				
-											
_	4' - 6'	2	GP	24	0.000	0.0	Orange-brown, fine to medium SAND, some fine to				
		8					medium gravel, and clay, I	oose.			
-											
-											
-											
1											
Careford and											
-											
-											
14		ſ .									
100											
-									1		
-	Sample '		s.				NOTES				
	SS = Spli	it Spo	on				Samples for mercury anal	vsis were collected at 2'-4' and 4	1'-6'.		
1	HA = Har	nd Au	ger								
	GP = Ge	oprob	e Sam	pler							
	CC = Co	ncrete	e Core								

-

		_			Des is st No.		Barris a Na - DOOD 40	
		Dv	irka		Project NO.	: 2229	Cheet 1 of 1	
	\sim	an	d		Project Nai	ne: Long Island Railroad		
	\sum	Ba		NEERS	Ro	ckville Centre Substation	By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 6	,
) riller:					Drilling Me	thod:	Ground Surface Elevation: -	
Drill Rig:	: Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	11/29/0)5		Date Comp	leted: 11/29/05	_	1
		Soil Sa	ample		Photo-			
	Mercury				ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
0' - 2'	0	HA	24	0.000	0.0	0-4" asphalt.		
						4"-2' Brown, silty CLAY an sand and fine gravel.	d fine SAND, some medium	
2' - 4'	1	HA	24	0.000	0.0	Orange-brown, fine SAND	, some fine gravel and clay.	
4' - 6'	2	HA	24	0.000	0.0	Orange-brown, fine SAND gravel.	, little medium sand and fine	
						2		
Sample SS = Spl HA = Hai GP = Ge CC = Coi	Type: it Spo nd Au oprot	s: bon liger be Sam e Core	pler			NOTES: Samples for mercury anal	lysis were collected at 2'-4' and	4'-6'.

]	Dv	irka		Project No	.: 2229	Boring No.: RCSB-11	
			an	d		Project Na	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	
		$\left(\right)$))Ba	rtiluco	i.	R	ockville Centre Substation	By: Stephen Tauss	
		2	CONS	SULTING ENGI	NEERS	7		-	
	Drilling (Contr	ractor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 6'	
	Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-
	Drill Rig:	Geo	probe	0005		Drive Ham	mer Weight: NA	Boring Diameter:	
	Date Sta	rtea:	11/29/ Soil Sc	2005	1	Date Comp	Dieted: 11/29/2005		
			5011 50	ampie	Mercury	ionization			
_	Depth			Rec.	Vapor	Detector	Sample	Description	USCS
	(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
	0' - 2'	0	HA	24	0.000	0.0	Brown, fine to medium silty	y SAND, little fine to medium	
-							gravel and clay.		
	2' - 4'	1	HA	24	0.000	0.0	Brown, fine to medium SA	ND and CLAY, some fine to	
							medium gravel.		
-									
	4' - 6'	2	НА	24	0.000	0.0	Orange-brown, medium SA	AND and fine to medium	
							GRAVEL, some fine sand.		
-									
									1
200									
-									
-									
									1
1									
1							9		
					1				
-						1			
						97			
1000									
_									
	Sample ⁻	Гуре	s:	I	-I	1	NOTES:	······································	
T	SS = Spl	t Spo	oon				Samples for mercury anal	ysis were collected from 2'-4' an	d 4'-6'.
	GP = Ge		uger be Sami	pler					
	CC = Co	ncret	e Core	pici					
100									

		_			Draiget No.		Poring No + DCSP 12		
		Dv	irka		Project No.	n 2229	Sheet 1 of 1		
	5	an	d		FIUJECTIVA				
	\bigcirc		rtiluco		RO	ckville Centre Substation	By: Stephen Tauss		
Drilling (Contr	actor:	L.A.W.E.S.	NEERS	Geologist:	Stephen Tauss	Boring Completion Depth: 6'		
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	.	
Drill Rig	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:		
Date Sta	rtod	11/29/)5		Date Comp	ate Completed: 11/29/05			
Dute olu		Soil Sa	mnle		Photo-				
		001100	impic	Mercury	ionization				
Depth			Rec.	Vapor	Detector	Sample	Description	uscs	
(ft.)	No.	Type	(inches)	(ma/m^3)	(ppm)				
0' - 2'	0	HA	24	0.000	0.0	Dark brown, silty fine to me	edium SAND, some fine to		
0 L			2.		0.0	medium gravel, loose.			
2' - 4'	1	HA	24	0.000	0.0	Brown, clayey fine to medi gravel.	um SAND, little fine to medium		
4' - 6'	2	HA	24	0.000	0.0	Brown, clayey fine to medi gravel.	um SAND, little fine to medium		
Sample SS = Spl HA = Ha GP = Ge CC = Co	Type: it Spc nd Au oprot ncret	s: bon Iger be Sam e Core	pler			NOTES: Samples for mercury anal	ysis were collected at 2'-4' and 4	4'-6'.	

d		Dv an Ba	rirka d rtilucc	NEERS	Project No. Project Na Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-13 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss			
Drilling (Driller: Drill Rig: Date Sta	Contr - Geo rted:	ractor:	L.A.W.E.S.		Geologist: Drilling Me Drive Hami Date Comp	Stephen Tauss thod: ner Weight: NA lleted: 11/29/05	Boring Completion Depth: 6' Ground Surface Elevation: Boring Diameter:			
Depth (ft.)	Soil Sample Mercury No. Type (inches) (mg/m ³)				Photo- ionization Detector (ppm)	Sample	Sample Description US			
0' - 2'	0	HA	24	0.000	0.0	Brown, fine to medium SA loose.	ND, little fine to medium gravel,			
2' - 4'	- 4' 1 HA 24 0.000				0.0	Orange-brown, fine SAND medium gravel and clay.	, little medium sand and fine to			
4' - 6'	4'-6' 2 HA 24 0.000				0.0	Orange-brown, fine SAND medium gravel.	, little medium sand and fine to			
			- 5 - 4							
Sample SS = Spli HA = Har GP = Ge CC = Cor	Type: t Spo nd Au oprob ncrete	s: Ion Iger De Sa m E Core	pler			NOTES: Samples for mercury analy	ysis were collected at 2'-4' and 4	'-6' .		

F

		Dv	irka		Project No.	: 2229	Boring No.: RCSB-14		
		204	d		Project Na	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>		
	\bigcirc		u rtiluco ulting engi	NEERS	Ro	ckville Centre Substation	By: Stephen Tauss		
Drilling C	ontra	actor: l	A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 6'		
Driller:					Drilling Me	thod:	Ground Surface Elevation:	.	
Drill Rig:	Geop	orobe			Drive Hammer Weight: NA Boring Diameter:				
Date Star	ted:	11/29/0)5		Date Comp	oleted: 11/29/05			
	:	Soil Sa	mple	Mercury	Photo-				
Depth		1	Rec	Vapor	Detector	Sample	Description	uscs	
(ft.)	No.	Type	(inches)	(mq/m^3)	(ppm)				
0' - 2'	0	HA	24	0.000	0.0	0-4" Asphalt.			
						4" to 2' Brown, fine to med gravel, loose.	lium SAND, little fine to medium		
2' - 4'	1	HA	24	0.000	0.0	Orange-brown fine to med medium gravel, loose.	lium SAND, little clay and fine to		
4' - 6'	2	HA	24	0.000	0.0	Orange-brown, fine SAND gravel.	Drange-brown, fine SAND, and fine gravel, little medium gravel.		
Sample T SS = Split HA = Han	ypes Spool	:: on ger				NOTES: Samples for mercury ana	lysis were collected at 2'-4' and 4	4'-6'.	

d		Dv an Ba	rtiluco	NEERS	Project No Project Na R	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCSB-15 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	Boring No.: RCSB-15 Sheet _1_ of _1 By: Stephen Tauss	
Drilling (Driller: Drill Rig: Date Sta	Contr : Geo rted:	actor: probe 11/29 /	L.A.W.E.S. 2005		Geologist: Drilling Me Drive Ham Date Comp	Geologist: Stephen TaussBoring Completion Depth: 6Drilling Method:Ground Surface Elevation: -Drive Hammer Weight: NABoring Diameter:Date Completed: 11/29/2005			
Depth (ft.)	No.	Soil Sa Type	ample Rec. (inches)	Mercury Vapor (mg/m ³)	Photo- ionization Detector (ppm)	Sample	Description	USCS	
0' - 2'	0	НА	24	0.000	0.0	Dark brown, fine to mediur medium gravel and clay. Brown, fine to medium SA	m silty SAND, little fine to		
2 - 4 4' - 6'	2' - 4' 1 HA 24 0.000 4' - 6' 2 HA 24 0.000				0.0	Medium gravel.	AND and fine to medium		
						GRAVEL, some fine sand.			
Sample SS = Sol	Type	s:				NOTES:			
HA = Ha GP = Ge CC = Co	nd Au oprot ncret	iger be Sam e Core	pler			Samples for mercury anal	ysis were collected from 2'-4' an	iu 4 -b.	

