Voluntary Cleanup Program Site Investigation / Remedial Alternatives Report

for the Former Dowell Facility Depew, New York

prepared for:

Volunteers

Dowell, a Division of Schlumberger Technology Corporation
Dowell Schlumberger Incorporated
The Dow Chemical Company

prepared by:

URS Corporation

282 Delaware Avenue Buffalo, New York 14202

Final March 2002

VOLUNTARY CLEANUP PROGRAM SITE INVESTIGATION / REMEDIAL ALTERNATIVES REPORT

FOR THE

FORMER DOWELL FACILITY 3311 WALDEN AVENUE DEPEW, NEW YORK

Prepared For:

VOLUNTEERS DOWELL, A DIVISION OF SCHLUMBERGER TECHNOLOGY CORPORATION DOWELL SCHLUMBERGER INCORPORATED THE DOW CHEMICAL COMPANY

Prepared By:

URS CORPORATION 282 DELAWARE AVENUE BUFFALO, NEW YORK 14202

FINAL

MARCH 2002

FORMER DOWELL FACILITY SITE INVESTIGATION/REMEDIAL ALTERNATIVES REPORT TABLE OF CONTENTS

			Page No.
1.0	INTR	ODUCTION	1-1
	1.1	Purpose of Report	1-2
	1.2	Site Description and History	1-2
	1.3	Previous Investigations	1-3
	1.4	Future Site Use	1-5
2.0	STUD	Y AREA INVESTIGATION	2-1
	2.1	Catch Basin/Floor Drain and Sewer Line Investigation	2-1
	2.2	Subsurface Soil Investigation	2-2
	2.3	Groundwater Investigation	2-3
	2.4	Asbestos Investigation	2-4
	2.5	Site Survey	2-5
3.0	PHYS	ICAL CHARACTERISTICS OF THE STUDY AREA	3-1
	3.1	Surface Features	3-1
	3.2	Geology and Hydrogeology	3-1
		3.2.1 Groundwater Hydraulic Conductivity	3-2
		3.2.2 Groundwater Flow	3-3
4.0	NATU	RE AND EXTENT OF CONTAMINATION	4-1
	4.1	Applicable Standards, Criteria, and Guidance	4-1
	4.2	Catch Basin Sediment Analytical Results	4-2
	4.3	Subsurface Soil Analytical Results	4-2
	4.4	Groundwater Analytical Results	4-4
	4.5	Summary of Contamination	4-5
	4.6	Analytical Testing Data Validation	4-5
5.0	EXPO	SURE PATHWAY ANALYSIS	5-1
	5.1	Migration Pathways	5-1
		5.1.1 Sediment Exposure Pathway	5-1
		5.1.2 Subsurface Soil Exposure Pathway	5-2
		5.1.3 Groundwater Exposure Pathway	5-2

TABLE OF CONTENTS (Con't)

				Page No.
		5.1.4	Air Exposure Pathway	. 5-2
		5.1.5	Conclusions	. 5-3
	5.2	Habitat-	-Based Assessment	. 5-3
6.0	IDEN	ΓΙ <mark>ΓΙ</mark> ΕΑΤΙ	ON AND DEVELOPMENT OF REMEDIAL	
	ALTE	RNATIV	ES	6-1
	6.1	Introduc	ction	6-1
	6.2	Remedia	al Action Objectives	6-1
		6.2.1	Selection of Cleanup Goals	6-1
		6.2.2	Regulatory Implications of Contaminant Concentrations	6-2
	6.3	General	Response Actions	6-4
	6.4	Develop	oment of Alternatives	6-4
7.0	DETA	ILED AN	JALYSIS OF ALTERNATIVES	7-1
	7.1	Introduc	ction	7-1
	7.2	Individu	al Analysis of Alternatives	7-1
		7.2.1	Alternative 1 - No Action	7-2
		7.2.2	Alternative 2 - Institutional Controls	7-2
		7.2.3	Alternative 3 - Groundwater Treatment and Extraction	7-3
		7.2.4	Alternative 4 - In-Situ Oxidation	7-5
		7.2.5	Alternative 5 - Source Removal (Excavation)	7-6
	7.3	Selected	I Remedial Alternative	7-7
			TABLES	
			TABLES	Following
				Page No.
Table	2-1	Sample	Matrix Summary - Sediment, Soil, and Groundwater	2-1
Table	3-1	Groundy	water Elevation Measurements	3-3
Table	4-1	Summar	ry of Detected Analytes in Sediment Samples	4-1
Table	4-2	Summar	ry of Detected Analytes in Soil Samples	4-1
Table	4-3	Summar	ry of Detected Analytes in Groundwater Samples	4-1
Table	7-1	Cost Est	timate for Alternative 5 - Source Removal (Excavation)	7-7

FIGURES

		Following Page No.
Figure 1-1	Site Location Map	1-2
Figure 1-2	Site Plan	1-3
Figure 1-3	Previous Investigation Locations	1-4
Figure 2-1	Investigation Locations	2-1
Figure 3-1	Groundwater Elevation Contour Map, Upper Till, Unconfined Unit (11/06/01)	3-3
Figure 3-2	Groundwater Elevation Contour Map, Upper Till, Unconfined Unit (12/12/01)	3-3
Figure 3-3	Groundwater Elevation Contour Map, Confined Bedrock/Lower Till Unit (11/06/02)	3-3
Figure 3-4	Groundwater Elevation Contour Map, Confined Bedrock/Lower Till Unit (12/12/02)	3-3
Figure 4-1	Soil Analytical Results	4-2
Figure 4-2	Groundwater Analytical Results (07/01)	4-4
Figure 7-1	Alternative 5 - Proposed Source Removal Areas	7-6

APPENDICES

Appendix A	Previous Investigation Details
Appendix B	Test Pit Logs
Appendix C	Boring Logs
Appendix D	Monitoring Well/Piezometer Construction Details
Appendix E	Well Development Logs
Appendix F	Well Purging Logs
Appendix G	Water Level Elevations and Hydraulic Conductivity Data
Appendix H	Data Usability Summary Report

1.0 INTRODUCTION

URS Corporation (URS) performed a Site Investigation (SI) for Dowell, a division of Schlumberger Technology Corporation at the Former Dowell Facility located at 3311 Walden Avenue in Buffalo, New York. The SI was conducted under a Voluntary Cleanup Agreement (VCA) between Dowell, a division of Schlumberger Technology Corporation, The Dow Chemical Company, Dowell Schlumberger Incorporated (the Volunteers), and the New York State Department of Environmental Conservation (NYSDEC) (VCA Index #B9-0586-00-10).

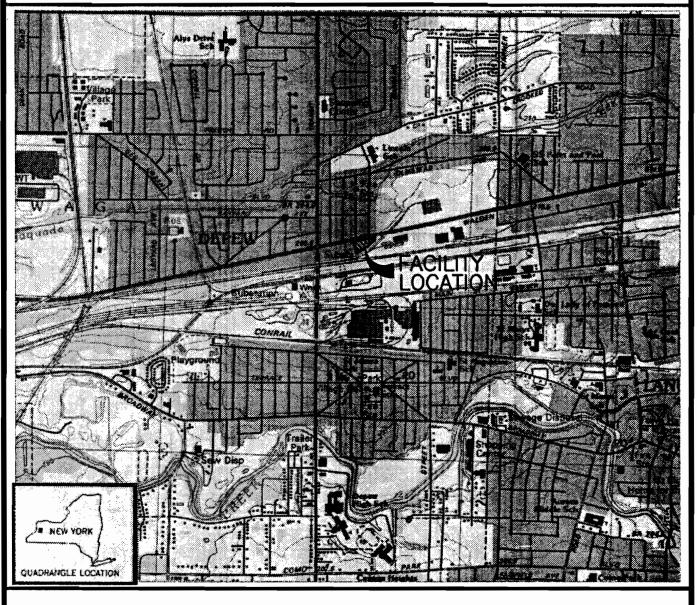
The following SI activities were performed consistent with the NYSDEC approved Work Plan:

- Preparation of a site investigation work plan;
- Excavation of one test trench east of the Former Maintenance Shop along an existing drain line with collection of two soil samples;
- Collection of sediment samples at two floor drain/sump locations inside of the Former Maintenance Shop and at two sumps located outside of the Former Maintenance Shop;
- Advancement of soil borings at ten locations inside of the Former Maintenance Shop and Former Chemical Storage Building immediately adjacent to existing floor drains/sumps with the collection of five soil samples from selected boring locations;
- Advancement of soil borings at eleven locations around the perimeter of the Former Chemical Storage Building and the Former Acid Plant with collection of ten soil samples from selected boring locations;
- Installation of four new shallow groundwater monitoring wells and two piezometers;
- Performance of hydraulic conductivity testing in five monitoring wells;
- Collection of groundwater samples in eight groundwater monitoring wells (four new wells and four existing wells) and two piezometers;

- Collection of several rounds of groundwater level readings and preparation of groundwater contour maps;
- Performance of an asbestos survey in the Former Maintenance Shop and Former Chemical Storage Building;
- Land surveying of all investigation locations performed during the SI and preparation
 of site maps.

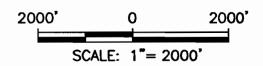
Following completion of the SI, a Remedial Alternatives Report (RAR) was prepared. Based on the results of the SI, various remedial alternatives were developed and evaluated and a preferred alternative was selected for the site.

1.1 Purpose of Report


The purpose of this SI/RAR is to:

- Present a summary of the SI activities and results;
- Identify remedial alternatives;
- Evaluate each remedial alternative for compliance with the selected criteria; and,
- Present the rationale for selection of the preferred alternative.

1.2 Site Description and History


The Former Dowell Facility is located to the east of Buffalo, New York on Walden Avenue in the Village of Depew (Figure 1-1). The site is situated in a mixed residential and industrial/commercial area. Properties surrounding the site include Walden Avenue to the north, a railroad yard to the south, a lumber yard and supply store (84 Lumber) to the east, and an industrial manufacturer (Buffalo Batt and Felt) to the west. A residential neighborhood is located across Walden Avenue to the north.

REFERENCE:

BASE MAP IS A PORTION OF THE U.S.G.S. 7.5 x 15 MINUTE TOPOGRAPHIC SERIES LANCASTER, NY QUADRANGLE. DATED: 1982. SCALE: 1" = 2000', CONTOUR INTERVAL IS 2 METERS.

VOLUNTARY CLEANUP PROGRAM - FORMER DOWELL FACILITY

URS

SITE LOCATION MAP

FIGURE 1-1

The facility is relatively flat-lying and covers approximately 3.5 acres. It is presently inactive and remaining vacant structures on the property include a former office building, a former chemical storage warehouse, and a former maintenance shop (Figure 1-2). A former railroad spur runs east-west through the center of the site. The property is secured with a locking 6-foot high chain-link fence around the entire perimeter of the site.

Former activities at the facility included servicing industrial facilities and limited oil-field related projects. Various industrial cleaning and oil-field chemicals were stored onsite and transferred into tank trucks for use at job sites.

1.3 Previous Investigations

Previous investigations at the facility were associated with various environmental-related projects. In September 1989, Geraghty & Miller (G&M) completed a tank removal project. This project involved the removal of one 1,000-gallon underground storage tank (UST) and its associated fuel dispenser, and one 8,000-gallon aboveground storage tank (AST). Both tanks were used for fuel storage. During this project, residual hydrocarbons were detected in fill materials surrounding the UST and beneath its dispenser. The contaminated fill material was excavated and transported offsite for disposal. There was no apparent evidence of residual hydrocarbons in the native soils surrounding the tank excavation and beneath the dispenser area. G & M installed a monitoring well in the UST excavation to allow for the future collection of groundwater samples.

In May 1990, G & M performed a site investigation at the Former Dowell Facility. The objective of this investigation was to determine the presence of chemical constituents in site soils and groundwater. The investigation results revealed that low-level concentrations of volatile organic compounds (VOCs) were present in shallow groundwater within fill materials beneath the northeast corner of the site, and in the north-central portion of the site, adjacent to a former transfer and chemical storage tank area. The shallow saturated zone occurred between depths of 0.5 feet and 2.0 feet below grade. This zone was characterized to be a thin discontinuous perched groundwater lens.

In January 1992, G & M performed a physical/chemical evaluation of groundwater at the former UST location. No visible hydrocarbons (sheen) were present and no VOCs or total petroleum hydrocarbons (TPH) were detected in the groundwater sample.

From September 1996 to March 1997, Radian International LLC (Radian) installed four monitoring wells (MW-01, MW-02, MW-03 and MW-04) at the site (Figure 1-3), conducted two rounds of groundwater sampling, and decommissioned the mud separator. Groundwater samples were analyzed for VOCs, Resource Conservation and Recovery Act (RCRA) metals and TPH. MW-3 showed detected concentrations of 1,1-dichloroethene (DCE), 1,1-dichloroethane (DCA), and 1,1,1-trichloroethane (TCA) at levels which exceed the maximum concentration levels (MCL's) presented in NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (6/98). TPH and methylene chloride was detected in each of the four monitoring wells, but were attributed to an upgradient source. Lead was present in MW-02 and MW-04 at concentrations which exceeded their MCLs.

In November 1997, Radian performed a supplemental investigation which consisted of advancing three soil borings (SB-01, -02 & -03) around MW-03 and five soil borings (SB-04 to SB-08) around the perimeter of the Former Acid Plant (Figure 1-3). Groundwater samples also were collected from the four existing monitoring wells. Soil samples were collected from each boring around MW-03 for VOC analysis. Analytical results from soil samples were compared to the NYSDEC Technical and Guidance Memorandum (TAGM) 4046: Determination of Soil Cleanup Objectives and Cleanup Levels (1/94). SB-01 (4' to 6') and SB-03 (16' to 18') showed no VOC detections greater than TAGM 4046 Levels. SB-02 (6' to 8') exhibited a concentration of DCE greater than its TAGM 4046 level. Soil samples were also collected from various intervals at the five borings (SB-04, SB-05, SB-06, SB-07, and SB-08) around the Former Acid Plant. Analytical results from soil samples collected at SB-06 (10' - 12' and 14' - 16') and SB-08 (2' - 4' and 6' - 8') showed no VOC detections greater than the TAGM 4046 level. TCE was detected at SB-04 (8' - 10') and at SB-05 (6' - 8') at concentrations greater than its TAGM 4046 level. DCE was detected at SB-05 (6' - 8') and at SB-07 (8' - 10') at concentrations greater than its TAGM 4046 level. TCE (8' to 10' and 18' to 20') and DCA (8' to 10') were also present at SB-07 at concentrations greater than their TAGM 4046 levels. Groundwater sample results showed no VOCs detected at concentrations which

exceeded MCL's at MW-01, MW-02 and MW-04. DCA was present in MW-03 at a concentration which exceeded its MCL.

In July 1998, Radian performed several tasks including: removal of the former concrete Acid Plant revetment; excavation of previously-identified contaminated subsurface soil around the Former Acid Plant; removal of the cement bulk plant; and other miscellaneous debris removal.

In July and December 1998, groundwater samples were collected from the four monitoring wells for VOC analysis. Analytical results for MW-01, MW-02 and MW-04 showed no VOCs at concentrations which exceeded the MCLs. DCA and TCA were detected at MW-03 at concentrations which exceeded their MCL's during both rounds.

In July 1999 and January 2000, groundwater samples were collected from the four monitoring wells for VOC analysis. Analytical results were similar to the 1998 results. Appendix A presents a summary of analytical results for soil and groundwater samples collected, and soil boring logs from the above-referenced previous investigations.

1.4. Future Site Use

Following completion of the site investigation program, all the onsite buildings with the exception of the existing office building, will be demolished to grade and the floor slabs removed. Remedial activities, if any are required, will then be implemented. The property will then be marketed for commercial and/or industrial re-use. Deed restrictions limiting the reuse to commercial/industrial purposes will be incorporated, as appropriate.

2.0 STUDY AREA INVESTIGATION

A site reconnaissance was performed by representatives of Dowell, NYSDEC, and URS on September 22, 2000 to identify those areas of the site requiring investigation and to select tentative sampling locations. The SI was conducted in accordance with the *Voluntary Cleanup Program Work Plan for the Supplemental Investigation Former Dowell Facility, Depew, New York*, (URS June 2001) approved by NYSDEC. The SI was conducted at the site from July 9 through July 17, 2001. Field activities included a floor drain/sump sediment investigation, subsurface soil investigation, groundwater investigation, asbestos survey and land surveying. Table 2-1 presents a sample matrix summary and the boring locations are shown in Figure 2-1. The test pit log is shown in Appendix B and boring logs are presented in Appendix C. The SI activities are described in the following sections.

2.1 Catch Basin/Floor Drain and Sewer Line Investigation

To identify and characterize potential contamination associated with catch basins/floor drains, discrete sediment samples were collected from each of the two floor drains inside the Maintenance Shop (Sump-01 and Sump-02), the round catch basin/sump east of the Former Maintenance Shop and the rectangular catch basin/sump west of the former fuel dispenser. A total of four sediment samples were collected for Target Compound List (TCL) VOC analysis using NYSDEC Analytical Service Protocols (ASP) Method 95-1. The sediment sample analytical parameters are shown in Table 2-1. The sediment sample locations are presented in Figure 2-1.

One test trench was excavated from the round catch basin/sump (east of the Maintenance Shop) to monitoring well MW-03. The test trench was excavated by Nature's Way (Crittenden, New York) to expose a 4-inch diameter clay tile pipe to visually inspect the surrounding soil for evidence of contamination (i.e., staining) and obtain samples from the pipe bedding. Two samples (TP-01 and TP-02) were collected for TCL VOC analysis from the pipe bedding at locations which exhibited visual evidence of potential contamination. The test trench and sample locations are shown in Figure 2-1.

TABLE 2-1 FORMER DOWELL FACILITY SAMPLE MATRIX SUMMARY SEDIMENT, SOIL, GROUNDWATER

od (f) VOC SVOC Pest PCB Metals Cyanide I NA X I </th <th></th> <th></th> <th>Date</th> <th>Denth</th> <th></th> <th></th> <th>P</th> <th>Parameters</th> <th></th> <th></th> <th></th>			Date	Denth			P	Parameters			
e Sump Sediment 7/12/01 NA Mainten. Sediment 7/11/01 NA Mainten. Sediment 7/11/01 NA Mainten. Sediment 7/11/01 NA Mainten. Sediment 7/11/01 NA mp #01 Soil 7/12/01 0.5-1.0 mp #02 Soil 7/12/01 1.0-1.5 mp #03 Soil 7/12/01 1.0-1.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 1.8-2.0 Soil 7/12/01 1.5-2.0 Soil 7/12/01 1.5-2.0 Soil 7/12/01 1.0-7.5 Soil 7/13/01 1.0-7.5 Soil 7/13/01 1.0-7.5 Soil 7/13/01 1.0-7.5 Soil 7/13/01 13.5-14.0 Soil 7/13/01 4.0-5.0 Soil 7/13/01 4.0-5.0 Soil 7/10/01 2.	Sample ID	Matrix	Collected	(ft)	VOC	SVOC	Pest	PCB	Metals	Cyanide	ТРН
ump Sediment 7/12/01 NA Mainten. Sediment 7/11/01 NA mp #01 Soil 7/12/01 0.5-1.0 mp #02 Soil 7/12/01 1.0-1.5 mp #03 Soil 7/12/01 1.0-1.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 1.8-2.0 Soil 7/12/01 1.8-2.0 Soil 7/12/01 1.5-2.0 Soil 7/12/01 1.5-2.0 Soil 7/13/01 1.5-2.0 Soil 7/13/01 1.5-2.0 Soil 7/13/01 1.5-1.0 Soil 7/13/01 1.5-1.0 Soil 7/13/01 13.5-15.0 Soil 7/13/01 13.5-15.0 Soil 7/13/01 4.0-5.0 Soil 7/10/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil	Rectangle Sump	Sediment	7/12/01	NA	×						
Mainten. Sediment 7/11/01 NA Mainten. Sediment 7/11/01 NA mp #01 Soil 7/12/01 0.5-1.0 mp #02 Soil 7/12/01 1.0-1.5 mp #03 Soil 7/12/01 1.0-1.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.5-3.0 Soil 7/12/01 1.8-2.0 Soil 7/12/01 1.5-2.0 Soil 7/12/01 1.5-2.0 Soil 7/13/01 1.5-2.0 Soil 7/13/01 1.5-12.0 Soil 7/13/01 1.0-7.5 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 4.0-5.0 Soil 7/13/01 2.0-2.5 Soil 7/13/01 4.0-5.0 Soil 7/13/01 2.0-2.5 Soil 7/11/0/01 2.0-2.5 Soil 7/11	Round Sump	Sediment	7/12/01	NA	Х						
Mainten. Sediment 7/11/01 NA mp #01 Soil 7/12/01 0.5-1.0 mp #02 Soil 7/12/01 1.0-1.5 mp #03 Soil 7/12/01 1.0-1.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.5-3.0 Soil 7/12/01 1.8-2.0 2.5-3.0 Soil 7/12/01 1.5-2.0 2.5-3.0 Soil 7/12/01 1.5-2.0 2.5-3.0 Soil 7/12/01 1.5-2.0 2.0-2.5 Soil 7/13/01 1.5-2.0 2.0-2.5 Soil 7/13/01 1.5-12.0 2.0-2.5 Soil 7/13/01 14.5-16.0 2.0-2.5 Soil 7/13/01 13.5-14.0 2.0-2.5 Soil 7/13/01 13.5-15.0 2.0-2.5 Soil 7/13/01 4.0-5.0 2.0-2.5 Soil 7/13/01 2.0-2.5 2.0-2.5 Soil 7/13/01 4.	Sump #1 Mainten.	Sediment	7/11/01	NA	X		,				
mp #01 Soil 7/12/01 0.5-1.0 mp #02 Soil 7/12/01 1.0-1.5 mp #03 Soil 7/12/01 2.0-2.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.5-3.0 soil 7/10/01 1.8-2.0 2.5-3.0 Soil 7/12/01 1.5-2.0 2.5-3.0 soil 7/12/01 1.5-2.0 2.5-3.0 Soil 7/12/01 1.5-2.0 2.5-3.0 soil 7/12/01 1.5-2.0 2.5-3.5 soil 7/13/01 1.5-2.0 2.5-3.5 soil 7/13/01 1.5-2.0 2.5-2.5 soil 7/13/01 1.5-12.0 2.5-14.0 soil 7/13/01 4.0-5.0 2.5-14.0 soil 7/10/01 4.0-5.0 2.0-2.5 soil 7/11/01 2.0-2.5 2.5-2.5 soil 7/11/01 2.0-2.5 2.0-2.5 soil 7/10/01 4.0-5.	Sump #2 Mainten.	Sediment	10/11//	NA	X						
mp #02 Soil 7/12/01 1.0-1.5 mp #03 Soil 7/12/01 1.0-1.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.5-3.0 Soil 7/10/01 1.8-2.0 7/10/01 Soil 7/12/01 3.0-3.5 7/12/01 Soil 7/12/01 7.0-7.5 7/13/01 Soil 7/13/01 1.5-12.0 7/13/01 Soil 7/13/01 14.5-16.0 7/13/01 Soil 7/13/01 13.5-14.0 7/13/01 Soil 7/13/01 4.0-5.0 7/11/01 Soil 7/10/01 4.0-5.0 7/11/01 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	1-x-1 Sump #01	Soil	7/12/01	0.5-1.0	X						
mp #03 Soil 7/12/01 1.0-1.5 mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.5-3.0 Soil 7/10/01 1.8-2.0 Soil 7/10/01 1.8-2.0 Soil 7/12/01 3.0-3.5 Soil 7/12/01 3.0-3.5 Soil 7/13/01 2.0-2.5 Soil 7/13/01 1.5-12.0 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	2-x-1 Sump #02	Soil	7/12/01	1.0-1.5	X						
mp #04 Soil 7/12/01 2.0-2.5 mp #05 Soil 7/12/01 2.5-3.0 Soil 7/10/01 1.8-2.0 Soil 7/10/01 1.5-2.0 Soil 7/12/01 3.0-3.5 Soil 7/13/01 2.0-2.5 Soil 7/13/01 11.5-12.0 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/13/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	3-x-2 Sump #03	Soil	7/12/01	1.0-1.5	X						
mp #05 Soil 7/12/01 2.5-3.0 Soil 7/10/01 1.8-2.0 Soil 7/10/01 1.5-2.0 Soil 7/12/01 3.0-3.5 Soil 7/12/01 7.0-7.5 Soil 7/13/01 1.5-12.0 Soil 7/13/01 1.5-12.0 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	4-x-2 Sump #04	Soil	1/17/01	2.0-2.5	X						
Soil 7/10/01 1.8-2.0 Soil 7/12/01 1.5-2.0 Soil 7/12/01 3.0-3.5 Soil 7/12/01 7.0-7.5 Soil 7/13/01 2.0-2.5 Soil 7/13/01 11.5-12.0 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 4.0-5.0 Soil 7/10/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	5-x-1 Sump #05	Soil	7/12/01	2.5-3.0	X						
Soil 7/10/01 1.5-2.0 Soil 7/12/01 3.0-3.5 Soil 7/12/01 7.0-7.5 Soil 7/13/01 2.0-2.5 Soil 7/13/01 11.5-12.0 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	GPB-02	Soil	10/01/2	1.8-2.0	X						
Soil 7/12/01 3.0-3.5 Soil 7/12/01 7.0-7.5 Soil 7/13/01 2.0-2.5 Soil 7/13/01 11.5-12.0 Soil 7/13/01 7.0-7.5 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/10/01 4.0-5.0 Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	GPB-03	Soil	10/01/2	1.5-2.0	X						
Soil 7/12/01 7.0-7.5 Soil 7/13/01 2.0-2.5 Soil 7/13/01 11.5-12.0 Soil 7/13/01 7.0-7.5 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 4.0-5.0 Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-04	Soil	1/12/01	3.0-3.5	X						
Soil 7/13/01 2.0-2.5 Soil 7/13/01 11.5-12.0 Soil 7/13/01 7.0-7.5 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 Pipe) Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	GPB-07	Soil	7/12/01	7.0-7.5	Х						
Soil 7/13/01 11.5-12.0 Soil 7/13/01 7.0-7.5 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 (Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-08	Soil	7/13/01	2.0-2.5	Х						
Soil 7/13/01 7.0-7.5 Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 (Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-09	Soil	1/13/01	11.5-12.0	X						
Soil 7/13/01 14.5-16.0 Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-10	Soil	1/13/01	7.0-7.5	X						
Soil 7/13/01 13.5-14.0 Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 (Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-11	Soil	7/13/01	14.5-16.0	X						
Soil 7/13/01 13.5-15.0 Soil 7/10/01 4.0-5.0 (Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-12	Soil	7/13/01	13.5-14.0	X						
Soil 7/10/01 4.0-5.0 (Pipe) Soil 7/11/01 2.0-2.5 2.5) Soil 7/11/01 2.0-2.5	GPB-13	Soil	7/13/01	13.5-15.0	X						
e) Soil 7/11/01 2.0-2.5 Soil 7/11/01 2.0-2.5	MW-08	Soil	10/01/2	4.0-5.0	X						
Soil 7/11/01 2.0-2.5	TP-1 #2 (Pipe)	Soil	1/11/01	2.0-2.5	X						
	TP-1 (2-2.5)	Soil	1/11/01	2.0-2.5	×						

Page 1 of 2

TABLE 2-1 (Con't)

		Date	Depth			P	Parameters	S		
Sample ID	Matrix	Collected	(tt)	VOC	SVOC	Pest	PCB	Metals	Cyanide	ТРН
MW-01	Groundwater	10/11//	NA	×	Х	×	×	×	×	×
MW-02	Groundwater	10/11//	NA	X						
MW-03	Groundwater	10/11//	NA	×	Х	×	×	×	×	×
MW-04	Groundwater	10/L1/L	NA	×						
MW-05	Groundwater	10/11//	NA	×	X	×	×	×	×	×
90-MW	Groundwater	10/11//	NA	X						
MW-07	Groundwater	10//1//	NA	X						
MW-08	Groundwater	10/11//	NA	Х						
PZ-1	Groundwater	10/11//	NA	X						
PZ-2	Groundwater	10/11//	NA	X						

2.2 <u>Subsurface Soil Investigation</u>

To identify and characterize potential subsurface soil contamination, twenty-three soil borings were advanced using Geoprobe direct-push technology by Nature's Way at the following locations:

Former Maintenance Shop

Six soil borings were advanced around the three floor sumps (Sump-01, 02, and 03) located in the Former Maintenance Shop (two borings per sump). Each boring was advanced through the concrete floor slab to a depth of 4 feet below ground surface (bgs). The soil cores were visually inspected and screened with a photoionization detector (PID) to evaluate the presence of VOC contamination. Three soil samples (1- x -1, 2- x -1, and 3- x -2) were collected for TCL VOC analysis (one sample per sump).

Former Chemical Storage Building

Four soil borings were advanced around the two sumps (Sump-04 and 05) located in the Former Chemical Storage Building (two borings per sump). Three of the borings were advanced to 4 feet bgs, and one boring at Sump-04 was advanced to 8 feet bgs. The soil cores were visually inspected and screened with a photoionization detector (PID). Two soil samples (4- x -2 and 5- x -1) were collected for TCL VOC analysis (one sample per sump).

Nine soil borings (GPB-01 through GPB-09) were advanced along the north and south side of the Former Chemical Storage Building. Each boring was advanced to 12 feet bgs. Soil cores were visually inspected and screened with a PID. Piezometers were installed in soil borings GPB-01 (PZ-1) and GPB-08 (PZ-2) to allow for the collection of groundwater samples and to obtain water level measurements. Six soil samples (GPB-02, -03, -04, -07, -08, and -09) were collected for TCL VOC analysis.

Former Acid Plant

Four soil borings (GPB-10 through GPB-13) were advanced around the Former Acid Plant. The borings were advanced to depths ranging from 12 to 16 feet bgs. Soil cores were visually inspected and screened with a PID. Four soil samples were collected for TCL VOC analysis (one from each boring).

Former Mud Separator and Oil Separator

One soil sample was collected from the soil boring at MW-08, adjacent to the former mud separator and oil separator that previously were filled in-place with concrete. The soil sample (MW-08) was collected for TCL VOC analysis.

2.3 Groundwater Investigation

The groundwater investigation focused on the shallow/unconfined groundwater unit. During the SI, four new monitoring wells (MW-05, MW-06, MW-07, and MW-08) were drilled and installed by Nature's Way, using standard hollow stem auger drilling methods. Split spoon samples were collected continuously at two-foot intervals in accordance with the American Society for Testing and Materials (ASTM) specifications (ASTM D1586-84). Soil samples were visually classified and stored in sealed glass jars for future reference. Boring logs for each monitoring well are presented in Appendix C. All wells were screened across the water table surface to obtain information about possible free product. Well depths ranged from 14 to 20 feet bgs.

Monitoring wells were constructed of two-inch inner diameter (ID) threaded Schedule 40 polyvinyl chloride (PVC) flush-joint casing and ten-foot sections of machine-slotted 0.010-inch well screens equipped with a threaded end cap. The annulus around the well screen was backfilled with No. 1 Morie sand. The sandpack extended a maximum of two feet above the well screen. A bentonite seal was placed above the sandpack to form a maximum two-foot seal. A cement/bentonite grout was placed to within one-foot of the ground surface. Each of the four new monitoring wells were completed with flush-mount protective casings. Two piezometers were installed in GPB-01 (PZ-01) and GPB-08 (PZ-02). The piezometers were installed to allow for future groundwater

sample collection and water level measurements. Both piezometers are constructed of one-inch outer diameter (OD) PVC riser and ten-foot sections of 0.010-inch well screen. The monitoring well and piezometer construction details are presented in Appendix D.

URS developed the new monitoring wells/piezometers utilizing pumping and surging techniques to remove sediment from the well screen and sandpack. Well evacuation was accomplished using a peristaltic pump and dedicated high density polyethylene (HDPE) tubing. Disposable polyethylene bailers were used to surge the wells during development. The wells were developed until pH, specific conductivity, and temperature stabilized and the water had a turbidity of less than 50 Nephelometric turbidity units (NTU). Well/piezometer development logs are presented in Appendix E.

Groundwater samples were collected from each of the four new wells, four existing wells, and two piezometers. The groundwater samples were collected using new dedicated/disposable HDPE bailers at each monitoring well location. HDPE tubing and a stainless steel check valve was used to sample the small diameter piezometers. A minimum of three well volumes were purged from each well prior to sampling. Well purge logs are presented in Appendix F. Groundwater samples collected from MW-01, MW-03, and MW-05 were analyzed for TCL VOCs, TCL semi-volatile organic compounds (SVOCs), TCL pesticides, TCL polychlorinated biphenyls (PCBs), Target Analyte List (TAL) metals, cyanide, and TPH using NYSDEC ASP methodologies. Groundwater samples collected from MW-02, MW-04, MW-06, MW-07, MW-08, PZ-01, and PZ-02 were analyzed for TCL VOCs only, in accordance with the NYSDEC - approved work plan. Upon completion of sampling activities, five of the eight monitoring wells underwent hydraulic conductivity testing. Two rounds of groundwater level measurements were performed to develop groundwater contour maps and determine groundwater flow directions.

2.4 Asbestos Investigation

URS personnel conducted an asbestos survey of the Former Maintenance Shop/Office and the Former Chemical Storage Building. Both the interior and exterior of these structures were investigated to identify and sample suspected asbestos-containing material (ACM). An asbestos

survey report detailing the results and linear/square footage of ACM will be submitted separately so it can be included in contract documents for the building demolition.

2.5 Site Survey

Each investigation location was surveyed for horizontal and vertical coordinates using Global Positioning Survey (GPS) techniques. Horizontal coordinates are based on the New York State Plane Coordinate System, Traverse Mercator Projection, East Zone, North American Datum of 1983. Vertical coordinates (elevations) were based on the National Geodetic Vertical Datum of 1988 (mean sea level). All features were labeled and an appropriate legend was provided for pertinent features (e.g., monitoring wells, soil samples). All surveying was conducted under the supervision of a New York State-licensed land surveyor. A base map was prepared in AutoCAD 14 format.

3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

3.1 Surface Features

The site is comprised of three out of service structures including an office building, maintenance shop, and chemical storage building. The site is bordered by Walden Avenue to the north, Buffalo Batt and Felt to the west, CSX railroad to the south, and 84 Lumber to the east. Surface topography gently slopes from south to north in the southern portion of the site and is generally flat in the northern portion of the site. Surface water flows from south to north across the site. A former railroad siding traverses the site from east to west, immediately north of the Former Chemical Storage Building. There are two out of service catch basins/sumps onsite and a filled in-place mud/oil separator. Additionally, there is an out-of-service water meter vault located about mid-way along the northern property line.

3.2 Geology and Hydrogeology

The Former Dowell Facility rests on a regional glacial till deposit. The till is typically comprised of unsorted clay, silt, fine sand, and fine to coarse gravel that exhibits low permeability. Underlying the till is the Marcellus and Skaneateles Shale formations (G & M, 1990). These rock formations are present throughout the southern half of the Erie-Niagara Basin and locally contain thin interbedded limestones. The overlying till ranges in thickness from 2 to 200 feet within the basin and is approximately 30 feet thick beneath the site. The Shale formations typically produce small quantities of groundwater ranging from 10 to 15 gallons per minute. The overlying till is an insignificant source of groundwater.

Based on the geologic data obtained from the monitoring well and Geoprobe soil borings, the soils on site consist of approximately 0 to 4 feet of fill composed of poorly sorted sands, silts, clay, gravel, and cinders. Underlying the fill layer is a thick layer of glacial till predominantly consisting of red-brown clay and silt with minimal or trace amounts of fine to coarse sand and gravel. The glacial till unit extends from approximately 4 to 30 feet bgs, the depth to the top of bedrock.

The four new monitoring wells and two piezometers are screened at varying depths in the lower portion of the fill material and/or the upper portion of the till layer. The bottom of the 10-foot well screens were set to 12 feet bgs at PZ-01 and PZ-02, 14 feet bgs at MW-05, 19.5 feet bgs at MW-07 and MW-08, and 20 feet bgs at MW-06. The depth to groundwater ranges from less than one foot to approximately 5 feet bgs. The four existing wells are screened in the lower portion of the till to the top of bedrock. Water levels in these wells range from 3 to 14 bgs.

3.2.1 Groundwater Hydraulic Conductivity

In-situ hydraulic conductivity testing and analyses was performed on selected monitoring wells (MW-01, MW-02, MW-05, MW-06, and MW-07). The tests were performed by introducing and then removing a solid one-foot by five foot slug, and recording the fall and rise of the water in the well with a data logging pressure transducer. After the slug was introduced, the water level was allowed to recover to pre-test conditions prior to removing the slug. Initial water levels were measured with an electronic water level meter prior to each test. The collected data were analyzed using the Bouwer and Rice method (updated 1989) for unconfined aquifers. In all tests, the well screen was below the top of the water table surface; therefore, both the falling and rising head tests were analyzed. Monitoring well MW-01 is screened from 20 feet to 30 feet bgs in stiff clay with trace amounts of silts, sand, and gravel. The measured conductivity in MW-01 ranged between 1.55 x 10⁻⁵ centimeters per second (cm/sec) and 1.93 x 10⁻⁵ cm/sec. MW-02 is screened from 18.3 feet to 28.3 feet in medium to stiff clay with trace amounts of silt, sand, and gravel. The measured conductivity in MW-02 ranged between 7.20 x 10⁻⁶ cm/sec and 1.27 x 10⁻⁵ cm/sec. MW-05 is screened from 4 feet to 14 feet in silty clay fill which is underlain by silty clay with fine sand which grades to clayey silt at depth. The measured conductivity in MW-05 ranged between 1.57 x 10⁻³ cm/sec and 1.85 x 10⁻³ cm/sec. MW-06 is screened from 10 feet to 20 feet in silty clay with trace fine to coarse sand. The measured conductivity in MW-06 ranged between 5.46 x 10⁻⁶ cm/sec and 3.25 x 10⁻⁵ cm/sec. MW-07 is screened from 9.5 feet to 19.5 feet in silty clay with thin fine sand and layers with angular gravel. The measured conductivity in MW-07 was 9.03 x 10⁻⁷. There was no rising head test performed at MW-07. With the exception of MW-05, the results of the slug tests present a range of hydraulic conductivities that are representative of the clayey till unit which overlies the bedrock across the site. The average hydraulic conductivity of this unit is approximately 1.18 x 10⁻⁵ cm/sec. The hydraulic conductivity results are presented in Appendix G.

3.2.2 Groundwater Flow

Based on the results of groundwater level measurements (Table 3-1) and review of the site geology described in the boring logs, it appears that there are two independent groundwater units at the site. There is an upper, unconfined water surface recorded in MW-05 to MW-08 and PZ-01 and PZ-02 (Figures 3-1 and 3-2) and a deeper, confined groundwater unit in the lower part of the till/upper bedrock as recorded in MW-01 to MW-04 (Figures 3-3 and 3-4). As indicated in the figures, flow in the upper, unconfined unit is to the north-northwest, whereas flow in the deeper, confined bedrock/till unit is to the west-northwest.

TABLE 3-1
FORMER DOWELL SITE
GROUNDWATER ELEVATION MEASUREMENTS

				Γ																					
Remark																									
Corrected Water Elev. (ft)		89.7	90.25	99.06		98.1	69.86	98.4	60.66		87.82	89.65	90.04		94.45		96.64	96.53		101.76	103.67	103.57	102.92		95.92
Product Thick. (ft)		00.00	00.00	0.00		0.00	00.00	00:00	0.00		00:00	00:00	0.00		00:00	0.00	00'0	00'0		0.00	00'0	00'0	00:0		0.00
Water Elev. (ft)		89.70	90.25	99.06		98.10	69.86	98.40	60.66		87.82	89.65	90.04		94.45		96.64	96.53		101.76	103.67	103.57	102.92		95.92
Depth to Water (ft)		14.10	13.55	13.14		4.15	3.56	3.85	3.16		12.75	10.92	10.53		6.80	486	4.61	4.72		2.21	0.30	0.40	1.05		4.46
Date		7/16/01	11/6/01	12/12/01		7/16/01	10/12/01	11/6/01	12/12/01		7/16/01	11/6/01	12/12/01		7/16/01	10/12/01	11/6/01	12/12/01		7/13/01	10/12/01	11/6/01	12/12/01		7/16/01
Specific Gravity	-				·					-				-					-					-	
Geol. Zone	∢				∢					٨				٧					٧					٨	
# Meas.point (Riser)Elev.(ff)	103.80				102.25					100.57				101.25					103.97					100.38	
Casing Elevation (ft)	104.10				102.53					101.11				101.65					104.54					100.96	
Ground Elevation (ft)	104.10				102.53					101.11				101.65					104.54					100.96	
Easting	1118932.986				1119165.904					1118970.677				1119049.101					1119111.257					1118942.310	
Northing	1060924.157 1118932.986				1061209.591 1119165.904					1061166.624 1118970.677				1061182.893 1119049.101					1061061.919 1119111.257					1061162.035 1118942.310	
Location ID / Type	MW-01				MW-02					MW-03				MW-04					MW-05					MW-06	

NM - No Measurement

Geologic Zone: A Aquifer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

TABLE 3-1
FORMER DOWELL SITE
GROUNDWATER ELEVATION MEASUREMENTS

				_			_							_				_			
Remark																					
Corrected Water Elev. (ft)	97.07	97.35	97.01		88.28	69.96	29.96	96.21		96.26	97.76	1.86	97.83		100.07	101.07	100.89		99.73	8.66	99'66
Product Thick. (ft)	0.00	0.00	0.00		00.00	00.00	00.00	0.00		00.0	00.00	00:00	0.00		00.00	00:00	0.00		00.00	00'0	00'0
Water Elev. (ft)	97.07	97.35	97.01		88.28	69.96	29.96	96.21		96.26	97.76	98.10	97.83		100.07	101.07	100.89		99.73	99.80	99.66
Depth to Water (ft)	3.31	3.03	3.37		11.82	3.41	3.43	3.89		3.39	1.89	1.55	1.82		4.68	3.68	3.86		4.94	4.87	5.01
Date	10/12/01	11/6/01	12/12/01		7/16/01	10/12/01	11/6/01	12/12/01		7/16/01	10/12/01	11/6/01	12/12/01		10/12/01	11/6/01	12/12/01		10/12/01	11/6/01	12/12/01
Specific Gravity				1					1					1				1			
Geol. Zone				∢					∢					∢				∢			
Meas.point (Riser)Elev.(ft)				100.10					99.65					104.75				104.67			
Casing Elevation (ft)				100.64					100.10					٩Z				ΨZ			
Ground Elevation (ft)				100.64					100.10					101.87				101.37			
Easting				1118862.788					1118900.487					1118932.541				1061103.019 1119054.805			
Northing				1061148.617 1118862.788					1061061.953 1118900.487					1061012.984 1118932.541				1061103.019			
Location ID / Type				MW-07					MW-08					PZ-01				PZ-02			

NM - No Measurement

Geologic Zone: A Aquifer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

4.0 NATURE AND EXTENT OF CONTAMINATION

Based on the data collected during the SI, the nature and extent of contamination has been evaluated. The following sections describe the analytical results and comparison to applicable regulatory standards on a media-specific basis.

