

Write or Copy/Paste Document Title In This Space

report.VCP.V00433.2001-04-27.VIR RAWP ***DO NOT PHOTOCOPY. PRINT FROM PDF VERSION ONLY.***

Voluntary Investigation Report/ Remedial Action Workplan

Waters Edge 200 East Main Street Port Jervis, New York Site Identification # V00433-3

Prepared for City of Port Jervis Port Jervis, New York

By IVI Environmental, Inc. White Plains, New York

IVI Project No.: E1015676 March 30, 2001 Revised April 27, 2001

New York

105 Corporate Park Drive Suite 115 White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-1335 (fax) Washington, D.C. 7910 Woodmont Avenue Suite 310 Bethesda, Maryland 20814 (301) 907-0163 (tel) (301) 907-3352 (fax) Los Angeles 700 South Flower Street Suite 1520 Los Angeles, California 90017 (213) 896-0300 (tel) (213) 896-0149 (fax) Miami 444 Brickell Avenue Suite 700 Miami, Florida 33131 (305) 358-1776 (tel) (305) 372-1797 (fax)

Dallas

15305 N Dallas Pkwy Suite 300 Addison, Texas 75001 (972) 716-9300 (tel) (972) 716-9311 (fax)

March 30, 2001 Revised April 27, 2001 ENVIRONMENTAL, INC.

Environmental Engineers

Mr. Thomas L. Gibbons Engineering Geologist Division of Environmental Remediation 50 Wolf Road Albany, New York 12233 (518) 457-7924 (tel) (518) 457-4198 (fax)

Re: IVI Project No.: E1015676 Site Identification # V00433-3 Waters Edge 200 East Main Street Port Jervis, New York

Dear Mr. Gibbons:

IVI Environmental, Inc. (IVI) is pleased to provide this Voluntary Investigation Report (VIR)/Remedial Action Workplan (RAW) for the Waters Edge Property located in Port Jervis, New York.

This report summarizes our findings, describes applicable New York State Department of Environmental Conservation (NYSDEC) cleanup standards, and provides a Remedial Action Workplan. Please do not hesitate to call me at (914) 694-9600 if you have any questions regarding this VIR/RAW.

Sincerely,

IVI Environmental, Inc.

Charles B. Mulligan Jr. Project Manager

Reviewed by:

David R. Lent, CPG Assistant Manager, Phase II/III Department

CBM/gg

Reviewed by:

Carl de Stefanis, P.E President PROFESSI CARL N. de S

0582

 cc: R. Michael W orden, City of Port Jervis, Mayor Vince Lopez, City of Port Jervis, Dept. of Public Works John S. Hicks, City of Port Jervis, Corporate Counsel Robert Cozzy, NYSDEC Dan Bendall, NYSDEC Steve Bates, NYSDOH

Doug Olcott, Community Preservation Corporation

Jonah Mendelbaum, Waters Edge, LLC 105 Corporate Park Drive, Suite 115, White Plains, NY 10604 • 914-694-9600 (tel) • 914-694-1335 (fax) NEW YORK • CHICAGO • DALLAS • LOS ANGELES • MIAMI • SEATTLE • WASHINGTON, D.C.

TABLE OF CONTENTS

	er Sheet Ismittal		
			Page
EXE	CUTIV	E SUMMARY	1
1.0	INTI	RODUCTION	3
	1.1 1.2	Site Location and History Site Documentation	3 3
		1.2.1 Advanced Testing Corporation, Phase I Environmental Field Inspectio Report, July 6, 1998	n 3
		1.2.2 IVI Environmental, Inc., Phase I Environmental Site Assessment, August 21, 2000	4
		1.2.3 IVI Environmental, Inc., Phase II Environmental Site Assessment November 27, 2000	4
2.0	OBJI	ECTIVES OF VOLUNTARY INVESTIGATION	6
3.0	VOL	UNTARY INVESTIGATION SCOPE/ FIELD ACTIVITIES	7
	3.1	Geophysical Survey	7
	3.2	UST Assessment	7
	3.3	Monitoring Well Sampling	7
	3.4	Test Pit Investigation	7
	3.5	Geoprobe Investigation	8
	3.6	Sump Sampling	9
	3.7	Quality Assurance/Quality Control (QA/QC) Procedures	10
		3.7.1 Field QA/QC	10
		3.7.1.1 Calibration of Field Equipment	10
		3.7.1.2 Collection of Field QA/QC Samples	11
		3.7.1.3 Use of Disposable Field Sampling Equipment	11
		3.7.1.4 Sample Handling and Preservation	11
		3.7.1.5 Sample Custody	12
		3.7.1.6 Report Logs	13
		3.7.2 Laboratory QA/QC	13
		3.7.2.1 Sample Custody	14

IVI

TABLE OF CONTENTS - continued

I

			Page
4.0	VOL	UNTARY INVESTIGATION RESULTS	15
	4.1	Site Stratigraphy and Hydrogeology	15
		4.1.1 Topography	15
		4.1.2 Soils	15
		4.1.3 Geology	15
		4.1.4 Hydrogeology	15
	4.2	Assessment of Analytical Results	16
	4.2	4.2.1 UST Assessment Analytical Results	16
		4.2.2 Monitoring Well Analytical Results	17
		4.2.3 Test Pit Analytical Results	17
		4.2.4 Geoprobe Soil and Groundwater Analytical Results	17
		4.2.5 Transformer Area Assessment Analytical Results	18
		4.2.5 Transformer Area Assessment Analytical Results	18
			19
		4.2.7. Field QA/QC Samples	19
5.0	VOL	UNTARY INVESTIGATION SUMMARY AND CONCLUSIONS	20
	5.1	Site Soils	20
	5.2	Groundwater	20
	5.2		20
	5.5 5.4	Geophysical Survey UST Assessment	20
			20
	5.5	Interior Sump/Wastewater Discharge	
6.0	REC	OMMENDATIONS AND REMEDIAL ACTION SELECTION	22
	6.1	Recommendations	22
	6.2	Remedial Action Selection	22
		6.2.1 Analysis of Selected Remedial Technology	22
4		6.2.2 Compliance with SCGs	23
		6.2.3 Protection of Human Health and Environment	23
,		6.2.4 Short Term Effectiveness	23
		6.2.5 Long Term Effectiveness	23
		6.2.6 Reduction of Toxicity, Mobility, and Volume through Treatment	24
		6.2.7 Feasibility/Implementability	24
7.0	REM	EDIAL ACTION WORKPLAN	25
	7.1	Soil Can Remediation Action Plan	25
	7.1	Soil Cap Remediation Action Plan Underground Storage Tank Remedial Action Plan	25
			26
	7.3	In-Situ Physical Bio-Chemical Remedial Action Plan	26
		7.3.1 Plume Delineation	20
		7.3.2 Injection Point Installation.	
		7.3.3 Full Scale In-Situ Physical Bio-Chemical Remediation	28
		7.3.4 Injection Point Survey	29

•.

TABLE OF CONTENTS – continued

I

I

		7.3.5 Monitoring Confirmation Sampling Plan	29
	7.4	Community Air Monitoring Plan	29
		7.4.1 Volatile Organic Vapor Monitoring	30
		7.4.1.1Vapor Emissions Response Plan	30
		7.4.1.2 Major Vapor Emission Plan	31
		7.4.2 Particulate Vapor Monitoring	31
	7.5	Waste Management	31
		7.5.1 Groundwater	31
		7.5.2 Decontamination Water	31
		7.5.3 Disposable Sampling Equipment	32
8.0	QUA	LITY ASSURANCE PROJECT PLAN	33
	8.1	Field QA/QC	33
		8.1.1 Calibration of Field Equipment	33
		8.1.2 Collection of Field QA/QC Samples	33
		8.1.3 Use of Dedicated and Disposable Field Sampling Equipment	34
		8.1.4 Sampling Handling and Preservation	34
		8.1.5 Sample Custody	35
		8.1.6 Report Logs	36
	8.2	Laboratory QA/QC	36
		8.2.1 Sample Custody	36
9.0	COM	IPLETION OF REMEDIAL ACTION	38
	9.1	Remedial Action Report	38
	9.2	Future Use of Site	38
		9.2.1 Institutional Controls	38
10.0	SCH	EDULE	39
		List of Appendices	
	Appe	endix A Figures	
	Appe	endix B Tables	
	Appe	endix C Boring and Test Pit Logs	
	Appe	endix D Monitoring Well Sampling Data Log	
	Appe	endix E Voluntary Investigation Laboratory Reports	
	Sub-Appendix I Volatile Organic (8260)		
	Sub-Appendix II Volatile Organics (95-1)		
	Sub-Appendix III PAH		
		Appendix IV Semi-volatile Organics	
		Appendix V PCBS	
		Appendix VI Metals	
	Sub-	Appendix VII General Chemistry	

IVI

TABLE OF CONTENTS – continued

List of Figures

- Figure 1 USGS Topographic Map
- Figure 2 Sample Location Plan
- Figure 3 Total Chlorinated Volatile Organic Compounds (CVOC) in Groundwater Isopleth Map
- Figure 4 Proposed In-Situ Physical Bio-Chemical Remediation Injection Point Location Map
- Figure 5 Injection Point Construction Details

List of Tables

- Table 1Summary of Laboratory Results for Soil Samples
- Table 2
 Summary of Laboratory Results for Groundwater Samples
- Table 3
 Summary of Laboratory Results for Filtered Groundwater Samples
- Table 4
 Summary of Total Chlorinated Volatile Organic Compounds Groundwater

IVI

Contaminant Areas

EXECUTIVE SUMMARY

IVI Environmental Inc. (IVI) has prepared this Voluntary Investigation Report/Remedial Action Workplan (VIR/RAW) on behalf of the City of Port Jervis (City) to address soil and groundwater contamination at the Waters Edge property located at 200 East Main Street, Orange County, Port Jervis, New York (Subject). This VIR/RAW was prepared in accordance with the Voluntary Investigation Workplan completed by IVI dated February 6, 2001 and the Voluntary Investigation Workplan Addendum letter dated February 14, 2001.

This VIR/RAW was designed to supplement the results of all previous environmental assessments and investigations on the Subject. More specifically, the purpose of this VIR/RAW was to: 1) characterize the geologic and hydrogeologic conditions on the Subject; 2) further assess the nature and extent of contamination in soil and groundwater at the Subject; and 3) provide a Remedial Action Workplan to address the identified contamination.

The scope of this Voluntary Investigation (Investigation) included the following tasks: 1) a review of all previous environmental reports performed on the Subject; 2) an Underground Storage Tank (UST) assessment; 3) groundwater monitoring well sampling; 4) a Geoprobe investigation; 5) a test pit investigation; 6) a geophysical survey; and 7) sump sampling.

The Subject's groundwater has been contaminated by chlorinated volatile organic compounds (VOCs) and metals as a result of historical manufacturing operations conducted by Barrier Industries at the Subject. The results of this Investigation indicated that no VOC contamination was found within the Subject's soils. Minor Semi-VOC (SVOC) exceedances, less than one order of magnitude above applicable the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) No. 4046 Recommended Soil Cleanup Objectives (RSCOs), were detected within the soil samples collected from the southern portion of the site. This contamination is likely attributable to the small quantity of fill noted in this area. Additionally, minor metals exceedances, less than one order of magnitude above applicable RSCOs, were detected within localized areas of the Subject. No PCBs were identified within the soils in the vicinity of the former transformers.

Additionally, there is a chlorinated VOC contaminated groundwater plume containing levels of 1,1,1 trichloroethane (TCA), trichloroethylene (TCE) and cis-1,2, dichloroethylene (DCE), all above their respective NYSDEC Groundwater Quality Standards (GQSs), beneath the Subject. This plume is approximately 4.43 acres in size and appears to be migrating in the direction of groundwater flow towards the Neversink river. The area of highest contamination appears to be located on the north central portion of the site. No SVOC contamination in excess of GQSs was detected on-site. Additionally, minor metals contamination was detected within the Subject's groundwater. Specifically, aluminum, antinomy, cobalt, iron, and manganese concentrations were detected above their respective GQSA. With the exception of manganese, the metals were detected at concentrations of less than one order of magnitude above their respective GQSs. Further, within ten of the twelve groundwater samples collected, the pH of the Subject's groundwater was found to be slightly lower than its GQS.

EXECUTIVE SUMMARY- continued

No anomalies were detected during the geophysical survey around the perimeter of the abandoned residential structure. In addition, our field investigation revealed the presence of a natural gas-fired boiler within the basement of the building. Further, no fill or vent pipes were noted on or around the structure. As such, it is not suspected that an UST is present in the vicinity of the residential structure.

An out-of-service underground storage tank (UST) is located adjacent to the boiler building. The tank was found to contain approximately 3' of liquid, observed to be primarily water, although a slight odor and sheen was noted. No visually impacted soil was noted during test pit or soil boring activities in the area. Soil and groundwater samples collected from the area indicated no detectable levels of petroleum contamination were found in the vicinity of the UST. As such, this tank is not suspected to have had a significant impact on the Subject's soil and groundwater.

A sump, located in the northern portion of the warehousing building, identified during a walkthrough of the building was found to contain high concentrations of 1,1-dichlorethane (DCA) and 1,1,1trichloroethane (TCA). IVI estimates the volume of liquid/sludge within this sump to be approximately 5-gallons. Based on conversations with representatives of the City of Port Jervis Department of Public Works and the prospective property developer, there are no subsurface disposal systems on-site, and all wastewater is discharged to the municipal system. This fact was further confirmed by direct observation of a wastewater pumping station located on the southern portion of the Subject.

Based on the results of this Investigation, a Remedial Action Plan consisting of the following activities is recommended: 1) the construction of a soil cap of clean fill to minimize exposure potential; 2) the removal of the out-of-service UST; 3) the installation of monitoring wells to further delineate the chlorinated VOC contaminated groundwater plume; 4) the installation of in-situ physical bio-chemical remediation injection points; 5) full scale in-situ physical bio-chemical remediation; 6) a monitoring well and injection point survey; 7) performance of post-remediation groundwater sampling; and 8) preparation of a Remedial Action Report following the completion of the monitoring program, which summarizes the overall findings of this program.

Waters Edge 200 East Main Street Port Jervis, New York

1.0 INTRODUCTION

1.1 Site Location and History

The Subject is located at 200 East Main Street in Port Jervis, Orange County, New York. The Subject is identified on local tax maps as Section 14, Block 6, Lot 28. The property, which is situated in a suburban area characterized by residential and commercial retail and office development, consists of an approximately 7-acre parcel improved with an approximately 80-year-old, 100,000 SF vacant industrial facility. Barrier Industries manufactured industrial janitorial chemicals on-site from 1978 until December 1993. The site was first developed prior to 1921 with a silk mill and several storage and residential buildings. Site improvements include three separate buildings, including a house, interconnected production and storage buildings, and a boiler building. The buildings are of slab-on-grade and basement construction, and the superstructures are of structural steel and masonry bearing walls. The Subject is serviced by public water and sanitary sewers.

The site slopes gently from the northwest to southeast. According to the United States Geological Survey (USGS) *Port Jervis South, NY, NJ, PA* 7.5 Minute Series topographic map, the Subject's topographic elevation ranges from 450' to 430' above mean sea level (msl).

A Sample Location Map depicting the property lines, building outlines, and boring, test pit and monitoring well locations on the Subject is included as Figure 2 in Appendix A.

1.2 Site Documentation

A chronological list and summary of previous environmental reports prepared on the Subject is presented below.

1.2.1 Phase I Environmental Field Inspection Report, dated July 6, 1998, prepared by Advanced Testing Corporation (ATC) on behalf of Warwick Properties

According to this report, the Subject was the site of Barrier Systems, which manufactured institutional cleaning supplies and floor waxes. ATC noted some asbestos-containing pipe insulation within the buildings and also stated that lead based paint (LBP) may be present on painted surfaces. Additionally, ATC advanced six test pits to depths of 6' to 8' bgs on the Subject. A total of two composite soil samples were collected from the test pits and analyzed for EPA Priority Pollutants. With the exception of chromium, copper, lead, nickel, and zinc, no contaminants were detected above laboratory Method Detection Limits (MDLs). According to this report, ATC was informed by a New York State Department of Environmental Conservation (NYSDEC) representative that the concentrations of the metals identified were considered normal background levels.

1.0 INTRODUCTION – continued

ATC concluded that based on the sampling data, the on-site soils were generally free of pollutants and would not present a hazard to persons exposed during construction activities. ATC further recommended that the soils be visually monitored as work progresses and additional evaluation be conducted should conditions significantly different from those observed in their investigation be encountered.

1.2.2 Phase I Environmental Site Assessment (ESA) dated August 21, 2000 prepared by IVI Environmental, Inc. on behalf of Community Preservation Corporation.

According to this report, the site was formerly improved with the Barrier Facility, prior to which the site was improved with a silk mill. This report identified numerous recognized environmental conditions in conjunction with the Subject. The issue of primary concern was the historical manufacturing of cleaning supplies. According to this report, an estimated 15,000 drums, pails, lab chemical containers, and approximately 200 storage tanks and reactor vessels of hazardous wastes, chemical products, and product precursors were abandoned in the facility, in trailers, and outside the building when the company filed for bankruptcy.

Chemicals discovered on site included various acids and volatile organic compounds including 1,1,1 trichloroethane (TCA) and toluene. Several complaints and chemical releases were reported and finally, after freezing temperatures caused water pipes and drums to burst, the NYSDEC investigated the site and initiated an emergency removal and cleanup action. This led to the inclusion of the Subject on the USEPA CERCLIS and NYSDEC Inactive Hazardous Waste Disposal Sites databases. The drums were overpacked, sorted, categorized, and shipped off site for disposal. The cleanup was turned over to the USEPA and completed in 1995. Additionally, a monitoring well, indicating previous investigation, was noted on Lot 2 of the Subject. Finally, an abandoned UST was noted adjacent to the boiler building on Lot 3.

Based on these findings, IVI recommended that a subsurface investigation be conducted on the Subject. IVI also noted the possible presence of asbestos-containing materials and LBP.

1.2.3 Phase II Environmental Site Assessment (ESA), dated November 27, 2000, prepared by IVI Environmental, Inc. on behalf of the Community Preservation Corporation.

IVI conducted a Phase II ESA on the Subject in November 2000 to address the areas of environmental concern identified in the Phase I ESA described above. This Assessment consisted of the advancement of five borings and the collection and analysis of five soil samples and three groundwater samples. The soil samples were analyzed for volatile and semi-volatile organic compounds (VOCs and SVOCs) in accordance with EPA Methods 8260C and 8270 (base neutrals only), respectively.

1.0 INTRODUCTION – continued

Additionally, three of the five soil samples were also analyzed for SVOCs (acid extractables) and pesticides, via EPA Methods 8270 and 8081, respectively. The groundwater samples were analyzed for VOCs, SVOCs, pesticides, priority pollutant metals (PPMs), and pH in accordance with EPA Methods 8260, 8270, 8081, 200.7 (245 for mercury), and 305, respectively.

The analytical results of the soil samples indicated that no VOCs, SVOCs, or pesticides were present above laboratory MDLs in the soil samples collected. The analytical results of the groundwater samples indicated that six VOCs were present above their respective laboratory MDLs in the samples collected. Specifically, 1,1,1-TCA at 30 parts per billion (ppb), 1,1-dichloroethane (DCA) at 3 ppb, chloroform at 3 ppb, p&m xylenes at 2 ppb, tetrachloroethylene (PCE) ranging from 2 to 12 ppb, and trichloroethylene (TCE) ranging from 5 to 67 ppb were detected in the Subject's groundwater. In addition, the concentrations of 1,1,1-trichloroethane, PCE, and TCE exceeded their respective NYSDEC Groundwater Quality Standard (GQS) of 5 ppb given in 6 NYCRR Chapter X Part 703. Only one SVOC, diethylphthalate at 13 ppb, was detected in the groundwater samples. However, the concentration of diethylphthalate detected was below its NYSDEC GWQS of 50 ppb.

Additionally, eleven metals were detected in the Subject's groundwater, seven of which exceeded their respective NYSDEC GQS. Specifically, arsenic at concentrations up to 0.075 parts per million (ppm), beryllium at concentrations up to 0.031 ppm, cadmium at concentrations up to 0.014 ppm, chromium at concentrations up to 0.824 ppm, copper at concentrations up to 0.699 ppm, lead at concentrations up to 3.55 ppm, nickel at concentrations up to 0.589 ppm, and selenium at concentrations up to 0.2 ppm were found in excess of their respective NYSDEC GQS of 0.025 ppm, 0.003 ppm, 0.005 ppm, 0.05 ppm, 0.2 ppm, 0.1 ppm, and 0.01 ppm. Additionally, the pH of the Subject's groundwater ranged from 1.6 to 5.84, which was outside the NYSDEC GQS range of 6.5 to 8.5. Of note, based on the results of the subsequent groundwater sampling, it appears that the low pH readings are anomalous readings. No pesticides were present above laboratory MDLs in the samples collected.

2.0 OBJECTIVES OF VOLUNTARY INVESTIGATION

As a result of the AOCs identified from previous environmental assessments and investigations conducted on the Subject, the Subject site was accepted into NYSDEC Voluntary Cleanup Program (VCP) and was issued Site Identification No. V00433-3.

Subsequently, IVI attended an on-site meeting with the NYSDEC, the prospective property developer, and representatives of the City on January 18, 2001 to agree on a Scope of Work for further investigation of the Subject, which would enable the City to obtain a No Further Action (NFA) letter from the NYSDEC. Pursuant to the items discussed at the January 18 meeting, IVI prepared and submitted to the NYSDEC a detailed Voluntary Investigation Workplan (Workplan) dated February 6, 2001. The NYSDEC reviewed the Workplan and provided comments in a letter dated February 14, 2001. IVI provided the NYSDEC with the Workplan Addendum Letter dated February 14, 2001, which addressed the issues raised in their February 14 letter.

This VIR/RAW was designed to supplement the results of all previous environmental assessments and investigations conducted on the Subject. More specifically, the objectives of this VIR/RAW are: 1) to characterize geologic and hydrogeologic conditions on the Subject; 2) to further assess the contamination in soil and groundwater at the Subject; and 3) provide a Remedial Action Workplan to address the identified contamination.

The scope of this Voluntary Investigation (Investigation) consisted of the following tasks: 1) an UST assessment; 2) groundwater monitoring well sampling; 3) a Geoprobe investigation; 4) a test pit investigation; 5) a geophysical survey; and 6) sump sampling. A sample location plan depicting each boring and test pit location is provided as Figure 2 in Appendix A. All field activities were conducted from February 20, 2001 through February 23, 2001 and were performed by an engineer/geologist representing IVI. In addition, a representative of the NYSDEC was on-site during the field activities. The field activities are discussed in further detail below:

3.1 Geophysical Survey

IVI conducted a geophysical survey to determine the location of the abandoned UST, whether any USTs associated with the abandoned residential structure were present, and to identify the locations of the two existing monitoring wells. Specifically, IVI screened the area of the abandoned UST, around the perimeter of the abandoned residential structure, and the suspected area of the existing monitoring wells using a metal detector capable of identifying ferrous and non-ferrous metal objects.

3.2 UST Assessment

IVI excavated four test pits (TP-7, TP-8, TP-9 and TP-10) around the abandoned UST, located adjacent to the boiler building, to delineate potential petroleum contamination, should any exist. All soil was visually inspected for evidence of contamination and screened for VOCs with a photoionization detector (PID). Test pits TP-7 through TP-9 were advanced to approximately 16' below ground surface (bgs) below the invert of the UST. Of note, soil observed to be slightly moist at approximately 14.5' bgs. The UST was identified during the excavation of TP-9, approximately 20' south of the previously reported location. As such, test pit TP-10 was excavated to 6' bgs to confirm that no tank was present in the reported location. No visual evidence of contamination was observed within any of the excavations. However, low PID readings up to 50 ppm were observed in soils from TP-7 and TP-9. A total of three soil samples were collected, one from each test pit TP-7, TP- 8, and TP-9.

Soil samples collected were transferred to appropriate sample containers, packed on ice in a cooler, and sent to an Environmental Laboratory Approval Program (ELAP), Contract Laboratory Protocol (CLP) – certified laboratory for analysis. Laboratory analysis included VOCs and SVOCs in accordance with the NYSDEC Spill Technology and Remediation Series (STARS) Memo #1, protocols.

3.3 Monitoring Well Sampling

As described in Section 3.1 above, IVI attempted to locate the two monitoring wells reported to be present on-site. However, only one monitoring well was identified. IVI collected a groundwater sample from the existing monitoring well on February 21, 2000. Prior to sampling, IVI inspected the well and obtained measurements of water

level and well bottom to determine well volumes. The well was then purged, utilizing a dedicated and disposable polyethylene bailer, of three to five well volumes to obtain groundwater samples that are representative of the aquifer conditions.

IVI collected water quality parameter readings, including dissolved oxygen (DO), pH, specific conductance, turbidity and temperature, prior to purging, and following the second and all subsequent well volume purges. Purging continued until successive readings were within ten percent. Copies of the Monitoring Well Purging and Sampling Data Logs are provided in Appendix D.

The groundwater sample was transferred to appropriate sample containers, packed on ice in a cooler, sent for analysis to an ELAP, CLP-certified laboratory, and analyzed via NYS Analytical Service Protocol (ASP) for 95-1 (VOCs), 95-2 (SVOCs) (acid extractables only), and CLP metals. All samples were collected and managed in accordance with good and customary engineering protocols.

3.4 Test Pit Investigation

IVI excavated six test pits (TP-1 through TP-6) on the southwestern portion of the site. The test pits were advanced to a depth of 6' bgs. All soil removed was visually inspected for evidence of contamination and screened for VOCs with PID. No visual evidence of contamination was observed within any of the excavations. However, low PID readings, up to 75 ppm, were observed in soils from test pits TP-3 and TP-4. A total of three soil samples, one from test pits TP-3 at 5'-6' bgs, TP-4 at 5'-6' bgs, and TP-6 at 5'-6'bgs, were collected. The soil samples were transferred to appropriate sample containers, packed on ice in a cooler, sent for analysis to a certified laboratory, and analyzed via NYS ASP for 95-1 (VOCs), and 95-2 (SVOCs, base neutrals and acid extractables). The soil samples collected from test pits TP-3 and TP-6 were also analyzed for CLP Metals.

3.5 Geoprobe Investigation

IVI advanced 14 borings on the Subject using Geoprobe equipment. Specifically, the following borings were advanced: 1) six borings (B-6 through B-11) along the southern property line; 2) two borings (B-12 and B-13) inside the Subject's building near IVI's previous boring B-4; 3) one boring (B-14) in the northwest corner of the Subject where acids were stored; 4) one boring (B-17) downgradient of the out-of-service UST; 5) one boring (B-18) in the vicinity of the reported location of the second monitoring well; 6) one boring (B-19), adjacent to product distribution lines; 7) one boring (B-20) inside the manufacturing building; and 8) one boring (B-21) on the northern portion of the property along East Main Street. Additionally, two borings (B-15 and B-16) were advanced in the vicinity of the transformer sub-station area utilizing manual equipment.

Each boring (except borings B-15, B-16, and B-19) was advanced from the ground surface to approximately 4' to 6' below the soil/groundwater interface, which was located approximately 14' to 24' bgs. Borings B-15 and B-16 were advanced to a depth of 2' bgs, and boring B-19 was advanced to a depth of 4' bgs. At boring locations B-6, B-7, B-8, B-13, B-19 and B-21, continuous soil samples were collected using 4' long macrocore samplers and screened in the field for VOCs using a PID.

One soil sample from each boring (B-6, B-7, B-8 and B-13) was collected at the interval that indicated the highest level of contamination based on field screening results. No evidence of contamination was detected within borings B-19 or B-21 and as such, no soil samples were collected from this area.

Soil samples collected from boring B-6, B-7, B-8, and B-13 were analyzed via NYS ASP 95-1 (VOCs), 95-2 (SVOCs) (acid extractables), and CLP-metals. Additionally, the soil samples collected from borings B-8 and B-13 were also analyzed for 95-2 (SVOC) (base neutrals). Finally, soil samples collected from borings B-15 and B-16 analyzed via ASP 95-3 for PCBs.

Following completion of the borings and soil sampling activities, a groundwater sample was obtained from each boring, except B-15, B-16, and B-19, utilizing either hydropunch sampling equipment or a temporary wells constructed of 1" diameter PVC screen and riser, peristaltic pumps, check valves and dedicated and disposable polyethylene tubing, from each boring location (except borings B-15, B-16 and B-19).

Each groundwater sample was transferred to appropriate sample containers, packed on ice, and analyzed via NYS ASP for 95-1 (VOCs), 95-2 (SVOCs) (acid extractables only), CLP-metals and EPA Method 305 for pH. Of note, groundwater samples collected for metals analysis were collected within unpreserved containers and selected samples (borings B-8, B-9, B-11, B-12, B-13, B-14, and B-18) were filtered by the lab prior to analysis. However, due to laboratory error, the samples were mistakenly preserved prior to filtration, effectively negating the effect of filtration. As such, borings B-6, B-8, B-9, B-12, B-13, and B-18 were resampled for proper reanalysis on March 22, 2001. Additionally, the groundwater samples collected from boring B-20 and B-21 were analyzed only for VOCs via NYS ASP 95-1.

3.6 Sump Sampling

Although not originally detailed in the Voluntary Investigation Workplan, a sump, containing approximately five gallons of an unknown liquid, was observed within the manufacturing building. At the request of the on-site NYSDEC representative, IVI collected a sample of this liquid utilizing a disposable polyethylene bailer. This sample was analyzed via NYS 95-1 (VOCs).

3.7 Quality Assurance/Quality Control (QA/QC) Procedures

QA/QC procedures were used to provide performance information with regard to accuracy, precision, sensitivity, representativeness, completeness, and comparability associated with the sampling and analysis activities conducted as part of this Investigation. Field QA/QC procedures were used to ensure that samples collected were representative of the actual conditions of the Subject and did not contain contaminants introduced either from the field activities or from sample transit.

Laboratory QA/QC procedures and analyses were used to demonstrate whether analytical results were biased either by interfering compounds present in the sample matrix or by laboratory techniques that may have introduced systematic or random errors to the analytical process. A summary of the field and laboratory QA/QC procedures that were followed as part of this investigation is given below.

3.7.1 Field QA/QC

Field QA/QC included the following procedures: 1) calibration of field equipment; 2) the collection of duplicate, trip, and field blank samples; 3) the use of dedicated and disposable field sampling equipment; 4) proper sample handling and preservation; 5) proper sample custody; and 6) the completion of report logs. A description of each of these procedures is provided below.

3.7.1.1 Calibration of Field Equipment

All field analytical equipment used, including the PID and water quality analyzer, were properly calibrated in accordance with manufacturer's recommendations and good and customary practices.

3.7.1.2. Collection of Field QA/QC Samples

Trip blanks were prepared by the certified laboratory with deionized laboratory grade water, and one blank accompanied all sample shipments to the laboratory. The water used was from the same source as that used for the laboratory method blank. The trip blanks were handled and transported in the same manner as the samples collected, which it accompanied. Trip blanks were analyzed for TCL VOCs in accordance with NYS 95-1 to identify the presence of cross-contamination as a result of sample shipment, for example, contaminated from the air, shipping containers, or from other items coming into contact with the sample bottles.

Field blanks were prepared to ensure that samples collected were representative of the actual condition of the Subject and did not contain contaminants introduced from the field activities. Specifically, one field blank was collected per day by pouring or pumping laboratory supplied deionized water, over or through sampling equipment utilized, into appropriate sampling jars. The field blanks were analyzed for the same parameters as the soil and groundwater samples with the exception of pH.

3.7.1.3. Use of Disposable Field Sampling Equipment

Disposable sampling equipment, including latex gloves and disposable bailers and tubing, were used to prevent cross-contamination between samples. Field screening equipment, such as the water quality analyzer probe, was decontaminated after each sample by washing it with laboratory grade Alconox detergent and deionized water, and thoroughly air-drying equipment.

3.7.1.4. Sample Handling and Preservation

For each sample, a sufficient volume was collected to allow the specified analytical method to be performed according to protocol and to provide sufficient sample for reanalysis if necessary. Because plasticizers and other organic compounds inherent in plastic containers may contaminate samples requiring organic analysis, samples were collected in glass containers.

Appropriate sample preservation techniques, including cold temperature storage at 4° C, was utilized to ensure that the VOCs in the samples analyzed by the laboratory did not volatilize from the time the sample was collected in the field.

Samples were analyzed within proper holding times to ensure the integrity of the analytical results. Groundwater samples collected for VOC analysis were bottled with zero headspace to prevent premature loss of VOCs from diffusion into existing airspaces above the samples. This was accomplished by filling VOC vials used to collect aqueous samples until groundwater overflowed the top of the vial, screwing the cap on tightly, and turning the vial upside down to ensure that no air bubbles were trapped inside.

3.7.1.5 Sample Custody

Sample handling in the field conformed to appropriate sample custody procedures. Field custody procedures included proper sample identification, chain-of-custody forms, and packaging and shipping procedures. Sample labels were attached to all sampling bottles before field activities began to ensure proper sample identification. Each label identified the site and sample location.

Each cooler was lined with two 6-mil thick plastic bags. Bubble wrap was used to absorb shock and prevent breakage of sample containers. VOC vials were packaged inside a plastic "Ziplock" bag prior to placement inside the cooler. Ice or ice packs were placed in between the plastic bags for sample preservation purposes.

After each sample was collected and appropriately identified, the following information was entered onto the chain-of-custody form: 1) site name and address; 2) sampler(s)' name(s) and signature(s); (3) names and signatures of persons involved in the chain of possession of samples; 4) sample number; 5) number of containers; 6) sample location; 7) date and time of collection; 8) type of sample, sample matrix and analyses requested; 9) preservation used (if any); and 10) any pertinent field data collected (pH, temperature, conductivity, and DO.

The sampler signed and dated the "Relinquished" blank space prior to removing one copy of the custody form and sealing the remaining copies of the form in a Ziplock plastic bag taped to the underside of the sample cooler lid. After sample containers were sufficiently packed and the chain-of-custody form completed, the 6-mil plastic bags were sealed around the samples by twisting the top and securely taping the bag closed to prevent leakage. A sample custody seal was placed around the neck of the bag, which included the signature of the project manager and the date.

The sample cooler was sealed with tape prior to delivery or shipment to the certified laboratory. Additionally, sample custody seals were placed around the cooler lid to detect unauthorized tampering with samples following collection and prior to the time of analysis. The seals were attached in such a way that it would be necessary to break them in order to open the container. Seals were affixed at the time of sample packaging and included the signature of the project manager and the date.

Samples were hand delivered to the certified laboratory and were packaged and labeled for shipment in compliance with current U.S. Department of Transportation (DOT) and International Air Transport Association (IATA) dangerous goods regulations.

3.7.1.6 Report Logs

The following project logs were completed during the course of this investigation: 1) field logs, 2) boring logs, and 3) monitoring well purging and sampling data logs. A field log was completed on a daily basis which described all field activities including: 1) project number, name, manager, and address; 2) date; 3) weather; 4) attendees on-site and associated affiliations; 5) description of field activities; and 6) all pertinent sample collection information including sample identification numbers, description of samples, location of sampling points, number of samples taken, method of sample collection and any factors that may affect its quality, time of sample collection, name of collector, and field screening results.

Boring logs were completed during the advancement of each boring onsite. The following information was recorded on each data log: 1) project number, name, manager, and location; 2) boring number; 3) soil classification; 4) depth of boring; 5) depth of soil/groundwater interface; 6) date; 7) drilling method; and 8) drilling company.

A monitoring well purging and sampling data log was completed following purging and sampling of each monitoring well. The following information was recorded on each data log: 1) project number, name, manager, and location, 2) monitoring well number, 3) well casing diameter and stick-up height, 4) depth of well from top of well casing and roadbox, 5) date, 6) time, 7) water analyzer used, 8) distance from top of well casing to water and free product, and 9) the pH, temperature, conductivity, and DO content associated with each monitored well volume removed.

3.7.2 Laboratory QA/QC

A CLP-certified laboratory was used for all sample analyses performed as part of this investigation. This laboratory followed all applicable NYSDEC analytical laboratory QA/QC protocols and procedures. Additionally, laboratory QA/QC sample custody procedures followed is provided below.

3.7.2.1. Sample Custody

All samples were delivered to the CLP-certified laboratory via hand delivery. Samples were received by laboratory personnel whom inspected the sample cooler(s) to check the integrity of the custody seals. The cooler(s) were then opened, the samples unpackaged and the information on the chain-of-custody form examined.

If the samples shipped matched those described on the chain-of-custody form, the laboratory sample custodian signed and dated the form on the next "Received" blank and assume responsibility for the samples. If problems were noted with the sample shipment, the laboratory custodian would have signed the form and recorded problems in the "Remarks" box. The custodian would then have immediately notified the Project Manager so appropriate follow-up steps could be implemented on a timely basis. All samples were then logged into a sample log book and/or computerized information system. The following information was recorded: 1) date and time of sample receipt; 2) project number; 3) field sample number; 4) laboratory sample number (assigned during log-in procedure); 5) sample matrix; 6) sample analytical parameters; 7) storage location; and 8) log-in person's initials. A record of the information detailing the handling of a particular sample through each stage of analysis was provided by the completion of a laboratory chronicle form. The following information was included on this form: 1) job reference; 2) sample matrix; 3) sample number; 4) date sampled; 5) date and time received by laboratory; 6) holding conditions; 7) analytical parameters; 8) extraction date, time and extractor's initials (if applicable); 9) analysis date, time, and analyst's initials; and 10) QA batch number, date reviewed, and reviewer's initials.

All information relevant to the samples was secured at the end of each business day. All samples were stored in a designated sample storage refrigerator, access to which was limited to laboratory employees.

4.0 VOLUNTARY INVESTIGATION RESULTS

4.1 Site Stratigraphy and Hydrogeology

4.1.1 Topography

According to the USGS *Port Jervis South, NY, NJ, PA* 7.5 Minute Series topographic map, the Subject's topographic elevation ranges from 450' to 430' above mean sea level (msl). The Subject slopes gradually from the northwest to the southeast. A topographic map is included as Figure 1 in Appendix A.

4.1.2 Soils

IVI reviewed a letter report pertaining to test pits excavated at the Subject prepared by Advance Testing Company, Inc. on behalf of Warwick Properties dated July 6, 1998. This report stated that soils at the site consist of fill material composed of silty sand, gravel, cinders, and traces of brick. According to the October, 1981 *Soil Survey of Orange County, New York* issued by the United States Department of Agriculture, Soil Conservation Service, the soils at the site are classified as sandy loam or gravelly sandy loam of the Basher, Otisville and Hoosic series. Permeability of these soils is moderate to rapid. Subsurface soils encountered during this Investigation were composed of fine to coarse brown sand with moderate quantities of clay and silt.

4.1.3 Geology

According to the aforementioned Soil Survey, parent material of soils in Orange County is typically glacial till with some soils forming form alluvium. Based on review of the *Geologic Map of New York*, prepared by the University of the State of New York dated 1989, the Subject's surficial geology is comprised of recent deposits, consisting of fine sands and silt to gravel. Additionally, according to the *Geologic Map of New York* prepared by the University of the State of New York dated 1970, the Subject is underlain by the Middle Devonian-aged Hamilton Group, of the Valley and Ridge Province. This information is primarily comprised of shales and sandstones. Bedrock was not encountered during this investigation and is anticipated to be located more than 20' below ground surface (bgs).

4.1.4 Hydrogeology

The nearest surface water body is the Neversink River, which is located adjacent to the Subject's southeast property boundary and flows south towards the Delaware River. Groundwater was encountered at depths ranging between 25' bgs, on the northern portion of the Subject, to 16' bgs on the southern portion. Given the topography of the site, groundwater flow is anticipated to be from the north to the south.

4.0 VOLUNTARY INVESTIGATION RESULTS

4.2 Assessment of Analytical Results

The analytical results of all soil and groundwater samples collected on the Subject are summarized on Tables 1, 2, and 3, respectively, in Appendix B. The soil analytical results, with the exception of soils collected from test pits TP-7, TP-8, and TP-9, were compared to the NYSDEC Technical Administrative Guidance Memorandum (TAGM) 4046 Recommended Soil Cleanup Objectives (RSCO). Samples collected from TP-7, TP-8, and TP-9 to address the UST were compared to the NYSDEC STARS Memo #1 Toxicity Characteristic Leaching Procedure (TCLP) Alternative Guidance Values (AGVs). Groundwater analytical results were compared to the NYSDEC GQS. The complete laboratory report is presented in Appendix E.

4.2.1 UST Assessment Analytical Results

A total of three soil samples were collected and analyzed for STARS list VOCs and SVOCs from three of the four test pits (TP-7, TP-8, and TP-9). In addition, a groundwater sample was collected and analyzed for the same parameters from Geoprobe boring B-17, which was advanced in the vicinity of the out-of-service UST.

The analytical data of the soil and groundwater samples indicate no levels of STARS list VOCs or SVOCs above laboratory method detection limits (MDLs) were found.

4.2.2 Monitoring Well Analytical Results

One groundwater sample was collected from monitoring well MW-1 on February 21, 2001 and analyzed for VOCs, SVOCs (acid extractables), CLP Metals, and pH.

The analytical results of the groundwater sample indicated no levels of VOCs in excess of laboratory MDLs were found. One SVOC, bis(2-ethyhexyl)phthalate, was detected at a concentration of 1.3 ppb, which is well below its GQS of 5 ppb. However, 22 metals were identified with the groundwater sample collected, ten of which exceeded their respective GQS. Specifically, concentrations of, aluminum of 11,400 ppb, antimony of 8.9 ppb, arsenic of 29.3 ppb, chromium of 120 ppb, cobalt of 7.2 ppb, iron of 60,300 ppb, lead of 35.4 ppb, manganese of 6.97 ppb, mercury of 1 ppb, and vanadium of 43.6 ppb, exceeded their GQSs of 100 ppb, 3 ppb, 25 ppb, 50 ppb, 300 ppb, 0.7 ppb, and 14 ppb, respectively. Of note, the metals levels are biased high due to the high turbidity of the sample and the acidification of the sample. The pH of this sample was 5.9, which is below its GQS range of 6.5 to 8.5.

4.0 VOLUNTARY INVESTIGATION RESULTS - continued

4.2.3 Test Pit Assessment Analytical Results

A total of three soil samples were collected from three of the six test pits (TP-3, TP-4, and TP-6) advanced on the southwest portion of the site. Samples collected from TP-3 and TP-6 were analyzed for VOCs, SVOCs, and Metals. The sample collected from TP-4 was analyzed for VOCs and SVOCs.

The analytical results indicated no levels of VOCs in excess of laboratory MDLs were found. However, 18 SVOCs and 20 metals were detected within the soil samples collected. Only three SVOCs and four metals were detected above their respective TAGM RSCOs. Specifically, concentrations of benzo(a)anthracene up to 570 ug/kg, chrysene up to 630 ug/kg, benzo(a)pyrene up to 560 ug/kg, beryllium up to 0.81 ug/kg, mercury of 0.33 ug/kg, nickel up to 15.2 ug/kg and zinc up to 67.2, exceeded their RSCOs of 224 ug/kg, 400, ug/kg, 61 ug/kg, 0.16 ug/kg, 0.1 ug/kg, 13 ug/kg, 20 ug/kg, respectively. Of note, the detected concentrations of nickel and zinc are within Eastern USA background levels as provided in TAGM 4046.

4.2.4 Geoprobe Soil and Groundwater Analytical Results

A total of five soil and 12 groundwater samples were collected and analyzed for VOCs, SVOCs (acid extractables only), and CLP Metals from 12 Geoprobe borings (B-6 through B-14, B-18, B-20, and B-21) advanced throughout the site. Additionally, the soil samples collected from borings B-8 and B-13 were analyzed for base neutral SVOCs, and all groundwater samples were analyzed for pH.

The analytical results of the soil samples indicated no levels of VOCs in excess of laboratory MDLs were found. However, seven SVOCs and 18 metals were detected within the soil samples collected. None of the SVOCs were detected above their respective TAGM RSCOs. Two metals were detected above their respective TAGM RSCOs. Specifically, concentrations of beryllium up to 0.34 ug/kg and zinc up to 50.2 ug/kg exceeded their RSCOs of 0.16 ug/mg, and 20 ug/kg, respectively. Of note, the concentrations of beryllium and zinc are within Eastern USA background levels as provided in TAGM 4046.

The analytical results of the groundwater samples indicated detectable levels of seven VOCs, four SVOCs, and 22 metals were found. None of the SVOCs were detected above their respective GQSs. However, three VOCs and 17 metals were detected above their respective GQSs. Specifically, concentrations of, 1,1,1-trichloroethane TCA of 80 ppb, TCE up to 2,700 ppb, and cis-1,2-dichloroethene (DCE) up to 9.1 ppb, exceeded their GQS of 5ppb.

4.0 VOLUNTARY INVESTIGATION RESULTS - continued

Additionally, concentrations of, aluminum up to 1,680,000 ppb, arsenic up to 637 ppb, barium up to 21,400 ppb, beryllium up to 81.9 ppb, cadmium up to 59.3 ppb, chromium up to 2,860 ppb, cobalt up to 1,940 ppb, copper up to 4,010 ppb, iron up to 3,630,000 ppb, and lead up to 3,050 ppb, exceeded their GQS of 100 ppb, 25 ppb, 1,000 ppb, 3 ppb, 5 ppb, 50 ppb, 5 ppb, 200 ppb, 300 ppb, and 25 ppb, respectively.

Further, concentrations of, magnesium up to 485,000 ppb, manganese up to 211,000, mercury up to 8.2 ppb, nickel up to 4,060,000 ppb, selenium up to 93.2 ppb, thallium up to 270 ppb, and vanadium up to 772 ppb, exceeded their GQS of 35,000 ppb, 300 ppb, 0.7 ppb, 100 ppb, 10 ppb, 8 ppb, and 14 ppb, respectively. However, the metals concentrations detected are significantly biased high. Due to laboratory error, the samples were acidified prior to filtration, resulting in the leaching of metals from the soil component of the sample. This theory is supported by the fact that groundwater samples, which were observed to be the least turbid, exhibited significantly lower metals in groundwater concentrations. As such, six sampling locations, B-6, B-8, B-9, B-12, B-13, and B-18, were resampled on March 22, 2001, filtered, and reanalyzed for metals. The analytical results of the filtered groundwater samples indicated only five metals were identified above their respective GQS, Specifically, concentrations of, aluminum up to 634 ppb, antimony up to 11.4 ppb, cobalt up to 24.8, iron up to 615 ppb, and manganese up to 6,150 ppb exceeded their GQS of 100 ppb, 3 ppb, 5 ppb, 300 ppb, and 300 ppb, respectively. With the exception of the concentration of manganese detected, none of the concentrations detected were in excess of one order of magnitude above their respective GQS.

Further, all but two of the groundwater samples were found to have a pH less than the NYSDEC minimum of 6.5, with the lowest being 5.1 in boring B-6.

4.2.5 Transformer Area Assessment Analytical Results

A total of two soil samples were collected and analyzed for PCBs from borings advanced in the former transformer area.

The analytical data of the soil samples indicated no levels of PCBs above laboratory MDLs were found.

4.2.6 Interior Sump Assessment Analytical Results

One liquid sample was collected and analyzed for VOCs from a sump located within the manufacturing building. Concentrations of 1,1-DCA and 1,1,1-TCA were identified at 15,000 ppb and 6,100 ppb, respectively.

4.0 VOLUNTARY INVESTIGATION RESULTS - continued

4.2.7 Field QA/QC Samples

A total two duplicate samples, two field blanks, and two trip blanks were prepared and analyzed to ensure that samples collected were representative of the actual conditions of the Subject, and did not contain contaminants introduced either from the field activities or from sample transit. Laboratory results of the field and trip QA/QC samples indicated that no detectable concentrations of contaminants were found in any of the samples. Analysis of the duplicate samples indicated comparable levels of contamination in each.

5.0 VOLUNTARY INVESTIGATION SUMMARY AND CONCLUSIONS

5.1 Site Soils

The results of this Investigation indicated that no VOC contamination was found within the Subject's soils. Minor SVOC exceedances, less than one order of magnitude above their respective RSCOs were detected within the soil samples collected from test pits TP-3 and TP-4, located on the southern portion of the site. This contamination is likely attributable to the small quantity of fill noted in this area. Additionally, minor metals exceedances, less than one order of magnitude above their respective RSCOs, were detected within localized areas of the Subject. No PCBs were identified within the soils in the vicinity of the former transformers. Based on these results, the absence of significant soil vapors, and given the shallow depth of the subsurface utility lines (less than 5' bgs, which is above the contaminated groundwater table), it is not suspected that the subsurface utilities will act as a preferential pathway for contaminant migration.

5.2 Groundwater

Based on the results of this Investigation, there is a chlorinated VOC contaminated groundwater plume containing levels of 1,1,1 TCA, TCE and cis-1,2, DCE above their respective GQSs beneath the Subject. The area of highest contamination appears to be located on the north-central portion of the site. No SVOC contamination in excess of the GQSs was detected on-site. Additionally, minor metals contamination was detected within the Subject's groundwater. Specifically, aluminum, antinomy, cobalt, iron and manganese were detected above their respective GQSs. With the exception of manganese, the metals were detected at concentrations of less than one order of magnitude above their respective GQS. Further, the pH of the Subject's groundwater was found to be slightly lower than its NYSDEC GQS range standard for ten of the twelve groundwater samples collected.

5.3 Geophysical Survey

No anomalies were detected around the perimeter of the abandoned residential structure. In addition, the field investigation revealed the presence of a natural gas fired boiler within the basement of the building. Further, no fill or vent pipes were noted on or around the structure. As such, it is not suspected that an UST is present in the vicinity of the residential structure.

5.4 UST Assessment

An out-of-service UST is located adjacent to the boiler building. The tank was found to contain approximately 3' of liquid, primarily water, although a slight odor and sheen was noted. No visually impacted soil was noted during test pit or soil boring activities in the area. Soil and groundwater samples collected from the area indicated no detectable levels of petroleum contamination were found in the vicinity of the UST. As such, this tank is not suspected to have had a significant negative environmental impact upon the Subject.