					Des is st bla	. 0000	Paring No + DCSD 40	
		Dv	irka		Project No.: 2229 Boring No.: RCSB-16			
	6	an	d		Project Name: Long Island Railroad Sheet <u>1</u> of <u>1</u>		1	
Q	$\sum_{i=1}^{n}$	Ba		NEERS	Ro	Rockville Centre Substation By: Stephen Tauss		
Drilling Contractor: L.A.W.E.S.					Geologist:	Stephen Tauss	Boring Completion Depth: 6'	
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig: Geoprobe					Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	11/29/0)5		Date Comp	leted: 11/29/05		
		Soil Sa	mple		Photo-			
				Mercurv	ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Type	(inches)	(mg/m^3)	(ppm)		·	
0' - 2'	0	HA	24	0.000	0.0	0-4" Asphalt.		i i
						4"-2' Dark brown, silty fine medium gravel, tight.	to medium SAND, some fine to	
2' - 4'	1	HA	24	0.000	0.0	Brown, clayey fine SAND, gravel.	some fine gravel, little medium	
4' - 6'	2	HA	24	0.000	0.0	Brown, fine SAND, some f	ine gravel, little medium gravel.	
Sample	Гуре	s:				NOTES:		
SS = Spli	t Spc	on				Samples for mercury anal	vsis were collected at 2'-4' and 4	4'-6'.
HA = Har	nd Au	iger						
GP = Ge	oprob	e Sam	pler					
CC = Cor	ncrete	e Core						

d		Dv an Ba	irka d rtilucc	NEERS	Project No.: 2229 Boring No.: RCSB-17 Project Name: Long Island Railroad Rockville Centre Substation Bett 1_ of 1 By: Stephen Tauss Geologist: Stephen Tauss Drive Hammer Weight: NA Date Completed: 11/30/05 Boring Completion Depth: 6' Ground Surface Elevation: Boring Diameter: Photo- ionization Dro Detector (ppm) Sample Description USCS 00 0.003 Dark brown, silty fine to medium SAND, little fine to coarse gravel, loose. O 00 0.0 Orange-brown, fine to medium SAND, some clay and fine gravel and medium gravel. O 00 0.0 Orange-brown, fine to medium SAND, some clay and fine gravel and medium gravel. In endium SAND, some clay and fine			
Drilling (Driller: Drill Rig: Date Sta	Contr : Geo rted:	actor: probe	L.A.W.E.S.		Geologist: Stephen Tauss Drilling Method: Drive Hammer Weight: NA Date Completed: 11/20/05		Boring Completion Depth: 6' Ground Surface Elevation: Boring Diameter:	
Depth (ft.)	No.	Soil Sa	Rec.	Mercury Vapor (mg/m ³)	Photo- ionization Detector (ppm)	Sample	Description	USCS
0' - 2'	0	HA	24	0.000	0.003	Dark brown, silty fine to me coarse gravel, loose.	edium SAND, little fine to	
2' - 4'	1	HA	24	0.000	0.0	Orange-brown, fine to mee gravel and medium gravel	dium SAND, some clay and fine	
4' - 6'	2	HA	24	0.000	0.0	Orange-brown, fine to med gravel and medium gravel	dium SAND, some clay and fine .	
Sample SS = Spli HA = Har GP = Gee CC = Cor	Type: It Spo nd Au oprob ncrete	s: oon iger oe Samj e Core	pler			NOTES: Samples for mercury anal	ysis were collected at 2'-4' and 4	l'-6'.

Ĩ.

d		Dv an Ba	rirka d rtilucc	NEERS	Project No. Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCSB-18 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4	
Driller:					Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	11/30/0)5		Date Comp	oleted: 11/30/05		
		Soil Sa	ample		Photo-		·	
				Mercury	ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m³)	(ppm)			
0' - 2'	0	HA	24	0.000	0.0	Brown, fine to medium silty	SAND, some fine to medium	
2'-4'	No. Type (inches) (mg/m³) 0 HA 24 0.000 1 HA 24 0.000 1 HA 24 0.000		0.0	Brown, fine to medium silty SAND, some fine to medium gravel, tight. Orange-brown, fine to clayey SAND, little medium sand and fine to medium gravel.		USCS		
Sample	Turne					NOTEO		
Sample SS = Spli HA = Hai GP = Ge CC = Coi	it Spo nd Au oprot	s: oon iger oe Sam e Core	pler			NOTES: Samples for mercury anal	ysis were collected at 2'-4'.	

								D : N DCCD (0			
			Dv	irka		Project No.	: ZZ29	Boring No.: RCSB-19			
		5	an	d		Project Nar	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>			
-	Joiling Contractor: L.A.W.E.S. Driller: Drill Rig: Geoprobe Date Started: 11/30/05 Soil Sample Mercury Mercury Depth Rec. Yapor (ft.) No. Type Rec. Yapor 0" - 8" 0 HA 8 0.000 8" - 2' 0 HA 24 0.000 2' - 4' 1 HA 24 0.000					Ro	Rockville Centre Substation By: Stephen Tauss				
	Drilling (Contr	actor:	L.A.W.E.S.	NEENO	Geologist:	Stephen Tauss	Boring Completion Depth: 4'			
	Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-		
-	Drill Ria:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:			
_	Date Sta	rted:	11/30/0	05		Date Comp	leted: 11/30/05				
			Soil Sa	mple		Photo-					
				•	Mercury	ionization					
	Depth			Rec.	Vapor	Detector	Sample	Description	USCS		
	(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)					
1	0" - 8"	0	HA	8	0.000	0.0	Dark brown, fine to mediur gravel and slag.	m SAND, some fine to medium			
	8" - 2'	0	HA	16	0.000	0.0	Brown, fine to medium CL/ medium gravel.	AY and SAND, little fine to			
	2' - 4'	1	НА	24	0.000	0.0	Brown, fine to medium CL/ medium gravel.	AY and SAND, little fine to			
-							Ũ				
-											
٦											
-											
		ę.				ł					
-											
								,			
			6								
	2										
				25 5							
-											
			91								
	Somela -						NOTES				
	Sample SS = Soli	t Sno	s. Ion				Samples for mercury anal	vsis were collected at $2'-4'$			
	HA = Har	nd Au	iger								
-	GP = Ge	oprob	e Sam	pler							
1	CC = Cor	Merc. No. Type (inches) (mg/ 8" 0 HA 8 0.0 2' 0 HA 16 0.0 4' 1 HA 24 0.0 4' 1 HA 24 0.0 a 1 HA 16 0.0 4' 1 HA 16 0.0 a 1 HA 16 0.0 a 1 HA 16 0.0 b 1 HA 16 0.0 a 1 HA 16 0.0 b 1 HA 16 0.0 a 1 HA 16 0.0 b 1 HA 16 0.0 a 1 HA 16 0.0 a 1 HA 16 0.0 b 1 HA 16 16 a 1 HA 16 16 b									

d		Dv an Ba	irka d rtilucc	NEERS	Project No.: 2229 Project Name: Long Island Railroad Rockville Centre Substation		Boring No.: RCSB-20 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling	Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4'	
Driller: -					Drilling Me	thod:	Ground Surface Elevation:	
Drill Rig	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Data Sta	rtod.	11/30/	75		Date Comr	leted: 11/30/05	boring blaneter.	
	iteu.	Soil Sc	mplo		Date Comp			<u> </u>
		3011 36	ampie	Moreury	ionization			
Denth		_	Pac	Vapor	Detector	Sample	Description	11909
(ft)	No	Type	(inches)	(ma/m^3)	(nnm)	Sample L	Description	0303
0' - 2'	0	НА	24	0.003		Prown dark brown, clayov s	ilty fing to modium SAND little	· · ·
0-2	U	ΠA	24	0.003	0.0	fine to medium gravel and s	lag.	
Sample	Туре	s:				NOTES:		
SS = Spl	it Spo	on				Samples for mercury analys	sis were collected at 2'-4'.	
HA = Hai	nd Au	iger						
F = Ge	oprot	e Sam	pier					
-00	I LI Elle	- Core						

	d		Dv an Ba	irka d tiluco	NEERS	Project No.: 2229 Project Name: Long Island Railroad Rockville Centre Substation		Boring No.: RCSB-21 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
	Drilling (Driller: Drill Rig:	Contr - Geo	actor:	L.A.W.E.S.		Geologist: Stephen Tauss Drilling Method: Drive Hammer Weight: NA		Boring Completion Depth: 4' Ground Surface Elevation: Boring Diameter:	
	Date Sta	rted:	11/30/0	05		Date Comp	leted: 11/30/05		
			Soil Sa	ample		Photo-			
	Depth			Pac	Mercury	Detector	Sample	Description	11909
	(ft.)	No.	Type	(inches)	(mq/m^3)	(ppm)	Sample	Description	0303
	0' - 2'	0	HA	24	0.000	0.0	Dark brown, clayey silty fin	e SAND, some medium sand	
	2' - 4'	1	НА	24	0.000	0.0	and fine to medium gravel. Brown, fine SAND and CL	AY, little fine to medium gravel.	
	Sample SS = Spli HA = Har	Fypes t Spo nd Au	s: on ger				NOTES: Samples for mercury analy	ysis were collected at 2'-4'.	
	GP = Geo	oprob	e Sam	oler					
٦	CC = Cor	ncrete	e Core						