4.1 Applicable Standards, Criteria, and Guidance

The analytical data obtained from soils, sediment and groundwater samples have been compared to applicable New York State standards, criteria, and guidance (SCG) values. The matrix-specific SCGs are shown below.

<u>Soil</u>

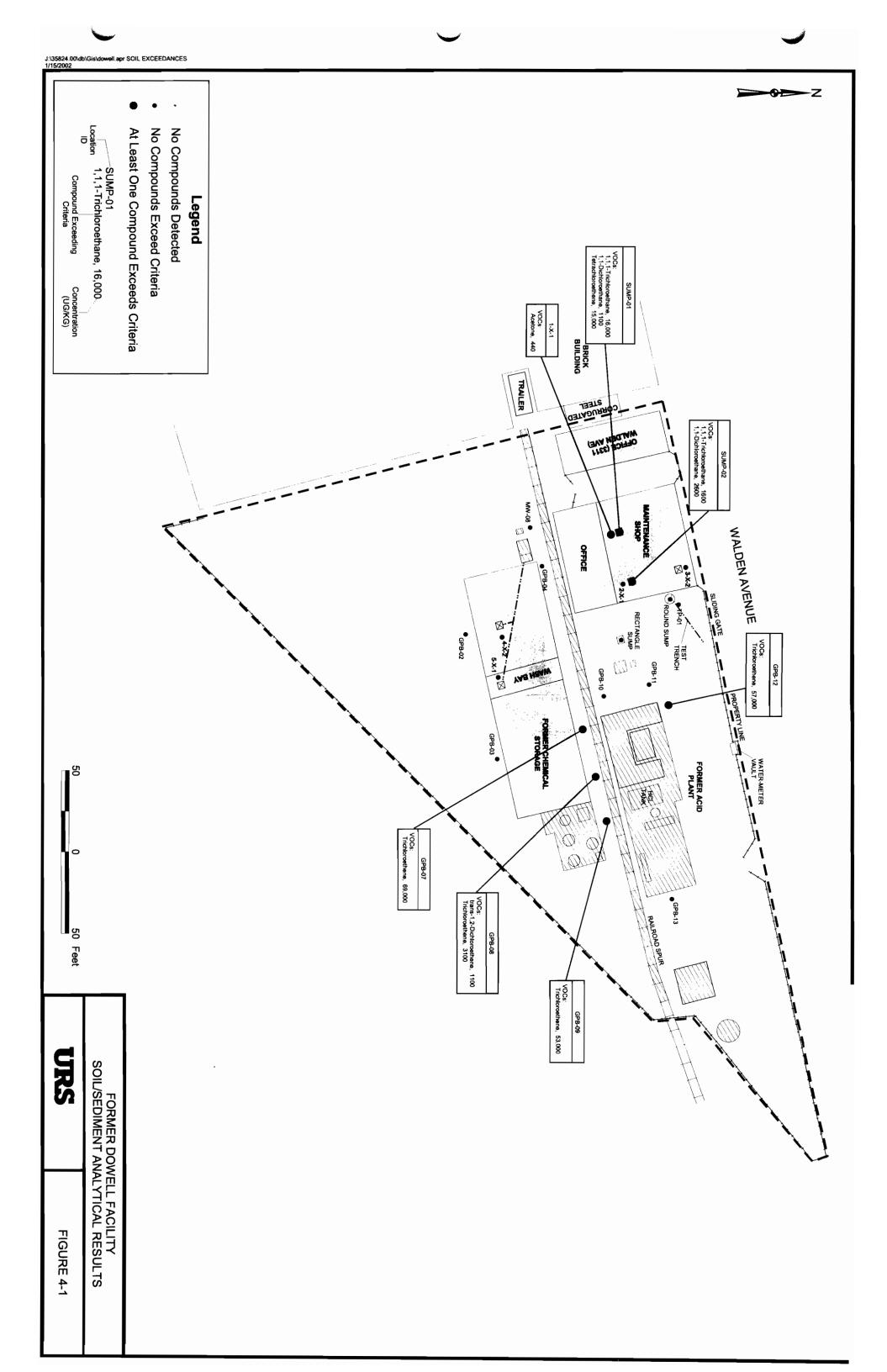
NYSDEC Technical Administrative Guidance Memorandum (TAGM) 4046: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994/January 2000.

6 NYCRR Part 371, Identification and Listing of Hazardous Wastes

NYSDEC Division of Hazardous Substances Regulation TAGM 3028: Contained in Criteria for Environmental Media, November 1992

Groundwater

NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998


6 NYCRR Part 700 - 705: Water Quality Regulations for Surface Water and Groundwater

The analytical results with SCG comparative criteria are shown in Tables 4-1, 4-2, and 4-3 for all matrices.

TABLE 4-1 SUMMARY OF DETECTED ANALYTES IN SEDIMENT SAMPLES FORMER DOWELL SITE

Location ID			RECTANGLE SUMP	ROUND SUMP	SUMP-01	SUMP-02
Sample ID			RECTANGLE SUMP	ROUND SUMP	SUMP #1 MAINTEN	SUMP #2 MAINTEN
Matrix			Sediment	Sediment	Sediment	Sediment
Depth Interval (f	t)		-	-	•	•
Date Sampled			07/12/01	07/12/01	07/11/01	07/11/01
Parameter	Units	Criteria*				
Volatiles						
1,1,1-Trichloroethane	UG/KG	800	10 J	4 J	16,000 D	1,600 D
1,1-Dichloroethane	UG/KG	200	5 J		1,100 DJ	2,600 D
1,1-Dichloroethene	UG/KG	400				7 J
1,2,4-Trichlorobenzene	UG/KG	3400			21 J	
1,2-Dichlorobenzene	UG/KG	7900	5 J		20 J	
1,3-Dichlorobenzene	UG/KG	1600			100 J	
1,4-Dichlorobenzene	UG/KG	8500			10 J	
2-Butanone	UG/KG	300			_	9 J
Carbon disulfide	UG/KG	2700	4 J			
Chloroethane	UG/KG	1900			_	160
cis-1,2-Dichloroethene	UG/KG	5500	19		27	55
Ethylbenzene	UG/KG	5500			5 J	88 J
Isopropylbenzene	UG/KG	-	_		_	64 J
Methylcyclohexane Tetrachloroethene	UG/KG	1400	6 J		6 J	15
	UG/KG	1500	9 J	4 J	15,000 D	67 J
Toluene	UG/KG	700			7 J	140 J
Trichloroethene	UG/KG		9 J	4 J	48	45
Vinyl chloride	UG/KG	200 1200	4 J			21
Xylene (total)	UG/KG	1200				860 DJ

*Criteria- NYSDEC TA	GM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).
Flags assigned during	chemistry validation are shown.
	Concentration Exceeds Criteria.
MADE BY:	

TABLE 4-2 SUMMARY OF DETECTED ANALYTES IN SOIL SAMPLES FORMER DOWELL SITE

Location ID			1-X-1	2-X-1	3-X-2	4-X-2	5-X-1
Sample ID			1-X-1 SUMP	2-X-1 SUMP	3-X-2 SUMP	4-X-2 SUMP	5-X-1 SUMP
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval	(ft)		0.5-1.0	1.0-1.5	1.0-1.5	2.0-2.5	2.5-3.0
Date Sampled	j		07/12/01	07/12/01	07/12/01	07/12/01	07/12/01
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/KG	800					
1,1-Dichloroethane	UG/KG	200	150				
1,1-Dichloroethene	UG/KG	400					
1,2-Dichlorobenzene	UG/KG	7900	1 ,500 J	-			
2-Butanone	UG/KG	300	140	10 J	29		5 J
Acetone	UG/KG	200	440 J		89	-	
Carbon disulfide	UG/KG	2700	3 J			_	
Chlorobenzene	UG/KG	1700	290	-			
Chloroethane	UG/KG	1900	120		31		
cis-1,2-Dichloroethene	UG/KG	-					-
Ethylbenzene	UG/KG	5500	7 J	4 J			
Methyl tert-butyl ether	UG/KG	-	9 J				
Methylcyclohexane	UG/KG	-					
Methylene chloride	UG/KG	100	13 J	30		-	23
Tetrachloroethene	UG/KG	1400		7 J		_	7 J
Toluene	UG/KG	1500	43	13			12
trans-1,2-Dichloroethene	UG/KG	300					
Trichloroethene	UG/KG	700		16			14
Vinyl chloride	UG/KG	200	6 J				
Xylene (total)	UG/KG	1200	53				

*Criteria- NYSDEC TA	AGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).
Flags assigned during	chemistry validation are shown.
	Concentration Exceeds Criteria.
MADE BY:	
CHECKED BY:	

TABLE 4-2 SUMMARY OF DETECTED ANALYTES IN SOIL SAMPLES FORMER DOWELL SITE

Location ID		GPB-02	GPB-03	GPB-04	GPB-07	GPB-08									
Sample ID Matrix Depth Interval (ft) Date Sampled			GPB-02 Soil 1.8-2.0 07/10/01	GPB-03 Soil 1.5-2.0 07/10/01	GPB-04 Soil 3.0-3.5 07/12/01	GPB-07 Soil 7.0-7.5 07/12/01	GPB-08 Soil 2.0-2.5 07/13/01								
								Parameter	Units	Criteria*					
								Volatiles							
								1,1,1-Trichloroethane	UG/KG	800					
1,1-Dichloroethane	UG/KG	200													
1,1-Dichloroethene	UG/KG	400	_				5 J								
1,2-Dichlorobenzene	UG/KG	7900													
2-Butanone	UG/KG	300	_		21										
Acetone	UG/KG	200			87										
Carbon disulfide	UG/KG	2700		4 J			12 J								
Chlorobenzene	UG/KG	1700													
Chloroethane	UG/KG	1900													
cis-1,2-Dichloroethene	UG/KG	-	4 J			1,800	25,000 D								
Ethylbenzene	UG/KG	5500													
Methyl tert-butyl ether	UG/KG	-													
Methylcyclohexane	UG/KG	-													
Methylene chloride	UG/KG	100													
Tetrachloroethene	UG/KG	1400													
Toluene	UG/KG	1500		7 J			6 J								
trans-1,2-Dichloroethene	UG/KG	300					1,100 DJ								
Trichloroethene	UG/KG	700				69,000 DJ	3,100 D								
Vinyl chloride	UG/KG	200					150								
Xylene (total)	UG/KG	1200													

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).
Flags assigned during chemistry validation are shown.
Concentration Exceeds Criteria.
MADE BY:CHECKED BY:
CHECKED B1.

TABLE 4-2 SUMMARY OF DETECTED ANALYTES IN SOIL SAMPLES FORMER DOWELL SITE

Location ID		GPB-09 GPB-09 Soil 11.5-12.0 07/13/01	GPB-10 GPB-10 Soil 7.0-7.5 07/13/01	GPB-11 GPB-11 Soil 14.5-16.0 07/13/01	GPB-12 GPB-12 Soil 13.5-14.0 07/13/01	GPB-13 GPB-13 Soil 13.5-15.0 07/13/01									
Sample ID Matrix Depth Interval (ft) Date Sampled															
							Parameter	Units	Criteria*						
							Volatiles								
							1,1,1-Trichloroethane	UG/KG	800			53			
1,1-Dichloroethane	UG/KG	200			40		51								
1,1-Dichloroethene	UG/KG	400			7 J										
1,2-Dichlorobenzene	UG/KG	7900													
2-Butanone	UG/KG	300													
Acetone	UG/KG	200													
Carbon disulfide	UG/KG	2700													
Chlorobenzene	UG/KG	1700													
Chloroethane	UG/KG	1900													
cis-1,2-Dichloroethene	UG/KG	-		21	150										
Ethylbenzene	UG/KG	5500													
Methyl tert-butyl ether	UG/KG	-													
Methylcyclohexane	UG/KG	-	-												
Methylene chloride	UG/KG	100													
Tetrachloroethene	UG/KG	1400													
Toluene	UG/KG	1500			4 J										
trans-1,2-Dichloroethene	UG/KG	300			6 J										
Trichloroethene	UG/KG	700	53,000 D		690 D	57,000									
Vinyl chloride	UG/KG	200													
Xylene (total)	UG/KG	1200													

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).						
Flags assigned during chemistry validation are shown.						
Concentration Exceeds Criteria.						
MADE BY: CHECKED BY:						

TABLE 4-2 SUMMARY OF DETECTED ANALYTES IN SOIL SAMPLES FORMER DOWELL SITE

Location	ı ID		80-WM	TP-01	TP-01
Sample	ID		MW-08	TP-1 #2 (PIPE)	TP-1 (2-2.5)
Matrix			Soil	Soil	Soil
Depth Inter	val (ft)		4.0-5.0	2.0-2.0	2.0-2.5
Date Sam	pled		07/10/01	07/11/01	07/11/01
Parameter	Units	Criteria*			
Volatiles					
1,1,1-Trichloroethane	UG/KG	800			24 J
1,1-Dichloroethane	UG/KG	200			16 J
1,1-Dichloroethene	UG/KG	400			
1,2-Dichlorobenzene	UG/KG	7900			35 J
2-Butanone	UG/KG	300			
Acetone	UG/KG	200			
Carbon disulfide	UG/KG	2700			
Chlorobenzene	UG/KG	1700			
Chloroethane	UG/KG	1900			
cis-1,2-Dichloroethene	UG/KG	-		72	
Ethylbenzene	UG/KG	5500			5 J
Methyl tert-butyl ether	UG/KG	-			
Methylcyclohexane	UG/KG	-			8 J
Methylene chloride	UG/KG	100			17 J
Tetrachloroethene	UG/KG	1400		7 J	21 J
Toluene	UG/KG	1500			11 J
trans-1,2-Dichloroethene	UG/KG	300			
Trichloroethene	UG/KG	700		41	20 J
Vinyl chloride	UG/KG	200			11 J
Xylene (total)	UG/KG	1200			57 J

*Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).
Flags assigned during chemistry validation are shown.
Concentration Exceeds Criteria.
MADE BY: CHECKED BY:

Location ID			MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID			MW-01	MW-02	MW-03	MW-04	MW-05
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	-	-	•	-
Date Sampled			07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units	Criteria*					
Volatiles	_						
1,1,1-Trichloroethane	UG/L	5			4,500 J	R	
1,1,2-Trichloroethane	UG/L	1					
1,1-Dichloroethane	UG/L	5			50,000 DJ	R	
1,1-Dichloroethene	UG/L	5			14		
1,2-Dichloroethane	UG/L	0.6			11		
1,2-Dichloropropane	UG/L	1					
2-Butanone	UG/L	50			7 J		
Acetone	UG/L	50			6 J		5 J
Chloroethane	UG/L	5			130		
Chloroform	UG/L	7					
cis-1,2-Dichloroethene	UG/L	5			9,5		
Methyl acetate	UG/L	-			6 J		
trans-1,2-Dichloroethene	UG/L	5					
Trichloroethene	UG/L	5					
Vinyl chloride	UG/L	2			9 J		
Metals							
Aluminum	UG/L	-	365	NA	706	NA	12,200
Arsenic	UG/L	25	7.3 B	NA	7.9 B	NA	7.5 B
Barium	UG/L	1000	151 B	NA	658	NA	160 B
Cadmium	UG/L	5		NA	15.5	NA	
Calcium	UG/L	-	R	NA	R	NA	R
Chromium	UG/L	50		NA		NA	11.4

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA	
Flags assigned during chemistry validation are shown.	
Concentration Exceeds Criteria.	

$\overline{}$	Concentiation Exceeds
MADE BY:	
CHECKED BY:	

Location ID			MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID			MW-01	MW-02	MW-03	MW-04	MW-05
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	•	•	•	-
Date Sampled			07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units	Criteria*					
Metals						-	
Copper	UG/L	200	7.1 B	NA	25.3	NA	42.5
iron	UG/L	300	1,550	NA	4,260	NA	17,900
Lead	UG/L	25	R	NA	R	NA	134
Magnesium	UG/L	35000	81,100	NA	164,000	NA	R
Manganese	UG/L	300	44.9	NA	165	NA	1,900
Mercury	UG/L	0.7	0.32	NA		NA_	0.38
Nickel	UG/L	100	11.2 B	NA	497	NA	20.0 B
Potassium	UG/L	-	1,700 B	NA	4,220 B	NA	5,770
Sodium	UG/L	20000	R	NA	R	NA	R
Thallium	UG/L	0.5	2.1 B	NA		NA	
Vanadium	UG/L	-		NA		NA	19.2 B
Zinc	UG/L	2000	R	NA	R	NA	R
Miscellaneous							
Cyanide	MG/L	0.2		NA		NA	0.0037 B
Total Petroleum Hydrocarbons	MG/L	-		NA	2.4	NA	

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. Flags assigned during chemistry validation are shown.

	Concentration Exceeds Criteria
MADE BY:	
CHECKED BY:	

Location ID			MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID			MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (fi	t)		-	-	-	-	-
Date Sampled			07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units	Criteria*					
Volatiles							
1,1,1-Trichloroethane	UG/L	5	190				12
1,1,2-Trichloroethane	UG/L	1					4 J
1,1-Dichloroethane	UG/L	5	560 J				9.5
1,1-Dichloroethene	UG/L	5	67				32
1,2-Dichloroethane	UG/L	0.6		_			
1,2-Dichloropropane	UG/L	1					41
2-Butanone	UG/L	50					
Acetone	UG/L	50	7 J	6 J		63 J	30 J
Chloroethane	UG/L	5					
Chloroform	UG/L	7		-			
cis-1,2-Dichloroethene	UG/L	5					9,500 DJ
Methyl acetate	UG/L	-					
trans-1,2-Dichloroethene	UG/L	5					380 J
Trichloroethene	UG/L	5					60,000 DJ
Vinyt chloride	UG/L	2					1,000 J
Metals							
Aluminum	UG/L	-	NA	NA	NA	NA	NA NA
Arsenic	UG/L	25	NA	NA	NA	NA	NA
Barium	UG/L	1000	NA	NA	NA	NA	NA
Cadmium	UG/L	5	NA	NA	NA	NA	NA
Calcium	UG/L	-	NA	NA	NA	NA	NA
Chromium	UG/L	50	NA	NA	NA	NA	NA

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class	ss GA.
Flags assigned during chemistry validation are shown.	
Concentration Exceeds Criteria.	

MADE BY:______
CHECKED BY:_____

Location ID			MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID			MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	•	-	•	•
Date Sampled			07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units	Criteria*					
Metals						1	
Copper	UG/L	200	NA	NA	NA	NA NA	NA
Iron	UG/L	300	NA	NA NA	NA	NA	NA
Lead	UG/L	25	NA	NA	NA	NA NA	NA
Magnesium	UG/L	35000	NA	NA	NA	NA	NA
Manganese	UG/L	300	NA	NA	NA	NA	NA
Mercury	UG/L	0.7	NA	NA	NA	NA	NA
Nickel	UG/L	100	NA	NA	NA	NA NA	NA
Potassium	UG/L	-	NA	NA	NA	NA	NA
Sodium	UG/L	20000	NA	NA	NA	NA	NA
Thallium	UG/L	0.5	NA	NA	NA	NA	NA
Vanadium	UG/L	-	NA	NA	NA	NA	NA
Zinc	UG/L	2000	NA	NA	NA	NA	NA
Miscellaneous							
Cyanide	MG/L	0.2	NA	NA	NA	NA	NA
Total Petroleum Hydrocarbons	MG/L	-	NA	NA	NA	NA	NA

	Concentration Exceeds Criteria
MADE BY:	
CHECKED BY:	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (includes 4/2000 Addendum). Class GA. Flags assigned during chemistry validation are shown.

4.2 Catch Basin Sediment Analytical Results

Four sediment samples were collected from catch basins or floor sumps during the SI and analyzed for TCL VOCs. Two sediment samples were collected from Sump-01 and Sump-02 in the Former Maintenance Shop and two sediment samples were collected from the round sump/catch basin and rectangular sump/catch basin east of the Former Maintenance Shop. Three VOCs were detected in Sump-01 at concentrations that exceed their SCGs. Tetrachloroethene (PCE) was detected at 15,000 micrograms per kilogram (µg/kg) (SCG 1,400 µg/kg), 1,1-DCA was detected at 1,100 µg/kg (SCG 200 µg/kg), and 1,1,1-TCA was detected at 16,000 µg/kg (SCG 800 µg/kg). Two VOCs were detected in Sump-02 at concentrations that exceed their SCGs. 1,1-DCA was detected at 2,600 µg/kg and 1,1,1-TCA was detected at 1,600 µg/kg. Although several VOCs were detected in the rectangular sump and a few VOCs were detected in the round sump, none of the detections exceed their SCGs. A summary of detected analytes in sediment samples is shown in Table 4-1 and in Figure 4-1.

4.3 Subsurface Soil Analytical Results

Sixteen subsurface soil samples were collected from various soil borings across the site. Each sample was collected from soil borings which exhibited elevated PID readings or visual evidence of potential contamination (i.e., staining, sheen, odors). Each of the 16 subsurface soil samples were collected and analyzed for TCL VOC. Analytical results are discussed below.

Former Maintenance Shop

Three soil samples were collected from Geoprobe borings advanced adjacent to Sump-01 (1-x-1), Sump-02 (2-x-1), and Sump-03 (3-x-2). Sample depths ranged from 0.5 to 1.5 feet bgs. As indicated in Table 4-2, only one VOC (acetone) was detected in the samples (1-x-1) at a concentration of 440 µg/kg which exceeds its SCG of 200 µg/kg.

Former Chemical Storage Building

Two soil samples were collected from Geoprobe borings advanced adjacent to Sump-04 (4-x-2) and Sump-05 (5-x-1). As indicated in Table 4-2, no VOCs were detected in either of the samples at concentrations that exceed the SCGs. Six soil samples (GPB-02, -03, -04, -07, -08, and -09) were collected from Geoprobe borings advanced around the perimeter of the Former Chemical Storage Building. As indicated in Table 4-2, no VOCs were detected in the soil samples collected from GPB-02, GPB-03, and GPB-04 at concentrations which exceed the SCGs. Trichloroethene (TCE) was detected at concentrations above its SCG of 700 μg/kg in soil samples GPB-07 (69,000 μg/kg), GPB-08 (3,100 μg/kg), and GPB-09 (53,000 μg/kg). Also, trans-1,2-DCE was detected in GPB-08 at a concentration of 1,100 μg/kg which exceeds its SCG of 300 μg/kg. No other VOCs were detected in GPB-07, GPB-08, and GPB-09 at concentrations that exceed the SCGs.

Former Acid Plant

Four soil samples (GPB-11 through GPB-13) were collected from Geoprobe borings around the perimeter of the Former Acid Plant. As indicated in Table 4-2, TCE was the only VOC detected and at only one location GPB-12 (57,000 μ g/kg) at a concentration that exceeds its SCG of 700 μ g/kg.

Former Mud Separator and Oil Separator

As indicated in Table 4-2, one soil sample (MW-08) was collected from soil boring MW-08 for VOC analysis. No VOCs were detected in the sample.

Drain Line Excavation

Two soil samples (TP-01 #2 and TP-01) were collected from the excavation along the 4-inch clay-tile drain pipe which extends from the round sump towards MW-03. One of the soil samples was collected from soil inside of the pipe and one from soil bedding outside of the

pipe. As indicated in Table 4-2, no VOCs were detected in either of the samples at concentrations that exceed the SCGs.

4.4 Groundwater Analytical Results

Ten groundwater samples were collected during the SI: eight from monitoring wells and two from piezometers. MW-01, MW-03, and MW-05 groundwater samples were analyzed for TCL VOCs, TCL SVOCs, TCL pesticides, TCL PCBs, TAL metals, cyanide and TPH. Groundwater samples collected from MW-02, MW-04, MW-06, MW-07, MW-08, PZ-01, and PZ-02 were analyzed for TCL VOCs only. Analytical results are summarized in Table 4-3 and are presented in Figure 4-2.

No VOCs, SVOCs, pesticides or PCBs were detected in MW-01 and MW-05 at concentrations which exceed the SCGs. Several metals including iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), and thallium (Th) were detected at concentrations which exceed their SCGs. Cyanide was not detected above SCGs and TPH was not detected in either MW-01 or MW-05.

Several VOCs were detected in MW-03 at concentrations that exceed the SCGs. These VOCs include; 1,1,1-TCA at 4,500 micrograms per liter (μg/l) (SCG 5 μg/l); 1,1-DCA at 50,000 μg/l (SCG 5 μg/l); 1,1-DCE at 14 μg/l (SCG 5 μg/l); 1,2-DCA at 11 μg/l (SCG 0.6 μg/l); chloroethane at 130 μg/l (SCG 5 μg/l), and vinyl chloride at 9 μg/l (SCG 2 μg/l). No SVOCs, pesticides, or PCBs were detected at concentrations which exceed the SCGs. Several metals including cadmium (Cd), Fe, Mg, and nickel (Ni) were detected at concentrations that exceed their SCGs. Cyanide was not detected and TPH was detected at 2.4 milligrams per liter (mg/l).

No VOCs were detected at concentrations that exceed the SCGs in groundwater samples collected from MW-02, MW-04, and MW-07. Three VOCs were detected at concentrations that exceed the SCGs in groundwater sample MW-06. The VOCs include: 1,1,1-TCA at 190 μ g/l (SCG 5 μ g/l); 1,1-DCA at 560 μ g/l (SCG 5 μ g/l); and 1,1-DCE at 6 μ g/l (SCG 5 μ g/l). One VOC (vinyl chloride) was detected in MW-08 at 8 μ g/l which exceeds its SCG of 2 μ g/l. One VOC (acetone) was detected in PZ-01 at 63 μ g/l which exceeds its SCG of 50 μ g/l.

Ten VOCs were detected in PZ-02 at concentrations that exceed their SCGs. The VOCs include: 1,1,1-TCA at 12 μ g/l (SCG 5 μ g/l);1,1,2-TCA at 4 μ g/l (SCG 1 μ g/l); 1,1-DCA at 9 μ g/l (SCG 5 μ g/l); 1,1-DCE at 32 μ g/l (SCG 5 μ g/l); 1,2-dichloropropane at 4 μ g/l (SCG 1 μ g/l); chloroform at 8 μ g/l (SCG 7 μ g/l); cis-1,2-DCE at 380 μ g/l (SCG 5 μ g/l); TCE at 60,000 μ g/l (SCG 5 μ g/l); and vinyl chloride at 1,000 μ g/l (SCG 2 μ g/l).

A summary of detected analytes in groundwater samples in shown in Table 4-3 and in Figure 4-2.

4.5 Summary of Contamination

Analytical results showed that the sediments in the sumps of the Former Maintenance Shop are contaminated with VOCs (1,1,1-TCA, 1,1-DCA, and PCE). Subsurface soil samples collected from the Former Acid Plant and Former Chemical Storage Building area showed elevated levels of VOCs (TCA and trans-1,2, DCE). Groundwater samples showed elevated levels of VOCs, consisting primarily of 1,1,1-TCA and 1,1-DCA in MW-03 and MW-06 and TCE, cis-1,2-DCE, and vinyl chloride in PZ-02. The contaminants present in groundwater at MW-03 and MW-06 are similar to the contaminants found in the sump sediments in the Former Maintenance Shop. Also, the primary contaminants present in PZ-02 were not present in the downgradient wells MW-03 and MW-06.

4.6 Analytical Testing Data Validation

Data validation was performed on all samples collected. This data validation was limited to a review of the following criteria:

- Holding times
- Data completeness
- Comparison of surrogate, spike, and duplicate recoveries to validation criteria
- Blank contamination
- 10% quantitation check that reported sample results are correct
- Proper sample analysis

- Sample chromatograms
- NYSDEC ASP Sample Preparation and Analysis Summary Forms

Based on this review, a data usability summary report (DUSR) was prepared. The DUSR is presented in Appendix H.

5.0 EXPOSURE PATHWAY ANALYSIS

5.1 Migration Pathways

An exposure pathway is the route by which an individual comes in contact with a contaminant. The five elements of an exposure pathway are 1) the source of contamination; 2) the environmental medium and transport mechanisms; 3) the point of exposure; 4) the route of exposure; and 5) the receptor population. In order for an individual to be affected by contamination at the site, a pathway must be complete. Pathways may be direct or indirect. Direct exposure pathways include dermal contact with, and/or inhalation or ingestion of, the contaminant. Ingestion of contaminated drinking water is an example of a complete direct exposure pathway. An example of an indirect exposure pathway is human consumption of fish which have been contaminated by eating smaller creatures living in contaminated sediments. The following sections address several potential exposure pathways at the site.

5.1.1 Sediment Exposure Pathway

Sediment samples were collected from four floor sump/catch basin locations during this SI. Sediment samples collected from the round sump and rectangular sump located outside of the Former Maintenance Shop showed no VOC detected above the SCGs. Three VOCs including: 1,1,1-TCA, 1,1-DCA, and PCE were detected at concentrations that exceed their SCGs in sediment samples that were collected from Sump-01 and Sump-02, located inside the Former Maintenance Shop. Sediments in Sumps-01 and -02 are sources of contamination, but these covered sumps are located inside of a locked building, and there is no transport mechanism that would promote sediment movement. Therefore, potential receptor populations would not be exposed to the contaminated sediments under current conditions as there is no completed exposure pathway which would pose a risk to human health.

5.1.2 Subsurface Soil Exposure Pathway

VOCs were detected in subsurface soil samples at concentrations that exceed the SCGs. The majority of the exceedances were present in soil samples collected from soil borings between the Former Chemical Storage Building and the Former Acid Plant. Specifically, TCE and trans-1,2-DCE were detected in GPB-7, GPB-8, and GPB-9 above the SCGs. TCE was also detected in GPB-12 (northwest corner of the Former Acid Plant) above its SCG. Subsurface soils are a source of contamination in localized areas of the site. The only potential receptor population that may come in contact with the subsurface soils are construction workers performing earthwork. Currently, a complete exposure pathway does not exist which would pose a risk to human health.

5.1.3 Groundwater Exposure Pathway

Groundwater samples showed some VOCs and metals at concentrations above the SCGs. The bulk of the exceedances were found in MW-03 and PZ-02, which are located east of the Former Maintenance Shop and between the Former Chemical Storage Building and Former Acid Plant, respectively. The primary contaminant detected in PZ-02 is TCE (50,000 μ g/L). TCE was not detected in MW-03, which is located less than 100 feet downgradient from PZ-02. Therefore, it appears that the TCE contamination remains local to the vicinity of PZ-02. Although groundwater associated with the water table aquifer in some areas of the site may be considered source contamination, there is no complete route of exposure as potential receptor populations are supplied with municipal water and do not use groundwater for consumption or recreation.

5.1.4 Air Exposure Pathway

Fugitive or respirable dust is not a concern at the facility as the open areas of the site are adequately vegetated and/or are covered with material too large to become airborne (i.e., gravel, asphalt). Although VOCs were present in some subsurface soils, the samples were collected at depths in soils with temperatures that do not promote volatilization and have very low permeability and porosity. Therefore, volatilization is not considered it significant concern. There are no complete air exposure pathways at the site.

5.1.5 Conclusions

Based on the above exposure pathway analysis, contaminated sediment, subsurface soils and groundwater all represent potential contaminant sources. However, there were no complete exposure pathways identified, as possible receptor populations are not expected to come in contact with contaminated media or be exposed for any period of time that would pose a health risk.

5.2 Habitat-Based Assessment

A habitat-based assessment is performed during a SI when it is determined that an impact to wildlife may exist as a result of contamination from the site. Field observations were made in conjunction with environmental sampling to determine if such an assessment was necessary for this SI. The potential impacts or routes of exposure to wildlife that were considered include, but are not limited to, the following:

- Uptake of contaminants by plant life on or near the site.
- Consumption of contaminated plants by animals in the area.
- Direct contact with contaminants at the surface by animal life on or near the site.
- Impacts to surface water via storm runoff or groundwater discharge.

After consideration of the above-mentioned potential impacts with the conditions defined for the site, it was determined that potential impacts to wildlife by site-related contamination are minimal. No further habitat-based assessment/evaluation is envisioned based on the data gathered to date.

6.0 IDENTIFICATION AND DEVELOPMENT OF REMEDIAL ALTERNATIVES

6.1 <u>Introduction</u>

This section presents the methodology and rationale used to develop remedial action

alternatives for the Former Dowell.

6.2 Remedial Action Objectives

The objective of the NYSDEC Voluntary Cleanup Program is to investigate and evaluate

sites that have been impacted due to real or perceived environmental contamination so that they can

be remediated, as necessary, and redeveloped. This objective includes the identification and

development of remedial alternatives. In order to evaluate the practicality and feasibility of meeting

this objective, it has been assumed that the site will continue to be used solely for

commercial/industrial purposes. Appropriate remedial action alternatives based on

commercial/industrial land use were subsequently developed and evaluated. A remedy for the site

was then selected from these alternatives.

6.2.1 Selection of Cleanup Goals

The cleanup goals for each matrix are listed below:

Soil

NYSDEC Technical Administrative Guidance Memorandum (TAGM) 4046: Determination

of Soil Cleanup Objectives and Cleanup Levels, January 1994, revised.

Groundwater

NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1: Ambient Water Quality

Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.

J:\35824.00\Word\Dowell SI Report Results.wpd 02/08/2002 11:57 AM

6-1

6.2.2 Regulatory Implications of Contaminant Concentrations

It is to be noted that the TAGM 4046 criteria have been developed based on residential use scenarios. Consequently, with industrial re-use scenarios, as proposed for this site, these criteria are used for initial screening of the site. Final cleanup goals subsequently are developed on a case by case basis with the NYSDEC and NYSDOH. Likewise, the TOGS 1.1.1 criteria are used in cases where the groundwater is utilized, or may be potentially utilized in the future, as a source of drinking water. Considering that groundwater is not now, or likely to be in the future, a source of drinking water, the TOGS 1.1.1 criteria are used for initial screening of the site. Final cleanup goals will be developed with the NYSDEC and NYSDOH.

Sediment

Three VOCs (TCA, DCA, and PCE) were detected at concentrations that exceed their SCGs in sediment samples collected from two floor sumps (Sump-01 and Sump-02) located in the Former Maintenance Shop. Although contamination is present in the sediments of the sumps, under the current site scenario there is no complete exposure pathway which would pose a risk to human health. As the Former Maintenance Shop and floor sumps are slated for demolition, the sediments in the sumps will have to be removed, therefore, remedial alternatives were developed for sump sediments.

Soils

The following VOCs were detected in subsurface soil samples at concentrations that exceed their SCGs.

- Acetone (Sample 1-x-1)
- trans-1,2-DCA (GPB-08), and
- TCE (GPB-07, GPB-08, GPB-09, and GPB-12)

Although acetone was detected in one subsurface soil sample (1-x-1 sump), it is a common laboratory contaminant and is unlikely to persist in any medium for an extended period of time, as it volatilizes rapidly. Under the current site use scenario, there is no complete exposure pathway to contaminated subsurface soils which would pose a risk to human health with the exception of future construction workers. Consequently, as the site structures are slated for demolition, and earthwork will take place during the concrete slab removals and future excavation for foundations, remedial alternatives were developed for subsurface soils.

Groundwater

There were no SVOCs, pesticides, PCBs, or cyanide detected in groundwater samples that exceed the SCGs. Consequently, these constituents were not considered during the development of remedial alternatives for groundwater. Several VOCs and metals were detected in site groundwater samples at concentrations that exceed the SCGs. All of the VOCs detected above the SCGs in groundwater were considered during the development of remedial alternatives. Only those metals that did not exceed the SCGs in background wells were considered during the development of remedial alternatives.

The primary contaminants of concern in groundwater at the site include:

- TCE (PZ-02)
- 1,1-DCA (MW-03, MW-06, PZ-02)
- cis-1,2-DCE (MW-03, PZ-02)
- 1,1,1-TCA (MW-03, MW-06, PZ-02)
- Vinyl Chloride (MW-03, PZ-02)

Other contaminants that were detected in groundwater samples that exceed the SCGs include:

- Acetone (PZ-01)
- Chloroethane (MW-03)
- Choroform (PZ-02)
- 1,2-DCA (MW-03)

- 1,1-DCE (MW-03, MW-06, PZ-02)
- trans-1,2-DCE (PZ-02)
- 1,2-Dichloropropane (PZ-02)
- 1,1,2-TCA (PZ-02)
- Cadmium (MW-03)
- Nickel (MW-03)

The above-listed contaminants are the basis for the development of remedial alternatives.

6.3 General Response Actions

General response actions may be applied at the site to meet the remedial action objective. They may include treatment, containment, excavation, extraction, disposal, institutional controls, no action, or a combination of responses. The following general response actions were identified for the subsurface soil and groundwater at the site:

- No action
- Institutional controls
- · Groundwater extraction and treatment
- · In-situ oxidation
- Source removal

6.4 Development of Alternatives

The general response actions identified in Section 6.3 have been assembled into remedial action alternatives that address the contamination concerns at the site as a whole.

The primary exposure routes associated with the VOCs and metals in the on-site soil and groundwater include:

Dermal contact

Ingestion

Consequently, in developing the remedial action alternatives, the primary goal was to prevent contact with, and ingestion of, the contaminated soil and groundwater. Five alternatives were developed which include:

- Alternative 1 No Action
- Alternative 2 Institutional Controls
- Alternative 3 Groundwater Treatment and Extraction
- Alternative 4 In-Situ Oxidation
- Alternative 5 Source Removal

These alternatives are evaluated in detail in Section 7.0.

7.0 DETAILED ANALYSIS OF ALTERNATIVES

7.1 Introduction

A detailed analysis of the remedial action alternatives developed for the site consists of the presentation and analysis of relevant information necessary to select a remedy for the site. The proposed alternatives were analyzed in this report using the following seven evaluation criteria as defined in 6 NYCRR Part 375:

- 1. Overall protection of human health and the environment
- 2. Compliance with remedial action objectives
- Short-term effectiveness and performance
- 4. Long-term effectiveness and performance
- 5. Reduction of toxicity, mobility, and volume
- 6. Implementability
- 7. Cost

The criterion of community acceptance will be evaluated by the NYSDEC following issuance of the proposed remedial action plan.

7.2 Individual Analysis of Alternatives

The components of each alternative are further defined in the following paragraphs with regard to volume or areas of contaminated media to be addressed; the technologies to be used; and any performance requirements associated with those technologies. For each alternative the estimated capital costs, estimated operational and maintenance (O&M) costs (in present dollars), the years of active remediation at the site, and the years of monitoring have been provided.

7.2.1 Alternative 1 - No Action

Capital Cost: \$0 Years of Active Remediation: 0

O&M Costs: \$0 Years of Monitoring: 0

Total Costs: \$0

Under the No Action alternative, no remedial activities would be taken at the site to remove, contain, or treat contaminated soil and groundwater. This alternative does not comply with the remedial goals in that the contamination levels of organic compounds that exceed the SCG values are not reduced and the direct contact hazards are not mitigated at the site.

- Overall protection of human health and the environment Alternative 1 is not
 expected to provide adequate protection of human health and the environment.
- Compliance with remedial action objectives Alternative 1 does not achieve the VCA remedial action objectives.
- Short-term effectiveness Alternative 1 includes no treatment and reduces contaminant levels by natural processes.
- Long-term effectiveness and permanence Alternative 1 does not offer long-term effectiveness or permanence since it does not reduce contamination levels.
- Reduction of toxicity, mobility, and volume Alternative 1 does not include treatment and will not reduce the toxicity, mobility, or volume of contaminants.
- Implementability Alternative 1 does not require implementation by remedy.
- Cost No costs are associated with Alternative 1.

7.2.2 <u>Alternative 2 – Institutional Controls</u>

Capital Cost: \$20,000 Years of Active Remediation: 0

O&M Costs: \$50,000 Years of Monitoring: 30

Total Costs: \$ 70,000

Under the Institutional Control alternative, human exposure and health risks are eliminated by restricting public access and future development activities rather than by cleaning up or containing the organic compounds. This alternative relies upon natural processes (biodegradation, volatilization and leaching) to reduce contaminant concentrations slowly over time. The Institutional Control alternative includes deed restrictions to control future development on site (i.e., restricted earthwork) and groundwater use restrictions prohibiting withdrawal of groundwater for drinking water or other potable uses. This alternative also includes the routine monitoring of groundwater to track the natural reduction of contaminant levels as well as routine site reviews. This alternative does not comply with the remedial goals in that the contamination levels of organic compounds that exceed the SCG values are not reduced and the direct contact hazards are not mitigated at the site.

- Overall protection of human health and the environment Alternative 2 is not expected to provide adequate protection of human health and the environment.
- Compliance with remedial action objectives Alternative 2 does not achieve the VCA remedial action objectives.
- Short-term effectiveness Alternative 2 includes no treatment and reduces contaminant levels by natural processes.
- Long-term effectiveness and permanence Alternative 2 does not offer long-term
 effectiveness or permanence since it does not reduce contamination levels. Although
 institutional controls, such as deed and groundwater use restrictions, lower the risk from
 direct contact hazards, these controls do not reduce contaminant levels.
- Reduction of toxicity, mobility, and volume Alternative 2 does not include treatment and will not reduce the toxicity, mobility, or volume of contaminants.
- Implementability Alternative 2 includes deed and groundwater use restrictions, which are relatively easy to implement.
- Cost Legal costs represent the capital costs for Alternative 2. O&M costs include the
 maintenance of monitoring wells, the collection and analysis of groundwater samples,
 and the site reviews.