5.0 VOLUNTARY INVESTIGATION SUMMARY AND CONCLUSIONS- continued

5.5 Interior Sump/ Wastewater Discharge

A sump identified during the walkthrough of the building was found to contain high concentrations of 1,1-DCA and 1,1,1-TCA. IVI estimates the volume of liquid/ sludge within this sump to be approximately 5-gallons. Based on conversations with representatives of the City of Port Jervis Department of Public Works and the prospective property developer, there are no subsurface disposal systems on-site, and all wastewater is discharged to the municipal system. This fact was further confirmed by direct observation of a wastewater pumping station located on the southern portion of the Subject.

6.0 **RECOMMENDATIONS AND REMEDIAL ACTION SELECTION**

6.1 Recommendations

Based on the results of this investigation, IVI has the following recommendations regarding the Subject.

- IVI recommends that the site be capped with a sufficient quantity of clean fill to reduce the exposure potential of the identified soil contamination;
- In accordance with requirements of 6 NYCRR Part 613, the out-of-service UST must be removed. As such, prior to the placement of the clean fill cap, the out-of-service UST should be removed in accordance with NYSDEC protocols;
- The liquid/sludge should be removed from the interior sump and be properly disposed of;
- Inasmuch as the concrete block of the existing structure is to be utilized for on-site fill, IVI recommends that this material be tested for lead paint, prior to its incorporation in the fill material; and finally,
- Based on the results of this Investigation, the Subject's groundwater requires remediation. A proven remedial option for the identified chlorinated VOCs is in-situ physical bio-chemical remediation. This technology is based on the introduction of chemical oxidants into contaminated groundwater to destroy the contaminants and convert them to carbon dioxide, water, and other natural elements. Usually, the oxidants applied in this process are hydrogen peroxide, potassium permanganate, and/or ozone. The most common applications are based on Fenton's Reaction whereby hydrogen peroxide is applied with an iron catalyst creating a hydroxyl free radical. The hydroxyl free radical is capable of oxidizing complex organic compounds. Residual hydrogen peroxide decomposes into water and oxygen in the subsurface, and any remaining iron precipitates out of solution.

6.2 Remedial Action Selection

6.2.1. Analysis of Selected Remedial Technology

The In-Situ Physical Bio-Chemical Remediation, Soil Capping, and UST removal were thoroughly evaluated for performance of remediation at the Subject and were selected as the preferred remedial approach based upon consideration of six criteria specified in 6NYCRR Part 375-1.10(c), including the following items: 1) Compliance with Standards, Criteria and Guidance (SCGs), 2) Overall Protection of Human Health and the Environment, 3) Short Term Effectiveness and Permanence, 4) Long Term Effectiveness and Permanence, 5) Reduction of Toxicity, Mobility and Volume through Treatment, and 6) Feasibility/ Implementability. Each of these items and consideration offered on their behalf is discussed below.

6.0 RECOMMENDATIONS AND REMEDIAL ACTION SELECTION- continued

6.2.2 Compliance with SCGs

The performance of In-Situ Physical Bio-Chemical Remediation will allow the Subject to meet the remedial goal of 500 ppb of total chlorinated VOCs in groundwater, established by the NYSDEC in the April 6, 2001 Comment Letter. Standards relating to air discharges do not apply due to the absence of air effluent during the performance of In-Situ Physical Bio-Chemical Remediation. Inasmuch as the existing on-site UST is inactive and will not be utilized upon redevelopment, it will be removed in accordance with 6NYCRR Section 613.

6.2.3 Protection of Human Health and the Environment

Based on investigations conducted at the Subject by IVI the chlorinated VOC contaminated groundwater plume identified on the Subject has migrated off-site, towards the adjoining cemetery. (Refer to Figure 3 of this VIR/RAW.) Groundwater beneath the Subject and the adjoining cemetery, exhibiting chlorinated VOC contamination will be remediated, significantly reducing any potential impact to human health or the environment. Construction of the proposed soil cap will reduce the exposure potential to the minor concentrations of soil contamination and to the contaminated groundwater. Removal of the UST will prevent the tank from acting as a source of potential contamination.

6.2.4 Short Term Effectiveness

In-Situ Physical Bio-Chemical Remediation will immediately reduce VOC contamination in groundwater at the Subject. Additionally, the proposed soil cap will immediately reduce the potential for exposure to contaminated soil and groundwater. Further, removal of the UST will immediately remove a potential contaminant source.

6.2.5 Long Term Effectiveness

As the Remediation proceeds, concentrations of VOCs in groundwater will continue to decrease. The removal of the dissolved VOCs from groundwater is permanent. Further, provided the soil cap remains undisturbed, it will provide long term protection. This can be ensured through the issuance of a deed restriction, prohibiting uncontrolled excavation of the soil. Finally, removal of the UST will provide a permanent remedy to prevent the tank from acting as a source of potential contamination.

6.0 RECOMMENDATIONS AND REMEDIAL ACTION SELECTION- continued

6.2.6 Reduction of Toxicity, Mobility and Volume Through Treatment

Implementation of In-Situ Physical Bio-Chemical Remediation at the Subject will result in a significant reduction of groundwater contamination at the Subject. Concentrations of total dissolved VOCs remaining in groundwater will be reduced to below 500 ppb resulting in reduced toxicity and a reduced volume of contamination. Additionally, the redevelopment of the site, over the soil cap, with buildings and paved areas will reduce the amount of water percolating through the soils to the groundwater. The removal of the UST and contaminated soil, if any, will eliminate the concern of contamination toxicity, mobility, and volume related to the UST.

6.2.7 Feasibility/Implementablility

In-Situ Physical Bio-Chemical Remediation is a proven remedial option for the identified chlorinated VOCs. This technology is based on the introduction of chemical oxidants into contaminated groundwater to destroy the contaminants and convert them to carbon dioxide, water, and other natural elements. Usually, the oxidants applied in this process are hydrogen peroxide, potassium permanganate, and/or ozone. The most common applications are based on Fenton's Reaction, whereby hydrogen peroxide is applied with an iron catalyst creating a hydroxyl free radical. The hydroxyl free radical is capable of oxidizing complex organic compounds. Residual hydrogen peroxide decomposes into water and oxygen in the subsurface, and any remaining iron precipitates out of solution. Implementation of In-Situ Physical Bio-Chemical Remediation will require a significant amount of technical experience for implementation. Injection of the oxidation mixture and biological co-metabolite to the injection wells will be performed by individuals with the proper training.

Construction of the soil cap is feasible and can be quite readily implemented during the redevelopment of the site. The proposed soil cap will be composed of certified clean fill placed across the site in 1' lifts to a minimum elevation of 1' above the 100 year flood plain. This will result in a cap ranging in approximate thickness between 4' to 7'. The fill will be comprised of a mixture of Item 4, Bank run, and crushed concrete block from building demolition. All recycled building materials will be analyzed for lead content prior reuse. No on-site constraints prevent removal of the UST, and the UST will be easily removed by a licensed and OSHA-certified Tank Removal Contractor.

Full Remedial Design is required I propried remedy includes Otralment systems where performant is dependent m morper specification of sizes, copacities, process control etc

7.0 REMEDIAL ACTION WORKPLAN

The objectives of this Remediation are 1) to develop a clean fill cap over the Subject to minimize potential exposure to identified on-site contamination; 2) to properly remove the out-of-service on-site UST; 3) to remediate chlorinated VOC contaminated groundwater at the Subject using an in-situ physical bio-chemical remediation technology; 4) to reduce chlorinated VOC contamination in the source area to levels below 500 ppb as directed by the NYSDEC; and 5) to conduct a monitoring program to verify the continuing attenuation of chlorinated VOC groundwater concentrations following the completion of remedial activities. The scope and design of this Remedial Action Plan was developed based on the results of all previous environmental site assessments and investigations conducted on the Subject by IVI, previous environmental consultants, conversations with the prospective developer and the NYSDEC.

The following tasks will be performed as part of this Remedial Action Plan: 1) the construction of a soil cap of clean fill to minimize exposure potential; 2) the removal of the out-of-service UST; 3) the installation of monitoring wells to further delineate the chlorinated VOC contaminated groundwater plume; 4) the installation of in-situ physical bio-chemical remediation injection points; 5) full scale in-situ remediation; 6) a monitoring well and injection point survey; 7) performance of post-remediation groundwater sampling; and 8) preparation of a Remedial Action Report following the completion of the monitoring program, which summarizes the overall findings of this program.

A summary of each of the above-referenced tasks is presented below. Additionally, the waste management practices to be employed and QA/QC procedures to be used during this remedial action are included in this section. Of note, based upon the results of the additional lateral and vertical contaminant delineation discussed below, IVI will modify this RAW to provide a more comprehensive remedial design plan.

7.1 Soil Cap Remedial Action Plan

A soil cap comprised of certified clean fill will be placed across the site in 1' lifts to a minimum elevation of 1' above the 100 year flood plain. This will result in a cap ranging in approximate thickness between 4' to 7'. The fill will be composed of a mixture of Item 4, Bank run, and crushed concrete block from building demolition. As previously discussed, all recycled building materials will be analyzed for lead content prior reuse. If material containing LBP is used as fill, it will be buried at least 4 feet below grade, and it will be tested to ensure it will not act as a source of groundwater contamination.

7.2 Underground Storage Tank Remedial Action Plan

IVI will excavate the soils from the top of the tank to facilitate cleaning of the tank. Upon uncovering the UST, IVI will cut an access manhole in the top of the UST and pump remaining liquids and sludges from the UST for recycling and disposal, respectively. The UST will then be purged to render it free of petroleum vapors and will be monitored continuously using a combustible gas indicator to ensure that vapor concentrations remain less than 15 percent of the lower explosion limit.

7.0 REMEDIAL ACTION PLAN - continued

Following purging, the UST interior will be cleaned by a professional trained in accordance with the Occupational Safety and Health Administration (OSHA) standards in 29 CFR Part 1910 Subparts I and Z. Additionally, this person will also have at least eight hours of field training, annual refresher course training, and Confined Space Entry Certification. In case of an oxygen deficiency within an UST atmosphere (oxygen concentration of less than 19.5 percent), a positive pressure, air-supplied respirator and level "B" personal protective equipment will be utilized by the professional performing tank cleaning operations.

During cleaning operations, all liquid and sludge from the UST and connecting lines will be removed and disposed of in accordance with all U.S. Environmental Protection Agency (EPA) and NYSDEC requirements. All connecting lines will then be securely capped or plugged. Following removal of the UST, an opening will be cut in one end of each UST rendering it unusable, as required. The UST will then be loaded on a flat bed truck and sent to a scrap metal facility for recovery. The tank removal contractor will be responsible for complying with all of the provisions of the OSHA Hazardous Waste Operations and Emergency Response Rules as outlined in 29 CFR Part 1910.120, which includes preparing a site-specific Health and Safety Plan.

Subsequent to the removal of the UST, IVI proposes to excavate all contaminated soils, if any, remaining in the open tank excavation and from beneath the tank's feed and return lines. IVI will screen soils during the excavation activities with a PID to determine whether any contaminated soil remains in the excavation. When no evidence of contamination can be detected in any of the soil remaining in the excavation or when 500 tons of contaminated soil has been removed (whichever occurs first), IVI will discontinue excavation activities and conduct a site assessment in accordance with NYSDEC guidelines and protocols. All post-excavation samples will be compared to TAGM 4046 guidelines. All excavated contaminated soil, if any, will be stockpiled on-site completely enclosed in two layers of a 6 mil polyethylene bermed liner until proper characterization of the soil can be performed for disposal purposes

7.3 In-Situ Physical Bio-Chemical Remedial Action Plan

7.3.1 Plume Delineation

revised of plane

Upon completion of the demolition of the existing structures, IVI will install up to eight borings on the Subject using Geoprobe equipment to delineate the lateral and vertical extent of the chlorinated VOC-contaminated groundwater plume, along with the characterization of the associated stratigraphy. The borings will be advanced from the ground surface to a depth of approximately 10' to 25' below the soil/groundwater interface. Groundwater samples will be collected from each boring at a discrete interval using hydropunch-type equipment. Each groundwater sample will be analyzed for VOC-related compounds using an on-site mobile laboratory. IVI will utilize the mobile laboratory results to optimize the placement of permanent monitoring wells.

7.0 REMEDIAL ACTION PLAN - continued

ger maps

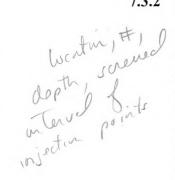
IVI will the install up to 6 overburden monitoring wells on the Subject to confirm the extent of the chlorinated VOC contamination and for post remediation monitoring. The well borings will be advanced from the ground surface to an appropriate depth below the soil/groundwater interface utilizing a truck-mounted hollow-stem auger drill rig.

Monitoring wells will be screened from a depth of 5' above the soil/groundwater interface to the bottom of the well. Screen slot size and well packing material will be determined based on the geological observations of the soil samples collected during the advancement of the Geoprobe and monitoring well borings. Each well will be constructed using 2" diameter, Schedule 40 PVC screen and riser with a flush mounted cover and lockable casing. Well installation will be conducted in conformance with good engineering and customary practice. An engineer/geologist representing IVI will be on-site at all times to supervise well installations, screen and collect soil samples (as necessary), and prepare boring logs and well installation details.

Each monitoring well will be developed following installation and allowing sufficient time for the grout in the annular spaces of the well to cure (approximately 24 hours). Development will involve the removal and surging of groundwater in each well. A minimum of five well volumes will be removed from each well during the development process. Following this removal, development water will be screened for water quality parameters using a water quality analyzer. Development in each well will continue until water quality parameters such as dissolved oxygen DO, pH, conductivity, and temperature have stabilized (successive readings between well volume purges are within ten percent). The purpose of the well development is to eliminate all fine material from the area of the well screen and allow for the collection of a groundwater sample which is free of suspended materials and representative of the aquifer conditions.

Following installation of the wells, IVI will have the well locations surveyed to an accuracy of one-tenth of a second of latitude and longitude. Additionally, IVI will survey the elevations of the top of the casings of each of these wells to the nearest hundredth (.01) foot. After development and prior to collecting groundwater samples, IVI will measure the static groundwater elevation in each of the wells. These results will be used to prepare a groundwater contour map indicating the direction of groundwater flow and hydraulic gradient across the site.

Following development of the monitoring wells, IVI will purge the newly installed wells of three to five well volumes to obtain groundwater samples that are representative of the aquifer conditions.


permits turning for O potassium permansanati Fenton's preserve O hydrogen perovide - Fenton's preserve O hydrogen wyester O bydrogen wyester

IVI will collect water quality parameter readings including dissolved oxygen DO, pH, conductivity, and temperature, prior to purging, and following the second and all subsequent well volume purges. Purging will continue until successive readings are within ten percent.

Groundwater samples will be transferred to appropriate sample containers, packed on ice in a cooler, and sent for analysis to a certified laboratory. Samples will be analyzed for VOCs in accordance with NYS ASP 95-1. The groundwater sampling results will be tabulated and isopleth concentration maps will be prepared for contaminants exceeding applicable NYSDEC GQSs using Surfer contouring software to finalize proper injection point locations.

7.3.2 Injection Point Installation

IVI will advance approximately five 2" inside diameter (I.D.) injection points in to the water table, within the 500 ppb total chlorinated VOCs contour area, as shown on Figure 4, in Appendix A. These injection points will be advanced using a pneumatic hammer to appropriate depths. Following advancement of the injection points, their respective drive points will be dislodged to allow for the transfer of reagents associated with the in-situ physical bio-chemical remediation process into the groundwater and saturated zone soils. A typical injection point construction detail is shown on Figure 5 in Appendix A.

7.3.3 Full Scale In-Situ Remediation

The full scale in-situ remediation will consist of a site-specific in-situ physical bio-chemical system. The in-situ physical bio-chemical remediation (Remediation) process will consist of the application of physical, chemical, and biological methods to the Subject's chlorinated VOC contaminated groundwater. These methods will be applied to degrade the chlorinated VOC contamination in the groundwater into carbon dioxide and water. Specifically, the in-situ physical bio-chemical remediation process consists of the following three stages: 1) a physical method to enhance the disbursement of chemical reagents into the contaminated area; 2) a chemical method involving the injection of an oxidation mixture to degrade chlorinated VOC contaminants; and 3) a biological method including the injection of a biodegradable co-metabolite solution which, serves to create an anaerobic environment, to complete the degradation process and to restore subsurface conditions. These stages will be applied through the injection points discussed above.

Total VOCs, air and water quality parameters, combustible gas indicator parameters, and groundwater elevation will be analyzed in the soil vapor and groundwater in surrounding monitoring wells periodically throughout the course of the oxidation stage using field analytical equipment to monitor the real time progress of the remediation and ensure the remedial goals are achieved.

7.3.4 Injection Point Survey

Following installation of the injection points, IVI will have the point locations surveyed. Additionally, IVI will survey the elevations of the top of the casings of each of these points.

Monitoring Confirmation Sampling Plan 7.3.5 sampling event prior to start

IVI will collect groundwater samples from all monitoring wells and all injection points installed during remediation activities during four post remediation groundwater sampling events. The first sampling event will be scheduled at least two weeks following the completion of remedial activities.

Prior to purging the wells, the static water level in each well will be measured to the nearest hundredth of a foot using an electronic water level indicator. Purging will be performed using dedicated polyethylene bailers or HDPE tubing, dedicated check valves, and a submersible or peristaltic pump. IVI will collect water quality parameter readings, including DO, pH, conductivity, and temperature, prior to purging, and following the second and all subsequent well volume purges. Purging will continue until successive readings are within ten percent to ensure that groundwater samples obtained are representative of groundwater conditions. A minimum of three well volumes will be removed from each well during purging activities.

Samples will be transferred into 40 ml glass vials in such a way that no air bubbles or head-space will be present. Following sample collection, the sample containers will be packed on ice in a cooler, sent for analysis to a certified laboratory, and analyzed for VOCs in accordance with NYS ASP 95-1. A cumulative summary of soil and contaminant-specific groundwater sampling results will be tabulated following each sampling event and concentration distribution maps will be prepared using Surfer contouring software.

Based on the results of the confirmation samples, additional injection of reagents may be necessary to address any residual contamination.

7.4 **Community Air Monitoring Plan**

IVI will conduct Community Air Monitoring during intrusive activities as required by the New York State Department of Health (NYSDOH) in accordance with NYSDOH Generic Community Air Monitoring Plan dated June, 2000. IVI will conduct real-time air monitoring, for VOCs and particulate levels at the perimeter of the work area according to the following plan:

which should be analyzed of the bookson

7.4.1 Volatile Organic Vapor Monitoring

VOCs will be monitored at the downwind perimeter of the work area on a continuous basis. All readings will be recorded and be available for NYSDEC and NYSDOH personnel to review. If total organic vapor levels exceed 5 ppm above background, work activities will be halted and monitoring will be continued under the provisions of the Vapor Emission Response Plan. If any organic levels greater than 5 ppm over background are identified 200 feet downwind from the work area or half the distance to the nearest residential or commercial property, whichever is less, all work activities will be halted.

If following the cessation of the work activities, or as the result of an emergency, organic levels persist above 5 ppm above background 200 feet downwind or half the distance to the nearest residential or commercial property from the work area, then the air quality will be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20 Foot Zone).

If efforts to abate the emission source are unsuccessful and if organic vapor levels are approaching 5 ppm above background persist for more than 30 minutes in the 20 Foot Zone, then the Major Vapor Emission Response Plan shall automatically be placed into effect;

However, the Major Vapor Emission Response Plan shall be immediately placed into effect if organic vapor levels are greater than 10 ppm above background.

7.4.1.1 Vapor Emissions Response Plan

If the ambient air concentration of organic vapors exceeds 5 ppm above background at the perimeter of the work area, activities will be halted and monitoring continued. If the organic vapor level decreases below 5 ppm above background, work activities will resume. If the organic vapor levels are greater than 5 ppm over background but less than 25 ppm over background at the perimeter of the work area, activities will resume, provided the organic vapor level 200 feet downwind of the work area or half the distance to the nearest residential or commercial structure, whichever is less, is below 5 ppm over background.

If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown. When work shutdown occurs, downwind air monitoring as directed by the Safety Officer will be implemented to ensure that vapor emission does not impact the nearest residential or commercial structure at levels exceeding those specified in the Major Vapor Emission section.

7.4.1.2 Major Vapor Emission Plan

Upon activation, the following activities will be undertaken:

- 1. All Emergency Response Contacts as listed in the Health and Safety Plan of the Workplan will be notified.
- 2. The local police authorities will immediately be contacted by the Safety Officer and advised of the situation.
- 3. Frequent air monitoring will be conducted at 30 minutes intervals within the 20 Foot Zone. If two successive readings below action levels are measured, air monitoring may be halted or modified by the Safety Officer.

7.4.2 Particulate Vapor Monitoring

Particulates will be continuously monitored upwind and downwind of the work area at temporary particulate monitoring stations. If the downwind particulate level is $150 \ \mu g/m^3$ greater than the upwind particulate level, then dust suppression techniques must be employed. All readings will be recorded and be available for NYSDEC and NYSDOH personnel to review.

7.5 Waste Management

The following wastes will be generated as part of this Remediation: 1) purge water; 2) decontamination water; and 3) disposable sampling equipment.

7.5.1 Groundwater

Purge water from monitoring wells sampled within the chlorinated VOC contaminated plume will be transferred into DOT-approved 55-gallon labeled drums and stored on-site until groundwater samples are analyzed.

The label will include a description and source of the contents of each drum. Based on the groundwater sampling results, the drummed water will be disposed of in accordance with all applicable regulations.

7.5.2 Decontamination Water

Wastewater generated from the cleaning of probing and injection equipment and field screening equipment, such as the water quality analyzer and electronic water level indicator will be collected and transferred into DOT-approved 55-gallon labeled drums.

The drums will be stored on-site until groundwater samples are analyzed. The label will include a description and source of the contents of each drum. Based on the sampling results, the drummed wastewater will be disposed of in accordance with all applicable regulations.

7.5.3 Disposable Sampling Equipment

All disposable sampling equipment, including latex gloves and disposable bailers, will be collected and sealed in plastic trash bags, and stored on-site until groundwater samples are analyzed. The label will include a description and source of the contents of each bag. Based on the sampling results, the bagged sampling equipment will be disposed of in accordance with all applicable regulations.

8.0 QUALITY ASSURANCE PROJECT PLAN

QA/QC procedures will be used to provide performance information with regard to accuracy, precision, sensitivity, representativeness, completeness, and comparability associated with the sampling and analysis activities to be conducted as part of this Remediation. Field QA/QC procedures will be used to ensure that samples collected are representative of the actual conditions of the Subject and do not contain contaminants introduced either from the field activities or from sample transit. Laboratory QA/QC procedures and analyses will be used to demonstrate whether analytical results have been biased either by interfering compounds present in the sample matrix or by laboratory techniques that may have introduced systematic or random errors to the analytical process. In accordance with the Quality Assurance Guidelines for the Voluntary Cleanup Program, analytical data will be evaluated according to the Division of Environmental Remediation (DER) Data Usability Summary Report (DUSR) guidelines. A summary of the field and laboratory QA/QC procedures to be followed as part of this remediation is given below.

8.1 Field QA/QC

Field QA/QC will include the following procedures: 1) calibration of field equipment; 2) the collection of trip, matrix duplicate, and field blank samples; 3) the use of dedicated and disposable field sampling equipment; 4) proper sample handling and preservation; 5) proper sample custody; and 6) the completion of report logs. A description of each of these procedures is provided below.

8.1.1 Calibration of Field Equipment

All field analytical equipment used, including the water quality analyzer, will be calibrated in the field on a daily basis.

8.1.2 Collection of Field QA/QC Samples

Trip blanks will be prepared by the certified laboratory with deionized laboratorygrade water, and one blank will accompany all sample shipments to the laboratory. The water used will be from the same source as that used for the laboratory method blank. The trip blank will be handled and transported in the same manner as the samples collected which it will accompany. Trip blanks will be analyzed for VOCs in accordance with NYS ASP 95-1 to identify the presence of cross-contamination as a result of sample shipment, for example, contaminated from the air, shipping containers, or from other items coming into contact with the sample bottles.

Field blanks will be prepared to ensure that samples collected were representative of the actual condition of the Subject and do not contain contaminants introduced from the field activities.

Specifically, one field blank will be collected per day by filling a clean bailer with deionized water, then pouring this water from the bailer into 40 ml VOA vials until full, the bottles' tops will be screwed on tightly, and the vial turned upside down to ensure that no air bubbles were trapped inside. Field blanks will be analyzed for TCL VOCs in accordance with NYS ASP 95-1.

Matrix duplicate samples will be collected at a frequency of 5 percent of all samples collected. Aqueous matrix duplicates will be obtained by collecting two successive samples from the same location. Duplicate samples will be analyzed for VOCs in accordance with NYS ASP-1 to provide a measure of sample homogeneity and intralaboratory precision of the entire analytical process.

8.1.3 Use of Dedicated and Disposable Field Sampling Equipment

Dedicated polyethylene bailers or HDPE tubing and check valves will be used in all monitoring wells to eliminate the possibility of cross-contamination during groundwater sampling activities.

Disposable sampling equipment, including latex gloves and disposable bailers, will be used to prevent cross-contamination between samples. Field screening equipment, such as the water quality analyzer probe, will be decontaminated after each sample by washing it with laboratory-grade Alconox detergent and deionized water, and thoroughly air-drying equipment.

8.1.4 Sample Handling and Preservation

For each sample, a sufficient volume will be collected to allow the specified analytical method to be performed according to protocol, and to provide sufficient sample for reanalysis if necessary. Because plasticizers and other organic compounds inherent in plastic containers may contaminate samples requiring organic analysis, samples will be collected in glass containers.

Appropriate sample preservation techniques, including cold temperature storage at 4° C, will be utilized to ensure that the VOCs in the samples analyzed by the laboratory have not changed from the time the sample was collected in the field.

Samples will be analyzed prior to the holding time for VOCs to ensure the integrity of the analytical results.

Samples collected for VOC analysis will be bottled with zero headspace to prevent premature loss of VOCs from diffusion into existing airspace above the samples. This will be accomplished by filling VOC vials used to collect aqueous samples till groundwater overflows the top of the vial, screwing the cap on tightly, and turning the vial upside down to ensure that no air bubbles are trapped inside.

8.1.5 Sample Custody

Sample handling in the field will conform to appropriate sample custody procedures. Field custody procedures include proper sample identification, chainof-custody forms, and packaging and shipping procedures. Sample labels will be attached to all sampling bottles before field activities begin to ensure proper sample identification. Each label will identify the site and sample location.

Each cooler will be lined with two (2) 6-mil thick plastic bags. Styrofoam or bubble wrap will be used to absorb shock and prevent breakage of sample containers. VOC vials will be packaged inside a plastic "Ziplock" bag prior to placement inside the cooler. Ice or ice packs will be placed in between the plastic bags for sample preservation purposes.

After each sample is collected and appropriately identified, the following information will be entered onto the chain-of-custody form: 1) site name and address; 2) sampler(s)' name(s) and signature(s); (3) names and signatures of persons involved in the chain of possession of samples; 4) sample number; 5) number of containers; 6) sample location; 7) date and time of collection; 8) type of sample, sample matrix and analyses requested; 9) preservation used (if any); and 10) any pertinent field data collected (pH, temperature, conductivity, DO).

The sampler will sign and date the "Relinquished" blank space prior to removing one (1) copy of the custody form and sealing the remaining copies of the form in a Ziplock plastic bag taped to the underside of the sample cooler lid. After sample containers are sufficiently packed and the chain-of-custody form completed, the 6-mil plastic bags will be sealed around the samples by twisting the top and securely taping the bag closed to prevent leakage. A sample custody seal will be placed around the neck of the bag which will include the signature of the project manager, and/or his/her designee, and the date.

The sample cooler will be sealed with tape prior to delivery or shipment to the certified laboratory. Additionally, sample custody seals will be placed around the cooler lid to detect unauthorized tampering with samples following collection and prior to the time of analysis. The seals will be attached in such a way that it will be necessary to break them in order to open the container. Seals will be affixed at the time of sample packaging and will include the signature of the project manager and/or his/her designee and the date.

Samples sent to the certified laboratory by overnight carrier will be packaged and labeled for shipment in compliance with current U.S. Department of Transportation (DOT) and International Air Transport Association (IATA) dangerous goods regulations, as well as any additional requirements stipulated by the courier.

8.1.6 Report Logs

The following project logs will be completed during the course of this Remediation: 1) field logs; and 2) monitoring well purging and sampling data logs. A field log will be completed on a daily basis which will describe all field activities including: 1) project number, name, manager, and address; 2) date; 3) weather; 4) attendees on-site and associated affiliations; 5) description of field activities; and 6) all pertinent sample collection information including sample identification numbers, description of samples, location of sampling points, number of samples taken, method of sample collection and any factors that may affect its quality, time of sample collection, name of collector, and field screening results.

A monitoring well purging and sampling data log will be completed following purging and sampling of each monitoring well. For purging and sampling activities, the following information will be recorded: 1) project number, name, manager, and location; 2) monitoring well number; 3) well casing diameter and stick-up height; 4) depth of well from top of well casing and roadbox; 5) date; 6) time; 7) water analyzer used; 8) distance from top of well casing to water and free product; and 9) the pH, temperature, conductivity, and dissolved oxygen content associated with each monitored well volume removed.

8.2 Laboratory QA/QC

A CLP-certified laboratory, will be used for all sample analyses to be performed as part of this Remediation. This laboratory will follow all applicable NYSDEC analytical laboratory QA/QC protocols. Additionally, a description of the Sample Custody Procedures that will be followed is provided below.

8.2.1 Sample Custody

All samples will be delivered to the laboratory via an overnight courier. Samples will be received by laboratory personnel whom will inspect the sample cooler(s) to check the integrity of the custody seals. The cooler(s) will then be opened the samples unpacked and the information on the chain-of-custody form examined. If the samples shipped match those described on the chain-of-custody form, the laboratory sample custodian will sign and date the form on the next "Received" blank and assume responsibility for the samples. If problems are noted with the sample shipment, the laboratory custodian will sign the form and record problems in the "Remarks" box. The custodian will then immediately notify the Project Manager so appropriate follow-up steps can be implemented on a timely basis.

All samples will then be logged into a sample log book and/or computerized information system. The following information will be recorded: 1) date and time of sample receipt; 2) project number; 3) field sample number; 4) laboratory sample number (assigned during log-in procedure); 5) sample matrix; 6) sample analytical parameters; 7) storage location; and 8) log-in person's initials.

A record of the information detailing the handling of a particular sample through each stage of analysis will be provided by the completion of a laboratory chronicle form. The following information will be included on this form: 1) job reference; 2) sample matrix; 3) sample number; 4) date sampled; 5) date and time received by laboratory; 6) holding conditions; 7) analytical parameters; 8) extraction date, time and extractor's initials (if applicable), 9) analysis date, time, and analyst's initials, and 10) QA batch number, date reviewed, and reviewer's initials.

All information relevant to the samples will be secured at the end of each business day. All samples will be stored in a designated sample storage refrigerator, access to which will be limited to laboratory employees.

9.0 COMPLETION OF REMEDIAL ACTION

9.1 Remedial Action Report

Following the completion of the clean soil cap construction, UST removal, and receipt of the post-remediation groundwater analytical results, a report will be prepared which summarizes the findings of this Remediation. These findings will address the first four objectives of this Remediation, specifically: 1) to develop a clean soil cap over the Subject to minimize potential exposure to identified on-site contamination; 2) to properly remove the out-of-service UST; 3) to treat chlorinated VOC contaminated groundwater at the Subject with an in-situ physical bio-chemical remediation technology, and 4) to reduce chlorinated VOC contamination in the source area to levels below 500 ppb as directed by the NYSDEC. The results to be presented in this report will include: 1) final cap construction details; 2) post excavation UST grave samples; 3) the groundwater results from the post-remediation sampling event; and 4) contaminant-specific concentration distribution maps.

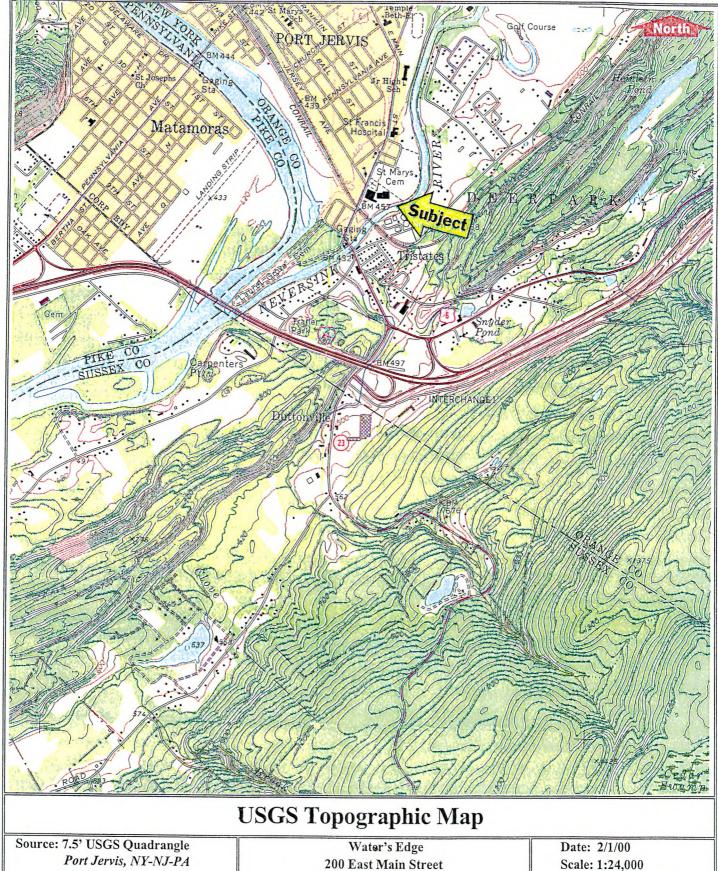
9.2 Future Use of Site

Following the completion of the remedial action activities, the Subject is to be developed with a senior housing complex and a commercial retail shopping center.

9.2.1 Institutional Controls

In accordance with the NYSDEC's request in an e-mail correspondence dated April 19, 2001, the following institutional controls in the form of deed restrictions will be implemented at the Subject:

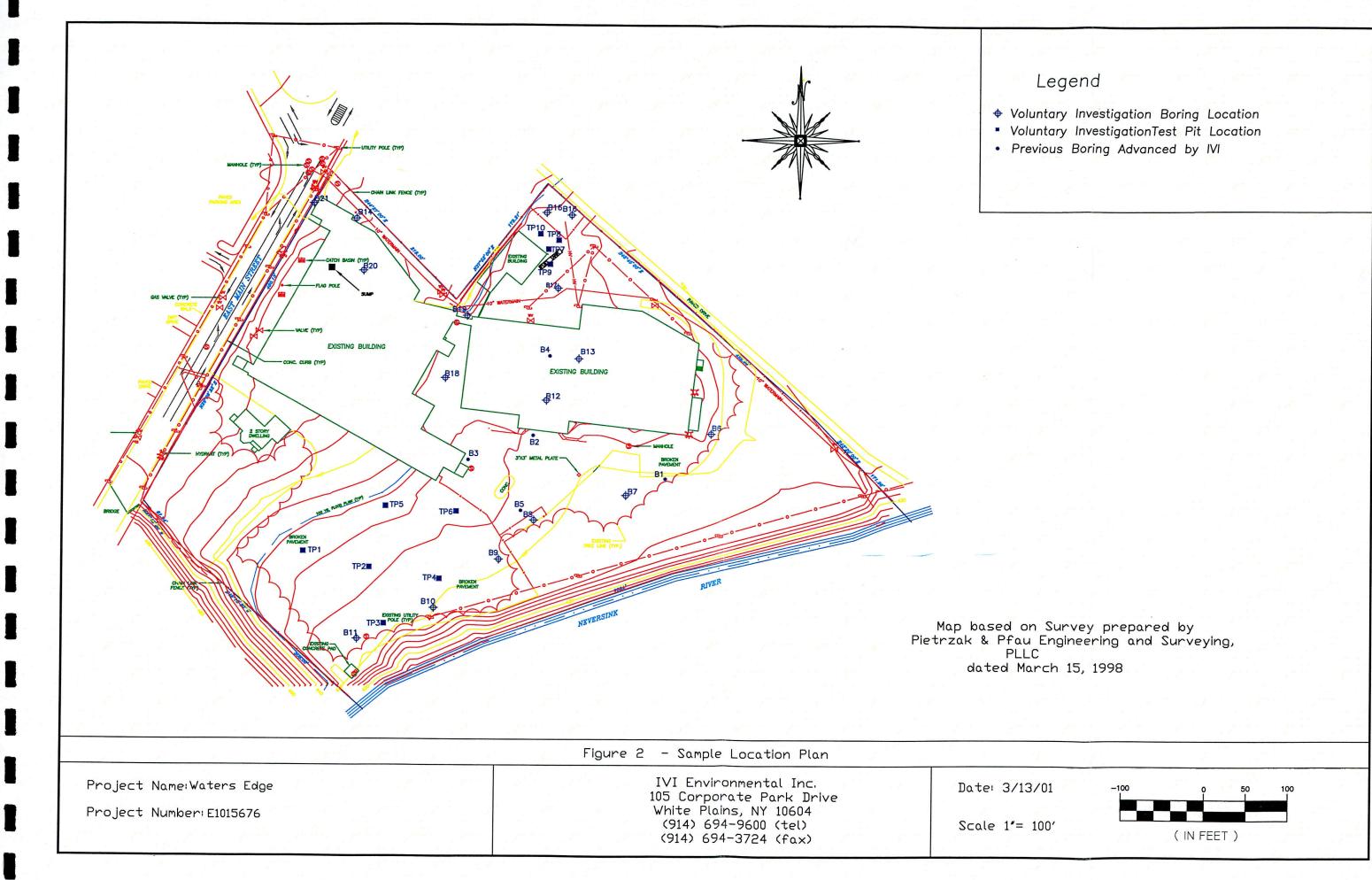
- Inasmuch as groundwater contaminants above their respective NYSDEC GQS will remain on-site following remediation, a deed restriction preventing groundwater usage will be placed in effect.
- Further, a deed restriction regarding the soil cap will be placed in effect. This restriction will state that future excavation below 4 feet (the proposed minimum thickness of the soil cap), will require prior State approval of the methods and handling of soils for proper disposal.

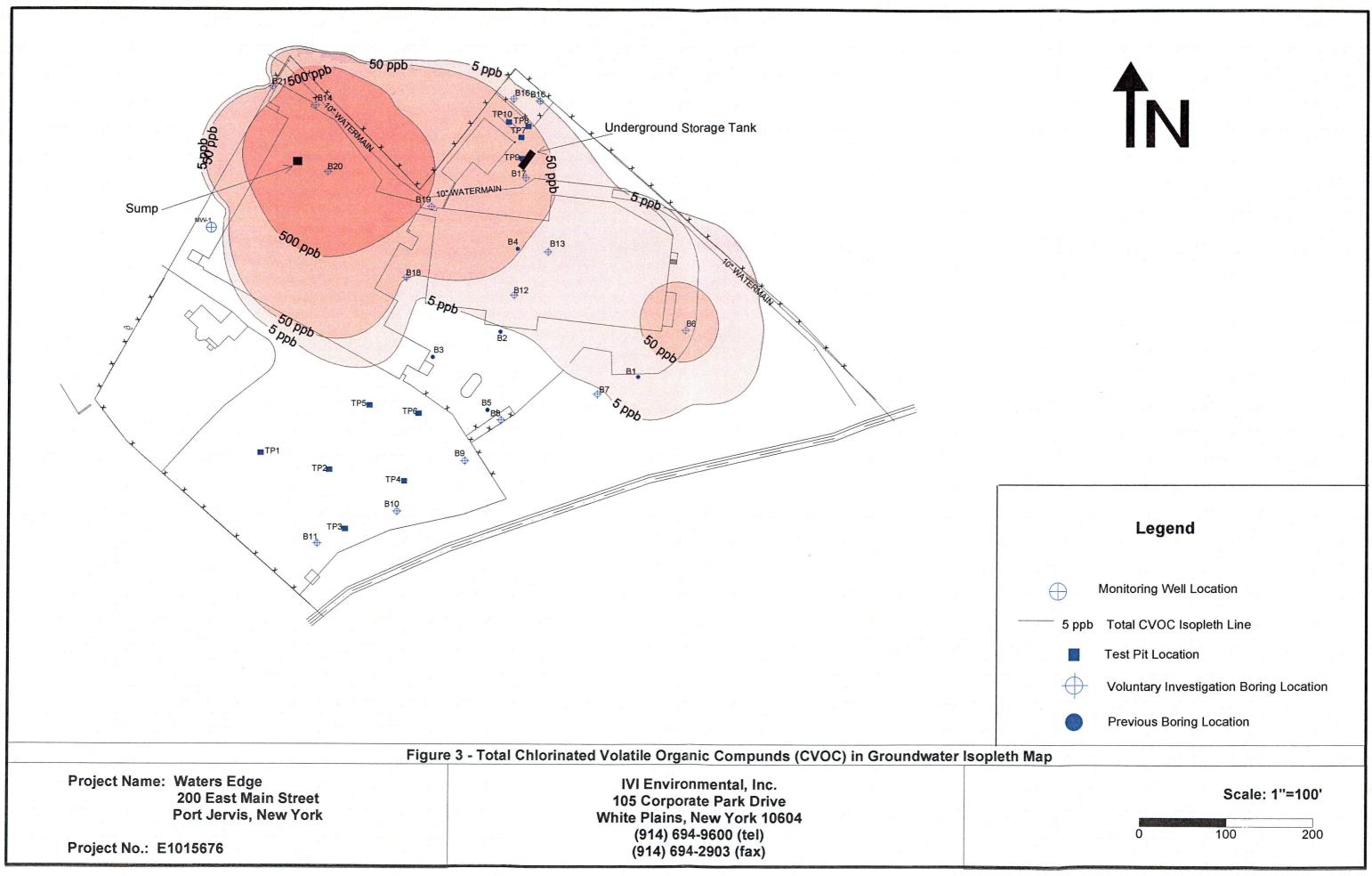


10.0 SCHEDULE

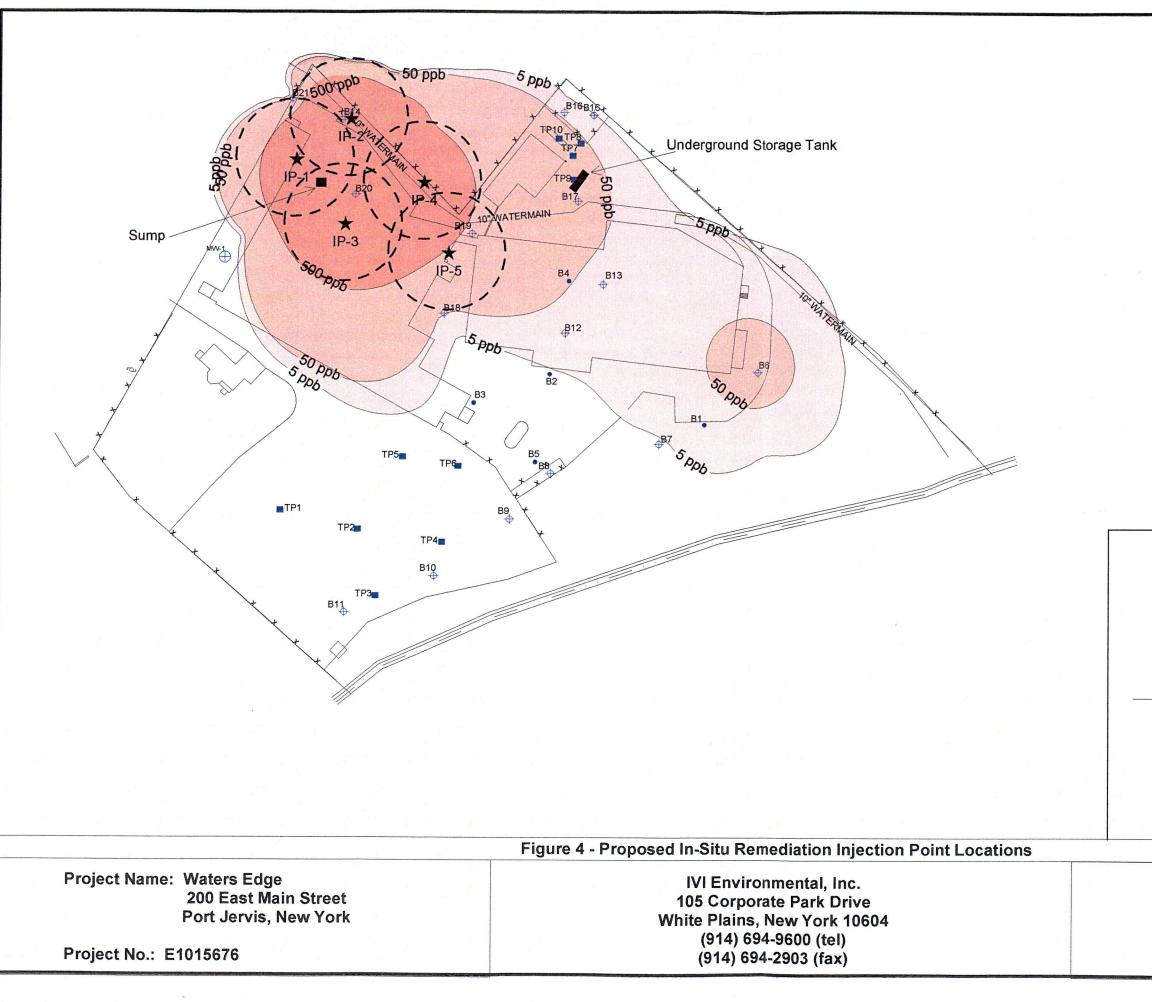
A detailed project schedule of the remedial action activities, including investigation tasks, response actions, and post-remediation activities, will be prepared following the demolition of the existing on-site structures.

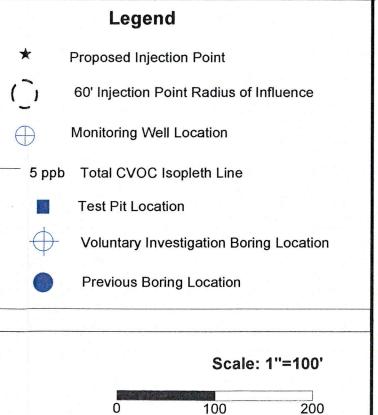
K \Projects\E1015676 Waters Edge Voluntary Investigation\Reports\Waters- VIR.doc

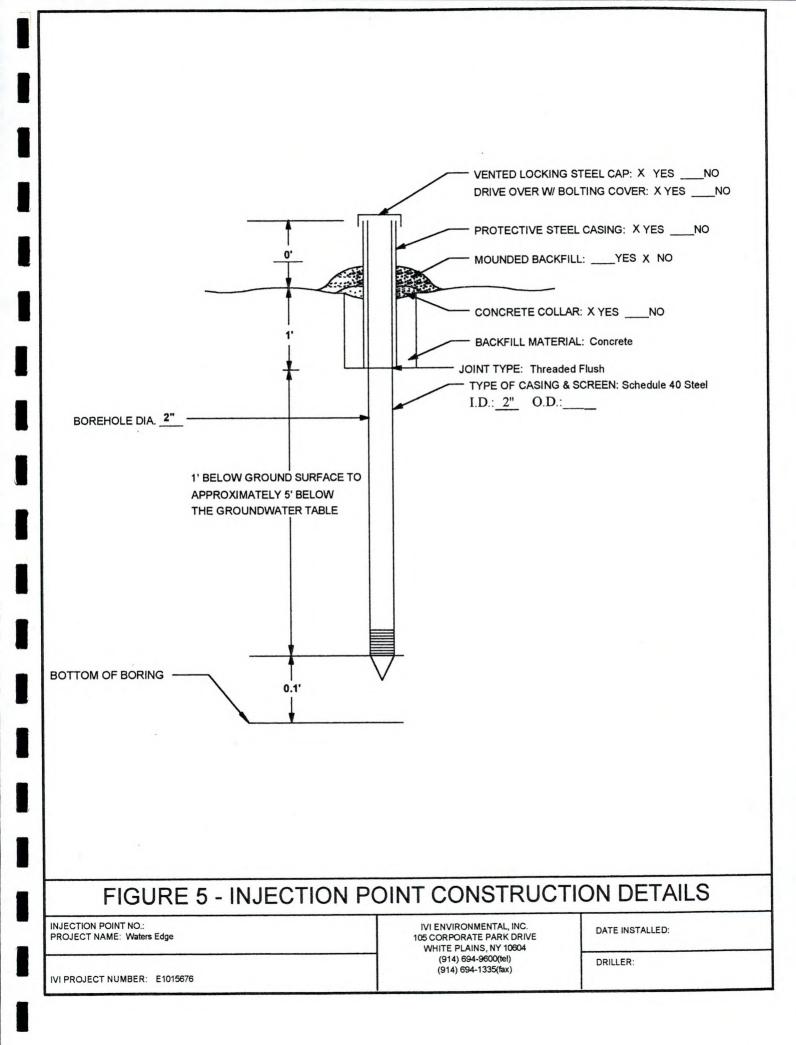




Date: 1969 Photorevised: 1983


Port Jervis, New York IVI Project Number: E1015676 Contour Interval: 10'





1.

