

NELSON, POPE & VOORHIS, LLC

ENVIRONMENTAL · PLANNING

CHARLES J. VOORHIS, CEP, AICP • ARTHUR J. KOERBER, P.E. • VINCENT G. DONNELLY, P.E. VICTOR BERT, P.E. • JOSEPH R. EPIFANIA, P.E. • ROBERT G. NELSON, JR., P.E. PAUL M. RACZ, P.L.S.

July 16, 2002

Robert Stewart New York State Department of Environmental Conservation Division of Environmental Remediation Region 1 **Building 40-SUNY** Stony Brook, New York 11790

> Coral Graphics Re:

327 New South Road Voluntary Cleanup Program Monthly Progress Report

NP&V #01075

Dear Mr. Stewart:

Enclosed please find one (1) copy of the Monthly Progress Report for the above referenced project. If you should have any questions or require additional information please contact me at the number provided below.

Very truly yours,

NELSON, POPE & VOORHIS, LLC

Eric Arnesen, RPG

cc:

Bob Vitale

Larry Schnapf

Ken Keyser

Coral Graphics

Schnapf & Associates

Malcolm Pirnie, Inc.

Monthly Progress Report

Coral Graphics, Inc.

327 New South Road Hicksville, New York

NP&V Job No. 01075

June, 2002

Monthly Progress Report June, 2002

Coral Graphics, Inc.

327 New South Road Hicksville, New York

Prepared by:

Nelson, Pope & Voorhis, LLC 572 Walt Whitman Road 840 Broadway Hicksville, New York 11801

For Submission to:

Robert Stewart New York State Department of Environmental Conservation Division of Environmental Remediation Region 1 Building 40-SUNY Stony Brook, New York 11790

Bob Vitale Coral Graphics, Inc. 840 South Broadway Hicksville, NY 11801

Lawrence P. Schnapf, Esq. Schnapf & Associates 55 E. 87th St., 8th Floor New York , NY 10128

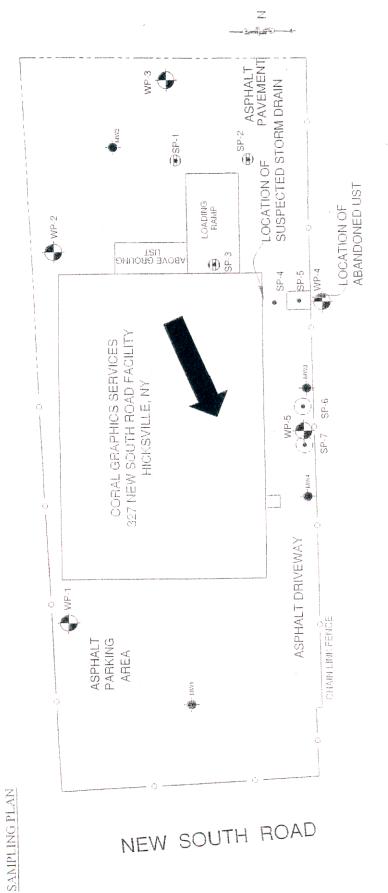
Monthly Progress Report

1.0 Introduction

The following documents the progress related to the Voluntary Cleanup Action at the Coral Graphics warehouse facility located at 327 New South Road in Hicksville, New York during the month of June, 2002. This report will summarize all field activities conducted, analytical results, regulatory agency interactions and upcoming investigative or reporting activities.

2.0 Field Activities

Phase I sampling activities were conducted by Nelson, Pope & Voorhis, LLC. (NP&V) at the subject site on June 4, 2002. On-site personnel present during these activities included the following:


Eric Arnesen – NP&V Project Manager Robert Stewart – NYSDEC Case Manager John Lovejoy – NCDH Case Manager Ben Tuthill – Impact Environmental Geoprobe Operator

Scheduled field activities included the collection of ten (10) subsurface soil samples from several on-site storm drains, former sanitary leaching pools and the area of the former fuel oil underground storage tank (UST). All sampling was conducted in accordance with the NYSDEC approved Voluntary Investigation Work Plan dated October, 2001. **Table 1** presents a summary of the sampling schedule initially prepared for the soil sampling conducted during Phase I activities. **Figure 1** depicts the on-site facilities and the location of each sample location.