	7	Dv	irka	5	Project No.	.: 2229	Boring No.: RCSB-22			
		20	d		Project Nar	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>			
	\bigcap	an	u		Rockville Centre Substation		By: Stephen Tauss			
	\sum	Ba		NEERS						
Drilling	Contr	actor:	L.A.W.E.S.	NEERS	Geologist:	Stephen Tauss	Boring Completion Depth: 6'			
Driller: -					Drilling Me	thod:	Ground Surface Elevation:	-		
Drill Rig	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:			
Date Sta	rted:	11/30/0)5		Date Comp	oleted: 11/30/05				
		Soil Sa	ample		Photo-		-			
			-	Mercury	ionization					
Depth			Rec.	Vapor	Detector	Sample	Description	USCS		
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)					
0" - 6"	0	HA	6	0.000	0.0	Blackish-brown, fine to me fine to medium gravel.	edium SAND and SLAG, some			
6" - 2'	0	HA	18	0.000	0.0	Brown, fine to medium SA gravel and clay.	ND, some fine to medium			
2' - 4'	1	HA	24	0.000	0.0	Brown, fine to medium SA gravel and clay.	IND, some fine to medium			
4' - 6'	4' - 6' 2 HA 24 0.000				0.0	Brown, fine to medium SAND, some fine to medium gravel and clay.				
Sample	Type	s:				NOTES:				
SS = Spl	it Spc	on				Samples for mercury anal	lysis were collected at 2'-4' and	4'-6'.		
HA = Ha	nd Au	iger								
GP = Ge	oprot	e Sam	pler							
CC = Co	ncret	e Core								
	d		Dv an Ba cons	rirka d tilucc	NEERS	Project No. Project Nai Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-23 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
------	------------	--------------------	------------------------	----------------------	---------	----------------------------------	---	--	--------	--
	Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 6'		
	Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-	
1	Drill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:		
	Date Sta	rted:	11/30/0	05	r	Date Comp	leted: 11/30/05			
			Soil Sa	ample		Photo-				
1			·,		Mercury	ionization				
	Depth			Rec.	Vapor	Detector	Sample	Description	USCS	
1111	(ft.)	No.	Туре	(inches)	(mg/m°)	(ppm)				
	0" - 6"	0	HA	6	0.000	0.0	Blackish-brown, fine to me fine to medium gravel.	Blackish-b row n, fine to medium SAND and SLAG, some fine to medium gravel.		
	6" - 2'	0	HA	18	0.000	0.0	Brown, fine to medium SAND, some fine to medium gravel and clay.			
	2' - 4'	1	HA	24	0.000	0.0	Brown, fine to medium SAND, some fine to medium gravel and clay.			
	4' - 6'	'-6' 2 HA 24 0.000				0.0	Brown, fine to medium SA gravel and clay.	ND, some fine to medium		
	Sample	Гуре	s:				NOTES:			
9	SS = Spli	t Spo	on				Samples for mercury anal	ysis were collected at 2'-4' and 4	1'-6'.	
1	HA = Har	nd Au	iger					-		
	GP = Geo	oprob	e Sam	pler						
	CC = Cor	ncrete	e Core							

d		Dv an Ba	irka d rtilucc	NEERS	Project No.: 2229 Boring No.: RCSB-24 Project Name: Long Island Railroad Sheet 1 of 1 Rockville Centre Substation By: Stephen Tauss			
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 6'	
Driller: -					Drilling Method: Ground Surface Elevation:			.
Drill Rig	: Geo	probe			Drive Ham	Drive Hammer Weight: NA Boring Diameter:		
Date Sta	rted:	11/30/0	/30/05 Date C			oleted: 11/30/05	_	
		Soil Sa	mple		Photo-			
			•	Mercury	ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
0' - 2'	0	HA	24	0.000	0.0	Dark brown, silty fine to medium SAND, little clay and fine		
2' - 4'	1	НА	24	0.000	0.0	gravel. Brown, clayey fine SAND,		
4' - 6'	' 2 HA 24 0.000 0.0 Brown, fine to medium SAND, little fine to medium grav loose.				ND, little fine to medium gravel,			
Sample		<u>د.</u>				NOTES		
SS = Snl	it Spo	on				Samples for mercury anal	vsis were collected at 2'-A' and	1'-6'
HA = Ha	nd Au	laer						
GP = Ge	oproh	be Sam	pler					
C = Co	ncrete	e Core						

	d		Dv an Ba	rirka d rtilucc	NEERS	Project No. Project Nar Ro	: 2229 ne: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-25 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
	Drilling (Driller: Drill Rig: Date Sta	Contr - Geo rted:	actor: probe 11/30/0	L.A.W.E.S.		Geologist: Drilling Me Drive Hami Date Comp	Geologist: Stephen TaussBoring Completion DepDrilling Method:Ground Surface ElevatiDrive Hammer Weight: NABoring Diameter:Date Completed: 11/30/05State Completed: 11/30/05			
1	Depth		Soil Sa	Rec.	Mercury Vapor	Photo- ionization Detector	Sample	Description	USCS	
and all	(ft.)	<u>No.</u>	Туре НА	(inches)	(mg/m^3)	(ppm)	Dark brown silty fine to m	edium SAND, little clay and fine		
	0 - 2 2' - 4'	2' - 4' 1 HA 24 0.000				0.0	gravel. Brown, clayey fine SAND,	Park brown, slity fine to medium SAND, little clay and fine ravel. Brown, clayey fine SAND, some fine to medium gravel.		
	4' - 6'	2	НА	24	0.000	0.0	Brown, fine to medium SA loose.	ND, little fine to medium gravel,		
1	Sample SS = Spli HA = Har	Type: t Spo nd Au	s: bon liger		I	1	NOTES: Samples for mercury anal	ysis were collected at 2'-4' and 4	⊥ I'-6'.	
7	CC = Co	ncrete	e Sam e Core							

	_				Designation	. 0000	Paris a No DORD 20	100.00
		Dv	irka		Project No.	.: 2229	Boring No.: RCSB-26	
	5	an	d		Project Nar	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	
				NEERS	Rockville Centre Substation By: St		By: Stephen Lauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss Boring Completion De		
Driller:			_ 1		Drilling Me	thod:	Ground Surface Elevation:	
Drill Ria:	: Geo	probe			Drive Ham	Drive Hammer Weight: NA Boring Diameter:		
Date Sta	rted:	11/29/0	05		Date Comp	Date Completed: 11/29/05		
		Soil Sa	ample		Photo-			
	-			Mercury	ionization			
Depth	Rec. Vapor			Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m^3)	(ppm)			5
0' - 2'	0	HA	24	0.000	0.0	Brown-tan fine to medium	SAND, some fine to medium	
						gravel, loose.		
	ĺ							
2' - 4'	1	HA	24	0.000	0.0	Brown-tan fine to medium gravel, loose.	SAND, some fine to medium	
	ł					l.		
	ſ							
				1				
				}				
	1				}			
	Í			1	1			
				1				
						}		
					[
]				
Sample ⁻	Type	s:		J		NOTES:		
SS = Spli	it Spo	on				Samples for mercury anal	ysis were collected at 2'-4'.	
HA = Hai	nd Au	iger						
GP = Ge	oprot	e Sam	pler					
CC = Cor	ncrete	e Core						

-

*

	d		Dv an Ba	virka d Irtilucc	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCSB-27 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
	Drilling (Driller: Drill Rig	Contr 	actor:	L.A.W.E.S.		Geologist: Stephen Tauss Drilling Method: Drive Hammer Weight: NA		Boring Completion Depth: 4' Ground Surface Elevation: Boring Diameter:		
-	Date Sta	rtod	12/1/0	5		Date Comr	leted: 12/1/05	Doning Diameter		
			Soil Sa	ample		Photo-		J		
1			000000		Mercury	ionization				
	Depth			Rec.	Vapor	Detector	Sample	e Description	USCS	
2	(ft.)	(ft.) No. Type (inches) (mg/m ³			(mg/m^3)	(ppm)		-		
	0" - 5"	'-5" 0 HA 5 0.000				0.0	Dark brown, silty fine to m slag and fine gravel.	Dark brown, silty fine to medium SAND, some clay and slag and fine gravel.		
	5" - 2'	5" - 2' 0 HA 19 0.000					Brown, clayey fine SAND, medium gravel.	some medium sand and fine to		
	2' - 4'	2'-4' 1 HA 24 0.000				0.0	Dark brown, fine to mediu gravel.	m SAND, little fine to medium		
	Sample SS = Spli HA = Har GP = Geo	Type t Spo nd Au oprob	s: oon iger oe Samj	pler			NOTES: Samples for mercury ana	lysis were collected at 2'-4'.		

d		Dv an Ba	irka d rtilucc	NEERS	Project No. Project Nar Ro	: 2229 ne: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-28 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4'		
Driller: -					Drilling Me	thod:	Ground Surface Elevation: -		
Drill Ria	: Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:		
Date Sta	rted [.]	12/1/05	5		Date Comp	te Completed: 12/1/05			
	Soil Sample Pho				Photo-				
		0011 00	impro	Mercury	ionization				
Depth			Rec.	Vapor	Detector	Sample	Description	USCS	
(ft.)	No.	Type	(inches)	(ma/m^3)	(ppm)				
0" - 2"	0	HA	2	0.000	0.0	0.0 Dark brown, silty fine to medium SAND, some slag and			
2" - 2'	0	НА	22	0.000	0.0	Dark brown, silty fine to medium SAND, some slag and ine to medium gravel. Brown, clayey fine to medium SAND, some fine to nedium gravel, tight.			
2' - 4'	1	HA	24	0.000	0.0	Orange-brown, fine to med medium gravel.	dium SAND, some fine to		
Sample SS = Spl IA = Ha SP = Ge CC = Co	Type it Spo nd Au oprot	s: bon liger be Sam e Core	pler			NOTES: Samples for mercury analy	ysis were collected at 2'-4'.		