Та	ıble 1		
Summary of Laboratory	y Results	for Soil	Samples

Analytical Parameter/Constituent	Eastern USA Background Concentration	NYSDEC TAGM # 4046 RSCO				Sa	mple Locat	ions and Co	oncentration	ns			
			TP-3	TP-4	TP-6	тр.7	TP-8	TP-9	B- 6	B- 7	8- 8	88-D	B-1 3
Semi-Volatile Organic Compounds													
(ug/kg)												<u></u>	
Napthalene	***	13,000	ND	81	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Flourene	***	50,000	ND	100	ND	ND	ND	ND	ND	ND	ND	ND 62	ND
Phenathrene	***	50,000	270	920	ND	ND	ND	ND	ND	ND	ND		ND
Acenaphthylene	***	41,000	43	130	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Anthracene	***	50,000	52	170	ND	ND	ND	ND	ND	ND	ND		ND
Flouranthene	***	50,000	450	1200	ND	ND	ND	ND	ND	ND	55	95	ND
Pyrene	***	50,000	410	1000	ND	ND	ND	ND	ND	ND	50	100	
Benzo(a)anthracene	***	224	210	570	ND	ND	ND	ND	ND	ND	ND	40	ND
Chrysene	***	400	270	630	ND	ND	ND	ND	ND	ND	ND	55	ND
Benzo(b)flouranthene	***	1,100	300	640	ND	ND	ND	ND	ND	ND	ND	65	ND
Benzo(k)flouranthene	***	1,100	110	410	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	***	61	230	560	ND	ND	ND	ND	ND	ND	ND	38	ND
Indeno(1,2,3-cd)pyrene	***	3,200	120	220	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,l)pervlene	***	50,000	120	210	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	***	50,000	ND	89	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	***	6,200	ND	56	ND	NA	NA	NA	ND	ND	ND	ND	ND
Carbazole	***	NS	ND	120	ND	NA	NA	NA	ND	ND	ND	ND	ND
Di-n-butylphthalate	***	8.100	ND	ND	ND	NA	NA	NA	86	99	ND	ND	ND
Metals (mg/kg)											<u></u>		
Aluminum	33.000	SB	9890	NA	12000	NA	NA	NA	4390	4120	5050	3090	6,700
Antimony	***	SB	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND
	3-12	7.5/SB	5.60	NA	4.10	NA	NA	NA	ND	ND	ND	ND	5.3
Arsenic		300/SB	117.0	NA	112.0	NA	NA	NA	16.2	21.2	17.4	32.3	24
Barium	15-600		0.64	NA	0.81	NA	NA	NA	0.15	0.16	0.19	0.24	0.34
Berylium	0-1.75	0.16/SB	0.64 ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND
Cadmium	0.1-1	10.000		NA	1780	NA	NA	NA	262	465	852	1180	813
Calcium	130-350,000	SB	2140 9.7	NA	11.1	NA	NA	NA	5.2	4.7	6.3	5.7	7.3
Chromium	1.5-40	50.000		NA	8.6	NA	NA	NA	3.1	2.9	3.6	2.9	6.3
Cobalt	2.5-60	30/SB	6.8	NA	10.1	NA	NA	NA	4.4	4.5	5.5	5.7	14.3
Copper	1-50	25/SB	19.7		17900	NA	NA	NA	6890	5930	7950	6140	12,600
Iron	2,000-550,000	NS	15800	NA	14.6	NA	NA	NA	5.4	5.7	11.1	18.8	10.1
Lead	400	SB	66.9	NA		NA	NA	NA	1690.0	1530.0	1910.0	936.0	2390
Magnesium	100-5,000	SB	23.2	NA	3000.0	NA	NA	NA	1030.0	94.2	139.0	271.0	410
Manganeese	50-5,000	SB	811.0	NA	797.0	NA	NA	NA	ND	ND	ND	ND	ND
Mercury	0.001-0.2	0.100	0.33	NA	ND		NA	NA	7.7	7.1	8.3	5.6	15.6
Nickel	0.5-25	13/ SB	12.8	NA	15.2	NA NA	NA	NA	525	513	731	306	750
Potasium	8,500-43,000	SB	760	NA	1230		NA	NA	ND	ND	1.2	ND	ND
Selenium	0.1-3.9	2/SB	1.2	NA	1.3	NA	NA	NA	ND	ND	66.0	73.3	ND
Sodium	6,000-8,000	SB	118.0	NA	ND	NA			ND	ND	ND	ND	ND
Thallium	•••	SB	1.5	NA	3.6	NA	NA	NA NA	4.9	4.0	6.5	4.6	8.3
Vanadium	1-300	150 /SB	12.7	NA	11.5	NA	NA	NA	28.6	28.0	37.2	30.2	50.2
Zinc	9-50	20/ SB	67.2	NA	57.2	NA	NA	INA	20.0	20.0	07.2		

Zinc Notes:

1. NYSDEC = New York State Department of Environmental Conservation.

2. TAGM = Technical Administrative Guidance Memorandum.

3. RSCO = Recommended Soil Cleanup Objective.

4. ND = Compound not detected.

5. NA = Sample not analyzed for this compound.

6. NS= No RSCO exists for this compound.

7. ***= No background level provided in TAGM 4046.

8. SB= Site Background.

9. Only constituents detected in at least one sample are shown.

10. Bolded results indicate an exceedance of NYSDEC TAGM RSCO.

11. SVOC Data in ug/kg, Metals Data in mg/kg.

K: Projects E 1015676 Waters Edge Voluntary Investigation Tables (Table 1 - Soll xis) Sheet1

 Table 2

 Summary of Groundwater Analytical Results for Volatile, Semi-Volatile Organic Compounds and pH

Analytical	NYSDEC GQS		Sample Locations and Concentrations														
Parameter/Constituent	(ppb)								B-11	B-12	B-13	B-14	B-17	B-18	B20	821	Sump
Volatile Organic Compounds		MW1	8-6	B+7	B-8	8.9	B+10	B-10D ND	ND	ND	ND	ND	NS	ND	ND	ND	6,100
1,1,1 Trichloroethane	5	ND	80	ND	ND	ND	ND	ND	ND	5	ND	ND	NS	ND	73	3	ND
Tetrachlorethylene	5	ND	5	1.7	1.5	ND	ND	ND	ND	17	12	2,700	NS	27	1,700	8	ND
Trichloroethlyene	5	ND	4.7	ND	3.3	ND	ND	17	ND	ND	ND	41	NS	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	26	17	ND	ND	ND	ND	NS	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	5.7	4 ND	ND	ND	ND	9.1	NS	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	15,000
1.1-Dicloroethane		ND	ND	ND	ND	ND	ND		ND	112			1				
Semi-Volatile Organic														<u></u> 2	NS	NS	NA
Compounds					ND	ND	1.6	ND	ND	1.9	ND	15	ND	ND	NS	NS	NA
Diethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		NS	NS	NA
bis(2-ethylhexl)phthalate	5	1.3	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NA
Napthalene	10	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NA
Flourene		ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NA
Phenathrene		ND	3.1	ND	ND	6.4	5.5	6.0	5.2	7.6	7.1	5.6	NA	7.3	113	140	1 1973
pH	6.5-8.5	5.9	5.1	6.4	6.3	0.4	0.0	0.0									

pH Notes

1. NYSDEC = New York State Department of Environmental Conservation.

2. GQS = Groundwater Quality Standard

ND = Compound was not detected.

NA = Sample was not analyzed for this compound.

5. Only constituents detected in at least one sample are shown.

-- = No GQS is available for this constituent.

7. Bolded results indicate an exceedance of NYSDEC GQS.

8. VOC and SVOC data in parts per billion (ppb), pH is unitless

K \Frojects\E1015676 Waters Edge Voluntary Investigation\Tables\Table 2 - Groundwater xts\Sheet1

Analytical Parameter/Constituent	NYSDEC GQS (ppb)	Sample Location and Concentration								
Metals		B-6	B-8	B-9	B-12	B-13	B-18			
Aluminum	100	27.3	634	78.8	48.2	74	44			
Antimony	3	11.4	ND	9.8	ND	ND	ND			
Arsenic	25	4.8	4.6	ND	6.8	ND	14.1			
Barium	1,000	40.6	20.3	26.6	87.3	33.4	30.6			
Berylium	3	0.14	ND	ND	ND	ND	ND			
Cadmium	5	0.76	ND	ND	ND	ND	ND			
Calcium		73,100	39,900	75,100	108,000	77,500	40,000			
Chromium	50	2.3	1.6	ND	ND	0.94	ND			
Cobalt	5	24.8	2.0	2.6	18.6	6.4	20.4			
and the second	200	ND	2.3	2.0	ND	4.3	3.6			
Copper	300	615.0	324	ND	ND	45	61			
Iron	25	ND	8.7	ND	ND	ND	ND			
Lead	35,000	13900.0	5,400	9,810	14,700	6,720	2,750			
Magnesium	300	1,390	397	122	6,150	3,040	4,680			
Manganese	1	ND	ND	ND	ND	ND	ND			
Mercury	100	26.1	5.6	3.6	36.6	10.8	17.0			
Nickel		10,800	8,760	15,300	19,000	10,200	13,500			
Potassium	10	ND	ND	ND	ND	ND	ND			
Selenium	50	ND	1.8	ND	ND	1.7	ND			
Silver		46,000	32,800	64,900	58,700	17,700	49,500			
Sodium	8	ND	ND	ND	ND	ND	ND			
Thallium	14	ND	2.0	ND	ND	ND	ND			
Vanadium Zinc	14	33.2	26.6	11.7	40.8	13.3	18.3			

 Table 3

 Summary of Groundwater Analytical Results for Filtered Metals

a france of

bearing

15

Notes:

1. NYSDEC = New York State Department of Environmental Conservation.

2. GQS = Groundwater Quality Standard

3. ND = Compound was not detected.

4. -- = No GQS is available for this constituent.

5. Bolded results indicate an exceedance of NYSDEC GQS.

6. All results are in parts per billion (ppb).

K.\Projects\E1015676 Waters Edge Voluntary Investigation\Tables\[Table 3 - Groundwater xls]Sheet1

Table 4

Summary of Total Chlorinated VOC Groundwater Contaminant Areas

Waters Edge

Port Jervis, New York

	Area						
Total VOC concentration (ppb)	Square Feet	Acres					
> 5	177,509	4.43					
> 50	107,546	2.68					
> 500	39,933	0.99					

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E0115519 Project Name: Waters Edge Project Manager: Chuck Mulligan Total Depth: 16' Water Table Depth: 15'

1.1

1

-

.....

Date: 11/15/00 Location: Port Jervis, NY Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B1

Depth (feet)	Sample No.	Sample Interval (feet)	Recovered (%)	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			80	0	0-2' Black Topsoil
					2'-4' Brown F-M SAND
4-8			100	0	Brown F SAND
8-12			100	0	Brown F SAND
12-16	S1	13-15	100	0	12'-15' Brown F SAND
12-10					15'-16' Grey F SAND, Wet at 15'

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E0115519 Project Name: Waters Edge Project Manager: Chuck Mulligan Total Depth: 16' Water Table Depth: 13'

1

t .

i.

.

0.4

1

Date: 11/15/00

Location: Port Jervis, NY Drilling Company: S2C2 Method Used: Geoprobe

Boring No.: B2

Depth (feet)	Sample No.	Sample Interval (feet)	Recovered (%)	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
)-4			90	0	0-6" Asphalt
					6"-3' Brown F-M SAND
					3'-4' Brown CLAY
4-8			90	0	Brown Clayey SILT
8-12			100	0	8'-11' Brown SILT
0-12					11'-12' Brown F SAND, and Silt
10.16	S2	12-13	100	0	12'-13' Brown F SAND, and Silt
12-16	52	12-13			13'-16' Grey F SAND, Wet at 13'
-					

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E0115519 Project Name: Waters Edge Project Manager: Chuck Mulligan Total Depth: 16' Water Table Depth: 12'

de marte

-

Date: 11/15/00 Location: Port Jervis, NY Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B3

Depth (feet)	Sample No.	Sample Interval (feet)	Recovered (%)	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			20	0	0-6" Asphalt
0-4			/		6"-4' Brown F SAND, some Silt
4-8			40	0	Brown SILT, some Sand
8-12	S 3	11-12	50	0	Brown SILT
12-16			100	0	Brown SILT, Wet at 12'
12-10					

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E0115519 Project Name: Waters Edge Project Manager: Chuck Mulligan Total Depth: 19'

Water Table Depth: 17'

Date: 11/15/00 Location: Port Jervis, NY Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B4

Depth (feet)	Sample No.	Sample Interval (feet)	Recovered (%)	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
)-3					Sump
3- 7			100	0	Brown F SAND, some Silt, very stony
7-11			100	0	7'-9.5' Brown Clayey SILT
/-11					9.5'-11' Brown M-C SAND
11-15			100	0	Dark Brown M-C SAND
15-19	S4	16-17	100	0	Brown SILT, wet at 17'

.

1000

-

ALC: N

L

.

1. A.

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E0115519 Project Name: Waters Edge Project Manager: Chuck Mulligan Total Depth: 16' Water Table Depth: 15'

L

1.11

「「「「「「」」」

* 5

-

Date: 11/15/00 Location: Port Jervis, NY Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B5

Depth (feet)	Sample No.	Sample Interval (feet)	Recovered (%)	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			100	0	0-6" Asphalt
					6"-4' Brown F SAND, some Silt
4-8			100	0	Brown SILT, some Sand
8-12			100	0	Brown SILT
12-16	S5	14-15	100	0	Brown SILT, Wet at 15'

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16.5' Date: February 21, 2001 Location: Port Jervis, New York Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B6

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
)-4			90	20	0-3 Asphalt and fill
J-4					3-4 Brown SAND
4-8			100	30	Brown F- C SAND
8-12			100	50	Brown F-C SAND
12-16	B6	15-16	100	50	Brown SAND, and Silt
16-20			100		Grey SAND and, Silt, wet at 16.5

مف

144.0

E

-

1

erst.

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

1

- Series

L

2

-

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16'

Depth (feet)	Sampl e No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			90	0	Top soil and fill
4-8			100	0	Brown F-M SAND
8-12			100	0	Brown F-M SAND
12-16	B7	14.5-15.5	100	200	Grey SILT and, Sand
					Wet at 16'
16-20			100		Grey SILT and, Sand, wet

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E1015676

Project Name: Waters Edge

Project Manager: Chuck Mulligan/ Pete Biolchini

Total Depth: 20'

-

1

1

10

1

6 C

Water Table Depth: 16.5'

Date: February 21, 2001 Location: Port Jervis, New York Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B8

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			60	0.5	Brown M-C Sand, trace Silt
4-8			20	0.2	Brown M-C Sand, trace Silt
8-12			30	12	Brown M-C Sand, trace Silt
12-16	B8	15-16	75	20	Brown M-C Sand, trace Silt
16-20			70	13	Clay and, Silt moist, wet at 16.5

10

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

1

1

6...

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16'

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Water sampler driven to 20' no soil sampling conducted.

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

1.3

Ľ

6

240

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16'

Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
				Drive point driven to 20' no soil sampling conducted.
				Temporary 1" PVC screen and riser installed to sample
				water.
	No.	No. Interval	No. Interval %	No.Interval%Screening Result (ppm)

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

1

1

-

-

as de

63

£.

6

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16'

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Drive point driven to 20' no soil sampling conducted.
					Temporary 1" PVC screen and riser installed to sample
					water.
	+				
	1				
	+	1			

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

-

ALC: NO.

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16'

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Drive point driven to 20' no soil sampling conducted.
					Temporary 1" PVC screen and riser installed to sample
					water.

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

100

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16'

Depth (feet)	Sampl e No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			100		Concrete
0-4				4.5	Brown M SAND, trace Silt
4-8			75	90	Brown CLAY, trace Silt
8-12			75	110	8-10 Brown CLAY
0-12				215	10-12 Brown M SAND, trace Silt
					Lemon-like odor noted
12-16	B13	14.5-15.5	100	440	Brown M-C SAND, some Clay and, Silt
16-20			100		Brown M-C SAND, wet at 16'
10 20					

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E1015676

Project Name: Waters Edge

Project Manager: Chuck Mulligan/ Pete Biolchini

Total Depth: 24'

No. A

N SS

.....

10.00

1

Water Table Depth: 20'

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Water sampler driven to 24' no soil sampling conducted.

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16' Date: February 22, 2001 Location: Port Jervis, New York Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B17

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Drive point driven to 20' no soil sampling conducted.
					Temporary 1" PVC screen and riser installed to sample
					water.
				-	
		1			
		-			
			_		
	-				

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 20' Water Table Depth: 16' Date: February 22, 2001 Location: Port Jervis, New York Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B18

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Drive point driven to 20' no soil sampling conducted.
					Temporary 1" PVC screen and riser installed to sample
					water.
		+			
		+			

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Boring Log

Project No.: E1015676

Project Name: Waters Edge

Project Manager: Chuck Mulligan/ Pete Biolchini

Total Depth: 4'

1

PA ST

1

-

.

-

1

18:53

Water Table Depth: Not Encountered

Date: February 22, 2001 Location: Port Jervis, New York Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B19

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			70	0	0-2 Topsoil, fill, brick
					2-4 Brown F- C SAND and SILT, some Gravel
	1				

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

1

No Cor

-

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 24' Water Table Depth: 16' Date: March 22, 2001 Location: Port Jervis, New York Drilling Company: ADT Method Used: Geoprobe Boring No.: B20

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
					Drive point driven to 24' no soil sampling conducted.
					Temporary 1" PVC screen and riser installed to sample
					water.
	-				

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

-

÷.

.

1

E.s

1

1

1

6

Boring Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 40' Water Table Depth: >24' Date: February 21, 2001 Location: Port Jervis, New York Drilling Company: S2C2 Method Used: Geoprobe Boring No.: B21

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-4			90	0	0-3" Drilled through concrete
					3"-4' Black F-C SAND and SILT
4-8			100	0	Brown F- C SAND
8-12			100	0	Brown F-C SAND
12-16			100	0	Grey SILT
16-20			100	0	Grey SILT
20-24			100	0	Grey SILT
					Refusal with Macrocore sampler at 24'.
					Water sampler driven to 40' to obtain water sample.

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

.....

1.

.

here

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 6' Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-3				0	Asphalt, Black M SAND, trace Silt
3-6				0	Red CLAY, some M Sand

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

120

.....

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 6' Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-3				0	Asphalt, Black M SAND, trace Silt
					Some brick
3-6				0	Brown F-M SAND, some Silt
					Some brick and concrete debris

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 6' Water Table Depth: Not Encountered Date: February 20, 2001 Location: Port Jervis, New York Excavating Company: Port Jervis DPW Method Used: Backhoe Test Pit No.: TP 3

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-3				13.6	Asphalt, Black F- M SAND, some Silt
					Some brick
3-6	TP3	5-6		50	Brown F-M SAND, some Silt
					Some brick and concrete debris

+

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

· Anna

600

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 6' Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-3				30	Asphalt, Black F-M SAND, some Silt
					Some brick
3-6	TP-4	5-6		75	Brown F-M SAND, and SILT
					Some brick and concrete debris

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Test Pit Log

Project No.: E1015676

Project Name: Waters Edge

Project Manager: Chuck Mulligan/ Pete Biolchini

Total Depth: 6'

Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-3				0	Asphalt, Black M SAND, trace Silt
3-6				0	Brown F-M SAND, some Silt
			;		

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

1

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 6' Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-3				0	Asphalt, Black M SAND, trace Silt
					Some brick
3-6	TP-6	5-6		0	Brown F-M SAND, some Silt and Clay
					Some brick and concrete debris
·····					
		1			

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Test Pit Log

Project No.: E1015676

Project Name: Waters Edge

Project Manager: Chuck Mulligan/ Pete Biolchini

Total Depth: 16'

Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-1				0	Black M SAND, trace Silt
1-5				0	Orange M-C SAND
5-12				0	Grey M-C SAND
12-16	TP-7	15-16		50	Grey F-C SAND, and SILT

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

201

....

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 16' Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
)-1				0	Black M SAND, trace Silt
1-5				0	Orange M-C SAND
5-11				0	Grey M-C SAND
11-16	TP-8	15-16		0	Grey F-C SAND, and SILT

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

0 5

.....

1

1

ase.

100

Test Pit Log

Project No.: E1015676 Project Name: Waters Edge Project Manager: Chuck Mulligan/ Pete Biolchini Total Depth: 16' Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-2				0	Black M SAND, trace Silt
2-5				0	Orange M-C SAND, trace Silt
					Tank encountered at 3' bgs
5-8				0	Grey M-C SAND
8-16	TP-7	15-16		10	Grey F-C SAND and, Silt

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600 (tel) (914) 694-2903 (fax)

Test Pit Log

Project No.: E1015676

Project Name: Waters Edge

Project Manager: Chuck Mulligan/ Pete Biolchini

Total Depth: 6'

1.14

1

Water Table Depth: Not Encountered

Depth (feet)	Sample No.	Sample Interval	Recovered %	Field Screening Result (ppm)	Soil Identification and Remarks (include color, composition, moisture, and visual and olfactory observations of contamination)
0-1				0	Concrete Slab
1-6				0	Black/Orange M-C SAND, some Silt

105 Corporate Park Drive White Plains, New York 10604 (914) 694-9600

Monitoring Well Development, Purging and Sampling Data Log

Project No.: E1015676	Monitoring Well: MW 1 Well Casing Diameter: 2 in.				
Project Name: Waters Edge					
Project Manager: Chuck Mulligan/ Pete Biolichini	Well Stick-up Height: ft.				
Project Location: Port Jervis, New York	Depth of Well from Top of Well Casing: 25.9 ft.				
Water Analyzer Used: Horiba U-10	Depth of Well from Top of Roadbox Casing: 26.2 ft.				

DATE: 2/21/01		Distance from To to:	op of Well Casing	Height of	Volume	Well
	Time	Water (ft.)	Free Product (ft.)	Water Column (ft.)	Factor ¹	Volume (gal.)
Before Development		22.95		2.98	0.163	0.5
After Development				NA	NA	NA
Volume of Groundwater Rem	oved Durir	ng Development:	gal.			
Comments:						
	1	WELL PURGING AI	ND SAMPLING DATA			
DATE:						
Distance from top of well c	asing to w	vater: 22.95 ft.				
Distance from top of well c	asing to fr	ee product: NA	ft.	.		
Number of Well Volumes	Time	рН	Temp °C	Conductivity uS/cm	Dissolved Oxygen (ppm	
0		6.7	9	0.82	8	.8
1		5.0	11	0.77	14	4.0
2		4.1	11	0.77	18	3.9
3		4.2	11	0.78	19	9.9
4						
5						

Notes:

¹Volume Factor = 0.163 gal./ft. and 0.653 gal./ft. for 2" and 4" diameter well casings, respectively. NA = Not Applicable

K:\OFFICE\PHASEII\FORMS\MWDATALG.DOC

DATA PACKAGE FOR RESULTS SUMMARY

PROJECT NAME: WATERS EDGE PROJECT # E 1015676

IVI ENVIRONMENTAL 105 CORP PARK DRIVE WHITE PLAINS, NY 10604 914-694-9600

CHEMTECH PROJECT ATTENTION

CHEIMTECH

L3355ASP CHUCK MULLIGAN

			1 A			PLE NO.
		VOLATILE ORGAN	1A IICS ANA			B17
de Santon de	CHEMTECH		Contra	ct: IVI ENVIRO	NMENTAL	
Lab Name:	L3355ASP	Site: WATERS	E Locatio			: <u>5971-VOA</u>
		WATER		Lab Sam	ple ID: 012	
Matrix: (so		5.0 (g/mL) ML		Lab	File ID: VV030626	5.D
Sample wt/		(g, iiii)	-	Date Re	ceived: 2/27/01	
	ow/med)	100		Date An	alyzed: 3/7/01	
	e: not dec.	ID: 0.53	(mm)	Dilution	Factor: 1.0	
	n: <u>RTX624</u>	(uL)	-	Soil Aliquot	Volume:	(uL)
Soil Extrac	t Volume:	(==/		tration Units:		
			Concen	tration Units. ug/Kg U	g/L Q	
C	CAS No.	Compound	(ug/L c			
		Benzene	1	5	U U	
	1-43-2	Toluene		5	U U	-
	.08-88-3	Ethyl Benzene		5	U U	
	00-41-4			5		
	136777-61-2	m/p-Xylenes		5	U	
	95-47-6	o-Xylene Isopropylbenzene		5	U	_
	98-82-8			5	U	
	103-65-1	n-propylbenzene		5	U	_
	108-67-8	1,3,5-Trimethylbenzene		5	U	
	98-06-6	tert-Butylbenzene		5	U	
	95-63-6	1,2,4-Trimethylbenzene		5	U	
	135-98-8	sec-Butylbenzene		5	U	
	99-87-6	p-Isopropyltoluene		5	U	
	104-51-8	n-Butylbenzene		5	U	
	91-20-3	Naphthalene		5	U	
	1634-04-4	Methyl tert-butyl Ether				
	· ·					

37.A

The second

.

inter a

E

- -

1

128

Г

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

enter de la constante de la consta

11

1

		TENTATIVELY IDE	ENTIFIED CO	OMPOUN	DS	E	17
Lab Name: CHEMTI	ECH		Contract:	IVI ENV	VIRONMEN	TAL	
Project No. L3355A		Site: WATERS	S Location:	LB1238	5	Group:	5971-VOA
Matrix: (soil/water)	WATER			Lab	Sample ID:	012	
Sample wt/vol:	5.0	(g/mL) ML	_		Lab File ID:	VV030626	i.D
Level: (low/med)				Date	e Received:	2/27/01	_
% Moisture: not dec	100			Date	e Analyzed:	3/7/01	_
	RTX624	- ID: 0.53	(mm)	Dilu	tion Factor:	1.0	_
Soil Extract Volume:		(uL)		Soil Aliqu	uot Volume:		(uL)
Join Linner		-	Concentrati	on Units:			
Number TICs found:	2		(ug/L or		ug/L		
	CAS Number	Compou	nd Name	RT	Est. Conc.	Q	
	1. 76-13-1	Ethane, 1,1,2-trich		3.83	8 8	J	
	2.	Column Bleed		28.91	5.3	J	
	3.	Column Breed					
	4.						
	5.						
	6.						
	7.			1	1		
	8.						
	9.						-
	10.			+			
	11.						
	12.						-
	13.						-
	14.						-
	15.						-
	16.						-
	17.			-			-
	18.						-
	19.						_
	20.						-
	21.			-			-
	22.						-
	23.						-
	24.						_
	25.						-
	26.						_
	27.						
	28.						
	29.						_
	30.						
	30.						

		1A			SAMPL	E NO.
	VOLATIL	E ORGANIC	S ANALYS	SIS DATA SHEET	ED1	2/21
Lab Name: CHEMTEC	СН		Contract:	IVI ENVIRONMEN	FB1	2/21
Project No.: L3355ASP	Site:	WATERS E	Location:	LB12385	Group:	5971-VOA
Matrix: (soil/water)	WATER			Lab Sample ID:	015	
Sample wt/vol:	(g/mL)	ML		Lab File ID:	VV030622.E)
Level: (low/med)				Date Received:	2/27/01	
% Moisture: not dec.	100			Date Analyzed:	3/6/01	
GC Column: RTX624	ID:	(m	um)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)		:	Soil Aliquot Volume:		(uL)
		C	oncentration	Units:		
CAS No.	Compound		ig/L or ug/K		Q	
71-43-2	Benzene			5	U	
108-88-3	Toluene			5	U	
100-41-4	Ethyl Benzene			5	U	
136777-61-2	m/p-Xylenes			5	U	
95-47-6	o-Xylene			5	U	
98-82-8	Isopropylbenzene			5	U	
103-65-1	n-propylbenzene			5	U	
108-67-8	1,3,5-Trimethylben	zene		5	U	
98-06-6	tert-Butylbenzene			5	U	
95-63-6	1,2,4-Trimethylben	zene		5	U	
135-98-8	sec-Butylbenzene			5	U	
99-87-6	p-Isopropyltoluene			5	U	
104-51-8	n-Butylbenzene			5	U	
91-20-3	Naphthalene			5	U	
1634-04-4	Methyl tert-butyl Et	her		5	U	

10.0

I

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	VO	CENTATIVELY IDEN	TIFIED CC	MPOUND	S	FB12	/21
LING CUEMT		-	Contract:		RONMEN	ΓAL	
Lab Name: CHEMTI		Site: WATERS	Location:	LB12385		Group: 5	971-VOA
Project No. L3355A				Lab S	ample ID:	015	
Matrix: (soil/water)	WATER					VV030622.I)
Sample wt/vol:	5.0	(g/mL) <u>ML</u>					
Level: (low/med)		_		Date	Received:	2/27/01	
% Moisture: not dec	. 100	<u>_</u>		Date	Analyzed:	3/6/01	
	RTX624	ID: 0.53	(mm)	Diluti	on Factor:	1.0	
		(uL)		Soil Alique	ot Volume:		(uL)
Soil Extract Volume:		-					
			Concentratio				
Number TICs found:	2	en e	(ug/L or		ug/L		
	CAS Number	Compound			Est. Conc.	Q	
	1. 76-13-1	Ethane, 1,1,2-trichlo	oro-1,2,	3.86	7.8	J	
	2.	Column Bleed		28.92	16	J	
	3.						
	4.						
	5.						
	6.			+			
	7.						
	8.						
	9.						
	10.						
	11.						
	12.]
	13.						
	14.						
	15.						
	16. 17.						1
	17.						1
	19.						4
	20.						4
	21.						4
	22.						4
	23.						4
	24.						-
	25.						4
	26.						-
	27.						-
	28.						-
	29.						-
							1

1

1.3

6

.

.

1

WT-F

30.

		1A		SAMPLE NO.
				TP7'6'
VOLATILE ORGANICS ANALYSIS DATA S ab Name: CHEMTECH Contract: IVI ENVIRUATION roject No.: L3355ASP Site: WATERS ELocation: LB12243 Matrix: (soil/water) SOIL Lab Sa Matrix: (soil/water) SOIL Lab Sa Matrix: (soil/water) SOIL Lab Sa Matrix: (soil/water) G Lab Sa Matrix: (soil/water) Date R Date R Matrix: (uL) Soil Aliquo Concentration Units: GC Column: DB624 ID: 0.53 (mm) Lab Sa Matrix: Concontration Units: (ug/L or ug/Kg)				
Project No.: L3355ASP	Site: WATERS	ELocation: LB		Group: <u>5970-VO</u>
Matrix: (soil/water)	SOIL		Lab Sample ID:	020
Sample wt/vol:		ç.	Lab File ID:	E3174.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: not dec.	20		Date Analyzed:	3/5/01
GC Column: DB624	ID: 0.53	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soi	I Aliquot Volume:	(uL)
		Concentration L	Jnits:	
CAS No.	Compound			Q
71-43-2	Benzene			U
	Toluene			U
	Ethyl Benzene			U
	m/p-Xylenes			UUU
	o-Xylene			U
98-82-8	Isopropylbenzene			U
103-65-1				U
108-67-8	1,3,5-Trimethylbenzene			
98-06-6	tert-Butylbenzene			U
95-63-6				U
135-98-8	sec-Butylbenzene			U
99-87-6	p-Isopropyltoluene		6.3 6.3	U
104-51-8	n-Butylbenzene		6.3	U
91-20-3	Naphthalene		6.3	U
1634-04-4	Methyl tert-butyl Ether		0.3	

12

3

.

Г

1

1F
DLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS

I

provide the second seco

100 million

1.01

19. 20. 21.

22. 23. 24.

> 25. 26. 27.

28. 29. 30.

7'6'
5970-VOA
(uL)
-

1A

I

1 3

1000

SAMPLE NO.

	VOLATILE ORGAN	ICS ANALYS	SIS DATA SHEET	тр	8'6'
Lab Name: CHEMTEC					
Project No.: L3355ASP	Site: WATERS	S ELocation:	LB12243	Group:	5970-VOA
	SOIL		Lab Sample ID:	021	
Matrix: (soil/water)	5.0 (g/mL) G		Lab File ID:	E3175.D	
Sample wt/vol:		-	Date Received:	2/27/01	
Level: (low/med)	LOW		Date Analyzed:		
% Moisture: not dec.	19		Dilution Factor:		
GC Column: DB624	ID: 0.53	_(mm)			- (uL)
Soil Extract Volume:	(uL)		Soil Aliquot Volume:		- (02)
CAS No.	Compound	Concentra (ug/L or ug		Q	7
71-43-2	Benzene		6.2	U	
108-88-3	Toluene		6.2	UU	-
100-41-4	Ethyl Benzene		6.2	U	4
136777-61-2	m/p-Xylenes		6.2	U	-
95-47-6	o-Xylene		6.2	U	-
98-82-8	Isopropylbenzene		6.2 6.2	U	-
103-65-1	n-propylbenzene		6.2	U	-
108-67-8	1,3,5-Trimethylbenzene		6.2	U	-
98-06-6	tert-Butylbenzene		6.2	U	1
95-63-6	1,2,4-Trimethylbenzene		6.2	U	-
135-98-8	sec-Butylbenzene		6.2	U	
99-87-6	p-Isopropyltoluene		6.2	U	
104-51-8	n-Butylbenzene		6.2	U	
91-20-3	Naphthalene		6.2	U	
1634-04-4	Methyl tert-butyl Ether				_
					-
					\square
					-
					_
					-
			· · · · · · · · · · · · · · · · · · ·		

THE DATA SUFET

1E

•

24.

25. 26. 27. 28.

29. 30.

114

125

1

£....

Carlor P. Color

Carlor and

- ANALY NAMES

-

	OMPOUNDS	TP8'6'		
Lab Name: CHEMT	ECH	Contract	IVI ENVIRONMEN	TAL
Project No. L3355A		Site: WATERS Location	: LB12243	Group: <u>5970-VOA</u>
Matrix: (soil/water)	SOIL	_	Lab Sample ID:	021
Sample wt/vol:	5.0	(g/mL)	Lab File ID:	E3175.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: not de	c. 19		Date Analyzed:	3/5/01
GC Column:	DB624	ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume	:1	(uL)	Soil Aliquot Volume:	: (uL)
Number TICs found	: 2	,	ation Units: r ug/Kg)ug/Kg	
	CAS Number	Compound Name	RT Est. Conc	
	1. 76-13-1	Ethane, 1,1,2-trichloro-1,2,	4.83 7.4	J
	2.	Column Bleed	30.94 6.4	J
	3.			
	4.			
	5.			
	6.			
	7.			
	8.			
	9.			
	10.			
	11.			
	12.			· · · ·
	13.			
	14.			
	15.			
	16.			
	17.			
	18.			
	19.			
	20.			
	21.			
	22.			
	23.			

	14	•		SAMPLE NO.
	VOLATILE ORGANIC	S ANALY		TP9'4'
Lab Name: CHEMTE	СН	Contract:		
Project No.: L3355ASF	Site: WATERS I	ELocation:		Group: <u>5970-VOA</u>
Matrix: (soil/water)	SOIL		Lab Sample ID:	
Sample wt/vol:	5.0 (g/mL) G		Lab File ID:	
Level: (low/med)	LOW		Date Received:	
% Moisture: not dec.	17		Date Analyzed:	
GC Column: DB624	ID: 0.53 (mm)	Dilution Factor:	
Soil Extract Volume:	(uL)		Soil Aliquot Volume:	(uL)
		Concentra	tion Units:	
CAS No.		(ug/L or ug		Q
CAS NO.			6	
71-43-2	Benzene		6	U
108-88-3	Toluene		6	U
100-41-4	Ethyl Benzene		6	U
136777-61-2			6	U
95-47-6	o-Xylene		6	U
98-82-8	Isopropylbenzene		6	U
103-65-1	n-propylbenzene		6	U
108-67-8	1,3,5-Trimethylbenzene		6	U
98-06-6	tert-Butylbenzene		6	U
95-63-6	1,2,4-Trimethylbenzene		6	U
135-98-8	sec-Butylbenzene		6	U
99-87-6	p-Isopropyltoluene		6	U
104-51-8	n-Butylbenzene		6	U
91-20-3	Naphthalene Methyl tert-butyl Ether		6	U
1634-04-4	Methyl ten-butyl Ether			

I

6.4

TP9'4'

1F
IL DATA SHEFT
VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS
TENTATIVE Y IDENTIFIED COMIN COM

TE

Lab Name: CHEMTECH Contract: IVI ENVIRONMENTAL Project No. L3355A Site: WATERS Location: LB12243 Group: 5 Lab Sample ID: O24 D24 D24 D24	970-VOA
Project No. L3355A Sile: WATCHS Lab Sample ID: 022	
Eab Gampie	
Matrix: (soil/water) SOIL Lab File ID: E3176.D	
5.0 (g/mL) G	
Date Received.	
Date Analyzed. <u>Ororon</u>	
% Moisture: Not door ID: 0.53 (mm) Dilution Factor: 1.0	
GC Column: Soil Aliquot Volume:1	(uL)
Soil Extract Volume: 1 (uL)	
Concentration Units: (ug/L or ug/Kg) ug/Kg	
Number TICs found: 0	1
Number TICs found. Compound Name RT Est. Conc. Q	
1.	1
2.	1
3.	1
4.	1
5.	1
6.	1
7.	
8.	
9.	
10.	
11.	_
12.	_
13.	
14.	
15.	
16.	
17.	_
18.	_
19.	
20.	
21.	
22.	_
23.	
24.	
25.	_
26.	_
27.	
28.	
29.	
30.	

.

5

1

6.5

6

T.

				1A		SAMPLI	E NO.
		VOLATILE	ORGANIC	S ANALYSIS	S DATA SHEET	M	W1
Lab Name: <u>C</u> F	HEMTECH			Contract:			
Project No.: L3	355	Site:	WATERS	EI Location:	LB12348	Group:	5971-VOA
Matrix: (soil/wat	ter) WA	TER			Lab Sample ID:	001	
Sample wt/vol:	5.	0(g/mL)	ML		Lab File ID:	VN030511.E)
Level: (low/m	ed)				Date Received:	2/27/01	
% Moisture: no	ot dec. 10	00			Date Analyzed:	3/5/01	
GC Column: R	ГХ624	ID:	0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volu	ume:	(uL)			Soil Aliquot Volume:		(uL)
CAS N	lo. Comp	bound		Concentrat (ug/L or ug/l		Q	
74-87-	3 Chlor	omethane			10	U	
74-83-		omethane			10	U	
75-01-		Chloride			10	U	
75-00-		oethane			10	U	
75-09-		ylene Chloride			10	U	
67-64-					10	U	
75-15-		on Disulfide			10	U	
75-35-		ichloroethene			10	U	
75-34-		ichloroethane			10	U	
156-60		-1,2-Dichloroe			10	U	
156-59		2-Dichloroeth			10	U	10
67-66-		oform			10	U	
107-06	-	ichloroethane			10	U	
78-93-		tanone			10	U	
71-55-		-Trichloroetha	ne		10	U	1
56-23-		on Tetrachlori			10	U	1
75-27-		odichlorometh			10	U	1
78-87-		Dichloropropan			10	U	1
10061		,3-Dichloropro			10	U	
79-01-		loroethene			10	U	
124-48		omochloromet	nane		10	U	
79-00-		-Trichloroetha			10	U	
71-43-	- 11				10	U	1
10061		-Dichloroprope	ene		10	U	
75-25-		noform			10	U	1
108-10		thyl-2-Pentan	one		10	U	1
591-7		exanone			10	U	1
127-1		achloroethene			10	U	
79-34	-	2,2-Tetrachloro	ethane		10	U	
108-8					10	U	
108-9		robenzene			10	U	
100-4		Benzene			10	U	
100-4					10	U]
100-4	- 0 00010						-

.

6

all a

1

1.5

•

					1A		SAMPL	E NO.
		VO	LATILE	ORGANIC	S ANALYSIS	DATA SHEET		IW1
Lab Name: C	HEMTECH	4				IVI ENVIRONMENTA		
Project No.: L	.3355		Site:	WATERS	El Location:	LB12348		5971-VOA
Matrix: (soil/wa	ater)	WATER				Lab Sample ID:	001	-
Sample wt/vol:		5.0	(g/mL)	ML	-	Lab File ID:	VN030511.	D
Level: (low/r						Date Received:	2/27/01	-
% Moisture: r		100				Date Analyzed:	3/5/01	-0.0
GC Column: F			ID:	0.53	(mm)	Dilution Factor:	1.0	-
Soil Extract Vo			(uL)			Soil Aliquot Volume:		(uL)
					Concentra	tion Units:		
CAS	No.	Compound			(ug/L or ug/		Q	
1367	77-61-2	m/p-Xylene	es			10 10	UU	-
95-4	7-6	o-Xylene		10		10	0	na hardina dini fana ingi ingi
-								-
								-
								-
								-
								-
								_
								-
								7
								-
								-
								_
-								
								_
								-

the second

and the second

17.1

4

in the

10

-

1. A.

MW1

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

				Contract:	IVI ENVI	RONMENTA	L	
Lab Name: CHEMTEC	Н			Location:				5971-VOA
Project No.: L3355	-	Site	WATERS	Location.		Sample ID: C		
Matrix: (soil/water)	WATER	-				ab File ID: \		D
Sample wt/vol:	5.0	_(g/mL)	ML	-				
Level: (low/med)						Received:		•
	100				Date	Analyzed:	3/5/01	
% Moisture: not dec.		- IF): 0.53	(mm)	Dilut	tion Factor:	1.0	_
	TX624	_		- `	Soil Aliqu	ot Volume:		(uL)
Soil Extract Volume:		(uL)						
			2	Concentrati				
Number TICs found:	0	_		(ug/L or u		ug/L	0	7
	AS Number	1	Compou	Ind Name	RT	Est. Conc.	Q	-
Ē	1.							1
	2.							1
	3.							
-	4.							
-	5. 6.							-
F	7.							-
F	8.							
	9.							
	10.							
S	11.							_
	12. 13.							_
-	14.							-
-	15.							-
	16.							-
·	17.					-		
0	18.							
	19.							_
	20.							_
	21.							_
	23.							-
	24.				1			-
	25.							
	26.							
	27.							
	28.							
	29.							
	30.							

-

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

						B	6
Lab Name: CHEMTEC	н			Contract:	IVI ENVIRONMENTA	L	
Project No.: L3355		Site:	WATERS	El Location:	LB12348	Group: 5	5971-VOA
Matrix: (soil/water)	WATER	_			Lab Sample ID: C	202	
Sample wt/vol:	5.0	_(g/mL)	ML	-	Lab File ID: \	/N030512.D	
Level: (low/med)		_			Date Received:	2/27/01	
% Moisture: not dec.	100	_			Date Analyzed:	3/5/01	
GC Column: RTX624		ID:	0.53	_(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		_(uL)			Soil Aliquot Volume:		(uL)

Concentration Units: (uall or ualka)

SAMPLE NO.

Γ

CAS No.	Compound	(ug/L or ug/Kg)ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-01-4	Chloroethane	10	U
75-00-3	Methylene Chloride	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-35-4	1,1-Dichloroethane	10	U
	trans-1,2-Dichloroethene	10	U
156-60-5	cis-1,2-Dichloroethene	10	U
156-59-2	Chloroform	10	U
67-66-3	1,2-Dichloroethane	10	U
107-06-2	2-Butanone	10	U
78-93-3	1,1,1-Trichloroethane	80	
71-55-6	Carbon Tetrachloride	10	U
56-23-5	Bromodichloromethane	10	U
75-27-4		10	U
78-87-5	1,2-Dichloropropane cis-1,3-Dichloropropene	10	U
10061-01-5	Trichloroethene	4.7	J
79-01-6	Dibromochloromethane	10	U
124-48-1		10	U
79-00-5	1,1,2-Trichloroethane	10	U
71-43-2	Benzene	10	U
10061-02-6	t-1,3-Dichloropropene	10	U
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	5	J
127-18-4	Tetrachloroethene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethyl Benzene	10	U
100-42-5	Styrene	10	

. 490 . 01 2

6

.

5 .

Kents

1

FORMIVOA

				1A		SAMPL	E NO.
	VOL	ATILE	ORGANI	CS ANALYSI	S DATA SHEET		B6
Lab Name: CHEMTEC	СН			Contract:	IVI ENVIRONMENT	AL	
Project No.: L3355	_	Site:	WATERS	El Location:	LB12348	Group	: 5971-VOA
Matrix: (soil/water)	WATER				Lab Sample ID	: 002	_
Sample wt/vol:	5.0	(g/mL)	ML	-	Lab File ID	: VN030512.	D
Level: (low/med)					Date Received	: 2/27/01	_
% Moisture: not dec.	100				Date Analyzed	: 3/5/01	-
GC Column: RTX624		ID:	0.53	_(mm)	Dilution Factor	: 1.0	_
Soil Extract Volume:		(uL)			Soil Aliquot Volume	: 	(uL)
				Concentra	ation Units:		
CAS No.	Compound			(ug/L or ug	/Kg) <u>ug/L</u>	Q	-
136777-61-2	m/p-Xylene	s			10 10	UU	-
95-47-6	o-Xylene				10	+	-
							-
							_
							_
							-
							1
							-
					i		
							-
							-
							-
							-
							-
							_

1

1

Sec. 1

1

1

and a

.

1

FORMIVOA

B6

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

		TENTATIVELTIBEIT				AL.	
Lab Name: CHEMTEC	Н						5971-VOA
Project No.: L3355	_	Site: WATERS	Location:				
Matrix: (soil/water)	WATER	_			Sample ID:		
Sample wt/vol:	5.0	(g/mL) ML		L	ab File ID:	VN030512	.D
				Date	Received:	2/27/01	6.1
Level: (low/med)		-1		Date	Analyzed:	3/5/01	
% Moisture: not dec.	100	-	(tion Factor:		
GC Column: R	TX624	ID: 0.53	(mm)				(uL)
Soil Extract Volume:		_(uL)		Soil Aliqu	ot Volume:		- (uL)
			Concentrati	ion Units:			
the the tound	0		(ug/L or u	ug/Kg)	ug/L		
Number TCs found:	AS Number	Compour	nd Name	RT	Est. Conc.	Q	
	1.						-
F	2.						-
	3.						1
-	4. 5.						-
F	6.						-
	7.						1
-	<u>8.</u> 9.						_
-	9. 10.						-
	11.						1
	12.						
-	<u>13.</u> 14.	-					_
	15.						-
	16.						-
	17.						
	18. 19.						_
	20.						
	21.						_
	22.						
	23.			-			_
	24. 25.						_
	26.						-
	27.						
	28.						
	29. 30.						

1

22

1

.

.

-

FORM I VOA-TIC

1A

SAMPLE NO.

٦

VOLATILE ORGANICS ANALYSIS DATA	SHEET
---------------------------------	-------

		VC	LATILE	JRGAIN	00		DAIAOI		В	7
Lab Nar	me: <u>CHEMTEC</u>	СН			_	Contract:	IVI ENVI	RONMENTA	L	
Project No.: L3355		_	Site:	WATERS	<u>E</u> El	Location:	LB12348	3	Group:	5971-VOA
Matrix:	(soil/water)	WATER					Lab	Sample ID: (203	
Sample	wt/vol:	5.0	(g/mL)	ML	_			Lab File ID: <u>\</u>	/N030522.D	
Level:	(low/med)						Date	e Received:	2/27/01	
	ture: not dec.	100					Date	e Analyzed:	3/6/01	
	umn: RTX624		- ID:	0.53	(m	ım)	Dilu	tion Factor:	1.0	
	tract Volume:		(uL)				Soil Aliqu		(uL)	
Soll Ex	tract volume.		_(uL)							
		a da bata				Concentrat		ug/I	Q	
	CAS No.	Compound	1		(1	Ig/L or ug/l	rg) .	ug/L		
	74-87-3	Chloromet	hane		1		10		U	
	74-83-9	Bromomet	hane				10		U	
	75-01-4	Vinyl Chlor	ride				10		U	
	75-00-3	Chloroetha					10		U	
	75-09-2	Methylene	Chloride				10		UU	
	67-64-1	Acetone					10			
			Carbon Disulfide				10			1
	75-35-4	1,1-Dichloroethene				10			UU	
	75-34-3	1,1-Dichloroethane					10			
	156-60-5	trans-1,2-Dichloroethene					10	U		
	156-59-2	cis-1,2-Dichloroethene					10	U U		
	67-66-3	Chloroforn					10			
	107-06-2	1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane				10 10 10			U	
	78-93-3								U	
	71-55-6								U	
	56-23-5	Carbon Te					10		U	
	75-27-4	Bromodich					10		U	
	78-87-5	1,2-Dichlo					10		U	
	10061-01-5	cis-1,3-Die					10		U	
	79-01-6	Trichloroe					10		U	
	124-48-1	Dibromoc		nane		1	10		U	
	79-00-5	1,1,2-Tric					10		U	
	79-00-5	Benzene					10		U	
	10061-02-6	t-1,3-Dich	loroprope	ene			10		U	
	75-25-2	Bromofor				1	10		U	
				one			10		U	1
108-10-1 591-78-6		4-Methyl-2-Pentanone 2-Hexanone				10			U	1
	127-18-4	Tetrachlo				1	1.7		J	1
	79-34-5	1,1,2,2-Te		ethane			10		U	1
	108-88-3	Toluene		Guidilo			10		U]
	108-88-3	Chlorobei	170N0				10		U	1
		Ethyl Ben				+	10		U	1
	100-41-4		20110				10		U	1
	100-42-5	Styrene				1			L	-

.

-

5

and a state

and the second 10. Y

Restoration and the second

-

FORMIVOA

		1A			SAMPLE NO.	
	VOLATILE ORGANICS ANALYSIS DATA SHEET			TA SHEET	В7	
Lab Name: CHEMTECH	4		Contract: IVI	I ENVIRONMENTAL		
Project No.: L3355	Ş	Site: WATERS EI	Location: LE	B12348	Group: 5971-VOA	
Matrix: (soil/water)	WATER			Lab Sample ID: C	003	
Sample wt/vol:	5.0(g/r	mL) <u>ML</u>		Lab File ID: <u>V</u>	N030522.D	
Level: (low/med)				Date Received:	2/27/01	
% Moisture: not dec.	100			Date Analyzed: _	3/6/01	
GC Column: RTX624		ID: <u>0.53</u> (m	m)	Dilution Factor:		
Soil Extract Volume:	(uL	_)	Se	oil Aliquot Volume: _	(uL)	
			Concentration		Q	
CAS No.	Compound	(u	ıg/L or ug/Kg)			
136777-61-2	m/p-Xylenes			10 10		
95-47-6	o-Xylene			10		
			+			

*

Aller

the state of the s

1

de ad

1

1

.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

	VO	TENTATIVELY IDENT		B7				
						AL.		
Lab Name: CHEMTE		Site: WATERS	Location:	LB12348	3	Group:	5971-VOA	
Project No.: L3355		Site: WATERS	Lucation.					
Matrix: (soil/water)	WATER	_			Sample ID:			
Sample wt/vol: 5.0		_(g/mL) <u>ML</u> Lab Fi				e ID: VN030522.D		
Level: (low/med)				Date	Received:	2/27/01		
% Moisture: not dec.	100			Date	Analyzed:	3/6/01		
	RTX624	– ID: 0.53 (mm) Dilution Facto			ion Factor:	1.0		
	(1X024	_	()	Soil Aliquot Volume			(uL)	
Soil Extract Volume:		_(uL)		0011711190				
			Concentrati					
Number TICs found:	2	_	(ug/L or u		ug/L			
	CAS Number	Compour	d Name		Est. Conc.	Q		
Ĥ	1.	Column Bleed		5.48		J		
F	2. 873-94-9	Cyclohexanone, 3,3	,5-trimeth	20.46	5.7	J		
F	3.							
F	4.							
T	5.							
Ī	6.							
	7.						1	
	8.							
	9.						1	
	10.							
	11.						1	
	12.							
	13.							
-	14.							
	15. 16.							
	17.							
	18.						4	
	19.						4	
	20.						4	
	21.						-	
	22.						-	
	23.						-	
	24.						-	
	25.						-	
	26.				+		-	
	27.						-	
	28.						-	
	29.						-	
	30.							