7.2.3 Alternative 3 – Groundwater Treatment and Extraction

Capital Cost: \$425,000 Years of Active Remediation: 2

O&M Costs: \$500,000 Years of Monitoring: 5

Total Costs: \$925,000

Under the Groundwater Treatment and Extraction alternative, a series of water table pumping wells would be installed at the site. Groundwater would be removed from the wells at a rate to form a cone of depression around the site preventing the off-site migration of contaminants. The groundwater would be passed through a series of fiber filters to remove sediments and through activated carbon filters to remove residual organic compounds. Treated groundwater would be tested and discharged through a State Pollution Discharge Elimination System (SPDES)-permitted discharge. This alternative complies with the remedial goals for groundwater in that the organic compounds are reduced and the direct contact and inhalation hazards are mitigated at the site. The Groundwater Treatment and Extraction alternative would prevent the off-site migration of contaminants and would minimize the transport of the organic compounds to the atmosphere.

- Overall protection of human health and the environment Alternative 3 is expected to be protective of human health and the environment.
- Compliance with remedial action objectives Alternative 3 is expected to meet the VCA remedial action objectives for groundwater, but not for soil.
- Short-term effectiveness Alternative 3 does offer short-term effectiveness by preventing the off-site migration of organic compounds and the removal of the contaminants from the groundwater.
- Long-term effectiveness and permanence Alternative 3 does offer long-term effectiveness and permanence since it reduces contaminant levels in groundwater.
- Reduction of toxicity, mobility, and volume Alternative 3 would effectively reduce the toxicity, mobility, and volume of contaminants in the groundwater.
- Implementability Alternative 3 would be the most difficult to implement because it requires the installation of water table pumping wells as well as the removal, treatment, sampling, and disposal of groundwater. The water table aquifer does not produce sufficient water to maintain an efficient pump rate. Furthermore, this alternative would require extensive worker health and safety measures and other environmental controls.
- Cost The installation of the water table pumping wells and associated equipment represent the capital costs while the treatment, sampling and disposal of the groundwater represent the O&M costs.

7.2.4 Alternative 4 – In-Situ Oxidation

Capital Cost: \$425,000 Years of Active Remediation: 0.5

O&M Costs: \$75,000 Years of Monitoring: 1

Total Costs: \$500,000

Under the In-Situ Oxidation alternative, soil and groundwater in areas that showed SCG value exceedances would be treated in place. A series of injection wells would be installed in the areas where soil and groundwater contamination has been identified. Various catalysts and oxidizers would be injected into the wells to oxidize or reduce the organic compounds. Soil and groundwater samples would be collected from and adjacent to the injection wells prior to, and approximately 30 days after, injection to evaluate the effectiveness of the oxidation. Analytical results would be used to determine the need for additional injections of catalysts and oxidizers. This alternative complies with the remedial goals in that the organic compounds are reduced and the direct contact hazards are mitigated at the site. The In-Situ Oxidation alternative would prevent the off-site migration of contaminants.

- Overall protection of human health and the environment Alternative 4 is expected to be protective of human health and the environment.
- Compliance with remedial action objectives Alternative 4 is expected to meet the VCA remedial action objectives.
- Short-term effectiveness Alternative 4 does offer short-term effectiveness by preventing the off-site migration of organic compounds and the reduction of the contaminants on and in the soil and groundwater.
- Long-term effectiveness and permanence Alternative 4 does offer long-term effectiveness and permanence since it reduces contaminant levels.
- Reduction of toxicity, mobility, and volume Alternative 4 would reduce the toxicity, mobility, and volume of contaminants in the soil and groundwater.

- Implementability Alternative 4 would be relatively easy to implement, but due to the low permeability of the aquifer material (clay), the effectiveness of oxidation would be limited. Multiple injection wells would be required to increase the efficiency of the oxidizing catalysts.
- Cost The installation of the injection wells, associated equipment, and chemicals
 represent the capital costs while the sampling and reapplication of chemicals represent
 the O&M costs.

7.2.5 Alternative 5 – Source Removal

Capital Cost: \$311,781 Years of Active Remediation: 0.5

O&M Costs: \$12,986 Years of Monitoring: 5±

Total Cost: \$324,767

Under this alternative, soil between the Former Chemical Storage Building and the Former Acid Plant would be excavated and hauled to an off-site disposal facility. Soil beneath the former railroad spur in the vicinity of GPB-07, -08 and -09 would be excavated to approximately 15 feet below ground surface (bgs) and the excavated soil stockpiled on-site on plastic sheeting. Soil outside the northwest corner of the Former Acid Plant near GPB-12, would also be excavated to approximately 15 feet bgs and the excavated soil stock piled on-site on plastic sheeting. Also, soil around MW-03 and the 4-inch clay-tile pipe and sediment in Sumps-01 and -02 in the Former Maintenance Shop would be removed. Post-excavation soil samples would be collected from the walls and floor of the excavations to confirm that residual levels of contaminants of concern are below the VCA remedial action levels. Representative samples of the excavated soil would be collected and analyzed, and a waste profile prepared for the soil. The soil would then be transported to an approved off-site facility as either a hazardous waste or as a non-hazardous contaminated solid waste. This alternative complies with the remediation goals in that the contamination levels of organic compounds that exceed the SCG values are reduced and direct contact hazards are mitigated. By removing source areas, groundwater contaminant reduction will occur through the process of natural attenuation. The Source Removal alternative would prevent the transport of the organic compounds to the atmosphere. Figure 7-1 shows the proposed source removal area.

- Overall protection of human health and the environment Alternative 5 is expected to provide adequate protection of human health and the environment.
- Compliance with remedial action objectives Alternative 5 achieves the VCA remedial action objectives.
- Short-term effectiveness Alternative 5 includes the physical removal of contaminants.
- Long-term effectiveness and permanence Alternative 5 offers long-term effectiveness and permanence since it removes contaminated source areas and reduces contamination levels in groundwater by natural attenuation.
- Reduction of toxicity, mobility, and volume Alternative 5 will reduce the toxicity, mobility, and volume of contaminants remaining on-site.
- Implementability Alternative 5 is relatively easy to implement.
- Cost The removal and off-site disposal of the soil represents the capital costs. Table
 7-1 breaks down the costs for Alternative 5.

7.3 Selected Remedial Alternatives

Based on the analysis of alternatives presented above, it is recommended that Alternative 5 - Source Removal, be implemented at the site. This alternative provides a high degree of protection to human health and the environment, is cost effective, and relatively easy to implement.

This alternative satisfies the VCA remedial objectives in that it eliminates direct contact hazards associated with sediment and subsurface soils at the site. The only potential exposure is to construction workers during remedial action excavations. This potential exposure route will be minimized by development of soils management procedures to be followed during remedial activities. This alternative does reduce the volume and toxicity of the contaminants by removing the source of contamination and allowing for contamination reduction by natural attenuation. Additionally, this alternative is considerably less expensive than Alternative 3, while affording future site workers/visitors a higher level of protection.

TABLE 7-1 COST ESTIMATE FOR ALTERNATIVE 5 - SOURCE REMOVAL

Cost Estimate	Site: For	Site: Former Dowell Site Depew, New York	ite Depew, A	lew York	Technoi	Technology/Process: Demolition and Removal	Demolition and	d Removal	Page 1 of	1 of 1
	Quantity	Units	Safety	Unit	Unit Price at Safety Level	/ Level		To	Fotal Costs	
Assembly/Line Item			Level	Labor	Equipment	Materials	Labor	Equipment	Materials	Total
Mobilization & Fee	1	Ā	٥	0.000	0.000.0	3091.9540	0.000.0	0.000.0	3091.9540	\$3,091.95
Remove Underlying Soil by RR Spur	1479	TONS	۵	1.0589	3.0749	0.000.0	1566.1131	4547.7771	0.000	\$6,113.89
Load Wastes (Soil) from RR Spur	870	ζ	٥	0.4109	0.9715	0.000	357.4830	845.2050	0.0000	\$1,202.69
Transport Wastes (Soil) from RR Spur	2000	Σ	۵	0.000.0	0.000.0	2.9064	0.000.0	0.000.0	5812.8000	\$5,812.80
Disposal of Wastes (Soil) from RR Spur (3)	870	TONS	۵	0.000.0	0.000.0	111.3103	0.000.0	0.000.0	96839.9610	\$96,839.96
Remove Underlying Soil by Acid Plant	893	TONS	۵	1.0589	3.0749	0.000.0	945.5977	2745.8857	0.0000	\$3,691.48
Load Wastes (Soil) from Acid Plant	525	ζ	٥	0.4109	0.9715	0.000.0	215.7225	510.0375	0.000.0	\$725.76
Transport Wastes (Soil) from Acid Plant	450	Σ	۵	0.000.0	0.000.0	2.9064	0.000.0	0.000.0	1307.8800	\$1,307.88
Disposal of Hazardous Waste (Soil) (3)	525	TONS	۵	0.000.0	0.000.0	111.3103	0.000.0	0.000	58437.9075	\$58,437.91
Remove Underlying Soil @ Drain Line	492	TONS	۵	1.0589	3.0749	0.000	520.9788	1512.8508	0.000.0	\$2,033.83
Load Waste (Soil & Pipe) from Drain Line	289	CΥ	۵	0.4109	0.9715	0.000.0	118.7501	280.7635	0.000.0	\$399.51
Transport Waste (Soil & Pipe) from Drain Line	50	Σ	٥	0.000.0	0.000.0	2.9064	0.000.0	0.000.0	145.3200	\$145.32
Dispose of Waste (Soil) from Drain Line (3)	289	TONS	۵	0.000.0	0.000.0	111.3103	0.000.0	0.000.0	32168.6767	\$32,168.68
Transport Drums (Sediment) from Sumps	100	¥	۵	0.000.0	0.000.0	3.4630	0.000.0	0.000.0	346.3000	\$346.30
Disposal of Hazardous Waste from Sumps	4	DRUM	۵	0.000.0	0.000.0	117.4949	0.000.0	0.000.0	469.9796	\$469.98
Backfill	1887	ζ	۵	0.5297	1.1411	4.6503	999.5439	2153.2557	8775.1161	\$11,927.92
Confirmatory Sampling (VOC's Only)	15	វ	۵	0.000.0	0.000.0	324.6552	0.000.0	0.0000	4869.8280	\$4,869.83
Oversight	120	HR	۵	30.9195	0.000.0	0.000.0	3710.3400	0.000	0.000.0	\$3,710.34
O&M Monitoring (Post-Remediation)(VOC's Only)	40	EA	O	0.000.0	0.000	324.6552	0.000.0	0.0000	12986.2080	\$12,986.21
						Total	8434.5291	12595.7753	\$225,251.93	\$246,282.24
Notes.										

All costs are from the Environmental Restoration Unit Cost Book (ECHOS, 1995) and are in 1995 US dollars.
 New York zip code 14225 has a cost multiplier of 1.11.
 Disposal quantities are based on 1 ton per cubic yard.

\$246,282.24	\$27,091.07	\$273,373.31	\$27,337.33	\$300,710.64	\$24,056.85	\$324,767.49
Subtotal:	New York Multiplier (1.11):	Subtotal:	Contingency (10%):	Subtotal:	Escalation (8%):	Total:

8.0 CONCLUSIONS

Based on the data collected during this SI and review of data collected during previous investigations, URS concludes the following:

- Sediments in the floor sumps of the Former Maintenance Shop are contaminated with 1,1,1-TCA, 1,1-DCA, and PCE. These chlorinated organic solvents are present in the floor sumps at concentrations that exceed the SCG's. The sediments should be removed prior to demolition of the Former Maintenance Shop to eliminate the potential exposure and direct contact hazards to construction workers and future site workers/visitors.
- Subsurface soil samples collected from the area between the Former Chemical Storage Building and the Former Acid Plant, as well as the area northwest of the Former Acid Plant, are contaminated with TCE and trans-1,2-DCE. These chlorinated organic solvents are present at concentrations that exceed the SCGs. The soils in these areas should be removed via excavation and replaced with clean backfill. The source removal operation will effectively remove the source of contamination from the site and eliminate the potential exposure and direct contact hazards to future site workers/visitors.
- Groundwater was found to be present in two distinct water-bearing zones. There is an
 upper till/unconfined unit in which monitoring wells MW-05 to MW-08 and
 piezometers PZ-01 and PZ-02 are set. There is a confined bedrock/lower till unit in
 which monitoring wells MW-01 to MW-04 are set.
- Groundwater contamination is present in two distinct areas of the site. The groundwater sample collected from PZ-02, between the Former Chemical Storage Building and the Former Acid Plant, is primarily contaminated with TCE, cis-1,2-DCE, and vinyl chloride. The groundwater samples collected from MW-03 and MW-06, east of the Former Maintenance Shop, are primarily contaminated with 1,1,1-TCA and 1,1-DCA. The contaminants in MW-03 and MW-06 are the same compounds present in the sump sediments of the Former Maintenance Shop. It is likely that groundwater in this area

has been impacted by past activities performed in the Former Maintenance Shop. Groundwater contamination in the PZ-02 area is most likely associated with the elevated levels of VOCs in soils in these areas. Also, the primary contaminants in PZ-02 (TCE, cis-1,2-DCE, and vinyl chloride) were not present in the downgradient wells or were at significantly lower concentrations. The groundwater contamination from the PZ-02 area does not appear to have impacted perimeter, downgradient groundwater quality.

Five remedial alternatives were evaluated and a preferred alternative was selected.
 Alternative 5 - Source Removal (Excavation) is the remedial alternative that provides the highest degree of protection to human health and the environment, is cost effective, and is easy to implement.

APPENDICES

APPENDIX A

PREVIOUS INVESTIGATION DETAILS

Soil Sample Results DS-Depew, New York Facility November 1997 Table 3

					Ø	Soil Boring ID and Sample Depth Interval (feet)	D and Sam	ole Depth In	terval (feet)					
Detected Volatile	SB-01	SB-02	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05	SB-05	SB-06	SB-07	SB-07	SB-08	SB-08
Compound	(4 - 6)	(8 - 8)	(12 - 14)	(18 - 18)	(8 - 10)	(14 - 16)	(8 - 8)	(10 - 12)	(14 - 16)	(4 - 6)	(8 - 10)	(18 - 20)	(2 - 4)	(6 - 8)
						Co	stituent conce	Constituent concentrations (mg/Kg)	(9					
Vinyl Chloride	0.022	0.029	QN	QN	0.11	QN	0.10	0.042	ON	QN .	0.16	Q	QN	Q
1,2-DCA	QN	ON	ON		QN	ON	ND	ON	ON	QN	0.006	Q	Q	Q
TCE	0.11	0.66 (*)	QN	ON	33.0 (*)	0.033	3.3 (*)	29.0 (*)	0.012	Q	17.0 (*)	9.7 C	ON CO	0.00
1,1,1-TCA	0.017	ON	1.6 (*)	QN	QN	ON	QN	QN	QN	2	0.37.1 (*)	SON	2	CX
1,2-DCE (total)	0.21 (*)	0.63 (*)	ON.	QN	2.0 (")	ON	0.87 (°)	(,) ND (,)	QN	2	0.61J (T)	S QN	2	Q
Methylene Chloride	S	QN	0.00	10.01	QN	0.013	QN	QN	600.0	Q	Ş	0.00	0.023	2
Acetone	Q	ON	0.02	0.016	QN	ON	0.033	ON	0.02	0.028	QN	Q	0.30 (*)	0.022
1,1-DCA	2	QN	() 6.7	0.34 (*)	QN	QN	0.026	QN	QN	QN	0.21	2	0.008	Q
Toluene	QN	ON	ON	10.01	ON	Ö.	ON	ON	QN	ON	QN	S	0.016	Q
Chlorobenzene	ON	ND	ND		QN	QN	ON	2	ON	0.008	QN	2	Q	9
Ethylbenzene	QN	NO	NO		Q		2	9	Q	0.14	QN	S	Q	Q
Total Xylenes	ON	QN	ON I		Q		Q	2	2	0.067	ON	2	S	Q
Chloroform	ON	ON	Q		N		Q	2	2	S	0.016	2	Q	QN
PCE	QN	QN	ON	ON	ND	2	Q	QN	Q	ND	0.38	Q	2	2
1,1-DCE	QN	ON	ND	QN	Q	Q	ö	Q	Q	ND	0.38	QN	Q	2
1,1,2-TCA	QN	ON	ON	DN	ND	Q	QN	QN	Q	ND	0.013	ON	QN	QN
(*) - Dilute Analysis	1:2	1:5	1:125	1:2	1:250		1:125	1:250			1:125	1:125	1:2	

Notes:

Laboratory Analysia for Votatie Organic Compounds using EPA SW 846 Method 8260A ND - Not Detected - Below Laboratory Quantification Limit DCA - dichloroethiane TCE - inchloroethiane TCE - inchloroethiane TCA - inchloroethiane DCE - dichloroethiane DCE - dichloroethiane DCE - dichloroethiane DCE - tetrachloroethiane TCA - tetrachloroethiane

TABLE 4 MW-1 **Groundwater Analytical Results** Former Dowell Schlumberger Facility, Depew, New York

Volatile Compounds	Sep-96	Mar-97	Nov-97	Jul-98	Dec-98	Jul-99	Jan-00
Volatile Compounds	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)
Chloroethane	<0.005	<0.005	NA	<0.005	<0.005	<0.005	<0 001
Vinyi Chlonde	<0.005	<0.005	NA	<0.005	<0.005	<0.005	<0 001
Methylene Chlonde	0.020	<0.005	NA	0.003 ⁸	<0.005	<0.005	0 001 d
Acetone	<0.010	<0.010	NA	<0.025	<0.01	<0.010	0.006
1,1-Dichloroethene	<0.005	<0.005	NA NA	<0.005	<0.005	<0 005	<0.001
1,1-Dichloroethane	<0.005	<0.005	NA NA	<0.005	<0.005	<0 005	<0.001
1,2-Dichloroethene (total)	<0.005	<0.005	NA	<0.005	<0.005	<0.005	<0.001
1,2-Dichloroethane	<0.005	<0.005	NA	<0.005	<0.005	<0 005	<0.001
1,1,1-Trichloroethane	<0.005	<0.005	NA	<0.005	<0.005	<0.005	<0.001
Total VOCs	0.020	ND	NA.	ND	ND	ND	ND

Notes
Volatile Organic Analysis by EPA SW846 Method 8260A NA= Not Analyzed

B Qualified as non-detect due to blank contamination

TABLE 5

MW-2

Groundwater Analytical Results

Former Dowell Schlumberger Facility, Depew, New York

Volatile Compounds	Sep-96	Mar-97	Nov-97	Jul-98	Dec-98	Jul-99	Jan-00
voiatile Compounds	(Mg/L)						
Chloroethane	<0.005	<0.005	<0.005	<0.005	<0 005	<0.005	<0 001
Vinyi Chioride	<0.005	<0.005	<0.005	<0.005	<0.005	<0 005	<0.001
Methylene Chlonde -	0.012	<0.005	0.007	0.005	<0 005	<0.005	0.0018
Acetone	0.013	<0.010	0.014	<0.025	<0.005	<0.010	0 005 ⁸
1,1-Dichloroethene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,1-Dichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,2-Dichloroethene (total)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,2-Dichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,1,1-Trichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
Total VOCs	0.015	ND	0.021	ND	ND	ND	ND

Notes

Volatile Organic Analysis by EPA SW846 Method 8260A ND=Not Detected

⁶ Qualified as non-detect due to blank contamination

TABLE 6 MW-3

Groundwater Analytical Results Former Dowell Schlumberger Facility, Depew, New York

Mataila Campanada	Sep-96	Mar-97	Nov-97	Jul-98	Dec-98	Jul-99	Jan-00
Volatile Compounds	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	. (Mg/L)
Chloroethane	<0.005	<0.005	<0.005/0.010	0.021/<1	<0.005/0.006	0.007	<0 200/<0.200
Vinyl Chloride	<0.005	<0 005	<0.005/0.005	0.12/<1	<0.005/<0.005	<0.005	<0.200/<0.200
Methylene Chlonde -	0.011	<0.005	0.010/0.012	0.005 ⁸ /0.930 ⁸	<0.005/<0.005	<0.005	0 27 ⁸ /0 33 ⁸
Acetone	<0.010	<0.010	<0.010/0.030	0 007 ⁸ /<5	<0.010/<0.010	<0.010	1.0-8/1 0-8
1,1-Dichloroethene	<0.005	0.019	0.013/0.028	0.068/<1	0.010/0.028	0.007	0.22*/0.28*
1,1-Dichloroethane	0.48	7.7	14.0*/18.0*	19/33	16/30	19.0°	18.0*/20.0*
1,2-Dichloroethene (total)	<0.005	<0.005	0.005/0.010	0.005/<1	<0.005/<0.005	<0.005	<0.200/<0.200
1,2-Dichloroethane	<0.005	0.005	.006/0.011	0.009/<1	0.006/0.010	0.006	<0.200/<0.200
1,1,1-Trichloroethane	0.1	1.000	2.0*/2.6*	3.7/5.5	3.3/5.4	2.4*	2.5*/2.6*
Total VOCs	0.591	6.724	20.696	38.723	35.450	21.42	22.88

Notes

Volitile Organic Analysis by EPA SW846 Method 8260A <0.005 / 0.010 = Sample Result / Duplicate Result

(*) = Dilute Analysis

ND=Not Detected

B Qualified as non-detect due to blank contamination

TABLE 7

Groundwater Analytical Results Former Dowell Schlumberger Facility, Depew, New York

Volatile Compounds	Sep-96	Mar-97	Nov-97	Jul-98	Dec-98	Jul-99	Jan-00
voiatile Compounds	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)	(Mg/L)
Chloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
Vinyl Chloride	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
Methylene Chloride	0.012	<0.005	<0.005	0.005 ⁸	<0.005	<0.005	0.002 ⁸
Acetone	0.020	<0.010	<0.010	0.005 ⁸	<0.010	<0.010	0.006 ⁸
1,1-Dichloroethene -	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,1-Dichloroethane	<0.005	<0.005	<0.005	0.004	0.021	<0.005	<0.001
1,2-Dichloroethene (total)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,2-Dichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
1,1,1-Trichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
Total VOCs	0.032	ND	ND	0.004	0.021	ND	ND

Notes

Volitile Organic Analysis by EPA SW846 Method 8260A ND= Not Detected

⁸ Qualified as non-detect due to blank contamination

BY DA CHI	ERN TE K BY TE Soi	ATIO		ROC	LOCA ORILI ORILI ORILI	LING LING LING FACE	CONTRACTOR MAXIM METHOD HSA W/ SS SAM START DATE 9/10/96 ELEVATION VISUAL	P) < S	GEOLOG DRILLES RIG TYS DRILLIN STICK-	IST _ R PE G CO UP E	PROJECT NO.	9/10/96
-2	551	4	10 18 24				Medium Dense, Black-Brown Silty <u>Cinders</u> and Fine to Coarse Angular <u>Gravel</u> , Moist Medium Dense to Very Loose, Fine to Medium <u>Cinders</u> ,	F				Fluthmouse Protective Cover
	3 52	12	3 3 5 7				Trace to Little Wood Frags, Crushed Sandstone, and Fine to Medium Gravel, Moist Soft to Medium Stiff, Green- Gray Silty Clay Grading to Red-Brown CLAY Trace Silt, Plant Roots, Moist	L.		- - - - -		Bentonite - Coment Grout
- 6	554		14 16 20 28 21				Vary Stiff Red-Brown CLAY, Little Silt, Gray Along Fractures, Damp	CL				Riser
-10	326		29 29 7 8 12 13				Stiff, Rei-Brown and Gray CLAY, Orange-Brown Staining, Little Silt, Troce Fine to Medium Gravel, Moist	a	- 4 12 -			
	DITIO		\ \	Jeil	13	cati	d in S.E Corner of	pr	oper to	1		

HAISYOR

WELL NO. MW-PAGE - OF 1 RADIAN PROJECT NAME DS - Depend PROJECT NO. 027531 INTERNATIONALILE LOCATION_ Dear GEOLOGIST VISUAL CLASSIFICATION ROCK SAMPLE SOIL SAMPLE WELL CONSTRUCTION ZXRAKQR NO. REC. BL AND REMARKS DETAILS 18 No RELOVERY 18 0 1522 20 CL i. Stiff, Red-Brown CLAY, Little Silt, Trace very Fine Sand and Fine to Medium Binwaite 558 24 Seal Gravel Iron-Stained Hoist 12 Very Stiff, Gray-Brown CLAY 13 Little Silt, Trace to Little 20 Fine bo Mediam Gravel, 539 22 17 Trace Very Fine to Medium L Sand and very Coarse Graves Moist 18 Clean Filter -13 Stiff, Gray-Brown, CLAY, ว์ and Pack Little Solt, Trace Very Fine 9 to Medium Sand and Fine to 5510 1 12 Medium Gravel Moist เรื Soft Red-Gray CLAY LITTLE C. Silt and Very Fine Sund, little Fine to Medium Graves, Hoist 5511 22 31 in sch 40 Pric Well SE.FF. Gray- Brown CLAY. Sureca Ð حك Little Sit and Very Fine to (0.315" 5105) 10 Fine Sand, little Fine to 5512 24 Hedium Grovel, 2" Janay 14 Gravel Seam & 11.5', Wet 13 .24 Stiff, Gray- From CLAY. Some Sit, Little Fine to Medium Sand and Fine to 513 20 Medium Gravel, Spion-Wet 11 16 حاث Stiff to Hard, As Above to 10 270', Red-Brown, GLAY 10 Little Sit and Fine to 5514 13 Medium Gravel, Moist 30 42

ADDITIONAL REMARKS

			-				WELL NO. MM-					7.00	
R	ΔΕ	716	M		PRO.	ECT	NAME DS - Delew					PAGE LON TOBUSE	
1 101 1	CHN	AIIU	NAL	443	LOCA	TION	NAME DS- Defend		CEO	roci	 ST _		
O COP THA	301	L 5A4	PLE	ROC	K SAL	PLE.	VISUAL	ב	یہ⊏	39 2	TO	WELL	
FEET	NQ.	REC. (Dr.)	8L/	RUN (FT)	REC. (X)	ROD. (ス)	CLASSIFICATION AND REMARKS	PROFILE	VXX EVEN	CASTAC CASTAC	25	CONSTRUCTION DETAILS	REMARKS
_30	<i>53</i> 45°	13	41 14 21 10%				Hard, Red-Brown CLAY, Little to Some Sist, Little Very Fine to Fine Sand and Fine to Medium Graves, Moist	CL			-		-pucting Cap
							HSA Refusal @ 30.0°				30		- Puc find Cap
ADI RE	DITIO MAR	NAL KS											

OA CHI OA	TE	0/23 (19L	ROC	DRIL SURF	LING LING FACE FREE	CONTRACTOR MAXIM TECH. METHOD HSA W/ SS SUMPLY START DATE 914/94 ELEVATION VISUAL CLASSIFICATION AND REMARKS	 ORI RIG ORI STIC	LLER TYP LLINC CK-U	E	DHM CM1-75 MPLETION DATE EVATION WELL CONSTRUCTION DETAILS	
-0	551	15	33 60 80 21 3				Very Dense, Black-Brown Measum to Coarse <u>Cinders</u> Some Fine to Coarse Sand Little Coarse Sand, Mossit Medium Stiff, Rea-Brown. CLAY, Little Sist, Trace Fine Sand and Fine Gravel,					Flushman Protective Cover Beatonite
-4	553	4	5 37 16 16 19				Plant Roots, Wet on Top Very Stiff, Red-Brown, CLAY, Little Silt, Trace Fine Gravel, Gray Along Some Fractures, Damp	9 1:2				Cement Grout - 2th 3sh 4s Pvc Russes
	5 54	14	28 28 32 36				Hard, Red- Brown CLAY, Trace to Little Silt, Damp			-		
	5 55	20	16 19 17 47				Very Stiff to Hord Red-Brown CLAY Trace Sist, Very Fine Giovei, Fine Sand, Trace Groy Mottles and Iron Staining, Damp			-		
-10	طادة	g	30 28 20 21				Very Stiff, Red-Brown CLAY, Little Silt, Trace Fine Gravel, Damp	-		-		

VICENSIS

WELL NO. POW 2 PAGE - OF -RADIAN PROJECT NAME DS - DEPEW PROJECT NO. 207531 INTERNATIONAL LOCATION DEPLW NY GEOLOGIST VISUAL CLASSIFICATION SOE SAMPLE ROCK SAMPLE WELL CONSTRUCTION RUN REC. ROD. (FT) (X) (X) REC. BL/ REMARKS NQ. AND REMARKS DETAILS 12 Hard, Red- Frown CLAY, Trace to Little Sit, Time Fine 57 557 24 Sand and Fine Gravel, Little 31 13.5 Iron- staining , Damp to 30 Moist Bintonite كامعاذ No RECOVERY 11 538 0 ıl 10 Stiff Rea-Brown, Gray-Brown CLAY, Little Silt 554 23 10 und very Fine to Medium Sund, Little Fine Glavel. 13 Clean Filter 13 Moist L Wat Sand Pack 18 Mediam Stiff to Stiff, -18.3 Red-Brown CLAY, Little **일이 가** Sit and very Fine to Fine sand, Little Fine Gravel. 10 13 Moise to Wet to Above w/ Coarser 2" Sch 40 Grave1 PYC Well 5511 24 ~ C(24.1 ĸ (0.010" 510=) -22 Medium Stiff to Shift, Red-Brown CLAY, Little Fine 5512 12 to Medium Gravel and Silk Little Very Fine to Medium Sand, Wet a 23 0' 13 -24 No RECOURRY 5513 0 Q 15 -21 No RELOUZAY 11 HSA to Refusal @ 28.3"

ADDITIONAL REMARKS

10

5514 0

13

50/_{1"}

BY DA CHI	TE K BY TE	L SAME	NAL	ROC	DRILLI DRILLI DRILLI SURF	LING LING LING FACE FACE	METHOD HSA W/SS SAMPI		GEO DRII RIG DRII STIC	LOGIS LER - TYPE LLING CK-UI	COI	PROJECT NO. : DIM CME-75	
- 2	HSA		4 2				ASPHALT Black-Brown, Fine Cimozils, Gravel and Sand Very Stiff, Red-Brown CLAY, Trace Siet, Gray	(F)					
4	551 S\$2	16	10 20 13 15 17 22 26				Along Fractures, Damp Very Stiff, Red-Brown, Gray Along Fractures, CLAY, Little Stit, Trace Fine Gravel, Damp	CL					-Rentonite- Coment Group -24 Sch 40
_გ		20	35 26 35 46 14 22 28				Hard, Red-Brown CLAY, Little Gray Along Fractures, Trace Silt, Vary Fine Sand, and Fine Graver, Damp Very Stiff, Red-Brown CLAY, Trace Silt and Very Fine Sand, Trace Fine Graver, Iron-Staining	CL			4.5		4 المردة المردة المرددة
	555	24	36 11 18 19				Very Stiff, Brown and Red- Brown CLAY Little Sit, Trace very Fine Sand and Fine Gravel, Some Iron- Staining, Damp	CL			-		-Bentonice Seal

ADDITIONAL REMARKS

WELL NO. MW-3 PAGE OF RADIAN PROJECT NAME _ OS-DEPEN PROJECT NO. 007531 INTERNATIONAL Depen N.Y LOCATION GEOLOGIST DNM SOIL SAMPLE ROCK SAMPLE VISUAL WELL CLASSIFICATION CONSTRUCTION RUN REC. ROD. REC. BL. REMARKS NQ. EET AND REMARKS DETAILS Very Stiff Brown to Red-Brown 12 18 CLAY ,- tittle Silt, Time very 17 Fine Sand and Fine Gravel. 356 20 16 LIEBA IFON- STEINING, Moist -Clean Filber 21 -14 Sand Pack Soft to Medium Stiff, Red-Brown CLAY, Some Sitt, Little Very Fine to Medium 557 23 15 CL 5 Sand and Fine to Medium 8 Grevet, Moist to Wat Medium Stiff; Red-Brown CLAY, Little to Some Silt, 7 23 158 Little Very Fine to Medium Sand, Little Fine to Medium Gravel, Wet -13 Madium Stiff, Red-Brown, 2" 7ch 40 CLAY Litble to some Silk, PUE WEN Screen 5,59 22 CL Little Very Fine to Medium (c 010" Slot) Sand, Little Fine to Medium 10 Gravel, Wet Medium Stiff, Red-Brown and Grey-Brown CLAY, Little 5510 20 & Some Sit, Little Very Fine to Medium Schil and Gievel, Work Medium Stiff, Red-Brown CLAY Some Silk, Little 5511 21 Very Fine to Medium Sand and Fine to Medium Grovel, 15 Moist -? પ No RELOVERY - Coarse Gravel in Shoe 5512 0 lo

CL

Medium Stiff, Red-Brown

CLAY, Little to Some Silt,

Little Very Fine to Medium : Sand, Little Fine to Coarse

Grevel Moist to Wet

ADDITIONAL REMARKS

5313 11

15

11

11

14

PROJECT NAME DS- DEPEND PAGE OF RADIAN PROJECT NO. DO7.53 INTERNATIONAL DEREW, N.Y LOCATION_ GEOLOGIST _ DNM VISUAL CLASSIFICATION AND REMARKS ROCK SAMPLE SOL SAMPLE WELL CONSTRUCTION REC. ROD. REC. (IN.) BL/ RUN (FT) REMARKS FEET NO. DETAILS 28 As Above with Weathered SSIY 6 6 Limestone Fragment in 50/2 shoe, Jamp to Moist 19 Spirt Spoon Refusal & 19.0'

ADDITIONAL REMARKS

R	ΔΙ	214	NE	_				WELL	.NO	MW-4				_		PAGE	CF:
INT	ERN	ATIC	NAL	ite			_	<u> </u>	<u> ۱۳۶۰ (</u>							CT NO	- 1
۱	,				LOC,	ATION			Maxia	M TELA					phw		
			1/40							San			LER.		M1-74		
1		•								146							-1-1-
	K 81			_					_ 9μ								2/12/46
					X 5A		- CLEVA								AOITAVE.		
	<u> </u>		8L/	RUN	REC.	800		CLASS	ISUAL SIFICA REMA	ATION	PROFILE	SIVIE WALE	CASTAC CASTAC DIA (III	DEPTH (FEET)	CONSTR CONSTR DET	RUCTION AILS	REMARKS
-								2						-	<u> </u>		-Flushmo-a
•	HSA						الممنا	GRAVZ	L So	mc	E						Protective Casing
-;	531	14	9 19 20				Brown	CLA Fine	y lic Sand	iff, Red the Silt, Gray Moist	CL			-		X	-Bantonibe- Cement Grout
	532	19	12 16 25 27				Brown	CLA FUNG			CL			-			-2" ich 4e
-	н;д						Red -	Brow	a <u>Cl</u> 4	<u>Y</u>	a						puc Riser
7	553	10	16 30 36				Trous	CLAY E FIN			a	-					
ľ	HS.L													-	-	-	
	N. 7.4														,		
	DITIC	NAL							·	,	. !	1		<u>I</u>	<u> </u>		

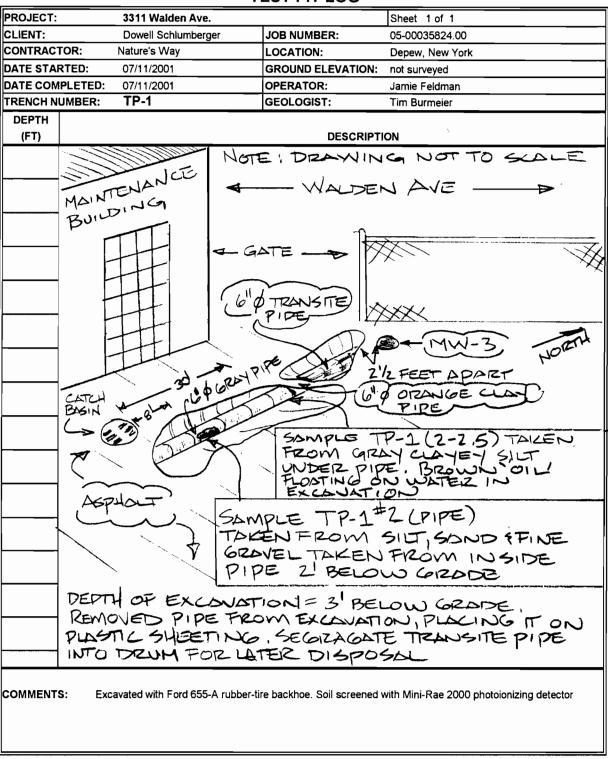
j

71013

WELL NO. MW-4 PAGE : OF: RADIAN INTERNATIONAL PROJECT NAME DS - DEPT W PROJECT NO. COT 531 LOCATION DEPLY NY CEOLOGIST . VISUAL CLASSIFICATION AND REMARKS ROCK SAMPLE SOL SAMPLE WELL RUN REC. ROD. (FT) (X) (X) CONSTRUCTION REC. BL/ REMARKS NQ. FEET DETAILS 1 2 Red-Brown CLAY HSA CL 13 Bentonite Scal -14 Medium Stiff to Stiff, 7 Red-Brown CLAY to 15.0', Ъ (15'-16') Gray CLAY, Sturey, CL 534 12 4 Trace Gravel and Very Fine to Fine Sand, Moist 13 Gray and Gray - Brown CLAY HSA Œ 10 18 95 Stiff, Gray-Brown CLAY, 2" Sch 40 Little Silt and Very Fine to PUC WELL ક 20 355 12 Coarse Sand, Little Fine Scieen 11 to Medium Grasel, Ket (0.013"51-6) 10 Gray-Brown CLAY ш HSA Clean FILES SUNT Paux -24 16 No Raccuary 17 556 0 CL 12 15 Gray- Brown CLAY CL HS.A PIL EM CAP HSA Refusal a 28.4

ML 1907SIAM

ADDITIONAL REMARKS


APPENDIX B

TEST PIT LOG

URS

282 Delaware Avenue Buffalo, New York 14202 (716) 856-5636

TEST PIT LOG

APPENDIX C

BORING LOGS

		_	UF	RS Cor	porati	on				GEOPROBE BO		G LC)G
										BORING NO: Sump 1-X			
PROJE	CT:		eli Schlur		ite, Depe	w, New	York			SHEET:	1 of 1		
CLIENT			ell Schlur							PROJECT NO.:	05-0	00358	24.00
BORING	G CONTRA	СТО	R:	Nature's	Nay, Inc.					BORING LOCATION: In:	side mai	ntenan	ice bldg
GROUN	IDWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	L	LEVEL	TYPE	TYPE		Macro core			DATE STARTED:		7/12/0	1
					Dia.		2"			DATE FINISHED:		7/12/0	<u></u> 1
					Length		48"			DRILLER:	S. Ging	rich	
					Liner		Acetate			GEOLOGIST:	T. Burr	neier	
										REVIEWED BY:	D. She	ppard	
			SA	MPLE					ESCR	IPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY					uscs	REM	ARKS
FEET	STRATA	NO.	RECOVERT	COLOR	HARD		1		MATE	RIAL	USCS		(ppm)
	$\sim\sim$			Gray	Der		0-0.5': Cond	rete flo	or. 0.5-	-1' sub-base gravel	Fill	0	Moist
			1000/	Black	St	iff	1.0-1.5' Silty				CL	210	Wet
		1	100%	Orange-			1.5-4.5' Clay			3.	ML	4-8	
4				Brown				, , ,					
				J. 31111									
	1						End of borin	n at 4 F	feet				
	1	l					End of Bonn	g a. 4.0	,,,,,,				
	1												
	1												
	1												
	1												
		l											
_		/				F- ·	h	Di4 5	N. a.b.	DDO ISST NO	05.00-	0500	00
		adva	nced using	a truck mo	ounted Sir	nco Earl	thprobe 200 l	Direct-P	rusn	PROJECT NO.	05-000		.00
Assemb	DIY.									BORING NO.	Sump 1		

			UF	RS Cor	porati	on				GEOPROBE BORING NO: Sump 1-X		G L	OG
PROJEC	et:	Dow	ell Schlur	nberger S	ite Dene	w New	York			SHEET:	1 of 1		
CLIENT			ell Schlur		ite, Depe	W, NEW	TOIR			PROJECT NO.:		20250	24.00
	CONTRA			Nature's \	Nav Inc								24.00
	DWATER:		٠.	Hatare 3	rvay, inc.	CAS.	CAMPI ED	CORE	TURE	ORING LOCATION: Ins GROUND ELEVATION:	side maii	ntenar	ice bid
		_	E) /E1	7./75	T) (DE	CAS.		CORE	TUBE			_	
DATE	TIME	 '	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		7/12/0	
					Dia.		2"			DATE FINISHED:		7/12/0)1
					Length		48"			DRILLER:	S. Ging		
		_	-		Liner		Acetate			GEOLOGIST:	T. Burr		
										REVIEWED BY:	D. She	ppard	
			SA	MPLE	1				ESCR	IPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS				MATE	RIAL	uscs		IARKS
FEET	STRATA	NO.		_	HARD							PID	(ppm)
				Gray	Der					1' sub-base gravel	Fill	0	Moist
		1	100%	Black	St	iff	1.0-1.5' Silty	clay w	ith fine	gravel	CL	220	Wet
				Orange-			1.5-4.5' Clay	ey silt			ML	3	
4				Brown									
							End of borin	g at 4.5	feet				
			l										
					1								
											l i		
`amma	ata: Barina	adve	nood usin-	a truck	unted Si-	noo Ead	haraba 200 I	Direct D	ueb	PROJECT NO.	05 000	25024	00
						nco Eart	hprobe 200 I	Jirect-P	usn		05-000		.00
ssembl	y. Sampled	11-1.	5' interval i	for VOC an	alysis					BORING NO.	Sump 1	I-X-1	