	d		Dv an Ba	irka d rtilucc	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-29 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
	Drilling (Driller: Drill Rig: Date Sta	Contr - Geo rted:	actor: probe	L.A.W.E.S.		Geologist: Drilling Me Drive Hami Date Comp	Stephen Tauss thod: mer Weight: NA bleted: 12/1/05	Boring Completion Depth: 4' Ground Surface Elevation: Boring Diameter:	-	
	Depth		Soil Sa	Rec.	Mercury Vapor	Photo- ionization Detector	Sample	Sample Description		
	(n.) 0" - 6"	NO .	HA	(incnes) 6	0.000	(ppm) 0.0	Dark brown, fine to medium SAND, some slag and fine gravel.			
	6" - 2'	6" - 2' 0 HA 18 0.000					Brown, fine to medium SA gravel.	Brown, fine to medium SAND, some fine to medium gravel.		
	2' - 4'	2'-4' 3 HA 24 0.000					Brown-gray, clayey fine to gravel, slight hydrocarbon	medium SAND, some fine odor.		
				N						
2										
	Sample SS = Spli HA = Har GP = Geo CC = Cor	Types t Spo nd Au oprob ncrete	s: on ger e Sam e Core	bler		I	NOTES: Samples for mercury analy	ysis were collected at 2'-4'.	I	

d		Dv an Ba	irka d rtilucc	NEERS	Project No. Project Nai Ro	: 2229 ne: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-30 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4	, ·	
Driller: -					Drilling Me	thod:	Ground Surface Elevation: -		
Drill Rig	: Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:		
Date Sta	rted:	12/1/05	5		Date Comp				
		Soil Sa	mple		Photo-	Photo-			
				Mercury	ionization				
Depth	Rec. Vapor Detec		Detector	Sample	Description	USCS			
(ft.)	No.	Туре	(inches)	(mg/m³)	(ppm)				
0' - 1'	0	HA	12	0.000	0.0	Orange-dark brown, silty fi	ine to medium SAND, some		
	'-2' 0 HA 12 0.000					slag and fine gravel.			
1' - 2'	0	HA	12	0.000	0.0	Brown, clayey fine to medium SAND, some fine gravel.			
2' - 4'	- 4' 1 HA 24 0.000				0.0	Brown, clayey fine to medi	um SAND, some fine gravel.		
Sample SS = Spl HA = Ha GP = Ge	Type it Spo nd Au oprob	s: pon liger be Sam	pler			NOTES: Samples for mercury anal	ysis were collected at 2'-4'.		

 $\mathbf{\hat{A}}$

G

	d		Dv an Ba	irka d rtiluco	NEERS	Project No. Project Nar Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-31 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
-	Drilling (Driller: Drill Rig:	Contr Geo	actor:	L.A.W.E.S.		Geologist: Drilling Me Drive Hami	Geologist: Stephen TaussBoring Completion DeptDrilling Method:Ground Surface ElevationDrive Hammer Weight: NABoring Diameter:		
	Date Sta	rted:	11/30/0 Soil Sa)5 Imple	Mercury	Date Comp Photo- ionization	oleted: 11/30/05		
	Depth (ft.)	No.	Туре	Rec. (inches)	Vapor (mg/m ³)	Detector (ppm)	Sample Description US		
	0' - 2'	0	HA	24	0.000	0.0	Brown, silty fine SAND, so	me fine to medium gravel.	
	2' - 4'	2'-4' 1 HA 24 0.000					Orange-brown, clayey fine and fine to medium gravel	SAND, some medium sand	
	Sample	Type	S:				NOTES:		
-	SS = Spli HA = Har GP = Geo CC = Cor	t Spo nd Au oprob ncrete	on Iger Ie Samj e Core	pler			Samples for mercury anal	ysis were collected at 2'-4'.	

d		Dv an Ba	rirka d Irtilucc	NEERS	Project No. Project Nai Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-32 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4'	
Driller: -					Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig	Geo	nrohe			Drive Ham	mer Weight: NA	Boring Diameter:	
Data Sta	rtod:	11/20/	05		Data Com	lotod: 11/30/05	Boning Branicton	
Date Sta	Teu.	Soil S	omnlo		Date Comp			
	Soil Sample Mercui				ionization			
Donth	<u> </u>		Pac	Vapor	Detector	Sampla	Description	
(4)	No	Tuno	(inchoc)		Detector	Sample	Description	0303
(11.)	0	Type	(mones)	(mg/m)	(ppm)	Dort brown brown oiltufin	CAND little clourerd fire to	
2' - 4'	1	HA	24	0.000	0.0	medium gravel. Brown, fine to medium SAI gravel, loose.	ND, some fine to medium	
Sample	Туре	s:				NOTES:		
SS = Spl	it Spc	on				Samples for mercury analy	sis were collected at 2'-4'.	
HA = Ha	nd Au	iger						
GP = Ge	oprot	e Sam	pier			-		
CC = CO	ncret	e Core						

	d		Dv an Ba	rirka d Irtilucc	NEERS	Project No.: 2229 Project Name: Long Island Railroad Rockville Centre Substation		Boring No.: RCSB-33 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
~	Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4'	
	Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	
	Drill Rig:	Geo	probe			Drive Hami	me r Weight: NA	Boring Diameter:	
	Date Sta	rted:	11/30/	05		Date Comp	leted: 11/30/05		
			Soil Sa	ample		Photo-			
					Mercury	ionization			
-	Depth		T	Rec.	Vapor	Detector	Sample	Description	USCS
	(π.)	NO.	Туре	(inches)	(mg/m)	(ppm)	Dorly brown oilty fing to rea		_
-	0-2	0^{-2} 0 HA 24 0.000					Dark brown silty line to me	edium SAND, some fine to	
	2'-4' 1 HA 24 0.000					0.0	Brown, fine to medium SA gravel, loose.	ND, some fine to medium	
	Sample	Гуре	s:	ž			NOTES:		
	SS = Spli HA = Har GP = Geo CC = Cor	t Spo nd Au oprob ncrete	oon iger oe Samj e Core	pler			Samples for mercury anal	lysis were collected at 2'-4'.	

d		Dv an Ba	irka d rtilucc	, NEERS	Project No.: 2229 Project Name: Long Island Railroad Rockville Centre Substation		Boring No.: RCSB-34 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling (Contr	actor:	LAW.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4'	
Driller:					Drilling Me	thod:	Ground Surface Elevation:	
	Coo	probo			Drive Herry		Boring Diameter:	
	Geo	probe			Drive Hami	both Commisted: 11/20/05		
Date Sta	rted:	11/30/0			Date Comp	leted: 11/30/05		
		Soil Sa	ample		Photo-			
				Mercury	ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	(ft.) No. Type (inches) (mg/m				(ppm)			
0' - 2'	0'-2' 0 HA 24 0.000				0.0	Brown, silty clayey fine SAM	ND, some medium sand and	
2' - 4'	2'-4' 1 HA 24 0.000					Brown, clayey fine to medium gravel.	um SAND, and fine to medium	
Sample	Гуре	s:				NOTES:		
SS = Spli	it Spo	on				Samples for mercury analy	vsis were collected at 2'-4'.	
HA = Har	nd Au	iger						
GP = Geo	oprob	e Sam	pler					
CC = Cor	ncrete	e Core						

1

H

		_						Desire No. 6 DOOD OF	
-		1	Dv	rirka		Project No.	: 2229	Boring No.: RCSB-35	
			an	d		Project Nar	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	
		\bigcap		rtiluoo		Ro	ckville Centre Substation	By: Stephen Tauss	
1		Z	/ Dd	SULTING ENGL	NEERS				
	Drillina (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 4'	
-	Driller:					Drilling Me	thod:	Ground Surface Elevation:	
	Drill Dia	Goo	nroho			Drivo Ham	mor Woight: NA	Boring Diamotor:	
	Drill Kig.	Geo	11/20/	75		Drive Ham		Boring Diameter	
	Dale Sla	neu.	5 cil Sc	mnlo		Date Comp	ieleu. 11/30/05		
			3011 37	ampie	Morcury	ionization			
	Donth	th Rec. Vapor		Vapor	Detector	Sample	Description	11909	
	(ft)	No. Type (inches) (mg/m ³)		(npm)	Jampie	Description	0000		
	0' - 2'	0	НА	24	0.000	0.0	Dark brown silty fine SAN	D some clay and medium	
	0-2	2 0 HA 24 0.000		0.000	0.0	sand little fine gravel	b, some day and medium		
1									
1	2' - 4'	- 4' 1 HA 24 0.000			0.000	0.0	Brown, CLAY, and fine sar	nd.	
and a									
-									
(
-									
1						1			
					}				
-									
					1				
1									
-									
1						J			
1									
1									
	4								
1	0	-							
-	Sample	ype	5:				NOTES:		
12	55 = 5011 HA = Har	r Sho M Vii					Samples for mercury analy	ysis were collected at 2°-4°.	
1	GP = Get		yei e Sami	oler					
	CC = Cor	crete	e Core						
-									

d		Dv an Ba	irka d rtilucc	NEERS	Project No. Project Nai Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-36 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth:	4'
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	
Drill Dia	Goo	nroho			Drive Ham	mor Moight: NA	Boring Diamotor:	
	Geo				Drive Hallin		Boring Diameter	
Date Sta	πea:	11/30/0			Date Comp	Dieted: 11/30/05		
		Soil Sa	ample		Photo-			
D (1				Mercury	ionization			
Depth		-	Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ⁻)	(ppm)			_
0' - 2'	0	HA	24	0.000	0.0	Brown-dark brown, silty cla some fine gravel.	ayey fine to medium SAND,	
2' - 4'	1	HA	24	0.000	0.0	Brown, fine SAND and CL	AY, little fine gravel.	
Sample	Гуре	s:				NOTES:		
SS = Spli HA = Har GP = Geo CC = Cor	t Spo nd Au oprob	on Iger Ie Sam	pler			Samples for mercury anal	ysis were collected at 2'-4'.	