1

M

1

6

.

Course of 0

1

1

1. A.

FORM I VOA-TIC

	14	4		SAMPLE	NO.
	VOLATILE ORGANICS	ANALYSIS	S DATA SHEET		8
Lab Name: CHEMTEC	:H	Contract:	IVI ENVIRONMENTA		0
Project No.: L3355	Site: WATERS E	I Location:	LB12348	Group:	5971-VO
Matrix: (soil/water)	WATER		Lab Sample ID:	004	
Sample wt/vol:	5.0 (g/mL) ML		Lab File ID:	VN030523.D	
Level: (low/med)			Date Received:	2/27/01	
% Moisture: not dec.	100		Date Analyzed:	3/6/01	
GC Column: RTX624	ID: 0.53 (I	mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)		Soil Aliquot Volume:		(uL)
		Concentral	tion Units:		
CAS No.	Compound	(ug/L or ug/		Q	
74-87-3	Chloromethane		10	U	
74-83-9	Bromomethane		10	U	
75-01-4	Vinyl Chloride		10	U	
75-00-3	Chloroethane		10	U	
75-09-2	Methylene Chloride		10	U	
67-64-1	Acetone		10	U	
75-15-0	Carbon Disulfide		10	U	
75-35-4	1,1-Dichloroethene		10	U	
75-34-3	1,1-Dichloroethane		10	U	
156-60-5	trans-1,2-Dichloroethene		10	U	
156-59-2	cis-1,2-Dichloroethene		10	U	
67-66-3	Chloroform		10	U	
107-06-2	1,2-Dichloroethane		10	U	
78-93-3	2-Butanone		10	U	
71-55-6	1,1,1-Trichloroethane		10	U	
56-23-5	Carbon Tetrachloride		10	U	
75-27-4	Bromodichloromethane		10	U	
78-87-5	1,2-Dichloropropane		10	U	
10061-01-5	cis-1,3-Dichloropropene		10	U	
79-01-6	Trichloroethene		3.3	J	
124-48-1	Dibromochloromethane		10	U	
79-00-5	1,1,2-Trichloroethane		10	U	
71-43-2	Benzene		10	U	
10061-02-6	t-1,3-Dichloropropene		10	U	
75-25-2	Bromoform		10	U	
108-10-1	4-Methyl-2-Pentanone		10	U	-
591-78-6	2-Hexanone		10	U	4
127-18-4	Tetrachloroethene		1.5	J	-
79-34-5	1,1,2,2-Tetrachloroethane		10	U	1
108-88-3	Toluene		10	U	
108-90-7	Chlorobenzene	-	10	U	
100-90-7	Ethyl Benzene		10	U	

- 490 - 012

100-41-4

100-42-5

Ethyl Benzene

Styrene

100

-

1

-

Ê.

10

K. .

-

1

£ .

FORMIVOA

10

10

3/90

U

			1A			SAMPL	E NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET						B8	
Lab Name: CHEMTECH				Contract:		AL	
Project No.: L3355		Site:	WATERS EI	Location:	LB12348	Group:	5971-VOA
Matrix: (soil/water)	WATER				Lab Sample ID:	004	
Sample wt/vol:	5.0 (g/mL)	ML		Lab File ID:	VN030523.	2
Level: (low/med)					Date Received:	2/27/01	_
% Moisture: not dec.	100				Date Analyzed:	3/6/01	-
GC Column: RTX624		ID:	0.53 (n	nm)	Dilution Factor:	1.0	-
Soil Extract Volume:	(uL)			Soil Aliquot Volume:		(uL)
				Concentrat	ion Units:		
CAS No.	Compound		(1	ug/L or ug/	Kg) <u>ug/L</u>	Q	_
136777-61-2	m/p-Xylenes	5			10	U	4
95-47-6	o-Xylene				10	U	-
							-
]
							-
							-
							_
							-
							-
							-
							_
							-
				+			
-							-
							-
							-
						+	-
				+		+	-

1.0

-

a.

.

-

41.00

SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

		TENTATIVELY IDENTIFIED COM	IPOUNDS	B8
Lab Name: CHEMTE	СН	Contract:	IVI ENVIRONMENT	TAL
Project No.: L3355		Site: WATERS Location:	LB12348	Group: 5971-VOA
Matrix: (soil/water)	WATER		Lab Sample ID:	004
Sample wt/vol:	5.0	 (g/mL) <u>ML</u>	Lab File ID:	VN030523.D
Level: (low/med)			Date Received:	2/27/01
% Moisture: not dec.	100	-	Date Analyzed:	3/6/01
	 TX624	– ID: 0.53 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volume:	(uL)
Soll Extract volume.				
Number TICs found:	0	Concentrati (ug/L or u		
이가 걸 때 같은 것이 같이 같이 같이 같이 같이 같이 없다.	CAS Number	Compound Name	RT Est. Conc.	Q
	1.			
	2.			
	3.			+
	4.			
-	5. 6.			
	0. 7.			
F	8.			
F	9.			
The second se	10.			
	11.			
	12.			
	13.			
	14.			
	15.			
ŀ	16.			
-	17. 18.			
-	18. 19.			
- 0	20.			
	21.			
	22.			
	23.			
	24.			
	25.			
	26.			
	27.			
	28.			
	29.		+	
	30.			

14

14

1.

New York

ě.-

....

4

2

FORM I VOA-TIC

1A SAMPLE	E NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET	9
Lab Name: CHEMTECH Contract: IVI ENVIRONMENTAL	
	5971-VOA
Matrix: (soil/water) WATER Lab Sample ID: 005	
Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VN030609.D)
Level: (low/med) Date Received: 2/27/01	
% Moisture: not dec. 100 Date Analyzed: 3/6/01	
GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0	
Soil Extract Volume:	(uL)
Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q	
74-87-3Chloromethane10U	
74-83-9 Bromomethane 10 U	
74-00-5 Diometrical 75-01-4 Vinyl Chloride	
75-01-4 Viriyi Chionde 10 U	

75-01-4	Vinyi Chloride	10	
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1.1-Dichloroethane	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	10	U
75-27-4	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane	10	U
79-00-5	1,1,2-Trichloroethane	10	U
79-00-3	Benzene	10	U
10061-02-6	t-1,3-Dichloropropene	10	U
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	U
	1,1,2,2-Tetrachloroethane	10	U
79-34-5	Toluene	10	U
108-88-3	Chlorobenzene	10	U
108-90-7		10	U
100-41-4	Ethyl Benzene	10	U
100-42-5	Styrene		

1 490 1 01 2

1

1. C

1

Alter a state of the

and see the set

FORMIVOA

		1A		SAMPLE NO.
	VOLATILE ORGAN	IICS ANALYSIS		В9
Lab Name: CHEMTECH		Contract:	IVI ENVIRONMENTAI	
Project No.: L3355	Site: WATER	S EI Location:	LB12348	Group: 5971-VOA
	R		Lab Sample ID: (005
			Lab File ID: \	/N030609.D
	() /		Date Received:	2/27/01
Level: (low/med)			Date Analyzed:	3/6/01
	ID: 0.53	(mm)	Dilution Factor:	1.0
GC Column: RTX624	(uL)		Soil Aliquot Volume:	(uL)
Soil Extract Volume:	(uc)	Concentra	ation Units:	
CAS No. Comp	ound	(ug/L or ug		Q
0/10/10			10	U
100111	ylenes		10	U
95-47-6 o-Xyle				
				+

1 490 2 01 2

2

-

tudaou da Statutation

E

1

1.1

-

100

int. W

SAMPLE NO.

B9

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

		IENIAIW					A 1	
Lab Name: CHEMTEC	СН					RONMENT		5074 1/04
Project No.: L3355		Site:	WATERS	Location:	LB12348			5971-VOA
Matrix: (soil/water)	WATER				Lab S	Sample ID:	005	
	5.0	- (g/mL)	ML		L	ab File ID:	VN030609	.D
Sample wt/vol:		_(3)			Date	Received:	2/27/01	
Level: (low/med)		-				Analyzed:		
% Moisture: not dec.	100	-						-
GC Column: R	RTX624	ID:	0.53	(mm)		ion Factor:		-
Soil Extract Volume:		_(uL)			Soil Aliqu	ot Volume:		_ (uL)
				Concentrati	on Linits.			
	1			(ug/L or L		ug/L		
Number TICs found:	1		Compoun			Est. Conc.	Q	1
C	CAS Number	[These i	1,1,2-trichlo		2.70	14	J	
-	1. 76-13-1	Ethane,	1, 1, 2-0101110	10-1,2,				
-	<u>2.</u> 3.							
-	4.							-
F	5.							-
	6.				-			-
	7.							
-	8.]
-	9. 10.							
F	11.							_
ŀ	12.							-
-	13.							-
	14.							-
	15.				+	+	+	-
	16.					+		-
	17.				-	+		
	18.							
	19.							
	20.							
	21.							
	22. 23.							
	24.							
	25.							_
	26.							_
	27.							_
	28.							_
	29.							-
	30.							
	L							

2

tables to an

21.00

and -

ATA .

and the

140

avia .

FORM I VOA-TIC

1A

SAMPLE NO.

	VOLATILE ORGANICS	ANALYSIS DATA SHEET	
Lab Name: CHEM	ТЕСН	Contract: IVI ENVIRONMENT	B10 AL
Project No.: L3355	Site: WATERS E	Location: LB12348	Group: 5971-VOA
Matrix: (soil/water)	WATER	Lab Sample ID:	006
Sample wt/vol:	5.0 (g/mL) <u>ML</u>	Lab File ID:	VN030516.D
Level: (low/med)		Date Received:	2/27/01
% Moisture: not de	c. <u>100</u>	Date Analyzed:	3/5/01
GC Column: RTX62	10: 0.53 (n	nm) Dilution Factor:	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
CAS No.		Concentration Units: ug/L or ug/Kg)ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	26	
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	5.7	J
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	10	U
75-27-4	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5		10	U
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane	10	U
79-00-5	1,1,2-Trichloroethane	10	U
71-43-2	Benzene	10	U
10061-02-0		10	U
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethyl Benzene	10	U
100-42-5	Styrene	10	U

£ .

a contraction

k z

6

FORMIVOA

SAMPLE NO.

1A
VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: CHEMTECH Contract: IVI ENVIRONMENTAL Project No: L3355 Site: WATERS EI Location: LB12348 Group: 5971-VOA Matrix: (soillwater) WATER Lab Sample ID: 006 Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: 006 Level: (low/med)			VOL	ATILE C	ORGANIC	S ANALYSI	S DATA SHEET	DA	10
Project No.: L3355 Site: WATERS El Location: LB12348 Group: 5971-VOA Matrix: (soil/water) WATER Lab Sample ID: 006 Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: VN030516.D Level: (low/med)	Lab Name:	CHEMTEC	Н			Contract:			IU .
Matrix: (soil/water) WATER Lab Sample ID: 006 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VN030516.D Level: (low/med) Date Received: 2/27/01 % Moisture: not dec. 100 Date Analyzed: 3/5/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume:	Project No.:	L3355		Site: V	VATERS	El Location:	LB12348	Group: 5	5971-VOA
Sample W/Vol.			WATER				Lab Sample ID:	O06	
Level. (low/med)	Sample wt/v	vol:	5.0 (g/mL) _	ML		Lab File ID:	VN030516.D	
GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CAS No. Compound (ug/L or ug/Kg) ug/L Q 136777-61-2 m/p-Xylenes 10 U	Level: (lo	w/med)					Date Received:	2/27/01	
Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: (ug/L or ug/Kg) Q 136777-61-2 m/p-Xylenes 10 U	% Moisture	: not dec.	100				Date Analyzed:	3/5/01	
Soil Extract volume. (uL) Concentration Units: (ug/L or ug/Kg) Q [136777-61-2] m/p-Xylenes 10 U	GC Columr	n: RTX624		ID:	0.53	(mm)	Dilution Factor:	1.0	
CAS No. Compound (ug/L or ug/Kg) ug/L Q 136777-61-2 m/p-Xylenes 10 U	Soil Extract	Volume:		(uL)			Soil Aliquot Volume:		(uL)
CAS No. Compound (ug/2 of ug/13) 136777-61-2 m/p-Xylenes 10								0	
136777-61-2 m/p-Ayleries	C	AS No.	Compound			(ug/L or ug/		1	
95-4/-5 C-Aylene				5					
	95	0-47-0	0-Aylene						
	-								
	F								
	-								
	-								
	Ē								
	-								
	F								
	E								
	-								
	-								
	F								
	F								
	F								1
	F								-
	E							+	1
	F]

£ ...

Take a second se

1 (* 11) 1

33

····

FORMIVOA

1E

SAMPLE NO.

•

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	TENTATIVELY IDEN	TIFIED COM	POUNDS		В	10
Lab Name: CHEMTECH				RONMENT	AL	
Project No.: L3355	Site: WATERS	Location:	LB1234	8	Group:	5971-VOA
	TER		Lab	Sample ID:	006	
	.0 (g/mL) ML		× 1	_ab File ID:	VN030516	.D
Level: (low/med)			Date	Received:	2/27/01	
	00		Date	e Analyzed:	3/5/01	
		(mm)		tion Factor:		
GC Column: RTX624		()		uot Volume:		(uL)
Soil Extract Volume:	(uL)					. (,
÷		Concentrati				
Number TICs found:	0	(ug/L or u		ug/L		1
CAS Numb	er Compour	nd Name	RT	Est. Conc.	Q	
1.						
2.						1
4.						
5.						-
6.						
7.						
8.]
10.						
11.						4
12.						-
13.						1
14. 15.						1
16.]
17.						
18.						4
19.						-
20.						-
21.						1
22. 23.						
23.						
25.						4
26.						-
27.						-
28.						-
29.						-
30.			1		-	

FORM I VOA-TIC

1A

SAMPLE NO.

	VOLATILE ORGANICS	ANALYSIS DATA SHEET	D 40D
Lab Name: CHEMTE	СН	Contract: IVI ENVIRONMENT	B10D AL
Project No.: L3355	Site: WATERS E	Location: LB12348	Group: 5971-VOA
Matrix: (soil/water)	WATER	Lab Sample ID:	007
Sample wt/vol:	5.0 (g/mL) <u>ML</u>	Lab File ID:	VN030517.D
Level: (low/med)		Date Received:	2/27/01
% Moisture: not dec.	100	Date Analyzed:	3/5/01
GC Column: RTX624	ID: 0.53 (n	nm) Dilution Factor:	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
		Concentration Units:	
CAS No.	Compound (ug/L or ug/Kg)ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	17	
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	3.6	J
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	10 10	U
75-27-4	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane 1,1,2-Trichloroethane	10	U
79-00-5		10	U
71-43-2	Benzene t-1,3-Dichloropropene	10	U
10061-02-6	Bromoform	10	U
75-25-2 108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethyl Benzene	10	U
100-42-5	Styrene	10	U

Washan

the second second

La Constanti

and the state of the

10.00

FORMIVOA

				1A		SAMPLE NO.
	VO	LATILE	ORGANIC	CS ANALYSI	S DATA SHEET	B10D
Lab Name: CHEMTEC	Н			Contract:	IVI ENVIRONMENTA	
Project No.: L3355		Site:	WATERS	El Location:		Group: 5971-VOA
Matrix: (soil/water)	WATER				Lab Sample ID:	007
Sample wt/vol:	5.0	(g/mL)	ML	_	Lab File ID:	VN030517.D
Level: (low/med)					Date Received:	2/27/01
% Moisture: not dec.	100				Date Analyzed:	3/5/01
GC Column: RTX624		ID:	0.53	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)			Soil Aliquot Volume:	(uL)
Soll Extract Volume.		-		Concentra	ation Units:	
CAS No.	Compound			(ug/L or ug		Q
136777-61-2	m/p-Xylene	es			10	U
95-47-6	o-Xylene				10	0
				-		

1.1

5

-

1

.

100

2017

1E

SAMPLE NO.

B10D

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: CHEMTECH				Contract:	IVI ENV	IRONMENT		
Project No.: L3355		Site:	WATERS	Location:	LB1234	8	Group:	5971-VOA
Matrix: (soil/water)	WATER	_			Lab	Sample ID:	007	
Sample wt/vol:	5.0	(g/mL)	ML			Lab File ID:	VN030517	D
					Date	e Received:	2/27/01	
Level: (low/med)	100	_			Date	e Analyzed:	3/5/01	
% Moisture: not dec.	100	-	0.50	(ition Factor:		
GC Column: RTX	624		0.53	(mm)				(11)
Soil Extract Volume:		(uL)			Soil Aliq	uot Volume:		(uL)
				Concentrati	on Units:			
Number TICs found:	0	-		(ug/L or u	ig/Kg)	ug/L		
	Number	_	Compou	nd Name	RT	Est. Conc.	Q	
1.								
2.								
3.								
4.								
6.								
7.								-
8.								-
9.								1
10.								1
11.								1
12.]
14.		-						
15.								4
16								-
17								-
18								-
19								1
20								1
21								1
22					-	1		1
23								1
24								1
25								
20								
27								
29								
30					1			
30								

13

2

£....

2

6

FORM I VOA-TIC

	1/	A	SAMPLE NO.
	VOLATILE ORGANICS	S ANALYSIS DATA SHEET Contract: IVI ENVIRONMENT	B11
Lab Name: CHEMTEC	ЭН		
Project No.: L3355	Site: WATERS E	El Location: LB12348	Group: 5971-VOA
Matrix: (soil/water)	WATER	Lab Sample ID	. 008
Sample wt/vol:	5.0 (g/mL) <u>ML</u>	Lab File ID	: <u>VN030524.D</u>
Level: (low/med)		Date Received	2/27/01
% Moisture: not dec.	100	Date Analyzed	: 3/6/01
GC Column: RTX624	ID: 0.53 (I	mm) Dilution Factor	:1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume	: (uL)
CAS No.	Compound	Concentration Units: (ug/L or ug/Kg)ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U
	Orthan Disulfida	10	U

Carbon Disulfide 75-15-0 U 10 1,1-Dichloroethene 75-35-4 U 10 1.1-Dichloroethane 75-34-3 U 10 trans-1,2-Dichloroethene 156-60-5 10 U cis-1,2-Dichloroethene 156-59-2 U 10 Chloroform 67-66-3 U 10 1,2-Dichloroethane 107-06-2 U 10 78-93-3 2-Butanone 10 U 1,1,1-Trichloroethane 71-55-6 U 10 56-23-5 Carbon Tetrachloride 10 U Bromodichloromethane 75-27-4 U 10 78-87-5 1,2-Dichloropropane U 10 cis-1,3-Dichloropropene 10061-01-5 U 10 79-01-6 Trichloroethene U 10 Dibromochloromethane 124-48-1 U 10 1,1,2-Trichloroethane 79-00-5 U 10 71-43-2 Benzene U 10 t-1,3-Dichloropropene 10061-02-6 U 10 Bromoform 75-25-2 U 10 4-Methyl-2-Pentanone 108-10-1 U 10 591-78-6 2-Hexanone U 10 Tetrachloroethene 127-18-4 U 10 1,1,2,2-Tetrachloroethane 79-34-5 U 10 Toluene 108-88-3 U 10 Chlorobenzene 108-90-7 U 10 Ethyl Benzene 100-41-4 U 10 100-42-5 Styrene

.

FORMIVOA

1A

•

-

I

SAMPLE NO.

	VOLATILE	ORGANICS	ANALYSIS	S DATA SHEET		LE NO.
Lab Name: CHEMTE				IVI ENVIRONMEN		B11
Project No.: L3355	Site:	WATERS EI	Location:	LB12348	Group	: 5971-VOA
Matrix: (soil/water)	WATER			Lab Sample ID	: 008	
Sample wt/vol:	5.0(g/mL)	ML		Lab File ID	: VN030524	.D
Level: (low/med)				Date Received	: 2/27/01	
% Moisture: not dec.	100			Date Analyzed	: 3/6/01	
GC Column: RTX624		0.53 (m	m)	Dilution Factor	: 1.0	_
Soil Extract Volume:	(uL)			Soil Aliquot Volume		– (uL)
		C	oncentratio	on Units:		-
CAS No.	Compound	(บรู	g/L or ug/K	g) ug/L	Q	
136777-61-2	m/p-Xylenes			10	U	1
95-47-6	o-Xylene			10	U	1
						1
						1
						1
						1
						1
						1
						1
						-

SAMPLE NO.

B11

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

. 1E

Lab Name: CHEMTE			-	1.0400	10	AL	5074 VO
Project No.: L3355		Site: WATER	S Location:	LB1234	18	Group:	5971-VO
Matrix: (soil/water)	WATER	_		Lab	Sample ID:	008	
Sample wt/vol:	5.0	(g/mL) ML			Lab File ID:	VN030524	4.D
Level: (low/med)				Dat	e Received:	2/27/01	_
% Moisture: not dec.	100			Dat	e Analyzed:	3/6/01	_
GC Column: R	TX624	ID: 0.53	(mm)	Dilu	ution Factor:	1.0	_
— Soil Extract Volume:		(uL)		Soil Aliq	uot Volume:		(uL)
			Concentrati	on Linite:			
N	0		(ug/L or u		ug/L		1
Number TICs found:	0					0	-1
C	AS Number	Compou	und Name	RT	Est. Conc.	Q	-
	1.						4
	2.						-
	3.						-
	4.						-
	5.						
	6.						
-	7.						
	8.						
	9.						
-	10.						
	11.						
	12.						
	13.						
	14.						
	15.						
	16.						-
	17.						1
	18.						1
	19.			1			
	20.			1			
	20.						
· -	22.			+	1		-
-							-
	23.						-
-	24.						-
-	25.					+	-
	26.						-
	27.						-
	28.						-
	29.						-
	30.						

FORM I VOA-TIC

1A

SAMPLE NO.

		VOLATILI	E ORGANI	CS ANALYSIS	S DATA SHEET		10
Lab Nam	ne: CHEMTEC	Н		Contract:	IVI ENVIRONMENTA	Bŕ	12
Project N	No.: L3355	_ Site		El Location:	LB12348	Group:	5971-VOA
Matrix:	(soil/water)	WATER			Lab Sample ID:	009	
Sample	wt/vol:	5.0(g/mL)	ML	_	Lab File ID:	VN030525.D	
Level:	(low/med)				Date Received:	2/27/01	
% Moist	ure: not dec.	100			Date Analyzed:	3/6/01	
GC Colu	mn: RTX624		0.53	_(mm)	Dilution Factor:	1.0	
Soil Extr	act Volume:	(uL)			Soil Aliquot Volume:		(uL)
				Concentrat			
	CAS No.	Compound	((ug/L or ug/	Kg) <u>ug/L</u>	Q	
	74-87-3	Chloromethane			10	U	
	74-83-9	Bromomethane			10	U	
	75-01-4	Vinyl Chloride			10	U	
	75-00-3	Chloroethane			10	U	
	75-09-2	Methylene Chlori	de		10	U	
	67-64-1	Acetone			10	U	
	75-15-0	Carbon Disulfide			10	U	
	75-35-4	1,1-Dichloroether	ne		10	U	
	75-34-3	1,1-Dichloroethar	ne		10	U	
	156-60-5	trans-1,2-Dichlor	bethene		10	U	
	156-59-2	cis-1,2-Dichloroe	thene		10	U	
	67-66-3	Chloroform			10	U	
	107-06-2	1,2-Dichloroetha	ne		10	U	
	78-93-3	2-Butanone			10	U	
	71-55-6	1,1,1-Trichloroet	nane		10	U	
	56-23-5	Carbon Tetrachlo	oride		10	U	
	75-27-4	Bromodichlorom	ethane		10	U	
	78-87-5	1,2-Dichloroprop	ane		10	U	
	10061-01-5	cis-1,3-Dichlorop	ropene		10	U	
	79-01-6	Trichloroethene			17		
	124-48-1	Dibromochlorom	ethane		10	UU	
	79-00-5	1,1,2-Trichloroet	hane		10		
	71-43-2	Benzene			10	U	
	10061-02-6	t-1,3-Dichloropro	pene		10	U	
	75-25-2	Bromoform			10	UU	
	108-10-1	4-Methyl-2-Penta	anone		10	U	
	591-78-6	2-Hexanone			10		-
	127-18-4	Tetrachloroether			5.1	J	4
	79-34-5	1,1,2,2-Tetrachle	proethane		10		-
	108-88-3	Toluene			10	U U	4
	108-90-7	Chlorobenzene			10		4
	100-41-4	Ethyl Benzene			10		4
	100-42-5	Styrene			10	U	L

- 490 - 012

1.....

62

.....

1.4

1000

1000

į.,

I

and a

1

FORMIVOA

1A

SAMPLE NO.

VOLATILE ORGANICS AN	ALYSIS DA	ATA	SHEET
----------------------	-----------	-----	-------

		VO	LATILE C	RGAN	CS ANALYSIS	S DATA SHEET	P	12
Lab Name	: CHEMTEC	н			Contract:	IVI ENVIRONMENT		1£
	o.: L3355		Site: V	VATERS	El Location:	LB12348	Group:	5971-VOA
	oil/water)	- WATER				Lab Sample ID:	009	
Sample w		5.0	(g/mL)	ML	_	Lab File ID:	VN030525.D)
	(low/med)					Date Received:	2/27/01	
	re: not dec.	100				Date Analyzed	3/6/01	
	nn: RTX624		ID:	0.53	_(mm)	Dilution Factor	1.0	
	act Volume:		(uL)			Soil Aliquot Volume	·	(uL)
					Concentra			
	CAS No.	Compound			(ug/L or ug/	Kg) <u>ug/L</u>	Q	
[136777-61-2	m/p-Xylene	es			10	UUU	
	95-47-6	o-Xylene				10		
		,						
								1
]
]
								-
								1
								-
								-
								-
								-
								1
								-
								1
								-
								-
								_
								-
								-

-

1

Garris 2

> Raturalas

- and

and all

the set

Branch .

FORMIVOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

SAMPLE NO.

B12

.

Lab Name: CHEMTECH			Contract:	IVI ENV		AL	
Project No.: L3355		Site: WATERS	Location:	LB1234	8	Group:	5971-VOA
Matrix: (soil/water)	WATER			Lab	Sample ID:	009	
	5.0	– (g/mL) ML			Lab File ID:	VN030525	D
Sample wt/vol:	5.0				e Received:		
Level: (low/med)		-					
% Moisture: not dec.	100	_		Dat	e Analyzed:	3/6/01	
GC Column: RTX	624	ID: 0.53	(mm)	Dilu	ition Factor:	1.0	
Soil Extract Volume:		_(uL)		Soil Aliq	uot Volume:		(uL)
*			Concentrati				
Number TICs found:	0	_	(ug/L or u		ug/L		
CAS	8 Number	Compour	nd Name	RT	Est. Conc.	Q	11 1 5
1.							
2.							
3.							
5							
6							
7							4
8							-
9							4
10							{
11							
12							
13							
14							1
15							1
10							1
18							
19		-					
20							1
21							
22	2.						4
23	3.						4
24							-
25							-
26							1
27				+		+	1
28						-	1
29						1	1
30	J						

1

1

-

Sale of

.

-

FORM I VOA-TIC

	14	4	SAMPLE NO.
	VOLATILE ORGANICS	S ANALYSIS DATA SHEET	
Lab Name: CHEMTE	СН	Contract: IVI ENVIRONMENT	B13 AL
Project No.: L3355	Site: WATERS E	LB12348	Group: <u>5971-VOA</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	O10
Sample wt/vol:	5.0 (g/mL) <u>ML</u>	Lab File ID:	VN030526.D
Level: (low/med)		Date Received:	2/27/01
% Moisture: not dec.	100	Date Analyzed:	3/6/01
GC Column: RTX624	ID: 0.53 (n	nm) Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
		Concentration Units:	
CAS No.		ug/L or ug/Kg)ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	10	U
75-27-4	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
79-01-6	Trichloroethene	12	
124-48-1	Dibromochloromethane	10	U
79-00-5	1,1,2-Trichloroethane	10	U
71-43-2	Benzene	10	U
10061-02-6	t-1,3-Dichloropropene	10	U
10001-02-0			

75-25-2

108-10-1

591-78-6

127-18-4

79-34-5

108-88-3

108-90-7

100-41-4

100-42-5

Bromoform

2-Hexanone

Toluene

Styrene

4-Methyl-2-Pentanone

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Chlorobenzene

Ethyl Benzene

1.1

12

1

6

FORMIVOA

10

10

10

10

10

10

10

10

10

U

U

U

U

U

U

U

U

U

	1A		SAMPLE NO.
	VOLATILE ORGANICS ANALYSIS	DATA SHEET	B13
FCH	Contract:		

Lab Name: CHEMIEC	7		Contract.			
Project No.: L3355		Site: WATERS	El Location:	LB12348	Group: 5971-VOA	
Matrix: (soil/water)	WATER	_		Lab Sample ID: (010	
Sample wt/vol:	5.0	(g/mL) ML		Lab File ID:	/N030526.D	
Level: (low/med)				Date Received:	2/27/01	
% Moisture: not dec.	100	/		Date Analyzed:	3/6/01	
GC Column: RTX624		ID: 0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		_(uL)		Soil Aliquot Volume:	(uL)	

Concentration Units:

Compound	(ug/L or ug/Kg) <u>ug/L</u>	Q
m/p-Xylenes	10	U
o-Xylene	10	U
	m/p-Xylenes	m/p-Xylenes 10

.

1

i.

1.

No. of the second s

in a

1E

SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENITATIVELY IDENITIEIED COMPOLINIDS

		TENTATIVELY IDENTIFIED COMPOUNDS	B13
Lab Name: CHEMT	ECH	Contract: IVI ENVIRONMENTAL	
Project No.: L3355		Site: WATERS Location: LB12348	oup: <u>5971-VOA</u>
Matrix: (soil/water)	WATER	Lab Sample ID: 010	
Sample wt/vol:	5.0	(g/mL) Lab File ID: VN03	0526.D
Level: (low/med)		Date Received: 2/27	//01
% Moisture: not de	c. <u>100</u>	Date Analyzed: 3/6	01
GC Column:	RTX624	ID: 0.53 (mm) Dilution Factor: 1.	0
Soil Extract Volume:		(uL) Soil Aliquot Volume:	(uL)
Number TICs found:	0	Concentration Units: (ug/L or ug/Kg) ug/L	
	CAS Number	Compound Name RT Est. Conc. C	<u> </u>
	1.		
	2.		
	3.		
	4. 5.		
	6.	++++++++	
	7.		
	8.		
	9.		
0.1	10.		
	11.		
	12.		
	13.		
	14.		
	15. 16.		
	17.	+++++++	
4 G	18.	++++++++	
	19.		
	20.		
	21.		
	22.		
- 3	23.		
	24.		
	25.		
	26.		
	27.		
	28.		
	29.		
0.01	30.		

FORM I VOA-TIC

1A

SAMPLE NO.

Г

1

VOLATILE ORGANICS ANALYSIS DATA SHEET

		October		B14	
Lab Name: CHEMTEC				Group: 597	71_VOA
Project No.: L3355	Site: WATERS	El Location:	LD12340	Group. <u>597</u>	1-VUA
Matrix: (soil/water)	WATER		Lab Sample ID:	011	
Sample wt/vol:	5.0 (g/mL) ML	1.2	Lab File ID:	VN030527.D	
Level: (low/med)			Date Received:	2/27/01	
% Moisture: not dec.	100		Date Analyzed:	3/6/01	
GC Column: RTX624	ID: 0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	_```	Soil Aliquot Volume:		JL)
Soli Extract volume.	(uc)				
		Concentratio		0	
CAS No.	Compound	(ug/L or ug/K	g)ug/L	Q	
74-87-3	Chloromethane		10	U	
74-83-9	Bromomethane		10	U	
75-01-4	Vinyl Chloride		10	U	
75-00-3	Chloroethane		10	U	
75-09-2	Methylene Chloride		10	U	
67-64-1	Acetone		41		
75-15-0	Carbon Disulfide		10	U	
75-35-4	1,1-Dichloroethene		10	U	
75-34-3	1,1-Dichloroethane		10	U	
156-60-5	trans-1,2-Dichloroethene		10	U	
156-59-2	cis-1,2-Dichloroethene		9.1	J	
67-66-3	Chloroform		10	U	
107-06-2	1,2-Dichloroethane		10	U	
78-93-3	2-Butanone		10	U	
71-55-6	1,1,1-Trichloroethane		10	U	
56-23-5	Carbon Tetrachloride		10	U	
75-27-4	Bromodichloromethane		10	U	
78-87-5	1,2-Dichloropropane		10	U	
10061-01-5	cis-1,3-Dichloropropene		10	U	
79-01-6	Trichloroethene		2400	E	
124-48-1	Dibromochloromethane		10	U	
79-00-5	1,1,2-Trichloroethane		10	U	
71-43-2	Benzene		10	U	
10061-02-6	t-1,3-Dichloropropene		10	U	
75-25-2	Bromoform		10	U	
108-10-1	4-Methyl-2-Pentanone		10	U	
591-78-6	2-Hexanone		10	U	
127-18-4	Tetrachloroethene		10	U	
79-34-5	1,1,2,2-Tetrachloroethane		10	U	
108-88-3	Toluene		10	U	
108-90-7	Chlorobenzene		10	U	
100-41-4	Ethyl Benzene		10	U	
100-42-5	Styrene		10	U	

1 490 1 01 2

1

11.1

1.1.9

.

.

.....

.

i.

-

k. .

-

FORMIVOA

					1A		SAMPL	E NO.
		VO	LATILE	ORGANI	CS ANALYS	IS DATA SHEET	E	814
Lab Name: CH	EMTECH				Contract			
Project No.: L33	55		Site:	WATERS	El Location	: LB12348	Group:	5971-VOA
Matrix: (soil/wate	er) VV	ATER				Lab Sample ID	: 011	
Sample wt/vol:		5.0	(g/mL)	ML		Lab File ID	: VN030527.[<u>)</u>
Level: (low/me	d)					Date Received	: 2/27/01	
% Moisture: not	dec.	100				Date Analyzed	: 3/6/01	
GC Column: RT)	x624		ID:	0.53	(mm)	Dilution Factor	: 1.0	
Soil Extract Volur	ne:		(uL)			Soil Aliquot Volume	:	(uL)
CAS No	. Cor	mpound		1	Concentra (ug/L or ug	ation Units: g/Kg)ug/L	Q	
136777-	-61-2 m/p	-Xylene	S			10	U	1
95-47-6	o-X	ylene				10	U	
								-
								1
								-
								1
								4
]
								1
								-
								1
								-
								1
								1

1 490 2 01 2

Ē.

1

E.

100

1.

the spontaction of sale

And Description

FORMIVOA

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Ρ.

SAMPLE NO.

Lab Name: CHEMTECH Contract: IVIENVIRONMENTAL Project No.: L3355 Site: WATER Lab Sample ID: O11 Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: O11 Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: O11 Sample wt/vol: 100 Date Received: 2/27/01 % Moisture: not Date Raceived: 2/27/01 % Moisture: not 0 Soil Aliquot Volume: (uL) Soil Extract Volume:				TENTATI	/ELY IDEN	TIFIED CON	POUND	S	B	14
Project No.: L3355 Site: WATERS Location: LB12348 Group: 5971-VOA Matrix: (soli/water) WATER Lab Sample ID: O11 Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: O11 Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: O11 Level: (lowimed) Date Received: 2/27/01 % Moisture: not Date Analyzed: 3/6/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume:	Lab Name: CHEMT	ECH				Contract:	IVI EN\	IRONMENT	AL	
Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VN030527.D Sample wt/vol: Date Received: 2/27/01 % Moisture: not Date Analyzed: 3/6/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: Number TICs found: 0 (ug/L or ug/Kg) ug/L (Site	WATERS	Location:	LB123	48	Group:	5971-VOA
Level: (low/med)	Matrix: (soil/water)	_	WATER	_			Lab	Sample ID:	011	
Leve. (utilities)	Sample wt/vol:		5.0	(g/mL)	ML			Lab File ID:	VN030527	.D
Or Module: Note:	Level: (low/med)			_			Dat	e Received:	2/27/01	
Contract Image: Contraction of the second of the secon	% Moisture: not dec	D.	100				Dat	e Analyzed:	3/6/01	
Suit Extract volume.	GC Column:	RTX6	24	ID	0.53	(mm)	Dil	ution Factor:	1.0	
Number TICs found: 0 (ug/L or ug/Kg) ug/L CAS Number Compound Name RT Est. Conc. Q 1. - - - - - 3. - - - - - - 3. - - - - - - - 4. - <	Soil Extract Volume:			(uL)			Soil Aliq	uot Volume:		(uL)
CAS Number Compound Name RT Est. Conc. Q 1.		-								
Bit of the second se	Number TICs found:		0	_		(ug/L or u	g/Kg)	ug/L	(
2.		CAS	Number		Compour	nd Name	RT	Est. Conc.	þ	
3.		1.								
4. 1 1 $5.$ 1 1 $6.$ 1 1 $7.$ 1 1 $8.$ 1 1 $9.$ 1 1 $10.$ 1 1 $11.$ 1 1 $12.$ 1 1 $13.$ 1 1 $14.$ 1 1 $15.$ 1 1 $16.$ 1 1 $17.$ 1 1 $18.$ 1 1 $20.$ 1 1 $21.$ 1 1 $22.$ 1 1 $23.$ 1 1 $24.$ 1 1 $25.$ 1 1 $26.$ 1 1 $27.$ $28.$ 1 $29.$ 1 1										
5. 1 1 $6.$ 1 1 $7.$ 1 1 $8.$ 1 1 $9.$ 1 1 $10.$ 1 1 $11.$ 1 1 $12.$ 1 1 $13.$ 1 1 $14.$ 1 1 $15.$ 1 1 $16.$ 1 1 $17.$ 1 1 $18.$ 1 1 $20.$ 1 1 $21.$ 1 1 $22.$ 1 1 $23.$ 1 1 $24.$ 1 1 $25.$ 1 1 $26.$ 1 1 $27.$ 1 1 $28.$ 1 1										
6. 1 1 $7.$ 1 1 $8.$ 1 1 $9.$ 1 1 $10.$ 1 1 $11.$ 1 1 $12.$ 1 1 $13.$ 1 1 $14.$ 1 1 $15.$ 1 1 $16.$ 1 1 $17.$ 1 1 $18.$ 1 1 $20.$ 1 1 $21.$ 1 1 $22.$ 1 1 $23.$ 1 1 $24.$ 1 1 $26.$ 1 1 $27.$ 1 1 $28.$ 1 1										
7.								+		
8.										
9.										
10.										
11. \square \square 12. \square \square 13. \square \square 14. \square \square 15. \square \square 16. \square \square 17. \square \square 18. \square \square 19. \square \square 20. \square \square 21. \square \square 22. \square \square 23. \square \square 24. \square \square 25. \square \square 26. \square \square 27. \square \square 28. \square \square 29. \square \square										
13. $\hfill = 10000000000000000000000000000000000$		-								
14.		12.								
15. $16.$ $16.$ $17.$ $17.$ $11.$ $18.$ $11.$ $11.$ $20.$ $11.$ $11.$ $21.$ $11.$ $11.$ $22.$ $11.$ $11.$ $23.$ $11.$ $11.$ $24.$ $11.$ $11.$ $25.$ $11.$ $11.$ $26.$ $11.$ $11.$ $27.$ $11.$ $11.$ $28.$ $11.$ $11.$ $29.$ $11.$ $11.$		13.								
16. $17.$ $17.$ $18.$ $18.$ $19.$ $19.$ $10.$ $20.$ $10.$ $21.$ $10.$ $22.$ $10.$ $23.$ $10.$ $24.$ $10.$ $25.$ $10.$ $26.$ $10.$ $27.$ $10.$ $28.$ $10.$ $29.$ $10.$		-		_						
17. $18.$ $18.$ $19.$ $19.$ $20.$ $19.$ $21.$ $19.$ $22.$ $19.$ $23.$ $10.$ $24.$ $10.$ $25.$ $10.$ $26.$ $10.$ $27.$ $10.$ $28.$ $10.$ $29.$ $10.$										+
18.										1
19.										
20.										1
21.										1
22.										
24.										
25.		23.								1
26.		24.								4
27.										4
28. 29.				_						-
29.										-
										4
										1
		30.					1			

FORM I VOA-TIC

Matrix: Control in the image in the image. The image is the image in the image. The image is the image in the image. The image in the image. The image in the im				SAMPLE NO.
Lab Name: CHEMTECH Contract: IVI ENVIRONMENTAL Project No: L3355 Site: WATERS El Location: LB12348 Group: 5971-4 Matrix: (soil/water) WATER Lab Sample ID: O11DL Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: VN030610.D Level: (low/med)		VOLATILE ORGANIC:	S ANALYSIS DATA SHEET	B14DI
Matrix: (soil/water) WATER Lab Sample ID: O11DL Sample wt/vol: 5.0 (g/mL) ML Lab Sample ID: O11DL Level: (low/med)	Lab Name: CHEMTE	СН	Contract: IVI ENVIRONMEN	
Main (, gournate)	Project No.: L3355	Site: WATERS F	El Location: LB12348	Group: 5971-VOA
Salinge Workit	Matrix: (soil/water)	WATER	Lab Sample ID	: 011DL
Level. (joinned)	Sample wt/vol:	5.0 (g/mL) ML	Lab File ID	: VN030610.D
Withstitle Integration Integration <thintegration< th=""> <thintegration< th=""></thintegration<></thintegration<>	Level: (low/med)		Date Received	: 2/27/01
Soil Extract Volume:	% Moisture: not dec.	100	Date Analyzed	:3/6/01
Soli LXi act voluity: Correction Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q 74-87-3 Chloromethane 500 UD 74-87-3 Chloromethane 500 UD 74-87-3 Chloromethane 500 UD 74-87-3 Chloromethane 500 UD 75-01-4 Vinyl Chloride 500 UD 75-02-2 Methylene Chloride 500 UD 75-09-2 Methylene Chloride 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethane 500 UD 75-35-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-63 Chloroform 500 UD 166-59-2 cis-1,2-Dichloroethane 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD	GC Column: RTX624	ID: 0.53 ((mm) Dilution Factor	:50.0
CAS No. Compound (ug/L or ug/Kg) ug/L Q 74-87-3 Chloromethane 500 UD 74-83-9 Bromomethane 500 UD 75-01-4 Vinyl Chloride 500 UD 75-01-3 Chloroethane 500 UD 75-00-3 Chloroethane 500 UD 75-00-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethene 500 UD 75-35-4 1,1-Dichloroethene 500 UD 75-35-4 1,1-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 166-60-5 trans-1,2-Dichloroethene 500 UD 17-62-1 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD <	Soil Extract Volume:	(uL)	Soil Aliquot Volume	e: (uL)
74-87-3 Chloromethane 500 UD 74-83-9 Bromomethane 500 UD 75-01-4 Vinyl Chloride 500 UD 75-01-4 Vinyl Chloride 500 UD 75-01-3 Chloroethane 500 UD 75-02-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-34-3 1,1-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethane 500 UD 167-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 74-873-3 2-Butanone 500 UD 75-27-4 Bromodichloromethane 500 UD			Concentration Units:	
14-83-9 Bromomethane 500 UD 75-01-4 Vinyl Chloride 500 UD 75-00-3 Chloroethane 500 UD 75-09-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethane 500 UD 75-35-4 1,1-Dichloroethane 500 UD 75-35-4 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-63 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 75-34-3 2-Butanone 500 UD 75-56 1,1,1-Trichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 75-27-4 Bromodichloromethane 500 UD 79-01-6 Trichloroethane 500 UD 79	CAS No.	Compound	(ug/L or ug/Kg)ug/L	Q
74-83-9 Bromomethane 500 UD 75-01-4 Vinyl Chloride 500 UD 75-00-3 Chloroethane 500 UD 75-09-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-34-3 1,1-Dichloroethene 500 UD 75-34-3 1,1-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 167-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 75-27-4 Bromodichloromethane 500 UD 78-37-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethane 500 UD <t< td=""><td>74-87-3</td><td>Chloromethane</td><td>500</td><td>UD</td></t<>	74-87-3	Chloromethane	500	UD
75-01-4 Vinyl Chloride 500 UD 75-00-3 Chloroethane 500 UD 75-09-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethane 500 UD 75-34-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethane 500 UD 156-59-2 cis-1,2-Dichloroethane 500 UD 167-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 75-35-6 1,1.1-Trichloroethane 500 UD 75-26 1,1,1-Trichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 78-83-5 1,2-Dichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D		Bromomethane	500	UD
75-00-3 Chloroethane 500 UD 75-09-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethene 500 UD 75-34-3 1,1-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 167-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 17-55-6 1,1,1-Trichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethane 500 UD 79-01-6 Trichloroethane 500 UD 79-01-6 Trichloroethane 500 UD 79-01-6 Trichloroethane 500 UD <t< td=""><td></td><td></td><td>500</td><td>UD</td></t<>			500	UD
75-09-2 Methylene Chloride 500 UD 67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethene 500 UD 75-34-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 167-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 75-56 1,1,1-Trichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 75-27-4 Bromodichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethane 500 UD 79-01-6 Trichloropropene 500 UD 79-01-6 1,1,2-Trichloropropene 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD			500	UD
67-64-1 Acetone 500 UD 75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethene 500 UD 75-34-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 167-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 75-27-4 Bromodichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethane 500 UD 79-01-6 Trichloroethane 500 UD 79-01-6 Trichloroethane 500 UD			500	UD
75-15-0 Carbon Disulfide 500 UD 75-35-4 1,1-Dichloroethene 500 UD 75-34-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 67-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D 79-01-6 Trichloroethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 79-00-5 1,1,2-Trichloropropene 500 UD			500	UD
75-35-4 1,1-Dichloroethane 500 UD 75-34-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 67-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 706-10 tholoenopropene 500 UD </td <td></td> <td></td> <td>500</td> <td>UD</td>			500	UD
75-34-3 1,1-Dichloroethane 500 UD 156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 67-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D 10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 71-43-2 Benzene 500 UD 71-43-2 Benzene 500 UD 71-43-2 Benzene 500 UD 75-25-2			500	UD
156-60-5 trans-1,2-Dichloroethene 500 UD 156-59-2 cis-1,2-Dichloroethene 500 UD 67-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 700-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 700-5-6 t-1,3-Dichloropropene 500 UD			500	UD
156-59-2 cis-1,2-Dichloroethene 500 UD 67-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 71-43-2 Benzene 500 UD 75-25-2 Bromoform 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
67-66-3 Chloroform 500 UD 107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethene 2700 D 79-01-6 Trichloroethane 500 UD 71-43-2 Benzene 500 UD 75-25-2 Bromoform 500 UD 75-25-2			500	UD
107-06-2 1,2-Dichloroethane 500 UD 78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 79-01-6 Trichloroethane 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 75-25-2 Bromoform 500 UD 75-25-2 Bromoform 500 UD 75-25-2 Bromoform 500 UD 708-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
78-93-3 2-Butanone 500 UD 71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
71-55-6 1,1,1-Trichloroethane 500 UD 56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
56-23-5 Carbon Tetrachloride 500 UD 75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
75-27-4 Bromodichloromethane 500 UD 78-87-5 1,2-Dichloropropane 500 UD 10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
78-87-5 1,2-Dichloropropane 500 UD 10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
10061-01-5 cis-1,3-Dichloropropene 500 UD 79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
79-01-6 Trichloroethene 2700 D 124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
124-48-1 Dibromochloromethane 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			2700	D
T2440 1 Distribution of the target 500 UD 79-00-5 1,1,2-Trichloroethane 500 UD 71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD				UD
71-43-2 Benzene 500 UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
1143 2 Donzono UD 10061-02-6 t-1,3-Dichloropropene 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD			500	UD
Tobol 02 0 Clip Distribution opposite 500 UD 75-25-2 Bromoform 500 UD 108-10-1 4-Methyl-2-Pentanone 500 UD				UD
108-10-1 4-Methyl-2-Pentanone 500 UD				UD
				UD
	591-78-6	2-Hexanone	500	
127-18-4 Tetrachloroethene 500 UD				

79-34-5

108-88-3

108-90-7

100-41-4

100-42-5

1

and a state

And a second state

1

FORMIVOA

1,1,2,2-Tetrachloroethane

Toluene

Styrene

Chlorobenzene

Ethyl Benzene

500

500

500

500

500

UD

UD

UD

UD

UD

•

SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	VO	LATILE (ORGANI	CS ANALYSIS				4DL
Lab Name: CHEMTE	CH			Contract:	IVI ENVIR	ONMENTA	L	
Project No.: L3355		Site: V	NATERS	El Location:	LB12348		Group:	5971-VOA
Matrix: (soil/water)	WATER				Lab S	ample ID:	O11DL	
Sample wt/vol:	5.0	(g/mL) _	ML	<u>.</u>	La	ab File ID:	VN030610.E)
Level: (low/med)					Date	Received:	2/27/01	
% Moisture: not dec.	100				Date	Analyzed:	3/6/01	
GC Column: RTX624		ID:	0.53	_(mm)	Dilutio	on Factor:	50.0	
Soil Extract Volume:		(uL)			Soil Aliquo	t Volume:		(uL)
CAS No.	Compound			Concentrat (ug/L or ug/l		ug/L	Q	
136777-61-2	m/p-Xylene	s			500		UD	
95-47-6	o-Xylene				500		UD	
					· · · · · · · · · · · · · · · · · · ·			
		· · · ·						
]

			1A	-	SAMPLE	E NO.
	VOLATI	_E ORGANIC	S ANALYSIS	DATA SHEET	в	18
Lab Name: CHEMT	ECH		Contract:			
Project No.: L3355		te: WATERS	El Location:	LB12348	Group:	5971-VOA
Matrix: (soil/water)	WATER			Lab Sample ID:	013	
Sample wt/vol:	5.0 (g/m	L) <u>ML</u>		Lab File ID:	VN030529.D)
Level: (low/med)				Date Received:	2/27/01	
% Moisture: not dec	. 100			Date Analyzed:	3/6/01	
GC Column: RTX624	1	ID: 0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)			Soil Aliquot Volume:		(uL)
CAS No.	Compound		Concentrat (ug/L or ug/		Q	
136777-61-	2 m/p-Xylenes			10	Ü	
95-47-6	o-Xylene			10	U	
			_			-
						+
]
						-
						1
						-
						-
]
						-
						1
						4
						-
						4
						-
]
						-
						-

1

.

and the

100

the state

Join W

I

.

iner:

ALC: NO

the case

SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET UDENITIEIED COMPOLINIDS

1

2.4

.

k.