			UF	RS Corp	oratio	on				GEOPROBE BO BORING NO: Sump 2-X-1		LOC	}
PROJEC	CT:	Dow	ell Schlur	nberger Si	te, Depev	v, New	York			SHEET:	1 of 1		
CLIENT	:		ell Schlur			,				PROJECT NO.:		00358	24.00
BORING	CONTRA	СТО	R:	Nature's V	Vay, Inc.					BORING LOCATION: Ins			
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	L	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/12/0)1
	_				Dia.		2"			DATE FINISHED:		07/12/0	
					Length		48"		·	DRILLER:	S. Ging	rich	
					Liner		Acetate			GEOLOGIST:	T. Burn	neier	
										REVIEWED BY:	D. She	ppard	
			SA	MPLE _					DESC	RIPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			МАТ	ERIAL	uscs	REN	ARKS
FEET	STRATA	NO.	ALCOVERT N		HARDI	NESS			IVIA	ENAL	0303		(ppm)
	$\sim\sim$			Gray	Den		0-0.5': Cond	rete flo	or, 0.5-	-1' sub-base gravel and sand	Fill	0	Moist
		1	88%		Sti	ff	1.0-2.0' Silty					1500+	•
		'	00%	Yellow Bro	•		2.0-4.5' Clay	ey silt			ML	0	Slightly
4				Orange-									Moist
				Brown									
							End of borin	g at 4.5	feet				
	1												
				l I									
											ļ		
											1		
Comme	nts: Boring	adva	nced using	a truck mo	unted Sim	ico Eart	hprobe 200 [Direct-P	ush	PROJECT NO.	05-000	35824	.00
Assemb	ly. Sampled	1.5-	2' interval	for VOC and	alysis					BORING NO.	Sump 2		

			UF	RS Corp	oratio	n				GEOPROBE BOR	RING	LOC	}
										BORING NO: Sump 2-X-2			
PROJE	CT:	Dow	ell Schlur	mberger Sit	te, Depev	v, New	York			SHEET:	1 of 1		
CLIENT	:	Dow	ell Schlur	mberger						PROJECT NO.:	05-0	00358	24.00
BORING	CONTRA	СТОІ	R: _	Nature's V	Vay, Inc.					BORING LOCATION: Ins	de main	tenan	ce bldg.
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	L	EVEL	TYPE	TYPE		Macro core			DATE STARTED:	(07/12/	01
					Dia.		2"			DATE FINISHED:	(07/12/0)1
					Length		48"			DRILLER:	S. Ging	rich	
					Liner		Acetate			GEOLOGIST:	T. Burn	neier	
										REVIEWED BY:	D. She	opard	
			SA	MPLE					DESC	RIPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			BAAT	ERIAL	uscs	REN	IARKS
FEET	STRATA	NO.	RECOVERY %	COLOR	HARDI				MAI	ERIAL	USCS		(ppm)
	$\sim\sim$		_	Gray	Den		0-0.5': Cond	rete flo	or. 0.5	-1' sub-base gravel and sand	Fill	0	Moist
	WILL		000/		Sti	ff	1.0-2.0' Silty				CL	300+	
		1	88%	Yellow Bro			2.0-4.5' Cla				ML	0	Slightly
4				Orange-				•					Moist
				Brown									
_							End of borin	g at 4.5	feet				
								•					
Comme	nts: Borina	adva	nced using	a truck mo	unted Sim	nco Earl	hprobe 200 l	Direct-P	ush	PROJECT NO.	05-000	35824	.00
Assemb										BORING NO.	Sump 2		

1 88% Brown Stiff 1.0-1.5' Fine sand CL 35 Yellow Bro. 1.5-2.5' Clayey silt with fine sand ML 8 Slig				UF	RS Corp	oratio	n				GEOPROBE BOR BORING NO: Sump 3-X-1	RING	LOC	3
DUENT: Dowell Schlumberger PROJECT NO.: 05-00035824.0 ORONING CONTRACTOR: Nature's Way, Inc. SROWNDWARTER: CAS. SAMPLER CORE TIME GROUND LEEVATION: DATE TIME LEVEL TYPE TYPE Macro core DATE STARTED: 07/12/01 Length 46° DRILLER: S. Gingrich REVIEWED BY: D. Sheppard REVIEWED BY: D. Sheppard REVIEWED BY: D. Sheppard DEPTH HARDNESS PROVING THE REVIEWED BY: D. Sheppard Starten Sta	PPO IEC	`T·	Dow	all Schlur	nherger Si	le Deney	, Now	Vork			SHEET.	1 of 1		
SORING CONTRACTOR: Nature's Way, Inc. SORING LOCATION: Inside maintenance bit						te, Depev	, IVEV	TOIK					00350	24.00
CAS. SAMPLE CAS. SAMPLE CORE TUBE GROUND ELEVATION:					<u>-</u>	Vav Inc								
DATE TIME LEVEL TYPE Dia. 2" DATE FINISHED: 07/12/01			0.0.		Mature 5 V	vay, inc.	CAS	SAMDI ED	CORE	TURE	GROUND ELEVATION: Insi	de main	tenand	se blag.
Dia. 2" DATE FINISHED: 07/12/01 Length 48" DRILLER: S. Gingrich Liner Acetate GEOLOGIST: T. Burmeier REVIEWED BY: D. Sheppard SAMPLE DEPTH STRATA NO. Grovery Brown 1 88% February 1 88% February Stiff 1.0-1.5 Fire sand Yellow Brown Yellow Brown Reddish- Brown Stiff 1.5-2.9 Clayey silt with fine sand ML 8 Sign Liner Active Brown Reddish- Brown End of boring at 4.5 feet Comments: Boring advanced using a truck mounted Simco Earthprobe 200 Direct-Push PROJECT NO. 05-00038824.00			-	E\	TVDE	TVDE	CAS.		CORE	TOBE			71401	
Length 48" DRILLER: S. Gingrich	DATE	IIME		EVEL	ITPE									
Liner Acetate GEOLOGIST: T. Burmeier														01
SAMPLE SAMPLE SAMPLE SAMPLE COLOR COLOR HARDNESS Gray Brown Stiff 1 88% Gray Brown Stiff 1.0-1.5* Fine sand 1.5-2.5* Clayey silt with fine sand 2.5-4.5 Clayey silt End of boring at 4.5 feet End of boring at 4.5 feet Comments: Boring advanced using a truck mounted Simco Earthprobe 200 Direct-Push REVIEWED BY: D. Sheppard MATERIAL USCS REMARN PID: (pr HARDNESS 1.0-1.5* Fine sand C. 1 35 NL 8 Sign NL 8 Sign Reddish- 2.5-4.5 Clayey silt with fine sand Simon End of boring at 4.5 feet Comments: Boring advanced using a truck mounted Simco Earthprobe 200 Direct-Push PROJECT NO. 0.5-00035824.00														
SAMPLE COUNTY SAMPLE DESCRIPTION THAT NO. COLOR STRATE N						Liner		Acetate		<u> </u>				
STRATA NO. STRA												D. Sher	opard	
FEET STRATA No.				SA	MPLE	T				DESC	RIPTION			
Ba% Gray Stiff Storm Stiff 1.0-1.5* Fine sand CL 35 Xellow Bro. Reddish-Rrown Reddish-Rrown Stiff 1.5-2.5* Clayey silt with fine sand Storm Reddish-Rrown Stiff 1.5-2.5* Clayey silt with fine sand Storm Reddish-Rrown End of boring at 4.5 feet End of boring at 4.5 feet	- 1			RECOVERY %	COLOR	CONSIS	TENCY			MAT	ERIAL	uscs	REM	IARKS
Brown Xellow Erro. Reddish- Rrown Brown Stiff 1.0-1.5 Fine sand 1.5-2.5 Clayey silt with fine sand 2.5-4.5 Clayer silt wi	FEET	STRATA	NO.										PID	(ppm)
1 88% Yellow Brn. Reddish- Reddish- Reddish- Reddish- Rown. End of boring at 4.5 feet		****			_	Den	se	0-0.5': Cond	rete flo	or, 0.5	-1' sub-base gravel and sand	-		Moist
A Reddish- Reddish- Brown End of boring at 4.5 feet End of boring at 4.5 feet PROJECT NO. 05-00035824.00		msum	1	88%	Brown	Sti	ff	1.0-1.5' Fine	sand			CL	35	
End of boring at 4.5 feet End of boring at 4.5 feet PROJECT NO. 05-00035824.00			•	55,70		•		1.5-2.5' Clay	yey silt v	with fin	ne sand	ML	8	Slightly
End of boring at 4.5 feet End of boring at 4.5 feet End of boring at 4.5 feet PROJECT NO. 05-00035824.00	4	<i> </i>			Reddish-			2.5-4.5 Clay	ey silt			[0	Moist
Comments: Boring advanced using a truck mounted Simco Earthprobe 200 Direct-Push PROJECT NO. 05-00035824.00					Brown	ļ								
Comments: Boring advanced using a truck mounted Simco Earthprobe 200 Direct-Push PROJECT NO. 05-00035824.00								End of borin	g at 4.5	feet				
									•					
			'											
					<u> </u>	<u> </u>								
	Commer	nts: Borina	adva	nced using	a truck mo	unted Sin	nco Earl	thprobe 200	Direct-F	ush	PROJECT NO.	05-000	35824	.00
New York Control of the Control of t														
	JUGITIDA	·,,.												

			UF	RS Corp	oratio	n				GEOPROBE BOR	RING	LOC	}
										BORING NO: Sump 3-X-2			
PROJEC	CT:	Dow	ell Schlur	nberger Sit	te, Depev	v, New	York			SHEET:	1 of 1		
LIENT	:	Dow	ell Schlur							PROJECT NO.:	05-0	00358	24.00
BORING	CONTRA	CTOF	₹:	Nature's V	/ay, inc.					BORING LOCATION: Ins	ide ma in	tenand	e bldg.
ROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	L	.EVEL	TYPE	TYPE		Macro core			DATE STARTED:	C	7/12/0	01
					Dia.		2"			DATE FINISHED:	C	7/12/0)1
					Length		48"			DRILLER:	S. Ging		
					Liner		Acetate		<u> </u>	GEOLOGIST:	T. Burn		
										REVIEWED BY:	D. She	pard	
			SAI	MPLE	,				DESC	RIPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			MAT	ERIAL	uscs	REM	ARKS
FEET		NO.			HARD								(ppm)
	$\sim\sim$			Gray	Der	se	0-0.5': Cond	rete flo	or, 0.5	-1' sub-base gravel and sand		0	Moist
	minini.	1	88%	Brown	Sti	ff	1.0-1.5' Fine	e sand			CL	59	
		,	55,0	Yellow Bro			1.5-2.5' Clay	yey silt v	with fir	ne sand	ML	0	Slightly
4				Reddish-								0	Moist
				Brown									
							End of borin	ig at 4.5	feet				
											1		
					ļ								
													1
_											1		
	Į į												
	1												
Comme	nts: Boring	adva	nced using	a truck mo	unted Sir	nco Ear	thprobe 200	Direct-F	Push	PROJECT NO.	05-000	35824	.00
				for VOC an						BORING NO.	Sump 3	_	
COCITIE	Janipie	J 1.J	- HILOTYAI	. J. 7 O O UII	,, 5.0		_						

			UF	RS Corp	oratio	on				GEOPROBE BO BORING NO: Sump 4-X-1		LOC	}
PROJEC	CT:	Dow	ell Schlur	nberger Si	te. Depev	v. New	York			SHEET:	1 of 1		
CLIENT			ell Schlur	_	, ,	•				PROJECT NO.:		200358	324.00
	CONTRA			Nature's V	Vay, Inc.					BORING LOCATION: Insi			
	IDWATER:				<i>.</i>	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:	de enem	CEI SIO	rage blug
DATE	TIME		.EVEL	TYPE	TYPE		Macro core			DATE STARTED:	_	07/12/	O1
באוב	111112			71112	Dia.		2"			DATE FINISHED:		07/12/ 07/12/	
	_				Length	_	48"			DRILLER:	S. Ging		01
					Liner		Acetate			GEOLOGIST:	T. Burn		
					Line		Acciaic			REVIEWED BY:			.
			CAI	MPLE					DECO		D. She	ppard	
DEPTH		"S"	SAI	WIPLE					DESC	RIPTION	+		
		_	RECOVERY %	COLOR	CONSIS				MAT	ERIAL	uscs		MARKS
FEET	STRATA	NO.		Carri	HARD								(ppm)
				Gray	Der	ise				-1' sub-base gravel and sar	id Fill	0	
4		1	50%	Brown			1.0-2.5' Fill:	gravel, s	sand, a	and wood		°—	Moist- wet
				•			End of borin	g at 4.5	feet		₩	•	
Commer	nts: Boring	adva	nced using	a truck mo	unted Sin	nco Earl	thprobe 200	Direct-P	ush	PROJECT NO. BORING NO.	05-000 Sump 4		.00