7		7	Dv	irka		Project No	.: 2229	Boring No.: RCSB-37		
4			∖ on	d		Project Na	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	1	
-		C	Ba	rtiluco		Ro	ockville Centre Substation	By: Stephen Tauss		
	Drilling	Contr	actor:	I.A.W.E.S.	MLENS	Geologist:	Stephen Tauss	Boring Completion Depth: 2'		
	Driller:			2.0		Drilling Method: Ground Surface Elevation: -			_	
7	Drill Ria	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:		
	Date Sta	rted:	3/5/07			Date Comp	oleted: 3/5/07	5		
	Soil Sample					Photo-				
7		Mercu Nora			Mercury	ionization				
5	Depth	(ft) No Type (inches) (mg/n		Vapor	Detector	Sample	Description	USCS		
	(ft.)	No.	Туре	(inches)	(mg/m³)	(ppm)				
	0' - 1'	1	HA	12	0.000	0.0	Dark brown, clayey tine to medium gravel and slag, lo	medium SAND, some fine to bose, moist.		
	1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to medin gravel, loose, moist.	um SAND, little fine to medium		
							G.			
						"ret				
-										
			-							
	Sample	I ype	5:				NOTES:	llocted at 1' 2'		
	ວວ - ວpi HA = Ha	n opo nd Au	laer				Sample for lab analysis co			
	GP = Ge	oprob	e Sami	oler						
	CC = Co	ncrete	e Core							

d		Dv an Ba	irka d rtiluco	NEERS	Project No. Project Nar Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-38 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	3/5/07			Date Comp	ompleted: 3/5/07		
		Soil Sa	ample		Photo-			
				Mercury	ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	uscs
(ft.)	No.	Туре	(inches)	(mg/m^3)	(ppm)	,		
0' - 1'	1	HA	12	0.000	0.0	Dark brown, clayey fine to	medium SAND, some fine to	
1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to media gravel, loose, moist.	um SAND, little fine to medium	
Sample								
Sample SS = Spli HA = Har GP = Geo CC = Cor	t Spo nd Au oprob ncrete	s: on ger e Samp e Core	oler			NOTES: Sample for lab analysis col	lected at 1' - 2'.	

d		Dv an Ba	rirka d rtilucc	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCSB-39 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling (Driller: Drill Rig:	Contr - Geo	probe	L.A.W.E.S.		Geologist: Drilling Me Drive Ham	Stephen Tauss thod: mer Weight: INA	Boring Completion Depth: 2' Ground Surface Elevation: Boring Diameter:	-
Depth	epth Rec. Vapo			Mercury Vapor	Photo- ionization	Sample	Description	USCS
(ft)	No.	Type	(inches)	(mq/m^3)	(ppm)		Decemption	
0' - 1' 1' - 2'	1	HA	12	0.000	0.0	Dark brown, clayey fine to medium gravel and slag, lo Brown, clayey fine to medi	medium SAND, some fine to bose, moist. um SAND, little fine to medium	
						gravel, loose, moist.		
Sample SS = Spli HA = Har GP = Ge CC = Cor	t Spo t Spo d Au oprob ncrete	s: on ger e Sam e Core	pler			NOTES: Sample for lab analysis co	llected at 1' - 2'.	

		Dv an	irka d		Project No. Project Nar	: 2229 ne: Long Island Railroad	Boring No.: RCSB-40 Sheet _1_ of _1	
Q	$\sum_{i=1}^{n}$			NEERS	Ro	ckville Centre Substation	By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.	2	Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller:					Drilling Me	thod:	Ground Surface Elevation:	
Drill Ria:	: Geo	probe			Drive Hami	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	3/5/07			Date Comp	leted: 3/5/07	5	
		Soil Sa	mple		Photo-	noto-		
				Mercury	ionization	~		
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m^3)	(ppm)	-	-	
0' - 1'	1	HA	12	0.000	0.0	Brown to dark brown, silty	fine to medium SAND, little fine	
1' - 2'	2	НА	12	0.000	0.0	Brown, clayey fine to medi gravel.	um SAND, little fine to medium	
Sample	Type	s:				ravel.		
SS = Spli	it Spo	oon				Sample for lab analysis co	llected at 1' - 2'.	
$\mathbf{HA} = \mathbf{Har}$	nd Au	lger						
$\mathbf{F} = \mathbf{G}\mathbf{e}$	oprob	be Sam	bler					
	rcrete	core						

	d		Dv an Ba	irka d rtilucc		Project No Project Na Ro	.: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-41 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
1	Drilling				NEERS	Goologist:	Stophon Tauss	Boring Completion Depth: 2'	
	Drilling	Contr	actor:	L.A. W.E.S.		Boring Completion Depth. 2			
	Driller: -						tnod:	Ground Surface Elevation:	-
	Drill Rig	: Geo	probe			Drive Hammer Weight: NA Boring Diameter:			
	Date Sta	ate Started: 3/5/07				Date Comp	pleted: 3/5/07		
		Soil Sample				Photo-			
	D (1	enth Rec Vanor		Mercury	Ionization	Camala	Description		
100	Depth	epth Rec. Vapor		vapor	Detector	Sample	Description	0505	
	(IL)	NO.	туре	(inches)	(mg/m)	(ppm)	Brown to dark brown cilty	fine to modium SAND little fine	
1	0 - 1		на	12	0.000	0.0	to medium gravel and slag	nne to medium SAND, intie line j.	
	1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to medi gravel.	um SAND, little fine to medium	
	Sample SS = Sp HA = Ha GP = Ge	it Spc nd Au	s: oon iger oe Sam	oler			NOTES: Sample for lab analysis co	llected at 1' - 2'.	
	CC = Co	ncrete	e Core						
1000									

-		_			Droject No.	. 2220	Poring No : DCSP 42	
		Dv	irka		Project No.	2229 max Long Island Bailroad	Shoot 1 of 1	
	5	an	d		Project Nai			- 1
	$\sum_{i=1}^{n}$	Ba		NEERS	Ro	ckville Centre Substation	By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller:					Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	3/5/07			Date Comp	leted: 3/5/07		
		Soil Sa	ample		Photo-			
			Mercury ionization					
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
0' - 1'	1	HA	12	0.000	0.0	Brown to dark brown, claye	ey fine to medium SAND, little	
						fine to medium gravel and	slag, loose, moist.	
1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to medi gravel.	um SAND, little fine to medium	
Sample SS = Spli HA = Hai GP = Ge CC = Coi	Type: Type: it Spo nd Au oprob	s: oon iger e Sam e Core	pler			NOTES: Sample for lab analysis co	llected at 1' - 2'.	

Î 🔳	1	Dv	virka		Project No	.: 2229	Boring No.: RCSB-43	
		an	h		Project Na	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	
Q	\sum		ITTILLCO	NEERS	Ro	ckville Centre Substation	By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	3/5/07			Date Comp	pleted: 3/5/07		-
		Soil Sa	ample		Photo-			
		1		Mercury	ionization	Commis	Description	
Depth (ft)	No	Tune	Kec.	vapor	Detector	Sample	Description	0505
$\frac{(10)}{10'-1'}$	1	но				Brown to dark brown, clave	ev fine to medium SAND little	
0-1	'		12	0.000	0.0	fine to medium gravel and	slag, loose, moist.	
							5. <i>i</i>	
7								
1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to medi	um SAND, little fine to medium	
						gravei.		
ĩ								
-								
the second se								
7								
ř.								
í i								
l.								
1								
Sample		e.				NOTES		
Sample SS = Spl	t Spc	s. Don				Sample for lab analysis co	ellected at 1' - 2'.	
HA = Ha	nd Au	iger						
GP = Ge	oprob	e Sam	pler					
CC = Co	ncrete	e Core						

d		Dv an Ba	irka d rtilucc		Project No Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCSB-44 Sheet _1_ of _1 By: Stephen Tauss	
Drilling (Driller:	Contr	actor:	L.A.W.E.S.	NEERS	Geologist: Drilling Me	Stephen Tauss thod:	Boring Completion Depth: 2' Ground Surface Elevation:	-
Drill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	3/5/07			Date Comp	oleted: 3/5/07		
		Soil Sa	ample	Mercury	Photo- ionization			
Depth			Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
0' - 1'	1	HA	12	0.000	0.0	Dark brown, clayey fine to medium gravel and slag, lo	medium SAND, some fine to ose, moist.	
1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to media gravel, loose, moist.	um SAND, little fine to medium	
Sample SS = Spli HA = Har GP = Geo CC = Cor	it Spo nd Au oprob	s: oon iger oe Sam e Core	pler			NOTES: Sample for lab analysis col	llected at 1' - 2'.	

1

1

- A

1

	d		Dv an Ba	rirka d rtilucc	NEERS	Project No Project Nai Ro	: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-45 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
1	Drilling C Driller: Drill Rig: Date Star	contr - Geo rted:	probe	L.A.W.E.S.		Geologist: Drilling Me Drive Hami Date Comp	Stephen Tauss thod: mer Weight: NA oleted: 3/5/07	Boring Completion Depth: 2' Ground Surface Elevation: Boring Diameter:	-
	Depth	Soil SampleMercurDepthRec.Vapor(ft.)No.Type(inches)(mg/m)			Mercury Vapor	Photo- ionization Detector	Sample	Description	USCS
-	(rt.) 0' - 1'	0'-1' 1 HA 12 0.000			(mg/m) 0.000	(ppm) 0.0	Brown to dark brown, silty	fine to medium SAND, little fine	
	1' - 2'	2	НА	12	0.000	0.0	Brown, clayey fine to media gravel.	um SAND, little fine to medium	
1	Sample	Type:	s:			I	NOTES: Sample for lab analysis co	lected at 1' - 2'	
1	HA = Har GP = Geo CC = Cor	nd Au oprob ncrete	iger be Samj e Core	pler					