Ľ.

-

E

.

1E

	TENTATIVELY IDENTIFIED COM	B18	
ECH	Contract:	IVI ENVIRONMENT	AL
	Site: WATERS Location:	LB12348	Group: <u>5971-VO</u>
WATER		Lab Sample ID:	013
5.0	 (g/mL) ML	Lab File ID:	VN030529.D
		Date Received:	2/27/01
. 100	-	Date Analyzed:	3/6/01
	– ID: 0.53 (mm)	Dilution Factor:	1.0
	-	Soil Aliquot Volume:	(uL)
6	Concentrati	ug/Kg) <u>ug/L</u>	
CAS Number	Compound Name		Q
1. 98-82-8	Benzene, (1-methylethyl)-		J
2. 135-98-8			J
3. 535-77-3			J
4. 1587-04-8	Benzene, 1-methyl-2-(2-prope		J
5. 1758-88-9	Benzene, 2-ethyl-1,4-dimethy		J
	1H-Indene, 2,3-dihydro-1,6-d	21.27 7.0	
		+	
17.			
18.			
19.			
20.			
		+	
	ECH WATER 5.0 . 100 RTX624 6 CAS Number 1. 98-82-8 2. 135-98-8 3. 535-77-3 4. 1587-04-8 5. 1758-88-9 6. 17059-48-2 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	ECH Contract: Site: WATERS Location:	ECH Contract: IVI ENVIRONMENT

FORM I VOA-TIC

A. C. D. D. Mar.28.

.

10

5

1

**

No.7862 P. 3/8

28. 200	1 1:U5PM				1A		SAMPL	E NO.
		VC	LATILE	ORGANI		S DATA SHEET		20
Lab Nam	e: CHEMTECI	4			Contract:	IVI ENVIRONMENT	AL INC.	
	o.: L3656		Site	WATERS	El Location:		Group.	5970-VOA
	soil/water)	WATER				Lab Sample ID:	007	
			-	8.71		Lab File ID:	VN032706.	0
Sample v	vt/vol:	5.0	(g/mL)	ML	-		-	
Level:	(low/med)		-			Date Received:		•
% Moistu	ire: not dec.	100	_			Date Analyzed		•
GC Colu	mn: RTX624		ID	0.53	(mm)	Dilution Factor.	1.0	
	act Volume.		(uL)			Soil Aliquot Volume:		(uL)
OUT EX					Concentra	ation Units:		
	CARNIA	Compoun	h		(ug/L or ug		Q	
	CAS No.					10	T U	1
	74-87-3	Chlorome				10	U	1
	74-83-9	Bromome					U	1
	75-01-4	Vinyl Chlo				10	U	1
	75-00-3	Chloroeth				13		1
	75-09-2	Methylene	e Chlorid	θ		21		
	67-64-1	Acetone				10	U	1
	75-15-0	Carbon D				10	U	1
	75-35-4	1,1-Dichle				10	Ū	-
	75-34-3	1,1-Dichle				10	U	1
	156-60-5	trans-1,2-				10	U	1
	156-59-2	cis-1,2-D		hene		10	U	1
	67-66-3	Chlorofor				10	U	-
	107-06-2	1,2-Dichl		1e		10	U	-
	78-93-3	2-Butano				10	Ŭ	-
	71-55-6	1,1,1-Tric				10	U	-
	56-23-5	Carbon 7				10	Û	-
	75-27-4	Bromodie				10	U	-
	78-87-5	1,2-Dich				10	U	1
	10061-01-5	cis-1,3-D		ropene		960	E	-
	79-01-6	Trichloro				10	U	-
	124-48-1	Dibromo				10	U	-
	79-00-5	1,1,2-Tri		hane		10	U	-
	71-43-2	Benzene				10	U	-
	10061-02-6	t-1,3-Dic		pene		10	U	
	75-25-2	Bromofo				10	U	-
	108-10-1	4-Methy		anone		10	U	-
	591-78-6	2-Hexar				73	J	-
	127-18-4		oroether			10	U	-
	79-34-5			proethane		10	U	
	108-88-3	Toluene				10	U	
	108-90-7	Chlorob				10	Ų	
	100-41-4	Ethyl Be				10	U	-
	100-42-5	Styrene				10		

FORMIVOA

PRELIMINARY RESULTS Subject to change upon further data quality review

Mar.28. 2001 1:06PM

I

I

1

9.11

1

1

1

÷

1

.

-

.

No.7862 P. 4/8

Project No. L3656 Site. WATERS El Location: Group. 5970-VC Matrix: (soil/water) WATER Lab Sample ID: 007 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: VN032706.D Data Received: 3/23/01			1A			SAMPLE	NO.
Cab Name: Orithm Dot Group: 5970-VC Project No L3656 Site. WATERS El Location: Group. 5970-VC Matrix: (soil/water) WATER Lab Sample ID: 007 Sample wt/vol: 5.0 (g/mL) ML Lab File ID. VN032706 D Level. (low/med)		VOLAT	ILE ORGANICS				20
Project No.: Losses Lab Sample ID: 007 Matrix: (soil/water) WATER Lab Sample ID: 007 Sample wt/vol: 5.0 (g/mL) ML Lab File ID. VN032706 D Level. (low/med) Date Received: 3/23/01 % Moisture: not dec 100 Date Analyzed: 3/27/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1 0 Soil Extract Volume:	Lab Name: CHEMTE(IVI ENVIRONMENTA		
Matrix: (soli/Match)	Project No. L3656	-	Site. WATERS EI	Location:		Group.	5970-VOA
Level. (low/med)	Matrix: (soil/water)	WATER			Lab Sample ID:	007	
Weisture: not dec 100 Date Analyzed: 3/27/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 10 Soil Extract Volume: (uL) Soil Allquot Volume: (uL) CAS No. Compound (ug/L or ug/Kg) g/L Q 136777-61-2 m/p-Xylenes 10 U	Sample wt/vol:	<u>5.0</u> (g/n	nL) <u>ML</u>		Lab File ID.	VN032706.D	
GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 10 Soil Extract Volume:	Level. (low/med)				Date Received:	3/23/01	
GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 10 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CAS No. Compound (ug/L or ug/Kg) ug/L Q 136777-61-2 m/p-Xylenes 10 U	% Moisture: not dec	100			Date Analyzed:	3/27/01	
Soil Extract Volume: (uL) Soil Allquot Volume: (uL) CAS No. Compound (ug/L or ug/Kg) ug/L Q 136777-61-2 m/p-Xylenes 10 U			ID: 0.53 (m	nm)	Dilution Factor:	10	
CAS No. Compound (ug/L or ug/Kg) ug/L Q 136777-61-2 m/p-Xylenes 10 U		(uL)	Ţ	Soil Aliquot Volume:		(uL)
CAS No. Compound (ug/L or ug/Kg) ug/L Q 136777-61-2 m/p-Xylenes 10 U		`		Concentrat	tion Units.	-	
136777-61-2 m/p-Xyienes	CAS No.	Compound				Q	
95-47-6 o-Xylene 10 U	136777-61-2	m/p-Xylenes		1 +			
	95-47-6	o-Xylene			10	0	
					· · ·		
							1
							4
				+			
							-
							1
							4
							4
							1
							-
							1
							1
				+]

PRELIMINARY RESULTS Subject to change upon further data quality review

FORMIVOA

I WANE NIE

Mar.28. 2001 1:07PM

103

þ

No.7882 P. 5/8

1E

SAMDIE NO

							SAMPLE	= NO
		VOLATILE OI TENTATIV	ELY IDENT				E	320
Lab Name: CHEM	TECH			Contract:	IVI ENV	IRONMEN	TAL INC.	•••••••••••••••••
Project No : L3656		Site.	WATERS	Location.			Group:	5970-VO
Matrix: (soil/water)	WATER	<u> </u>			Lab	Sample ID.	007	
Sample wt/vol:	5.0	(g/mL)	ML			Lab File ID.	VN032706	D
Level: (low/med)					Dat	e Received.	3/23/01	
% Moisture. not de	ec. 100				Dat	e Analyzed.	3/27/01	
GC Column:	RTX624	ID.	0.53	(mm)-	Dilu	ition Factor:	1.0	
Soil Extract Volume		(uL)				uot Volume:		(uL)
			2	• · · ·				
Number TICs found	: 1		(Concentration (ug/L or u		ug/L		
	CAS Number		Compound		RT	Est. Conc.	Q	anna an
	1.	4 Unknown			14.43		J	
	2.							
	3							
	4							
	5.							
	6.							
	7.							
	8.							
	9.							
	10							
	11							
	12.							
	13.							
	14							
	15.							
	16.							
	17.							
	18.							
	19							
	20.							
	21.							
	22.							
	23.							
	24.							
	25.							
	26							
	27.			and the second				
	27.							

FORM I VOA-TIC

Mar.28. 2001 3:32PM

13.

the state of

d Public

2015

-

1.1

1

.

.

1

-

2

No.7884 P. 2/6

SAMPLE NO.

1A ALVEIS DATA SHEET

_ab Nar	ne: CHEMTE	ж	Contract:			20DL
Project I	No.: L3656	Site: WATERS	ELocation:		Group:	5970-VOA
Matrix:	(soll/water)	WATER		Lab Sample ID	: 007DL	_
Sample	wt/vol:	5.0 (g/mL) ML		Lab File ID	: VN032806.	D
Level:	(low/med)			Date Received	ł: 3/23/01	_
% Moist	ure: not dec.	100		Date Analyzed	1: 3/28/01	_
	umn: RTX624	ID: 0.53	(mm)	Dilution Factor	: 10.0	
	ract Volume:	(uL)		Soil Aliquot Volume):	- (uL)
		(==)	Concentrat	ion I Inite:		-
	CAS No.	Compound	(ug/L or ug		Q	
	74-87-3	Chloromethane	T	100	UD]
	74-83-9	Bromomethane		100	UD	
	75-01-4	Vinyl Chloride		100	UD	
	75-00-3	Chloroethane		100	VD	
	75-09-2	Methylene Chloride		100	UD	
	67-64-1	Acetone		100	UD	
	75-15-0	Carbon Disulfide		100	UD	
	75-35-4	1,1-Dichloroethene		100	UD	1
	75-34-3	1,1-Dichloroethane		100	UD	
	156-60-5	trans-1,2-Dichloroethene		100	UD	4
	156-59-2	cis-1,2-Dichloroethene		100	UD	4
	67-66-3	Chloroform		100	UD	4
	107-06-2	1,2-Dichloroethane		100	UD	4
	78-93-3	2-Butanone		100	UD	4
	71-55-6	1,1,1-Trichloroethane		100	UD	-
	56-23-5	Carbon Tetrachloride		100	UD	-
	75-27-4	Bromodichloromethane		100	UD	-
	78-87-5	1,2-Dichloropropane		100		4
	10061-01-5	cis-1,3-Dichloropropene		100		-
	79-01-6	Trichloroethene		1700		-
	124-48-1	Dibromochloromethane			UD	-
	79-00-5	1,1,2-Trichloroethane		100	UD	-
	71-43-2	Benzene		100	UD	-
	10061-02-6	t-1,3-Dichloropropene		100	UD	-
	75-25-2	Bromoform		100	UD	-
	108-10-1	4-Methyl-2-Pentanone		100	VD	-
	591-78-6	2-Hexanone		100	UD	-
	127-18-4	Tetrachloroethene		100	UD	-1
	79-34-5	1,1,2,2-Tetrachloroethane	_	100	UD	-1
	108-88-3	Toluene		100	UD	-
	108-90-7	Chlorobenzene		100	UD	-
	100-41-4	Ethyl Benzene	and the second states of	100		_

Mar.28. 2001 3:32PM

header

1.3

E.S.

and a state

-1

.....

No.7884 P. 3/6

8. 2001 3.32PM			1A				SAMP	LE NO.
		ATILE (ORGANIC	S ANALYS		A SHEE I		20DL
Lab Name: CHEMTE						VIAONNEN		5970-VOA
Project No.: L3656		Site: W	ATERS E	Location;				<u>3970-VOA</u>
Matrix: (soil/water)	WATER				La	b Sample ID:		-
Sample wt/vol:	<u>5.0</u> (g	/mL)	ML			Lab File ID:	VN032806	D
Level: (low/med)					Da	ate Received:	3/23/01	-
% Moisture: not dec.	100				Da	ate Analyzed:	3/28/01	- 201
GC Column: RTX624		ID:	0.53 (m	nm)	Di	lution Factor:	10.0	_
Soil Extract Volume:	(u	IL)			Soil Ali	quot Volume:		(uL)
			С	oncentrati	ion Units			
CAS No.	Compound		(1	ug/L or ug/	/Kg)	ug/L	Q	_
136777-61-2					10		UD UD	-
95-47-6	o-Xylene				10	0	00	-
								-
								-
								1
								4
								-
								-
]
								-
								-
								_
								_
								_
								_
								-
		<u> </u>						_

in reality

T.

Í

i and

. . .

-

E

i. Veltar

-142

121

......

No.7884 P. 4/6

	1.	A		SAMP	LE NO.
	VOLATILE ORGANI	CS ANALYS	SIS DATA SHEET		321
Lab Name: CHEMTE	СН	Contract:	IVI ENVIRONMENT		
Project No.: L3656	Site: WATERS	ELocation:		Group:	5970-VO
Matrix: (soil/water)	WATER		Lab Sample ID:	008	_
	5.0 (g/mL) ML		Lab File ID:	VN032805	.D
Sample wt/vol:	5.0(g/mL)ML		•		-
Level: (low/med)			Date Received:	3/23/01	-
% Moisture: not dec.	100		Date Analyzed:	3/28/01	-
GC Column: RTX624	ID: 0.53 ((mm)	Dilution Factor:	1.0	_
Soil Extract Volume:	(uL)		Soil Aliquot Volume:		(uL)
		Concentrat	ion Units.		
CACNO		(ug/L or ug		Q	
CAS No.		(49,20,49			7
74-87-3	Chloromethane		10	U	4
74-83-9	Bromomethane		10	U	-
75-01-4	Vinyl Chloride		10	<u> </u>	-
75-00-3	Chloroethane		10	U	4
75-09-2	Methylene Chloride		10	U	-
67-64-1	Acetone		10	U	_
75-15-0	Carbon Disulfide		10	U	-
75-35-4	1,1-Dichloroethene		10	U	4
75-34-3	1,1-Dichloroethane		10	U	_
156-60-5	trans-1,2-Dichloroethene		10	U	_
156-59-2	cis-1,2-Dichloroethene		10	U	_
67-66-3	Chloroform		10	U	_
107-06-2	1,2-Dichloroethane		10	U	-
78-93-3	2-Butanone		10	U	_
71-55-6	1,1,1-Trichloroethane		10	U	_
56-23-5	Carbon Tetrachloride		10	Ų	_
75-27-4	Bromodichloromethane		10	U	_
78-87-5	1,2-Dichloropropane		10	Ų	_
10061-01-5	cis-1,3-Dichloropropene		10	U	_
79-01-6	Trichloroethene		8.3	J	_
124-48-1	Dibromochloromethane	1.	10	U	_
79-00-5	1,1,2-Trichloroethane		10	U	_
71-43-2	Benzene		10	U	_
10061-02-6	t-1,3-Dichloropropene		10	U	_
75-25-2	Bromoform		10	U	_
108-10-1	4-Methyl-2-Pentanone		10	U	_
591-78-6	2-Hexanone		10	U	_
127-18-4	Tetrachloroethene		3.1	J	_
79-34-5	1,1,2,2-Tetrachloroethane		10	U	_
108-88-3	Toluene		10	U	_
108-90-7	Chlorobenzene		10	U	_
100-41-4	Ethyl Benzene		10	U	_
100-42-5	Styrene		10	U	

,

Mar.28. 21

in the second

I

L

11 No.

....

1

135

1

.

.

G

8

in the

i i 7001

8. 2001 3:33PM					14 ((+ 0/0
	VC	LATILE	ORGAN	1A IICS ANALY	SIS DATA SHEET		LE NO.
Lab Name: CHEMTE	СН			Contract:	IVI ENVIRONMEN		321
Project No.: L3656		Site: \	WATERS	ELocation:		Group:	5970-VOA
Matrix: (soil/water)	WATER				Lab Sample ID:	008	
Sample wt/vol:		(g/mL)	ML		Lab File ID:	VN032805	- .D
Level: (low/med)					Date Received	3/23/01	
% Moisture: not dec.	100				Date Analyzed:	3/28/01	
GC Column: RTX624		ID:	0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)			Soil Aliquot Volume:		(uL)
			,	Concentrati	ion Units:		
CAS No.	Compound			(ug/L or ug/	/Kg) ug/L	Q	
136777-61-2	m/p-Xylene	s			10	U]
95-47-6	o-Xylene				10	U	-
							1
					·		-
				1 .	······································	+	1
							1
						+	-
			·····		* p.*		_
							_
							-
					···		1
							-
						+	-
							4
						+	-
							1
							4
						+	-
							4
							-
							-

Mar.28. 2001 3:33PM

1.23

1

SELLON A

Schelets, 6.5

No.7884 P. 6/6

1E
VOLATILE ORGANICS ANALYSIS DATA SHEE
TENTATIVELY IDENTIFIED COMPOUNDS

•

			1E	5.10 M.		SAMPLE	NO.
			ANICS ANALYSIS DATA SHEET Y IDENTIFIED COMPOUNDS				21
Lab Name: CHEMTI	ECH		Contract:	IVI ENV	IRONMENT	AL INC.	
Project No. L3656		Site: WATERS	Location:			Group:	5970-VOA
Matrix: (soil/water)	WATER			Lab S	Sample ID:	008	
Sample wt/vol:	5.0	 (g/mL) ML		٤	ab File ID:	VN032805	.D
Level: (low/med)				Date	Received:	3/23/01	
% Moisture: not de	c. <u>100</u>	_			Analyzed:		
GC Column:	RTX624	ID: 0.53	(mm) ::	Dilut	ion Factor:	1.0	
Soil Extract Volume:		(uL)		Soll Aliqu	ot Volume:		(uL)
Number TICs found:	1		Concentration (ug/L or u		ug/L		
]	CAS Number	Compoun	d Name	RT	Est. Conc.	Q]
	1.	Column Bleed		21.25	15	J]
	2.						
	3.						
	4.						
	5.						
	6.						
	7.						
	8. 9.						4
• • • • • • •	9. 10.				-		1
	10.						1
D.	12.						1
3	13.]
	14.						
	15.						
- 2	16.						-
	17.						4
	18.						4
	19.						4
	20.						-
	21.						-
	22.				+		1
	23.				1		1
	25.				1		1
	26.]
	27.]
	28.						
	29.						

30.

Mar.28. 2001 1:07PM

and a

1

1

E.

.

in the second

E

1: 2

i ...

No.7862 P. 6/8

1A			SAMPLE NO.
	VOLATILE ORGANIC	S ANALYSIS DATA SHEET	TRIPBLANK
Lab Name: CHEMTE	СН	Contract: IVI ENVIRONMENT	
Project No.: L3656	Site. WATERS	El Location:	Group: 5970-VOA
Matrix: (soil/water)	WATER	Lab Sample ID:	009
Sample wt/vol:	50 (g/mL) ML	Lab File ID:	VN032705.D
Level: (low/med)	··	Date Received:	3/23/01
% Moisture: not dec.	100	Date Analyzed.	
		1997년 - 1997년 1 1997년 1월 1997년 1997년 1997년 1월 1997년 1	
GC Column: RTX624		-	
Soil Extract Volume:	(uL)	Soil Aliquot Volume.	(uL)
		Concentration Units:	
CAS NO.	Compound	(ug/L or ug/Kg) ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U
75-34-3	1,1-Dichloroethane	10	U
156-60-5	trans-1,2-Dichloroethene	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	10	U
75-27-4	Bromodichloromethane	10	U
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane	10	U
79-00-5	1,1,2-Trichloroethane	10	U
71-43-2	Benzene	10	U
10061-02-6	t-1,3-Dichloropropene	10	U
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	U
108-90-7	Chlorobenzene	10	U
100-41-4	Ethyl Benzene	10	U
100-42-5	Styrene	10	U

- 490 - 012

FORMIVOA

			1.0754
Mar	28.	2001	1:07PM
1#1 C			-

.....

N0+/862 P+ //8

				1A		SAMPLE	ENO
	VC	DLATILE	ORGANI	CS ANALYSIS	5 DATA SHEET	TRIP	BLANK
Lab Name: CHEMTE	СН			Contract.	IVI ENVIRONMENT		
Project No.: L3656		Site.	WATERS	El Location.		Group	5970-VOA
Matrix: (soil/water)	WATER	-			Lab Sample ID.	009	
Sample wt/vol:		- (g/mL)	ML		Lab File ID.	VN032705)
Level: (low/med)					Date Received.	3/23/01	
% Moisture. not dec.	100				Date Analyzed.	3/27/01	
GC Column: RTX624		- ID.	0.53	_(mm)	Dilution Factor:	1.0	
Soil Extract Volume.		- (uL)			Soil Aliquot Volume:		(uL)
		_		Concentrat			
CAS No.	Compoun	d		(ug/L or ug/		Q	1
136777-61-2		ies			10 10	U U	
95-47-6	o-Xylene						1
							-
							1
							-
]
							4
]
						+	-
							-
<							1
							-
							1
							4
							-
							_
							-
]
							-

FORMIVOA

11 -		0.0	. 2001	1:07PM
Md	1 .	28	2001	1.010.00

34

1.00

i a

.

N0+/862 P+ 8/8

			1E			SAMPLE	NO.
	VC	LATILE ORGANICS	ANALYSIS D	IPOUNDS	ET	TRIPE	BLANK
Lab Name: CHEMT	ECH		Contract:	IVI ENVI	RONMENT	AL INC	
Project No.: L3656		Site: WATER	S Location:			Group.	5970-V
Matrix: (soil/water)	WATER			Lab	Sample ID:	009	
						VN032705	Ð
Sample wt/vol:	50	(g/mL) <u>ML</u>	-				
Level: (low/med)		_			Received:	•	
% Moisture: not de	c 100	_		Date	e Analyzed:	3/27/01	
GC Column:	RTX624	ID: 0.53	(mm)-	Dílu	tion Factor:	1.0	
Soil Extract Volume.		(uL)		Soil Aliqu	iot Volume:		(uL)
N. I. TIC- found	(1		Concentrati (ug/L or u		ug/L	4	
Number TICs found		Compoi	und Name		Est. Conc.	Q	
	CAS Number	Compound Compound		21.26		J	
	2.	Column Dioot					
	3.						
	4						
	5.						1
	6.						
	8.	-		1]
	9.						
	10.					1	-
	11			+			1
	12.						1
	13.]
	15.						
	16.						4
	17.						-
	18.						
	19						1
	20.		<u></u>	1	1		1
	21.						1
	23.			1]
	24.						
	25.					1	-
	26						-
	27.						-
	28.						-
	29				+		-
	30.				1 Carrenter		_

FORM I VOA-TIC

	1A		SAMPLE NO.			
		VOLATILE ORGANICS	ANALYSIS I		INTS	UMP
Lab Nan	ne: CHEMTEC	H	Contract:	IVI ENVIRONMENTA	L	
	No.: L3355	Site: WATERS EI	Location:			5971-VOA
Matrix:	(soil/water)	WATER		Lab Sample ID:	014	
				Lab File ID:	VN030611.D	
Sample	wt/vol:	5.0(g/mL)ML				
Level:	(low/med)			Date Received:		
% Moist	ure: not dec.	100		Date Analyzed:	3/6/01	
GC Colu	umn: RTX624	ID: 0.53 (m	ım)	Dilution Factor:	500.0	
Soil Ext	ract Volume:	(uL)		Soil Aliquot Volume:		(uL)
			Concentratio	n Units:		
			ig/L or ug/K		Q	
	CAS No.	Compound			U	
	74-87-3	Chloromethane		5000	U	
	74-83-9	Bromomethane		5000	U	
	75-01-4	Vinyl Chloride		5000	U	
	75-00-3	Chloroethane		5000	U	
	75-09-2	Methylene Chloride		5000	U	
	67-64-1	Acetone		5000	U	
	75-15-0	Carbon Disulfide		5000	U	
	75-35-4	1,1-Dichloroethene		5000	0	
	75-34-3	1,1-Dichloroethane		15000	U	
	156-60-5	trans-1,2-Dichloroethene		5000	U	
	156-59-2	cis-1,2-Dichloroethene		5000 5000	U	
	67-66-3	Chloroform		5000	U	
	107-06-2	1,2-Dichloroethane		5000	U	
	78-93-3	2-Butanone		6100		
	71-55-6	1,1,1-Trichloroethane			U	1
	56-23-5	Carbon Tetrachloride		5000 5000	U	
	75-27-4	Bromodichloromethane		5000	U	1
	78-87-5	1,2-Dichloropropane		5000	U	
	10061-01-5	cis-1,3-Dichloropropene		5000	U	1
	79-01-6	Trichloroethene		5000	U	1
	124-48-1	Dibromochloromethane		5000	U	1
	79-00-5	1,1,2-Trichloroethane		5000	U	1
	71-43-2	Benzene		5000	U	1
	10061-02-6	t-1,3-Dichloropropene		5000	U	1
	75-25-2	Bromoform		5000	U	1
	108-10-1	4-Methyl-2-Pentanone		5000	U	1
	591-78-6	2-Hexanone		5000	U]
	127-18-4	Tetrachloroethene		5000	U]
	79-34-5	1,1,2,2-Tetrachloroethane		5000	U]
	108-88-3	Toluene		5000	U	
	108-90-7	Chlorobenzene		5000	U	
	100-41-4	Ethyl Benzene		5000	U	
	100-42-5	Styrene				

-

63

· ind

£

1

12-3

FORMIVOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	ve					INTS	UMP
Lab Name: CHEMTEC	н			Contract:	IVI ENVIRONMENTA	L	
Project No.: L3355	_	Site: V	VATERS	El Location:	LB12348	Group: 5	5971-VOA
Matrix: (soil/water)	WATER				Lab Sample ID: (014	
Sample wt/vol:	5.0	(g/mL)	ML	_	Lab File ID: <u>\</u>	/N030611.D	
Level: (low/med)		_			Date Received:	2/27/01	
% Moisture: not dec.	100				Date Analyzed:	3/6/01	
GC Column: RTX624		ID:	0.53	(mm)	Dilution Factor:	500.0	
Soil Extract Volume:		(uL)			Soil Aliquot Volume:		(uL)

Concentration Units:

SAMPLE NO.

Г

CAS No.	Compound	(ug/L or ug/Kg)ug/L	_ Q
1367 7-61-2	m/p-Xylenes	5000	U
95-47-6	o-Xylene	5000	U

22

1

123

É.

1. ···

....

-

.

-

....

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

•

1

1.00

		TENTATIVELY IDEN	TIFIED COM	POUNDS		INTS	SUMP
Lab Name: CHEMTE	ECH		Contract:	IVI ENVI	RONMENT	AL	
Project No.: L3355		Site: WATERS	Location:	LB1234	8	Group:	5971-VOA
Matrix: (soil/water)	WATER			Lab	Sample ID:	014	
Sample wt/vol:	5.0	(g/mL) ML		L	ab File ID:	VN030611	.D
Level: (low/med)		_		Date	Received:	2/27/01	
% Moisture: not dec	. 100			Date	Analyzed:	3/6/01	
GC Column:	RTX624	ID: 0.53	(mm)	Dilut	tion Factor:	500.0	
Soil Extract Volume:		(uL)		Soil Aliqu	ot Volume:		(uL)
			Concentratio	on Units:			
Number TICs found:	2	- 1	(ug/L or u		ug/L		
[CAS Number	Compour	d Name	RT	Est. Conc.	Q	
	1. 76-13-1	Ethane, 1,1,2-trichlo		2.69		J	
	2.	Column Bleed		21.29	3000	J	
	3.						
	4.						
	5.						
	6.						
	7.						
÷	8.						
	9.						
	10.						
	11.						4
	12.						-
	13.						
	14.						
	15.						1
	16.						
	17. 18.						1
	19.						1
	20.						1
	21.]
	22.						
	23.						
	24.						
	25.						
	26.						-
	27.						4
	28.						4
	29.						-
	30.			1	L	1	1

FORM I VOA-TIC

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

VOLATILE ORGANICS ANALYSIS DATA SHEET	
---------------------------------------	--

	VOLATILE ORGANIC	5 ANAL 1515	DATA GILLI	FB22/23
Lab Name: CHEMTEC	СН	Contract:		
Project No.: L3355	Site: WATERS	El Location:	LB12348	Group: <u>5971-VO</u>
Matrix: (soil/water)	WATER		Lab Sample ID:	016
Sample wt/vol:	5.0 (g/mL) ML	- 5 J	Lab File ID:	VN030510.D
Level: (low/med)			Date Received:	2/27/01
% Moisture: not dec.	100		Date Analyzed:	3/5/01
GC Column: RTX624	ID: 0.53	_(mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)		Soil Aliquot Volume:	(uL)
		Concentrat	ion Units:	
CAS No.	Compound	(ug/L or ug/l		Q
74-87-3	Chloromethane		10	U
74-83-9	Bromomethane		10	U
75-01-4	Vinyl Chloride		10	U
75-00-3	Chloroethane		10	U
75-09-2	Methylene Chloride		10	U
67-64-1	Acetone		10	U

Carbon Disulfide

Chloroform

2-Butanone

1,1-Dichloroethene

1,1-Dichloroethane

1,2-Dichloroethane

1,1,1-Trichloroethane

Carbon Tetrachloride

1,2-Dichloropropane

Trichloroethene

Benzene

Bromoform

2-Hexanone

Toluene

Styrene

Bromodichloromethane

cis-1,3-Dichloropropene

Dibromochloromethane

1,1,2-Trichloroethane

t-1,3-Dichloropropene

4-Methyl-2-Pentanone

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Chlorobenzene

Ethyl Benzene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

75-15-0

75-35-4

75-34-3

156-60-5

156-59-2

67-66-3

107-06-2

78-93-3

71-55-6

56-23-5

75-27-4

78-87-5

79-01-6

124-48-1

79-00-5

71-43-2

75-25-2

108-10-1

591-78-6

127-18-4

108-88-3

108-90-7

100-41-4

100-42-5

79-34-5

10061-02-6

0

£

E

10061-01-5

I UYU I UI L

FORMIVOA

SA	١M	IP	LE	٢

			14	Ą		SAMPLE	NO.
	VO	LATILE	ORGANICS	ANALYSIS	S DATA SHEET	FB2	2/23
Lab Name: CHEMTEC	СН			Contract:	IVI ENVIRONMENT		
Project No.: L3355		Site: \	WATERS E	I Location:	LB12348	Group:	5971-VOA
Matrix: (soil/water)	WATER				Lab Sample ID:	O16	
Sample wt/vol:	5.0	(g/mL) _	ML		Lab File ID:	VN030510.D	
Level: (low/med)					Date Received:	2/27/01	
% Moisture: not dec.	100				Date Analyzed:	3/5/01	
GC Column: RTX624		ID:	0.53 (r	mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)			Soil Aliquot Volume:		(uL)
	-			Concentral			
CAS No.	Compound		(ug/L or ug/		Q	
136777-61-2	m/p-Xylene	es			10 10	UU	
95-47-6	o-Xylene				10		
							1
							4
							1
]
							-
							1

1

1

Re- and Ad

161.20

-

.

1

-

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FB22/23 Contract: IVI ENVIRONMENTAL Lab Name: CHEMTECH Site: WATERS | Location: LB12348 Group: 5971-VOA Project No.: L3355 Lab Sample ID: 016 WATER Matrix: (soil/water) Lab File ID: VN030510.D (g/mL)ML 5.0 Sample wt/vol: Date Received: 2/27/01 Level: (low/med) Date Analyzed: 3/5/01 100 % Moisture: not dec. Dilution Factor: 1.0 ID: 0.53 (mm) **RTX624** GC Column: Soil Aliquot Volume: _____ (uL) (uL) Soil Extract Volume: Concentration Units: (ug/L or ug/Kg) ug/L Number TICs found: 0 Q RT Est. Conc. Compound Name CAS Number 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

FORM I VOA-TIC

		1A		SAMPLE	NO.
	VOLATILE ORGAN	ICS ANALYSIS	S DATA SHEET	TP	35
Lab Name: CHEMTE	СН	Contract:		4L	
Project No.: L3355		S El Location:	LB12351	Group:	5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	017	
Sample wt/vol:	5.0 (g/mL) G		Lab File ID:	VV030504.D	
Level: (low/med)	LOW		Date Received:	2/27/01	
% Moisture: not dec.	20		Date Analyzed:	3/5/01	
GC Column: RTX624	ID: 0.53	_(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)		Soil Aliquot Volume:		(uL)
CAS No.	Compound	Concentra (ug/L or ug/		Q	
74-87-3	Chloromethane		13	UU	
74-83-9	Bromomethane		13	U	
75-01-4	Vinyl Chloride		13	U	
75-00-3	Chloroethane		13	U	
75-09-2	Methylene Chloride		13	U	1
67-64-1	Acetone		13 13	U	
75-15-0	Carbon Disulfide		15		1

•

CAS No.	Compound	(ug/L or ug/kg)	uging	
74-87-3	Chloromethane		13	U
74-83-9	Bromomethane		13	U
75-01-4	Vinyl Chloride		13	U
75-00-3	Chloroethane		13	U
75-09-2	Methylene Chloride		13	U
67-64-1	Acetone		13	U
75-15-0	Carbon Disulfide		13	U
75-35-4	1,1-Dichloroethene		13	U
75-34-3	1,1-Dichloroethane		13	U
156-60-5	trans-1,2-Dichloroethene		13	U
156-50-5	cis-1,2-Dichloroethene		13	U
	Chloroform		13	U
67-66-3	1,2-Dichloroethane		13	U
107-06-2	2-Butanone		13	U
78-93-3	1,1,1-Trichloroethane		13	U
71-55-6	Carbon Tetrachloride		13	U
56-23-5	Bromodichloromethane		13	U
75-27-4	1,2-Dichloropropane		13	U
78-87-5	cis-1,3-Dichloropropene		13	U
10061-01-5	Trichloroethene		13	U
79-01-6	Dibromochloromethane		13	U
124-48-1			13	U
79-00-5	1,1,2-Trichloroethane		13	U
71-43-2	Benzene		13	U
10061-02-6	t-1,3-Dichloropropene		13	U
75-25-2	Bromoform		13	U
108-10-1	4-Methyl-2-Pentanone		13	U
591-78-6	2-Hexanone		13	U
127-18-4	Tetrachloroethene		13	U
79-34-5	1,1,2,2-Tetrachloroethane		13	U
108-88-3	Toluene		13	U
108-90-7	Chlorobenzene		13	U
100-41-4	Ethyl Benzene		13	U
100-42-5	Styrene		15	

. 490 . 01 2

......

1.1

....

1

·6

-

. Ka

副他

FORMIVOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

				TP35
Lab Name: CHEMTECH	1	Contract:	IVI ENVIRONMENTAL	
Project No.: L3355		Site: WATERS El Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID: O	17
Sample wt/vol:	5.0	_(g/mL)G	Lab File ID: V	V030504.D
Level: (low/med)	LOW	-	Date Received:	2/27/01
% Moisture: not dec.	20	-	Date Analyzed:	3/5/01
GC Column: RTX624		ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume:		_(uL)	Soil Aliquot Volume:	(uL)

Concentration Units: (ug/L or ug/Kg)

SAMPLE NO.

T

CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	<u> </u>
136777-61-2	m/p-Xylenes	13	U
95-47-6	o-Xylene	13	U

1 490 2 01 2

8

.

FORMIVOA

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		TENTATIVELY IDENTIFIED COM	APOUNDS	1935
Lab Name: CHEMT	ECH	Contract:	IVI ENVIRONMENT	AL
Project No.: L3355		Site: WATERS Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	017
Sample wt/vol:	5.0	(g/mL) G	Lab File ID:	VV030504.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: not dec			Date Analyzed:	3/5/01
		ID: 0.53 (mm)	Dilution Factor:	1.0
GC Column:	RTX624		Soil Aliquot Volume:	
Soil Extract Volume:		(uL)	Son Anquot Volumo	
Number TICs found:	(1	Concentrat (ug/L or		. i
	CAS Number	Compound Name	RT Est. Conc.	Q
	1. 76-13-1	Ethane, 1,1,2-trichloro-1,2,	3.83 6.9	J
	2.			
	3.			
	4.			
	5. 6.			
	7.			
	8.			
	9.			
	10.		+	
	11.			
	13.			
	14.			
	15.			+
	16.			+
	17.			
	18. 19.			
	20.			
	21.			
	22.			
	23.			
	24.			
	25.			
	26.			
	27.			
	28.			
	29. 30.			
	30.)

-

1

K.

Nº 44

able !

And A

*

. End

1

8

G ...

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

Γ

					- B6 -TP45
Lab Name: CHEMTEC	н		Contract:	IVI ENVIRONMENTAL	
Project No.: L3355		Site: WATERS	El Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	- SOIL			Lab Sample ID: 0	018
Sample wt/vol:	5.0	(g/mL) <u> </u>		Lab File ID: <u>\</u>	/N030215.D
Level: (low/med)	LOW			Date Received:	2/27/01
% Moisture: not dec.	9			Date Analyzed:	3/2/01
GC Column: RTX624		ID: 0.53	_(mm)	Dilution Factor:	1.0
Soil Extract Volume:		_ _(uL)		Soil Aliquot Volume:	(uL)
CAS No.	Compound	d	Concentrat (ug/L or ug/		Q

74 07 0	Chloromethane	11	U
74-87-3	Bromomethane	<u> </u>	U
74-83-9		11	U
75-01-4	Vinyl Chloride	11	U
75-00-3	Chloroethane	11	U
75-09-2	Methylene Chloride	11	U
67-64-1	Acetone	11	U
75-15-0	Carbon Disulfide	11	U
75-35-4	1,1-Dichloroethene	11	U
75-34-3	1,1-Dichloroethane	11	U
156-60-5	trans-1,2-Dichloroethene	11	U
156-59-2	cis-1,2-Dichloroethene	11	U
67-66-3	Chloroform	11	U
107-06-2	1,2-Dichloroethane	11	
78-93-3	2-Butanone	11	U
71-55-6	1,1,1-Trichloroethane		U
56-23-5	Carbon Tetrachloride	11	- U
75-27-4	Bromodichloromethane	11	U
78-87-5	1,2-Dichloropropane	11	
10061-01-5	cis-1,3-Dichloropropene	11	U U
79-01-6	Trichloroethene	11	
124-48-1	Dibromochloromethane	11	
79-00-5	1,1,2-Trichloroethane	11	
71-43-2	Benzene	11	
10061-02-6	t-1,3-Dichloropropene	11	
75-25-2	Bromoform	11	U
108-10-1	4-Methyl-2-Pentanone	11	U
591-78-6	2-Hexanone	11	U
127-18-4	Tetrachloroethene	11	U
79-34-5	1,1,2,2-Tetrachloroethane	11	U
108-88-3	Toluene	11	U
108-90-7	Chlorobenzene	11	U
100-30-7	Ethyl Benzene	11	U
100-42-5	Styrene	11	U

1 490 1 01 2

.

10.00

.

1.0

-

è...

.

i.

FORMIVOA

			1A			SAMPLE NO.	_
	VOL	ATILE	ORGANICS		S DATA SHEET	B6- TP45	
Lab Name: CHEMTE	CH			Contract:	IVI ENVIRONMENTA	۸L	
Project No.: L3355	_	Site:	WATERS E	Location:	LB12351	Group: <u>5971-VO</u>	A
Matrix: (soil/water)	SOIL				Lab Sample ID:	018	
Sample wt/vol:	5.0 (g/mL)	G		Lab File ID:	VN030215.D	
Level: (low/med)	LOW				Date Received:	2/27/01	
% Moisture: not dec.	9				Date Analyzed:	3/2/01	
GC Column: RTX624		ID:	0.53 (n	nm)	Dilution Factor:	1.0	
Soil Extract Volume:	((uL)			Soil Aliquot Volume:	(uL)	
CAS No.	Compound			Concentrat ug/L or ug/ł		Q	
136777-61-2	m/p-Xylenes	5			11	U	
95-47-6	o-Xylene				11	U	
	1						

.

1.22.1

1E
VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS

	VO	TENTATIVELY IDENTIFIED COM	POUNDS	- B6- TP45
Lab Name: CHEMTE	ECH	Contract:	IVI ENVIRONMENT	AL
Project No.: L3355		Site: WATERS Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	O18
Sample wt/vol:	5.0	 (g/mL) G	Lab File ID:	VN030215.D
Level: (low/med)	LOW		Date Received:	2/27/01
		-	Date Analyzed:	3/2/01
% Moisture: not dec		– ID: 0.53 (mm)	Dilution Factor	1.0
	RTX624	_	Soil Aliquot Volume	
Soil Extract Volume:		_(uL)	con / inquer i i i	
		Concentrat (ug/L or u		
Number TICs found:	1	_		Q
	CAS Number	Compound Name		J
	1.	Column Bleed	21.28 7	
	2.			
	3.			
	4.			
	5.			
	6.			
	7.			
	8.			
	9.			
	10.			
	12.			
	13.			
	14.			
	15.			
	16.			
	17.			
	18.			
	19.			
	20.			
	21.			
	22.			
	23.			
	24.			
	25.			
	26.			
	27.			
	28.			
	29.			
	30.			

ł

in the

in

- ALA

Ð

and and a second

.....

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET SAMPLE NO.

TP66 IVI ENVIRONMENTAL Contract: Lab Name: CHEMTECH Group: 5971-VOA LB12351 Site: WATERS EI Location: Project No.: L3355 Lab Sample ID: 019 Matrix: (soil/water) SOIL Lab File ID: VV030505.D (g/mL) _____G 5.0 Sample wt/vol: Date Received: 2/27/01 LOW Level: (low/med) Date Analyzed: 3/5/01 21 % Moisture: not dec. Dilution Factor: 1.0 0.53 (mm) ID: GC Column: RTX624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume:

Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
74-87-3	Chloromethane	13	U
74-83-9	Bromomethane	13	U
75-01-4	Vinyl Chloride	13	U
75-00-3	Chloroethane	13	U
75-09-2	Methylene Chloride	13	U
67-64-1	Acetone	13	U
75-15-0	Carbon Disulfide	13	U
75-35-4	1,1-Dichloroethene	13	U
75-34-3	1,1-Dichloroethane	13	U
156-60-5	trans-1,2-Dichloroethene	13	U
156-59-2	cis-1,2-Dichloroethene	13	U
67-66-3	Chloroform	13	U
107-06-2	1,2-Dichloroethane	13	U
78-93-3	2-Butanone	13	U
71-55-6	1,1,1-Trichloroethane	13	U
56-23-5	Carbon Tetrachloride	13	U
	Bromodichloromethane	13	U
75-27-4	1,2-Dichloropropane	13	U
78-87-5	cis-1,3-Dichloropropene	13	U
10061-01-5	Trichloroethene	13	U
79-01-6	Dibromochloromethane	13	U
124-48-1	1,1,2-Trichloroethane	13	U
79-00-5		13	U
71-43-2	Benzene	13	U
10061-02-6	t-1,3-Dichloropropene	13	U
75-25-2	Bromoform	13	U
108-10-1	4-Methyl-2-Pentanone	13	U
591-78-6	2-Hexanone	13	U
127-18-4	Tetrachloroethene	13	U
79-34-5	1,1,2,2-Tetrachloroethane	13	U
108-88-3	Toluene	13	U
108-90-7	Chlorobenzene	13	U
100-41-4	Ethyl Benzene	13	U
100-42-5	Styrene		

. 490

5

No.

FORM I VOA

								•	
					1A			SAMPLE	NO.
		VOI	ATILE	ORGANI	CS ANALYSIS	S DATA SH	EEI	ТР	66
Lab Name	: CHEMTEC	н			Contract:	IVI ENVI	RONMENTA	L	
Project No	b.: L3355		Site:	WATERS	El Location:	LB12351		Group:	5971-VOA
Matrix: (s		SOIL				Lab	Sample ID:	O19	
Sample w	rt/vol:	5.0	(g/mL)	G	-	l	ab File ID:	VV030505.D	
Level:	(low/med)	LOW				Date	Received:	2/27/01	
% Moistu	re: not dec.	21				Date	e Analyzed:	3/5/01	
GC Colur	nn: RTX624		ID:	0.53	_(mm)		tion Factor:		
Soil Extra	act Volume:		(uL)			Soil Aliqu	ot Volume:		(uL)
					Concentrat	tion Units:			
	CAS No.	Compound			(ug/L or ug/	Kg) -	ug/Kg	Q	
ſ	136777-61-2	m/p-Xylene	s			13		U	
	95-47-6	o-Xylene				13		U	

. 490 2 01 2

1

E:

1.3

Sec.

Ľ

- ALA

ĺ.

长行

and .

FORMIVOA

	1E
VO	LATILE ORGANICS ANALYSIS DATA SHEET
	TENTATIVELY IDENTIFIED COMPOUNDS

8.- ×

-

1

-

1

and a

6

		TENTATIVELY IDENTIFIED COM	<i>I</i> POUNDS	IPbb
Lab Name: CHEMTE	CH	Contract:	IVI ENVIRONMENT	ſ
Project No.: L3355		Site: WATERS Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	019
Sample wt/vol:	5.0	 (g/mL)	Lab File ID:	VV030505.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: not dec			Date Analyzed:	3/5/01
		 ID: 0.53 (mm)	Dilution Factor:	1.0
GC Column:	RTX624			
Soil Extract Volume:		(uL)	Soil Aliquot Volume:	(uL)
		Concentrat		
Number TICs found:	1	(ug/L or	ug/Kg) <u>ug/Kg</u>	
	CAS Number	Compound Name	RT Est. Conc.	
	1. 76-13-1	Ethane, 1,1,2-trichloro-1,2,	3.83 9.1	J
	2.			
	3.			
	4.			
	5.			
	6.			
	7.			
	8.			+
	9.			
	10. 11.			
	12.			
	13.			
	14.			
	15.			
	16.			
	17.			
	18.			
	19.			
	20.			
2.0	21.			
	22.			
	23.			
	24. 25.			
	25.			
	27.			
	28.			
	29.			
	30.			

FORM I VOA-TIC

SAMPLE NO.

		VOL	ATILE C	RGANI	CS ANALYS	IS DAT	A SHEET	B6	-6
Lab Nam	e: CHEMTECI	н			Contract:				-
	o.: L3355		Site: V	VATERS	El Location:	LB1	2351	Group: 5	971-VOA
Matrix: (soil/water)	SOIL					Lab Sample ID:		
Sample v	vt/vol:	5.0	(g/mL)	G	-		Lab File ID:		
Level:	(low/med)	LOW					Date Received:		
% Moistu	ire: not dec.	11					Date Analyzed:		
GC Colu	mn: RTX624		ID:	0.53	_(mm)		Dilution Factor:		(
Soil Extra	act Volume:		(uL)				Aliquot Volume:		(uL)
1	CAS No.	Compound			Concentra (ug/L or ug		nits: ug/Kg	Q	
	74-87-3	Chlorometh	ane				11	U	
	74-83-9	Bromometh					11	U	
	75-01-4	Vinyl Chlori	de				11	U	
	75-00-3	Chloroethar					11	U	
	75-09-2	Methylene					11	U	
	67-64-1	Acetone					11	U	
	75-15-0	Carbon Dis	ulfide				11	U	
	75-35-4	1,1-Dichlor					11	U	
	75-34-3	1,1-Dichlor					11	U	
	156-60-5	trans-1,2-D	ichloroet	thene			11	U	
	156-59-2	cis-1,2-Dict	nloroethe	ene			11	U	
	67-66-3	Chloroform					11	U	
	107-06-2	1,2-Dichlor	oethane				11	U	
	78-93-3	2-Butanone	Э				11	U	
	71-55-6	1,1,1-Trich	loroethar	ne			11	U	
	56-23-5	Carbon Te	trachloric	de			11	U	
	75-27-4	Bromodich	lorometh	ane			11	U	
	78-87-5	1,2-Dichlor					11		
	10061-01-5	cis-1,3-Dic	hloropro	pene			11	U	
	79-01-6	Trichloroet					11	U	
	124-48-1	Dibromoch					11	UU	
	79-00-5	1,1,2-Trich	loroetha	ne			11		
	71-43-2	Benzene					11		
	10061-02-6	t-1,3-Dichl	oroprope	ene			11		-
	75-25-2	Bromoform					11		4
	108-10-1	4-Methyl-2		one			11		4
	591-78-6	2-Hexanor					11	U	1
	127-18-4	Tetrachlor					11	U U	4
	79-34-5	1,1,2,2-Te	trachloro	bethane			11		1
	108-88-3	Toluene					11		1
	108-90-7	Chlorober					11		-
	100-41-4	Ethyl Benz	zene				11		4
	100-42-5	Styrene					11		1

1 490 1 01 2

-

Dans.