			UI	RS Corp	oratio	on				GEOPROBE BOI BORING NO: Sump 4-X-2		LOC	3
PROJE	CT·	Dow	ell Schlur	nberger Sit	e Denev	, New	York			SHEET:	1 of 1		
CLIENT			ell Schlur		.c, Depev	., 14644				PROJECT NO.:		ากกรร	324.00
	CONTRA			Nature's V	Vav. Inc.					BORING LOCATION: Insid			
	DWATER:				,,	CAS.	SAMPLER	CORE	TURE	GROUND ELEVATION:	ae chem	cai sic	nage blu
DATE	TIME		EVEL	TYPE	TYPE	07.107	Macro core			DATE STARTED:		07/12/	'O1
DAIL	******	-			Dia.		2*			DATE FINISHED:		07/12/ 07/12/	
					Length	_	48"			DRILLER:	S. Ging		<u> </u>
					Liner		Acetate			GEOLOGIST:	T. Burm		
							7.000.20			REVIEWED BY:	D. Sher		
			SΔ	MPLE					DESCE	RIPTION	D. One,	рага	
DEPTH		"S"			CONSIS	TENCY			_			DEI	MARKS
FEET	STRATA	NO.	RECOVERY %	COLOR	HARD	_			MAT	ERIAL	uscs		(ppm)
	~~~			Gray	Der		O O 5': Cone	roto flor	vr 0.5	1' cub base gravel and san	Fill	0	(ppm)
-				Lt. Brown	50,					1' sub-base gravel and sand ilty clay and brick	1 7"	ĭ	Moist-
\dashv		1	63%	Brown	1		1.0-4.0 Fill.	graver,	sanu, s	illy clay and brick			wet
4				5.0							↓		Wet
-	mm					#	4065'01	uou cile			┷		
				<u> </u>	Sti	ıſ	4.0-6.5' Clar 6.5-6.8' Coa		4		ML SC		
		2	100%	Disale					a		-		
8				Black-			6.8-8.0' Cla	yey siit			ML	\downarrow	
•				Dark Gray			End of boring		-			_	
Comme	nts: Boring	adva	nced using	n a truck mo	unted Sin	nco Far	thprobe 200	Direct-F	ush	PROJECT NO.	05-0003	35824	00
				for VOC and		Lai	p. 056 200	2,,304	4011	BORING NO.	Sump 4		.50
13361110	y. Gampie	<u></u>	IIIICIVAI	ioi voc alli	u.yu.u.		_				· · · · ·		

PROJECT: CLIENT: BORING CON GROUNDWAT)ow								BORING NO: Sump 5-X-1			3
CLIENT: BORING CON GROUNDWAT			ell Schlun	nberger Sit	e Denev	v New	York			SHEET:	1 of 1		
BORING CON GROUNDWAT			ell Schlun		c, Beper	, , , , , ,	TOTA			PROJECT NO.:		20035	324.00
GROUNDWAT				Nature's V	Vav Inc								
		, 0.	•	Hatale 3 V	vay, mc.	CAS.	SAMDI ED	CORE	TIIDE	BORING LOCATION: Insi GROUND ELEVATION:	de chemi	icai sto	rage blog
			EVE!	TVDE	TYPE	OA3.		CORE	TOBL			07/40	
DATE TIM		L	EVEL	TYPE			Macro core			DATE STARTED:		07/12/	
·	-				Dia.		2"			DATE FINISHED:		07/12/	01
	-				Length		48"			DRILLER:	S. Ging		
	-				Liner		Acetate			GEOLOGIST:	T. Burn		
					L					REVIEWED BY:	D. Sher	ppard	
	T.,	I	SAI	MPLE					DESC	RIPTION	-		
DEPTH			RECOVERY %	COLOR	CONSIS	TENCY	1		MAT	ERIAL	uscs.	RE	MARKS
FEET STRA		10.			HARD							PID	(ppm)
	XX			Gray	Den	se				1' sub-base gravel and san	g Fill		
4		1	75%	Black			1.0-4.0' Fill:	silt and	fine -m	edium sand	$ \downarrow $	→	Moist- wet
4 1999	***	\dashv					End of borin				╀╸┤		
Comments: Bo						nco Ear	thprobe 200	Direct-P	_	PROJECT NO.	05-0003		.00
	nnlad 1	2.5-3	3 O' interva	al for VOC a	nalysis					BORING NO.	Sump 5	-X-1	

			UF	RS Corp	oratio	on				GEOPROBE BORING NO: Sump 5-X-2		LOC	3
PROJE	CT:	Dow	ell Schlun	nberger Sit	te, Depev	v, New	York			SHEET:	1 of 1		
CLIENT	:		ell Schlun							PROJECT NO.:	05-0	00035	824.00
BORING	CONTRA	сто	R:	Nature's V	Vay, Inc.					BORING LOCATION: Insid			
GROUN	IDWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	L	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/12/	' 01
					Dia.		2"			DATE FINISHED:		07/12/	
					Length	_	48"			DRILLER:	S. Ging	rich	_
					Liner		Acetate			GEOLOGIST:	T. Burn		
										REVIEWED BY:	D. She		_
			ŞA	MPLE					DESCI	RIPTION			
DEPTH		"S"			CONSIS	TENCY					uscs	REI	MARKS
FEET	STRATA	NO.	RECOVERY %	COLOR	HARD				MAI	ERIAL	USCS		(ppm)
				Gray	Der		0-0.5': Cond	rete floo	or. 0.5-	1' sub-base gravel and sand	Fill	0	, F.F,
		1	75%	Black						edium sand			Moist- wet
4											♦	\forall	
	us to ta ta				1		End of borin	at 4.0	feet			-	
								3 · · ·					
					<u> </u>								
Comme	nts: Boring	adva	nced using	a truck mo	unted Sir	nco Ear	thprobe 200	Direct-F	ush	PROJECT NO.	05-000	35824	.00
Assemb	ly.									BORING NO.	Sump 5	5-X-2	

			UF	RS Corp	oratio	on				GEOPROBE BOF BORING NO: GPB-1	RING	LOC	3
PROJEC	CT:	Dow	ell Schlun	nberger Si	te. Depev	v. New	York			SHEET:	1 of 1		
CLIENT			ell Schlun			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , ,			PROJECT NO.:		S_0003	5824.00
	CONTRA			Nature's V	Vav. Inc.					BORING LOCATION: South			
	DWATER:				,,	CAS.	SAMPLER	CORF	TUBE	GROUND ELEVATION:	II OI CIIE	illicals	storage blu
DATE	TIME		EVEL	TYPE	TYPE	OAO.	split-spoon	OOKE	1.002	DATE STARTED:		07/4/	0/04
DATE	LUME	<u> </u>	-EVEL	ITPE	Dia.		2"					07/10	
										DATE FINISHED:		07/10	0/01
					Length		24"			DRILLER:	S. Ging		
					Liner		Acetate			GEOLOGIST:	S.Tivna		
							1			REVIEWED BY:	D. She	ppard	
	_		SA	MPLE					DESC	RIPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			MAT	ERIAL	uscs	RE	MARKS
FEET	STRATA	TRATA NO. RECOVERY % COLOR HARDNESS MATERIAL HARDNESS Dense 0-3.0' Fill:crushed limestone, re-worked s cinders and fine gravel Black Orange Stiff 3.0-4.0' Silty clay A 0-11 5' Clayery silt									PI	D (ppm)	
	$\times\!\!\times\!\!\times\!\!\times$	1	100%	Lt. Brown	Der	se	0-3.0' Fill:cr	ushed l	mesto	ne, re-worked silty clay with	Fill	0.0	moist
	XXXX	'	100 %	Brown-			cinders and	fine gra	ivel				
	$\times\!\!\times\!\!\times\!\!\times$	2	E00/	Black	L								
4		4	30%		Sti	ff	3.0-4.0' Silty	/ clav			CL		wet@4
	TTTT			_					<u> </u>		ML		
	MM	3	100%	2.3				_,_,	-				moist
	WW												
8		4	100%										
-	MM												
		5	60%									1	
	m												
	IIII	6	90%		So	ft						↓	
12	umin		00.0				11.0-12.0' S	ilty clay	,		CL	•	•
							End of borin	g at 12.	0 feet				
										•			
Commer	nts: Boring	adva	nced using	a truck mo	unted Sin	nco Earl	thprobe 200 l	Direct-P	ush	PROJECT NO.	05-000	35824	.00
Assembl	ly. Installed	l mini	-well with s	creen from	2-12'					BORING NO.	GPB-1		

			UF	RS Corp	oratio	on				GEOPROBE BOR BORING NO: GPB-2	RING	LO	3
PROJEC	CT.	Dav	all Schler	nberger Si	te Donov	v Nour	Vork			SHEET:	1 of 1		
CLIENT			ell Schlun		te, Depev	v, New	TOIK			PROJECT NO.:		. 0003	35824.00
	CONTRA			Nature's V	Vay Inc								
	IDWATER:			Hatore 5 V	ray, mo.	CAS.	SAMPLER	CORE	TURE	BORING LOCATION: Sout GROUND ELEVATION:	n or che	micai	storage bio
DATE			EVEL	TYPE	TYPE	0/13.		COKL	TOBL			07/4	0/01
DATE	I IIVIE	-	EVEL	ITPE	Dia.		split-spoon 2"			DATE STARTED: DATE FINISHED:			0/01
		\vdash			Length		24"			DRILLER:	C C:		0/01
					Liner		Acetate			GEOLOGIST:	S. Ging		
		_			Lillei		Acetate			REVIEWED BY:	S.Tivna		
				MPLE			1		DESCI		D. She	ppard	
DEPTH	_	"s"	SAI		CONCIC	TENOV			DESCI	RIPTION		_	FMARKS
FEET		_	RECOVERY %	COLOR	CONSIS		1		MAT	ERIAL	uscs		EMARKS
FEEI	STRATA	NO.		Lt. Brown	HARD						F:11		ID (ppm)
	$\times\!\!\times\!\!\times\!\!\times$	1	90%		. Der	ise				ne, re-worked silty clay with	Fill	0.0	moist
		<u> </u>		Brown-			cinders and	fine gra	avel				
		2	15%	Black									
4		<u> </u>		Orange	Sti	iff	3.0-4.0' Silty				CL		wet@4
		3	0%	brown			4.0-11.5' Cl	ayey sili	t		ML		
	MIN	Ĺ											moist
	MIL	4	100%										
8	MM	Ĺ											
		5	70%										
		Ľ	70%										
		6	100%										
12	innin	٥	100%		So	oft	11.0-14.0' S	ilty clay	,		CL		
_		7	4000/						-	18			
		7	100%								l	. →	
		•					1				I	. ▼	. ▼
							End of borin	a at 14	.0 feet				-
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				_
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				_
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.O feet				
							End of borin	g at 14	.O feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
							End of borin	g at 14	.0 feet				
		adva		a truck mo		nco Earl	End of borin			PROJECT NO. BORING NO.	05-000 GPB-2		3.00

			UF	RS Corp	oratio	on				GEOPROBE BOF	RING	LOG	i
DBO IEC	`T.	Davi	ell Cablus	nharmar Cid	a Danes	. Nous	Vaule			SHEET:	1 of 1		
PROJEC				nberger Sit	e, Depev	v, ivew	TOIK			PROJECT NO.:		. 0000	-004.00
	CONTRA		ell Schlun	Nature's V	lay Inc					·			824.00
	DWATER:		Ν.	Mature 5 V	ray, IIIC.	CAS.	CAMPLED	CORE	TURE	BORING LOCATION: Sout GROUND ELEVATION:	n or cne	mical s	torage blog.
			E) /E)	77/05	l=/n=	CAS.	_	COKE	TUBE	-			
DATE	TIME	L	-EVEL	TYPE	TYPE		split-spoon			DATE STARTED:		07/10	
					Dia.		2"			DATE FINISHED:		07/10	0/01
					Length		24"			DRILLER:	S. Ging		
					Liner		Acetate			GEOLOGIST: REVIEWED BY:	S.Tivna		
							<u> </u>				D. She	ppard	
DEDTU		"S"	SAI	MPLE					DESC	RIPTION			
DEPTH		_	RECOVERY %	COLOR	CONSIS				MAT	ERIAL	uscs		MARKS
FEET	STRATA	NO.		14.5	HARD								D (ppm)
	xxx	1	65%	Lt. Brown	Der	se				ne, re-worked silty clay with	Fill	0.0	moist
	$\times\!\!\times\!\!\times\!\!\times$			Brown-			cinders and	fine gra	ivel			1-5	
$\vdash \vdash \vdash$	$\times\!\!\times\!\!\times\!\!\times$	2	50%	Black								1-4	
4			\sqcup	Orange									wet@4'
	(III)	3	100%	brown	Sti	ff	4.0-11.5' Cl	ayey sill	t		ML	0-0.5	
	$\mathcal{U}\mathcal{H}$		 										moist
	$\mathcal{M}\mathcal{M}$	4	100%									0,0	
8													
		5	100%										
	\overline{R}											▼	
							Refusal at 1	0 feet					
12													
			١.										
Comme	nts: Boring	adva	nced using	a truck mo	unted Sin	nco Ear	thprobe 200 l	Direct-F	ush	PROJECT NO.	05-000	35824	00
Assemb	ly. Installed	mini	-well with s	creen from	2-12'					BORING NO.	GPB-3		

			UI	RS Corp	oratio	on				GEOPROBE BO BORING NO: GPB-4	RING	LOC	3
PROJEC	CT:	Dow	ell Schlur	mberger Sit	e. Depev	v. New	York			SHEET:	1 of 1		
CLIENT			ell Schlur		,	,				PROJECT NO.:		5-0003	5824.00
	CONTRA			Nature's W	/av. Inc.		_			BORING LOCATION: Nor			
	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:	tiror che	Silical	storage blug
DATE	TIME	ı	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/1	2/01
DAIL				1,	Dia.		2"			DATE FINISHED:		07/12	
					Length		48"			DRILLER:	S. Ging		2/01
					Liner		Acetate			GEOLOGIST:	T. Burr		
					Line		Accidio			REVIEWED BY:	D. She		
			ςΔ	MPLE			_			RIPTION	D. She	ppard	
DEPTH		"S"			CONSIS	TENCY			DESCI	RIPTION	+		MARKS
FEET	STRATA	_	RECOVERY %	COLOR	CONSIS	_	1		MAT	ERIAL	USCS		MARKS
FEET	XXXXX	NO.		Dk brn./blk.	HARD Der		0.4.51.511				F:11		D (ppm)
	$\times\!\!\times\!\!\times\!\!\times$			DK DITI./DIK.	Der	156	0-1.5' Fill: sa	and and	fine gi	ravel	Fill	320 *	Moist
4		1	68%	Gray green	So	ft	1.5-4.0' Silty	clay			CL	0.2	
				Red brown	Sti	ff	4.0-11.5' Cla	ayey silt		-	ML	0	Slightly
		_	4000	to				, ,					moist
		2	100%	Orange									
8				brown									Moist
					So	ft	1						Very
		_									1		moist
		3	88%										.,,,,,,,,
12							11.5-12.0' s	ilty clay			CL	♥	
							End of borin		0 feet				
								y at 12.	O ICCL				
-													
	1												
Comme	nts: Boring	adva	nced using	a truck moi	unted Sim	nco Fart	hprobe 200 [Direct-P	ush	PROJECT NO.	05-000	35824	00
				for VOC ana		.se guit				BORING NO.	GPB-4		
-aaciiiD	iy. Garripied	J-J.	O HITCHAG	ioi voo alla	re		_				J. D 4		

			UF	RS Corp	oratio	on				GEOPROBE BORING NO: GPB-5	ORING	LOC	3
PROJEC	CT:	Dow	ell Schlur	nberger Sit	e Depev	v, New	York			SHEET:	1 of 1		-
CLIENT			ell Schlur		<u> </u>					PROJECT NO.:	05	-0003	5824.00
BORING	CONTRA			Nature's W	/ay, Inc.					BORING LOCATION: N	_		
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			<u>3</u>
DATE	TIME	L	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/1	2/01
					Dia.		2"			DATE FINISHED:		07/1	
					Length		48"			DRILLER:	S. Ging	_	
					Liner		Acetate			GEOLOGIST:	T. Burn		
						ı		_		REVIEWED BY:	D. She		
			SA	MPLE					DESC	RIPTION	1	ppara	
DEPTH		"S"			CONSIS	TENCY				-		PI	EMARKS
FEET	STRATA		RECOVERY %	COLOR					MAT	ERIAL	USCS		EMARKS
	XXXX	110.		Dk brown	HARD Der		0.2015:11.5:	lé ====d	d 6:-	a areval	Fill	0.0	D (ppm) Moist
	$\times\!\!\times\!\!\times\!\!\times$			DK DIOWII	Dei	130	0-2.0' Fill: si	it, sano	and til	ne graver		1	WOISE
	HHA	1	58%	Gray green		.4	1 5 4 0' 0'16				CL		
4	MIIM			Jiu, giccii	So	116	1.5-4.0' Silty	ciay			6		
-	anna			0		44	4 0 14 5' 0'	21/01/ 2/14					DE-LAL.
				Orange	Sti	11.(4.0-11.5' Cla	ayey Sill			ML		Slightly
		2	100%	brown									moist
8	/////////												Moist
-						•							
					So	m							Very
		3	100%										moist
42												\downarrow	
12						_	11.5-12.0' s				CL	_	
							End of borin	g at 12.	0 feet				
			1										l
							1						
					_								
Comme		adva	nced using	a truck moi	unted Sim	nco Earl	hprobe 200 [Direct-P	ush	PROJECT NO. BORING NO.	05-000 GPB-5	35824	.00

· -			Uł	RS Corp	oratio	on				GEOPROBE BOR	RING	LOC	3
				·						BORING NO: GPB-6			
PROJEC	CT:	Dow	ell Schlur	mberger Sit	te, Depev	v, New	York			SHEET:	1 of 1		
CLIENT			ell Schlur							PROJECT NO.:		5-0003	5824.00
BORING	CONTRA			Nature's W	Vay, Inc.					BORING LOCATION: North			
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			Ulurugu ziu
DATE	TIME	L	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/1	2/01
					Dia.		2"			DATE FINISHED:		07/1	
					L.ength		48"			DRILLER:	S. Ging	_	
					Liner		Acetate			GEOLOGIST:	T. Burn		
										REVIEWED BY:	D. She	ppard	
			SA	MPLE					DESC	RIPTION			
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY				ERIAL	HECE	RI	EMARKS
FEET	STRATA	NO.	RECOVER 1 %	COLOR	HARD				IVIA	ERIAL	USCS		ID (ppm)
	XXXX			Grav	Den		0-1.7' Fill:cr	ushed li	imestor	ne, silt, sand and fine gravel	Fill	0.0	Wet
	$\times\!\!\times\!\!\times$	1	68%	Dk brn./blk.									
4			00%	Gray green	So	ft	1.7-4.0' Silty	clay			CL		Moist
				Orange	Sti	ff	4.0-11.5' Cla	vev silt	<u> </u>		ML		Slightly
		2	100%	brown				., c, c			,•"L		moist
8													Moist
					So	4							Very
					30	ıı							moist
		3	100%										moisi
12							11 5 12 0' 6	ih. olov			CL	\forall	
·- <u>-</u> -	*****						11.5-12.0' si End of borin						
							Elia oi polili	y at 12.	o leet				
	- 1												
`ommor	ate: Boring	adı.c.	nced using	a truck mor	inted Si-	oo Fart	hprobe 200 [)irect_D	ueb	PROJECT NO.	05.000	25024	00
-or uruer	us. boring	auval	icea using	a iluck mot	inted SIM	CU Eart	nprobe 200 L	mect-P			05-000	JJ024	.00
Assembl										BORING NO.	GPB-6		

			UF	RS Corp	oratio	on				GEOPROBE BO	RING	LOC	}
										BORING NO: GPB-7			
PROJEC	CT:	Dow	ell Schlur	nberger Sit	te, Depev	v, New	York			SHEET:	1 of 1		
CLIENT	:	Dow	ell Schlur							PROJECT NO.:	05	-0003	5824.00
	CONTRA	CTO	R:	Nature's W	Vay, Inc.			,		BORING LOCATION: Nor	th of che	mical	storage bld
GROUN	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	L	_EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/1	2/01
					Dia.		2"			DATE FINISHED:		07/1	2/01
					Length		48"			DRILLER:	S. Ging		
					Liner		Acetate			GEOLOGIST:	T. Burn		
							1			REVIEWED BY:	D. She	ppard	
			SA	MPLE					DESC	RIPTION	_		
DEPTH		"S"	RECOVERY %	COLOR	CONSIS				MAT	ERIAL	uscs		MARKS
FEET	STRATA	NO.			HARD								D (ppm)
	xxxx			Grav	Der	ise	0-1.5' Fill:cr	ushed l	mestor	ne, sand and fine gravel	Fill	0.0	Wet
	<i></i>	1	63%	Black									
				Gray green	So	ft	1.5-11.5' Cli	ayey sili			CL		Moist
4				Orange			-				<u> </u>		A II 1 22
				brown	Sti	ff					ML	30 	Slightly
		2	100%										moist
8													Moist
-							1						Very
					So	π							moist
		3	100%									₩	inoist
12							14 5 12 0' -	:16 1			CL	7	
12	77747						11.5-12.0' s End of borin		O foot		100		
							End of bonin	gatiz.	O leet				
	-4 5 .			- 4 1		-	 	Dieset 5	ale	DBO JECT NO	05.000	2502.1	00
						nco Earl	thprobe 200 l	Direct-F	ush	PROJECT NO.	05-000 GPB-7	_	.UU
	iv Sampler	17_7	5' inten/al	for VOC and	aivsis					BORING NO.	しっとひ-/		

		UF	RS Corp	oratio	on				GEOPROBE BOR	RING	LOC	;
	_											
PROJECT:			nberger Sit	te, Depev	v, New	York			SHEET:	1 of 1		
CLIENT:		eli Schlur							PROJECT NO.:			5824.00
BORING CONTRA		R:	Nature's W	Vay, Inc.		1			BORING LOCATION: North	of che	emical	storage bldg
GROUNDWATER	_	_			CAS.		CORE	TUBE	GROUND ELEVATION:			
DATE TIME		EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/13	3/01
				Dia.		2"			DATE FINISHED:		07/13	3/01
				Length		48"			DRILLER:	S. Gin	grich	
	<u> </u>			Liner		Acetate			GEOLOGIST:	T. Burr	neier	
									REVIEWED BY:	D. She	ppard	
		SA	MPLE					DESC	RIPTION			
DEPTH	"s"	RECOVERY %	COLOR	CONSIS	TENCY			MAT	EDIAL	USCS	RE	MARKS
FEET STRATA	NO.	RECOVERT %	COLOR	HARD		1		IVIA	ERIAL	0303		D (ppm)
XXXX	1		Gray	Der		0-2.0' Fill:cr	ushed li	mestor	ne, sand, silt, and fine gravel	Fill	600+	Moist-
—XXXX			Black						ro, carra, cine, arra milo gravo			wet
	√ 1	63%	Gray green	So	off	2.0-4.0' Silty	/ clav			CL		
4	3		Orange	3	•••	5 4.5 5 6	, oluş					
	}		brown	Sti	iff	4.0-11.5' Cla	avev sill			ML	67	Slightly
	4		DIOWN	51		1 7.0- 11.3 Ok	ayey Sill			141.	ĭ̈́	moist
(\$(////	2	100%										HOISE
- 8 W/////	a											Moist
 ///////	3 —					-						
(//////	3			So	oft							Very
	3	100%									↓	moist
	8									4.	V	
12	<u> </u>					11.5-12.0' s	ilty clay			CL	2000	
						End of borin	g at 12.	0 feet	-			
l	1	1										
Commente: Borin	n advo	nced using	a truck mo	unted Sin	nco Fari	hnrohe 200	Direct-F	ush	PROJECT NO	<u></u>	135824	00
Comments: Boring Assembly, Sample	_				nco Earl	thprobe 200	Direct-F	ush	PROJECT NO. BORING NO.	05-000 GPB-8		.00

			ell Schlun	nhoras- C:						BORING NO: GPB-9						
CLIENT: BORING GROUNE	CONTRAC			errier Si	te Denev	v New	York			SHEET:	1 of 1	_				
BORING GROUNE	CONTRA		eli Schlun		te, beper	, new	TOTA			PROJECT NO.: 05-00035824.00						
GROUNE		СТО		Nature's V	Vav Inc.					_						
				Hutare 6 1	tuy, 1110.	CAS.	SAMPLER	CORF	TURE	BORING LOCATION: North GROUND ELEVATION:	1 or che	micais	storage bio			
DATE	TIME		EVEL	TYPE	TYPE	0,7,0.	Macro core	00.1.2		DATE STARTED:		07/11	2/01			
	111412				Dia.		2"			DATE STARTED:		07/13				
					Length		48"			DRILLER:	S. Ging	07/13	5/01			
			_		Liner		Acetate			GEOLOGIST:	T. Burn					
					Line		71001010			REVIEWED BY:	D. She					
		-	SA	MPLE						RIPTION	D. Sile	pparu				
DEPTH	T	"S"			CONSIS	TENCY						DE	MARKS			
	STRATA		RECOVERY %	COLOR					MAT	ERIAL	USCS					
	XXXX		i	Gray	HARDI Den		0.20' 5:11:5:	الممطمر		a and alk and the average	Fill	0.0	D (ppm) Moist-			
──~	$\times\!\!\times\!\!\times$			Black]	130	U-2.U FIII.Cri	usnea II	mestor	ne, sand, silt, and fine grave	FIII	0.0	wet			
	minin	1	50%		C-		2.0.4.0(.0)=:	:14		_	CL		wet			
4				Orange	So	π	2.0-4.0' Clay	ey siit								
				brown									00.14			
——N					Sti	TT	4.0-12' Silty clay				ML		Slightly			
		2	100%										moist			
	$\mathcal{X}(\mathcal{Y})$												B. 0 - 1 - 4			
8	m											▼	Moist			
── \					So	ft						27-	Very			
	m	3	100%									30	moist			
<u> </u>																
12	7777										CL					
					ĺ		End of borin	g at 12.	0 feet							
												l				
commen	ts: Boring	adva	nced using	a truck mo	unted Sim	ico Eart	hprobe 200 (Direct-P	ush	PROJECT NO.	05-000	35824	00			
ssembly	y. Sampled	11.5	5-12' interva	al for VOC	analysis.					BORING NO.	GPB-9					

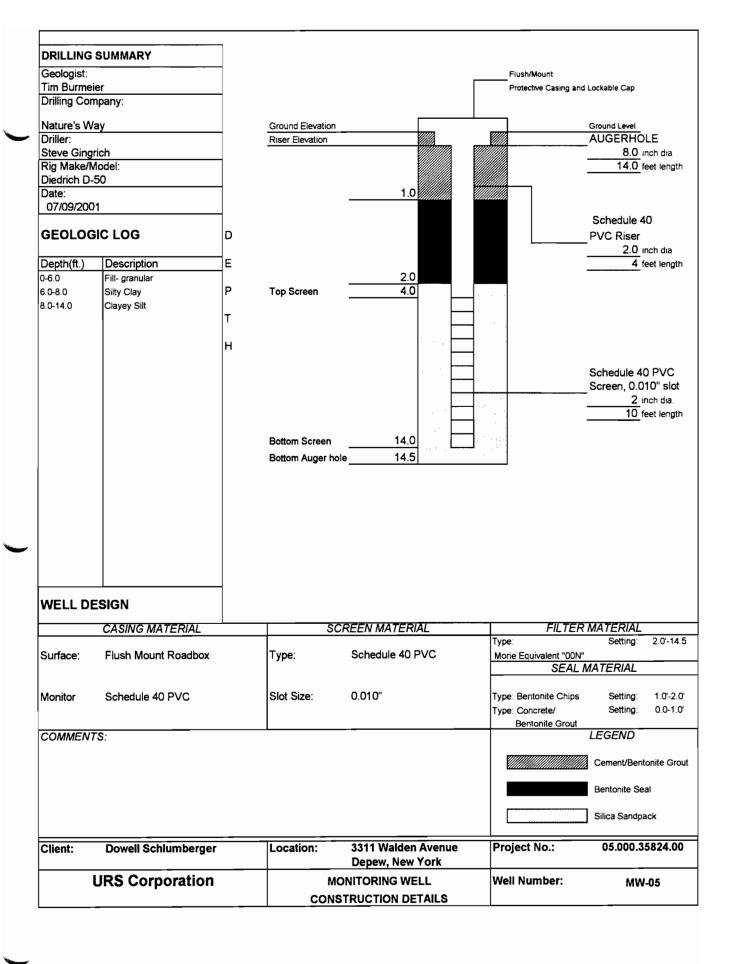
			UF	RS Corp	oratio	on		-		GEOPROBE BOF BORING NO: GPB-10	RING	LOC	}		
PROJEC	`T.	Dow	ell Schlun	nberger Si	e Deney	v New	York			SHEET:	1 of 1				
CLIENT			ell Schlun		e, Deper	v, itev	TOIR			PROJECT NO.: 05-00035824.00					
	CONTRA			Nature's V	Vay Inc			_		BORING LOCATION: Former acid storage area					
	DWATER:		·.	Mature 3 V	vay, inc.	CAS.	CAMDI ED	CORE		GROUND ELEVATION:	ici acia	Storag			
				7/7-		CAS.		CORE	TUBE						
DATE	TIME		.EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/1	_		
					Dia.		2"			DATE FINISHED:		07/1	3/01		
					Length		48"			DRILLER:	S. Ging				
					Liner		Acetate			GEOLOGIST:	T. Burn	neier			
										REVIEWED BY:	D. She	ppard			
			SAI	MPLE					DES <u>C</u> F	RIPTION					
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			ΜΔΤΙ	ERIAL	uscs	RE	MARKS		
FEET	STRATA	NO.	KEGGTERT W	COLOR	HARD	NESS			WAI	LNAL	0303	PI	D (ppm)		
	$\times\!\!\times\!\!\times\!\!\times$			Gray	Der		0-3.0' Fill:cr	ushed li	mestor	ne, re-worked silty clay with	Fill	0.0	Moist-		
	x x x x x x x x x x x x x x x x x x x		4000	Gray			cinders and	fine gra	vel				wet		
		1	100%	brown											
4				Orange			3.0-4.0' Silty clay								
				brown	Sti	ff	4.0-11.5' Clayey silt						Slightly		
	NHX)			Drown	311	11	4.0-11.5 01	o Clayey Sill					moist		
	(N))	2	100%										moist		
	KIK												34-1-4		
8	(IIII)												Moist		
					So	ft						1	Very		
		3	100%										moist		
												Ţ			
12	mmin						11.5-12.0' S	ilty clay			CL	<u> </u>			
							End of borin	g at 12.	0 feet						
]										
]				
					ļ										
	1														
Commo	nte: Barina	advo	nced using	a truck mo	unted Sin	nco Far	hnrohe 200 i	Direct-P	ush	PROJECT NO	05-000	35824	.00		
				a truck mo		nco Ear	thprobe 200	Direct-F	ush	PROJECT NO. BORING NO.	05-000 GPB-1		.00_		

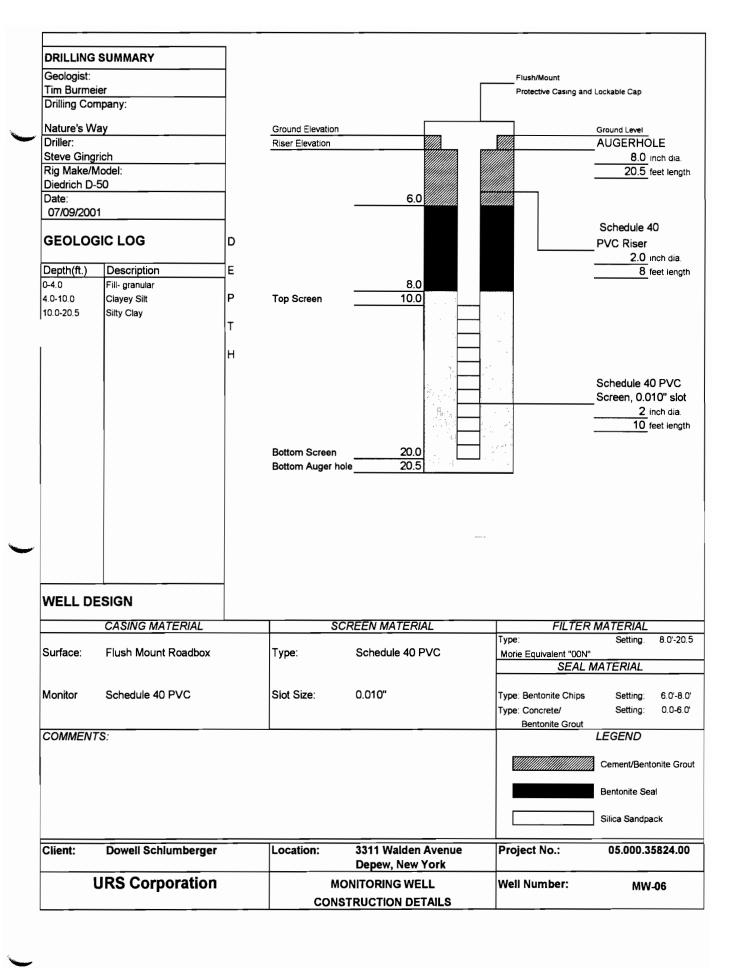
			UF	RS Corp	ooratio	on				GEOPROBE BO	RING	LO	3		
PROJEC	`T.	Dow	oil Schlus	nberger Sit	o Donov	Now	Vork			SHEET:	1 of 1				
LIENT					e, Depen	, NEW	TOIK								
			eli Schlun						_	PROJECT NO.: 05-00035824.00 BORING LOCATION: Former acid storage area					
	CONTRA	_	R:	Nature's V	vay, Inc.		1				mer acid	storaç	ge area		
ROUN	DWATER:					CAS.	SAMPLER C	ORE TU	BE	GROUND ELEVATION:					
DATE	TIME	L	.EVEL	TYPE	TYPE			DATE STARTED:		07/1	3/01				
					Dia.		2"			DATE FINISHED:		07/1	3/01		
					Length		48"			DRILLER:	S. Ging	rich			
					Liner		Acetate			GEOLOGIST:	T. Burn				
										REVIEWED BY:	D. She				
			541	MPLE				DE			D. One	oparu			
EPTH		"S"	JAI		CONSIS	TENO			<u> </u>	RIPTION	+ +		F844 51/5		
		_	RECOVERY %	COLOR	CONSIS		-	M	AT	ERIAL	uscs		EMARKS		
FEET	STRATA	NO.			HARD								ID (ppm)		
	XXXXX			Gray	. Den	se	0-3.0' Fill:crus	hed lime	stor	ne, re-worked silty clay	Fill	0.0	Moist		
	$\times\!\!\times\!\!\times\!\!\times$	1	95%	Gray											
			3370	brown											
4				Orange			3.0-11.0' Claye	ey silt			CL				
\neg	THY			brown	Sti	ff					ML		Slightly		
	WHILL			_,_,,,,,,									moist		
\neg	MIII	2	100%										IIIOISI		
8	HIII														
ů						_	ļ								
	HIII				So	ft									
	IIIN.	3	88%									1			
	<i>HHH</i>											Τ	Moist		
12							11.0-16.0' Silty	clay			CL	▼			
							'	•							
		4	100%												
16															
<u> </u>							E. I. Abadan		-4						
							End of boring a	at 10.0 te	eı						
-															
							ļ								
				- 4le	44 6:	on Ecr		D		DDG IFGT NG	05.000	25004	00		
	sto. Daria -														
				a truck mo		ICO Can	thprobe 200 Dir	eci-Pusi	_	PROJECT NO	05-0003 GPB-11		.00		

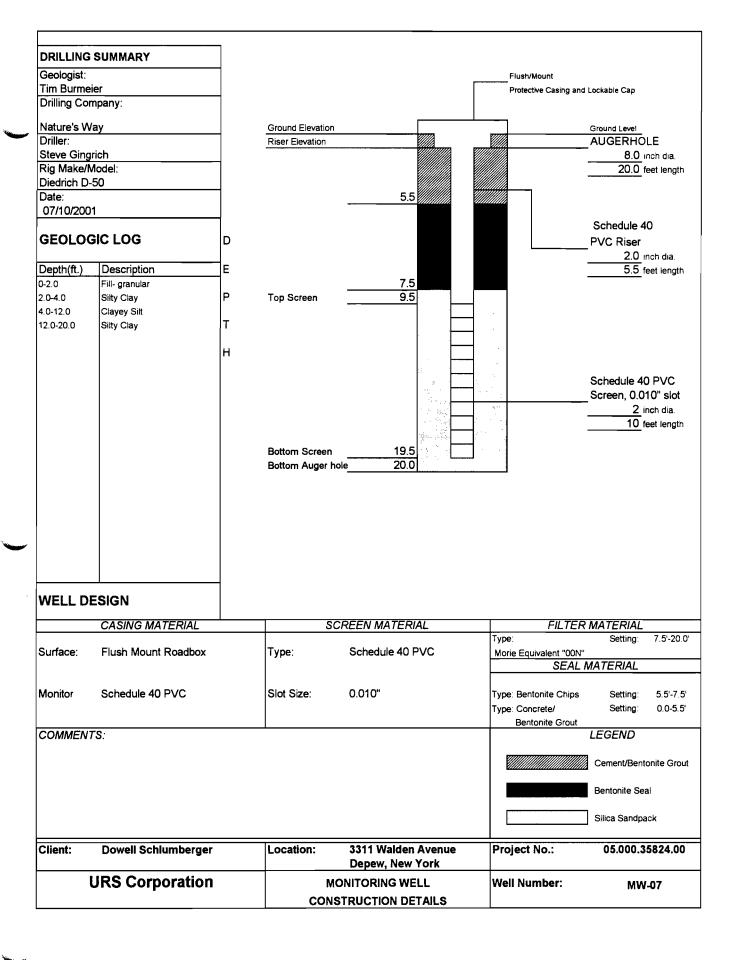
URS Corporation										GEOPROBE BORING LOG BORING NO: GPB-12					
		_													
ROJE				nberger Si	te, Depev	v, New	York			SHEET:	1 of 1				
LIENT			ell Schlun							PROJECT NO.:			5824.00		
	CONTRA	СТО	R:	Nature's V	vay, Inc.		I			BORING LOCATION: Fo	rmer acid	storage	e area		
	DWATER:			Ī		CAS.		CORE	TUBE	GROUND ELEVATION:					
DATE	TIME	L	_EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/13	3/01		
					Dia.		2"			DATE FINISHED:		07/13	3/01		
					Length		48"			DRILLER:	S. Ging	rich			
	_				Liner		Acetate			GEOLOGIST:	T. Burr	neier			
							•		,	REVIEWED BY:	D. She	ppard			
			SAI	MPLE		_			DESC	RIPTION					
DEPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			МАТ	ERIAL	uscs	RE	MARKS		
FEET	STRATA	NO.		0000	HARD	NESS			111711		0000	PI	D (ppm)		
	$\times\!\!\times\!\!\times\!\!\times$			Gray	Der	nse	0-3.0' Fill:cr	ushed li	mestor	ne, re-worked silty clay	Fill	0.0	Moist		
		1	95%	Gray											
	 	'	9570	brown											
4	MILL			Medium	St	iff	3.0-11.0' Cl	ayey silt			CL				
	WW			brown				, -,			ML		Slightl		
		_											moist		
		2	100%												
8												♥			
												9-22			
	MIII				1	7									
		3	88%		Sc	·ff	1					ŀ	Moist		
12	mm				30	лı	11 0 14 0' 6	برمام بطانا			CL	20-55	WOISE		
12							11.0-14.0' S	ыту сіау			"	20-33			
		4	100%												
							5 1 () ·		<u> </u>		-				
16							End of borin	ig at 14.	U feet						
16															
			l l												
			'												
			i l		1		I				1				
omme	nts: Boring	adva	nced using	a truck mo	unted Sin	nco Earl	thprobe 200	Direct-F	ush	PROJECT NO.	05-000 GPB-1		.00		

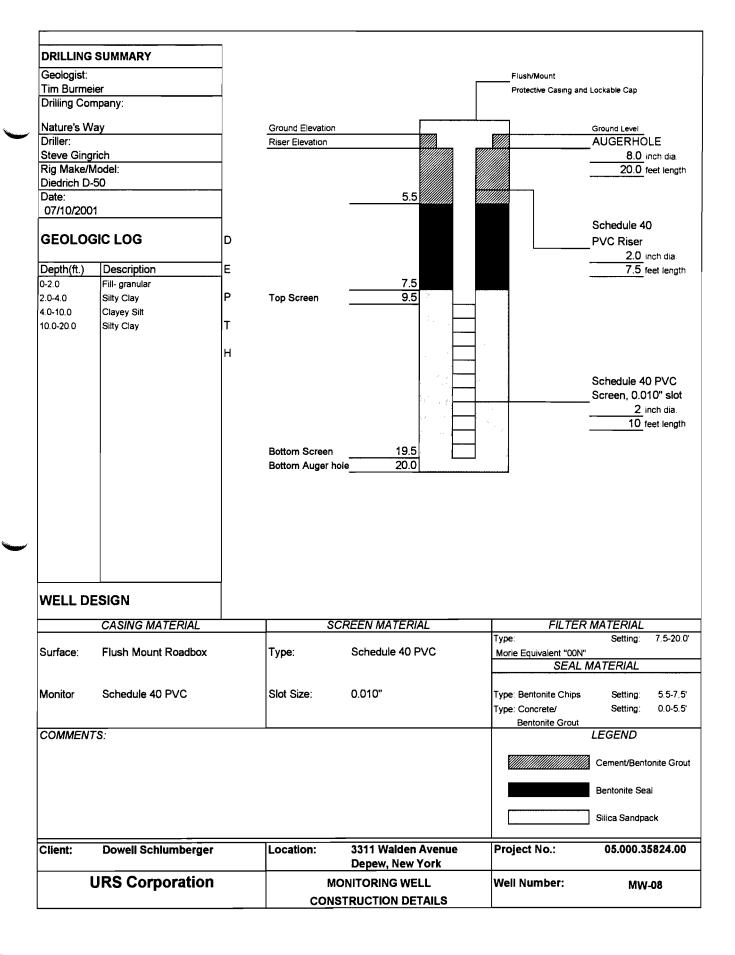
			UF	RS Corp	oratio	on				GEOPROBE BO	DRING	LO	3
200 150	O.T.	D	II C	L C:		M	VI-						
ROJE				nberger Sit	e, Depev	v, new	YORK			SHEET:	1 of 1		
LIENT	CONTRA		eli Schlur		/av. laa			_		PROJECT NO.:			5824.00
		CIO	K:	Nature's V	vay, inc.	046	CAMPI ED	2005		BORING LOCATION: FO		storag	e area
	DWATER:					CAS.		CORE	TUBE	GROUND ELEVATION:			-
DATE	TIME	L	EVEL	TYPE	TYPE		Macro core			DATE STARTED:		07/1	
			_		Dia.		2"			DATE FINISHED:		07/1	3/01
					Length		48"			DRILLER:	S. Ging	rich	
					Liner		Acetate		L	GEOLOGIST:	T. Burr	neier	
										REVIEWED BY:	D. She	ppard	
			SAI	MPLE					DESC	RIPTION	_		
EPTH		"S"	RECOVERY %	COLOR	CONSIS	TENCY			МДТ	ERIAL	uscs	RI	EMARKS
FEET	STRATA	NO.			HARD	NESS				LNAL	0303	Р	ID (ppm)
	XXXX			Lt. Brown	Der	ise	0-4.0' Fill:sil	t, crush	ed lime	estone over fine sand	Fill	0.0	Moist
	$\times\!\!\times\!\!\times\!\!\times$	1	63%	Black									
	$\times\!\!\times\!\!\times\!\!\times$	'	55 /6										
4	$\times\!\!\times\!\!\times\!\!\times$												
				Yellow	Sti	ff	4.0-12.0' Cla	ayey silt			ML		Slightly
	uu	_	4000/	brown				., -,					moist
	MIII	2	100%										
8	MM												
	MMM												
	MM												
	MIII	3	88%										Moist
12	min												INIOISI
12				M. P	-		40.0.45.51.0	"14 1			- 01		
		4	88%	Medium	So	π	12.0-15.5' S	ilty clay			CL		
				brown									
												lacktriangle	
	_												
							End of borin	g at 15.	5 feet				
ommer	nts: Borina	advai	nced using	a truck moi	unted Sim	ico Eart	hprobe 200 [Direct-P	ush	PROJECT NO.	05-000	35824	.00
	oy												.50
	ly. Sampled	13 5	-15' interv	al for V∩C ≥	เกลโขรเร					BORING NO.	GPB-13	3	

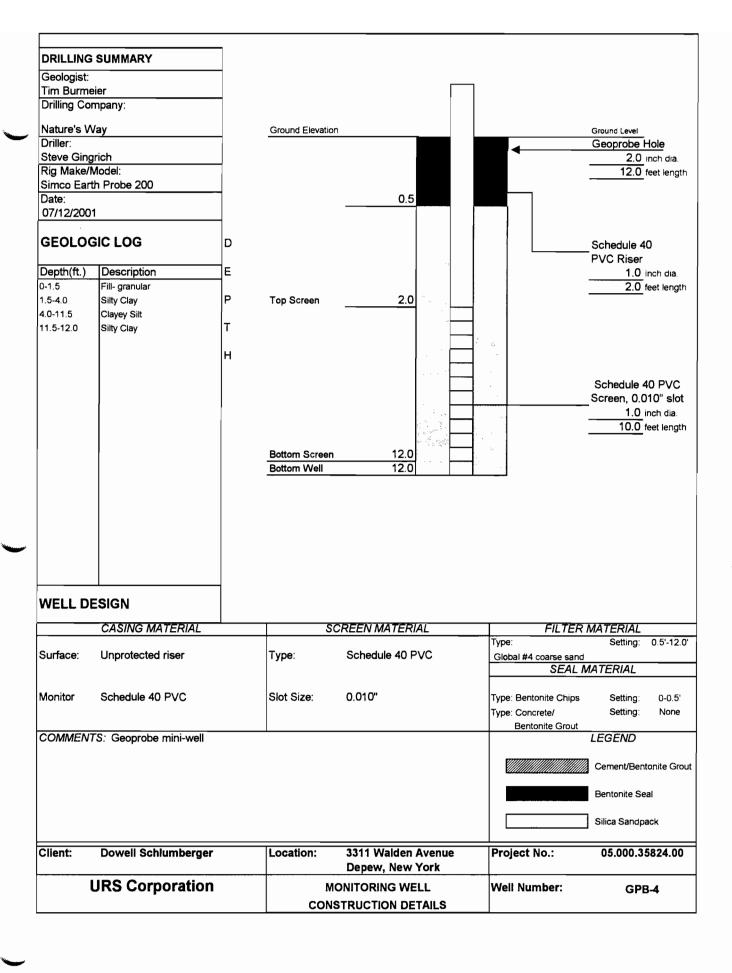
				URS	Co	rporat	ion				TEST BORIN	IG LO	G	
											BORING NO:	MW-5		
PROJE	CT:	Dow	ell Schl	umbe	rger S	ite, Depe	ew, New	York			SHEET:	1 of 1		
CLIENT	:	Dow	ell Schi	umbe	rger						PROJECT NO.:	05-0	00358	24.00
BORING	CONTRA	СТО	₹:	Natur	re's W	/ay, inc.					BORING LOCATION:			
GROUN	DWATER:						CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION	:		
DATE	TIME	L	EVEL	TY	Έ	TYPE	HSA	Split spoon			DATE STARTED:	0	7/09/0	01
						DIA.	41/4 " ID	2"			DATE FINISHED:		7/09/0	
						WT.		140#			DRILLER:	S. Ging		
	_					FALL		30"			GEOLOGIST:	T. Burr		
							KET PE	NETROMET	ER REA	DING	REVIEWED BY:	D. Len		
			SAME	LE		•	-		DES	CRIPTIO	N			
DEPTH		"S"	"N"	_	ows	RÉCOVERY %		CONSISTENCY			MATERIAL		REN	IARK
FEET	STRATA	NO.	TYPE		₹ 6"		COLOR	HARDNESS			SCRIPTION	uscs		(ppm
	XXXXX	1101		5	17		Gray	Dense	_		th coarse sand and	Fill	1.5	Sli.
		1	33	16	9	55%	Brown	Benie		medium		1 ' '''	٥	mois
	$\otimes \otimes \otimes$	\vdash		3	2		Black	Loose	11110 10	caiaiii	giutei		٣	Vy.
	XXXX	2	4	2	1	70%	Diack	Loose					٥	mois
5	$\otimes \otimes \otimes$	\vdash		2	1		Red	Medium	Fills cla	v with h	rick fragments		ٽ	We
		3	5	4	2	10%	Brown	Soft	""	y WILL 1 D	ick magnicins		0	'ï
	XXXX		_	WoH	2		Blue	3011	Silby CI	av with f	ine sand	CL	ٽ	1 ↓
	MM	4	5	3	4	70%	Gray			ay willin	ine sand	"	٥	Sli.
	iiiiiiiiii			4	6		Medium	Stiff	Clayey	Silt		ML	Ť	mois
10		5	14	8	9	85%	Brown	3	Ciayey	Oiit		1412	٥	'''
10				6	8		Biowiii	Very	-olav or	ontent in	creases with depth		Ľ	1
		6	20	12	18	100%		Stiff	-ciay co	mient in			٥	↓
				4	6			3611	1				⊢⊸	mois
		7	13	7	10	85%		Stiff		•	7		٥	111018
15					10			Sun	End of	horing a	t 14.0 feet	 	١Ŭ	
13	1					1		}		Doining a	1 14.0 1661			
	1													
	1					1								
	1				\vdash								ĺ	
20	{			\vdash	\vdash	1]		
20														
						1								
						1								
	1				 									
25	1					1								
-20													ľ	
	1				-	1								
	1					1								
	1						1							
30	1					1								
					 									
	1					1								
	1					1								
35						1								
55	1		<u> </u>				1							
`·	nto: Darin	٠	nac :!-	n = 4==	lek m	Lintad Di-	ndrich D	FO: utilizione d	 _1/4 in-	h ID	PROJECT NO.	DE 000	3502	4.00
								50; utilizing 4	+- 1/4 IMC	טווו	BORING NO.	05-000 MW-5	13382	4.00
15A. S	amples col	ectec	using 2	. spiit	spoon	samplers	.				BORING NO.	G-AAIN		


_				URS	Co	rporat	ion				TEST BORIN	G LO	G	
											BORING NO:	MW-6		
PROJE	CT:	Dow	ell Schl	umber	ger S	ite, Depe	w, New Y	ork			SHEET:	1 of 1		
CLIENT	:	Dow	eli Schl	umber	ger						PROJECT NO.:	05-0	00358	24.00
BORING	CONTRA	CTOF	₹:	Natu	re's W	ay, Inc.					BORING LOCATION:			
GROUN	DWATER:						CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	LE	VEL	TY	'PE	TYPE	HSA	Split spoon			DATE STARTED:		7/09/0)1
						DIA.	41/4 " ID	2"			DATE FINISHED:		7/09/0)1
						WT.		140#			DRILLER:	S. Ging	grich	
						FALL		30"			GEOLOGIST:	T. Burr	neier	
						* POC	KET PE	NETROMETI	ER REA	DING	REVIEWED BY:	D. Len	hardt	
			SAMF	LE					DES	CRIPTIC	N			
DEPTH		"S"	"N"	BLC	ows	RECOVERY %		CONSISTENCY	1	ı	MATERIAL	1	REM	IARKS
FEET	STRATA	NO.	TYPE	PE	R 6"	RQD %	COLOR	HARDNESS		DE	SCRIPTION	USCS	PID	(ppm)
		1	71	10	29	5%	Gray	Very	0-6': Fi	li - aspha	alt paving over silt and	Fill		Sli.
	****	Ŀ		42	50/1	0.70	Brown	Dense	fine to	coarse g	ravel		507*	moist
	$\times\!\!\times\!\!\times\!\!\times$	2	20	7	9	0%		Medium						Vy.
	$\times\!\!\times\!\!\times\!\!\times$			11	16			Dense					0	moist
5		3	19	10	8	95%	Yellow	Very	Clayey	Silt, trac	e fine gravel	ML		Wet
				11	17		Brown	Stiff					0_	
		4	18	5	7	90%			-clay co	ontent in	creases with depth		_	
				11	15								0	Sli.
40		5	21	4	7	95%	Medium						_	moist
10	4444	\vdash		14	19		Brown		0.11			ļ	0	
		6	15	5	7	90%		Stiff	Silty Cl	ay		CL	٦	↓
				8 6	12						araanaa with danth		0_	i-4
	UUU	7	12	7	5 8	55%			-ciay co	ontent in	creases with depth	1	0	moist
15		-		3	5		Gray		uith 5	Of fine to	coarse sand	1	۳	Wet
- 3-	((((((((((((((((((((((((((((((((((((8	11	6	5	45%	Brown	♦	- WILL 1	70 III e ic	Coarse sailu	1	۱ 。	
				2	3		DIOWII	Medium	1				۳	
		9	7	4	6	100%		Soft					٥	
-	WW	\vdash		1	3			0011					۳	
20	(III)	10	6	3	5	100%							0	ΙŢ
	7///													
						1			End of	boring a	t 20.5 feet			
					—	1								
25					İ	1								
]								
30														
igwdown		Щ			<u> </u>									
					<u> </u>									
35	35													
							_	0; utilizing 4-	1/4 inch	ID	PROJECT NO.	05-000	35824	.00
	amples coll										BORING NO.	MW-6		
WoH= V	veight of ha	mme	r assem	bly. *=	jar he	adspace,	probably	cause by sa	mple mo	isture				


			- (URS	Co	rporat	tion			-	TEST BORIN	G LO	G	
						•					BORING NO:	MW-7		
PROJEC	CT:	Dow	eil Schl	umbe	rger S	ite, Dep	ew, New	York			SHEET:	1 of 1		
CLIENT			ell Schl								PROJECT NO.:	05-0	00358	24.00
BORING	CONTRA					/ay, Inc.					BORING LOCATION:			
GROUN	DWATER:						CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	LE	VEL	TY	Έ	TYPE	HSA	Split spoon			DATE STARTED:	0	7/10/0)1
				,		DIA.	4¼ " ID	2"			DATE FINISHED:	0	7/10/0)1
						WT.		140#			DRILLER:	S. Ging	rich	
						FALL		30"			GEOLOGIST:	T. Burr	neier	
						* POC	KET PE	NETROMET	ER REA	DING	REVIEWED BY:	D. Len	hardt	
			SAMP	LE					DES	CRIPTIO	N			
DEPTH		"S"	"N"	BLC)WS	RECOVERY %		CONSISTENCY	,		MATERIAL		REM	IARKS
FEET	STRATA	NO.	TYPE	PEF	२ 6"	RQD %	COLOR	HARDNESS		DE	SCRIPTION	USCS	PID	(ppm)
	******	1	25	Х	11	10%	Dark	Medium	0-2': Fi	ll - aspha	alt paving and sub-base	Fill		Sli.
	$\times\!\!\times\!\!\times\!\!\times$			14	8	10%	Gray	Dense	gravel v	with silt			0,	moist
		2	13	6	5	85%	Yellow	Stiff	Silty cla	y with g	ray mottles	CL		moist
				8	12	30 %	Brown						0*	
5		з	27	15	12	0%	Medium	Very	Clayey	Silt		ML		Sli.
				15	14		Brown	Stiff					0*	moist
		4	16	2	5	85%			-clay co	ontent in	creases with depth			
				11	14								0	
		5	41	12	19	95%								
10				22	26								0	
		6	18	3	7	0%				•				Moist
<u> </u>				11	21			V					0_	
<u> </u>	WIII	7	8	1	3	100%	Gray	Medium	Silty Cl	ay trace	subrounded fine gravel	CL		
15	71117			5	7		Brown	Soft	2414	11 41-1 - 1 - 6 1			0	344.4
15	MM	8	6	1	2	100%					ne sand and silt layers			Wet
				4	8			Oties	and 3	-5% tine	to coarse sand		0	
$\vdash \!$	MILL	9	11	7	9	100%		Stiff		00/ fine			0	
	$\mathcal{H}\mathcal{W}$			3	4				- with 1	0% iine	angular gravel		0	
20		10	12	8	10	60%							0	
	1117			Ť					End of	horing a	t 20.0 feet			
										borning a	20.0 1661			
$\vdash \vdash$	ŀ													
25														
30														
35	35													
							_	50; utilizing 4	I-1/4 inc	h ID	PROJECT NO.	05-000	35824	.00
	amples coll										BORING NO.	MW-7		
WoH= V	veight of ha	ımme	r assem	bly. * I	nitial i	PID readii	ngs affec	ted by humi	iity					


				URS	Co	rporat	ion				TEST BORIN	G LO	G	
						•					BORING NO:	MW-8		
PROJE	CT:	Dow	ell Schl	umber	rger S	ite, Depe	w, New \	⁄ork			SHEET:	1 of 1		
CLIENT	` :	Dow	ell Schl	umber	rger						PROJECT NO.:	05-0	00358	24.00
BORING	CONTRA	CTOF	₹:	Natu	re's W	/ay, Inc.					BORING LOCATION:			
GROUN	IDWATER:						CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	LE	VEL	TY	'PE	TYPE	HSA	Split spoon			DATE STARTED:	0	7/10/0)1
						DIA.	41/4 " ID	2"			DATE FINISHED:	0	7/10/0	11
						WT.		140#			DRILLER:	S. Ging	rich	
						FALL		30"			GEOLOGIST:	T. Burn	neier	
						* POC	KET PE	NETROMETI	ER REA	DING	REVIEWED BY:	D. Leni	nardt	
			SAMF	LE					DES	CRIPTIO	<u> </u>			
DEPTH		"S"	"N"	BLC	ows	RECOVERY%		CONSISTENCY		ı	MATERIAL		REM	ARKS
FEET	STRATA	NO.	TYPE	PEI	R 6"	RQD %	COLOR	HARDNESS		DE	SCRIPTION	uscs	PID	(ppm)
	$\times\!\!\times\!\!\times\!\!\times$	_	9	5	4	50%	Gray	Loose	0-2': Fil	ll - fine g	ravel, silt, cinders, brick	Fill		Moist
	x x x x x x x x x x x x x x x x x x x	1	9	5	3	3076	Black		fragme				0	
	WILL	2	7	1	2	90%	Orange	Medium	Silty Cl	ay with g	ray mottles	CL		
			,	5	6	90%	Brown	Soft					0	
5			42	5	5	2004		Stiff	Clayey	silt		ML		Sli.
		3	13	8	10	80%							0	Moist
				4	7			Very	-ciay co	ontent ind	reases with depth			
		4	17	10	14	90%		Stiff	'		•		0	