		By: Stephen Tauss	
Drilling Contractor: L.A.W.E.S.	Geologist: Stephen Tauss	Boring Completion Depth: 2'	
Driller'	Drilling Method:	Ground Surface Elevation:	
Drill Rig: Geoprobe	Drive Hammer Weight: NA	Boring Diameter:	
Date Started: 3/5/07	Date Completed: 3/5/07	boring blanctor.	
Soil Sample	Date Completed: 3/5/07		
Mercury	ionization		
Depth Rec. Vapor	Detector Samp	le Description	uscs
(ft.) No. Type (inches) (mg/m ³)	(mad)		
0' - 1' 1 HA 12 0.000	0.0 Brown to dark brown, sill	v fine to medium SAND, little fine	
1'-2' 2 HA 12 0.000	0.0 Brown, clayey fine to me gravel.	dium SAND, little fine to medium	
Samula Tumagi			
Sample Types: SS = Split Spoon	NUTES: Sample for lab analysis	ollected at 1' 2'	
HA = Hand Auger		$\mathbf{U} = \mathbf{U} = \mathbf{U}$	1
GP = Geoprobe Sampler			
CC = Concrete Core			

-	d		Dv an Ba	rirka d rtilucc		Project No Project Na Ro	.: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-47 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
	Drilling (Driller: Drill Rig: Date Sta	Contr Geo rted:	actor: probe 3/5/07	L.A.W.E.S.		Geologist: Drilling Me Drive Hami Date Comp	Stephen Tauss thod: mer Weight: NA pleted: 3/5/07	Boring Completion Depth: 2' Ground Surface Elevation: Boring Diameter:	-
and a second	Depth (ft.)	No.	Soil Sa	ample Rec. (inches)	Mercury Vapor (mg/m ³)	Photo- ionization Detector (ppm)	Sample	Description	USCS
	0' - 1' 1' - 2'	1 2	HA HA	12 12	0.000	0.0	Brown to dark brown, silty clay and fine to medium gr Brown, fine to medium SAI gravel, loose, moist.	fine to medium SAND, little avel, loose, moist. ND and CLAY, fine to medium	
a martine									
1	Sample	[vpe	ç.				NOTES		
and the second se	SS = Spli HA = Har GP = Ge CC = Cor	t Spo nd Au oprob	on Iger Ie Sam Ie Core	pler			Sample for lab analysis col	llected at 1' - 2'.	

P

		Dv	irka		Project No. Project Nai	: 2229 me: Long Island Railroad	Boring No.: RCSB-48 Sheet <u>1</u> of <u>1</u>	
	$\sum_{i=1}^{n}$		rtiluco	NEERS	Ro	ckville Centre Substation	By: Stephen Tauss	
Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller: -					Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig	: Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	2
Date Sta	rted:	3/5/07			Date Comp	leted: 3/5/07	_	
		Soil Sa	ample		Photo-			
			•	Mercury	ionization			
Depth	Rec. Vapor			Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
0' - 1'	1	HA	12	0.000	0.0	Brown to dark brown, claye	ey fine to medium SAND, little	
	1				i d	fine to medium gravel and	slag, loose, moist.	
1' - 2'	2	НА	12	0.000	0.0	Brown, clayey fine to medi gravel.	um SAND, little fine to medium	
Sample SS = Spl HA = Ha GP = Ge CC = Co	Type it Spo nd Au oprob	s: pon liger pe Sam e Core	pler			NOTES: Sample for lab analysis co	llected at 1' - 2'.	

Ţ	d		Dv an Ba	irka d rtiluco	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-49 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Ð	Drilling (Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
_	Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-
٦	Drill Rig	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
	Date Sta	rted:	3/5/07			Date Comp	Date Completed: 3/5/07		
5		Soil Sample				Photo-		<u> </u>	
	Mercur				Mercury	ionization	÷		
	Depth		_	Rec.	Vapor	Detector	Sample	Description	USCS
-	(ft.)	No.	Туре	(inches)	(mg/m³)	(ppm)			
	0' - 1' 1 HA 12 0.000					0.0	Dark brown, clayey silty fin medium gravel and slag, lo	e to medium SAND, little fine to bose, moist.	
	1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to medi gravel, loose, moist.	um SAND, little fine to medium	
	Sample SS = Spli HA = Har GP = Geo CC = Cor	Type: t Spo nd Au oprob ncrete	s: on ger e Samp e Core	pler	I	1	NOTES: Sample for lab analysis co	llected at 1' - 2'.	

	 	-			Project No	• 2229	Boring No : RCSR-50	1
		Dv	irka		Project No.	me: I ong Island Pailroad	Sheet 1 of 1	
	5	an	d			akville Centre Substation	By: Stephen Tauss	
	\bigcup	Ba	rtiluco	NEERS	RU		y. Stephen rauss	
Drilling (Contr	actor:	L.A.W.E.S.	NECKO	Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	. 1
Drill Ria:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted	3/5/07			Date Comr	oleted: 3/5/07		
		Soil Sa	mple		Photo-			
				Мегсигу	ionization			
Depth	Rec. Vapor			Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m^3)	(ppm)			
0' - 1'	1	HA	12	0.000	0.0	Dark brown, clayey silty fine to medium SAND, little fine to		
						medium gravel and slag, lo	oose, moist.	
1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to mediu	um SAND, little fine to medium	
						gravel, loose, moist.		
	1.1	i = ij						
	1 1	1						
		. d						
	ñ (
	i							
			1					
		()						
Sample	Туре	s:		42		NOTES:		
SS = Spl	it Spo	on				Sample for lab analysis col	lected at 1' - 2'.	
HA = Hai	nd Au	iger						
GP = Ge	oprob	e Sam	pler					
	ncrete	Core						

-		ן	Dv	irka		Project No	.: 2229	Boring No.: RCSB-51	
e.			2n	d		Project Na	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	
4		\Box	Ba		NEERS	Ro	ockville Centre Substation	By: Stephen Tauss	
e i	Drilling (Contr	actor:	L.A.W.E.S.	ILLINO	Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
	Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	-
	Drill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
	Date Sta	rted:	3/5/07		,	Date Comp	Date Completed: 3/5/07		
-		Soil Sample							
	Denth	Depth Rec. Vapor					Comula	Description	LICCO
	Deptn (ft)	Depth Rec. Vapor (ft.) No. Type (inches) (mg/m ³			(ma/m ³)		Sample	Description	0505
-	0' - 1'	(ft.) No. Type (inches) (mg/m 0'-1' 1 HA 12 0.000			0.000	0.0	Brown to dark brown, clave	ev fine to medium SAND, little	
-	0 1						fine to medium gravel and	slag, loose, moist.	
9				10	0.000				
	1' - 2'	2	HA	12	0.000	0.0	Brown, clayey fine to medi	um SAND, little fine to medium	
							gravel.		
									,
_				120					
-									
_									
-									
-									
	Sample	Гуре	s:		·		NOTES:		
1	SS = Spli	t Spo	on				Sample for lab analysis co	llected at 1' - 2'.	
	HA = Har	10 Au	iger ie Sami	nler					
	CC = Cor	ncrete	e Core						
Dist.		_	1.				J.		

Droject No : 2220	DCCD F2
Dvirka Project No.: 2229 Boring No.	RUSD-02
and Project Name: Long Island Railload Sheet 1	
Bartilucci By: Steph	IT TOUSS
CONSULTING ENGINEERS	
Drilling Contractor: L.A.W.E.S. Geologist: Stephen Tauss Boring Co	mpletion Depth: 2'
Driller: Drilling Method: Ground S	urface Elevation:
Drill Rig: Geoprobe Drive Hammer Weight: NA Boring Di	ameter:
Date Started: 3/5/07 Date Completed: 3/5/07	
Soil Sample Photo-	
Mercury ionization	
Depth Rec. Vapor Detector Sample Description (44) No. Time (inclusion) (a. (-3) (normal)	n USCS
(ft.) No. Type (inches) (mg/m) (ppm)	
0°-1° 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, medium gravel and slag loose moist	some fine to
1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.	
SS = Split Spoon Sample for lab analysis collected at 1 ³	- 2'
HA = Hand Auger	- 4 .
GP = Geoprobe Sampler	

1

	d		Dv an Ba	virka d Irtilucc	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCSB-53 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
	Drilling (Driller: Drill Rig:	Conti - Geo	ractor: probe	L.A.W.E.S.		Geologist: Drilling Me Drive Ham	Stephen Tauss hthod: mer Weight: NA	Boring Completion Depth: 2' Ground Surface Elevation: Boring Diameter:	-
	Date Sta	rted:	3/5/07			Date Comp	oleted: 3/5/07		
-		Mercur							
_	Depth			Rec.	Vapor	Detector	Sample	Description	USCS
	(ft.)	(ft.) No. Type (inches) (mg/m			(mg/m ³)	(ppm)			
-	0' - 1'	0'-1' 1 HA 12 0.000				0.0	Dark brown, clayey silty fir	e to medium SAND, little fine to	
	1' - 2'	2	НА	12	0.000	0.0	Brown, clayey fine to medi	um SAND, little fine to medium	
	1 - 2	2		12	0.000	0.0	gravel, loose, moist.		
ļ									
-									
	Sample T SS = Spli HA = Har GP = Geo CC = Cor	Type: t Spo nd Au oprob ncrete	s: oon ger oe Samp e Core	pler			NOTES: Sample for lab analysis co	llected at 1' - 2'.	

d		Dv an Ba	irka d rtilucc	;i	Project No. Project Nai Ro	: 2229 ne: Long Island Railroad ckville Centre Substation	Boring No.: RCSB-54 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling C Driller: Drill Rig: Date Stat	Contr Geo rted:	probe	L.A.W.E.S.	NEERS	Geologist: Drilling Me Drive Hami Date Comp	Geologist: Stephen TaussBoring Completion Depth: 2'Orilling Method:Ground Surface Elevation:Orive Hammer Weight: NABoring Diameter:Oate Completed: 3/5/07State Completed: 3/5/07		
Depth		Soil Sa	Rec.	Mercury Vapor	Photo- ionization Detector	Sample	Description	USCS
(ft.)	(ft.) No. Type (inches) (mg/m ³)			(mg/m^{2})	(ppm)	Dark brown, clayey silty fin	e to medium SAND, little fine to	
1' - 2'	Depth (ft.) No. Type Rec. (inches) Vapor (mg/m ³) 0' - 1' 1 HA 12 0.000 1' - 2' 2 HA 12 0.000				0.0	medium gravel and slag, lo Brown, clayey fine to medi gravel, loose, moist.	um SAND, little fine to medium	
Sample 1		<u>د.</u>			[NOTES		
SS = Spli HA = Har GP = Geo CC = Cor	it Spo nd Au oprot	on Iger De Sam e Core	pler			Sample for lab analysis co	llected at 1' - 2'.	