FORMIVOA

1	A	
1	A	

	VOLATILE	ORGANICS ANALYSI	S DATA SHEET	
Lab Name: CHEMTEC	Н	Contract:		B6-6
Project No.: L3355	Site:	WATERS El Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	023
Sample wt/vol:	5.0(g/mL)	G	Lab File ID:	VN030217.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: not dec.	11		Date Analyzed:	3/2/01
GC Column: RTX624	ID:	0.53 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)		Soil Aliquot Volume:	(uL)
		Concentra		
CAS No.	Compound	(ug/L or ug/		Q
136777-61-2	m/p-Xylenes		11 11	<u> </u>
95-47-6	o-Xylene		11	
·				
		1		
L		I		

B6-6

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

Lab Name: CHEMTECH			Contract:	IVI ENVIRONMENT	AL.
		Site: WATERS	Location:	LB12351	Group: 5971-VOA
Project No.: L3355	0.011			Lab Sample ID:	D23
Matrix: (soil/water)	SOIL				VN030217.D
Sample wt/vol:	5.0	_(g/mL) <u>G</u>			
Level: (low/med)	LOW			Date Received:	2/27/01
% Moisture: not dec.	10.8			Date Analyzed:	3/2/01
	624		(mm)	Dilution Factor:	1.0
GC Column: RTX	.024	(.1)		Soil Aliquot Volume:	(uL)
Soil Extract Volume:		(uL)			

Concentration Units:

Number TICs found:

and'

1

242

114

5	(ug/L or u	ıg/Kg)	ug/Kg	
CAS Number	Compound Name	RT	Est. Conc.	Q
1. 95-13-6	Indene	19.91	11	J
	Column Bleed	21.28	7.3	J
2.	Naphthalene	24.35	120	J
3. 91-20-3	Naphthalene, 2-methyl-	27.47	24	J
4. 91-57-6	Naphthalene, 1-methyl-	28.03	18	J
5. 90-12-0	Naphulaiene, Thiousy			
6.				
7.		1		
8.				
9.				
10.				
11.				
12.				
13.		+		
14.				
15.				
16.				
17.				
18.				
19.				1
20.				
21.			+	
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

					B7-6
Lab Name: CHEMTEC	н		Contract	IVI ENVIRONMENTA	L
Project No.: L3355		Site: W	ATERS El Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL	_		Lab Sample ID: (024
Sample wt/vol:	5.0	_(g/mL)	G	Lab File ID:	/N030218.D
Level: (low/med)	LOW	_		Date Received:	2/27/01
% Moisture: not dec.	15			Date Analyzed:	3/2/01
GC Column: RTX624		ID:	0.53 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		_(uL)		Soil Aliquot Volume:	(uL)

Concentration Units: (ua/l or ua/Ka)

CAS No.	Compound	(ug/L or ug/Kg)	ug/Kg Q
74-87-3	Chloromethane	12	U
74-83-9	Bromomethane	12	U
75-01-4	Vinyl Chloride	12	U
75-00-3	Chloroethane	12	U
75-09-2	Methylene Chloride	12	U
67-64-1	Acetone	12	U
75-15-0	Carbon Disulfide	12	U
75-35-4	1,1-Dichloroethene	12	U
75-34-3	1,1-Dichloroethane	12	U
156-60-5	trans-1,2-Dichloroethene	12	U
156-59-2	cis-1,2-Dichloroethene	12	U
67-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	U
78-93-3	2-Butanone	12	U
71-55-6	1,1,1-Trichloroethane	12	U
56-23-5	Carbon Tetrachloride	. 12	U
75-27-4	Bromodichloromethane	12	U
78-87-5	1,2-Dichloropropane	12	U
10061-01-5	cis-1,3-Dichloropropene	12	U
79-01-6	Trichloroethene	12	U
124-48-1	Dibromochloromethane	12	U
79-00-5	1,1,2-Trichloroethane	12	U
71-43-2	Benzene	12	U
10061-02-6	t-1,3-Dichloropropene	12	U
75-25-2	Bromoform	12	U
108-10-1	4-Methyl-2-Pentanone	12	U
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	12	U
79-34-5	1,1,2,2-Tetrachloroethane	12	U
108-88-3	Toluene	12	U
108-90-7	Chlorobenzene	12	U
100-41-4	Ethyl Benzene	12	U
100-42-5	Styrene	12	U

1 490 1 01 2

FORMIVOA

SAMPLE NO.

				IA		SAMPLE	NO.
	VOL	ATILE	ORGANIC	S ANALYSIS	S DATA SHEET	B	7-6
Lab Name: CHEMTEC	н			Contract:	IVI ENVIRONMENT	4L	
Project No.: L3355	_	Site:	WATERS	El Location:	LB12351	Group:	5971-VOA
Matrix: (soil/water)	SOIL				Lab Sample ID:	024	
Sample wt/vol:	5.0 (9	g/mL)	G		Lab File ID:	VN030218.D	
Level: (low/med)	LOW				Date Received:	2/27/01	
% Moisture: not dec.	15				Date Analyzed:	3/2/01	
GC Column: RTX624		ID:	0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(1	uL)			Soil Aliquot Volume:		(uL)
				Concentrat	ion Units:		
CAS No.	Compound			(ug/L or ug/l	Kg) ug/Kg	Q	1
136777-61-2	m/p-Xylenes				12	UU	1
95-47-6	o-Xylene				12		
	1						
		-				+	
				_			
							1
							-
						+	
							1
]

1.51

a the cup the set

the state

FORMIVOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

•

te.

Solar'

1

No.

1

in a

1

	VC	TENTATIV	ELY IDEN	TIFIED COM	IPOUNDS		B	7-6
Lab Name: CHEMTECH	4			Contract:	IVI ENVI	RONMENT	۹L	
		Site	WATERS	Location:				5971-VOA
Project No.: L3355	-	Ono				Sample ID:	024	
Matrix: (soil/water)	SOIL	-				ab File ID:		D
Sample wt/vol:	5.0	_(g/mL)	G					.0
Level: (low/med)	LOW	_			Date	Received:	2/27/01	
% Moisture: not dec.	15.4				Date	Analyzed:	3/2/01	
	X624	— ID	: 0.53	(mm)	Dilut	tion Factor:	1.0	
		— (uL)		-	Soil Aliqu	ot Volume:		(uL)
Soil Extract Volume:		(uz)						
				Concentrati				
Number TICs found:	1	_ 1		(ug/L or u	-	ug/Kg		1
CA	S Number		Compou	nd Name		Est. Conc.	Q	
	1. 91-20-3	Naphtha	lene		24.35	11	J	-
	2.							
	3.							-
	4.							
	5.							1
	6.							1
	7.]
	8. 9.]
	<u>9.</u> 0.							
	1.							4
	2.							4
	3.							-
1	4.							4
1	5.							-
	6.							1
	7.							-
	18.							1
	19.					+	1	1
	20.				-			
	21. 22.							
	22.							
	23. 24.							
	25.							
	26.							_
	27.							_
	28.							-
	29.							-
	30.							

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	•				B8-6
Lab Name: CHEMTECH	4		_ Contract:	IVI ENVIRONMENTA	L
Project No.: L3355		Site: WATER	S El Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL	_		Lab Sample ID: (025
Sample wt/vol:	5.0	_(g/mL)G	2	Lab File ID:	VN030219.D
Level: (low/med)	LOW	_		Date Received:	2/27/01
% Moisture: not dec.	16			Date Analyzed:	3/3/01
GC Column: RTX624		ID: 0.53	_(mm)	Dilution Factor:	1.0
Soil Extract Volume:		_(uL)		Soil Aliquot Volume:	(uL)
			Concentrat	tion Units:	

		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
74-87-3	Chloromethane	12	U
74-83-9	Bromomethane	12	١U
75-01-4	Vinyl Chloride	12	U
75-00-3	Chloroethane	12	U
75-09-2	Methylene Chloride	12	U
67-64-1	Acetone	12	U
75-15-0	Carbon Disulfide	12	U
75-35-4	1,1-Dichloroethene	12	U
75-34-3	1,1-Dichloroethane	12	U
156-60-5	trans-1,2-Dichloroethene	12	U
156-59-2	cis-1,2-Dichloroethene	12	U
67-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	U
78-93-3	2-Butanone	12	U
71-55-6	1,1,1-Trichloroethane	12	U
56-23-5	Carbon Tetrachloride	12	U
75-27-4	Bromodichloromethane	12	U
78-87-5	1,2-Dichloropropane	12	U
10061-01-5	cis-1,3-Dichloropropene	12	U
79-01-6	Trichloroethene	12	U
124-48-1	Dibromochloromethane	12	U
79-00-5	1,1,2-Trichloroethane	12	U
71-43-2	Benzene	12	U
10061-02-6	t-1,3-Dichloropropene	12	U
75-25-2	Bromoform	12	U
108-10-1	4-Methyl-2-Pentanone	12	U
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	12	U
79-34-5	1,1,2,2-Tetrachloroethane	12	U
108-88-3	Toluene	12	U
108-90-7	Chlorobenzene	12	U
		10	11

- 490 - 012

100-41-4

100-42-5

Ethyl Benzene

Styrene

int.

13

Lis

E.

FORMIVOA

12

12

3/90

U

U

SAMPLE NO.

SAMPLE NO.

•

					CI IIII EE NO.	
		ORGANICS		S DATA SHEET	B8-6	
Lab Name: CHEMTEC	:H		Contract:	IVI ENVIRONMENTA	<u>λ</u>	
Project No.: L3355	_ Site:	WATERS E	I Location:	LB12351	Group: <u>5971-VO</u>	A
Matrix: (soil/water)	SOIL			Lab Sample ID:	025	
Sample wt/vol:	(g/mL)	G		Lab File ID:	VN030219.D	
Level: (low/med)	LOW			Date Received:	2/27/01	
% Moisture: not dec.	16			Date Analyzed:	3/3/01	
GC Column: RTX624	ID:	0.53 (1	mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)			Soil Aliquot Volume:	(uL)	
			Concentrat			
CAS No.	Compound	(ug/L or ug/l	Kg) <u>ug/Kg</u>	Q	
136777-61-2	m/p-Xylenes			12	U	
95-47-6	o-Xylene			12	U	
			+			
					+	
L						

1 490 2 01 2

Constant.

FORMIVOA

B8-6

1E
VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS

13

1

1E

Lab Name: CHEMTE	ECH		: IVI ENVIRONMENT	
Project No.: L3355		Site: WATERS Location		Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	025
Sample wt/vol:	5.0	(g/mL) <u>G</u>	Lab File ID:	VN030219.D
			Date Received:	2/27/01
Level: (low/med)	LOW		Date Analyzed:	
% Moisture: not dec	15.7			
GC Column:	RTX624	ID: <u>0.53</u> (mm)	Dilution Factor:	
Soil Extract Volume:		(uL)	Soil Aliquot Volume:	: (uL)
Number TICs found:		Concentra (ug/L or		
	CAS Number	Compound Name	RT Est. Conc.	Q
	1.	Column Bleed	21.28 7.6	J
	2.			
	3.			
	4.			
	5.			
	6.			
	7. 8.			
	9.			
	10.			
	11.			+
	12.			
	13.			
	14.			
	15. 16.			
	18.			
	18.			
	19.			
	20.			
4	21.			
	22.			
	23.			+1
	24.			
	25.			
	26.			
	27. 28.			
	29.			
	30.			
	00.			

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

	v	OLAHEL	01107.11			B81	D-6
Lab Name: CHEMTEC	н			Contract:	IVI ENVIRONMENTA	L	
Project No.: L3355		Site:	WATER	S El Location:	LB12351	Group:	5971-VOA
Matrix: (soil/water)	SOIL	_			Lab Sample ID:	026	
Sample wt/vol:	5.0	(g/mL)	G		Lab File ID:	VN030220.D	
Level: (low/med)	LOW	_			Date Received:	2/27/01	
% Moisture: not dec.	9	_			Date Analyzed:	3/3/01	
GC Column: RTX624		ID:	0.53	_(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)			Soil Aliquot Volume:		(uL)

Concentration Units:

	Compound	(ug/L or ug/Kg) ug/Kg	Q
CAS No.			-
74-87-3	Chloromethane	11	U
74-83-9	Bromomethane	11	U
75-01-4	Vinyl Chloride	11	U
75-00-3	Chloroethane	11	U
75-09-2	Methylene Chloride	11	U
67-64-1	Acetone	11	U
75-15-0	Carbon Disulfide	11	U
75-35-4	1,1-Dichloroethene	11	U
75-34-3	1,1-Dichloroethane	11	U
156-60-5	trans-1,2-Dichloroethene	11	U
156-59-2	cis-1,2-Dichloroethene	11	U
67-66-3	Chloroform	11	U
107-06-2	1,2-Dichloroethane	11	U
78-93-3	2-Butanone	11	U
71-55-6	1,1,1-Trichloroethane	11	U
56-23-5	Carbon Tetrachloride	11	U
75-27-4	Bromodichloromethane	11	U
78-87-5	1,2-Dichloropropane	11	U
10061-01-5	cis-1,3-Dichloropropene	11	U
79-01-6	Trichloroethene	11	U
124-48-1	Dibromochloromethane	11	U
79-00-5	1,1,2-Trichloroethane	11	U
71-43-2	Benzene	11	U
10061-02-6	t-1,3-Dichloropropene	11	U
75-25-2	Bromoform	11	U
108-10-1	4-Methyl-2-Pentanone	11	U
591-78-6	2-Hexanone	11	U
127-18-4	Tetrachloroethene	11	U
79-34-5	1,1,2,2-Tetrachloroethane	11	U
108-88-3	Toluene	11	U
108-90-7	Chlorobenzene	11	U
100-41-4	Ethyl Benzene	11	U
100-42-5	Styrene	11	U

.

1.3

.

E

-

6

FORMIVOA

3/90

SAMPLE NO.

		1A		SAMPLE NO.
		ORGANICS ANALYSI		B8D-6
Lab Name: CHEMTEC			IVI ENVIRONMENT	
Project No.: L3355	_ Site	WATERS El Location:	LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL		Lab Sample ID:	026
Sample wt/vol:	(g/mL)	G	Lab File ID:	VN030220.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: not dec.	9		Date Analyzed:	3/3/01
GC Column: RTX624	ID	: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)		Soil Aliquot Volume:	(uL)
CAS No.	Compound	Concentra (ug/L or ug		Q
136777-61-2	m/p-Xylenes	1	11	U
95-47-6	o-Xylene		11	U
				+
				+

*

1

ē.

*

ê._

FORMIVOA

SAMPLE NO.

	VO	LATILE	ORGANI	ICS ANALYSIS	S DATA SHEET		
Lab Name: CHEMTEC	н			_ Contract:			13-6
Project No.: L3355	_	Site:	WATERS	El Location:	LB12351	Group:	5971-VOA
Matrix: (soil/water)	SOIL				Lab Sample ID:	027	
Sample wt/vol:	5.0	(g/mL) _	G	_	Lab File ID:	VN030221.	D
Level: (low/med)	LOW				Date Received:	2/27/01	
% Moisture: not dec.	17				Date Analyzed:	3/3/01	
GC Column: RTX624		ID:	0.53	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)			Soil Aliquot Volume:		(uL)
CAS No.	Compound			Concentrati (ug/L or ug/ł		Q	
136777-61-2	m/p-Xylene	S			12	U	
95-47-6	o-Xylene				12	U	
						-	

FORMIVOA

1E

SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

•

		TENTATIN	ELY IDENT	IFIED COM	IPOUND	S	B	3D-6
Lab Name: CHEMTECH	4			Contract:	IVI EN		AL	
Project No.: L3355	_	Site	WATERS	Location:	LB1235	51	Group:	5971-VOA
Matrix: (soil/water)	SOIL				Lab	Sample ID:	O26	
Sample wt/vol:	5.0	(g/mL)	G			Lab File ID:	VN030220	.D
Level: (low/med)	LOW				Dat	te Received:	2/27/01	
% Moisture: not dec.	8.9				Da	te Analyzed:	3/3/01	
	×624	 ID	: 0.53	(mm)	Dil	ution Factor:	1.0	
Soil Extract Volume:		-		(,		uot Volume:		(uL)
Soli Extract volume.		(uL)				uot volume.		. (uL)
				Concentratio				
Number TICs found:	0	_	1	(ug/L or u	g/Kg)	ug/Kg		
CA	S Number		Compound	d Name	RT	Est. Conc.	Q	
1								
2								
4								
5								
6								
7								
8								
10		-						
11								
12	•							
13								
14								
15								
10								
18								
19			•					
20								
21								
23								
24								
25]
26								
27				and the patient street and				-
28								1
30						+		1
					L		L	

FORM I VOA-TIC

•

1B

1

-

8

and the second

P.S.

1 CANA

.

.

.

1

SAMPLE NO.

	SEN	MIVOLATILE ORGANIC	CS ANALYS	IS DATA SHEET	
Lab Name: CHEMTE	ECH		Contract:	IVI ENVIRONMEN	B17
Project No.: L3355		Site: WATERS ED	Location:	LB12346	Group: MW1
Matrix: (soil/water)				Lab Sample ID:	012
Sample wt/vol:		- (g/mL)_ML			BL030617.D
Level: (low/med)		_(3,)		Date Received:	02/27/01
		-	N		
% Moisture: 100		decanted: (Y/N):	N		
Concentrated Extract	Volume:	<u>1000</u> (uL)		Date Analyzed:	
Injection Volume:	2.0	_(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	pH:			
		(Concentrati	ion Units:	
CAS No.	Compound) t	ug/L or ug		Q
208-96-8	Acenaphth	nylene		14	U (
91-20-3	Naphthale	ne		14	U
83-32-9	Acenaphth	nene		14	U
86-73-7	Fluorene			14	U
85-01-8	Phenanthr	rene		14	U
120-12-7	Anthracen	e		14	U
206-44-0	Fluoranthe	ene		14	U
129-00-0	Pyrene			14	U
56-55-3	Benzo(a)a	Inthracene		14	U
218-01-9	Chrysene			14	U
205-99-2		luoranthene		14	U
207-08-9		luoranthene		14	UUU
50-32-8	Benzo(a)p			14	U
193-39-5		2,3-cd)pyrene		14	U
53-70-3		h)anthracene		14	
191-24-2	Benzo(g,h	,i)perylene		14	
			1		

FORM I SV

•

1E
VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS

10

-

BC: 1

-

÷.

	vo	TENTATIVELY IDENT	IFIED CON	POUNDS	5	TRIPE	BLANK
Lab Name: CHEMT	ECH		Contract:	IVI ENV	IRONMENT	AL	
Project No.: L3355		Site: WATERS	Location:	LB1234	8	Group:	5971-VOA
Matrix: (soil/water)	WATER			Lab	Sample ID:	O30	
Sample wt/vol:	5.0	(g/mL) ML			Lab File ID:	VN030509	D
Level: (low/med)				Date	e Received:	2/27/01	
% Moisture: not dec	c. 100			Date	e Analyzed:	3/5/01	
GC Column:	RTX624	ID: 0.53 (mm)	Dilu	tion Factor:	1.0	
Soil Extract Volume:		(uL)		Soil Aliqu	uot Volume:		(uL)
			Concentratio	on Units:			
Number TICs found:	0		(ug/L or u		ug/L		
	CAS Number	Compound	Name	RT	Est. Conc.	Q	
	1.						
	2.						
	3.						
	4.						
	5. 6.						
	7.						
	8.						
	9.						
	10.						
	11.						
	12.						
	13.						
	14.						
	15.						
	16. 17.						
	18.						
	19.						
	20.						
3	21.						
	22.						
	23.						
	24.						
	25.						
	26.						
	27. 28.						1
	29.						1
	30.			1			
	L						

FORM I VOA-TIC

.

.

SAMPLE NO.

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

			CHAN EL NO.
	VOLATILE ORGANIC	CS ANALYSIS DATA SHEET	B13-6
Lab Name: CHEMTE	СН	Contract: IVI ENVIRONMENT	
Project No.: L3355	Site: WATERS	El Location: LB12351	Group: 5971-VOA
Matrix: (soil/water)	SOIL	Lab Sample ID:	027
Sample wt/vol:	5.0(g/mL)G	Lab File ID:	VN030221.D
Level: (low/med)	LOW	Date Received:	2/27/01
% Moisture: not dec.	17	Date Analyzed:	3/3/01
GC Column: RTX624	ID: 0.53	(mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
74-87-3	Chloromethane	12	U
74-83-9	Bromomethane	12	U
75-01-4	Vinyl Chloride	12	U
75-00-3	Chloroethane	12	U
75-09-2	Methylene Chloride	12	U
67-64-1	Acetone	12	U
75-15-0	Carbon Disulfide	12	U
75-35-4	1,1-Dichloroethene	12	U
75-34-3	1,1-Dichloroethane	12	U
156-60-5	trans-1,2-Dichloroethene	12	U
156-59-2	cis-1,2-Dichloroethene	12	U
67-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	U
78-93-3	2-Butanone	12	U
71-55-6	1,1,1-Trichloroethane	12	U
56-23-5	Carbon Tetrachloride	12	U
75-27-4	Bromodichloromethane	12	U

100-42-5 Styrene

78-87-5

79-01-6

124-48-1

79-00-5

71-43-2

75-25-2

108-10-1

591-78-6

127-18-4

79-34-5

108-88-3

108-90-7

100-41-4

10061-02-6

10061-01-5

1,2-Dichloropropane

Trichloroethene

Benzene

Bromoform

2-Hexanone

Toluene

cis-1,3-Dichloropropene

Dibromochloromethane

1,1,2-Trichloroethane

t-1,3-Dichloropropene

4-Methyl-2-Pentanone

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Chlorobenzene

Ethyl Benzene

FORMIVOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1E

Lab Name: CHEMTECH Contract: IVIENVIRONMENTAL Project No:: L3355 Site: WATERS Lacation: LB12351 Group: 5971-VOA Matrix: (soil/water) SOIL Lab Sample ID: O27 Lab Sample ID: O27 Sample witvol: 5.0 (g/mL) G Lab Sample ID: O27 % Moisture: not dec. 17 Date Received: 2/27/01 % Moisture: not dec. 17 Date Analyzed: 3/301 GC Column: RTX524 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume:			TENTATIVELY IDENTIFIED O	B1	3-6		
Project No.: L3355 Site: WATERS Location: LB12351 Group: 5971-VOA Matrix: (soll/water) SOIL Lab Sample ID: 027 Sample wt/vol: 5.0 (g/mL) G Lab File ID: VN030221.D Level: (lowmed) LOW Date Received: 2/27/01 % Moisture: not dec. 17 Date Analyzed: 3/3/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume:	Lab Name: CHEMTE	СН				AL	
Matrix: (soli/water) SOIL Lab Sample ID: 027 Sample wt/vol: 5.0 (g/mL) G Lab File ID: VN030221 D Level: (low/med) LOW Date Received: 2/27/01 % Moisture: not dec. 17 Date Analyzed: 3/3/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Number TICs found: 0 Concentration Units: (ug/L or ug/Kg) ug/Kg Image: CAS Number Compound Name RT Est. Conc Q 1. 1 1 1 1 1 2. 1 1 1 1 1 3. 1 1 1 1 1 1 9. 1			Site: WATERS Locat	ion: LB123	51	Group:	5971-VOA
Sample wt/vol: 5.0 (g/mL) G Lab File ID: VN030221.D Level: (low/med) LOW Date Received: 2/27/01 % Moisture: not dec. 17 Date Analyzed: 3/3/01 GC Column: RTX624 ID: 0.53 (nm) Dilution Factor: 1.0 Soil Extract Volume:		SOIL		La	b Sample ID:	027	
Level: (low/med) LOW Date Received: 2/27/01 % Moisture: not dec. 17 Date Analyzed: 3/3/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume:		5.0	(g/mL) G		Lab File ID:	VN030221	D
Solid constraints IT Date Analyzed: 3/3/01 GC Column: RTX624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume:		LOW		Da	ate Received:	2/27/01	
GC Column: RTX624 D: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Concentration Units: Number TICs found: 0 (ug/L or ug/Kg) ug/Kg 1 0 (ug/L or ug/Kg) ug/Kg 2. 0 0 (ug/L or ug/Kg) ug/Kg 3. 0 0 (ug/L or ug/Kg) ug/Kg 3. 0 0 (ug/L or ug/Kg) ug/Kg 3. 0 0 0 0 3. 0 0 0 0 4. 0 0 0 0 5. 0 0 0 0 10. 0 0 0 0 11. 0 0 0 0 12. 0 0 0 0 13. 0 0 0 0 14. 0 0 0 0 20. 0 0 0 0 21.				D	ate Analyzed:	3/3/01	
Soil Extract Volume:			 ID: 0.53 (mm)	D	ilution Factor:	1.0	
Soil Extract volume:		1117.024		Soil Al	iquot Volume:		(uL)
Number TICs found: 0 (ug/L or ug/Kg) ug/Kg CAS Number Compound Name RT Est. Conc. Q 1.	Soil Extract volume:						
CAS Number Compound Name RT Est. Conc. Q 1.		0					
CAS Name Compare Name Image: Compare Name Image: Compare Name 1. Image: Compare Name Image: Compare Name Image: Compare Name 3. Image: Compare Name Image: Compare Name Image: Compare Name 3. Image: Compare Name Image: Compare Name Image: Compare Name 4. Image: Compare Name Image: Compare Name Image: Compare Name 4. Image: Compare Name Image: Compare Name Image: Compare Name 5. Image: Compare Name Image: Compare Name Image: Compare Name 9. Image: Compare Name Image: Compare Name Image: Compare Name 9. Image: Compare Name Image: Compare Name Image: Compare Name 9. Image: Compare Name Image: Compare Name Image: Compare Name 10. Image: Compare Name Image: Compare Name Image: Compare Name 11. Image: Compare Name Image: Compare Name Image: Compare Name 13. Image: Compare Name Image: Compare Name Image: Compare Name 14. Image: Compare Name Image: Compare Name Image: Compare Name 15. Image: Compare Name Image: Compare Name Image: Compare Name 16. Image: Compare Name Image: Compare Nam	Number TICs found:	0				0	i l
2. $3.$ $$			Compound Name	RI	Est. Conc.	Q	1999 - 1999 - 1999 - 1999 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 1997 -
3.							
4.							
5. $ 6.$ $ 7.$ $ 8.$ $ 9.$ $ 10.$ $ 11.$ $ 12.$ $ 13.$ $ 14.$ $ 15.$ $ 16.$ $ 17.$ $ 18.$ $ 20.$ $ 21.$ $ 22.$ $ 23.$ $ 24.$ $ 25.$ $ 26.$ $ 27.$ $ 28.$ $ -$							
6. $10.$ $10.$ $9.$ $10.$ $10.$ $10.$ $10.$ $10.$ $11.$ $10.$ $10.$ $12.$ $10.$ $10.$ $13.$ $10.$ $10.$ $14.$ $10.$ $10.$ $15.$ $10.$ $10.$ $16.$ $10.$ $10.$ $17.$ $10.$ $10.$ $18.$ $10.$ $10.$ $19.$ $10.$ $10.$ $20.$ $10.$ $10.$ $21.$ $10.$ $10.$ $22.$ $10.$ $10.$ $23.$ $10.$ $10.$ $24.$ $10.$ $10.$ $27.$ $10.$ $10.$ $28.$ $10.$ $10.$ $29.$ $10.$ $10.$	5 P - 1						1
7. $8.$ $9.$ $9.$ $10.$ $10.$ $11.$ $11.$ $11.$ $12.$ $11.$ $13.$ $11.$ $14.$ $11.$ $15.$ $11.$ $16.$ $11.$ $17.$ $11.$ $18.$ $11.$ $20.$ $11.$ $21.$ $11.$ $22.$ $11.$ $23.$ $11.$ $24.$ $11.$ $25.$ $11.$ $26.$ $11.$ $27.$ $11.$ $28.$ $11.$							
8. $10.$ $10.$ $10.$ $11.$ $11.$ $11.$ $12.$ $11.$ $13.$ $11.$ $13.$ $11.$ $15.$ $11.$ $16.$ $11.$ $17.$ $11.$ $18.$ $11.$ $19.$ $11.$ $20.$ $11.$ $21.$ $11.$ $22.$ $11.$ $23.$ $11.$ $24.$ $11.$ $25.$ $11.$ $26.$ $11.$ $27.$ $11.$ $28.$ $11.$							
9. $\begin{aligned}{cccccccccccccccccccccccccccccccccccc$							
10. $11.$ $11.$ $11.$ $12.$ $12.$ $12.$ $13.$ $12.$ $12.$ $13.$ $12.$ $12.$ $14.$ $12.$ $12.$ $15.$ $12.$ $12.$ $16.$ $12.$ $12.$ $17.$ $12.$ $12.$ $18.$ $12.$ $12.$ $20.$ $12.$ $12.$ $21.$ $12.$ $12.$ $22.$ $12.$ $12.$ $23.$ $12.$ $12.$ $24.$ $12.$ $12.$ $26.$ $12.$ $12.$ $27.$ $12.$ $12.$ $28.$ $12.$ $12.$ $29.$ $12.$ $12.$							1
11. $12.$ $13.$ $13.$ $13.$ $14.$ $15.$ $16.$ $15.$ $16.$ $16.$ $17.$ $16.$ $16.$ $19.$ $16.$ $16.$ $20.$ $16.$ $16.$ $21.$ $16.$ $16.$ $22.$ $16.$ $16.$ $23.$ $16.$ $16.$ $24.$ $16.$ $16.$ $26.$ $16.$ $16.$ $27.$ $16.$ $16.$ $27.$ $16.$ $16.$ $27.$ $16.$ $16.$ $27.$ $16.$ $16.$ $28.$ $16.$ $16.$							1
12. \square \square 13. \square \square 14. \square \square 15. \square \square 16. \square \square 17. \square \square 18. \square \square 19. \square \square 20. \square \square 21. \square \square 23. \square \square 24. \square \square 25. \square \square 26. \square \square 27. \square \square 28. \square \square 29. \square \square							1
$13.$ $\hfill \ \hfill \ \ \hfill \ \$							1
14. $15.$ $16.$ $16.$ $17.$ $17.$ $16.$ $18.$ $16.$ $19.$ $16.$ $20.$ $16.$ $21.$ $16.$ $22.$ $16.$ $23.$ $16.$ $24.$ $16.$ $25.$ $16.$ $26.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $28.$ $16.$ $29.$ $16.$							1
15. $16.$ $16.$ $17.$ $17.$ $18.$ $16.$ $19.$ $16.$ $20.$ $16.$ $21.$ $16.$ $22.$ $16.$ $23.$ $16.$ $24.$ $16.$ $25.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $27.$ $16.$ $29.$ $16.$							
16. $17.$ $17.$ $17.$ $18.$ $19.$ $19.$ $19.$ $19.$ $20.$ $19.$ $10.$ $21.$ $10.$ $10.$ $22.$ $10.$ $10.$ $23.$ $10.$ $10.$ $24.$ $10.$ $10.$ $25.$ $10.$ $10.$ $26.$ $10.$ $10.$ $27.$ $10.$ $10.$ $28.$ $10.$ $10.$ $29.$ $10.$ $10.$							
17. $18.$ $19.$ $19.$ $19.$ $19.$ $20.$ $19.$ $10.$ $21.$ $10.$ $10.$ $22.$ $10.$ $10.$ $23.$ $10.$ $10.$ $24.$ $10.$ $10.$ $25.$ $10.$ $10.$ $26.$ $10.$ $10.$ $27.$ $10.$ $10.$ $28.$ $10.$ $10.$ $29.$ $10.$ $10.$							
18.							
19.							1
20.							4
22.							-
23.		21.					4
24.		22.					4
25.		23.					4
26.		24.					-
27.		25.					-
28. 29.		26.					-
29.		27.					-
		28.					-
30.							-
		30.					_

office.

i.

1

FORM I VOA-TIC

SAMPLE NO.

		VOLATILE ORGANICS	ANALYSIS [DATA SHEET		
Lah Nar	ne: CHEMTEC				TRIPB	LANK
	No.: L3355	Site: WATERS E	Location:	LB12348	Group:	5971-VOA
	(soil/water)	WATER		Lab Sample ID:	030	
Sample	wt/vol:	5.0 (g/mL) ML		Lab File ID:	VN030509.D	
Level:	(low/med)			Date Received:	2/27/01	
% Moist	ure: not dec.	100		Date Analyzed:	3/5/01	
GC Colu	umn: RTX624	ID: <u>0.53</u> (r	mm)	Dilution Factor:	1.0	
Soil Ext	ract Volume:	(uL)		Soil Aliquot Volume:	<u></u>	(uL)
	CAS No.		Concentratio ug/L or ug/Kg		Q	
	74 07 2	Chloromethane	1	10	U	
	74-87-3 74-83-9	Bromomethane		10	U	
	75-01-4	Vinyl Chloride		10	U	
	75-01-4	Chloroethane	1	10	U	
	75-09-2	Methylene Chloride		10	U	
	67-64-1	Acetone		10	U	
	75-15-0	Carbon Disulfide		10	U	
	75-35-4	1,1-Dichloroethene		10	U	
	75-34-3	1,1-Dichloroethane		10	U	
	156-60-5	trans-1,2-Dichloroethene		10	U	
	156-59-2	cis-1,2-Dichloroethene		10	U	
	67-66-3	Chloroform		10	U	
	107-06-2	1,2-Dichloroethane		10	U	
	78-93-3	2-Butanone		10	U	
	71-55-6	1,1,1-Trichloroethane		10	U	
	56-23-5	Carbon Tetrachloride		10	U	
	75-27-4	Bromodichloromethane		10	U	
	78-87-5	1,2-Dichloropropane		10	U	
	10061-01-5	cis-1,3-Dichloropropene		10	U	
	79-01-6	Trichloroethene		10	U	
	124-48-1	Dibromochloromethane		10	U	
	79-00-5	1,1,2-Trichloroethane		10		
	71-43-2	Benzene		10		
	10061-02-6	t-1,3-Dichloropropene		10		
	75-25-2	Bromoform		10	U	
	108-10-1	4-Methyl-2-Pentanone		10	U	
	591-78-6	2-Hexanone		10	U	-
	127-18-4	Tetrachloroethene		10 10	U	1
		1,1,2,2-Tetrachloroethane		10		
	108-88-3	Toluene		10	U	1
	108-90-7	Chlorobenzene		10	U	1
	100-41-4	Ethyl Benzene		10		-
	100-42-5	Styrene		10		1

1 490 1 01 2

FORMIVOA

				1A		SAMPLE	ENO.
	VC	LATILE	ORGANI	CS ANALYSIS	S DATA SHEET		LANK
Lab Name: CHEMTEC	н			Contract:	IVI ENVIRONMENTA		
Project No.: L3355	_	Site:	WATERS	El Location:	LB12348	Group:	5971-VOA
Matrix: (soil/water)	WATER				Lab Sample ID:	030	
Sample wt/vol:	5.0	(g/mL)	ML	<u>.</u>	Lab File ID:	VN030509.D	
Level: (low/med)					Date Received:	2/27/01	
% Moisture: not dec.	100				Date Analyzed:	3/5/01	
GC Column: RTX624		- ID:	0.53	_(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		_ (uL)			Soil Aliquot Volume:		(uL)
				Concentral	ion Units:		
CAS No.	Compound	ł		(ug/L or ug/	Kg) <u>ug/L</u>	Q	
136777-61-2	m/p-Xylen	es			10	U	
95-47-6	o-Xylene				10	U	
							1
							1
							4
							1
							-
							1
							4
•							1
							-
						+	-
							1
							1

.

1

.

Witz

ē. ...

FORMIVOA

•

19:45

Cherry Street

SAMPLE NO.

		SEMIVOLATILE ORGANI	CS ANALYS	IS DATA SHEET	5949/94
Lab Nam	e: <u>CHEMTECH</u>		Contract:	IVI ENVIRONMENT	FB12/21 AL
Project N	lo.: L3355	Site: WATERS ED	Location:	LB12346	Group: MW1
	(soil/water)	WATER		Lab Sample ID:	015
Sample v	vt/vol:	990.0 (g/mL) <u>ML</u>		Lab File ID:	BL030614.D
Level:	(low/med)			Date Received:	02/27/01
% Moistu	ure: 100	decanted: (Y/N):	N	Date Extracted:	03/01/01
Concentr	ated Extract Vol	ume:1000(uL)		Date Analyzed:	03/07/01
Injection	Volume:	2.0 (uL)		Dilution Factor:	1.0
GPC Clea	anup: (Y/N)	N pH:			
	CAS No.				Q
1	208-96-8	Acenaphthylene		10	U
	91-20-3	Naphthalene			U
	83-32-9	Acenaphthene			U
	86-73-7	Fluorene			U
	85-01-8				U
	120-12-7				U
	206-44-0	Fluoranthene			U
					UUU
					U
					U
					U
					U
					U
					U
	Site: WATERS ED: Location: LB12346 oil/water) WATER Lab Sample II t/vol: 990.0 (g/mL) ML Lab File II t/vol: 990.0 (g/mL) ML Lab File II (low/med) Date Receive Date Receive re: 100 decanted: (Y/N): N Date Extracte ted Extract Volume: 1000 (uL) Date Analyze Dilution Factor volume: 2.0 (uL) Dilution Factor nup: (Y/N) N pH:	10			
				· · · · · · · · · · · · · · · · · · ·	
					+
					<u>+</u>
	L				

I

SAMPLE NO.

			TC DATA CHEET	SAMPLE NO.	
	SE	MIVOLATILE ORGANI	CS ANALYS	DIS DATA SHEET	TP7'6'
Lab Name: CHEMTE	СН		Contract:	IVI ENVIRONMENT	
Project No.: L3355		Site: WATERS ED	Location:	LB12360	Group: MW1
Matrix: (soil/water)	SOIL	-		Lab Sample ID:	020
Sample wt/vol:	30.0	_(g/mL) <u>G</u>		Lab File ID:	BS030613.D
Level: (low/med)	LOW	_		Date Received:	02/27/01
% Moisture: 20		decanted: (Y/N):	N	Date Extracted:	03/01/01
Concentrated Extract \	/olume:	_1000_(uL)		Date Analyzed:	03/06/01
Injection Volume:	2.0	_(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	_ pH:			
CAS No.	Compound		Concentrati (ug/L or ug,		Q
(208-96-8				420	
91-20-3	Acenaphth Naphthale			420	U
83-32-9	Acenaphth			420	U
86-73-7	Fluorene			420	U
85-01-8	Phenanthr	ene		420	U
120-12-7	Anthracen			420	U
206-44-0	Fluoranthe			420	U
129-00-0	Pyrene			420	U
56-55-3		nthracene		420	U
218-01-9	Chrysene			420	U
205-99-2	Benzo(b)f	luoranthene		420	U
207-08-9	Benzo(k)f	uoranthene		420	U
50-32-8	Benzo(a)p			420	U
193-39-5		2,3-cd)pyrene		420	U
53-70-3		,h)anthracene		420	U
191-24-2	Benzo(g,h	,i)perylene		420	U
				·	
			1		<u> </u>

53

110

.

l

SAMPLE NO.

	SE	MIVOLATILE ORG	GANIC	CS ANALYSIS DATA SHEET		SATI LE NO.
Lab Name: CHEMTEC				Contract:		TP8'6' AL
Project No.: L3355		Site: WATERS	S ED	Location:	LB12403	Group: MW1
Matrix: (soil/water)					Lab Sample ID:	021
		-				BS030724.D
•	-	_(g/mL) <u>G</u>				
Level: (low/med)	LOW	-			Date Received:	
% Moisture: 19	_	decanted: (Y	(/N):	N	Date Extracted:	03/01/01
Concentrated Extract V	olume:	1000 (uL)			Date Analyzed:	03/08/01
Injection Volume:	2.0	(uL)			Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N		pH:			
				Concentrati	on Units:	
CAS No.	Compoun	d	(ug/L or ug	/Kg) _ug/Kg_	Q
208-96-8	Acenapht	hylene	[410	U
91-20-3	Naphthale				410	U
83-32-9	Acenapht	hene			410	U
86-73-7	Fluorene				410	U
85-01-8	Phenanth	rene			410	U
120-12-7	Anthracer	ne			410	U
206-44-0	Fluoranth	ene			410	U
129-00-0	Pyrene				410	U
56-55-3	Benzo(a)a	anthracene			410	U
218-01-9	Chrysene				410	U
205-99-2		fluoranthene			410	U
207-08-9		fluoranthene			410	U
50-32-8	Benzo(a)				<u>410</u> 410	U
193-39-5		,2,3-cd)pyrene			410 410	U
53-70-3		a,h)anthracene			410	U
191-24-2	Benzo(g,	h,i)perylene				
						

•

100

SAMPLE NO.

		SEM	IVOLATILE ORGANIC	S ANALYSI	S DATA SHEET	TDO'A	
Lab Name	: CHEMTECH			Contract:	IVI ENVIRONMENTA	TP9'4' Al	
	o.: L3355		Site: WATERS ED	Location:	LB12403	Group: MW1	
	soil/water)	SOIL			Lab Sample ID:	022	
Sample w			(g/mL) <u>G</u>		Lab File ID:	BS030725.D	
	(low/med)	LOW			Date Received:	02/27/01	
	(low/med) ure: 17		decanted: (Y/N):	N	Date Extracted:	03/01/01	
	ated Extract Vo	5			Date Analyzed:	03/08/01	
		2.0			Dilution Factor:	1.0	
	anup: (Y/N)	N					
	10p. (1/19)		(Concentrati			
	CAS No.	Compound	(ug/L or ug,		Q	
	208-96-8	Acenaphth			400		
	91-20-3	Naphthale			400		
	83-32-9	Acenaphth	ene		400	U	
	86-73-7	Fluorene			400	U	
	85-01-8	Phenanthr			400	U	
	120-12-7	Anthracen			400	U	
	206-44-0	Fluoranthe	ene		400	U	
	129-00-0	Pyrene			400		
	56-55-3		Inthracene	+	400	U	
	218-01-9	Chrysene			400	U	
	205-99-2		luoranthene	+	400 400	U	
	207-08-9		luoranthene	+	400	U	
	50-32-8	Benzo(a)p			400	U	
	193-39-5		2,3-cd)pyrene		400	U	
	53-70-3		a,h)anthracene		400	U	
	191-24-2	Benzo(g,ł	n,i)perylene		700		
						+	
				+			
						+	
						+	
						+	

FORM I SV

Į

ļ

Į

Į

Į

EPA SAMPLE NO.

	SEMI	VOLATILE ORGANIC	S ANALYS	SIS DATA SHEET	
Lab Name: CHEMTEC	н		Contract:	IVI ENVIRONMENT	MW1 TAL
Lab Code: CHEM	Ca	ase No.: L3355	SAS No.:	LB12320	SDG No.: MW1
Matrix: (soil/water)	WATER			Lab Sample ID:	001
Sample wt/vol:	800.0	(g/mL) ML		Lab File ID:	BS030237.D
Level: (low/med)				Date Received:	2/27/01
% Moisture: 100		- decanted: (Y/N):	N	Date Extracted:	3/1/01
Concentrated Extract Vo	- olume:	1000 (uL)		Date Analyzed:	3/3/01
Injection Volume:	2.0	(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	pH:			
CAS No.	Compound		Concentrat		Q
108-95-2	Phenol			13	U
95-57-8	2-Chloroph	nenol		13	U
95-48-7	2-Methylph			13	U
65794-96-9	3+4-Methy			13	U
88-75-5	2-Nitrophe	nol		13	U
105-67-9	2,4-Dimeth			13	U
120-83-2	2,4-Dichlor			13	U
59-50-7		-methylphenol		13	U
88-06-2		lorophenol		13	UUU
95-95-4		lorophenol		31	U
51-28-5	2,4-Dinitro			<u>31</u> 31	U
100-02-7	4-Nitrophe			31	
534-52-1		-2-methylphenol		31	
87-86-5	Pentachlor	opnenoi			
					+
					+
			+		1
L					

Form I SV-1

Г

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1

-

I

Les .

Ê,

Į

	0 EIVII	TENTATIV	ELY IDENTI	OUNDS	MW1		N1	
Lab Name: CHEMTE						IRONMEN	TAL	
Lab Code: CHEM		Case No	.: L3355	SAS No.:	LB1232	0	SDG No.:	MW1
Matrix: (soil/water)	WATER				Lab S	ample ID:	001	
Sample wt/vol:	800.0	_ (g/mL)	ML		L	ab File ID:	BS030237.	D
Level: (low/med)					Date	Received:	2/27/01	
		- deca	inted: (Y/N)	Ν	Date	Extracted:	3/1/01	
% Moisture: 100		1000				Analyzed:		
Concentrated Extract			(uL)			ion Factor:		
Injection Volume:	2.0	_(uL)			Dilat	ion r doton.		
GPC Cleanup: (Y/N)	N	_						
Number TIO- found	2		Ċ	Concentration (ug/L or ug		ug/L		
Number TICs found:			Compoun			Est. Conc.	Q	
	CAS Number	Unknow			23.08		J	
	2. 506-52-5	1-Hexad			23.50		J	
	3.							
	4.							
	5.							
	6. 7.							1
	8.							
	9.							4
	10.							-
	11.							1
	12. 13.							1
	14.							
	15.							4
	16.							4
	17.				+			
	18. 19.							
	20.]
	21.							-
	22.							-
	23.							-
	24.							1
	25. 26.]
	20.							
	28.							4
	29.							-
	30.						1	

FORM I SV-TIC

Γ

1B	
SEMIVOLATILE ORGANICS	ANALYSIS DATA SHEET

5

					B7
Lab Name:	CHEMTECH	١		IVI ENVIRONMENT	
Lab Code:	CHEM	Case No.: L3355	SAS No.:	LB12320	SDG No.: MW1
Matrix: (so		WATER		Lab Sample ID:	003
Sample wt		990.0 (g/mL) ML		Lab File ID:	BS030244.D
		(3,4,4)		Date Received:	2/27/01
Level: (lo		decanted: (Y/N):	N	Date Extracted:	3/1/01
	e: <u>100</u>			Date Analyzed:	
Concentra	ted Extract Vol			Dilution Factor:	
Injection V	'olume:	(uL)		Dilution Factor.	1.0
GPC Clear	nup: (Y/N)	N pH			
			Concentrat		Q
C	CAS No.	Compound	(ug/L or ug/l		
1	08-95-2	Phenol		10	UUU
	95-57-8	2-Chlorophenol		10	U
9	95-48-7	2-Methylphenol		10	U
e	65794-96-9	3+4-Methylphenols		10	U
	38-75-5	2-Nitrophenol		10	
	105-67-9	2,4-Dimethylphenol		10	U
	120-83-2	2,4-Dichlorophenol		10	U
15	59-50-7	4-Chloro-3-methylphenol		10	
1	88-06-2	2,4,6-Trichlorophenol		10	
5	95-95-4	2,4,5-Trichlorophenol		25	U
	51-28-5	2,4-Dinitrophenol		25	U
	100-02-7	4-Nitrophenol		25	U
	534-52-1	4,6-Dinitro-2-methylphenol		25	
	87-86-5	Pentachlorophenol		25	
T					
F					
12					
			_		

		1E SEMIVOLATILE ORGANI	3 CS ANALYS	SIS DATA SHEET	EPA SAMPLE NO
Lab Nam	e: CHEMTEC	н	Contract:		B6 Tal
Lab Code	e: CHEM	Case No.: L3355	SAS No.:	LB12320	SDG No.: MW1
Matrix: (soil/water)	WATER		Lab Sample ID:	O02
Sample v	wt/vol:	1000.0 (g/mL) ML		Lab File ID:	BS030238.D
	(low/med)			Date Received:	2/27/01
% Moistu	ure: 100	decanted: (Y/N)	: N	Date Extracted:	3/1/01
		- lume: 1000 (uL)		Date Analyzed:	3/3/01
Injection	Volume:	2.0 (uL)		Dilution Factor:	1.0
	anup: (Y/N)	N pH	:		
			Concentrat	ion Units:	
	CAS No.	Compound	(ug/L or ug/l	Kg)ug/L	Q
	108-95-2	Phenol		10	U
	95-57-8	2-Chlorophenol		10	U
	95-48-7	2-Methylphenol		10	U
	65794-96-9	3+4-Methylphenols		10	U
	88-75-5	2-Nitrophenol		10	U
	105-67-9	2,4-Dimethylphenol		10	U
	120-83-2	2,4-Dichlorophenol	_	10	U
	59-50-7	4-Chloro-3-methylphenol		10	U
	88-06-2	2,4,6-Trichlorophenol		10	U
	95-95-4	2,4,5-Trichlorophenol	-	25	U
	51-28-5	2,4-Dinitrophenol		25	U
	100-02-7	4-Nitrophenol		25	U
	534-52-1	4,6-Dinitro-2-methylphenol		25	U
	87-86-5	Pentachlorophenol		25	U
			+		
			+		11
					1
	L				

Form I SV-1

			16	3		EPA SAMPLE NO
		SEMI	VOLATILE ORGANI	CS ANALYS	IS DATA SHEET	B8
Lab Name: C	HEMTECH	1		Contract:	IVI ENVIRONMENT	
Lab Code: C	HEM	Ca	ase No.: L3355	SAS No.:	LB12320	SDG No.: MW1
Matrix: (soil/wa					Lab Sample ID:	004
Sample wt/vol:			(g/mL) <u>ML</u>		Lab File ID:	BS030239.D
		1000.0	(9///2)		Date Received:	2/27/01
Level: (low/n			- decanted: (Y/N)	• N		
% Moisture:					Date Analyzed:	
Concentrated I	Extract Vol	lume:	<u>1000</u> (uL)			
Injection Volun	ne:	2.0	_(uL)		Dilution Factor:	1.0
GPC Cleanup:	(Y/N)	N	pH			
				Concentrat		0
CAS	No.	Compound		(ug/L or ug/		Q
108-9	95-2	Phenol			10	U
95-5	7-8	2-Chloroph	nenol		10	U
95-48		2-Methylph	nenol		10	U
	4-96-9	3+4-Methy	Iphenols		10	U
88-7		2-Nitrophe			10	U
	67-9	2,4-Dimet			10	U
120-		2,4-Dichlo			10	U
59-5			-methylphenol		10	U
88-0			lorophenol		10	U
95-9			lorophenol		25	U
51-2		2,4-Dinitro			25	U
	02-7	4-Nitrophe			25	U
534-			-2-methylphenol		25	U
87-8		Pentachlo			25	U
						+
						+
						+

I

ALL AND

2

- 440

and the second s

1.61

Ę

Ì

Form I SV-1

Γ

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

I

and the second

Į

		TENTATIVELY IDENTIFIED COMPOUNDS						
Lab Name: CHEMTE	ECH			Contract:	IVI ENV	IRONMEN	TAL	
Lab Code: CHEM		Case No.:	L3355	SAS No.:	LB1232	0	SDG No.: M	W1
Matrix: (soil/water)	WATER				Lab S	ample ID:	004	
Sample wt/vol:	1000.0	(g/mL)	ML		L	ab File ID:	BS030239.D	
Level: (low/med)					Date	Received:	2/27/01	
% Moisture: 100		decar	nted: (Y/N)_	N	Date	Extracted:	3/1/01	
Concentrated Extract	Volume:	1000	(uL)		Date	Analyzed:	3/3/01	
Injection Volume:	2.0				Dilut	ion Factor:	1.0	
GPC Cleanup: (Y/N)	N		pH:_					
0.0000000000000000000000000000000000000		_	С	oncentration				
Number TICs found:	1	_		(ug/L or ug		ug/L		
ſ	CAS Number		Compound	Name		Est. Conc.		
	1. 112-92-5	1-Octade	ecanol		23.50	4.3	J	
	2.							
	3.							
	<u>4.</u> 5.				4			
	6.							
	7.							
	8.							
	9.							
	10.							
	11. 12.							
	13.							
	14.							
	15.							
	16.							
	17.							
	18. 19.							
	20.							
	21.							
	22.							
	23.							
	24.							
	25.							
	26. 27.							
	28.							
	29.							
	30.					1		

FORMI SV-TIC

j.

for the second sec

ļ

Į

Į

ļ

.