Table 1
SAMPLING SCHEDULE

		Phase I So	il Sampling			
Sample ID	Sample Location	Sample Interval (ft)	Probe Interval (ft)	Sample Type	Sample Analysis	# of Samples
SP-1	Storm Drain	0-2 and 10-12	NA	Soil	8260, 8270, 6010	2
SP-2	Storm Drain	0-2 and 10-12	NA	Soil	8260, 8270, 6010	2
SP-3	Storm Drain	0-2 and 10-12	NA	Soil	8260, 8270, 6010	2
SP-4	Suspected Storm Drain	Continuous	0-20	Soil	8260, 8270, 6010	1
SP-5	Abandoned UST	Continuous	Unknown	Soil	8260, 8270, 6010	1
SP-6	Former Leaching Pool	Continuous	Unknown	Soil	8260, 8270, 6010	1
SP-7	Former Leaching Pool	Continuous	Unknown	Soil	8260, 8270, 6010	1
Duplicates	Storm Drain (SP-8)	NA	0-2	Soil	8260, 8270, 6010	1
MS/MSD	Storm Drain (SP-6)	NA	0-2	Soil	8260, 8270, 6010	1
Field Blanks		NA	NA	Water	8260, 8270, 6010	1
Trip Blanks	NA	NA	NA	NA	NA	1

Notes: Shaded samples not collected

HOTE: GENERAL DIRECTION OF GROUNDWATER ELEVATION S (MORTIC ROUND OF GROUNDWATER ELEVATION BEASUREMENTS COLLECTED ON JUNE 20, 2000. FOR MALOCILM PIRMEE PHASE II INVESTIBATION

LEGEND

SUSPECTED GROUNDWATER FLOW DIRECTION FORMER TEMPORARY MONITORING WELL

ABANDONED SANITARY SYSTEM LEACHING POOL

GEOPROBE SOIL SAMPLE LOCATION

PALBO POTE S'OCHIS

Source: Survey prepared by Albert W. Tay, LLS, June 26, 2000 Scale: 1" = 30"

All samples scheduled for collection were retrieved with the exception of the 0-2 foot (ft) and 10-12 ft from the drywell located in the warehouse building loading bay. Inspection of this drywell revealed it to be constructed with a solid bottom and no sediments were encountered. As a result no samples were collected from this location. Further inspection revealed an overflow pipe within the drywell orientated in a west to east direction and the discharge point for this overflow outfall could not be located. Other observations of note recorded during Phase I soil sampling activities revealed the presence of inflow and/or outfall piping within the two (2) drywells located in the eastern portion of the site (SP-1 and SP-2). Inspection of SP-2 exposed the presence of two (2) pipes respectively orientated in an easterly and northeasterly direction and were found to drain **into** SP-2. The origin of this piping could not be ascertained. Piping from SP-1 was found to consist of two (2) pipes respectively orientated in a easterly and north easterly direction. Piping orientated towards the east was found to drain **away** from the pool and piping orientated towards the northeast of the pool drained **into** the pool. The ends of these piping facilities also could not be determined.

3.0 Analytical Results

Analytical results from samples collected during Phase I sampling activities are summarized in **Tables 2** and 3 provided as attachments to this document.

4.0 Upcoming Activities

The next scheduled phase of work to be conducted at the site will consist of Geoprobe groundwater sampling at five (5) locations throughout the property and inspection of the warehouse building for floor drains and possible discharge points. Work will commence shortly after the NYSDEC is contacted to discuss a possible reduction in sampling parameters based on the soil sampling results received to date.

Attachments

Table 2
Soil Sampling Results (Volatiles and Semi-Volatiles)
Coral Graphics, 327 New South Road
Hicksville, New York

	IAGM				Sam	Sample ID				
	Standard (ug/KG)	SP01 0'-2'	SP01	SP02	SP02	SP04	SP05	SP06	SP07	SP08
Acetone) 		10,-12,	0,-2,	10,-12,	18'-20'	2'-4'	0'-2'	10'-12'	10'-12'
1 1 Districtions	200	ND	ON	ND	ND	ND	ND	36	ND ND	QN
1,1-Diciliorocularic	200	ND	ND	ND	ND	ND	ON	5.3	ON	ND
Semi-Volatile Organic										
Compounds										
Naphthalene	13,000	100 J	ON N	47 J	ND	ND	ND	ON	ON	N N
hthalene	36,400	740	N N	61 J	ON.	ND	f 69	ND	ON	QN
	41,000	170 J	9	61 J	QN.	ND	ND ND	QN.	ND	ND
	50,000	2,200	ON.	340 J	ND	ND	150 J	ON	ND	ON.
	100	950 J	QN	140 J	N ON	ND	ND	ON	ND	PR
Dibenzofuran	6,200	1,500	N	230 J	ND	ND	97 J	ON	ND	ND
Fluorene	50,000	3,000	ND	430	ND	ND	210 J	ND	ND ND	N
Phenanthrene	50,000	47,000	160 J	5,800 D	ND ND	41 J	1,500	150 J	140 J	80 J
	50,000	2,900	ND	530	ND	ND ND	200 J	ND	NO NO	QN
	NS	5,700 J	ND ND	650	ND	ND N	190 J	ND	ND	ND
Floranthene	50,000	65,000	320 J	12,000 D	ND	82 J	1,200	250 J	150 J	120 J
Pyrene	50,000	53,000	200 J	11,000 D	ND	55 J	1,500	1,900	110 J	81 J
Butylbenzylphthalate	50,000	210 J	ND ND	ON	ND	ND	63	460	ON	ND
Benzo(a)anthracene	224	17,000J	67 J	4,300 D	ND	ND	450	170 J	44 J	ND
Chrysene	400	26,000	190 J	5,500 D	ND	ND	029	260 J	83 J	56 J
Bis(2-Ethylhexyl)phthalate	50,000	1,200 B	78 JB	220 JB	60 JB	56 JB	130 JB	280 JB	83 JB	ND
Di-n-octyl phthalate	50,000	240 J	ND ND	N	R	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	1,100	27,000	150 J	11,000 D	ND	QN	420	420	56 J	ND
Benzo(k)fluoranthene	1,100	8,200 J	180 J	2,300 JD	ND ND	ON	750	120	ON	N)
Benzo(a)pyrene	61	18,000 J	120 J	4,300 D	ND	ND	460	CIN	52 J	Q.
Indeno(1,2,3-cd)pyrene	3,200	6,300 J	62 J	710	ON	ND	57 J	ON	ON	ND