		_		4	7		Medium							Moist
10		5	18	11	17	50%	Brown						0	,,,,,,,,
		\neg		3	4			Stiff	Silty Cl	av		CL	_	
$\vdash \vdash \vdash$		6	12	8	10	100%			Jan., 5.	-,		"	0	
\vdash	((())	\vdash		4	7		Gray		- 5 % fi	ne to coa	rse sand and gravel		Ť	Wet
$\Vdash \dashv$		7	13	6	7	100%	Brown		וו אל ט	110 10 000	iso saile alle glaver		0	
15				3	5		5.04411							
	MIII	8	11	6	7	20%							0	
$\vdash \vdash \vdash$		-+		2	4									
$\vdash \vdash \vdash$		9	9	5	7	95%							0	
╟──┤				3	4	l								
20		10	11	7	6	45%							0	
-20	,,,,,			<u>'</u>	ڵ				End of	horing of	20.0 feet			
					-				Liiu oi	boiling at	20.0 feet			
\vdash														
\vdash														
25														
25					<u> </u>									
														
\vdash														
30														
30														
\vdash														
\vdash														
<u> </u>														
3 5														
									4141	10	DDG IEGT VA			
								0; utilizing 4-	1/4 inch	ID	PROJECT NO.	05-000	35824	.00
	amples coll										BORING NO.	MW-8		\dashv
VVOH= V	veight of ha	mme	assemb	oly. Sa	mpled	4-5' inter	vai for VC	C analysis						


APPENDIX D


MONITORING WELL/PIEZOMETER CONSTRUCTION DETAILS

APPENDIX E

WELL DEVELOPMENT LOGS

URS Corporation

PROJECT TITLE: Former Dowell Facility	WELL N	O.: <u>MW-5</u>	
PROJECT NO.: 35824.00	Page:1	of 3	
STAFF: Steve Tivnan			
DATE(S): July 12, 2001 - July 13, 2001			
4. TOTAL 040000 AND 00DEEN LENGTH (FT.)	40.40	WELL ID.	VOL. (GAL/FT)
1. TOTAL CASING AND SCREEN LENGTH (FT.)	= 13.43	_ 1"	0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	=	_ 2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=		0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	=	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x)	=	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	= 105	8"	2.60

ACCUMULATED VOLUME PURGED (GALLONS)

					_						
PARAMETERS	0	2	5	8	10	12	15	18	20	25	30
pH	5.69	5.93	5.94	5.42	5.34	5.34	5.91	6.15	5.87	5.63	5.83
SPEC. COND. (umhos)	960	600	560	550	550	530	550	540	520	500	520
TEMPERATURE (°F)	73.1	65.7	64.5	64.9	63.2	63.2	63.5	63.6	64.1	67.2	63.8
TURBIDITY (NTU)	>1000	>1000	>1000	>1000	>1000	945	785	712	707	>1000	>1000
					,						

- 1) The well was developed with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was surged during development with a dedicated PVC bailer.
- 3) Good Recharge

URS Corporation

PROJECT TITLE:	Former Dowell Facility		WELL NO	.: <u>MVV-5</u>	
PROJECT NO.:	35824.00		Page:2	of 3	
STAFF: Steve Tiv	nan				
DATE(S): July 12, 2	2001 - July 13, 2001				
1. TOTAL CASING	AND SCREEN LENGTH (FT.)	=	13.43	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL I	BELOW TOP OF CASING (FT.)	=		2"	0.17
3. NUMBER OF FE	ET STANDING WATER (#1 - #2)	=		3"	0.38
4. VOLUME OF WA	TER/FOOT OF CASING (GAL.)	=		4"	0.66
5. VOLUME OF WA	TER IN CASING (GAL.)(#3 x #4)	=		5"	1.04
6. VOLUME OF WA	TER TO REMOVE (GAL.)(#5 x)	=		6"	1.50
7. VOLUME OF WA	TER REMOVED (GAL.)	=	105	8"	2.60
			VOLUME DUDGED (C		

ACCUMULATED VOLUME PURGED (GALLONS)

PARAMETERS	35	40	45	50	55	60	65	70	75	80	85
. pH	6.20	5.72	5.75	6.20	6.22	5.93	6.42	6.44	6.44	6.44	6.56
SPEC. COND. (umhos)	490	510	490	530	520	520	545	556	565	565	597
TEMPERATURE (°F)	63.8	65.0	63.3	63.3	59.0	63.0	64.0	64.0	63.9	64.0	67.5
TURBIDITY (NTU)	>1000	>1000	>1000	890	766	492	126	130	36	16	95

- 1) The well was developed with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was surged during development with a dedicated PVC bailer.
- 3) Good Recharge

URS Corporation

PROJECT TITLE:	Former Dowell Fac	ility					WELL NO	D.: <u>MW-5</u>		
PROJECT NO.:	35824.00						Page:3	of 3		_
STAFF: Steve Tiv	nan									
DATE(S): July 12, 2	001 - July 13, 2001									
4 TOTAL CARINO	AND CODEEN LENG	TU (FT)				40		WELL ID.	VOL. (GAL	
1. TOTAL CASING	AND SCREEN LENG	iIH (F1.)			=	13	.43	- 1"	0.04	•
2. WATER LEVEL E	BELOW TOP OF CAS	SING (FT.)			=			2"	0.17	,
3. NUMBER OF FEI	ET STANDING WAT	ER (#1 - #2)		=			3"	0.38	í
4. VOLUME OF WA	TER/FOOT OF CAS	ING (GAL.)			=			4"	0.66	i
5. VOLUME OF WA	TER IN CASING (GA	AL.)(#3 x #4)		=			5"	1.04	
6. VOLUME OF WA	TER TO REMOVE (GAL.)(#5 x _)		=		_	6"	1.50	
7. VOLUME OF WA	TER REMOVED (GA	L.)			=	10	05	8"	2.60	
			г —	ACCUM	ULATED \	/OLUME F	PURGED (GALLONS)	-,	

PARAMETERS	90	95	100	105				
рН	6.67	6.54	6.61	6.52				
SPEC. COND. (umhos)	5390	547	506	505				
TEMPERATURE (°F)	62.9	65.2	66.5	60.5		_		
TURBIDITY (NTU)	763	267	62	88				· -

- 1) The well was developed with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was surged during development with a dedicated PVC bailer.
- 3) Good Recharge

URS Corporation

PROJECT TITLE: Former Dowell Facility		WELL NO	.: <u>MW-6</u>	
PROJECT NO.: 35824.00		Page:1	of 1	
STAFF: Steve Tivnan				
DATE(S): July 12, 2001 - July 13, 2001				
TOTAL CASING AND SCREEN LENGTH (FT.)	= _	19.42	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	= _	3.19	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	= _	16.23	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	= _	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	= _	2.76	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x)	= _	8.28	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	= _	15	8"	2.60
	CCUMULATED V	OLUME PURGED (G	GALLONS)	

PARAMETERS	0	2	5	8	10	12	15		
pH	6.25	6.29	5.18	6.14	6.14	7.21	6.82		
SPEC. COND. (umhos)	1179	1191	1166	1171	1123	1275	1234		
TEMPERATURE (°F)	59.5	59.5	56.7	55.3	55.0	60.2	57.5		
TURBIDITY (NTU)	240	>1000	310	400	>1000	814	732		
					1				

- 1) The well was developed with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was surged during development with a dedicated PVC bailer.
- 3) Poor Recharge

URS Corporation

PROJECT TITLE: Former Dowell Facility		WELL NO.	: <u>MW-7</u>	
PROJECT NO.: 35824.00		Page:1	of <u>1</u>	
STAFF: Steve Tivnan				
DATE(S): July 12, 2001 - July 13, 2001				- 0.00
TOTAL CASING AND SCREEN LENGTH (FT.)	= _	18.96	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	= _	13.40	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	= _	5.56	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	= _	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	= _	0.95	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x)	= _	2.84	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	= _	12	8"	2.60
A	CCUMULATED V	OLUME PURGED (G	GALLONS)	

PARAMETERS	0	2	5	10	12			
рН	6.21	6.23	6.20	6.76	6.71			
SPEC. COND. (umhos)	704	595	529	630	577			
TEMPERATURE (°F)	59.0	56.0	55.2	58.2	57.2			
	_							_
TURBIDITY (NTU)	210	110	92	227	215			

- 1) The well was developed with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was surged during development with a dedicated PVC bailer.
- 3) Very Poor Recharge

URS Corporation

PROJECT TITLE: Former Dowell Facility		WELL NO	D.: MW-8	
PROJECT NO.: 35824.00		Page:1	of 1	
STAFF: Steve Tivnan				
DATE(S): July 12, 2001 - July 13, 2001				
TOTAL CASING AND SCREEN LENGTH (FT.)	=	19.05	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	=	2.21	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	=	16.84	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=	2.86	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x) =	8.59	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	=	17	8"	2.60
	ACCUMULATED	VOLUME PURGED ((GALLONS)	

PARAMETERS	0	2	5	10	12	14	17		
pH	6.61	6.32	6.10	6.00	6.99	6.67	6.55		
SPEC. COND. (umhos)	830	864	763	755	834	771	757		
TEMPERATURE (°F)	61.6	64.5	58.6	56.1	58.0	55.5	55.4		
TURBIDITY (NTU)	90	>1000	800	450	411	548	>1000		

- 1) The well was developed with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was surged during development with a dedicated PVC bailer.
- 3) Poor Recharge

APPENDIX F

WELL PURGING LOGS

URS Corporation

ROJECT TITLE: Former Dowell Facility WELL NO.: MW-1									
PROJECT NO.: 35824.00		Page:1 c	of 1						
STAFF: Steve Tivnan		_							
DATE(S): July 16, 2001									
4 TOTAL OASING AND CODEENLENGTH (FT.)	_	00.75	WELL ID.	VOL. (GAL/FT)					
1. TOTAL CASING AND SCREEN LENGTH (FT.)		28.75	1"	0.04					
2. WATER LEVEL BELOW TOP OF CASING (FT.)	= _	14.10	2"	0.17					
3. NUMBER OF FEET STANDING WATER (#1 - #2)	= _	14.65	3"	0.38					
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	= _	0.17	4"	0.66					
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	= _	2.49	5"	1.04					
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x 3)	=	7.5	6"	1.50					
7. VOLUME OF WATER REMOVED (GAL.)	= _	6.3	8"	2.60					
<i>F</i>	ACCUMULATED VC	LUME PURGED (G	ALLONS)						

PARAMETERS	0	2.1	4.2	6.3				
pH	7.15	6.90	6.94	7.05				
SPEC. COND. (umhos)	627	517	620	689				
TEMPERATURE (°F)	67.0	61.2	63.0	64.0				
TURBIDITY (NTU)	15	6	2	4				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC, SVOC, pesticide, PCB, metals, cyanide, TPH

URS Corporation

PROJECT TITLE: Fo	ormer Dowell Facili	ity					WELL NO	D.: <u>MW-2</u>		_	
PROJECT NO.: 35	5824.00						Page:1	of 1			
STAFF: Steve Tivnan											
DATE(S): July 1	6, 2001_										
				_					_		
1. TOTAL CASING AND	SCREEN LENGT	TH (FT.)			=	26	.52		LL ID. 1"	VOL. (G	SAL/FT) 0.04
2. WATER LEVEL BELO	OW TOP OF CASI	NG (FT.)			=	4.	15		2"	C	0.17
3. NUMBER OF FEET S	STANDING WATE	R (#1 - #2)			=	22	.37		3"	C	0.38
4. VOLUME OF WATER	R/FOOT OF CASIN	NG (GAL.)			=	0.	17		4"	C	0.66
5. VOLUME OF WATER	R IN CASING (GAL)(#3 x #4)			=	3.	80		5"	1	1.04
6. VOLUME OF WATER	R TO REMOVE (G	AL.)(#5 x <u>3</u>)		=	11	.4		6"	1	1.50
7. VOLUME OF WATER	R REMOVED (GAL)			=	11	.2		8"	2	2.60
				ACCUM	IULATED \	OLUME P	URGED (GALLONS)			

PARAMETERS	0	2.8	5.6	8.4	11.2				
pH	7.22	7.11	7.18	7.30	7.44				
SPEC. COND. (umhos)	590	551	583	648	663				
							_		
TEMPERATURE (°F)	62.5	58.2	59.9	65.0	64.0				
TURBIDITY (NTU)	7	4	11	10	11				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC's

URS Corporation

PROJECT TITLE: Former Dowell Facility	WEI	LL NO.: MW-3	
PROJECT NO.: 35824.00	Pag	e:1 of 1	
STAFF: Steve Tivnan			
DATE(S): July 16, 2001			
TOTAL CASING AND SCREEN LENGTH (FT.)	= 24.30	WELL ID. 1"	VOL. (GAL/FT) 0.04
1. TOTAL CASING AND SCILLIN LENGTH (F1.)	24.30		0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	= 12.75	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	= 11.55	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	= 0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	= 1.96		1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x 3/2)	= 5.88	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	=6	8"	2.60
	ACCUMULATED VOLUME PURG	SED (GALLONS)	
	, COOMICE TIED VOLUME I ONC) LD (OF 1 L L O 1 1 O)	

-							
PARAMETERS	0	3	6				
рН	6.74	6.65	6.55				
SPEC. COND. (umhos)	1783	1694	1548				
TEMPERATURE (°F)	61.0	58.1	57.1				
TURBIDITY (NTU)	6	4	6				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC, SVOC, pesticide, PCB, metals, cyanide, TPH

URS Corporation

PROJECT TITLE: Former Dowell Facility		WELL NO	.: <u>MW-4</u>	
PROJECT NO.: 35824.00		Page:1	of 1	
STAFF: Steve Tivnan				
DATE(S): July 16, 2001	_			
			WELL ID.	VOL. (GAL/FT)
TOTAL CASING AND SCREEN LENGTH (FT.)	= _	27.66	1"	0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	= _	6.80	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	= _	20.86	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	= _	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	= _	3.55	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x 3)	= _	10.64	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	= _	5.5	8"	2.60
			244.040	
AC	CUMULATED VC	LUME PURGED (C	SALLONS)	

PARAMETERS	0	1.8	3.9	5.5				
рH	7.11	7.05	6.86	6.71				
SPEC. COND. (umhos)	1679	1617	1592	1667				
TEMPERATURE (°F)	62.5	58.7	57.9	61.0				
TURBIDITY (NTU)	13	7	6	8				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC's

URS Corporation

PROJECT TITLE: Former Dowell Facility		WELL NO	.: <u>MW-5</u>	
PROJECT NO.: 35824.00		Page:1	of 1	
STAFF: Steve Tivnan				
DATE(S): July 16, 2001				
			WELL ID.	VOL. (GAL/FT)
TOTAL CASING AND SCREEN LENGTH (FT.)	= -	13.43	1"	0.04
2. WATER LEVEL BELOW TOP OF CASING (FT.)	= _	3.40	2"	0.17
3. NUMBER OF FEET STANDING WATER (#1 - #2)	= _	10.03	3"	0.38
4. VOLUME OF WATER/FOOT OF CASING (GAL.)	= _	0.17	4"	0.66
5. VOLUME OF WATER IN CASING (GAL.)(#3 x #4)	=_	1.71	5"	1.04
6. VOLUME OF WATER TO REMOVE (GAL.)(#5 x 3)	= _	5.12	6"	1.50
7. VOLUME OF WATER REMOVED (GAL.)	= _	7.5	8"	2.60
	ACCUMULATED V	DLUME PURGED (C	SALLONS)	

PARAMETERS	0	3.7	7.5				
рН	7.52	7.10	7.11				
SPEC. COND. (umhos)	539	511	532				
TEMPERATURE (°F)	59.0	59.0	59.6				
TURBIDITY (NTU)	105	381	767				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC, SVOC, pesticide, PCB, metals, cyanide, TPH

1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.

2) The well was sampled with a dedicated PVC bailer.

3) Parameters: VOC's

URS Corporation

PROJECT TITLE:	Former Dowell Facili	ty					WELL NO	.: <u>MW-6</u>			
PROJECT NO.:	35824.00						Page:1	of 1			
STAFF: Steve Tivn	an				_						
DATE(S):July	y 16, 2001			_							
								<u>-</u>			
1. TOTAL CASING A	ND SCREEN LENGT	H (FT.)			=	19	.42		L ID. "		GAL/FT) 0.04
2. WATER LEVEL BE	ELOW TOP OF CASI	NG (FT.)			=	4.	46	2	di.	(0.17
3. NUMBER OF FEE	T STANDING WATE	R (#1 - #2)		=	14	.96	3	**	(0.38
4. VOLUME OF WAT	ER/FOOT OF CASIN	IG (GAL.)			=	0.	17	4	n	(0.66
5. VOLUME OF WAT	ER IN CASING (GAL)(#3 x #4)		=	2.	54	5	"		1.04
6. VOLUME OF WAT	ER TO REMOVE (G	AL.)(#5 x <u>(</u>	3)		=	7.	63	6	"		1.50
7. VOLUME OF WAT	ER REMOVED (GAL)			=		8	8	n	- :	2.60
				ACCUM	ULATED '	VOLUME F	PURGED (C	GALLONS)			
PARAMETERS	0	4	8								
рН	6.80	6.76	6.74								
SPEC. COND. (umhos	s) 1450	1360	1310								
TEMPERATURE (°F)	65.6	60.0	59.3								
TURBIDITY (NTU)	37	178	452								
COMMENTS:	- 1			_				L			

URS Corporation

PROJECT TITLE: Former D	owell Facility		WELL NO	.: <u>MW-7</u>	
PROJECT NO.: 35824.00			Page:1	of 1	
STAFF: Steve Tivnan					
DATE(S): July 16, 2001					
TOTAL CASING AND SCRE	EN LENGTH (FT.)	=	18.96	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW TO	P OF CASING (FT.)	=	11.82	2"	0.17
3. NUMBER OF FEET STAND	ING WATER (#1 - #2)	=	7.14	3"	0.38
4. VOLUME OF WATER/FOOT	OF CASING (GAL.)	=	0.17	4"	0.66
5. VOLUME OF WATER IN CA	SING (GAL.)(#3 x #4)	=	1.21	5"	1.04
6. VOLUME OF WATER TO R	EMOVE (GAL.)(#5 x <u>3</u>)	=	3.64	6"	1.50
7. VOLUME OF WATER REMO	OVED (GAL.)	=	4	8"	2.60
		ACCUMULATED \	OLUME PURGED (C	GALLONS)	

PARAMETERS	0	2	4				
рН	7.15	7.13	6.95				
SPEC. COND. (umhos)	635	646	600				
TEMPERATURE (°F)	59.0	57.5	57.0				
TURBIDITY (NTU)	68	582	350				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC's

URS Corporation

PROJECT TITLE: Former D	owell Facil	ity					WELL NO	D.: <u>MW-8</u>			
PROJECT NO.: 35824.00							Page:1	of 1			
STAFF: Steve Tivnan											
DATE(S): July 16, 2001											
									LL ID.	VOL. (G	
TOTAL CASING AND SCRE	EN LENGT	TH (FT.)			=	19	.05	•	1"	0	.04
2. WATER LEVEL BELOW TO	P OF CASI	NG (FT.)			=	3.	39	. :	2"	0	.17
3. NUMBER OF FEET STANDI	NG WATE	R (#1 - #2))		= ,	15	.66	. ;	3"	0	.38
4. VOLUME OF WATER/FOOT	OF CASI	NG (GAL.)			=	0.	17		4"	0	.66
5. VOLUME OF WATER IN CA	SING (GAI)(#3 x #4)		=	2.	66		5"	1	.04
6. VOLUME OF WATER TO RI	EMOVE (G	AL.)(#5 x <u>3</u>	<u>3</u>)		=	7.	99		6"	1	.50
7. VOLUME OF WATER REMO	OVED (GAL)			=	8	.1		8"	2	.60
				ACCUM	ULATED \	OLUME F	URGED (GALLONS)			

•		_	_					
PARAMETERS	0	2	5	8.1				
pH	7.00	6.92	6.91	6.90				
		2.12	700					
SPEC. COND. (umhos)	885	840	788	779				
TEMPERATURE (%E)	64.4	60.0	57.0	57.4				
TEMPERATURE (°F)	64.4	60.2	57.0	57.4	 		 	
TURBIDITY (NTU)	90	184	197	374				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with a dedicated PVC bailer.
- 3) Parameters: VOC's

URS Corporation

PROJECT TITLE: <u>F</u>	ormer Dowell Facil	ity				w	ELL NO.: P	Z-1		
PROJECT NO.: 3	5824.00			_		Pa	ge:1 of	1		
STAFF: Steve Tivnar	1									
DATE(S): July 1	16, 2001									
					_					
1. TOTAL CASING AN	D SCREEN LENGT	TH (FT.)			=	14.88		WELL ID. 1"		GAL/FT) 0.04
2. WATER LEVEL BEL	OW TOP OF CAS	NG (FT.)			=	4.82		2"	(0.17
3. NUMBER OF FEET	STANDING WATE	R (#1 - #2)	I		=	10.06		3"	(0.38
4. VOLUME OF WATE	R/FOOT OF CASI	NG (GAL.)			=	0.04		4"	(0.66
5. VOLUME OF WATE	R IN CASING (GAI)(#3 x #4)	1		=	0.40		5"		1.04
6. VOLUME OF WATE	R TO REMOVE (G	AL.)(#5 x <u>3</u>	<u>l</u>)		=	1.21		6"		1.50
7. VOLUME OF WATE	R REMOVED (GAL)			=	1		8"	:	2.60
				ACCUM	ULATED '	VOLUME PUR	GED (GALL	ONS)		
PARAMETERS	0	1								
рН	7.50	7.02								
SPEC. COND. (umhos)	642	595								
TEMPERATURE (°F)	64.0	61.0								
TURBIDITY (NTU)	586	>1000								

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with HDPE tubing and a check valve.
- 3) Parameters: VOC's

URS Corporation

PROJECT TITLE: Former E	owell Facil	lity					WELL NO).: <u>PZ-2</u>			
PROJECT NO.: 35824.00)						Page:1	of 1			
STAFF: Steve Tivnan											
DATE(S): July 16, 2001											
TOTAL CASING AND SCRE	EN LENGT	TH (FT.)			=	15	.30	WE	ELL ID. 1"	,	SAL/FT) 0.04
2. WATER LEVEL BELOW TO	P OF CASI	NG (FT.)			=	5.	45		2"	(0.17
3. NUMBER OF FEET STAND	NG WATE	R (#1 - #2))		=	9.	85		3"	(0.38
4. VOLUME OF WATER/FOOT	OF CASIN	NG (GAL.)			=	0.	04		4"	(0.66
5. VOLUME OF WATER IN CA	SING (GAL)(#3 x #4))		=	0.	39		5"		1.04
6. VOLUME OF WATER TO RI	EMOVE (G	AL.)(#5 x <u>3</u>	3)		=	1.	18		6"		1.50
7. VOLUME OF WATER REMO	OVED (GAL)			=	2.	00		8"	:	2.60
				ACCUM	ULATED \	/OLUME F	PURGED (GALLONS)	ı		
PARAMETERS	0	1	2				(,			

PARAMETERS	0	1	2				
pH	7.09	6.87	6.99				
SPEC. COND. (umhos)	781	557	588				
TEMPERATURE (°F)	60.0	61.0	61.3				
TURBIDITY (NTU)	>1000	>1000	>1000				

- 1) The well was purged with an ISCO peristaltic pump and dedicated HDPE tubing.
- 2) The well was sampled with HDPE tubing and a check valve.
- 3) Parameters: VOC's

APPENDIX G

WATER LEVEL ELEVATIONS AND HYDRAULIC CONDUCTIVITY DATA

TABLE 3-1 FORMER DOWELL SITE GROUNDWATER ELEVATION MEASUREMENTS

MW-42 1061205 157 1116501 1116102 5664 104 10 103 60 4 14 10 13 55 99 25 0.00 90 25 MW-42 1061206 561 1119105 504 102 53 102 25 A 12 111601 13 45 99 25 0.00 90 25	Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
1061209 591 119165 904 102 53 102 25 A 1 116010 1346 90 25 90 00	MW-01	1060924.157	1118932.986	104.10	104.10	103.80	∢	-						
1061120 593 1119163 904 10253 10225 A 1 171601 1314 9086 90.00									1/16/01	14.10	89.70	00:0	7.68	
106116209 659 1119165904 102 53 102 25									11/6/01	13.55	90 25	00.00	90.25	
1061209 591 119165 904 102 53 102 54 102 55 1									12/12/01	13.14	99.06	00:00	99:06	
1061162 036 118942 310 100 96 1	MW-02	1061209.591	1119165.904	102.53	102.53	102.25	∢	-						
106116E 624 1118970 877 101.11 101.15 101.25 11890.0 101.10 101.25									7/16/01	4 15	98 10	00 0	98.1	
1061166.024 1118942.310 100.06 10 10 10 10 10 10 10									10/12/01	3.56	69.86	00.00	69.86	
1061166 624 1118970 677 101.11 101.11 100 57									11/6/01	3.85	98.40	0.00	98.4	
1061166.624 1118970.677 101.11 101.11 100.57 A 1 7116/01 12.75 87.82 0.00 1.									12/12/01	3.16	60.66	00'0	60.66	
1061162 693 119049.101 101 65 101.65 101.25 A 11 16/01 10.92 89.65 0.00 1.061162 693 1119049.101 101 65 101.65 101.25 A 1 11/6/01 6.80 94.45 0.00 1.061061.919 119111.257 104.54 104.54 103.97 A 1 11/6/01 1.061061 1.061061.231 118942.310 100.96 100.96 100.36 A 1 11/6/01 1.061061 1.061062 31 1.061062	MW-03	1061166.624	1118970.677	101.11	101.11	100.57	٧	-						
1061182 893 1119049,101 101.65 101.65 101.25 A 1 7/16/01 10.53 90.04 0.00 1.061182 893 1119049,101 101.65 101.65 101.25 A 1 7/16/01 6.80 94.45 0.00 1.061061.919 1119111.257 104.54 104.54 100.36 100.36 1.061162 0.35 118942,310 100.96 100.96 100.38 A 1 7/16/01 4.46 95.92 0.00 1.061162 0.35 118942,310 100.96 100.96 100.38 A 1 7/16/01 4.46 95.92 0.00 1.061162 0.35 118942,310 100.96 100.96 100.38 A 1 7/16/01 4.46 95.92 0.00 1.061162 0.35 1.061162 0.									1/16/01	12.75	87.82	00.00	87 82	
1061182 893 1119049.101 101.65 101.65 101.25 A 1 7/16/01 6.80 94.45 0.00 0.00									11/6/01	10.92	89.65	00.00	89.65	
1061182 893 1119049.101 101.65 101.25 A 1 7/16/01 6.80 94.45 0.00 1061061.919 1119111.257 104.54 104.54 103.97 A 1 7/13/01 4.86 94.45 0.00 1061061.919 1119111.257 104.54 104.54 103.97 A 1 7/13/01 4.72 96.53 0.00 1061061.919 1119111.257 104.54 104.54 103.97 A 1 7/13/01 2.21 101.76 0.00 1061061.919 1119111.257 104.54 104.54 103.97 A 1 7/13/01 2.21 101.76 0.00 1061061.919 119911.257 104.54 106.56 100.96 100.96 100.38 A 1 1/16/01 0.40 103.67 0.00 1061162.035 1118942.310 100.96 100.38 A 1 7/16/01 4.46 95.92 0.00									12/12/01	10.53	90.04	00.00	90.04	
1061061.919 118942.310 100.96 100.96 100.26 1 1 1 1 1 1 1 1 1	MW-04	1061182 893	1119049.101	101.65	101.65	101.25	٧	1						
1061061.919 119111.257 104.54 104.54 100.36 1									7/16/01	08.9	94 45	00.00	94.45	
1061061.919 111842.310 100.96 100.36 A 1 11/6/01 4.16 96.64 0.00 1061162.035 1118942.310 100.96 100.96 100.36 103.97 A 1 4.72 96.53 0.00									10/12/01	4.86		00:00		
1061061.919 1119111.257 104.54 104.54 103.97 A 1 7/13/01 2.21 101.76 0.00 1061061.919 1119111.257 104.54 104.54 103.97 A 1 7/13/01 2.21 101.76 0.00 1061061.919 1119111.257 100.06 100.96 100.36 100.36 103.67 0.00 0.00 1061162.035 1118942.310 100.96 100.96 100.36 A 1 4.46 95.92 0.00									11/6/01	4.61	96.64	00.0	96.64	
1061061.919 1119111.257 104.54 104.54 103.97 A 1 A 1 A								-	12/12/01	4.72	96.53	00.00	96.53	
1061162.035 1118942.310 100.96 100.96 100.36 100.36 100.96 100.36 100.01 2.21 101.76 0.00 0.00 1061162.035 1118942.310 100.96 100.96 100.36 100.36 A 1 4.46 95.92 0.00	MW-05	1061061.919	1119111.257	104.54	104.54	103.97	٧	4						
1061162.035 118942.310 100.96 100.36 100.201 0.30 103.67 0.00 1061162.035 1118942.310 100.96 100.36 100.36 A 1 4.46 95.92 0.00									7/13/01	2.21	101.76	00:00	101.76	
1061162.035 118942.310 100.96 100.96 100.36 100.96 100.96 100.36 A 1 4.46 95.92 0.00									10/12/01	0 30	103 67	00:00	103.67	
1061162.035 1118942.310 100.96 100.96 100.96 100.96 100.96 4.46 95.92 0.00						1			11/6/01	0.40	103.57	00'0	103 57	
1061162.035 1118942.310 100.96 100.96 100.38 A 1 7/16/01 4.46 95.92 0.00									12/12/01	1 05	102 92	00 0	102.92	
4.46 95.92 0.00	MW-06	1061162.035	1118942.310		100.96	100.38	۷	1						
									1/16/01	4.46	95 92	00 0	95.92	

NM · No Measurement

Geologic Zone: A Aquifer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Punted 11602.12 of 45 PM 1.05624 (5) de PROGRAM program más broandwater Leve

TABLE 3-1 FORMER DOWELL SITE GROUNDWATER ELEVATION MEASUREMENTS

				,	,								
ocation ID /	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
								10/12/01	3.31	97.07	00'0	70.79	
								11/6/01	3 03	97.35	00.00	97.35	
								12/12/01	3.37	97.01	00.00	97.01	
MW-07	1061148.617 1118862.788	1118862.788	100.64	100.64	100.10	٧	1						
								1/16/01	11.82	88.28	00.0	88.28	
								10/15/01	3.41	69.96	00.00	69'96	
								11/6/01	3.43	29.96	00.00	29.96	
								12/12/01	3.89	96.21	00.00	96.21	
MW-08	1061061.953 1118900.487	1118900.487	100.10	100.10	99.65	∢	-						
								7/16/01	3.39	96.26	00.00	96.26	
								10/12/01	1.89	97.76	00.00	97.76	
								11/6/01	1.55	98.10	00.00	98.1	
								12/12/01	1.82	97.83	00:00	97.83	
PZ-01	1061012.984 1118932.541	1118932.541	101.87	ΑN	104.75	٧	1						
								10/17/01	4 68	100.07	00.00	100.07	
								11/6/01	3 68	101.07	00.0	101.07	
								12/12/01	3.86	100.89	00.00	100.89	
PZ-02	1061103.019 1119054.805	1119054.805	101.37	ΨN	104.67	٧	1						
								10/12/01	4.94	99.73	00.00	99.73	
								11/6/01	4.87	99.80	00 0	8.66	
								12/12/01	5.01	99 66	00 0	99 66	

NM · No Measurement

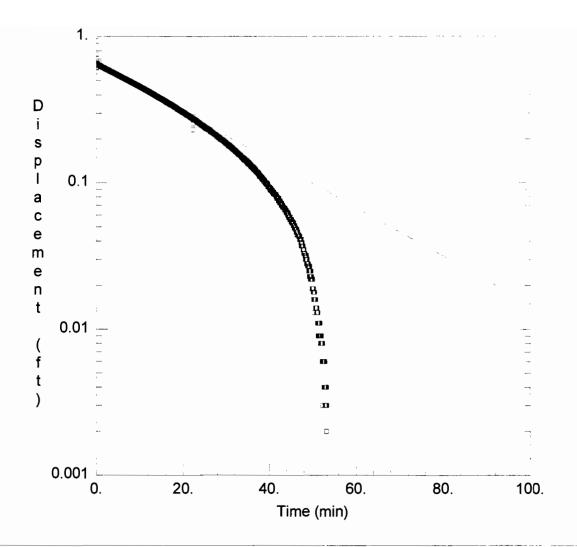
Geologic Zone: A Aquifer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

llo/M		cm/sec			ft/min			ft/day	
	Average	Falling	Rising	Average	Falling	Rising	Average	Falling	Rising
MW-1	1.74E-05	1.93E-05	1.55E-05	3.42E-05	3.80E-05	3.05E-05	90'0	0.055	0.044
MW-2	9.93E-06	1.27E-05	7.20E-06	1.96E-05	2.49E-05	1.42E-05	60.0	9£0'0	0.020
MW-5	1.71E-03	1.85E-03	1.57E-03	3.36E-03	3.64E-03	3.08E-03	4.84	5.239	4.440
MW-6	1.90E-05	3.25E-05	5.46E-06	3.74E-05	6.41E-05	1.07E-05	50'0	0.092	0.015
MW-7	9.03E-07	9.03E-07	NA	1.78E-06	1.78E-06	NA	0.003	0.003	NA

D:\Projects\Misc\[Former Dowel - Slug Tests.xls]Summary

		Average	
Well	oes/wo	ft/min	ft/day
MW-1	1.74E-05	3.42E-05	0.049
MW-2	90-3E6'6	1.96E-05	0.028
3-WM	1.71E-03	3.36E-03	4.840
9-MW	1.90E-05	3.74E-05	0.054
2-MW	9.03E-07	1.78E-06	600.0


				30 940:511			Top of Water		
Well	Max	Depth to	Total	Height of	Aquifer	Screen	Top of	Well	Borehole
	Displacement (ft)	Water** (ft)	Depth (ft)	Column (ft)	Thickness*** (ft)	Length (ft)	Screen (Y/N)	Radius (ft)	Radius (ft)
MW-1f*	-	13.14	30.00	16.86	10.00	10.0	>	0.0833	0.333
MW-1r*	_	13.14	30.00	16.86	10.00	10.0	Υ	0.0833	0.333
MW-2f*	-	3.16	28.00	24.84	10.00	10.0	Υ	0.0833	0.333
MW-2r*	-	3.16	28.00	24.84	10.00	10.0	Υ	0.0833	0.333
MW-5f	-	1.05	14.00	12.95	10.00	10.0	Υ	0.0833	0.333
MW-5r	-	1.05	14.00	12.95	10.00	10.0	Y	0.0833	0.333
MW-6f	-	3.37	20.00	16.63	10.00	10.0	Υ	0.0833	0.333
MW-6r	-	3.37	20.00	16.63	10.00	10.0	Υ	0.0833	0.333
MW-7f	1	3.89	19.50	15.61	10.00	10.0	Υ	0.0833	0.333

Note:

"Wells MW-1 and MW-2, auger diameter not indicated on boring logs, therefore was assumed 4 1/4"HSA and 8" borehole radius.

^{**}Water levels taken from 12/12/01 measurements.

^{***}Aquifer thickness assumed equal to screen length based on boring logs and stratigraphy.

WELL TEST ANALYSIS

Data Set: J:\35824.00\Excel\Slug Tests\MW-1f-B&R.aqt

Date: 01/15/02 Time: 09:40:15

PROJECT INFORMATION

Company: URS

Client: Former Dowell Site Project: 05-00035824.00

Initial Displacement: 1. ft

Wellbore Radius: 0.333 ft

Gravel Pack Porosity: 0.3

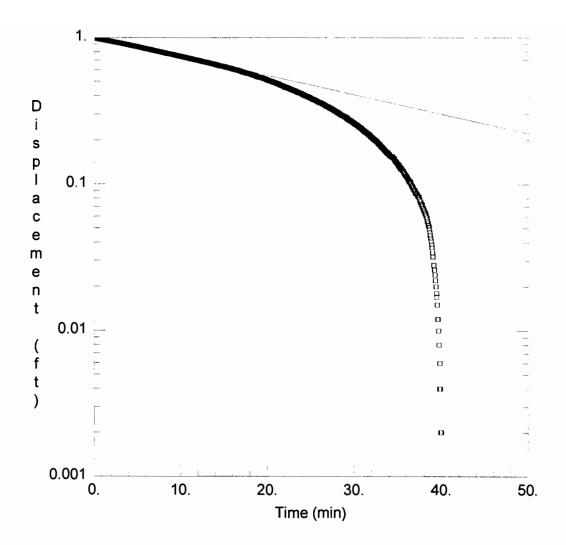
Screen Length: 10. ft

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1f)


Casing Radius: 0.0833 ft Well Skin Radius: 0.333 ft

Total Well Penetration Depth: 16.86 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 3.795E-05 ft/min y0 = 0.6542 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-1r-B&R.aqt

Date: 01/15/02 Time: 09:40:56

PROJECT INFORMATION

Company: URS

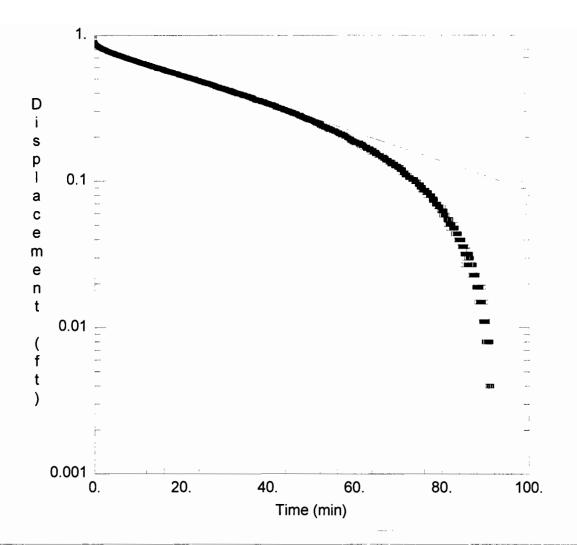
Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1r)


Initial Displacement: 1. ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Well Skin Radius: 0.333 ft

Screen Length: 10. ft Total Well Penetration Depth: 16.86 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 3.049E-05 ft/min y0 = 1.011 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-2f-B&R.aqt

Date: 01/15/02 Time: 09:41:06

PROJECT INFORMATION

Company: URS

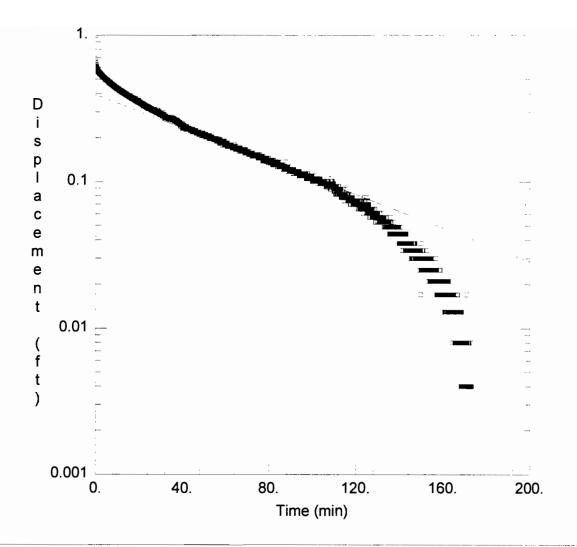
Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2f)


Initial Displacement: 1. ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Well Skin Radius: 0.333 ft

Screen Length: 10. ft Total Well Penetration Depth: 24.84 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 2.492E-05 ft/min y0 = 0.8649 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-2r-B&R.aqt

Date: 01/15/02 Time: 09:41:15

PROJECT INFORMATION

Company: URS

Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2r)

Casing Radius: 0.0833 ft Well Skin Radius: 0.333 ft

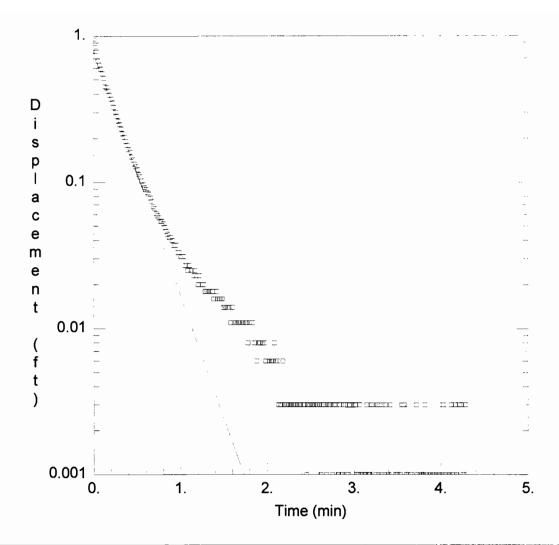
Total Well Penetration Depth: 24.84 ft

SOLUTION

Aquifer Model: Unconfined

Initial Displacement: 1. ft

Wellbore Radius: 0.333 ft


Gravel Pack Porosity: 0.3

Screen Length: 10. ft

K = 1.418E-05 ft/min

Solution Method: Bouwer-Rice

y0 = 0.393 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-5f-B&R.aqt

Date: 01/15/02 Time: 09:41:27

PROJECT INFORMATION

Company: URS

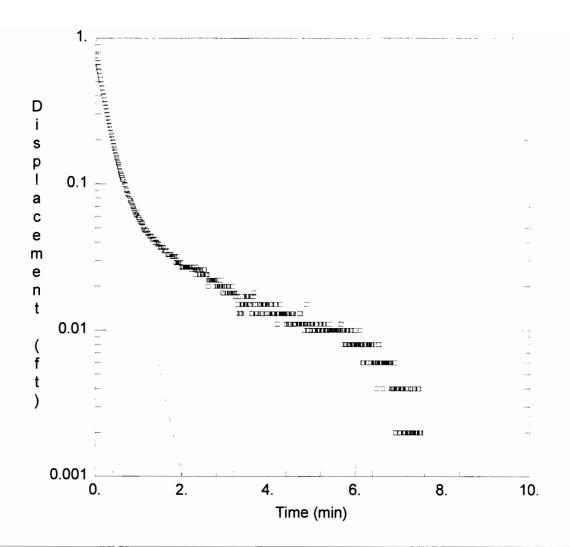
Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5f)


Initial Displacement: 1. ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Well Skin Radius: 0.333 ft

Screen Length: 10. ft Total Well Penetration Depth: 12.95 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003638 ft/min y0 = 0.7734 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-5r-B&R.aqt

Date: 01/15/02 Time: 09:41:32

PROJECT INFORMATION

Company: URS

Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5r)

Initial Displacement: 1. ft Wellbore Radius: 0.333 ft

Screen Length: 10. ft Gravel Pack Porosity: 0.3 Casing Radius: 0.0833 ft Well Skin Radius: 0.333 ft

Total Well Penetration Depth: 12.95 ft

SOLUTION

Aquifer Model: Unconfined

K = 0.003083 ft/min

Solution Method: Bouwer-Rice

y0 = 0.665 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-6f-B&R.aqt

Date: 01/15/02 Time: 09:41:39

PROJECT INFORMATION

Company: URS

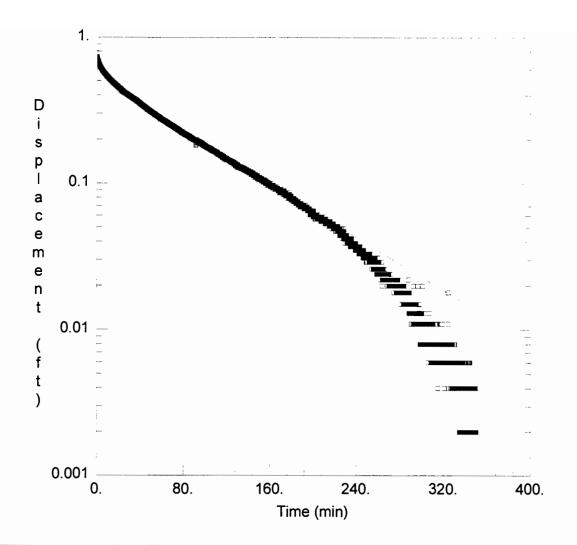
Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6f)


Initial Displacement: 1. ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Well Skin Radius: 0.333 ft

Screen Length: 10. ft Total Well Penetration Depth: 20. ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 6.406E-05 ft/min y0 = 0.8234 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-6r-B&R.aqt

Date: 01/15/02 Time: 09:41:47

PROJECT INFORMATION

Company: URS

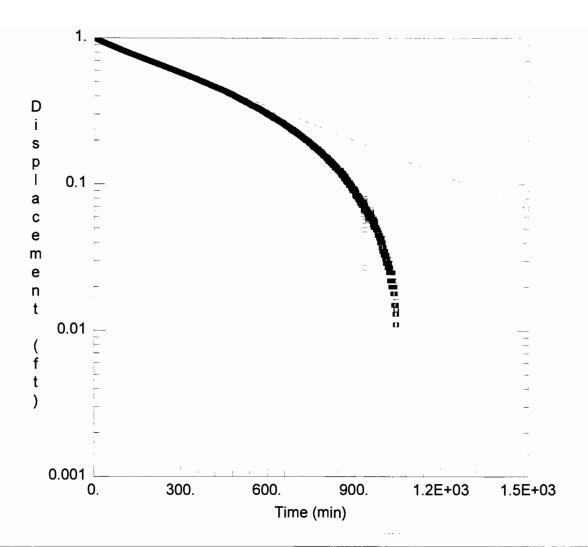
Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6r)


Initial Displacement: 1. ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Well Skin Radius: 0.333 ft

Screen Length: 10. ft Total Well Penetration Depth: 20. ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 1.074E-05 ft/min y0 = 0.5112 ft

Data Set: J:\35824.00\Excel\Slug Tests\MW-7f-B&R.aqt

Date: 01/15/02 Time: 09:42:01

PROJECT INFORMATION

Company: URS

Client: Former Dowell Site Project: 05-00035824.00

Test Location: Depew, New York

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-7f)

Initial Displacement: 1. ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Well Skin Radius: 0.333 ft

Screen Length: 10. ft Total Well Penetration Depth: 15.61 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 1.777E-06 ft/min y0 = 1.001 ft

APPENDIX H

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT

FORMER DOWELL FACILITY SUPPLEMENTAL INVESTIGATION DEPEW, NEW YORK

Analyses Performed by: FRIEND LABORATORY, INC.

Prepared for:

VOLUNTEERS

DOWELL, A DIVISION OF SCHLUMBERGER TECHNOLOGY CORPORATION DOWELL SCHLUMBERGER INCORPORATED THE DOW CHEMICAL COMPANY

Prepared by:

URS CORPORATION
282 DELAWARE AVENUE
BUFFALO, NY 14202

JANUARY 2002

TABLE OF CONTENTS

			Page No
I.	INTRO	DDUCTION	1
II.	ANAL	YTICAL METHODOLOGIES	1
III.	DATA	DELIVERABLE COMPLETENESS	2
IV.	PRESE	ERVATION/HOLDING TIMES	2
V.	QUAL	ITY CONTROL DATA	2
	A.	QC Blanks	2
	B.	Instrument Tuning Criteria.	3
	C.	Initial and Continuing Calibrations	3
	D.	Surrogate/Internal Standard Recoveries	4
	E.	Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Analyses	4
	F.	Matrix Duplicates	5
	G.	Serial Dilutions	5
VI.	SAMP	LE RESULTS	5
	A.	Raw Data vs. Reporting Forms	5
	B.	Sample Dilutions	6
	C.	Quantitation Limits	6
	D.	Chromatography	6
	E.	Compound Identification	7
VII.	SUMM	IARY	7

TABLES (following text)

Table 1 Validated Analytical ResultsTable 2 Summary of Data Qualifications

ATTACHMENTS

Attachment A - Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999.

II. ANALYTICAL METHODOLOGIES

The data being evaluated is from the July 10 through 17, 2001 sampling of 18 soil samples, 4 sediment samples, 10 groundwater samples, 3 matrix spike/matrix spike duplicates (MS/MSD), 2 rinse blanks, and 1 trip blank. The analytical laboratory that performed the analyses was Friend Laboratory, Inc., (FLI) located in Waverly, New York. The samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), and TCL pesticides/polychlorinated biphenyls (Pesticides/PCBs) by United States Environmental Protection Agency (USEPA) Statement of Work (SOW) OLM04.2, target analyte list (TAL) metals and cyanide by USEPA SOW ILM04.1, and total petroleum hydrocarbons by *Methods for Chemical Analysis of Water and Wastes* Method 418.1. Not all samples were analyzed for all parameters. All methods are referenced in NYSDEC Analytical Services Protocol (ASP), 6/2000. The validated analytical results are presented in Table 1.

A limited data validation was performed following the general guidelines in USEPA Region II Contract Laboratory Program (CLP) Organics Data Review (CLP/SOW OLM04.2), SOP No. HW-6, Revision #12, March 2001, and USEPA Region II Evaluation of Metals Data for the CLP, SOP No. HW-2, Revision XI, January 1992. Qualifications applied to the data include "J/UJ" (estimated concentration/estimated quantitation limit), "D" (result reported from a secondary dilution analysis), "U" (not detected), and "R" (rejected). A summary of data qualifications is presented in Table 2. Support documentation for the qualification of data is presented in Attachment A.

III. DATA DELIVERABLE COMPLETENESS

The laboratory deliverable data packages were in accordance with NYSDEC ASP, Superfund Category requirements.

IV. PRESERVATION/HOLDING TIMES

Aqueous samples MW-3 (dilution analysis only) and PZ-2 (dilution analysis only) were analyzed for VOCs more than 14 days after sample collection. Soil samples TP-1 (2-2.5) and GPB-7 (7-7.5) [dilution analysis only] were analyzed for VOCs more than 10 days after sample collection. The USEPA Region II technical holding time for VOC analyses of preserved (i.e., pH<2, 4°±2°C) aqueous samples is fourteen days from sample collection. The USEPA Region II technical holding time for VOC analyses of soil samples is ten days from sample collection. The results from analyses performed outside of holding time were qualified "J/UJ." It should be noted that the NYSDEC ASP contractual holding times were met for all samples and analyses except the dilution analyses of MW-3 and PZ-2. All other reported analyses were performed within USEPA Region II technical and NYSDEC ASP contractual holding times.