-

Drilling Contractor: L.A.W.E.S. Geologist: Stephen Tauss Drilling Method: Driller: Date Started: 3/5/07 Boring Completion Depth: 2' Ground Surface Elevation: Boring Diameter: Date Completed: 3/5/07 Soil Sample Photo- Ionization Depth (tt) Photo- Mercury (tt) Photo- Ionization Detector Boring Completion Depth: 2' Ground Surface Elevation: Date Started: 3/5/07 0' - 1' 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, some fine to medium gravel and slag, loose, moist. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.	d		Dv an Ba	rirka d rtilucc	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	2229 Boring No.: RCSB-55 2: Long Island Railroad Sheet 1_ of 1 2: wille Centre Substation By: Stephen Tauss	
Driller: Drilling Method: Ground Surface Elevation: Driller: sorid Sample Drive Hammer Weight: NA Boring Diameter: Date Started: 3/5/07 Date Completed: 3/5/07 Date Completed: 3/5/07 Depth Rec. Vapor Detector (ft.) No. Type (inches) (mg/m) (pg/m) 0' - 1' 1 HA 12 0.000 0.0 1' - 2' 2 HA 12 0.000 Brown, silly fine to medium SAND, some fine to medium gravel and slag, loose, moist.	rilling C	Contr	actor:	L.A.W.E.S.		Geologist:	Stephen Tauss	Boring Completion Depth: 2	,
Drill Rig: Geoprobe Date Started: 3/5/07 Drive Hammer Weight: NA Boring Diameter: Automatic Solution Date Completed: 3/5/07 Date Completed: 3/5/07 Depth Rec. Vapor Detector 0'-1' 1 HA 12 0.000 0.0 1'-2' 2 HA 12 0.000 0.0	riller:	-				Drilling Me	thod:	Ground Surface Elevation:	
Date Started: 3/5/07 Date Completed: 3/5/07 Solution Photo- ionization Detector (ppm) Photo- ionization Detector Photo- Sample Description L 0' - 1' 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, some fine to medium gravel and slag, loose, moist. L 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND. Rec. No. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND. Rec. No. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND. Rec. No.	rill Rig:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Solid Sample Photo- Mercury ionization Depth (ft.) Rec. Warr (inches) Photo- Warr (mg/m ³) Detector Sample Description L 0' - 1' 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, some fine to medium gravel and slag, loose, moist. Image: Comparison of the tomedium SAND, some fine to medium gravel and slag, loose, moist. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.	ate Sta	rted:	3/5/07			Date Comp	oleted: 3/5/07		
Depth (ft.) Rec. No. Rec. (inches) Operation (mg/m ³) Detector (ppm) Sample Description U 0' - 1' 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, some fine to medium gravel and slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of the top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparison of top medium stand slag, loose, moist. Image: Comparis	1		Soil Sa	ample	Morcury	Photo-			
No. Type (inches) (mg/m ³) (ppm) 0' - 1' 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, some fine to medium gravel and slag, loose, moist. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.	Depth			Rec.	Vapor	Detector	Sample	Description	USCS
0' - 1' 1 HA 12 0.000 0.0 Brown, clayey fine to medium SAND, some fine to medium gravel and slag, loose, moist. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.	(ft.)	No.	Туре	(inches)	(mg/m^3)	(ppm)	campio		
1'-2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.	0' - 1'	1	HA	12	0.000	0.0	Brown, clayey fine to medi	um SAND, some fine to	
1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND. 1' - 2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND.							medium gravel and slag, lo	pose, moist.	
1'-2' 2 HA 12 0.000 0.0 Brown, silty fine to medium SAND. 1' 12 0.000 0.0 Brown, silty fine to medium SAND.	j.								
	1' - 2'	2	НА	12	0 000	0.0	Brown, silty fine to mediun	n SAND.	
		_		. =					
	3								
									a
	1	8							
	1								
									1
		6	0						
	n i	83							
						3			
	0								
		6							
Sample Types: NOTES:	ample 1	Гуре	s:				NOTES:		
SS = Split Spoon Sample for lab analysis collected at 1' - 2'.	S = Spli	t Spo					Sample for lab analysis co	llected at 1' - 2'.	
GP = Geoprobe Sampler	ina – ⊓ar SP = Ger	oproh	iyei be Sami	oler					
CC = Concrete Core	C = Cor	ncrete	e Core	F					

 \sim

	1	Dv	irka		Project No.	: 2229	Boring No.: RCSB-56	
		an	d		Project Nar	me: Long Island Railroad	Sheet <u>1</u> of <u>1</u>	
	\bigcap		u 		Ro	ckville Centre Substation	By: Stephen Tauss	
	\sum	/ Ba	ITTILUCO	NEERS				
Drilling (Contr	actor:	L.A.W.E.S.	NEERS	Geologist:	Stephen Tauss	Boring Completion Depth: 2'	
Driller:	-				Drilling Me	thod:	Ground Surface Elevation:	- 1
Drill Ria:	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted [.]	3/5/07			Date Comp	leted: 3/5/07	3	
	100.	Soil Sa	ample		Photo-			
			•	Mercury	ionization	onization		
Depth	h Rec. Vapo			Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m^3)	(ppm)			
0' - 1'	1	HA	12	0.000	0.0	Brown to dark brown, silty	fine to medium SAND, little	
						clay and fine to medium gr	avel, loose, moist.	
1' - 2'	2	HA	12	0.000	0.0	Brown, fine to medium SA	ND and CLAY, fine to medium	
						gravel, loose, moist.		
					1			
					ļ			
Sample ⁻	Гуре	s:		<u>L</u>		NOTES:		
SS = Spli	t Spo	on				Sample for lab analysis co	llected at 1' - 2'.	
IA = Har	nd Au	iger						
SP = Ge	oprob	e Sam	pler					
C = Cor	ncrete	e Core						

d		Dv an Ba	virka d Irtilucc	NEERS	Project No Project Na Ro	.: 2229 me: Long Island Railroad ockville Centre Substation	Boring No.: RCWC-01 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss	
Drilling	Contr	actor:	L.A.W.E.S.	1	Geologist:	Stephen Tauss	Boring Completion Depth: 4'	
Driller: -					Drilling Me	thod:	Ground Surface Elevation:	-
Drill Rig	Geo	probe			Drive Ham	mer Weight: NA	Boring Diameter:	
Date Sta	rted:	3/5/07			Date Comp	oleted: 3/5/07		
		Soil Sa	ample	Mercury	Photo- ionization			
Depth		, y	Rec.	Vapor	Detector	Sample	Description	USCS
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)			
0' - 2'	1	HA	24	0.000	0.0	Dark brown, clayey and sil fine to medium gravel.	ty fine to coarse SAND, little	
2' - 4'	2	HA	24	0.000	0.0	Brown, fine to medium SA gravel and clay.	ND, some fine to medium	
Sample						NOTES:		
ISS = Spl HA = Ha	t Spo nd Au	ion Iger				Sample for lab analysis co	llected at 2' - 4'.	
GP = Ge	oprob	e Sam	pler					
CC = Co	ncrete	e Core						

	<u>ר</u>	D 14	inko		Project No	: 2229	Boring No.: RCWC-02			
		DV	ігка		Project Na	me: Long Island Railroad	Sheet 1 of 1			
	\sim	an	d		Ro	ckville Centre Substation	By: Stephen Tauss			
	\sum	ッ Ba	rtiluco							
Drilling (Contr	actor		NEERS	Geologist.	Stephen Tauss	Boring Completion Depth:	4'		
Drillor:	-	uotor.	L./ (L.O.		Drilling Me	thod:	Ground Surface Elevation:	· 		
Drill Rig	Geo	nrohe			Drive Ham	mer Weight: NA	Boring Diameter:			
Date Sta	rted.	3/5/07			Date Comr	Drive Hammer Weight: NA Borning Diameter				
Duto otu		Soil Sa	ample	1	Photo-					
				Mercury	ionization					
Depth			Rec.	Vapor	Detector	Sample	Description	USCS		
(ft.)	No.	Туре	(inches)	(mg/m ³)	(ppm)					
0' - 2'	0'-2' 1 HA 24 0.000				0.0	Dark brown, clayey and sill	y fine to coarse SAND, little			
						fine to medium gravel.				
2' - 4'	2	HA	24	0.000	0.0	Brown, fine to medium SA	ND, some fine to medium			
						gravel and clay.				
Commit	There									
Sample	it Spe	5: 				NOTES:				
HA = Har	nd Au	laer				Sample for lab analysis co	ilected at 2 - 4.			
GP = Ge	oprob	e Sam	pler							
CC = Cor	ncrete	e Core								
	Dvirka and Bartilucci CONSULTING ENGINEERS Drilling Contractor: L.A.W.E.S. Driller: Drill Rig: Geoprobe Date Started: 3/5/07					Project No.: 2229 Project Name: Long Island Railroad Rockville Centre Substation		Boring No.: RCWC-03 Sheet <u>1</u> of <u>1</u> By: Stephen Tauss		
--	---	-----	---------	---------------------------	--	--	--	--	------	--
						Geologist: Drilling Me Drive Hami Date Comp	Stephen Tauss thod: mer Weight: NA pleted: 3/5/07	Boring Completion Depth: 4' Ground Surface Elevation: Boring Diameter:		
	Depth (ft.)	No.	Soil Sa	ample Rec. (inches)	Mercury Vapor (mg/m ³)	Photo- ionization Detector (ppm)	Sample	Description	USCS	
	0' - 2' 2' - 4'	2	HA	24	0.000	0.0 0.0	Dark brown, clayey and sil fine to medium gravel. Brown, fine to medium SA gravel and clay.	ty fine to coarse SAND, little ND, some fine to medium		
	Sample Types: SS = Split Spoon HA = Hand Auger GP = Geoprobe Sampler CC = Concrete Core						NOTES: Sample for lab analysis collected at 2' - 4'.			