EPA SAMPLE NO.

	SEMIVO	DLATILE ORGANIC	S ANALYSI	S DATA SHEET	B9
Lab Name: CHEMTECI	н		Contract:	IVI ENVIRONMENT	
Lab Code: CHEM		e No.: L3355	SAS No.:	LB12320	SDG No.: MW1
	WATER			Lab Sample ID:	O05
	980.0 (9	g/mL) ML		Lab File ID:	BS030243.D
Level: (low/med)				Date Received:	2/27/01
% Moisture: 100		decanted: (Y/N):	N	Date Extracted:	3/1/01
Concentrated Extract Vol	lume:	1000 (uL)		Date Analyzed:	3/4/01
Injection Volume:	2.0 (1	L)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	pH:			
CAS No.	Compound		Concentrationug/L or ug/K		Q
108-95-2	Phenol			10	U
95-57-8	2-Chloropher	nol		10	<u>U</u> (
95-48-7	2-Methylpher			10	U
65794-96-9	3+4-Methylpl			10	UUU
88-75-5	2-Nitropheno			10	U
105-67-9	2,4-Dimethyl			10 10	U
120-83-2	2,4-Dichlorop			10	U
59-50-7	4-Chloro-3-m			10	U
88-06-2	2,4,6-Trichlo			26	U
95-95-4	2,4,5-Trichlo 2,4-Dinitroph			26	U
51-28-5 100-02-7	4-Nitrophend			26	U
534-52-1		-methylphenol		26	U
87-86-5	Pentachlorop			26	U
07-00-0	1 entaomoroj				
			+		
			1		
			1		
L			1		

Form I SV-1

A 16 1

I

-

.

EPA SAMPLE NO

			1B			EPA SAMPLE NU.
		SEMIVOLATI	LE ORGANIC	S ANALYS	IS DATA SHEET	B10
Lab Name: C	HEMTECH			Contract:	IVI ENVIRONMENT	
	HEM	Case No.:	L3355	SAS No.:	LB12424	SDG No.: MW1
Matrix: (soil/wa			_		Lab Sample ID:	006
		900.0 (g/mL)	ML		Lab File ID:	BS030722.D
		(3)			Date Received:	2/27/01
Level: (low/r	med) -					
% Moisture:	100	dec	anted: (Y/N):	<u> </u>		
Concentrated	Extract Volu	ume: 1000	(uL)		Date Analyzed:	
		2.0 (uL)			Dilution Factor:	1.0
GPC Cleanup		N	pН	:		
GPC Cleanup	. (1/14) .			Concentrat	ion Units:	
CAS	No	Compound		(ug/L or ug/	Kg)ug/L	Q
	95-2	Phenol	1	T	11	U
95-5		2-Chlorophenol			11	U
95-4		2-Methylphenol	1		11	U
	94-96-9	3+4-Methylphenols	3		11	U
88-7		2-Nitrophenol			11	U
	-67-9	2,4-Dimethylpheno	bl		11	U
	-83-2	2,4-Dichlorophenc			11	U
59-5		4-Chloro-3-methyl			11	U
88-0		2,4,6-Trichlorophe			11	U
	95-4	2,4,5-Trichlorophe			28	U
	28-5	2,4-Dinitrophenol			28	U
	-02-7	4-Nitrophenol			28	U
	-52-1	4,6-Dinitro-2-meth	ylphenol		28	U
	36-5	Pentachloropheno			28	U
L						

Form I SV-1

١

1

.

EPA SAMPLE NO.

		SEMI	VOLATILE ORGANIC		IS DATA SHEET	El / Co/un EE NO.
Lab Name	CHEMTEC	4		Contract:	IVI ENVIRONMENT	B11
			se No.: L3355	SAS No.:	LB12320	SDG No.: MW1
	oil/water)	WATER			Lab Sample ID:	008
Sample w			(g/mL) ML		Lab File ID:	BS030242.D
			(3)		Date Received:	2/27/01
Level: (decanted: (Y/N):	N		
	re: 100	· · · · · · · · · · · · · · · · · · ·			Date Analyzed:	
Concentra	ated Extract Vol				Dilution Factor:	
Injection V	Volume:	2.0	전에 사람이 있는 것이 같아요.		Dilution Factor.	
GPC Clea	anup: (Y/N)	N	- pH:			
	CAS No.	Compound		Concentrat ug/L or ug/l		Q
	108-95-2	Phenol			10	
	95-57-8	2-Chloroph	enol		10	U
	95-48-7	2-Methylph	enol		10	* U
	65794-96-9	3+4-Methy	Iphenols		10	UUU
	88-75-5	2-Nitrophe			10	
	105-67-9	2,4-Dimeth			10	U
	120-83-2	2,4-Dichlor			10 10	U
	59-50-7		-methylphenol		10	U
	88-06-2		lorophenol		25	U
	95-95-4		lorophenol		25	U
	51-28-5	2,4-Dinitro			25	U
	100-02-7	4-Nitrophe	-2-methylphenol		25	U
	534-52-1	Pentachlor			25	U
	87-86-5	Pendenioi	opneno			
						+
						+
	L					

Form I SV-1

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Ì

T

h

B

3.5

		TENTATIVELY IDENTIF	FIED COMP	OUNDS		B11	
Lab Name: CHEMTE	CH		Contract:	IVI ENV	IRONMEN	TAL	
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB1232	.0	SDG No.: MW1	
Matrix: (soil/water)	WATER			Lab S	Sample ID:	008	
Sample wt/vol:	1000.0	 (g/mL) ML		L	ab File ID:	BS030242.D	
Level: (low/med)				Date	Received:	2/27/01	
		<pre>- decanted: (Y/N) _</pre>	N	Date	Extracted:	3/1/01	
% Moisture: 100					Analyzed:		
Concentrated Extract		<u>1000</u> (uL)			ion Factor:		
Injection Volume:	2.0			Dilut	ion racior.	1.0	
GPC Cleanup: (Y/N)	<u>N</u>	-					
Number TICs found:	2	- C	oncentration (ug/L or ug		ug/L		
	CAS Number	Compound	I Name	RT	Est. Conc.	Q	
	1. 112-92-5	1-Octadecanol		23.50	5.5	J	
	2.	Unknown		25.19	2.6	J	
	3.						
	4.						
	5. 6.						
	7.						
	8.						
	9.						
	10.						
	11.						
	12. 13.						
	14.						
	15.						
	16.						
	17.						
	18. 19.						
	20.						
	21.						
	22.						
	23.						
	24.						
	25. 26.						
	27.						
	28.						
	29.					<u> </u>]	
	30.						

FORM I SV-TIC

3/90

EPA SAMPLE NO.

and the second s

1.2

EPA SAMPLE NO.

	SEMIVOLATILE ORGAN	NICS ANALYSIS DATA SHEET	B12
Lab Name: CHEMT	FCH	Contract: IVI ENVIRONMEN	
Lab Name: CHEM	Case No.: L3355	SAS No.: LB12320	SDG No.: MW1
Matrix: (soil/water)	WATER	Lab Sample ID:	009
Sample wt/vol:	990.0 (g/mL) ML	Lab File ID:	BS030236.D
Level: (low/med)	(g,)	Date Received:	2/27/01
% Moisture: 100	decanted: (Y/	N): N Date Extracted:	3/1/01
Concentrated Extract		Date Analyzed:	3/3/01
Injection Volume:	2.0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)		pH:	
GPC Cleanup. (1/1)		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg)	Q
108-95-2	Phenol	10	U
95-57-8	2-Chlorophenol	10	U
95-48-7	2-Methylphenol	10	U
65794-96-9		10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	25	U
51-28-5	2,4-Dinitrophenol	25	U
100-02-7	4-Nitrophenol	25	U
534-52-1	4,6-Dinitro-2-methylphenol	25	U
87-86-5	Pentachlorophenol	25	U

Form I SV-1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

2

un all

T.

3 1

ALL ALL

2440

140

1

2.

100

1F

	OLI	TENTATIVELY IDENT	IFIED COMP	POUNDS		B12
ab Name: CHEMT	ECH		Contract:	IVI ENV		TAL
ab Code: CHEM		Case No.: L3355	SAS No.:	LB1232	0	SDG No.: MW1
Matrix: (soil/water)	WATER			Lab S	ample ID:	O09
Sample wt/vol:		(g/mL) ML		L	ab File ID:	BS030236.D
Level: (low/med)				Date	Received:	2/27/01
		decanted: (Y/N)	N		Extracted:	
% Moisture: 100					Analyzed:	
Concentrated Extract		<u> 1000 (uL)</u>				
Injection Volume:	2.0	(uL)		Dilut	ion Factor:	1.0
GPC Cleanup: (Y/N)	N		:	• •		
Number TICs found:	(1		Concentratio (ug/L or u		ug/L	
	CAS Number	Compou	nd Name	RT	Est. Conc.	Q
		-9 Phosphonic acid, di	octadecyl	23.50	5.2	J
	2.		0 			
	<u>3.</u> 4.					
	5.					
	6.					
	7.					
	8.					
	9.					
	11.					
	12.					
	13.					
	14.					+
	15.					+
	16. 17.					
	18.					
	19.					
	20.					
	21.					
88	22.					
	23.					
	24. 25.					
	26.					
	27.					
	28.					
	29.					
	30.					

FORM I SV-TIC

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1F

		TENTATIVELY IDENTI	FIED COMP	POUNDS		B18
Lab Name: CHEMT	ECH		Contract:	IVI ENVIRC	NMEN	TAL
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB12320		SDG No.: MW1
Matrix: (soil/water)	WATER	_		Lab Sam	ple ID:	013
Sample wt/vol:	800.0	(g/mL) <u>ML</u>		Lab F	ile ID:	BS030248.D
Level: (low/med)				Date Rec	eived:	2/27/01
% Moisture: 100		decanted: (Y/N)	N	Date Extr	acted:	3/1/01
Concentrated Extract		1000 (uL)		Date Ana	alyzed:	3/4/01
Injection Volume:		(uL)		Dilution F	actor:	1.0
GPC Cleanup: (Y/N)		-				
Number TICs found:	8	-	Concentration	n Units: g/Kg) ug	a/L	
Number fics lound.		– Compound		RT Est.		Q
	CAS Number	and the second se	the second s	14.17	8.4	J
	1. 143-22-6	Ethanol, 2-[2-(2-buto:		14.17	10	J
	2. 50-79-3	Benzoic acid, 2,5-dic	nioro-	16.94	9.8	J
	3.	Unknown		19.38	7.8	J
	4. 57-10-3	Hexadecanoic acid		21.02	20	J
	5.	Unknown		22.94	160	J
	6.	Unknown		23.51	8.8	J
	7. 1454-84-8	1-Nonadecanol		23.51	6.6	J
	8. 17301-26-7	Undecane, 2,9-dimet	Inyi-	24.14	0.0	
	9.					
	10.					
	11.					
	12.					
	13.					
	14.					
	15.					
	16.					
	17. 18.					
	18.					
	20.			1		
	20.					
	22.					
	23.					
	23.			1		
	25.			1		
	26.					
	27.					
	28.			1		
	29.			1		
				1		
	30.					JJ

10

-

6.

FORM I SV-TIC

			1B			EPA SAMPLE NC).
		SEMI	VOLATILE ORGANIC	S ANALYS	SIS DATA SHEET	D42	
Lab Nam	e: CHEMTECI	н		Contract:	IVI ENVIRONMENT	B13 AL	
	e: CHEM		ase No.: L3355	SAS No.:	LB12320	SDG No.: MW1	
		WATER			Lab Sample ID:	O10	
	soil/water)					BS030245.D	
Sample	wt/vol:	400.0	(g/mL) <u>ML</u>				
Level:	(low/med)				Date Received:		
% Moist	ure: 100		decanted: (Y/N):	N	Date Extracted:	3/1/01	
	rated Extract Vo	lume:	1000 (uL)		Date Analyzed:	3/4/01	
Injection	Volume:	2.0	(uL)		Dilution Factor:	1.0	
	eanup: (Y/N)	N	- pH:				
				Concentrat	ion Units:		
	CAS No.	Compound	1 (ug/L or ug/	Kg)ug/L	Q	
	108-95-2	Phenol			25	U	
	95-57-8	2-Chloroph	nenol	11	25	U	
	95-48-7	2-Methylph		1	25	U	
	65794-96-9	3+4-Methy			25	U	
	88-75-5	2-Nitrophe			25	U	
	105-67-9	2,4-Dimet			25	U	
	120-83-2	2,4-Dichlo			25	U	
	59-50-7		B-methylphenol		25	U	
	88-06-2		nlorophenol		25	U	
	95-95-4		nlorophenol		63	U	
	51-28-5	2,4-Dinitro			63	U	
	100-02-7	4-Nitrophe			63	U	
	534-52-1		o-2-methylphenol		63	U	
	87-86-5	Pentachlo			63	U	
						+	
				1			

--

1

and Section of the

1F
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS

•

	T	ENTATIVELY IDENT	IFIED COMP	OUNDS		B13
Lab Name: CHEMTECH	4		Contract:	IVI ENV	IRONMEN	TAL
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB1232	0	SDG No.: MW1
Matrix: (soil/water)	- WATER			Lab S	ample ID:	D10
Sample wt/vol:	400.0	(g/mL) ML		L	ab File ID:	BS030245.D
Level: (low/med)				Date	Received:	2/27/01
% Moisture: 100		- decanted: (Y/N)	N	Date	Extracted:	3/1/01
Concentrated Extract Vol		1000 (uL)			Analyzed:	
	2.0				ion Factor:	
Injection Volume:						
GPC Cleanup: (Y/N)	N		Concentration	h Units		
Number TICs found:	1		(ug/L or ug		ug/L	1
	S Number	Compour	d Name	RT	Est. Conc.	Q
		Phosphonic acid, dic		23.49	14	J
	2.					
	3. 4.					
	4 5.					
	6.					
	7.					
	8 9.					
	9. 0.					
	1.					
	2.					
	<u>3.</u> 4.					
	<u>4.</u> 5.					
	6.					
	7.					
	8.					
	9.					
	.0. 21.					
	22.					
	23.					
	24.					
	25. 26.					
	20. 27.					
	28.					
	29.					
	30.			1	1	J

tates

81.12

ie-

FORMI SV-TIC

	1B	
S	EMIVOLATILE ORGANICS ANALYSIS DATA SH	

	SEMIVOLATILE ORGAN	NICS ANALIO	10 DATA OTILL	B14
_ab Name: CHEMTEC	СН		IVI ENVIRONMENT	
_ab Code: CHEM		SAS No.:	LB12320	SDG No.: MW1
Matrix: (soil/water)			Lab Sample ID:	011
Sample wt/vol:	300.0 (g/mL) ML		Lab File ID:	BS030246.D
Level: (low/med)			Date Received:	2/27/01
	decanted: (Y/I	N): N	Date Extracted:	3/1/01
% Moisture: 100			Date Analyzed:	3/4/01
	olume: <u>1000</u> (uL)		Dilution Factor:	
njection Volume:		oH:		
GPC Cleanup: (Y/N)	<u> </u>	Concentrat	ion Units:	
CAS No.	Compound	(ug/L or ug/l		Q
108-95-2	Phenol		33	U
95-57-8	2-Chlorophenol		33	U
95-48-7	2-Methylphenol		33	U
65794-96-9	3+4-Methylphenols		33	U
88-75-5	2-Nitrophenol		33	U
105-67-9	2,4-Dimethylphenol		33	U
120-83-2	2,4-Dichlorophenol		33	U
59-50-7	4-Chloro-3-methylphenol		33	U
88-06-2	2,4,6-Trichlorophenol		33	U
95-95-4	2,4,5-Trichlorophenol		83	UUU
51-28-5	2,4-Dinitrophenol		83	
100-02-7	4-Nitrophenol		83	
534-52-1	4,6-Dinitro-2-methylphenol		83	U
87-86-5	Pentachlorophenol		83	
		-		

.

- And

A.C.M

1. 1.8

1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1F

	Т	ENTATIVELY IDENTI	FIED COMP	OUNDS		B	4
Lab Name: CHEMTECH	н		Contract:	IVI ENV	IRONMEN	TAL	
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB1232	0	SDG No.: I	MW1
Matrix: (soil/water)	WATER			Lab S	ample ID:	011	
	300.0	(g/mL) ML		L	ab File ID:	BS030246.	D
Level: (low/med)				Date	Received:	2/27/01	
		decanted: (Y/N)	N			3/1/01	
% Moisture: 100							
Concentrated Extract Vol	lume:	(uL)			Analyzed:		
Injection Volume:	2.0	(uL)		Diluti	on Factor:	1.0	
GPC Cleanup: (Y/N)	Ν	pH:					
		C	oncentratior				
Number TICs found:	26	<u>.</u>	(ug/L or ug	g/Kg)	ug/L		
[CA	S Number	Compound	Name	RT	Est. Conc.	Q	
	1. 107-54-0	1-Hexyn-3-ol, 3,5-dim		5.19	84	J	
	2. 29006-02-8	Butanoic acid, 4-meth		6.04	8.5	J	
	3. 111-76-2	Ethanol, 2-butoxy-		6.24	8.4	J	
	4. 111-77-3	Ethanol, 2-(2-methoxyethoxy)		7.05	250	J	
	5.	Unknown		9.36	8.8	J	
	6. 151-19-9	3-Octanol, 3,6-dimethyl-		9.79	94	J	
	7.	Unknown		9.97		J	
	8. 60-12-8	Phenylethyl Alcohol		10.07		J	
	9. 111-32-0	1-Butanol, 4-methoxy	-	10.44		J	
1	0. 21368-68-3	Bicyclo[2.2.1]heptan-		10.56		J	
1	1. 54969-25-4	Benzo[b]cyclohepta[e	e][1,4]th	10.71		J	
1	2.	Unknown		10.79		J	
	3.	Linalyl propanoate		11.22		J	
	4. 98-52-2	Cyclohexanol, 4-(1,1-	-dimethy	11.51		J	
	5.	Unknown		11.67		J	
	6. 103-82-2	Benzeneacetic acid		12.07 12.25		J	
	7.	1-(2-Thienyl)-1,2-pro	panedio	12.25		J	
	18.	Unknown		12.40		J	
	19.	Unknown	thul 2	13.20		J	1
	20. 74367-33-2	Propanoic acid, 2-me	5ulyi-, Z	13.86		J	1
	21. 103-90-2	Acetaminophen Butane, 1,1'-[oxybis(2 1-eth	14.19		J	1
	22. 112-73-2	Hexadecanoic acid	2,1-011	19.37		J	1
	23. 57-10-3		envl est				1
			onyi cot				1
							1
						J	1
				1			1
							1
							1
	24. 583-04-0 25. 1454-84-8 26. 7683-64-9 27. 65-85-0 28. 29. 30.	Benzoic acid, 2-prop 1-Nonadecanol Squalene Benzoic acid	enyl est	20.92 23.49 25.62 10.94	18 7	J J J	

: :

-

...

1

1

.

£ ...

FORM I SV-TIC

EPA SAMPLE NO.

	SEMIVOLATILE ORGANIC	CS ANALYS	IS DATA SHEET	B18
Lab Name: CHEMTEC	Н	Contract:	IVI ENVIRONMEN	
Lab Code: CHEM	Case No.: L3355	SAS No.:	LB12320	SDG No.: MW1
	WATER		Lab Sample ID:	013
Sample wt/vol:	800.0 (g/mL) ML		Lab File ID:	BS030248.D
Level: (low/med)			Date Received:	2/27/01
% Moisture: 100	decanted: (Y/N):	N	Date Extracted:	3/1/01
	– blume:1000(uL)		Date Analyzed:	3/4/01
Injection Volume:	2.0 (uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)				
		Concentrat (ug/L or ug/l		Q
CAS No.	Phenol ,	T	13	U
108-95-2 95-57-8	2-Chlorophenol		13	U
95-48-7	2-Methylphenol		13	U
65794-96-9	3+4-Methylphenols	1	13	U
88-75-5	2-Nitrophenol		13	U
105-67-9	2,4-Dimethylphenol	13		U
120-83-2	2,4-Dichlorophenol		13	U
59-50-7	4-Chloro-3-methylphenol		13	U
88-06-2	2,4,6-Trichlorophenol		13	U
95-95-4	2,4,5-Trichlorophenol		31	U
51-28-5	2,4-Dinitrophenol		31	U
100-02-7	4-Nitrophenol		31	U
534-52-1	4,6-Dinitro-2-methylphenol		31	UUU
87-86-5	Pentachlorophenol		31	0
				+1

An open states of the second s

1

.....

[]

divis.

a labo

.

.

¥-1

ia.-

Form I SV-1

FB22/23 FB22/23 Lab Name: CHEMTECH Contract: IVI ENVIRONMENTAL Lab Code: CHEMTECH Contract: IVI ENVIRONMENTAL Lab Code: CHEM Case No:: L3355 SAS No: LB12320 SDG No:: MW1 Matrix: (solumeter) VATER Lab Sample ID. 016 Sample W/vol: 900.0 (g/mL) Lab Sample ID. 016 Sample W/vol: 900.0 (g/mL) Lab Sample ID. 016 Sample W/vol: 900.0 (g/mL) Lab Sample B2000035.D Level: (ow/med) Date Extracted: 3/1/01 Gencentrated Extract Volume: 2.0 (UL) Date Analyzed: 3/3/01 GPC Cleanup: (Y/N) N O Concentration Units: CAS No. Concentration Units: Concentration Units:		1B		EPA SAMPLE NO.
Lab Name: CHEMTECH Contract: IVI ENVIRONMENTAL Lab Code: CHEM Case No:: L3355 SAS No: LB12320 SDG No:: MW1 Matrix: (soll/water)		SEMIVOLATILE ORGANIC	S ANALYSIS DATA SHEET	5500/00
Lab Code: CHEM Case No.: L3355 SAS No: LB12320 SDG No:: MW1 Lab Code: CHEM Case No.: L3355 SAS No: LB12320 SDG No:: MW1 Matrix: (soil/water)				
Lab Code: CHEM Case No. [2303] One Not. Lab Sample ID. O16 Matrix: (soil/water) WATER Lab Sample ID. O16	Lab Name: CHEMTEC	СН		
Matrix (solu/water)	Lab Code: CHEM	Case No.: L3355		
Sample wüvol: 9000 (g/mL) mL Date Received: 227/01 Level: 100 decanted: (Y/N): N Date Received: 2/27/01 % Moisture: 100 (uL) Date Extracted: 3/1/01 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:	Matrix: (soil/water)	WATER		
Level: (low/med) Date Received: $2227/01$ % Moisture: 100 decanted: (Y/N): N Date Extracted: $31/101$ Concentrated Extract Volume: 1000 (uL) Date Analyzed: $33/01$ Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: N pH:	Sample wt/vol:	900.0 (g/mL) ML		
% Moisture: 100 decanted: (Y/N): N Date Extracted: 3/1/01 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 3/3/01 Injection Volume: 2.0 (uL) Dilution Factor: 10 GPC Cleanup: (Y/N) N pH:			-	
Concentrated Extract Volume: 1000_(uL) Date Analyzed: 3/3/01 Injection Volume: 2.0_(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N PH:		decanted: (Y/N):		
Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: N PH: Concentration Units: Concentration Units: CAS No. Compound (ug/L or ug/K9) ug/L Q 111 U 95-57-8 2-Chloroethyl)ether 11 U 95-57-8 2-Chlorobenzene 11 U 95-57-8 2-Chlorobenzene 11 U 95-57-8 2-Chlorobenzene 11 U 96-67-8 2-Chlorobenzene 11 U 95-57-8 2-Chlorobenzene 11 U 96-67-8 2-Chlorobenzene 11 U 96-67-7 1.4-Dichlorobenzene 11 U 96-77-9 9-Methylphenols 11 U 96-67-1 2-Poxtybis(1-Chloropropane) 11 U 96-77-2 1-Hexachloroethane 11 U 97-72-1 Hexachloroethane 11 U 98-95-3 Nitrobenzene 11 U 98-57-9 2.4-Dichlorobenzene 11 U 100			Date Analyzed:	3/3/01
Impletion rotation Impletion rotation PH: GPC Cleanup: (Y/N) N PH: Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q 108-95-2 Phenol 11 U 95-57-8 2-Chlorophenol 11 U 95-57-1 1.2-Dichlorobenzene 11 U 95-57-3 2-Chlorophenol 11 U 95-57-4 2-Chlorophenol 11 U 95-57-5 2-Chlorophenol 11 U 95-67-7 1.4-Dichlorobenzene 11 U 106-46-7 1.4-Dichlorobenzene 11 U 95-48-7 2-Methylphenol 11 U 106-61-1 2.2'-oxybis(1-Chloropropane) 11 U 65794-96-9 3+4-Methylphenols 11 U 6772-1 Hexachloroethane 11 U 7.72-1 Hexachloroethane 11 U 105-67-9 2.4-Dimehylphenol 11 U 105-67-9 2.4-Dinehylphenol 11 U 110-0			Dilution Factor:	1.0
Concentration Units: Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L Q 108-95-2 Phenol 11 U 95-57-8 2-Chlorophenol 11 U 95-57-8 2-Chlorophenol 11 U 95-50-1 1,2-Dichlorobenzene 11 U 95-50-1 1,2-Dichlorobenzene 11 U 95-48-7 2-Methylphenol 11 U 95-48-7 2-Methylphenol 11 U 95-48-7 2-Methylphenol 11 U 95-48-7 2-Methylphenol 11 U 06-67-1 4.2-Coxybis(1-Chloropropane) 11 U 07-72-1 Hexachloroethane 11 U 78-58-3 Nitrobenzene 11 U 78-55 2-Nitrophenol 11 U 105-67-9 2,4-Direntylphenol 11 U 110-120-3 Naphthalene 11 U 110-20-3 Naphthalene <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GPC Cleanup: (Y/N)			
CAS No. Compound (bg/L of dg/rs) $\underline{-22}$ 108-95-2 Phenol 11 U 111-44-4 bis(2-Chloroethyl)ether 11 U 95-57-8 2-Chlorophenol 11 U 95-50-1 1.2-Dichlorobenzene 11 U 95-60-1 1.2-Dichlorobenzene 11 U 106-46-7 1.4-Dichlorobenzene 11 U 95-48-7 2-Methylphenol 11 U 108-60-1 2.2'-oxybis(1-Chloropropane) 11 U 108-60-1 2.2'-oxybis(1-Chloropropane) 11 U 65794-96-9 3+4-Methylphenols 11 U 67-72-1 Hexachloroethane 11 U 78-95-3 Nitrobenzene 11 U 78-95-4 Nitrobenzene 11 U 105-67-9 2.4-Dimethylphenol 11 U 105-67-9 2.4-Dichlorophenel 11 U 105-67-9 2.4-Dichlorophenel 11 U 105-67-9 2.4-Dichlorophenel 11 U 1				0
108-95-2 Phenol 11 U 111-44-4 bis(2-Chlorophenol 11 U 95-57-8 2-Chlorophenol 11 U 95-50-1 1,2-Dichlorobenzene 11 U 541-73-1 1,3-Dichlorobenzene 11 U 95-48-7 2-Methylphenol 11 U 108-60-1 2,2'-oxybis(1-Chloropropane) 11 U 65794-96-9 3-4-Methylphenols 11 U 627-64-7 N-Nitroso-di-n-propylamine 11 U 98-95-3 Nitrobenzene 11 U 98-95-3 Nitrobenzene 11 U 105-67-9 2,4-Dichlorothoxylmethane 11 U 105-67-9 2,4-Dichlorothoxylmethane 11 U 105-67-9 2,4-Dichlorothoxylmethane 11 U 102-83-2 2,4-Dichlorothoxylmethane 11 U 102-83-1 1,2,4-Trichlorobenzene 11 U 91-20-3 Naphthalene 11 U <	CAS No.	Compound	(ug) = = = = 5 - 5/	
111.44.4 bis(2-Chlorophenol 11 U 95-57-8 2-Chlorophenol 11 U 95-50-1 1.2-Dichlorobenzene 11 U 106-46-7 1.4-Dichlorobenzene 11 U 106-46-7 1.4-Dichlorobenzene 11 U 106-46-7 1.4-Dichlorobenzene 11 U 106-46-7 1.4-Dichlorobenzene 11 U 106-61-7 2.2'-oxybis(1-Chloropropane) 11 U 65794-96-9 3+4-Methylphenols 11 U 621-64-7 N-Nitroso-di-n-propylamine 11 U 98-95-3 Nitrobenzene 11 U 98-95-4 Isophorone 11 U 88-75-5 2.Nitrophenol 11 U 1105-67-9 2.4-Dichlorophenol 11 U 1105-67-9 2.4-Dichlorobenzene 11 U 120-83-2 2.4-Dichlorophenol 11 U 120-83-2 2.4-Dichlorobenzene 11 U 120-83-2 2.4-Dichlorobenzene 11 U <	108-95-2	Phenol		
95-57-8 2-Chlorophenol 1 U $95-50-1$ 1,2-Dichlorobenzene 11 U $54-73-1$ 1,3-Dichlorobenzene 11 U $106-46-7$ 1,4-Dichlorobenzene 11 U $95-48-7$ 2-Methylphenol 11 U $95-48-7$ 2-Methylphenol 11 U $65794-96-9$ 3-44-Methylphenols 11 U $65794-96-9$ 3-44-Methylphenols 11 U $67-72-1$ Hexachloroethane 11 U $98-95-3$ Nitrobenzene 11 U $105-67-9$ 2.4-Dimethylphenol 11 U $102-82-1$ 2.4-Dichlorophenol 11 U $102-82-1$ 1.2.4-Trichlorobenzene 11 U $91-20-3$ Naphthalene 11 U $91-50-7$		bis(2-Chloroethyl)ether		
95-50-1 1,2-Dichlorobenzene 11 U 541-73-1 1,3-Dichlorobenzene 11 U 106-46-7 1,4-Dichlorobenzene 11 U 95-648-7 2-Methylphenol 11 U 108-60-1 2,2'-oxybis(1-Chloropropane) 11 U 65794-96-9 3+4-Methylphenols 11 U 6774-7 Hexachloroethane 11 U 98-95-3 Nitrobenzene 11 U 98-95-3 Nitrobenzene 11 U 98-95-3 Nitrobenzene 11 U 105-67-9 2,4-Dimethylphenol 11 U 105-67-9 2,4-Dichlorophenol 11 U 110-91-1 bis(2-Chloroethoxy)methane 11 U 110-91-2 Sa-2 2,4-Dichlorophenol 11 U 120-83-2 2,4-Dichlorophenol 11 U 120-83-2 12,4-Trichlorobenzene 11 U 120-83-2 12,4-Trichlorobenzene 11 9	95-57-8	2-Chlorophenol		
541-73-1 1.3-Dichlorobenzene 11 U $106-46-7$ 1.4-Dichlorobenzene 11 U $95-48-7$ 2-Methylphenol 11 U $108-60-1$ 2.2'oxybis(1-Chloropropane) 11 U $108-60-1$ 2.2'oxybis(1-Chloropropane) 11 U $65794.96-9$ 3+4-Methylphenols 11 U $621-64-7$ N-Nitroso-di-n-propylamine 11 U $67.72-1$ Hexachloroethane 11 U $98-95-3$ Nitrobenzene 11 U $78-59-1$ Isophorone 11 U $78-57-5$ 2-Nitrophenol 11 U $105-67-9$ 2.4-Dichlorophenol 11 U $110-647-8$ 2.4-Dichlorophenol 11 U $120-82-1$ 1.2.4-Trichlorobenzene 11 U $91-20-3$ Naphthalene 11 U $91-20-3$ Naphthalene 11 U $92-50-7$ 4-Chloro-3-methylphenol 11		1,2-Dichlorobenzene		
106-46-71,4-Dichlorobenzene11U $95-48-7$ 2-Methylphenol11U $108-60-1$ 2,2'-oxybis(1-Chloropropane)11U $65794-96-9$ 3+4-Methylphenols11U $621-64-7$ N-Nitroso-di-n-propylamine11U $621-64-7$ N-Nitroso-di-n-propylamine11U $67-72-1$ Hexachloroethane11U $98-95-3$ Nitrobenzene11U $78-59-1$ Isophorone11U $105-67-9$ 2,4-Dimethylphenol11U $105-67-9$ 2,4-Dichlorophenol11U $110-91-1$ bis(2-Chloroethoxy)methane11U $120-83-2$ 2,4-Dichlorophenol11U $91-90-3$ Naphthalene11U $120-83-3$ Hexachlorobutadiene11U $120-83-3$ Hexachlorobutadiene11U $95-50-7$ 4-Chloro-3-methylphenol11U $95-95-7$ 4-Chloro-3-methylphenol11U $95-95-4$ 2,4,5-Trichlorophenol28U $15-8-7$ 2-Chloronaphthalene<		1,3-Dichlorobenzene		
$95-48-7$ $2-Methylphenol$ 11 U $108-60-1$ $2,2^-$ oxybis(1-Chloropropane) 11 U $65794-96-9$ $3+4-Methylphenols$ 11 U $67794-96-9$ $3+4-Methylphenols$ 11 U $67794-96-9$ $3+4-Methylphenols$ 11 U $67794-96-9$ $3+4-Methylphenols$ 11 U $6772-1$ Hexachloroethane 11 U $98-95-3$ Nitrobenzene 11 U $88-75-5$ $2-Nitrophenol$ 11 U $105-67-9$ $2,4-Dimethylphenol$ 11 U $11-91-1$ bis(2-Chloroethoxy)methane 11 U $120-83-2$ $2,4-Dinchylphenol$ 11 U $120-83-2$ $2,4-Dichlorophenol$ 11 U $106-47-8$ $4-Chloroaniline11U91-20-3Naphthalene11U91-67-62-Methylphenol11U91-57-62-Methylphenol11U91-57-62-Methylphenol11U91-57-62-Methylphenol11U95-95-42,4,5-Trichlorophenol28U91-58-72-Chloronaphthalene11U88-74-42-Nitroaniline28U131-11-3Dimethylphthalate11U136-62-22,6-Dinitrotoluene11U99-09-23-Nitroaniline11U$		1,4-Dichlorobenzene		
108-60-12,2'-oxybis(1-Chloropropane)11U65794-96-9 $3+4$ -Metylphenols11U621-64-7N-Nitroso-di-n-propylamine11U67-72-1Hexachloroethane11U98-95-3Nitrobenzene11U78-59-1Isophorone11U88-75-52-Nitrophenol11U105-67-92,4-Dimethylphenol11U119-1bis(2-Chloroethoxy)methane11U120-83-22,4-Dichlorophenol11U120-82-11,2,4-Trichlorobenzene11U106-47-84-Chloroaniline11U91-20-3Naphthalene11U91-57-62-Methylphenol11U91-57-62-Methylphenol11U91-57-62-Albirobutadiene11U91-57-62-Methylnaphthalene11U91-57-62-Methylnaphthalene11U91-58-72-Chloroaphenol28U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U91-58-72-Chloroaphthalene11U </td <td></td> <td>2-Methylphenol</td> <td></td> <td></td>		2-Methylphenol		
65794.96-9 $3+4$ -Methylphenols11U $621-64-7$ N-Nitroso-di-n-propylamine11U $67.72-1$ Hexachloroethane11U $98.95-3$ Nitrobenzene11U $78.59-1$ Isophorone11U $78.59-1$ Isophorone11U $88.75-5$ 2-Nitrophenol11U $105-67-9$ $2,4$ -Dimethylphenol11U $11-91-1$ bis(2-Chloroethoxy)methane11U $120.83-2$ $2,4$ -Dichlorophenol11U $120-83-2$ $2,4$ -Dichlorobenzene11U $91-20-3$ Naphthalene11U $106-47-8$ 4 -Chloroaniline11U $91-20-3$ Naphthalene11U $91-20-3$ Aphthalene11U $95-95-7$ 4 -Chloro-3-methylphenol11U $95-95-7$ 2 -Methylnaphthalene11U $95-95-4$ $2,4,6$ -Trichlorophenol11U $95-95-4$ $2,4,6$ -Trichlorophenol11U $95-95-4$ $2,4,6$ -Trichlorophenol28U $91-58-7$ 2 -Chloronaphthalene11U $88-74-4$ 2 -Nitroaniline28U $131-11-3$ Dimethylphthalate11U $208-96-8$ Acenaphthylene11U $90-92$ 3 -Nitroaniline28U		2,2'-oxybis(1-Chloropropane)		
621-64-7N-Nitroso-di-n-propylamine11U $67-72-1$ Hexachloroethane11U $98-95-3$ Nitrobenzene11U $78-59-1$ Isophorone11U $88-75-5$ 2 -Nitrophenol11U $105-67-9$ $2,4$ -Dimethylphenol11U $111-91-1$ bis(2-Chloroethoxy)methane11U $1120-83-2$ $2,4$ -Dichlorophenol11U $120-83-2$ $2,4$ -Dichlorobenzene11U $120-83-1$ $1,2,4$ -Trichlorobenzene11U $120-83-2$ $2,4$ -Chloro-alline11U $91-50-3$ Naphthalene11U $91-50-3$ Hexachlorobutadiene11U $91-57-6$ 2 -Methylnaphthalene11U $91-57-6$ 2 -Methylnaphthalene11U $95-95-4$ $2,4,5$ -Trichlorophenol28U $91-58-7$ 2 -Chloronaphthalene11U $88-74-4$ 2 -Nitroaniline28U $131-11-3$ Dimethylphthalate11U $208-96-8$ Acenaphthylene11U $99-09-2$ 3 -Nitroaniline28U		3+4-Methylphenols		
67-72-1Hexachloroethane11U98-95-3Nitrobenzene11U78-59-1Isophorone11U88-75-52-Nitrophenol11U105-67-92,4-Dimethylphenol11U111-91-1bis(2-Chloroethoxy)methane11U120-83-22,4-Dichlorophenol11U120-83-22,4-Dichlorophenol11U120-82-11,2,4-Trichlorobenzene11U91-20-3Naphthalene11U106-47-84-Chloroaniline11U87-68-3Hexachlorobutadiene11U91-57-62-Methylnaphthalene11U91-57-62.4,6-Trichlorophenol11U91-57-62-Methylnaphthalene11U91-57-62.4,6-Trichlorophenol11U88-06-22,4,6-Trichlorophenol28U91-58-72-Chloronaphthalene11U91-58-72-Chloronaphthalene11U91-58-72-Chloronaphthalene11U131-11-3Dimethylphthalate11U208-96-8Acenaphthylene11U066-20-22,6-Dinitrotoluene28U99-09-23-Nitroaniline28U		N-Nitroso-di-n-propylamine		
98-95-3 Nitrobenzene 11 U 78-59-1 Isophorone 11 U 88-75-5 2-Nitrophenol 11 U 105-67-9 2,4-Dimethylphenol 11 U 111-91-1 bis(2-Chloroethoxy)methane 11 U 120-83-2 2,4-Dichlorophenol 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 91-20-3 Naphthalene 11 U 91-20-3 Naphthalene 11 U 106-47-8 4-Chloroaniline 11 U 87-68-3 Hexachlorobutadiene 11 U 91-50-7 4-Chloro-3-methylphenol 11 U 91-57-6 2-Methylnaphthalene 11 U 88-06-2 2,4,6-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 91-58-7 2-Chloronaphthalene 11 U 131-11-3 Dimethylphthalate 11 U 208-96-		Hexachloroethane		
78-59-1Isophorone11U $88-75-5$ 2-Nitrophenol11U $105-67-9$ 2,4-Dimethylphenol11U $111-91-1$ bis(2-Chloroethoxy)methane11U $120-83-2$ 2,4-Dichlorophenol11U $120-83-2$ 2,4-Dichlorophenol11U $120-82-1$ 1,2,4-Trichlorobenzene11U $91-20-3$ Naphthalene11U $106-47-8$ 4-Chloroaniline11U $87-68-3$ Hexachlorobutadiene11U $95-50-7$ 4-Chloro-3-methylphenol11U $91-57-6$ 2-Methylnaphthalene11U $91-57-6$ 2-Methylnaphthalene11U $88-06-2$ 2,4,6-Trichlorophenol11U $95-95-4$ 2,4,5-Trichlorophenol28U $91-58-7$ 2-Chloronaphthalene11U $91-58-7$ 2-Chloronaphthalene11U $88-74-4$ 2-Nitroaniline28U $131-11-3$ Dimethylphthalate11U $208-96-8$ Acenaphthylene11U $606-20-2$ 2,6-Dinitrotoluene28U $99-09-2$ 3-Nitroaniline28U	98-95-3	Nitrobenzene		
88-75-5 2-Nitrophenol 11 U 105-67-9 2,4-Dimethylphenol 11 U 111-91-1 bis(2-Chloroethoxy)methane 11 U 120-83-2 2,4-Dichlorophenol 11 U 120-83-2 2,4-Dichlorophenol 11 U 120-82-1 1,2,4-Trichlorobenzene 11 U 91-20-3 Naphthalene 11 U 106-47-8 4-Chloroaniline 11 U 87-68-3 Hexachlorobutadiene 11 U 91-57-6 2-Methylphenol 11 U 91-57-6 2-Methylnaphthalene 11 U 91-57-6 2-Methylnaphthalene 11 U 91-58-7 4-Chloro-3-methylphenol 11 U 95-95-4 2,4,6-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U		Isophorone		
105-67-9 $2,4-Dimethylphenol$ 11 U $111-91-1$ bis(2-Chloroethoxy)methane 11 U $120-83-2$ $2,4-Dichlorophenol$ 11 U $120-82-1$ $1,2,4-Trichlorobenzene$ 11 U $91-20-3$ Naphthalene 11 U $106-47-8$ $4-Chloroaniline$ 11 U $87-68-3$ Hexachlorobutadiene 11 U $59-50-7$ $4-Chloro-3-methylphenol$ 11 U $91-57-6$ $2-Methylnaphthalene$ 11 U $88-06-2$ $2,4,6-Trichlorophenol$ 28 U $91-58-7$ $2-Chloronaphthalene$ 11 U $91-58-7$ $2-Chloronaphthalene11U88-74-42-Nitroaniline28U131-11-3Dimethylphthalate11U208-96-8Acenaphthylene11U606-20-22,6-Dinitrotoluene28U99-09-23-Nitroaniline28U$	88-75-5	2-Nitrophenol		
111-91-1bis(2-Chloroethoxy)methane11U120-83-22,4-Dichlorophenol11U120-83-21,2,4-Trichlorobenzene11U91-20-3Naphthalene11U91-20-3Naphthalene11U106-47-84-Chloroaniline11U106-47-84-Chloroaniline11U95-50-74-Chloro-3-methylphenol11U91-57-62-Methylnaphthalene11U91-57-62-Methylnaphthalene11U95-95-42,4,6-Trichlorophenol11U95-95-42,4,5-Trichlorophenol28U91-58-72-Chloronaphthalene11U88-74-42-Nitroaniline28U131-11-3Dimethylphthalate11U208-96-8Acenaphthylene11U606-20-22,6-Dinitrotoluene11U99-09-23-Nitroaniline28U				
120-83-2 $2,4-Dichlorophenol11U120-82-11,2,4-Trichlorobenzene11U91-20-3Naphthalene11U106-47-84-Chloroaniline11U106-47-84-Chloroaniline11U87-68-3Hexachlorobutadiene11U59-50-74-Chloro-3-methylphenol11U91-57-62-Methylnaphthalene11U77-47-4Hexachlorocyclopentadiene11U88-06-22,4,6-Trichlorophenol11U95-95-42,4,5-Trichlorophenol28U91-58-72-Chloronaphthalene11U88-74-42-Nitroaniline28U131-11-3Dimethylphthalate11U208-96-8Acenaphthylene11U606-20-22,6-Dinitrotoluene28U99-09-23-Nitroaniline28U$	111-91-1			
120-82-1 $1,2,4$ -Trichlorobenzene 11 U $91-20-3$ Naphthalene 11 U $106-47-8$ 4 -Chloroaniline 11 U $87-68-3$ Hexachlorobutadiene 11 U $59-50-7$ 4 -Chloro-3-methylphenol 11 U $91-57-6$ 2 -Methylnaphthalene 11 U $91-57-6$ 2 -Methylnaphthalene 11 U $8-06-2$ $2,4,6$ -Trichlorophenol 11 U $95-95-4$ $2,4,5$ -Trichlorophenol 28 U $91-58-7$ 2 -Chloronaphthalene 11 U $88-74-4$ 2 -Nitroaniline 28 U $131-11-3$ Dimethylphthalate 11 U $208-96-8$ Acenaphthylene 11 U $606-20-2$ $2,6$ -Dinitrotoluene 28 U $99-09-2$ 3 -Nitroaniline 28 U	120-83-2	2,4-Dichlorophenol		
91-20-3 Naphthalene 11 U 106-47-8 4-Chloroaniline 11 U 87-68-3 Hexachlorobutadiene 11 U 59-50-7 4-Chloro-3-methylphenol 11 U 91-27-6 2-Methylnaphthalene 11 U 91-57-6 2-Methylnaphthalene 11 U 77-47-4 Hexachlorocyclopentadiene 11 U 88-06-2 2,4,6-Trichlorophenol 11 U 95-95-4 2,4,5-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 11 U 99-09-2 3-Nitroaniline 28 U	120-82-1	1,2,4-Trichlorobenzene		
106-47-8 4-Chloroaniline 11 U 87-68-3 Hexachlorobutadiene 11 U 59-50-7 4-Chloro-3-methylphenol 11 U 91-57-6 2-Methylnaphthalene 11 U 77-47-4 Hexachlorocyclopentadiene 11 U 88-06-2 2,4,6-Trichlorophenol 11 U 95-95-4 2,4,5-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 28 U	91-20-3			
87-68-3Hexachlorobutadiene11U $59-50-7$ $4-Chloro-3-methylphenol$ 11U $91-57-6$ $2-Methylnaphthalene$ 11U $77-47-4$ Hexachlorocyclopentadiene11U $88-06-2$ $2,4,6-Trichlorophenol$ 11U $95-95-4$ $2,4,5-Trichlorophenol$ 28U $91-58-7$ $2-Chloronaphthalene$ 11U $88-74-4$ $2-Nitroaniline$ 28U $131-11-3$ Dimethylphthalate11U $208-96-8$ Acenaphthylene11U $606-20-2$ $2,6-Dinitrotoluene$ 28U $99-09-2$ $3-Nitroaniline$ 28U				
59-50-7 4-Chloro-3-methylphenol 1 U 91-57-6 2-Methylnaphthalene 11 U 77-47-4 Hexachlorocyclopentadiene 11 U 88-06-2 2,4,6-Trichlorophenol 11 U 95-95-4 2,4,5-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 11 U	87-68-3			
91-57-6 2-Methylnaphthalene 11 U 77-47-4 Hexachlorocyclopentadiene 11 U 88-06-2 2,4,6-Trichlorophenol 11 U 95-95-4 2,4,5-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 11 U	59-50-7			
77-47-4Hexachlorocyclopentadlene11U $88-06-2$ $2,4,6-Trichlorophenol$ 11U $95-95-4$ $2,4,5-Trichlorophenol$ 28U $91-58-7$ $2-Chloronaphthalene$ 11U $88-74-4$ $2-Nitroaniline$ 28U $131-11-3$ Dimethylphthalate11U $208-96-8$ Acenaphthylene11U $606-20-2$ $2,6-Dinitrotoluene$ 28U $99-09-2$ $3-Nitroaniline$ 11U	91-57-6	2-Methylnaphthalene		
88-06-2 2,4,6-Trichlorophenol 28 U 95-95-4 2,4,5-Trichlorophenol 28 U 91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 11 U	77-47-4	Hexachlorocyclopentadiene		
95-95-4 2,4,5-Trichlorophenol Lo 91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 11 U	88-06-2	2,4,6-Trichlorophenol		
91-58-7 2-Chloronaphthalene 11 U 88-74-4 2-Nitroaniline 28 U 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 11 U	95-95-4	2,4,5-Trichlorophenol		
88-74-4 2-Nitroaniline 20 131-11-3 Dimethylphthalate 11 U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 28 U 99-09-2 3-Nitroaniline 11 U	91-58-7	2-Chloronaphthalene		
131-11-3 Dimethylphthalate U 208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 11 U 99-09-2 3-Nitroaniline 11 U	88-74-4			
208-96-8 Acenaphthylene 11 U 606-20-2 2,6-Dinitrotoluene 11 U 99-09-2 3-Nitroaniline 11 U	131-11-3			
606-20-2 2,6-Dinitrotoluene 11 U 99-09-2 3-Nitroaniline 11 U				
99-09-2 3-Nitroaniline 11 U				
83-32-9 Acenaphthene				
	83-32-9	Acenaphthene		

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET IDENTIFIED COMPOUNDS

1F

		TENTATIVELY IDENTI		OUNDS		FB22/23
Lab Name: CHEMTEC	н		Contract:	IVI ENV	IRONMEN	TAL
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB1232	0	SDG No.: MW1
Matrix: (soil/water)						016
Sample wt/vol:		 (g/mL)		L	ab File ID:	BS030235.D
Level: (low/med)		_() /		Date	Received:	2/27/01
		- decanted: (Y/N)	N		Extracted:	
% Moisture: 100	<u> </u>				Analyzed:	
Concentrated Extract Vo						
Injection Volume:	2.0			Diluti	ion Factor:	1.0
GPC Cleanup: (Y/N)	N	_				
Number TICs found: (2		Concentratio (ug/L or u		ug/L	
ICA	AS Number	Compoun	d Name	RT	Est. Conc.	Q
	1. 629-96-9	1-Eicosanol		23.50		J
	2.	Unknown		25.82	2.3	J
	3.					
	<u>4.</u> 5.					
	6.					
	7.					
	8.					
	<u>9.</u> 10.					
	10. 11.	-				
	12.					
	13.			-		
	14.					
	15. 16.					
	17.					
	18.					
	19.					
	20					
	22.					
	23.					
	24.					
	25.			-		
	<u>26.</u> 27.					
F	28.					
F	29.					
	30.				1	

12 .