No other qualifications were made for preservation/holding time exceedances.

V. QUALITY CONTROL DATA

A. QC Blanks

Acetone, 2-butanone, chloromethane, trichloroethene, and bis(2-ethylhexyl)phthalate were detected in the samples listed in Table 2 at a concentration less than five times (ten times for the common laboratory contaminants of acetone, 2-butanone, and phthalates) the amount detected in the associated method, trip, rinsate and/or holding blank. In accordance with USEPA Region II validation guidelines, the results were qualified "U."

J:\35824.00\Word\dowell dusr.doc 1/16/02 10:26 AM In accordance with USEPA Region II validation guidelines, the detected results of 1,1,1-trichloroethane and 1,1-dichloroethane in MW-4 were qualified "R" because of possible carryover from sample MW-3 which was analyzed immediately prior to MW-4. The laboratory did not analyze a blank after the analysis of MW-3, as required by the method when concentrations exceed the range of calibration. MW-4 was not reanalyzed.

In accordance with USEPA Region II validation guidelines, the detected results of calcium, lead, magnesium, sodium, and/or zinc in MW-1, MW-3 and MW-5 were qualified "R" because of contamination in the associated rinse blank. The concentrations in the samples were less than five times the rinse blank concentration.

Documentation supporting the qualification of data (i.e., Form I for the method blank, injection log) is presented in Attachment A. No other qualifications were made because of blank or carryover contamination.

B. Instrument Tuning Criteria

All NYSDEC ASP instrument tuning criteria were met for the VOC and SVOC analyses.

C. Initial and Continuing Calibrations

The percent difference (%D) between the initial and continuing calibration (CCAL) standard RRF exceeded 25% for several VOCs and SVOCs. The VOCs include acetone, 4-methyl-2-pentanone, and 1,2,4-trichlorobenzene. The SVOCs include 2,4-dinitrophenol and 4-nitrophenol. In accordance with USEPA Region II validation guidelines, the associated results for these compounds (all were non-detect) were qualified "UJ" as listed in Table 2.

Documentation supporting the qualification of data (i.e., Form VII) is presented in Attachment A. All other initial and continuing calibration data were compliant with USEPA Region II validation criteria. It should be noted that all NYSDEC ASP contractual calibration criteria were met.

D. <u>Surrogate/Internal Standard Recoveries</u>

The VOC fraction of sample Sump #2 had one high surrogate recovery in the initial analysis. All surrogate recoveries were within control limits in the reanalysis. Using professional judgement, no qualification was required for the surrogate outlier because matrix interference was evident and all detected target compounds eluted prior to the matrix interference.

The initial VOC analysis of samples Sump #1 and Sump #2 exhibited low recoveries (i.e., less than 50%) for the internal standard (IS) chlorobenzene-d₅. The recoveries in the dilution analysis were within control limits. The associated compounds from the initial analysis were used because of lower quantitation limits and more conservative results (i.e., detected versus non-detected). Results for those compounds associated with IS chlorobenzene-d₅ were qualified "J/UJ" in accordance with Region II validation guidelines.

Documentation supporting the qualification of data (i.e., Form II for the surrogates and Form VIII for the internal standards) is presented in Attachment A. All other surrogate and internal standard recoveries were within the applicable QC limits.

E. <u>Matrix Spike/Matrix Spike Duplicate and Matrix Spike Blank</u>

The matrix spike blank (MSB) recovery for the SVOC n-nitroso-di-n-propylamine was below the NYSDEC ASP quality control (QC) limit. Results for all samples were qualified "UJ" (all were non-detect). 2,4-Dinitrotoluene and 4-nitrophenol had high recoveries in the MSB. Qualification of non-detect results is not required.

Documentation supporting the qualification of data (i.e., Form III) is presented in Attachment A. All other MS/MSD and MSB results were within the applicable QC limits, and no other qualification of data was necessary.

F. Matrix Duplicates

All NYSDEC ASP matrix duplicate criteria were met for the metal, cyanide and total petroleum hydrocarbon analyses. Matrix duplicates are not performed on organic fractions.

G. Serial Dilutions

All serial dilution results were within the applicable QC limits, and no qualification of data was necessary.

VI. SAMPLE RESULTS

A. Raw Data vs. Reporting Forms

The final results as listed on the reporting forms were generally in agreement with the raw data however, some transcription/calculation errors were detected. Results for several low level VOCs (i.e., "J" values) were changed to non-detect (i.e., "U") at the quantitation limit because the concentration detected was below the instrument detection limit (IDL), therefore the values are not considered reliable. There were several instances where the laboratory reported results as non-detect but the concentration was greater than the IDL, but less than the quantitation limit. False negative results, along with the qualification are documented in Table 2.

B. Sample Dilutions

Results for several compounds were qualified "E" by the laboratory to indicate that the calibration range was exceeded in the initial analysis. Results qualified "D" indicate a result reported from a secondary dilution analysis. Because of high concentrations of target compounds and the necessity for substantial dilution, some detections were diluted out (i.e., not detected in the secondary dilution). For the samples listed in Table 2, the "E" value from the initial (undiluted) analysis was reported on Table 1, and the "E" qualifier was replaced with "J". Samples GPB-7, GBP-9, and GBP-12 for VOC analysis were diluted prior to analysis due to the high concentration of target compounds. The quantitation limits for the non-detect compounds in these samples are the lowest achievable at the diluted levels.

C. Quantitation Limits

All quantitation limits were reported in accordance with method requirements, and were adjusted for dilution factors and/or moisture content. Several organic sample results were qualified "J" by the laboratory indicating an estimated concentration below the quantitation limit, but greater than the IDL. Several inorganic sample results were qualified "B" by the laboratory indicating a concentration below the contract required detection limit (CRDL), but greater than the IDL.

All inorganic CRDL standard results were within the QC limits, and no qualification of data was necessary.

D. Chromatography

No chromatography problems were encountered.

E. <u>Compound Identification</u>

The results for carbon tetrachloride in Sump#1 and methylcyclohexane in PZ-2 were determined to be false positive results. The sample spectra did not match standard spectra. High concentrations of analytes with retention times near these compounds caused interference. The results were qualified "U" at the quantitation limit, in accordance with Region II validation guidelines. No other qualifications for compound identification were necessary.

VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, except where previously noted. Those results qualified "J/UJ" (estimated) are considered conditionally usable. Those results qualified "R" (rejected) are unusable. All other sample results are usable as reported. Although 1,1,1-trichloroethane and 1,1-dichloroethane data in groundwater sample MW-4, and several metals in groundwater samples MW-1, MW-3, and MW-5 were rejected, historical (i.e., semiannual monitoring) data exists for these wells. URS Corporation does not recommend the recollection of samples at this time. For the purposes of this investigation, sufficient data exist for meeting data quality objectives.

		•

Location ID	Location ID		ROUND SUMP	SUMP-01	SUMP-02	
Sample ID		RECTANGLE SUMP	ROUND SUMP	SUMP #1 MAINTEN	SUMP #2 MAINTEN	
Matrix		Sediment	Sediment	Sediment	Sediment	
Depth Interval (ft)		8.0-24.0	9.0-14.0	1.0-1.5	2.0-2.5	
Date Sampled		07/12/01	07/12/01	07/11/01	07/11/01	
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/KG	10 J	4 J	16,000 D	1,600 D	
1,1,2,2-Tetrachloroethane	UG/KG	13 U	10 U	13 UJ	12 UJ	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/KG	13 U	10 U	13 U	12 U	
1,1,2-Trichloroethane	UG/KG	13 U	10 U	13 U	12 U	
1,1-Dichloroethane	UG/KG	5 J	10 U	1,100 DJ	2,600 D	
1,1-Dichloroethene	UG/KG	13 U	10 U	13 U	7 J	
1,2,4-Trichlorobenzene	UG/KG	13 U	10 U	21 J	12 UJ	
1,2-Dibromo-3-chloropropane	UG/KG	13 U	10 U	13 UJ	12 UJ	
1,2-Dibromoethane	UG/KG	13 U	10 U	13 UJ	12 UJ	
1,2-Dichlorobenzene	UG/KG	5 J	10 U	20 J	12 UJ	
1,2-Dichloroethane	UG/KG	13 U	10 U	13 U	12 U	
1,2-Dichloropropane	UG/KG	13 U	10 U	13 U	12 U	
1,3-Dichlorobenzene	UG/KG	13 U	10 U	100 J	12 UJ	
1,4-Dichlorobenzene	UG/KG	13 U	10 U	10 J	12 UJ	
2-Butanone	UG/KG	13 U	10 U	13 U	9 J	
2-Hexanone	UG/KG	13 U	10 U	13 UJ	12 UJ	
4-Methyl-2-pentanone	UG/KG	13 U	10 U	13 UJ	12 UJ	
Acetone	UG/KG	29 U	10 U	13 U	12 U	
Benzene	UG/KG	13 U	10 U	13 U	12 U	
Bromodichloromethane	UG/KG	13 U	10 U	13 U	12 U	
Bromoform	UG/KG	13 U	10 U	13 U	12 U	
Bromomethane	UG/KG	13 U	10 U	13 U	12 U	
Carbon disulfide	UG/KG	4 J	10 U	13 U	12 U	
Carbon tetrachloride	UG/KG	13 U	10 U	13 U	12 U	

Flags assigned during chemistry validation are shown.

Location ID		RECTANGLE SUMP	ROUND SUMP	SUMP-01	SUMP-02
Sample ID		RECTANGLE SUMP	ROUND SUMP	SUMP #1 MAINTEN	SUMP #2 MAINTEN
Matrix		Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		8.0-24.0	9.0-14.0	1.0-1.5	2.0-2.5
Date Sampled		07/12/01	07/12/01	07/11/01	07/11/01
Parameter	Units				
Volatiles					
Chlorobenzene	UG/KG	13 U	10 U	13 UJ	12 UJ
Chloroethane	UG/KG	13 U	10 U	13 U	160
Chloroform	UG/KG	13 U	10 U	13 U	12 U
Chloromethane	UG/KG	13 U	10 U	13 U	12 U
cis-1,2-Dichloroethene	UG/KG	19	10 U	27	55
cis-1,3-Dichloropropene	UG/KG	13 U	10 U	13 U	12 U
Cyclohexane	UG/KG	13 U	10 U	13 U	12 U
Dibromochloromethane	UG/KG	13 U	10 U	13 U	12 U
Dichlorodifluoromethane	UG/KG	13 U	10 U	13 U	12 U
Ethylbenzene	UG/KG	13 U	10 U	5 J	88 J
Isopropylbenzene	UG/KG	13 U	10 U	13 UJ	64 J
Methyl acetate	UG/KG	13 U	10 U	13 U	12 U
Methyl tert-butyl ether	UG/KG	13 U	10 U	13 U	12 U
Methylcyclohexane	UG/KG	6 J	10 U	6 J	15
Methylene chloride	UG/KG	13 U	10 U	13 U	12 U
Styrene	UG/KG	13 U	10 U	13 UJ	12 UJ
Tetrachloroethene	UG/KG	9 J	4 J	15,000 D	67 J
Toluene	UG/KG	13 U	10 U	7 J	140 J
trans-1,2-Dichloroethene	UG/KG	13 U	10 U	13 U	12 U
trans-1,3-Dichloropropene	UG/KG	13 U	10 U	13 U	12 U
Trichloroethene	UG/KG	9 J	4 J	48	45
Trichlorofluoromethane	UG/KG	13 U	10 U	13 U	12 U
Vinyl chloride	UG/KG	4 J	10 U	13 U	21
Xylene (total)	UG/KG	13 U	10 U	13 UJ	860 DJ

Flags assigned during chemistry validation are shown.

MADE BY: _GEK_1/14/02 CHECKED BY: _______ 1\5\0.2

Location ID		1-X-1	2-X-1	3-X-2	4-X-2	5-X-1
Sample ID		1-X-1 SUMP	2-X-1 SUMP	3-X-2 SUMP	4-X-2 SUMP	5-X-1 SUMP
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		0.5-1.0	1.0-1.5	1.0-1.5	2.0-2.5	2.5-3.0
Date Sampled		07/12/01	07/12/01	07/12/01	07/12/01	07/12/01
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,1,2,2-Tetrachloroethane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,1,2-Trichloroethane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,1-Dichloroethane	UG/KG	150	12 U	13 U	10 U	11 U
1,1-Dichloroethene	UG/KG	17 U	12 U	13 U	10 U	11 U
1,2,4-Trichlorobenzene	UG/KG	17 U	12 U	13 U	10 U	11 U
1,2-Dibromo-3-chloropropane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,2-Dibromoethane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,2-Dichlorobenzene	UG/KG	1,500 J	12 U	13 U	10 U	11 U
1,2-Dichloroethane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,2-Dichloropropane	UG/KG	17 U	12 U	13 U	10 U	11 U
1,3-Dichlorobenzene	UG/KG	17 U	12 U	13 U	10 U	11 U
1,4-Dichlorobenzene	UG/KG	17 U	12 U	13 U	10 U	11 U
2-Butanone	UG/KG	140	10 J	29	10 U	5 J
2-Hexanone	UG/KG	17 U	12 U	13 U	10 U	11 U
4-Methyl-2-pentanone	UG/KG	17 U	12 UJ	13 U	10 U	11 UJ
Acetone	UG/KG	440 J	40 U	89	23 U	25 U
Benzene	UG/KG	17 U	12 U	13 U	10 U	11 U
Bromodichloromethane	UG/KG	17 U	12 U	13 U	10 U	11 U
Bromoform	UG/KG	17 U	12 U	13 U	10 U	11 U
Bromomethane	UG/KG	17 U	12 U	13 U	10 U	11 U
Carbon disulfide	UG/KG	3 J	12 U	13 U	10 U	11 U
Carbon tetrachlonde	UG/KG	17 U	12 U	13 U	10 U	11 U

Flags assigned during chemistry validation are shown.

Location ID		1-X-1	2-X-1	3-X-2	4-X-2	5-X-1
Sample ID	_	1-X-1 SUMP	2-X-1 SUMP	3-X-2 SUMP	4-X-2 SUMP	5-X-1 SUMP
Matrix Depth Interval (ft)		Soil 0.5-1.0	Soil 1.0-1.5	Soil	Soil 2.0-2.5	Soil 2.5-3.0
				1.0-1,5		
Date Sampled		07/12/01	07/12/01	07/12/01	07/12/01	07/12/01
Parameter	Units					
Volatiles						
Chlorobenzene	UG/KG	290	12 U	13 U	10 U	11 U
Chloroethane	UG/KG	120	12 U	31	10 U	11 U
Chloroform	UG/KG	17 U	12 U	13 U	10 U	11 U
Chloromethane	UG/KG	17 U	12 U	13 U	10 U	11 U
cis-1,2-Dichloroethene	UG/KG	17 U	12 U	13 U	10 U	11 U
cis-1,3-Dichloropropene	UG/KG	17 U	12 U	13 U	10 U	11 U
Cyclohexane	UG/KG	17 U	12 U	13 U	10 U	11 U
Dibromochloromethane	UG/KG	17 U	12 U	13 U	10 U	11 U
Dichlorodifluoromethane	UG/KG	17 U	12 U	13 U	10 U	11 U
Ethylbenzene	UG/KG	7 J	4 J	13 U	10 U	11 U
Isopropylbenzene	UG/KG	17 U	12 U	13 U	10 U	11 U
Methyl acetate	UG/KG	17 U	12 U	13 U	10 U	11 U
Methyl tert-butyl ether	UG/KG	9 J	12 U	13 U	10 U	11 U
Methylcyclohexane	UG/KG	17 U	12 U	13 U	10 U	11 U
Methylene chloride	UG/KG	13 J	30	13 U	10 U	23
Styrene	UG/KG	17 U	12 U	13 U	10 U	11 U
Tetrachloroethene	UG/KG	17 U	7 J	13 U	10 U	7 J
Toluene	UG/KG	43	13	13 U	10 U	12
trans-1,2-Dichloroethene	· UG/KG	17 U	12 U	13 U	10 U	11 U
rans-1,3-Dichloropropene	UG/KG	17 U	12 U	13 U	10 U	11 U
Trichloroethene	UG/KG	17 U	16	13 U	10 U	14
Trichlorofluoromethane	UG/KG	17 U	12 U	13 U	10 U	11 U
Vinyl chloride	UG/KG	6 J	12 U	13 U	10 U	11 U
Xylene (total)	UG/KG	53	12 U	13 U	10 U	11 U

Flags assigned during chemistry validation are shown.

Location ID		GPB-02	GPB-03	GPB-04	GPB-07	GPB-08
Sample ID		GPB-02	GPB-03	GPB-04	GPB-07	GPB-08
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		1.8-2.0	1.5-2.0	3.0-3.5	7.0-7.5	2.0-2.5
Date Sampled		07/10/01	07/10/01	07/12/01	07/12/01	07/13/01
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/KG	1 1 U	10 U	14 U	1,500 U	15 U
1,1,2,2-Tetrachloroethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,1,2-Trichloroethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,1-Dichloroethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,1-Dichloroethene	UG/KG	11 U	10 U	14 U	1,500 U	5 J
1,2,4-Trichlorobenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,2-Dibromo-3-chloropropane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,2-Dibromoethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,2-Dichlorobenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,2-Dichloroethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,2-Dichloropropane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,3-Dichlorobenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
1,4-Dichlorobenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
2-Butanone	UG/KG	11 U	10 U	21	1,500 U	15 U
2-Hexanone	UG/KG	11 U	10 U	14 U	1,500 U	15 U
4-Methyl-2-pentanone	UG/KG	11 U	10 U	14 U	1.500 U	15 U
Acetone	UG/KG	17 U	19 U	87	1,500 U	73 U
Benzene	UG/KG	<u>11 U</u>	10 U	14 U	1,500 U	15 U
Bromodichloromethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Bromoform	UG/KG	<u>11 U</u>	10 U	14 U	1,500 U	15 U
Bromomethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Carbon disulfide	UG/KG	11 U	4 J	14 U	1,500 U	12 J
Carbon tetrachloride	UG/KG	11 U	10 U	14 U	1,500 U	15 U

Flags assigned during chemistry validation are shown.

Location ID		GPB-02	GPB-03	GPB-04	GPB-07	GPB-08
Sample ID		GPB-02	GPB-03	GPB-04	GPB-07	GPB-08
Matrix Depth Interval (ft)		Soil	Soil	Soil	Soil	Soil
		1.8-2.0	1.5-2.0	3.0-3.5	7.0-7.5	2.0-2.5
Date Sampled		07/10/01	07/10/01	07/12/01	07/12/01	07/13/01
Parameter	Units					
Volatiles						
Chiorobenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Chloroethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Chloroform	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Chloromethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
cis-1,2-Dichloroethene	UG/KG	4 J	10 U	14 U	1,800	25,000 D
cis-1,3-Dichloropropene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Cyclohexane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Dibromochloromethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Dichlorodifluoromethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Ethylbenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Isopropylbenzene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Methyl acetate	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Methyl tert-butyl ether	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Methylcyclohexane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Methylene chloride	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Styrene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Tetrachloroethene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Toluene	UG/KG	11 U	7 J	14 U	1,500 U	6 J
trans-1,2-Dichloroethene	UG/KG	11 U	10 U	14 U	1,500 U	1,100 DJ
trans-1,3-Dichloropropene	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Trichloroethene	UG/KG	11 U	10 U	14 U	69,000 DJ	3,100 D
Trichlorofluoromethane	UG/KG	11 U	10 U	14 U	1,500 U	15 U
Vinyl chloride	UG/KG	11 U	10 U	14 U	1,500 U	150
Xylene (total)	UG/KG	11 U	10 U	14 U	1,500 U	15 U

Flags assigned during chemistry validation are shown.

MADE BY: _GEK_1/14/02_ CHECKED BY: _____1___1___502_

Location ID		GPB-09	GPB-10	GPB-11	GPB-12	GPB-13
Sample ID		GPB-09	GPB-10	GPB-11	GPB-12	GPB-13
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		11.5-12.0	7.0-7.5	14.5-16.0	13.5-14.0	13.5-15.0
Date Sampled		07/13/01	07/13/01	07/13/01	07/13/01	07/13/01
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/KG	1,300 U	11 U	53	7,400 U	12 U
1,1,2,2-Tetrachloroethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,1,2-Trichloroethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,1-Dichloroethane	UG/KG	1,300 U	11 U	40	7,400 U	51
1,1-Dichloroethene	UG/KG	1,300 U	11 U	7 J	7,400 U	12 U
1,2,4-Trichlorobenzene	UG/KG	1,300 U	11 U	11 U	7,400 UJ	12 U
1,2-Dibromo-3-chloropropane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,2-Dibromoethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,2-Dichlorobenzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,2-Dichloroethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,2-Dichloropropane	UG/KG	1,300 U	1 1 U	11 U	7,400 U	12 U
1,3-Dichlorobenzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
1,4-Dichlorobenzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
2-Butanone	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
2-Hexanone	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
4-Methyl-2-pentanone	UG/KG	1,300 U	11 UJ	11 U	7,400 U	12 UJ
Acetone	UG/KG	1,300 U	14 U	11 U	7,400 UJ	12 U
Benzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Bromodichloromethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Bromoform	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Bromomethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Carbon disulfide	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Carbon tetrachloride	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U

Flags assigned during chemistry validation are shown.

MADE BY: _GEK_1/14/02_ CHECKED BY: _TTL 1 1502

Location ID		GPB-09	GPB-10	GPB-11	GPB-12	GPB-13
Sample ID	_	GPB-09	GPB-10	GPB-11	GPB-12	GPB-13
Matrix Depth Interval (ft)		Soil	Soil	Soil	Soil	Soil
		11.5-12.0	7. 0-7 .5	14.5-16.0	13.5-14.0	13.5-15.0
Date Sampled		07/13/01	07/13/01	07/13/01	07/13/01	07/13/01
Parameter	Units					
Volatiles						
Chlorobenzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Chloroethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Chloroform	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Chloromethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
cis-1,2-Dichloroethene	UG/KG	1,300 U	21	150	7.400 U	12 U
cis-1,3-Dichloropropene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Cyclohexane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Dibromochloromethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Dichlorodifluoromethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Ethylbenzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Isopropylbenzene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Methyl acetate	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Methyl tert-butyl ether	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Methylcyclohexane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Methylene chloride	UG/KG	1,300 U	11 U	11 U	7.400 U	12 U
Styrene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Tetrachloroethene 	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Toluene	UG/KG	1,300 U	11 U	4 J	7,400 U	12 U
trans-1,2-Dichloroethene	UG/KG	1,300 U	11 U	6 J	7,400 U	12 U
trans-1,3-Dichloropropene	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Trichloroethene	UG/KG	53,000 D	11 U	690 D	57,000	12 U
Trichlorofluoromethane	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Vinyl chloride	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U
Xylene (total)	UG/KG	1,300 U	11 U	11 U	7,400 U	12 U

Flags assigned during chemistry validation are shown.

MADE BY:_GEK_1/14/02 CHECKED BY: 77L 1/15/0-2

Location ID		MW-08	TP-01	TP-01	
Sample ID		MW-08	TP-1 #2 (PIPE)	TP-1 (2-2.5)	
Matrix	Soil	Soil	Soil		
Depth Interval (ft)	4.0-5.0	2.0-2.0	2.0-2.5		
Date Sampled		07/10/01	07/11/01	07/11/01	
Parameter	Units				
Volatiles					
1,1,1-Trichloroethane	UG/KG	12 U	15 U	24 J	
1,1,2,2-Tetrachloroethane	UG/KG	12 U	15 U	16 UJ	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/KG	12 U	15 U	16 UJ	
I,1,2-Trichloroethane	UG/KG	12 U	15 U	16 UJ	
1,1-Dichloroethane	UG/KG	12 U	15 U	16 J	
1,1-Dichloroethene	UG/KG	12 U	15 U	16 UJ	
I,2,4-Trichlorobenzene	UG/KG	12 U	15 U	16 UJ	
,2-Dibromo-3-chloropropane	UG/KG	12 U	15 U	16 UJ	
1,2-Dibromoethane	UG/KG	12 U	15 U	16 UJ	
1,2-Dichlorobenzene	UG/KG	12 U	15 U	35 J	
1,2-Dichloroethane	UG/KG	12 U	15 U	16 UJ	
1,2-Dichloropropane	UG/KG	12 U	15 U	16 UJ	
1,3-Dichlorobenzene	UG/KG	12 U	15 U	16 UJ	
1,4-Dichlorobenzene	UG/KG	12 U	15 U	16 UJ	
2-Butanone	UG/KG	12 U	15 U	16 UJ	
2-Hexanone	UG/KG	12 U	15 U	16 UJ	
4-Methyl-2-pentanone	UG/KG	12 U	15 U	16 UJ	
Acetone	UG/KG	12 U	15 U	16 UJ	
Benzene	UG/KG	12 U	15 U	16 UJ	
Bromodichloromethane	ug/kg	12 U	15 U	16 UJ	
Bromoform	UG/KG	12 U	15 U	16 UJ	
Bromomethane	UG/KG	12 U	15 U	16 UJ	
Carbon disulfide	UG/KG	12 U	15 U	16 UJ	
Carbon tetrachloride	UG/KG	12 U	15 U	16 UJ	

Flags assigned during chemistry validation are shown.

MADE BY: GEK 1/14/02 CHECKED BY: TTL ITIS 02

Location ID	MW-08	TP-01	TP-01		
Sample ID		MW-08	TP-1 #2 (PIPE)	TP-1 (2-2.5)	
Matrix		Soil 4.0-5.0	Soil 2.0-2.0	Soil	
Depth Interval (ft)				2.0-2.5	
Date Sampled		07/10/01	07/11/01	07/11/01	
Parameter	Units				
Volatiles					
Chlorobenzene	UG/KG	12 U	15 U	16 UJ	
Chloroethane	UG/KG	12 U	15 U	16 UJ	
Chloroform	UG/KG	12 U	15 U	16 UJ	
Chloromethane	UG/KG	12 U	15 U	16 UJ	
cis-1,2-Dichloroethene	UG/KG	12 U	72	16 UJ	
cis-1,3-Dichloropropene	UG/KG	12 U	15 U	16 UJ	
Cyclohexane	UG/KG	12 U	15 U	16 UJ	
Dibromochloromethane	UG/KG	12 U	15 U	16 UJ	
Dichlorodifluoromethane	UG/KG	12 U	15 U	16 UJ	
Ethylbenzene	UG/KG	12 U	15 U	5 J	
Isopropylbenzene	UG/KG	12 U	15 U	16 UJ	
Methyl acetate	UG/KG	12 U	15 U	16 UJ	
Methyl tert-butyl ether	UG/KG	12 U	15 U	16 UJ	
Methylcyclohexane	UG/KG	12 U	15 U	8 J	
Methylene chloride	UG/KG	12 U	15 U	17 J	
Styrene	UG/KG	12 U	15 U	16 UJ	
Tetrachloroethene	UG/KG	12 U	7 J	21 J	
Toluene	UG/KG	12 U	15 U	11 J	
trans-1,2-Dichloroethene	UG/KG	12 U	15 U	16 UJ	
trans-1,3-Dichloropropene	UG/KG	12 U	15 U	16 UJ	
Trichloroethene	UG/KG	12 U	41	20 J	
Trichlorofluoromethane	UG/KG	12 U	15 U	16 UJ	
Vinyl chloride	UG/KG	12 U	15 U	11 J	
Xylene (total)	UG/KG	12 U	15 U	57 J	

Flags assigned during chemistry validation are shown.

MADE BY: _GEK_1/14/02_ CHECKED BY: _TTL ||S|02

Location ID		MW-01	MW-02 MW-	MW-03	W-03 MW-04	MW-05
Sample ID		MW-01	MW-02	MW-03	MW-04 Groundwater	MW-05 Groundwater
Matrix		Groundwater	Groundwater	Groundwater		
Depth Interval (ft)		•	· .	-		-
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Volatiles						
1,1,1-Trichloroethane	UG/L	10 U	10 U	4,500 J	R	10 U
1,1,2,2-Tetrachloroethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,1-Dichloroethane	UG/L	10 U	10 U	50,000 DJ	R	10 U
1,1-Dichloroethene	UG/L	10 U	10 U	14	10 U	10 U
1,2,4-Trichlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	10 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane	UG∕L	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	10 U	10 U	11	10 U	10 U
1,2-Dichloropropane	UG/L	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
2-Butanone	UG/L	10 U	10 U	7 J	10 U	10 U
2-Hexanone	UG/L	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	10 U	10 UJ	10 UJ	10 UJ	10 U
Acetone	UG/L	10 U	10 U	6 J	10 U	5 J
Benzene	UG/L	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	UG/L	10 U	10 U	10 U	10 U	10 U
Bromoform	UG/L	10 U	10 U	10 U	10 U	10 U
Bromomethane	UG/L	10 U	10 U	10 U	10 U	10 U
Carbon disulfide	UG/L	10 U	10 U	10 U	10 U	10 U
Carbon tetrachloride	UG/L	10 U	10 U	10 U	10 U	10 U

Flags assigned during chemistry validation are shown.

MADE BY:__GEK_1/14/02__ CHECKED BY: __JJL_1/15/02__

Location ID		MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID		MW-01	MW-02	MW-03	MW-04	MW-05
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth interval (ft)		•	-	-	-	·
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Volatiles					-	
Chlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
Chloroethane	UG/L	10 U	10 U	130	10 U	10 U
Chloroform	UG/L	10 U	10 U	10 U	10 U	10 U
Chloromethane	UG/L	10 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	UG/L	10 U	10 U	9 J	10 U	10 U
cis-1,3-Dichloropropene	UG/L	10 U	10 U	10 U	10 U	10 U
Cyclohexane	UG/L	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	UG/L	10 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	UG/L	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	UG/L	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	UG/L	10 U	10 U	10 U	10 U	10 U
Methyl acetate	UG/L	10 U	10 U	6 J	10 U	10 U
Methyl tert-butyl ether	UG/L	10 U	10 U	10 U	10 U	10 U
Methylcyclohexane	UG/L	10 U	10 U	10 U	10 U	10 U
Methylene chloride	UG/L	10 U	10 U	10 U	10 U	10 U
Styrene	UG/L	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	UG/L	10 U	10 U	10 U	10 U	10 U
Toluene	UG/L	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	UG/L	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	UG/L	10 U	10 U	10 U	10 U	10 U
Trichloroethene	UG/L	10 U	10 U	10 U	10 U	10 U
Trichlorofluoromethane	UG/L	10 U	10 U	10 U	10 U	10 U
Vinyl chloride	UG/L	10 U	10 U	9 J	10 U	10 U
Xylene (total)	UG/L	10 U	10 U	10 U	1 0 U	10 U

Flags assigned during chemistry validation are shown.

MADE BY:__GEK_1/14/02__ CHECKED BY:__JJL_1/15/02__

Location ID		MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID Matrix Depth Interval (ft)		MW-01	MW-02	MW-03	MW-04	MW-05
		Groundwater -	Groundwater	Groundwater	Groundwater	Groundwater -
			-	-	•	
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Semivolatiles						
1,1'-Biphenyl	UG/L	10 U	NA	10 U	NA NA	12 U
2,2'-oxybis(1-Chloropropane)	UG/L	10 U	NA	10 U	NA	12 U
2,4,5-Trichlorophenol	UG/L	25 U	NA	25 U	NA	29 U
2,4,6-Trichlorophenol	UG/L	10 U	NA	10 U	NA	12 U
2,4-Dichlorophenol	UG/L	10 U	NA	10 U	NA	12 U
2,4-Dimethylphenol	UG/L	10 U	NA	10 U	NA	12 U
2,4-Dinitrophenol	UG/L	25 UJ	NA	25 UJ	NA	29 UJ
2,4-Dinitrotoluene	UG/L	10 U	NA	10 U	NA	12 U
2,6-Dinitrotoluene	UG/L	10 U	NA	10 U	NA	12 U
2-Chloronaphthalene	UG/L	10 U	NA	10 U	NA	12 U
2-Chlorophenol	UG/L	10 U	NA	10 U	NA	12 U
2-Methylnaphthalene	UG/L	10 U	NA	10 U	NA NA	12 U
2-Methylphenol	UG/L	10 U	NA	10 ∪	NA	12 U
2-Nitroaniline	UG/L	25 U	NA	25 U	NA	29 U
2-Nitrophenol	UG/L	10 U	NA	10 U	NA	12 U
3,3'-Dichlorobenzidine	UG/L	10 U	NA	10 U	NA	12 U
3-Nitroaniline	UG/L	25 U	NA	25 U	NA	29 U
4,6-Dinitro-2-methylphenol	UG/L	25 U	NA	25 U	NA	29 U
4-Bromophenylphenylether	UG/L	10 U	NA	10 U	NA	12 U
4-Chloro-3-methylphenol	UG/L	10 U	NA	10 U	NA	12 U
4-Chloroaniline	UG/L	10 U	NA	10 U	NA	12 U
4-Chlorophenylphenylether	UG/L	10 U	NA	10 U	NA	12 U
4-Methylphenol	UG/L	10 U	NA	10 U	NA	12 U
4-Nitroaniline	UG/L	25 U	NA	25 U	NA	29 U

Flags assigned during chemistry validation are shown.

MADE BY: __GEK_1/14/02__ CHECKED BY: __JJL_1/15/02__

Location ID		MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID		MW-01	MW-02	MW-03	MW-04	MW-05
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	•	•	•	•
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Semivolatiles						
4-Nitrophenol	UG/L	25 UJ	NA	25 UJ	NA	29 UJ
Acenaphthene	UG/L	10 U	NA	10 U	NA	12 U
Acenaphthylene	UG/L	10 U	NA	10 U	NA	12 U
Acetophenone	UG/L	1 0 U	NA	10 U	NA	12 U
Anthracene	UG/L	10 U	NA	10 U	NA	12 U
Atrazine	UG/L	10 U	NA	10 U	NA	12 U
Benzaldehyde	UG/L	10 U	NA	10 U	NA	12 U
Benzo(a)anthracene	UG/L	10 U	NA	10 U	NA	12 U
Benzo(a)pyrene	UG/L	10 U	NA	10 U	NA	12 U
Benzo(b)fluoranthene	UG/L	10 U	NA	10 U	NA	12 U
Benzo(g,h,i)perylene	UG/L	10 U	NA	10 U	NA	12 U
Benzo(k)fluoranthene	UG/L	10 U	NA	10 U	NA	12 U
bis(2-Chloroethoxy)methane	UG/L	10 U	NA	10 U	NA	12 U
bis(2-Chloroethyl)ether	UG/L	10 U	NA	10 U	NA	12 U
bis(2-Ethylhexyl)phthalate	UG/L	10 U	NA	10 U	NA	12 U
Butylbenzylphthalate	UG/L	10 U	NA	10 U	NA	12 U
Caprolactam	UG/L	10 U	NA	10 U	NA	12 U
Carbazole	UG/L	10 U	NA	10 U	NA	12 U
Chrysene	UG/L	10 U	NA	10 U	NA	12 U
Dibenz(a,h)anthracene	UG/L	10 U	NA	10 U	NA	12 U
Dibenzofuran	UG/L	10 U	NA	10 U	NA	12 U
Diethylphthalate	UG/L	10 U	NA	10 U	NA	12 U
Dimethylphthalate	UG/L	10 U	NA	10 U	NA	12 U
Di-n-butylphthalate	UG/L	10 U	NA	10 U	NA	12 U

Flags assigned during chemistry validation are shown.

MADE BY: __GEK_1/14/02__ CHECKED BY: __JJL_1/15/02__

Location ID		MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID Matrix Depth Interval (ft) Date Sampled		MW-01	MW-02	MW-03	MW-04	MW-05
		Groundwater -	Groundwater	Groundwater	Groundwater	Groundwater
			-	•	07/17/01	-
		07/17/01	07/17/01	07/17/01		07/17/01
Parameter	Units					
Semivolatiles						
Di-n-octylphthalate	UG/L	10 U	NA	10 U	NA NA	12 U
Fluoranthene	UG/L	10 U	NA	10 U	NA	12 U
Fluorene	UG/L	10 U	NA	10 U	NA	12 U
Hexachlorobenzene	UG/L	10 U	NA	10 U	NA NA	12 U
Hexachlorobutadiene	UG/L	10 U	NA	10 U	NA NA	12 U
Hexachlorocyclopentadiene	UG/L	10 U	NA NA	10 U	NA NA	12 U
Hexachloroethane	υG/L	10 U	NA	10 U	NA NA	12 U
Indeno(1,2,3-cd)pyrene	UG/L	10 U	NA NA	10 U	NA	12 U
Isophorone	UG/L	10 U	NA	10 U	NA	12 U
Naphthalene	UG/L	10 U	NA	10 U	NA	12 U
Nitrobenzene	UG/L	10 U	NA NA	10 U	NA NA	12 U
N-Nitroso-di-n-propylamine	UG/L	10 UJ	NA	10 UJ	NA	12 UJ
N-Nitrosodiphenylamine	UG/L	10 U	NA NA	10 U	NA	12 U
Pentachlorophenol	UG/L	25 U	NA	25 U	NA	29 U
Phenanthrene	UG/L	10 U	NA NA	10 U	NA	12 U
Phenol	UG/L	10 U	NA	10 U	NA NA	12 U
Pyrene	UG/L	10 U	NA	10 U	NA	12 U
Pesticides						
4,4'-DDD	UG/L	0.10 U	NA	0.10 U	NA NA	0.11 U
4,4'-DDE	UG/L	0.10 U	NA	0.10 U	NA NA	0.11 U
4,4'-DDT	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
Aldrin	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
alpha-BHC	UG/L	0.050 U	NA NA	0.050 U	NA NA	0.053 U
alpha-Chlordane	UG/L	0.050 U	NA	0.050 U	NA NA	0.053 U

Flags assigned during chemistry validation are shown.

MADE BY:__GEK_1/14/02__ CHECKED BY: __JJL_1/15/02__

Location ID		MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID Matrix Depth Interval (ft)		MW-01	MW-02	MW-03	MW-04	MW-05
		Groundwater -	Groundwater -	Groundwater	Groundwater	Groundwater -
				-	•	
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Pesticides						
beta-BHC	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
delta-BHC	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
Dieldrin	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
Endosulfan I	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
Endosulfan II	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
Endosulfan sulfate	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
Endrin	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
Endrin aldehyde	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
Endrin ketone	UG/L	0.10 U	NA	0.10 U	NA	0.11 U
gamma-Chlordane	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
Heptachlor	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
Heptachlor epoxide	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
Lindane (gamma-BHC)	UG/L	0.050 U	NA	0.050 U	NA	0.053 U
Methoxychlor	UG/L	0.50 U	NA	0.50 U	NA	0.53 U
Toxaphene	UG/L	5.0 U	NA	5.0 U	NA	5.3 U
PCB's						
Aroclor 1016	UG/L	1.0 U	NA	1.0 U	NA	1.1 U
Aroclor 1221	UG/L	2.0 U	NA	2.0 U	NA	2.1 U
Aroclor 1232	UG/L	1.0 U	NA	1.0 U	NA	1.1 U
Aroclor 1242	UG/L	1.0 U	NA	1.0 U	NA	1.1 U
Arocior 1248	UG/L	1.0 U	NA	1.0 U	NA	1.1 U