Table 3
Soil Sampling Results (Metals)
Coral Graphics, 327 New South Road
Hicksville, New York

Analytical Compound	TAGM	Eastern USA					Sample ID				
Metals	Standard	Background (ug/KG)	SP01	SP01	SP02	SP02	SP04	SP05	90dS	SP07	SP08
	(ng/ka)	D	0,-5,	10,-12,	0,-2,	10'-12'	18'-20'	2,-4,	0,-2,	10'-12'	10'-12'
Aluminum	SB	33,000	1,320	652	637	364	1,600	3,290	730	1,080	1,390
Antimony	SB	N/A	0.89 B	ND ND	ND	0.30 B	0.31 B	0.83 B	0.55 B	$0.27\mathrm{B}$	0.33 B
Arsenic	7.5 or SB	3-12	1.2	0.48 B	0.85 B	1.2	1.6	4	2.2	0.72 B	0.89 B
Barium	300 or SB	15-600	11.1 B	2.6 B	11.8 B	1.3 B	7.1 B	15.8 B	6.2 B	5.9 B	6.3 B
Beryllium	0.16 or SB	0-1.7	0.06 B	0.07B	0.04 B	0.04 B	0.12 B	0.16 B	0.09 B	0.09 B	$0.09 \mathrm{B}$
Cadmium	0.1 or SB	0.1 or 1.0	0.58 B	0.08 B	0.22 B	ND	0.08 B	0.18 B	0.25 B	ND	ND
Calcium	SB	130-35,000	1,760	385 B	508 B	234 B	1,880	23,100	354 B	879	482 B
Chromium	10 or SB	1.5-40	7.1	1.8	4.8	4.8	10.3	6.5	4.4	2.9	6.1
Cobalt	30 or SB	2.5-60	1.0 B	0.34B	0.99 B	0.28 B	1.2 B	1.9 B	0.83 B	1 B	0.91 B
Copper	25 or SB	0.1-50	12.4	8.5	12.5	3	4	9	18.4	3.5	3.5
Iron	2,000 or SB	2,000-550,000	4,750	1,690	2,150	2,020	5,400	4,950	2,430	2,110	2,630
Lead	SB	200-500	15.5	0.99	17.7	0.25 B	0.45	64.5	80.4	0.93	0.80
Magnesium	SB	100-5,000	1,030	200 B	257 B	90.1 B	441 B	2,750	218 B	535	329 B
Manganese	SB	50-5,000	28.7	18.6	14.7	14.8	54.7	118	47.4	65.1	64.7
Mercury	0.1	0.001-0.2	ND	ND	ND	ND	0.01	0.03	0.02	QN N	ON
Nickel	13 or SB	0.5-25	4 B	0.72 B	1.9 B	0.62 B	2.3 B	3.8 B	3.3 B	1.4 B	1.4 B
Potasium	SB	8,500-43,000	137 B	50.7 B	52.9 B	35.2 B	122 B	171 B	51.4B	105 B	119 B
Selenium	2 or SB	0.1-3.9	ND ND	ND	ND	ND	ND	ND	ND	ON.	N N
Silver	SB	N/A	ON.	N	ND	ND	ND	ND	ND	ND	ND
Sodium	SB	6,000-8,000	129 B	77.8 B	109 B	73.1 B	129 B	85.7 B	111 B	99 B	54.4 B
Thallium	SB	N/A	ND	ND	ND	ND	ND	ND	ON	ON	ON
Vanadium	150 or SB	1-300	5.9 B	2.1 B	3.3 B	2.2 B	3.3 B	7.3	15.7	2.8 B	3.2 B
Zinc	20 or SB	9-50	55.9	12.4	51.1	17.5	8.2	18.6	37.9	5.9	6.5