1

APPENDIX D

DATA VALIDATOR RESUME

+2229\RR0605701.DOC

ROBBIN A. PETRELLA

QUALITY ASSURANCE OFFICER

EDUCATION

SUNY at Buffalo, B.S. (Chemical Engineering) - 1986

PROFESSIONAL EXPERIENCE

Ms. Petrella's professional quality assurance/quality control (QA/QC) experience spans 18 years. During this time, she served as a Sample and Data Analyst for two large environmental laboratories. Ms. Petrella was responsible, as Data Review Group Leader, lor supervision of data validation and QA/QC coordination between the laboratory and its clients. Her technical experience includes both the analysis and review of environmental samples using numerous protocols, including those developed by the United States Environmental Protection Agency (USEPA), New York State Department of Environmental Conservation (NYSDEC), and New Jersey Department of Environmental Protection (NJDEP).

Since joining the firm, Ms. Petrella has been responsible for preparing Quality Assurance/Quality Control Plans and Waste Analysis Plans for a number of targe private sector clients. These include Chemical Waste Disposal Corporation, the International Business Machines Corporation and Northrop Grumman Corporation. She also has prepared overall QA/QC programs for Northrop Grumman's on-site laboratories.

Ms. Petrella has prepared QA/QC Plans and data validation/usability reports for remedial investigation and feasibility studies conducted at numerous New York State Registry Sites, including those in the Towns of Cheektowaga, Schodack, and North Tonawanda, as well as the Villages of Croton-on-Hudson and Brentwood, New York. These tasks involved evaluation of the laboratory data to determine compliance with NYSDEC Analytical Services Protocols (ASP), as well as to determine the usability of the data particularly if it was not consistent with ASP requirements.

Ms. Petrella has assisted in the preparation and performance of air sampling programs for remedial investigation/feasibility studies (RI/FS) conducted at landfill/Superfund sites in Wallkill, New York and East Northport, New York. She has also performed water supply sampling for an RI/FS in Rensselaer County, New York, and a surface and subsurface water and soil sampling program as part of an RI/FS in Elmira, New York.

Ms. Petrella has acted as the QA/QC officer, and prepared and performed field audits for Superfund site investigations in Tonawanda, New York; Owego, New York; Brookhaven, New York; and Hornell, New York, and for a major railroad facility in New York City. She also has assisted in the preparation of laboratory contracts for analytical services for hazardous waste studies in Schodack, New York; Jamaica, New York; and the New York State Superfund Standby contract.

Ms. Petrella is responsible for performing laboratory audits on all laboratories having contracts with the firm as part of the New York State Superfund Program. She has been certified by the USEPA in both organic and inorganic data validation by successfully completing courses authorized by the USEPA. These certifications have also been accepted by the NYSDEC.

Ms. Petrella is responsible for the data validation of all data packages from ongoing hydrogeologic investigation and landfill closure investigations in Brookhaven and Hauppauge, New York. She also is responsible

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

DVIRKA AND BARTILUCCI

O RAP-HW.RES 0204 HWRNRAP.507

CONSULTING ENGINEERS

ROBBIN A. PETRELLA

for validation of all data collected during field investigations for a large aerospace corporation, a major utility on Long Island, and manufactured gas plants across Long Island.

Ms. Petrella has acted as Project Manager for a standby project with the NYSDEC and a groundwater treatment project located in New Jersey.

Ms. Petrella has been instrumented in the design and implementation of the firm's GISKey Database system. In that role, she is responsible for the maintenance of the system and training of personnel in its use. She also is responsible for all updates to the GISKey program and communicates on a regular basis with the GISKey venders with regard to system improvements and network administration. Currently, there are seven ongoing projects that use GISKey, five of which are MGP sites. Ms. Petrella is responsible for entering and reporting of all chemistry data from GISKey.

Ms. Petrella also has conducted indoor and outdoor air sampling programs as part of MGP site field investigations. She has conducted interviews with homeowners as part of the air sampling program. She also is responsible for data validation of all the data from the air sampling programs.

Ms. Petrella has performed multimedia compliance audits for several hospitals in both New York and New Jersey. She also has prepared audit reports and EPA disclosure reports based on the compliance audits

Ms. Petrella presently is the Quality Assurance/Quality Control officer for the firm and responsible for reviewing all work relating to Quality Assurance/Quality Control for hazardous waste, hazardous substance, manufactured gas plant and solid waste projects undertaken by the firm. She also is responsible for preparation and maintenance of the Corporate Quality Assurance Manual, and for inventory and maintenance of the firm's field/sampling and monitoring equipment. As the QA/QC Officer, she reports directly to the Principal-in-Charge of the Environmental Remediation Division.

DVIRKA AND BARTILUCCI

APPENDIX E

LIRR PROCEDURE/INSTRUCTION EE03-001

+2229\RR0605701.DOC

Procedure/Instruction: EE03-001 EXCAVATING SOILS AT RAILROAD LOCATIONS

Effective DATE: August 11, 2003

A. Introduction:

At existing railroad shops, yards, substations, right-of-ways and other locations, past operations may have resulted in the chance of soils containing very low levels of chemical substances. Examples may include; trace levels of metals around old painted structures, oils and greases around train yards and repair locations, greasy or sooty compounds left from coal ash ("clinker").

This Procedure/Instruction has been prepared to eliminate any risk that may be posed to LIRR workers who must dig in these locations. It is to be applied on a case by case basis, with any guestions referred to Department Management and System Safety.

B. Required Steps/Actions:

- The first step of any LIRR excavation, regarding the soil composition and possible presence of contaminates, is to review the current System Safety Environmental Audit Map. This map includes all LIRR sites with documented soil contaminates. If your site appears on the map in red it may have soil concerns that could affect your project, contact System Safety before proceeding. If your site is not shown or is shown in black (does not have soil concerns) proceed to Step 2 as follows;
- 2. When digging at an existing railroad facility, the recommended procedures include:
 - a. Wherever possible excavate with mechanical means, such as backhoes, ditch-witches or excavators.
 - b. Wash facilities must be available for use by workers at the end of the task, before breaks, before meals, or at the end-of-shift. For field operations, wet-wipes are acceptable for fulfilling this requirement.
 - c. Where hand digging must be used, workers must be instructed to brush soil from clothing and shoes. Disposable coveralls, shoe coverings and gloves should be made available upon workers request. Work clothing should be laundered.
 - d. All equipment should be cleaned before leaving the worksite. The preferred method is hosing down with water, removing any clumps of dirt and soil. If water is not available, equipment should be brushed clean of any dirt and soil using a broom or stiff brush. Disposable items can be placed in the trash, no special disposal is necessary.
- 3. Where evidence of soil contamination is found, such as an odor, a stain or visible contaminant, the soil feels greasy, or results from laboratory analysis indicate a contaminant;
 - a. Stop any excavation work or only excavate by mechanical means and
 - b. Immediately Contact System Safety (information below) to assess the situation.
- C. Regulations or Policy References: LIRR Corporate Environmental Policy; Section IV, B, 5

D. System Safety Contacts:	Environmental Engineer;	718-558-3252	
	Environmental Field Engineer;	718-558-3081	
1	-		

None.

E. Forms & Attachments:

Page 1 of 1

4.0 ROCKVILLE CENTRE SUBSTATION - FISH AND WILDLIFE RESOURCES IMPACT ANALYSIS

4.1 Ecology

This section provides a habitat-based assessment of the Rockville Centre Substation. This assessment conforms to the guidelines contained in Step IIA of the NYSDEC Technical and Administrative Guidance Memorandum entitled, "A Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (October, 1994)." The purpose of this section is to provide a description of the existing ecology of the site, including specific descriptions of major habitat types with associated wildlife populations, the identification of other significant on-site wildlife resources and provide an evaluation of potential impacts to these resources. The information contained in this section was obtained during the Delineation Phase II Site Assessment and supplemented with data from outside sources, including the NYSDEC, U.S. Fish and Wildlife Service, and New York State Historic Preservation Officer. The field survey for this assessment was conducted during February of 2006.

4.1.1 Major Habitat Types

The Rockville Center Substation is located on the south side of Maple Avenue just west of the intersection with North Long Beach Road. The railroad tracks are on an elevated embankment to the south of the substation with Sunrise Highway further south. Commercial establishments border the east and west sides of the substation yard. The yard is maintained lawn with some ornamental shrubs near the front of the building facing Maple Avenue. The transformer yard is covered with approximately two inches of bluestone. Drainage is directed to the local road storm water system or recharges on location. The site is level before the steep rise to the railroad track bed.

A list of vegetative species observed at the Rockville Centre Substation site is provided in Table 4-1.

4-1

APPENDIX A

EXISTING INITIAL SITE ASSESSMENT ANALYTICAL DATA

• 2229\RR0605701.DOC