Aroclor 1254	₩G/L	1.0 U	NA	1.0 U	NA	1.1 U
Aroclor 1260	UG/L	1.0 U	NA	1.0 U	NA	1.1 U

Flags assigned during chemistry validation are shown.

MADE BY: __GEK_1/14/02__ CHECKED BY: __JJL_1/15/02__

Location ID Sample ID Matrix Depth Interval (ft)		MW-01	MW-02	MW-03	MW-04 MW-04	MW-05 MW-05 Groundwater
		MW-01 Groundwater -	MW-02	MW-03		
			Groundwater	Groundwater	Groundwater	
			•	•	-	
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Metals						
Aluminum	UG/L	365	NA	706	NA	12,200
Antimony	UG/L	29.0 U	NA NA	. 29.0 U	NA	29.0 U
Arsenic	UG/L	7.3 B	NA	7.9 B	NA	7.5 B
Barium	UG/L	151 B	NA	658	NA	160 B
Beryllium	UG/L	1.0 U	NA	1.0 U	NA	1.0 U
Cadmium	UG/L	5.0 U	NA	15.5	NA	5.0 U
Calcium	UG/L	R	NA	R	NA	R
Chromium	UG/L	10.0 U	NA	10.0 U	NA	11.4
Cobalt	UG/L	7.0 U	NA	7.0 U	NA	7.0 U
Copper	UG/L	7.1 B	NA	25.3	NA .	42.5
Iron	UG/L	1,550	NA	4,260	NA .	17,900
Lead	UG/L	R	NA	R	NA NA	134
Magnesium	UG/L	81,100	NA	164,000	NA	R
Manganese	UG/L	44.9	NA	165	NA	1,900
Mercury	UG/L	0.32	NA	0.20 U	NA	0.38
Nickel	UG/L	11.2 B	NA	497	NA	20.0 B
Potassium	UG/L	1,700 B	NA	4,220 B	NA	5,770
Selenium	UG/L	2.0 U	NA	2.0 U	NA	2.0 U
Silver	UG/L	6.0 U	NA	6.0 U	NA	6.0 U
Sodium	UG/L	R	NA	R	NA	R
Thallium	UG/L	2.1 B	NA	2.0 U	NA	2.0 U
Vanadium	UG/L	8.0 U	NA	8.0 U	NA	19.2 B
Zinc	UG/L	R	NA	R	NA	R

Flags assigned during chemistry validation are shown.

MADE BY: __GEK_1/14/02__ CHECKED BY: __JJL_1/15/02__

Location ID		MW-01	MW-02	MW-03	MW-04	MW-05
Sample ID		MW-01	MW-02	MW-03	MW-04	MW-05
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Miscellaneous						
Cyanide	MG/L	0.0030 U	NA	0.0030 U	NA	0.003 7 B
Total Petroleum Hydrocarbons	MG/L	1.2 U	NA	2.4	NA	0.69 U

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	•	-	•	-
Date Sampled	•	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Volatiles			-			
1,1,1-Trichloroethane	UG/L	190	10 U	10 U	10 U	12
1,1,2,2-Tetrachloroethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	UG/L	10 U	10 U	10 U	10 U	4 J
1,1-Dichloroethane	UG/L	560 J	10 U	10 U	10 U	9 J
1,1-Dichloroethene	UG/L	6 J	10 U	10 U	10 U	32
1,2,4-Trichlorobenzene	UG/L	10 U	10 U	10 U	10 UJ	10 UJ
1,2-Dibromo-3-chloropropane	UG/L	10 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	UG/L	1 0 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	UG/L	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	UG/L	10 U	10 U	10 U	10 U	4 J
1,3-Dichlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	UG/L	10 U	10 U	10 U	10 U	10 U
2-Butanone	UG/L	10 U	10 U	10 U	10 U	10 U
2-Hexanone	UG/L	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	UG/L	10 UJ	10 UJ	10 UJ	10 U	10 U
Acetone	UG/L	7 J	6 J	10 U	63 J	30 J
Benzene	UG/L	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	UG/L	10 U	10 U	10 U	10 U	10 U
Bromoform	UG/L	10 U	10 U	10 U	10 U	10 U
Bromomethane	UG/L	10 U	10 U	10 U	10 U	10 U
Carbon disulfide	UG/L	10 U	10 U	10 U	10 U	10 U
Carbon tetrachloride	UG/L	10 U	10 U	10 U	10 U	10 U

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	•	-	•	•
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Volatiles						
Chlorobenzene	UG/L	10 U				
Chloroethane	UG/L	10 U				
Chloroform	UG/L	10 U	10 U	10 U	10 U	8 J
Chloromethane	UG/L	10 U				
cis-1,2-Dichloroethene	UG/L	10 U	10 U	10 U	10 U	9,500 DJ
cis-1,3-Dichloropropene	UG/L	10 U				
Cyclohexane	UG/L	10 U				
Dibromochloromethane	UG/L	10 U				
Dichlorodifluoromethane	UG/L	10 U				
Ethylbenzene	UG/L	10 U				
Isopropylbenzene	UG/L	10 U				
Methyl acetate	UG/L	10 U				
Methyl tert-butyl ether	UG/L	10 U				
Methylcyclohexane	UG/L	10 U	10 U .	10 U	10 U	10 U
Methylene chloride	UG/L	10 U				
Styrene	UG/L	10 U				
Tetrachloroethene	UG/L	10 U				
Toluene	UG/L	10 U				
trans-1,2-Dichloroethene	UG/L	10 U	10 U	10 U	10 U	380 J
trans-1,3-Dichloropropene	UG/L	10 U				
Trichloroethene	UG/L	10 U	10 U	10 U	10 U	60,000 DJ
Trichlorofluoromethane	UG/L	10 U				
Vinyl chloride	UG/L	10 U	10 U	8 J	10 U	1,000 J
Xylene (total)	UG/L	10 U				

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID Matrix		MW-06	MW-07	MW-08	PZ-01	PZ-02
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	07/17/01	- 07/17/01	07/17/01	-
Date Sampled		07/17/01				07/17/01
Parameter	Units					
Semivolatiles						
1,1'-Biphenyl	UG/L	NA NA	NA NA	NA	NA	NA
2,2'-oxybis(1-Chloropropane)	UG/L	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	UG/L	NA	NA	NA	NA NA	NA
2,4,6-Trichlorophenol	UG/L	NA	NA	NA	NA	NA
2,4-Dichlorophenol	UG/L	NA	NA	NA	NA	NA
2,4-Dimethylphenol	UG/L	NA	NA	NA	NA	NA
2,4-Dinitrophenol	UG/L	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	UG/L	NA	NA	NA	NA	NA
2,6-Dinitrotoluene	UG/L	NA NA	NA	NA	NA	NA
2-Chloronaphthalene	UG/L	NA	NA	NA	NA	NA
2-Chlorophenol	UG/L	NA	NA	NA	NA	NA
2-Methylnaphthalene	UG/L	NA	NA	NA	NA	NA
2-Methylphenol	UG/L	NA	NA	NA	NA	NA
2-Nitroaniline	UG/L	NA	NA	NA	NA	NA
2-Nitrophenol	UG/L	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	UG/L	NA	NA	NA	NA	NA
3-Nitroaniline	UG/L	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	UG/L	NA	NA	NA	NA	NA
4-Bromophenylphenylether	UG/L	NA	NA	NA	NA	NA
4-Chloro-3-methylphenol	UG/L	NA	NA	NA	NA	NA
4-Chloroaniline	UG/L	NA	NA	NA	NA	NA
4-Chlorophenylphenylether	UG/L	NA	NA	NA	NA	NA
4-Methylphenol	UG/L	NA	NA	NA	NA	NA
4-Nitroaniline	UG/L	NA	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	•	•		•
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Semivolatiles						
4-Nitrophenol	UG/L	NA	NA	NA	NA	NA
Acenaphthene	UG/L	NA	NA	NA	NA	NA
Acenaphthylene	UG/L	NA	NA	NA	NA	NA
Acetophenone	UG/L	NA	NA	NA	NA	NA
Anthracene	UG/L	NA	NA	NA	NA	NA
Atrazine	UG/L	NA	NA	NA NA	NA	NA
Benzaldehyde	UG/L	NA	NA	, NA	NA	NA
Benzo(a)anthracene	UG/L	NA	NA	NA	NA	NA
Benzo(a)pyrene	UG/L	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	UG/L	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	UG/L	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	UG/L	NA	NA	NA	NA	NA
bis(2-Chloroethoxy)methane	UG/L	NA	NA	NA	NA	NA
bis(2-Chloroethyl)ether	UG/L	NA	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	UG/L	NA	NA	NA	NA	NA
Butylbenzylphthalate	UG/L	NA NA	NA	NA	NA	NA
Caprolactam	UG/L	NA	NA	NA	NA	NA
Carbazole	UG/L	NA	NA	NA	NA	NA
Chrysene	UG/L	NA NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	UG/L	NA	NA	NA	NA	NA
Dibenzofuran	UG/L	NA	NA	NA	NA	NA
Diethylphthalate	UG/L	NA	NA	NA NA	NA	NA
Dimethylphthalate	UG/L	NA	NA	NA	NA	NA
Di-n-butylphthalate	UG/L	NA	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	07/17/01	07/17/01	07/17/01	07/17/01
Date Sampled		07/17/01				
Parameter	Units					
Semivolatiles						_
Di-n-octylphthalate	UG/L	NA	NA	NA NA	NA	NA
Fluoranthene	UG/L	NA	NA	NA	NA	NA
Fluorene	UG/L	NA	NA	NA	NA	NA
Hexachlorobenzene	UG/L	NA	NA	NA	NA	NA
Hexachlorobutadiene	UG/L	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	UG/L	NA	NA	NA	NA	NA
Hexachloroethane	UG/L	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	UG/L	NA	NA	NA	NA	NA
Isophorone	UG/L	NA	NA	NA .	NA	NA
Naphthalene	UG/L	NA	NA	NA	NA	NA
Nitrobenzene	UG/L	NA	NA	NA	NA NA	NA
N-Nitroso-di-n-propylamine	UG/L	NA	NA	NA	NA NA	NA
N-Nitrosodiphenylamine	UG/L	NA	NA	NA	NA NA	NA
Pentachlorophenol	UG/L	NA	NA	NA	NA	NA
Phenanthrene	UG/L	NA	NA	NA	NA	NA
Phenol	UG/L	NA	NA	NA	NA	NA
Pyrene	UG/L	NA	NA	NA	NA	NA
Pesticides						
4,4'-DDD	UG/L	NA	NA NA	NA	NA	NA
4,4'-DDE	UG/L	NA	NA	NA	NA	NA
4,4'-DDT	UG/L	NA NA	NA NA	NA	NA	NA
Aldrin	UG/L	NA	NA NA	NA NA	NA	NA NA
alpha-BHC	UG/L	NA	NA	NA	NA NA	NA NA
alpha-Chlordane	UG/L	NA	NA NA	NA	NA NA	NA

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	•	-	•	-
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Pesticides						
beta-BHC	UG/L	NA NA	NA	NA	NA	NA
delta-BHC	UG/L	NA	NA NA	NA NA	NA	NA
Dieldrin	UG/L	NA	NA	NA	NA	NA
Endosulfan I	UG/L	NA	NA	NA	NA	NA
Endosulfan II	UG/L	NA	NA	NA	NA	NA
Endosulfan sulfate	UG/L	NA	NA NA	NA	NA	NA
Endrin	UG/L	NA	NA	NA NA	NA NA	NA
Endrin aldehyde	UG/L	NA	NA NA	NA	NA NA	NA
Endrin ketone	UG/L	NA	NA	NA	NA	NA
gamma-Chlordane	UG/L	NA	NA	NA	NA NA	NA NA
Heptachlor	UG/L	NA	NA	NA	NA	NA
Heptachlor epoxide	UG/L	NA .	NA	NA	NA	NA
Lindane (gamma-BHC)	UG/L	NA	NA	NA NA	NA	NA NA
Methoxychlor	UG/L	NA	NA .	NA	NA NA	NA
Toxaphene	UG/L	NA NA	NA	NA	NA NA	NA
PCB's						
Aroclor 1016	UG/L	NA	NA NA	NA	NA NA	NA NA
Aroclor 1221	UG/L	NA	NA	NA	NA	NA
Aroclor 1232	UG/L	NA	NA	NA	NA	NA
Aroclor 1242	UG/L	NA	NA	NA	NA	NA
Aroclor 1248	UG/L	NA	NA	NA	NA	NA NA
Aroclor 1254	UG/L	NA	NA	NA	NA NA	NA NA
Aroclor 1260	UG/L	NA NA	NA	NA NA	NA NA	NA NA

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02 PZ-02
Sample ID		MW-06	MW-07	MW-08	PZ-01	
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	-	-	-
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Metals				_		
Aluminum	UG/L	NA	NA NA	NA	NA NA	NA
Antimony	UG/L	NA	NA	NA	NA	NA
Arsenic	UG/L	NA	NA	NA	NA	NA
Barium	UG/L	NA	NA	NA	NA	NA
Beryllium	UG/L	NA	NA	NA	NA	NA
Cadmium	UG/L	NA	NA	NA	NA	NA
Calcium	UG/L	NA	NA	NA	NA_	_NA
Chromium	UG/L	NA	NA	NA	NA	NA
Cobalt	UG/L	NA	NA	NA	NA	NA
Copper	UG/L	NA	NA	NA	NA	NA
Iron	UG/L	NA	NA NA	NA NA	NA	NA
Lead	UG/L	NA	NA	NA NA	NA	NA
Magnesium	UG/L	NA	NA	NA	NA NA	NA NA
Manganese	UG/L	NA	NA	NA	NA	NA
Mercury	UG/L	NA	NA	NA	NA	NA
Nickel	UG/L_	NA	NA	NA	NA	NA
Potassium	UG/L	NA	NA	NA NA	NA	NA
Selenium	UG/L	NA	NA	NA NA	NA NA	NA
Silver	UG/L	NA	NA	NA	NA	NA
Sodium	UG/L	NA	NA	NA	NA NA	NA
Thallium	UG/L	NA	NA	NA NA	NA	NA
Vanadium	UG/L	NA	NA	NA	NA NA	NA
Zinc	UG/L	NA	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Location ID		MW-06	MW-07	MW-08	PZ-01	PZ-02
Sample ID	-	MW-06	MW-07	MW-08	PZ-01	PZ-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	•	•	
Date Sampled		07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
Parameter	Units					
Miscellaneous						
Cyanide	MG/L	NA	NA	NA	NA	NA
Total Petroleum Hydrocarbons	MG/L	NA	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC	
Sample ID		RINSE BLANK	RB-1	TB-1	
Matrix		Quality Control	Quality Control	Quality Control	
Depth Interval (ft)		-	-	-	
Date Sampled		07/13/01	07/17/01	07/17/01	
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Tnp Blank (1-1)	
Volatiles					
1,1,1-Trichloroethane	UG/L	10 U	10 U	10 U	
1,1,2,2-Tetrachloroethane	UG/L	10 U	10 U	10 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	10 U	10 U	10 U	
1,1,2-Trichloroethane	UG/L	10 U	10 U	10 U	
1,1-Dichloroethane	UG/L	10 U	10 U	10 U	
1,1-Dichloroethene	UG/L	10 U	10 U	10 U	
1,2,4-Trichlorobenzene	UG/L	10 U	10 UJ	10 UJ	
1,2-Dibromo-3-chloropropane	UG/L	10 U	10 U	10 U	
1,2-Dibromoethane	UG/L	10 U	10 U	10 U	
1,2-Dichlorobenzene	UG/L	10 U	10 U	10 U	
1,2-Dichloroethane	UG/L	10 U	10 U	10 U	
1,2-Dichloropropane	UG/L	10 U	10 U	10 U	
1,3-Dichlorobenzene	UG/L	10 U	10 U	10 U	
1,4-Dichlorobenzene	UG/L	10 U	10 U	10 U	
2-Butanone	UG/L	10 U	10 U	10 U	
2-Hexanone	UG/L	10 U	10 U	10 U	
4-Methyl-2-pentanone	UG/L	10 U	10 U	10 U	
Acetone	UG/L	10 U	10 UJ	10 UJ	
Benzene	UG/L	10 U	10 U	10 U	
Bromodichloromethane	UG/L	10 U	10 U	10 U	
Bromoform	UG/L	10 U	10 U	10 U	
Bromomethane	UG/L	10 U	10 U	10 U	
Carbon disulfide	UG/L	10 U	10 U	10 U	
Carbon tetrachloride	UG/L	10 U	10 U	10 U	

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC	
Sample ID		RINSE BLANK	RB-1	TB-1	
Matrix		Quality Control	Quality Control	Quality Control	
Depth Interval (ft)		•			
Date Sampled		07/13/01	07/17/01	07/17/01	
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Trip Blank (1-1)	
Volatiles					
Chlorobenzene	UG/L	10 U	10 U	10 U	
Chloroethane	UG/L	10 U	10 U	10 U	
Chloroform	UG/L	10 U	10 U	10 U	
Chloromethane	UG/L	10 U	10 U	10 U	
cis-1,2-Dichloroethene	UG/L	10 U	10 U	10 U	
cis-1,3-Dichloropropene	UG/L	_10 U	10 U	10 U	
Cyclohexane	UG/L	10 U	10 U	10 U	
Dibromochloromethane	UG/L	10 U	10 U	10 U	
Dichlorodifluoromethane	UG/L	10 U	10 U	10 U	
Ethylbenzene	UG/L	10 U	10 U	10 U	
Isopropylbenzene	UG/L	10 U	10 U	10 U	
Methyl acetate	UG/L	10 U	10 U	10 U	
Methyl tert-butyl ether	UG/L	10 U	10 U	10 U	
Methylcyclohexane	UG/L	10 U	10 U	10 U	
Methylene chloride	UG/L	10 U	10 U	10 U	
Styrene	UG/L	10 U	10 U	10 U	
Tetrachloroethene	UG/L	10 U	10 U	10 U	
Toluene	UG/L	10 U	10 U	10 U	
trans-1,2-Dichloroethene	UG/L	10 U	10 U	10 U	
trans-1,3-Dichloropropene	UG/L	10 U	10 U	10 U	
Trichloroethene	UG/L	10 U	10 U	10 U	
Trichlorofluoromethane	UG/L	10 U	10 U	10 U	
Vinyl chloride	UG/L	10 U	10 U	10 U	
Xylene (total)	UG/L	10 U	10 U	10 U	

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC	
Sample ID		RINSE BLANK	RB-1	TB-1	
Matrix		Quality Control	Quality Control	Quality Control	
Depth Interval (ft)		-	•	•	
Date Sampled		07/13/01	07/17/01	07/17/01	
Parameter	Units	Material Rinse Blank (1-1)	Matenal Rinse Blank (1-1)	Tnp Blank (1-1)	
Semivolatiles					
1,1'-Biphenyl	UG/L	NA	10 U	NA	
2,2'-oxybis(1-Chloropropane)	UG/L	NA	10 U	NA	
2,4,5-Trichlorophenol	UG/L	NA	25 U	NA	
2,4,6-Trichlorophenol	UG/L	NA	10 U	NA	
2,4-Dichlorophenol	UG/L	NA	10 U	NA NA	
2,4-Dimethylphenol	UG/L	NA NA	10 U	NA	
2,4-Dinitrophenol	UG/L	NA	25 UJ	NA	
2,4-Dinitrotoluene	UG/L	NA	10 U	NA	
2,6-Dinitrotoluene	UG/L	NA	10 U	NA	
2-Chloronaphthalene	UG/L	NA	10 U	NA	
2-Chlorophenol	UG/L	NA	10 U	NA	
2-Methylnaphthalene	UG/L	NA	10 U	NA	
2-Methylphenol	UG/L	NA	10 U	NA	
2-Nitroaniline	UG/L	NA	25 U	NA NA	
2-Nitrophenol	UG/L	NA	10 U	NA	
3,3'-Dichlorobenzidine	UG/L	NA	10 U	NA	
3-Nitroaniline	UG/L	NA	25 U	NA	
4,6-Dinitro-2-methylphenol	UG/L	NA	25 U	NA	
4-Bromophenylphenylether	UG/L	NA	10 U	NA	
4-Chloro-3-methylphenol	UG/L	NA	10 U	NA	
4-Chloroaniline	UG/L	NA	10 U	NA NA	
4-Chlorophenylphenylether	UG/L	NA	10 U	NA	
4-Methylphenol	UG/L	NA	10 U	NA	
4-Nitroaniline	UG/L	NA	25 U	NA NA	

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC
Sample ID		RINSE BLANK	RB-1	TB-1
Matrix		Quality Control	Quality Control	Quality Control
Depth Interval (ft)		-	-	•
Date Sampled		07/13/01	07/17/01	07/17/01
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Tnp Blank (1-1)
Semivolatiles				
4-Nitrophenol	UG/L	NA	25 UJ	NA
Acenaphthene	UG/L	NA	10 U	NA
Acenaphthylene	UG/L	NA	10 U	NA
Acetophenone	UG/L	NA	10 U	NA
Anthracene	UG/L	NA	10 U	NA
Atrazine	UG/L	NA	10 U	NA
Benzaldehyde	UG/L	NA	10 U	NA
Benzo(a)anthracene	UG/L	NA	10 U	NA
Benzo(a)pyrene	UG/L	NA	10 U	NA
Benzo(b)fluoranthene	UG/L	NA	10 U	NA
Benzo(g,h,i)perylene	UG/L	NA	10 U	NA
Benzo(k)fluoranthene	UG/L	NA	10 U	NA
bis(2-Chloroethoxy)methane	UG/L	NA	10 U	NA
bis(2-Chloroethyl)ether	UG/L	NA	10 U	NA
bis(2-Ethylhexyl)phthalate	UG/L	NA	3 J	NA
Butylbenzylphthalate	UG/L	NA	10 U	NA
Caprolactam	UG/L	NA	10 U	NA
Carbazole	UG/L	NA	10 U	NA
Chrysene	UG/L	NA	10 U	NA
Dibenz(a,h)anthracene	UG/L	NA	10 U	NA
Dibenzofuran	UG/L	NA	10 U	NA
Diethylphthalate	UG/L	NA	10 U	NA
Dimethylphthalate	UG/L	NA	10 U	NA
Di-n-butylphthalate	UG/L	NA	10 U	NA NA

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC	
Sample ID	_	RINSE BLANK	RB-1	TB-1 Quality Control	
Matrix		Quality Control	Quality Control		
Depth Interval (ft)		- 07/13/01		•	
Date Sampled			07/17/01	07/17/01	
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Trip Blank (1-1)	
Semivolatiles					
Di-n-octylphthalate	UG/L	NA	10 U	NA	
Fluoranthene	UG/L	NA	10 U	NA	
Fluorene	UG/L	NA	10 U	NA	
Hexachlorobenzene	UG/L	NA	10 U	NA	
Hexachlorobutadiene	UG/L	NA	10 U	NA	
Hexachlorocyclopentadiene	UG/L	NA	10 U	NA	
Hexachloroethane	UG/L	NA	10 U	NA	
Indeno(1,2,3-cd)pyrene	UG/L	NA	10 U	NA	
Isophorone	UG/L	NA	10 U	NA	
Naphthalene	UG/L	NA	10 U	NA	
Nitrobenzene	UG/L	NA	10 U	NA	
N-Nitroso-di-n-propylamine	UG/L	NA	10 UJ	NA	
N-Nitrosodiphenylamine	UG/L	NA	10 U	NA	
Pentachlorophenol	UG/L	NA	25 U	NA	
Phenanthrene	UG/L	NA	10 U	NA	
Phenol	UG/L	NA	10 U	NA	
Pyrene	UG/L	NA	10 U	NA	
Pesticides					
4,4'-DDD	UG/L	NA	0.11 U	NA	
4,4'-DDE	UG/L	NA	0.11 U	NA	
4,4'-DDT	UG/L	NA	0.11 U	NA	
Aldrin	UG/L	NA	0.055 U	NA	
alpha-BHC	UG/L	NA	0.055 U	NA	
alpha-Chlordane	UG/L	NA	0.055 U	NA	

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC
Sample ID	_	RINSE BLANK	RB-1	TB-1
Matrix		Quality Control	Quality Control	Quality Control
Depth Interval (ft)		07/13/01	•	-
Date Sampled			07/17/01	07/17/01
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Trip Blank (1-1)
Pesticides				
beta-BHC	UG/L	NA	0.055 U	NA
delta-BHC	UG/L	NA NA	0.055 U	NA
Dieldrin	UG/L	NA	0.11 U	NA
Endosulfan I	UG/L	NA	0.055 U	NA NA
Endosulfan II	UG/L	_NA	0.11 U	NA
Endosulfan sulfate	UG/L	NA	0.11 U	NA
Endrin	UG/L	NA	0.11 U	NA
Endrin aldehyde	UG/L	NA	0.11 U	NA
Endrin ketone	UG/L	NA	0.11 U	NA
gamma-Chlordane	UG/L	NA	0.055 U	NA
Heptachlor	UG/L	NA	0.055 U	NA
Heptachlor epoxide	UG/L	NA	0.055 U	NA
Lindane (gamma-BHC)	UG/L	NA	0.055 U	NA
Methoxychlor	UG/L	NA	0.55 U	NA
Toxaphene	UG/L	NA	5.5 U	NA
PCB's				
Aroclor 1016	UG/L	NA NA	1.1 U	NA
Aroclor 1221	UG/L	NA	2.2 U	NA
Aroclor 1232	UG/L	NA	1.1 U	NA
Aroclor 1242	UG/L	NA	1.1 U	NA
Aroclor 1248	UG/L	NA NA	1.1 U	NA
Aroclor 1254	UG/L	NA	1.1 U	NA .
Aroclor 1260	UG/L	NA NA	1.1 U	NA

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC	
Sample ID		RINSE BLANK	RB-1	TB-1 Quality Control	
Matrix		Quality Control	Quality Control		
Depth Interval (ft)		-	-	•	
Date Sampled		07/13/01	07/17/01	07/17/01	
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Tnp Blank (1-1)	
Metals					
Aluminum	UG/L	NA	93.0 U	NA	
Antimony	UG/L	NA	29.0 U	NA	
Arsenic	UG/L	NA	2.0 U	NA	
Barium	UG/L	NA	102 B	NA	
Beryllium	UG/L	NA	1.0 U	NA	
Cadmium	UG/L	NA	5.0 U	NA	
Calcium	UG/L	NA	66,500	NA	
Chromium	UG/L	NA	10.0 U	NA	
Cobalt	UG/L	NA	7.0 U	NA	
Copper	UG/L	NA	11.5 B	NA	
Iron	UG/L	NA	75.0 U	NA	
Lead	UG/L	NA	9.7	NA	
Magnesium	UG/L	NA	12,200	NA	
Manganese	UG/L	NA	2.0 U	NA	
Mercury	UG/L	NA	0.20 U	NA	
Nickel	UG/L	NA	6.0 U	NA	
Potassium	UG/L	NA	1,450 B	NA	
Selenium	UG/L	NA	2.0 U	NA	
Silver	UG/L	NA	6.0 U	NA	
Sodium	UG/L	NA	23,400	NA	
Thallium	UG/L	NA	2.0 U	NA	
Vanadium	UG/L	NA	8.0 U	NA	
Zinc	UG/L	NA	64.3	NA	

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC	FIELDQC
Sample ID		RINSE BLANK	RB-1	TB-1
Matrix Depth Interval (ft)		Quality Control	Quality Control	Quality Control
		-	-	•
Date Sampled		07/13/01	07/17/01	07/17/01
Parameter	Units	Material Rinse Blank (1-1)	Material Rinse Blank (1-1)	Trip Blank (1-1)
Miscellaneous				
Cyanide	MG/L	NA	0.0030 U	NA
Total Petroleum Hydrocarbons	MG/L	NA	0.64 ป	NA

Flags assigned during chemistry validation are shown.

TABLE 2
SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
TP-1 (2-2.5'), GPB-7 (7-7.5)(dilution	VOC	Technical holding time	Qualify non-detects
analysis only), MW-3 (dilution analysis		exceedance	"UJ" and detects "J"
only), PZ-2 (dilution analysis only)			
Rectangular Sump	VOC	2-Butanone detected in sample	Qualify "U" and
		less than ten times amount in	raise to quantitation
	1100	associated blank	limit
GPB-2, GPB-3, Rectangle Sump, 2-X-1	VOC	Acetone detected in sample less	Qualify "U" at
Sump, 4-X-2 Sump, 5-X-1 Sump, GPB-		than ten times amount in	detected
8, GPB-10	NOC.	associated blank	concentration
Sump #2	VOC	Chloromethane detected in	Qualify "U" and
		sample less than five times	raise to quantitation
GPB-10	VOC	amount in associated blank Trichloroethene detected in	Qualify "U" and
GPB-10	VOC	sample less than five times	raise to quantitation
		amount in associated blank	limit
GPB-12, RB-1 (7/17/01), TB-1, PZ-1,	VOC	CCAL %D greater than 25% for	Qualify detects "J"
PZ-2	1	acetone, 1,2,4-trichlorobenzene	and non-detects "UJ"
2-X-1 Sump, 5-X-1 Sump, GPB-10,	VOC	CCAL %D greater than 25% for	Qualify non-detects
GPB-13, MW-1, MW-3, MW-4, MW-6,	100	4-methyl-2-pentanone	"UJ"
MW-7, MW-8		, memy, 2 pentanene	
Sump #1, Sump #2	VOC	Chlorobenzene-d5 internal	Qualify associated
		standard recovery below 50%	detects "J" and non-
		_	detects "UJ"
5-X-1 Sump	VOC	False negative. 2-Butanone	Report detection
		detected in sample greater than	with "J" qualifier
		instrument detection limit	
MW-5	VOC	False negative. Acetone	Report detection
		detected in sample greater than	with "J" qualifier
		instrument detection limit	
MW-4	VOCs	Possible false positive of 1,1-	Qualify "R"
		dichloroethane, 1,1,1-	
		trichloroethane from instrument	
- "		carryover	0 116
Sump #1	VOC	False positive for carbon	Qualify as non-detect "U" at the
		tetrachloride	1
PZ-2	VOC	False positive for	quantitation limit Qualify as non-detect
FL-2	1	methylcyclohexane	"U" at the
		inchijie ye ione zane	quantitation limit
1-X-1 Sump	VOC	Reported "E" values for acetone,	Remove "E" and
Gump		1,2-dichlorobenzene	qualify "J"
MW-3	VOC	Reported "E" value for 1,1,1-	Remove "E" and
		trichloroethane	qualify "J"
MW-6	VOC	Reported "E" value for 1,1-	Remove "E" and
		dichloroethane	qualify "J"

TABLE 2 (Con't)

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
PZ-2	VOC	Reported "E" values for vinyl chloride, trans-1,2-dichloroethene	Remove "E" and qualify "J"
MW-1, MW-3, MW-5	SVOC	bis-(2-Ethylhexyl)phthalate detected in sample less than ten times amount in associated blank	Qualify "U" and raise to quantitation limit
MW-1, MW-3, MW-5, RB-1 (7/17/01)	SVOC	Low matrix spike blank recovery for n-nitroso-di-n-propylamine	Qualify non-detects "UJ"
MW-1, MW-3, MW-5, RB-1 (7/17/01)	SVOC	CCAL %D greater than 25% for, 2,4-dinitrophenol, 4-nitrophenol	Qualify non-detects "UJ"
MW-1, MW-3	Metals	Calcium, lead, sodium, zinc detected in sample less than five times amount in associated rinse blank	Qualify "R"
MW-5	Metals	Calcium, magnesium, sodium, zinc detected in sample less than five times amount in associated rinse blank	Qualify "R"

ATTACHMENT A

SUPPORT DOCUMENTATION

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ASP 2000 VOA ANALYSES

Customer	Laboratory		Date	Date	Low Level	Date
Sample	Sample	Matrix	Collected	Received	Med. Level	Analyzed
Code	Code					
MW-1	L72771-1	WATER	07/17/01	07/18/01	LOW	07/20/01
MW-2	L72771-2	WATER	07/17/01	07/18/01	LOW	07/22/01
MW-3	L72771-3	WATER	07/17/01	07/18/01	LOW	07/22/01
MW-4	L72771-4	WATER	07/17/01	07/18/01	LOW	07/22&8/13/01
MW-5	L72771-5	WATER	07/17/01	07/18/01	LOW	07/20/01
MW-5, L72771-5MS	L72771-6	WATER	07/17/01	07/18/01	LOW	07/20/01
MW-5, L72771-5MSD/DUP	L72771-7	WATER	07/17/01	07/18/01	LOW	07/20/01
MW-6	L72771-8	WATER	07/17/01	07/18/01	LOW	07/23&8/13/01
MW-7	L72771-9	WATER	07/17/01	07/18/01	LOW	07/23/01
MW-8	L72771-10	WATER	07/17/01	07/18/01	LOW	07/23/01
RB-1	L72771-11	WATER	07/17/01	07/18/01	LOW	07/23/01
TB-1	L72771-12	WATER	07/17/01	07/18/01	LOW	07/23/01
PZ-1	L72771-13	WATER	07/17/01		LOW	07/23/01
PZ-2	L72771-14	WATER	07/17/01	07/18/01	LOW	07/23&8/13/01

1A NYSDEC SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01 Lab Name: FRIEND LABORATORY, INC. Contract: SAS No.: SDG No.: DOWELL Lab Code: 10252 Case No.: Matrix: (soil/water) WATER Lab Sample ID: L72162-13 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: C6026.D Level: (low/med) LOW Date Received: 07/16/01 % Moisture: not dec. Date Analyzed: 08/13/01 GC Column: <u>RTX-624</u> ID: <u>0.53</u> (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL)

CONCENTRATION UNITS:

75-71-8 Dichlorodifluoromethane 74-87-3 Chloromethane 75-01-4 Vinyl Chloride 74-83-9 Bromomethane 75-00-3 Chloroethane 75-69-4 Trichlorofluoromethane 75-35-4 1,1-Dichloroethene 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 4 10 10 10 10 10 10 10 10 10 10 10	JB U U U U JB U U U U
74-87-3 Chloromethane 75-01-4 Vinyl Chloride 74-83-9 Bromomethane 75-00-3 Chloroethane 75-89-4 Trichlorofluoromethane 75-35-4 1,1-Dichloroethene 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	4 10 10 10 10 10 10 10 10 10 10 10	JB U U U JB U U U U U U U U U U U U U U
74-83-9 Bromomethane 75-00-3 Chloroethane 75-69-4 Trichlorofluoromethane 75-35-4 1,1-Dichloroethene 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10 6 10 10 10 10 10	JB U U U U U U U U U U U U U U U U U U U
74-83-9 Bromomethane 75-00-3 Chloroethane 75-69-4 Trichlorofluoromethane 75-35-4 1,1-Dichloroethene 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10 6 10 10 10 10 10	U U U JB U U U U
75-69-4 Trichlorofluoromethane 75-35-4 1,1-Dichloroethene 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 6 10 10 10 10 10 10	U U JB U U U U
75-35-4 1,1-Dichloroethene 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 6 10 10 10 10 10 10	JB JB U U U U
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroetha 67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 6 10 10 10 10 10 10	JB U U U U
67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10 10 10	JB U U U U U
67-64-1 Acetone 75-15-0 Carbon Disulfide 79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10 10 10	U U U U U
79-20-9 Methyl Acetate 75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10 10	U U U U
75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10	U U U
75-09-2 Methylene Chloride 156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10 10	U U U
156-60-5 trans-1,2-Dichloroethene 1634-04-4 Methyl tert-Butyl Ether	10 10 10 10	U
1634-04-4 Methyl tert-Butyl Ether	10 10 10	U
	10 10	
75-34-3 1,1-Dichloroethane	10	-
156-59-2 cis-1,2-Dichloroethene		U
78-93-3 2-Butanone	10	Ü
67-66-3 Chloroform	10	Ü
71-55-6 1,1,1-Trichloroethane	10	U
110-82-7 Cyclohexane	10	U
56-23-5 Carbon Tetrachloride	10	U
71-43-2 Benzene	10	U
107-06-2 1,2-Dichloroethane	10	Ü
79-01-6 Trichloroethene	10	Ū
108-87-2 Methylcyclohexane	10	U
78-87-5 1,2-Dichloropropane	10	U
75-27-4 Bromodichloromethane	10	U
10061-01-5 cis-1,3-Dichloropropene	10	U
108-10-1 4-Methyl-2-pentanone	10	U
108-88-3 Toluene	10	U
10061-02-6 trans-1,3-Dichloropropene	10	U
79-00-5 1,1,2-Trichloroethane	10	U
127-18-4 Tetrachloroethene	10	Ū
591-78-6 2-Hexanone	10	U
124-48-1 Dibromochloromethane	10	Ü
106-93-4 1,2-Dibromoethane	10	Ū
108-90-7 Chlorobenzene	10	Ü
100-41-4 Ethylbenzene	10	Ü
106-42-3/108-38-3 p-Xylene/m-Xylene	10	U

4A VOLATILE METHOD BLANK SUMMARY

NYSDEC Sample NO.

Lab Name:	b Name: FRIEND LABORATORY, INC.		Contract:	VBLKS1
Lab Code:	10252	Case No.:	SAS No.:	SDG No.: DOWELL
Lab File ID:	C5738.D		Lab Sample II	D: vblk
Date Analyze	ed: <u>07/18/01</u>		Time Analyze	d: 14:06
GC Column:	RTX-624 ID): <u>0.53</u> (mm)	Heated Purge	e: (Y/N) Y
In atomicont II	o. Men e			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD AND MSB

_				
	NYSDEC SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	VBLKS1MS	VBLKMS	C5739.D	14:40
02	GPB-2	L72349-1	C5744.D	17:25
03	MW-8	L72349-4	C5745.D	17:58
04	GPB-3	L72349-5	C5746.D	18:31
05	TP-2 #2	L72349-8	C5748.D	19:37
06	SUMP #1 RE	L72349-9 LOW	C5749.D	20:09
07	RECT SUMP	L72349-11	C5751.D	21:15
08	GPB-2 MS	L72349-2, -1MS	C5752.D	21:47
09	GPB-2 MSD	L72349-3, -1MSD	C5753.D	22:19

COMMENTS

4A VOLATILE METHOD BLANK SUMMARY

NYSDEC Sample NO.

Lab Name:	ab Name: FRIEND LABORATORY, INC.		Contract:	VBLKS2	
Lab Code:	10252	Case No.:	SAS No.:	SDG No.: DOWELL	
Lab File ID:	C5756.D		Lab Sam	ple ID: vblk	
Date Analyzed: 07/19/01			Time Ana	alyzed: <u>12:08</u>	
GC Column	RTX-624 ID): <u>0.53</u> (mm)	Heated I	Purge: (Y/N)Y	
Instrument i	D: MSD-C				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD AND MSB

	NYSDEC SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	VBLKS2MS	VBLKMS	C5757.D	12:41
02	ROUND SUMP	L72349-12	C5758.D	13:13
03	1-X-1 SUMP	L72349-13	C5759.D	13:45
04	3-X-2 SUMP	L72349-15	C5761.D	14:50
05	4-X-2 SUMP	L72349-16	C5762.D	15:23
06	GPB-4	L72349-18	C5764.D	16:28
07	SUMP #2 RE	L72349-10 LOW	C5775.D	22:23

COMMENTS

	ı	_	,																		100			
PAGE: 74	Rorun														aisi	-					4630 1100	C	1,5	-
AGE																								
۵	Tino	01.00	14,08	21:13	21:44	,	44.CB	4,12	4.5%	SIZ	6.10	6:32	ا، ولم	7:37	8.1.1	۶. ۲	9113	4145	10:11	10,49	11:51	11:55	12:25	
	ANALYZED Filo #														5754									
	SAMPLE REANALYZED Dilution Filo #			, ,	1,50	7	1																	
	Hd	1.5	_	}		1.51														1.5	_	•	→	
	SITE	5		7			41	AP CIO-LOS		bre -										۲۶	٧۶	ペと	77	-
VT: MSD-C	CUSTOMER/DESCRIPTION							A Company of the Comp		Manage and the first of the Control													,	
INSTRUMENT:	CUSTOME	•		· ·						71187	LAS	,								MW-7	mwt3	MW-4	300)
J	, * 9M	25/6		\ \ \ \			2/26/6				25548	J							}	25616			K	
ر 1-01-082	FL # Log-in #	5-14676		10 10000000000000000000000000000000000	72349-9MS	Jamp-	1-14th E		Contract of the same	VBLKCZ	172349-14	5-21197 [7]	6-	C1-1162 (7	7	4- سر14	-Say	- Purk	しているとも	ז-גנטנו	-3	7	81	
	TUBE #	0/	11	12	5/	7	5/	77	13	سرير	25	רז	ジ	30	3)	32	17	الح	19	20	7	77	7	
**	FILE #	17.bt.G			ST.	800	2799	1. 1. 1. 1. 1.		6085	5603	\$500	5808	580 C	580 9-	8085	5809	2/8/2	198th	5812	5813	H185	5815	rs:
NOTEBOOK#:	DATE	7/20/1	-				>	77-1													\(\frac{1}{2}\)	7	(いし)	COMMENTS

44 pc	Ethylbenzene	0.341	0.329	3.5	92	0.00
45 pc	p-Xylene/m-Xylene	0.434	0.413	4.8	92	0.00
46 pc	o-Xylene	0.423	0.406	4.0	92	0.00
47 pc	Styrene	0.713	0.676	5.2	91	0.00
48 Spc	4-Bromofluorobenzene	0.644	0.634	1.6	94	0.00
49 pc	Isopropylbenzene	1.165	1.104	5.2	90	0.00
50 pc	1,1,2,2-Tetrachloroethane	0.627	0.587	6.4	90	0.00
51 pc	1,3-Dichlorobenzene	0.903	0.833	7.8	90	0.00
52 pc	1,4-Dichlorobenzene	0.923	0.833	9.8	87	-0.16
53 pc	1,2-Dichlorobenzene	0.871	0.808	7.2	91	0.00
54 pc	1,2-Dibromo-3-chloropropane	0.111	0.100	9.9	88	0.00
55 pc	1,2,4-Trichlorobenzene	0.666	0.478	28.2#	71	0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 1 C5801.D 0720NCLP.M Mon Jul 23 09:31:40 2001 MSD-D

Evaluate Continuing Calibration Report

 Data File : C:\HPCHEM\2\DATA\B2635.D
 Vial: 2

 Acq On : 30 Jul 20101 5:02 pm
 Operator: CPW

 Sample : SSTD050
 Inst : MSD-B

 Misc : 97-151-64-K
 Multiplr: 1.00

MS Integration Params: rteint.p

Method : C:\HPCHEM\2\METHODS\CLPB7-30.M (RTE Integrator)
Title : 95-2,2uL INJ.,HP5MS25MM ID X 30M X 0.25uM THICK

Last Update : Tue Jul 31 07:52:36 2001 Response via : Multiple Level Calibration

Min. RRF : 0.010 Min. Rel. Area : 10% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 500%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
40	ACENAPHTHYLENE		1.841	
41	3-NITROANILINE	0.475		13.3 140 0.01
	ACENAPHTHENE	1.281		9.4 143 0.01
	2,4-DINITROPHENOL	0.219		32.9 134 0.00
	4-NITROPHENOL	0.257		27.6 124 0.00
	DIBENZOFURAN	1.875		10.1 139 0.01
	•	0.552		23.7 128 0.01
47	DIETHYL PHTHALATE		1.359	
48	FLUORENE		1.207	
49 🏲	4-CHLOROPHENYLPHENYLETHER	0.726	0.644	11.3 140 0.01
	PHENANTHRENE-d10	1.000	1.000	
		0.147		
52	4-NITROANILINE	0.176	0.183	
5 3	2-METHYL-4,6-DINITROPHENOL			
54	N-NITROSODIPHENYLAMINE	0.600		
	4-BROMOPHENYLPHENYLETHER	0.283		
56	HEXACHLOROBENZENE	0.304		
	ATRAZINE	0.288		
	PENTACHLOROPHENOL		0.144	
59	PHENANTHRENE		1.207	
60	ANTHRACENE		1.221	
	CARBAZOLE	1.144		
62	DI-N-BUTYL PHTHALATE		1.526	
63 C	FLUORANTHENE	1.377	1.164	15.5 108 0.00
64 I		1.000	1.000	0.0 93 0.00
65 m	PYRENE	1.649	1.550	
66 s	TERPHENYL-D14	1.288	1.431	
67	BUTYLBENZYL PHTHALATE		0.786	
68	3,3'-DICHLOROBENZIDINE		0.371	
69	BENZO (A) ANTHRACENE		1.320	
70	BIS-2-ETHYLHEXYL PHTHALATE		0.985	
71	CHRYSENE	1.388	1.269	8.6 92 0.00
72 I	PERYLENE-d12	1.000	1.000	0.0 101 0.00
73 c	DI-N-OCTYL PHTHALATE	2.876	2.579	10.3# 95 0.00
74	BENZO(B) FLUORANTHENE	2.079	1.907	8.3 99 0.00
75	BENZO (K) FLUORANTHENE	1.962	1.812	7.6 100 0.00
76 c	BENZO (A) PYRENE	1.843	1.665	9.7 102 0.00
77	INDENO(1,2,3-CD)PYRENE	1.470	1.325	9.9 105 0.00
				·0·0 5 0 6

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	FRIEND LA	ABORATORY, INC.	Contract: _		
Lab Code:	10252	_ Case No.:	SAS No.:	SDG No	o.: DOWELL
Lab File ID (Standard):	C5735.D		Date Analyzed:	07/18/01
Instrument ID	: MSD-C			Time Analyzed:	12:27
GC Column:	RTX-624	ID: 0.53 (m	m)	Heated Purge (Y	/N): Y

.]	IS1BCM		IS2DFB		IS3CB	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	4705923	8.43	15851531	10.34	13462499	15.83
UPPER LIMIT	9411846	8.93	31703062	10.84	26924998	16.33
LOWER LIMIT	2352962	7.93	7925766	9.84	6731250	15.33
NYSDEC SAMPLE NO.						
VBLKS1	4644488	8.42	15748884	10.34	13482847	15.83
VBLKS1MS	4919300	8.42	16461976	10.34	14011478	15.83
GPB-2	3455496	8.43	10704363	10.34	7539535	15.84
MW-8	4412402	8.43	14559795	10.34	11558564	15.84
GPB-3	3781337	8.43	10436633	10.35	7045551	15.84
TP-2#2	4358746	8.44	13356923	10.35	9452138	15.84
SUMP#1 RE	3953842	8.44	10529417	10.35	6435621*	15.84
RECT SUMP	3457339	8.43	10658643	10.34	6832642	15.83
GPB-2 MS	2750636	8.43	8187692	10.34	5330591 *	15.83
GPB-2 MSD	3259407	8.43	9366264	10.34	6116207*	15.83

IS1 BCM = Bromochloromethane
IS2 DFB = 1,4-Difluorobenzene
IS3 CB = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

00023

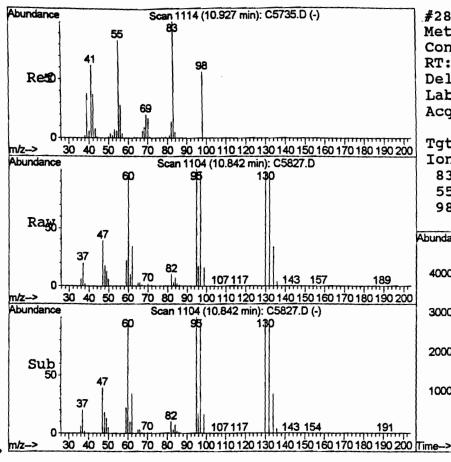
page 1 of 2 |

FORM VIII-CLP-VOA

eal 8/20/01

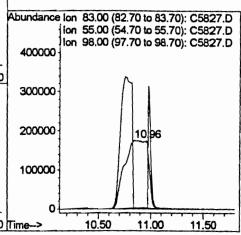
3C WATER SEMIVOLATILE BLANK SPIKE RECOVERY

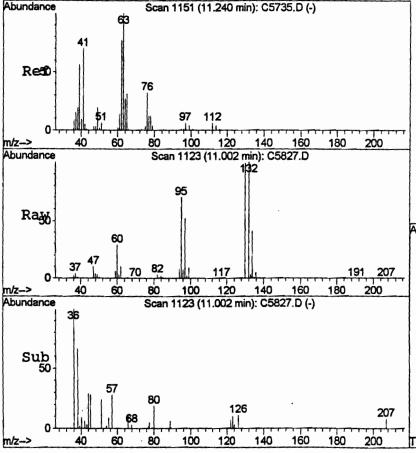
Lab Name:	FRIEND LABO	DRATORY, INC.	_ Contract:							
Lab Code:	10252	Case No.:	SAS No.:	_ SDG No.: _C	OWELL					
Matrix Spike - EPA Sample No. SRI K57MS										


	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
COMPOUND	(ug/L)	(ug/L)		REC#	REC.
Phenol	75		60	80	12 - 110
2-Chlorophenol	75		62	83	27 - 123
N-Nitrosodi-n-propylamine	50		17 (34 *	41 - 116
4-Chloro-3-methylphenol	75		60	80	23 - 97
Acenaphthene	50		46	92	46 - 118
2,4-Dinitrotoluene	50		49	98 *	24 - 96
4-Nitrophenol	75		78	104 *	10 - 80
Pentachlorophenol	75		67	89	9 - 103
Pyrene	50		45	90	26 - 127

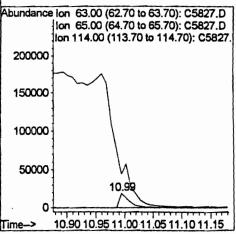
Column to be used to flag recovery values with an asterisk

Spike Recover	y: 3 out of 9 outside limits	•		
COMMENTS:				


^{*} Values outside of QC limits


12-2

#28
Methyl cyclohexane
Concen: 361.48 ug/L m
RT: 10.84 min Scan# 1104
Delta R.T. -0.08 min
Lab File: C5827.D
Acq: 23 Jul 01 6:47 am


Tgt Ion: 83 Resp:27502563
Ion Ratio Lower Upper
83 100
55 0.2 19.7 29.5#
98 0.0 16.0 24.0#

1,2-Dichloropropane
Concen: 3.54 ug/L
RT: 11.00 min Scan# 1123
Delta R.T. -0.22 min
Lab File: C5827.D
Acq: 23 Jul 01 6:47 am

Tgt Ion: 63 Resp: 246389 Ratio Ion Lower Upper 63 100 65 0.0 25.0 37.4# 2.2 114 0.0 3.4#