Service Service

and the second second

FORM I SV-TIC

		1C			EPA SAMPLE NO.
		SEMIVOLATILE ORGANIC	S ANALYS	IS DATA SHEET	5500100
Lab Name	CHEMTECH				FB22/23 AL
			SAS No.:	LB12320	SDG No.: MW1
Lab Code	CHEM	Case No.: L3355	0/10/110	Lab Sample ID: (
Matrix: (s	oil/water)	WATER		-	
Sample w	t/vol:	900.0 (g/mL) ML		Lab File ID: I	
Level: (low/med)			Date Received:	
	re: 100	decanted: (Y/N):	N	Date Extracted:	
	ated Extract Vol	lume: 1000 (uL)		Date Analyzed:	
Injection '		2.0 (uL)		Dilution Factor:	1.0
	anup: (Y/N)	N pH:			
			Concentrat		0
	CAS No.	Compound	ug/L or ug/l		Q
	51-28-5	2.4-Dinitrophenol		28	U
	100-02-7	4-Nitrophenol		28	U
	132-64-9	Dibenzofuran		11	U
	121-14-2	2,4-Dinitrotoluene		11	U
	84-66-2	Diethylphthalate		11	U
	7005-72-3	4-Chlorophenyl-phenylether		11	U
	86-73-7	Fluorene		11	U
	100-01-6	4-Nitroaniline		28	U
	534-52-1	4,6-Dinitro-2-methylphenol		28	U
	86-30-6	N-Nitrosodiphenylamine		11	U
	101-55-3	4-Bromophenyl-phenylether		11	U
	118-74-1	Hexachlorobenzene		11	U
	87-86-5	Pentachlorophenol		28	U
	85-01-8	Phenanthrene	11		U
	120-12-7	Anthracene		11	U
	86-74-8	Carbazole	11		U
	84-74-2	Di-n-butylphthalate	11		UUU
	206-44-0	Fluoranthene	11		
	129-00-0	Pyrene	11		UUU
	85-68-7	Butylbenzylphthalate	11		U
	91-94-1	3,3'-Dichlorobenzidine		11	
	56-55-3	Benzo(a)anthracene	11		U
	218-01-9	Chrysene	11		
	117-81-7	bis(2-Ethylhexyl)phthalate	11		U
	117-84-0	Di-n-octyl phthalate		11	U
	205-99-2	Benzo(b)fluoranthene		11	U
	207-08-9	Benzo(k)fluoranthene		11	U
	50-32-8	Benzo(a)pyrene		11	U
	193-39-5	Indeno(1,2,3-cd)pyrene		11	U
	53-70-3	Dibenzo(a,h)anthracene		11	U
	191-24-2	Benzo(g,h,i)perylene		11	
	Laure and the second se				

(1) - Cannot be separated from Diphenylamine

AR LINE

15.12

Form I SV-2

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TP35 Lab Name CINTRAL Lab Name COntract: IVI ENV/RONMENTAL Lab Code: CHEM Case No:: 13355 SAS No:: LB12423 SDG No:: MW1 Matrix: (soll/water) SOL Lab Sample ID 017 Sample wtivol: 30.0 (g/m) Lab Sample ID 017 Sample wtivol: 30.0 (g/m) Lab Sample ID 017 Sample wtivol: 30.0 (g/m) Date Extracted: 2/27/01 % Moisture: 2.0 (ul) Date Extracted: 3/1/01 Concentration Units: Concentration Units: CAS No. Compound (g/f/g U 111-44-4 Dist(2-Chioroethyl)lether 420 U 111-44-4 Dist(2-Chioroethyl)lether 420 U 111-44-4 Dist(2-Chioroethyl)lether <		18		EPA SAMPLE NU.
Lab Name CHEMTECH Contract IVI ENVIRONMENTAL Lab Code: CHEM Case No:: L3355 SAS No:: LB12423 SDG No:: MW1 Matrix: (soil/water) SOIL Lab Sample ID: O17 Sample wtivol: 30.0 (g/mL) G Lab Sample ID: D17 Sample wtivol: 30.0 (g/mL) G Lab Sample ID: D17 Sample wtivol: 30.0 (g/mL) Lab Sample ID: D17 Somple wtivol: 30.0 (g/mL) Date Received: 2/27/01 % Moisture: 20 decanted: (Y/N): N Date Extracted: 3/1/01 Concentrated Extract Volume: 500 (uL) Date Analyzed: 3/8/01 Injection Volume: 2.0 (uL) Date Analyzed: 3/8/01 111:44-4 bis(2-Chioroethy)lether 420 U U 95-57-8 2-Chiorophenol 420 U U 95-67-1 1.2-Dichlorobenzene 420 U U <tr< td=""><td></td><td>SEMIVOLATILE ORGANIC</td><td>CS ANALYSIS DATA SHEET</td><td>TP35'</td></tr<>		SEMIVOLATILE ORGANIC	CS ANALYSIS DATA SHEET	TP35'
Matrix: (soil/water) SOIL Lab Sample ID O17 Sample wt/vol: 30.0 (g/mL) G Lab File ID: BS030726 D Levei: (low/med) LOW Date Received: 2/27/01 % Moisture: 20 decanted: (Y/N): N Date Extracted: 3/1/01 Concentrated Extract Volume: 500 (uL) Date Analyzed: 3/8/01 Injection Volume: 2.0 (uL) Date Analyzed: 3/8/01 GPC Cleanup: (Y/N) Y pH:	Lab Name: CHEMT	ECH	Contract: IVI ENVIRONMEN	
Math Construction Sample wt/vol: 30.0 (g/mL) G Lab File ID: BS030726 D Level: (lowmed) LOW Date Received: 2/27/01 % Moisture: 20 decanted: (Y/N): N Date Extracted: 3/1/01 Concentrated Extract Volume:	Lab Code: CHEM	Case No.: L3355	SAS No.: LB12423	SDG No.: MW1
Sampe Wide	Matrix: (soil/water)	SOIL	Lab Sample ID:	017
Level. (unined)	Sample wt/vol:	30.0 (g/mL) <u>G</u>	Lab File ID:	BS030726.D
No. Module:	Level: (low/med)	LOW	Date Received	2/27/01
Dilution Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) Y pH:	% Moisture: 20	decanted: (Y/N):		
Implementation volume Implementation GPC Cleanup: (Y/N) Y pH: Concentration Units: Concentration Units: CAS No. Compound (ug/L or ug/Kg) Q 108-95-2 Phenol 420 U 111-44-4 bis(2-Chloroethyl)ether 420 U 95-57-8 2-Chlorophenol 420 U 95-50-1 1,2-Dichlorobenzene 420 U 106-46-7 1,4-Dichlorobenzene 420 U 106-66-7 1,4-Dichlorobenzene 420 U 108-60-1 2,2'-oxybis(1-Chloropropane) 420 U 108-60-1 2,2'-oxybis(1-Chloropropane) 420 U 108-61 32.0' U 106:794-96-9 34-4.Methylphenols 420 U 108-67-9 34-4.Methylphenol 420 U 108:95-3 Nitrobenzene 420 U 108-67-9 2,4-Dimethylphenol 420 U 105:67-9 2,4-Dimethylphenol 420 U 105-87-8 2.Nitrobenzene 420 U 102:0-83-2 2,4-Dichlorophenol <td>Concentrated Extract</td> <td>Volume: <u>500</u> (uL)</td> <td></td> <td></td>	Concentrated Extract	Volume: <u>500</u> (uL)		
Concentration Units: Concentration Units: CAS No. Compound $(ug/L \text{ or } ug/Kg)$ ug/Kg Q 108-95-2 Phenol 420 U 95-57-8 2-Chlorophenol 420 U 95-57-1 1,2-Dichlorobenzene 420 U 95-50-1 1,2-Dichlorobenzene 420 U 106-46-7 1,4-Dichlorobenzene 420 U 108-60-1 2,2'-oxybis(1-Chloropropane) 420 U 65794-96-9 3+4-Methylphenols 420 U 621-64-7 N-Nitroso-din-propylamine 420 U 78-59-3 Nitrobenzene 420 U 88-75-5 2-Nitrophenol 420 U 105-67-9 2,4-Dimethylphenol 420 U 105-87-9 2,4-Dimethylphenol 420 U 120-83-2 2,4-Dichlorophenol 420 U 120-83-2 2,4-Dichlorobenzene 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 <t< td=""><td>Injection Volume:</td><td>(uL)</td><td>Dilution Factor</td><td>:1.0</td></t<>	Injection Volume:	(uL)	Dilution Factor	:1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GPC Cleanup: (Y/N)	Y pH:		
CAS No. Composition ($a_{2} = a_{2} = b_{1}$) 108-95-2 Phenol 420 U 111-44-4 bis(2-Chloroethyl)ether 420 U 95-57-8 2-Chlorophenol 420 U 95-50-1 1,2-Dichlorobenzene 420 U 541-73-1 1,3-Dichlorobenzene 420 U 106-46-7 1,4-Dichlorobenzene 420 U 95-48-7 2-Methylphenol 420 U 108-60-1 2.2'-oxybis(1-Chloropropane) 420 U 65794-96-9 3+4-Methylphenols 420 U 6774-9 9+4-4-Methylphenols 420 U 98-95-3 Nitrobenzene 420 U 98-95-5 2-Nitrophenol 420 U 105-67-9 2,4-Dimethylphenol 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 U 120-83-2 2,4-Dichlorophozene 420 U 120-82-1 1,2,4-Trichlorobenzene 420 U </td <td></td> <td></td> <td>Concentration Units:</td> <td></td>			Concentration Units:	
108-39-2 Prieto 1 95-57-8 2-Chlorophenol 420 U 95-57-8 2-Chlorobenzene 420 U 95-50-1 1,2-Dichlorobenzene 420 U 106-46-7 1,4-Dichlorobenzene 420 U 95-48-7 2-Methylphenol 420 U 108-60-1 2,2'-oxybis(1-Chloropropane) 420 U 65794-98-9 3-4-Methylphenols 420 U 62794-98-9 3-4-Methylphenols 420 U 6271-64-7 N-Nitroso-din-propylamine 420 U 67-72-1 Hexachloroethane 420 U 98-95-3 Nitrobenzene 420 U 98-95-3 Nitrobenzene 420 U 105-67-9 2.4-Dimethylphenol 420 U 105-67-9 2.4-Dimethylphenol 420 U 110-91-1 bis(2-Chloroethoxy)methane 420 U 120-82-2 2.4-Dichlorophenol 420 U 120-82-1 1.2.4-Trichlorobenzene 420 U 91-20-3 </td <td>CAS No.</td> <td>Compound</td> <td></td> <td></td>	CAS No.	Compound		
111-44-4 bis(2-Chloroethyl)ether 420 U 95-57-8 2-Chlorophenol 420 U 95-50-1 1,2-Dichlorobenzene 420 U 541-73-1 1,3-Dichlorobenzene 420 U 106-46-7 1,4-Dichlorobenzene 420 U 106-60-1 2,2'oxybis(1-Chloropropane) 420 U 65794-96-9 3+4-Methylphenols 420 U 621-64-7 N-Nitroso-di-n-propylamine 420 U 6774-96-9 3+4-Methylphenols 420 U 98-95-3 Nitrobenzene 420 U 98-95-3 Nitrobenzene 420 U 105-67-9 2,4-Dirnethylphenol 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 U 110-647-8 2,4-Dichlorobenzene 420 U 120-83-2 2,4-Dichlorobenzene 420 U 106-47-8 4-Chloroa-3-methylphenol 420 U 106-47-8 4-Chloroa-3-methylphenol	108-95-2	Phenol	420	U
95-57.8 2-Chlorophenol 420 U 95-50-1 1,2-Dichlorobenzene 420 U 541-73-1 1,3-Dichlorobenzene 420 U 106-46-7 1,4-Dichlorobenzene 420 U 95-548-7 2-Methylphenol 420 U 106-46-7 1,4-Dichlorobenzene 420 U 108-60-1 2,2'-oxybis(1-Chloropropane) 420 U 65734-96-9 3+4-Methylphenols 420 U 67-72-1 Hexachloroethane 420 U 98-95-3 Nitrobenzene 420 U 98-95-3 Nitrobenzene 420 U 88-75-5 2-Nitrophenol 420 U 105-67-9 2,4-Dimethylphenol 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 U 120-82-1 1,2,4-Trichlorobenzene 420 U 120-82-1 1,2,4-Trichlorobenzene 420 U 120-82-1 1,2,4-Trichlorobenzene 420 U			420	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				U
95-30-11,2-Dichlorobenzene420U641-73-11,3-Dichlorobenzene420U95-80-12,2'-oxybis(1-Chloropropane)420U108-60-12,2'-oxybis(1-Chloropropane)420U65794-96-93-4-Methylphenols420U627-4-96-93-4-Methylphenols420U67.72-1Hexachloroethane420U88-95-3Nitrobenzene420U78-59-1Isophorone420U105-67-92,4-Dimethylphenol420U111-91-1bis(2-Chloroethoxy)methane420U120-82-21,2,4-Trichlorobenzene420U120-82-21,2,4-Trichlorobenzene420U106-47-84-Chloroanlilne420U106-47-84-Chloroanlilne420U106-47-84-Chloroanlilne420U107-74-4Hexachlorocyclopentadiene420U108-62-22,4,6-Trichlorophenol420U109-59-42,4,6-Trichlorophenol420U111-13Dimethylphenol420U111-13Dimethylphthalate420U111-13Dimethylphthalate420U111-11-3Dimethylphthalate420U111-11-3Dimethylphthalate420U111-11-3Dimethylphthalate420U111-11-3Dimethylphthalate420U111-11-3Dimethylphthalate420U <t< td=""><td></td><td></td><td></td><td>U</td></t<>				U
341-73-1 1,3-Dichlorobenzene 420 U $106-46-7$ 1,4-Dichlorobenzene 420 U $95-48-7$ 2-Methylphenol 420 U $108-60-1$ 2,2'-oxybis(1-Chloropropane) 420 U $65794-96-9$ $3+4$ -Methylphenols 420 U $6772-1$ Hexachloroethane 420 U $67-72-1$ Hexachloroethane 420 U $98-95-3$ Nitrobenzene 420 U $772-1$ Hexachloroethane 420 U $88-75-5$ 2-Nitrophenol 420 U $88-75-5$ 2-Nitrophenol 420 U $11-91-1$ bis(2-Chloroethoxy)methane 420 U $120-82-1$ $1,2,4-Trichlorobenzene 420 U 120-83-2 2,4-Dichlorophenol 420 U 120-83-1 1,2,4-Trichlorobenzene 420 U 120-83-2 2,4-Dichlorophenol 420 U 95-50-7 4-Chloroaniline 420 U 97-68-3 He$				
106-48-7 1.4-Dictionogenee 122 U 95-48-7 2-Methylphenol 420 U 108-60-1 2.2'-oxybis(1-Chloropropane) 420 U 65794-96-9 3+4-Methylphenols 420 U 621-64-7 N-Nitroso-di-n-propylamine 420 U 67.72-1 Hexachloroethane 420 U 98-95-3 Nitrobenzene 420 U 78-59-1 Isophorone 420 U 88-75-5 2-Nitrophenol 420 U 105-67-9 2,4-Dimethylphenol 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 U 120-82-2 2,4-Dichlorobnezene 420 U 91-20-3 Naphthalene 420 U 91-20-3 Naphthalene 420 U 91-20-3 Naphthalene 420 U 91-57-6 2-Methylnaphthalene 420 U 91-57-6 2-Methylnaphthalene 420 U				
9548-7 2-Weinyphenol 420 U 108-60-1 2,2'-oxybis(1-Chloropropane) 420 U 65794-96-9 3+4-Methylphenols 420 U 621-64-7 N-Nitroso-di-n-propylamine 420 U 67-72-1 Hexachloroethane 420 U 98-95-3 Nitrobenzene 420 U 78-59-1 Isophorone 420 U 88-75-5 2-Nitrophenol 420 U 105-67-9 2,4-Direnthylphenol 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 U 120-83-2 2,4-Dichlorophenol 420 U 120-83-2 2,4-Dichlorobenzene 420 U 106-47-8 4-Chloroaniline 420 U 106-47-8 4-Chloroa-3-methylphenol 420 U 106-47-8 4-Chloroa-3-methylphenol 420 U 91-57-6 2-Methylnaphthalene 420 U 195-95-7 4-Chlorophenol 420 U<				
108-80-12,2-80x/018 (PC/IND/019/01/2016)10265794-96-93+4-Methylphenols420U621-64-7N-Nitroso-di-n-propylamine420U98-95-3Nitrobenzene420U98-95-3Nitrobenzene420U88-75-52-Nitrophenol420U105-67-92,4-Dimethylphenol420U111-91-1bis(2-Chloroethoxy)methane420U120-83-22,4-Dichlorobenzene420U120-83-22,4-Dichlorobenzene420U120-82-11,2,4-Trichlorobenzene420U91-20-3Naphthalene420U106-47-84-Chloro-almethylphenol420U91-57-62-Methylphenol420U91-57-62-Methylphenol420U91-57-62-Methylphenol420U91-58-72-Chloro-almethylphenol420U91-58-72-Chlorophenol1000U91-58-72-Chlorophenol420U91-58-72-Chlorophenol1000U91-58-72-Chlorophenol420U88-74-42-Nitroaniline420U208-96-8Acenaphthylene43J606-20-22,6-Dinitrotoluene420U90-9-23-Nitroaniline1000U				
b3/94-96-3 3+4-Metrylphenols -2 U 621-64-7 N-Nitroso-di-n-propylamine 420 U 67-72-1 Hexachloroethane 420 U 98-95-3 Nitrobenzene 420 U 78-59-1 Isophorone 420 U 88-75-5 2-Nitrophenol 420 U 105-67-9 2.4-Dimethylphenol 420 U 111-91-1 bis(2-Chloroethoxy)methane 420 U 120-83-2 2.4-Dichlorophenol 420 U 120-83-2 2.4-Dichlorophenol 420 U 91-20-3 Naphthalene 420 U 91-20-3 Naphthalene 420 U 106-47-8 4-Chloroaniline 420 U 95-50-7 4-Chloro-S-methylphenol 420 U 91-57-6 2-Methylnaphthalene 420 U 91-57-6 2-Methylnaphthalene 420 U 92-95-4 2.4,6-Trichlorophenol 1000 U <				
621-64-7N-Hittosoduri-propriatinite 120 $67-72-1$ Hexachloroethane 420 U $88-95-3$ Nitrobenzene 420 U $78-59-1$ Isophorone 420 U $88-75-5$ 2 -Nitrophenol 420 U $105-67-9$ $2,4$ -Dimethylphenol 420 U $105-67-9$ $2,4$ -Dirothorophenol 420 U $120-83-2$ $2,4$ -Dichlorophenol 420 U $120-82-1$ $1,2,4$ -Trichlorobenzene 420 U $91-20-3$ Naphthalene 420 U $106-47-8$ 4 -Chloroaniline 420 U $87-68-3$ Hexachlorobutadiene 420 U $87-68-3$ Hexachlorobutadiene 420 U $91-57-6$ 2 -Methylnaphthalene 420 U $91-57-6$ 2 -Methylnaphthalene 420 U $88-06-2$ $2,4,6$ -Trichlorophenol 420 U $88-06-2$ $2,4,6$ -Trichlorophenol 420 U $91-58-7$ 2 -Chloronaphthalene 420 U $88-74-4$ 2 -Nitroaniline 1000 U $131-11-3$ Dimethylphthalate 420 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ $2,6$ -Dinitrotoluene 420 U $92-92-3$ 3 -Nitroaniline 1000 U<				
67-72-1Hexachloboentaile420U98-95-3Nitrobenzene420U78-59-1Isophorone420U88-75-52-Nitrophenol420U105-67-92,4-Dimethylphenol420U111-91-1bis(2-Chloroethoxy)methane420U120-83-22,4-Dichlorophenol420U120-82-11,2,4-Trichlorobenzene420U91-20-3Naphthalene420U106-47-84-Chloroaniline420U87-68-3Hexachlorobutadiene420U91-57-62-Methylnaphthalene420U91-57-62.4,6-Trichlorophenol420U95-95-42,4,6-Trichlorophenol420U95-95-42,4,5-Trichlorophenol420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U920-923-Nitroaniline1000U99-09-23-Nitroaniline1000U99-09-23-Nitroaniline1000U	621-64-7			
36-93-3Nultibulative 420 U $78-59-1$ Isophorone 420 U $88-75-5$ 2 -Nitrophenol 420 U $105-67-9$ $2,4$ -Dimethylphenol 420 U $111-91-1$ bis(2-Chloroethoxy)methane 420 U $120-83-2$ $2,4$ -Dichlorophenol 420 U $120-83-2$ $2,4$ -Dichlorobenzene 420 U $91-20-3$ Naphthalene 420 U $91-20-3$ Naphthalene 420 U $87-68-3$ Hexachlorobutadiene 420 U $87-68-3$ Hexachlorobutadiene 420 U $91-57-6$ 2 -Methylinaphthalene 420 U $91-57-6$ 2 -Methylinaphthalene 420 U $86-62-2$ $2,4,6-Trichlorophenol$ 420 U $88-74-4$ 2 -Nitroaniline 420 U $88-74-4$ 2 -Nitroaniline 1000 U $88-74-4$ 2 -Nitroaniline 1000 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ $2,6$ -Dinitrotoluene 420 U $99-09-2$ 3 -Nitroaniline 1000 U	67-72-1	Hexachloroethane		
76-39-1Isopholone420U $88-75-5$ 2-Nitrophenol420U $105-67-9$ $2,4-Dimethylphenol$ 420U $111-91-1$ bis(2-Chloroethoxy)methane420U $120-83-2$ $2,4-Dichlorophenol$ 420U $120-83-2$ $2,4-Dichlorophenol$ 420U $120-82-1$ $1,2,4-Trichlorobenzene$ 420U $91-20-3$ Naphthalene420U $106-47-8$ $4-Chloroaniline$ 420U $87-68-3$ Hexachlorobutadiene420U $91-50-7$ $4-Chloro-3-methylphenol$ 420U $91-57-6$ $2-Methylnaphthalene$ 420U $91-57-6$ $2-Methylnaphthalene$ 420U $88-06-2$ $2,4,6-Trichlorophenol$ 420U $95-95-4$ $2,4,5-Trichlorophenol$ 1000U $91-58-7$ $2-Chloronaphthalene$ 420U $88-74-4$ $2-Nitroaniline$ 1000U $131-11-3$ Dimethylphthalate420U $208-96-8$ Acenaphthylene43J $606-20-2$ $2,6-Dinitrotoluene$ 420U $99-09-2$ $3-Nitroaniline$ 1000U	98-95-3	Nitrobenzene		
88-75-3 $2-1$ -Nitrophenol 420 U $105-67-9$ $2,4-$ Dimethylphenol 420 U $111-91-1$ bis(2-Chloroethoxy)methane 420 U $120-83-2$ $2,4-$ Dichlorophenol 420 U $120-82-1$ $1,2,4-$ Trichlorobenzene 420 U $91-20-3$ Naphthalene 420 U $106-47-8$ $4-$ Chloroaniline 420 U $87-68-3$ Hexachlorobutadiene 420 U $91-57-6$ $2-$ Methylnaphthalene 420 U $91-57-6$ $2-$ Methylnaphthalene 420 U $88-06-2$ $2,4,6-$ Trichlorophenol 420 U $88-06-2$ $2,4,6-$ Trichlorophenol 420 U $95-95-4$ $2,4,5-$ Trichlorophenol 1000 U $91-58-7$ $2-$ Chloronaphthalene 420 U $88-74-4$ $2-$ Nitroaniline 1000 U $131-11-3$ Dimethylphthalate 420 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ $2,6-$ Dinitrotoluene 420 U $99-09-2$ $3-$ Nitroaniline 1000 U	78-59-1	Isophorone		
105-67-92,4-Differing100111-91-1bis(2-Chloroethoxy)methane420U120-83-22,4-Dichlorophenol420U120-82-11,2,4-Trichlorobenzene420U91-20-3Naphthalene420U106-47-84-Chloroaniline420U87-68-3Hexachlorobutadiene420U91-57-62-Methylnaphthalene420U91-57-62-Methylnaphthalene420U91-57-62-Methylnaphthalene420U95-95-42,4,6-Trichlorophenol420U95-95-42,4,6-Trichlorophenol1000U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U92-96-8Acenaphthylene43J606-20-22,6-Dinitrotoluene420U99-09-23-Nitroaniline1000U	88-75-5	2-Nitrophenol		
111-91-1bis(2-Chloroethoxy)methane420U120-83-22,4-Dichlorophenol420U120-83-21,2,4-Trichlorobenzene420U91-20-3Naphthalene420U106-47-84-Chloroaniline420U87-68-3Hexachlorobutadiene420U91-57-62-Methylnaphthalene420U91-57-62-Methylnaphthalene420U91-57-62-Methylnaphthalene420U91-57-62,4,6-Trichlorophenol420U95-95-42,4,5-Trichlorophenol1000U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U91-58-72-Chloronaphthalene420U92-96-8Acenaphthylene43J606-20-22,6-Dinitrotoluene420U99-09-23-Nitroaniline1000U	105-67-9	2,4-Dimethylphenol		
120-83-2 $2,4$ -Dichlorophenol 420 U $120-82-1$ $1,2,4$ -Trichlorobenzene 420 U $91-20-3$ Naphthalene 420 U $106-47-8$ 4 -Chloroaniline 420 U $87-68-3$ Hexachlorobutadiene 420 U $59-50-7$ 4 -Chloro-3-methylphenol 420 U $91-57-6$ 2 -Methylnaphthalene 420 U $77-47-4$ Hexachlorocyclopentadiene 420 U $88-06-2$ $2,4,6$ -Trichlorophenol 420 U $95-95-4$ $2,4,5$ -Trichlorophenol 1000 U $91-58-7$ 2 -Chloronaphthalene 420 U $91-58-7$ 2 -Chloronaphthalene 420 U $88-74-4$ 2 -Nitroaniline 1000 U $131-11-3$ Dimethylphthalate 420 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ $2,6$ -Dinitrotoluene 420 U $99-09-2$ 3 -Nitroaniline 1000 U		bis(2-Chloroethoxy)methane	420	
120-82-1 $1,2,4-Trichlorobenzene$ 420 U $91-20-3$ Naphthalene 420 U $106-47-8$ $4-Chloroaniline$ 420 U $87-68-3$ Hexachlorobutadiene 420 U $59-50-7$ $4-Chloro-3-methylphenol$ 420 U $91-57-6$ $2-Methylnaphthalene$ 420 U $77-47-4$ Hexachlorocyclopentadiene 420 U $88-06-2$ $2,4,6-Trichlorophenol$ 420 U $95-95-4$ $2,4,5-Trichlorophenol$ 1000 U $91-58-7$ $2-Chloronaphthalene$ 420 U $88-74-4$ $2-Nitroaniline$ 1000 U $131-11-3$ Dimethylphthalate 420 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ $2,6-Dinitrotoluene$ 420 U $99-09-2$ $3-Nitroaniline$ 1000 U			420	
91-20-3Naphthalene 420 U $106-47-8$ $4-Chloroaniline$ 420 U $87-68-3$ Hexachlorobutadiene 420 U $59-50-7$ $4-Chloro-3-methylphenol$ 420 U $91-57-6$ $2-Methylnaphthalene$ 420 U $77-47-4$ Hexachlorocyclopentadiene 420 U $88-06-2$ $2,4,6-Trichlorophenol$ 420 U $91-58-7$ $2-Chloronaphthalene$ 420 U $91-58-7$ $2-Chloronaphthalene$ 420 U $88-74-4$ $2-Nitroaniline$ 1000 U $131-11-3$ Dimethylphthalate 420 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ $2,6-Dinitrotoluene$ 420 U $99-09-2$ $3-Nitroaniline$ 1000 U			420	U
106-47-84-Chloroaniline 420 U $87-68-3$ Hexachlorobutadiene 420 U $59-50-7$ 4-Chloro-3-methylphenol 420 U $91-57-6$ 2-Methylnaphthalene 420 U $77-47-4$ Hexachlorocyclopentadiene 420 U $88-06-2$ 2,4,6-Trichlorophenol 420 U $95-95-4$ 2,4,5-Trichlorophenol 1000 U $91-58-7$ 2-Chloronaphthalene 420 U $88-74-4$ 2-Nitroaniline 1000 U $131-11-3$ Dimethylphthalate 420 U $208-96-8$ Acenaphthylene 43 J $606-20-2$ 2,6-Dinitrotoluene 420 U $99-09-2$ 3-Nitroaniline 1000 U			420	U
87-68-3 Hexachlorobutadiene 420 U 59-50-7 4-Chloro-3-methylphenol 420 U 91-57-6 2-Methylnaphthalene 420 U 77-47-4 Hexachlorocyclopentadiene 420 U 88-06-2 2,4,6-Trichlorophenol 420 U 95-95-4 2,4,5-Trichlorophenol 1000 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 433 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U			420	U
59-50-7 4-Chloro-3-methylphenol 420 U 91-57-6 2-Methylnaphthalene 420 U 77-47-4 Hexachlorocyclopentadiene 420 U 88-06-2 2,4,6-Trichlorophenol 420 U 95-95-4 2,4,5-Trichlorophenol 1000 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U			420	U
91-57-6 2-Methylnaphthalene 420 U 77-47-4 Hexachlorocyclopentadiene 420 U 88-06-2 2,4,6-Trichlorophenol 420 U 95-95-4 2,4,5-Trichlorophenol 1000 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U			420	U
31-37-0 2 mich ymap materior 420 U 77-47-4 Hexachlorocyclopentadiene 420 U 88-06-2 2,4,6-Trichlorophenol 420 U 95-95-4 2,4,5-Trichlorophenol 1000 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				U
11-47-4 Hickdemologyddydriadawe 420 U 88-06-2 2,4,6-Trichlorophenol 1000 U 95-95-4 2,4,5-Trichlorophenol 1000 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				U
88-06-2 2,4,0-Frichlorophenol 1000 U 95-95-4 2,4,5-Trichlorophenol 1000 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				U
95-95-4 2,4,5-micritorophenoir 420 U 91-58-7 2-Chloronaphthalene 420 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U	-			
91-38-7 2-Childronaphthalene 1000 U 88-74-4 2-Nitroaniline 1000 U 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				
86-74-4 2-Mit Gamme 131-11-3 Dimethylphthalate 420 U 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				
131-11-3 Dimetryphthate 43 J 208-96-8 Acenaphthylene 43 J 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				
208-90-8 Acceraphiliplene 420 U 606-20-2 2,6-Dinitrotoluene 420 U 99-09-2 3-Nitroaniline 1000 U				
99-09-2 3-Nitroaniline 1000 U				
99-09-2 3-INITOAININIE				
83-32-9 Acenaphthene 420 0				
	83-32-9	Acenaphthene	420	

43.00

1

1.2

14.14

the const

- Colore

in a

.

iler al

Form I SV-1

1C

EPA SAMPLE NO.

		SEM	IVOLATILE ORGANI	CS ANALYS	SIS DATA SHEET	TP35'
Lah Name	CHEMTEC	ЭН		Contract:	IVI ENVIRONMENT	
	CHEM	C	ase No.: L3355	SAS No.:	LB12423	SDG No.: MW1
		SOIL			Lab Sample ID:	017
Matrix: (s			(g/mL)_G		Lab File ID:	BS030726.D
Sample w			_(g/iiic)		Date Received:	2/27/01
Level: (low/med)	LOW	-			
% Moistur	re: 20	_	decanted: (Y/N)	: <u>N</u>		
	ated Extract Vo	olume:	500 (uL)		Date Analyzed:	
	Volume:	2.0	(uL)		Dilution Factor:	1.0
		Y	pH	ł:		
GPC Clea	anup: (Y/N)		-	Concentrat	tion Units:	
		Compour	hd	(ug/L or ug/		Q
	CAS No.	Compour		1	1000	U
	51-28-5	2,4-Dinitr			1000	U
	100-02-7	4-Nitrophenol			420	U
	132-64-9	Dibenzof			420	U
	121-14-2	2,4-Dinitr			420	U
	84-66-2	Diethylph			420	U
	7005-72-3		phenyl-phenylether		420	U
	86-73-7	Fluorene			1000	U
	100-01-6	4-Nitroaniline			1000	U
	534-52-1	4,6-Dinitro-2-methylphenol			420	U
	86-30-6	N-Nitros	odiphenylamine		420	U
	101-55-3		phenyl-phenylether		420	U
	118-74-1		orobenzene		1000	U
	87-86-5		lorophenol		270	J
	85-01-8	Phenant			52	J
	120-12-7	Anthrac		_	420	U
	86-74-8	Carbazo			420	U
	84-74-2		ylphthalate		450	
	206-44-0	Fluoran	nene		410	J
	129-00-0	Pyrene	L. L. H. L. L. L. L.	_	420	U
	85-68-7		nzylphthalate		420	U
	91-94-1		hlorobenzidine		210	J
	56-55-3		a)anthracene		270	J
	218-01-9	Chryser			420	U
	117-81-7	bis(2-Ethylhexyl)phthalate			420	U
	117-84-0	Di-n-oc	yl phthalate		300	J
	205-99-2	Benzo(o)fluoranthene		110	J
	207-08-9		k)fluoranthene		230	J
	50-32-8		a)pyrene		120	J
	193-39-5	Indeno	1,2,3-cd)pyrene		420	U
	53-70-3		o(a,h)anthracene		120	J
	191-24-2	Benzo(g,h,i)perylene		120	است الم

(1) - Cannot be separated from Diphenylamine

and a start

Sec.5

Form I SV-2

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

•

	-	TENTATIVELY IDENTIFIED (COMPOUNDS	TP35'
Lab Name: CHEMT	ECH	Cont	ract: IVI ENVIRONME	NTAL
Lab Code: CHEM		Case No.: L3355 SAS	No.: LB12423	SDG No.: MW1
Matrix: (soil/water)	SOIL		Lab Sample ID	: 017
Sample wt/vol:	30.0	(g/mL)	Lab File ID	: BS030726.D
Level: (low/med)	LOW		Date Received	1: 2/27/01
% Moisture: 20		decanted: (Y/N) N	Date Extracted	1: 3/1/01
Concentrated Extract			Date Analyzed	1: 3/8/01
Injection Volume:			Dilution Facto	
GPC Cleanup: (Y/N)				
GPC Cleanup. (1/1)		_	tration Units:	
Number TICs found:	17		or ug/Kg) ug/Kg	(
	CAS Number	Compound Nam	e RT Est. Con	c. Q
	1. 57-10-3	Hexadecanoic acid	19.35 100	J
	2. 295-65-8	Cyclohexadecane	23.47 160	J
	3. 544-76-3	Hexadecane	24.81 130	J
	4. 301-02-0	9-Octadecenamide, (Z)-	25.42 300	J
	5. 629-92-5	Nonadecane	26.07 130	J
	6. 205-99-2	Benz[e]acephenanthrylene	26.28 180	J
	7. 112-95-8	Eicosane	26.75 220	J
	8. 629-94-7	Heneicosane	27.54 260	
	9. 630-02-4	Octacosane	28.48 360	
	10.	Unknown	28.69 120	
	11.	1,12-Benzperylene	28.86 88	
	12. 630-06-8	Hexatriacontane	29.58 400	J
	13. 646-31-1	Tetracosane	30.90 380	J
	14. 629-99-2	Pentacosane	32.51 360	
	15. 7098-21-7	Tritetracontane	34.46 390	
	16.	Unknown	36.20 100	
	17.	Unknown	36.81 240	J
	18.			
	19.			
	20.			
	21.			
	22.			
	23.			
	24.			
	25.			
	26.			
	27.			
	28.			
	29.			

xi

1

C

è . .

÷....

-

FORM I SV-TIC

1C

EPA SAMPLE NO.

.

	SEMIVOLATILE ORGANIC	S ANALYS	SIS DATA SHEET		
Lab Name: CHEMTECH		Contract:	IVI ENVIRONMENT	TAL	
Lab Code: CHEM		SAS No.:	LB12423	SDG No.: MW1	
Matrix: (soil/water)	SOIL		Lab Sample ID	018	
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	BS030727.D	
Level: (low/med)	LOW		Date Received:	2/27/01	
% Moisture: 9	decanted: (Y/N):	N	Date Extracted:	3/1/01	
Concentrated Extract	Volume: 500 (uL)		Date Analyzed:	3/8/01	
Injection Volume:			Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	Y pH:				
		Concentrat	tion Units:	5.0	
CAS No.	Compound (ug/L or ug/		Q	
51-28-5	2,4-Dinitrophenol		920	U	
100-02-7	4-Nitrophenol		920	U	
132-64-9	Dibenzofuran	56		J	
121-14-2	2,4-Dinitrotoluene		370	U	
84-66-2	Diethylphthalate		370	U	
7005-72-3	4-Chlorophenyl-phenylether		370	U	
86-73-7	Fluorene		100	J	
100-01-6	4-Nitroaniline		920	U	
534-52-1	4,6-Dinitro-2-methylphenol		920	U	
86-30-6	N-Nitrosodiphenylamine		370	U	
101-55-3	4-Bromophenyl-phenylether		370	U	
118-74-1	Hexachlorobenzene		370	U	
87-86-5	Pentachlorophenol		920	U	
85-01-8	Phenanthrene		920		
120-12-7	Anthracene		170	J	
86-74-8	Carbazole		120	J	
84-74-2	Di-n-butylphthalate		370	U	
206-44-0	Fluoranthene		1200		
129-00-0	Pyrene		1000	+	
85-68-7	Butylbenzylphthalate		370	UUU	
91-94-1	3,3'-Dichlorobenzidine		370	0	
56-55-3	Benzo(a)anthracene		570		
218-01-9	Chrysene		630		
117-81-7	bis(2-Ethylhexyl)phthalate		370	U	
117-84-0	Di-n-octyl phthalate		370	U	
205-99-2	Benzo(b)fluoranthene		640		
207-08-9	Benzo(k)fluoranthene		410		
50-32-8	Benzo(a)pyrene		560		
193-39-5	Indeno(1,2,3-cd)pyrene		220	J	
53-70-3	Dibenzo(a,h)anthracene		370	U	
191-24-2	Benzo(g,h,i)perylene		210	J	

(1) - Cannot be separated from Diphenylamine

New York the web with the

Contractor of the second

and a land

1.1

-

Î

(area

Form I SV-2

EPA SAMPLE NO.

	SEMIVOLATILE ORGANIC	S ANALYS	SIS DATA SHEET	TP45'
Lab Name: CHEMTECH			IVI ENVIRONMENT	AL
	Case No.: L3355	SAS No.:	LB12423	SDG No.: MW1
Matrix: (soil/water)			Lab Sample ID:	018
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	BS030727.D
Level: (low/med)	LOW		Date Received:	
% Moisture: 9	decanted: (Y/N):	<u>N</u>		
Concentrated Extract	Volume: <u>500</u> (uL)		Date Analyzed:	
Injection Volume:			Dilution Factor:	1.0
GPC Cleanup: (Y/N)	-11	:		
		Concentral (ug/L or ug/		Q
CAS No.	Compound	(ug/L of ug/		U
108-95-2	Phenol		370	U
111-44-4	bis(2-Chloroethyl)ether		370	U
95-57-8	2-Chlorophenol		370	U
95-50-1	1,2-Dichlorobenzene		370	U
541-73-1	1,3-Dichlorobenzene		370	U
106-46-7	1,4-Dichlorobenzene		370	U
95-48-7	2-Methylphenol		370	U
108-60-1	2,2'-oxybis(1-Chloropropane)		370	U
65794-96-9	3+4-Methylphenols		370	U
621-64-7	N-Nitroso-di-n-propylamine		370	U
67-72-1	Hexachloroethane		370 370	U
98-95-3	Nitrobenzene		370	U
78-59-1	Isophorone		370	U
88-75-5	2-Nitrophenol		370	U
105-67-9	2,4-Dimethylphenol		370	U
111-91-1	bis(2-Chloroethoxy)methane		370	U
120-83-2	2,4-Dichlorophenol		370	U
120-82-1	1,2,4-Trichlorobenzene		81	J
91-20-3	Naphthalene		370	U
106-47-8	4-Chloroaniline		370	U
87-68-3	Hexachlorobutadiene		370	U
59-50-7	4-Chloro-3-methylphenol		370	U
91-57-6	2-Methylnaphthalene		370	U
77-47-4	Hexachlorocyclopentadiene		370	U
88-06-2	2,4,6-Trichlorophenol		920	U
95-95-4	2,4,5-Trichlorophenol		370	U
91-58-7	2-Chloronaphthalene		920	U
88-74-4	2-Nitroaniline		370	U
131-11-3	Dimethylphthalate		130	J
208-96-8	Acenaphthylene		370	U
606-20-2	2,6-Dinitrotoluene		920	U
99-09-2	3-Nitroaniline		89	J
83-32-9	Acenaphthene			

1.00

alta ata

K

Form I SV-1

TP45'

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1F

Lab Name: CHEMTE	СН		Contract:	IVI ENVIR	ONMEN	TAL	
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB12423		SDG No.:	MW1
Matrix: (soil/water)	SOIL	_		Lab San	nple ID:	O18	
Sample wt/vol:	30.0	(g/mL) <u>G</u>		Lab	File ID:	BS030727	D
Level: (low/med)	LOW			Date Re	ceived:	2/27/01	
% Moisture: 9		decanted: (Y/N)	N	Date Ex	tracted:	3/1/01	
Concentrated Extract V		500 (uL)		Date Ar	alyzed:	3/8/01	
Injection Volume:		(uL)		Dilution	Factor:	1.0	
GPC Cleanup: (Y/N)	Y	-					
Number TICs found:	30	-	oncentratior (ug/L or ug	n Units: J/Kg)	g/Kg		
[0	CAS Number	Compound	Name	RT Es	t. Conc.	Q	
F	1. 613-12-7	Anthracene, 2-methyl-		19.03	180	J	
F	2. 2531-84-2	Phenanthrene, 2-meth		19.09	170	J	
F	3.	Unknown		19.26	260	J	
F	4. 832-71-3	Phenanthrene, 3-meth	ıyl-	19.31	200	J	
F	5. 612-94-2	Naphthalene, 2-pheny		19.70	130	J	
	6. 84-65-1	9.10-Anthracenedione		19.75	120	J	
F	7. 1576-69-8	Phenanthrene, 2,7-dir	nethyl-	20.07	120	J	
- 1	8. 3674-66-6	Phenanthrene, 2,5-dir		20.23	190	J	
F	9. 1576-67-6	Phenanthrene, 3,6-dir		20.30	170	J	
1	10. 5737-13-3	Cyclopenta(def)phena		20.41	130	J	
	11.	Unknown		20.75	130	J	
	12. 243-17-4	11H-Benzo[b]fluorene		21.76	180	J	1
	13. 3442-78-2	Pyrene, 2-methyl-		21.97	130	J	1
	14. 3353-12-6	Pyrene, 4-methyl-		22.15	92	J	
T	15. 82-05-3	7H-Benz[de]anthrace	n-7-one	22.85	130	J	
	16. 239-35-0	Benzo[b]naphtho[2,1-		23.06	98	J	1
	17. 6765-39-5	1-Heptadecene		23.46	130	J	
	18. 2381-31-9	Benz[a]anthracene, 8	-methyl-	24.46	130	J	1
f	19.	Unknown		25.17	97	J	
	20. 629-78-7	Heptadecane		25.44	220	J	
	21. 4602-84-0	2,6,10-Dodecatrien-1	-ol, 3,7	25.60	110	J	
	22. 192-97-2	Benzo[e]pyrene		25.95	140	J	
	23. 205-82-3	Benzo[j]fluoranthene		26.30	360	J	
	24. 112-95-8	Eicosane		26.75	110	J	
	25. 629-94-7	Heneicosane		27.55	130	J	
	26. 544-85-4	Dotriacontane		28.47	170	J	4
	27.	Unknown		29.58	200	J	4
	28. 638-68-6	Triacontane		30.90	120	J	_
	29. 7098-21-7	Tritetracontane		32.50	100	J	4
	30.	Unknown		36.20	96	J	

6

6

6

. .

٤.,

FORM I SV-TIC

•

-

water and

.

EPA SAMPLE NO.

Г

SEMIVOLATILE ORGANICS	SANALYSIS DATA SHEET
-----------------------	----------------------

		SEMIVOLATILE ORGANI			TP66'	
	CHEMTEC					
ab Code:	CHEM	Case No.:	3A3 No			
atrix: (soil/water)		SOIL		Lab Sample ID:		
ample w	t/vol:	30.0 (g/mL) <u>G</u>		Lab File ID:	BS030723.D	
	low/med)	LOW		Date Received:	2/27/01	
	re: 21	decanted: (Y/N)): N	Date Extracted:	3/1/01	
		- blume:500(uL)		Date Analyzed:	3/8/01	
		2.0 (uL)		Dilution Factor:	1.0	
•			1.			
SPC Clea	anup: (Y/N)	Y pH		Lipito:		
			Concentration		Q	
	CAS No.	Compound	(ug/L or ug/Kg)			
Г	108-95-2	Phenol		420	U	
	111-44-4	bis(2-Chloroethyl)ether	420		U	
	95-57-8	2-Chlorophenol		420	U	
1	95-50-1	1,2-Dichlorobenzene	420		U	
	541-73-1	1,3-Dichlorobenzene		420		
	106-46-7	1,4-Dichlorobenzene		420		
	95-48-7	2-Methylphenol		420		
	108-60-1	2,2'-oxybis(1-Chloropropane)		420		
	65794-96-9	3+4-Methylphenols		420		
	621-64-7	N-Nitroso-di-n-propylamine		420		
	67-72-1	Hexachloroethane		420	UUU	
	98-95-3	Nitrobenzene		420		
	78-59-1	Isophorone		420	UUU	
	88-75-5	2-Nitrophenol		420 420		
	105-67-9	2,4-Dimethylphenol				
	111-91-1	bis(2-Chloroethoxy)methane		420	U	
	120-83-2	2,4-Dichlorophenol		420	U	
	120-82-1	1,2,4-Trichlorobenzene		420	U	
	91-20-3	Naphthalene		420	U	
	106-47-8	4-Chloroaniline		420		
	87-68-3	Hexachlorobutadiene		420		
	59-50-7	4-Chloro-3-methylphenol		420	U	
	91-57-6	2-Methylnaphthalene		420	UUU	
	77-47-4	Hexachlorocyclopentadiene		420		
	88-06-2	2,4,6-Trichlorophenol		420	U	
	95-95-4	2,4,5-Trichlorophenol		1100	U	
	91-58-7	2-Chloronaphthalene		420	U	
	88-74-4	2-Nitroaniline		1100	U	
	131-11-3	Dimethylphthalate		420	U	
	208-96-8	Acenaphthylene		420	U	
	606-20-2	2,6-Dinitrotoluene		420	U	
	99-09-2	3-Nitroaniline		1100	U	
	83-32-9	Acenaphthene		420	U	

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHE

EPA SAMPLE NO.

ſ

	SEMIVOLATILE ORGANIC	CS ANALYS	SIS DATA SHEET	TP66'
Lab Name: CHEMTE	сн	Contract:	IVI ENVIRONMENT	
Lab Code: CHEM		SAS No.:	LB12423	SDG No.: MW1
	SOIL		Lab Sample ID:	019
Matrix: (soil/water)			Lab File ID:	BS030723.D
Sample wt/vol:	30.0 (g/mL)		Date Received:	
Level: (low/med)	LOW			
% Moisture: 21	decanted: (Y/N)	: <u>N</u>		
Concentrated Extract			Date Analyzed:	
Injection Volume:	2.0 (uL)		Dilution Factor:	1.0
		:		
GPC Cleanup: (Y/N)	·	Concentra	tion Units:	
0.40 M	Compound	(ug/L or ug/		Q
CAS No.	Compound	T	1100	U
51-28 _f 5	2,4-Dinitrophenol		1100	U
100-02-7	4-Nitrophenol		420	U
132-64-9	Dibenzofuran		420	U
121-14-2	2,4-Dinitrotoluene		420	U
84-66-2	Diethylphthalate		420	U
7005-72-3	4-Chlorophenyl-phenylether		420	U
86-73-7	Fluorene		1100	U
100-01-6	4-Nitroaniline		1100	U
534-52-1	4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine		420	U
86-30-6	4-Bromophenyl-phenylether		420	U
101-55-3			420	U
118-74-1	Hexachlorobenzene		1100	U
87-86-5	Pentachlorophenol		420	U
85-01-8	Phenanthrene		420	U
120-12-7	Anthracene		420	U
86-74-8			420	U
84-74-2	Di-n-butylphthalate		420	U
206-44-0	Fluoranthene		420	U
129-00-0	Pyrene Butylbenzylphthalate		420	U
85-68-7	3,3'-Dichlorobenzidine		420	U
91-94-1	Benzo(a)anthracene		420	U
56-55-3		420		U
218-01-9	Chrysene bis(2-Ethylhexyl)phthalate		420	U
117-81-7	Di-n-octyl phthalate		420	U
117-84-0	Benzo(b)fluoranthene		420	U
205-99-2	Benzo(k)fluoranthene		420	U
207-08-9	Benzo(a)pyrene		420	U
50-32-8	Indeno(1,2,3-cd)pyrene		420	U
193-39-5	Dibenzo(a,h)anthracene		420	U
53-70-3	Benzo(g,h,i)perylene		420	U
191-24-2	Denzo(g,n,i)perylenc			

(1) - Cannot be separated from Diphenylamine

4 6 .

ľ

des.

Form I SV-2

1F

EPA SAMPLE NO.

1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

13

1

	Т	TENTATIVELY IDENTIFIED COMPOUNDS T				
Lab Name: CHEMT	ECH	Contract:		IVI ENVIRONMEN		TAL
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB1242	.3	SDG No.: MW1
Matrix: (soil/water) SOIL				Lab S	Lab Sample ID: 019	
Sample wt/vol:	30.0	(g/mL) <u>G</u>		Lab File ID: BS030723.D		
Level: (low/med)	LOW			Date	Received:	2/27/01
% Moisture: 21		decanted: (Y/N)	N	Date	Extracted:	3/1/01
Concentrated Extract						
Injection Volume:						1.0
GPC Cleanup: (Y/N)		-				
			oncentration	Units:		
Number TICs found:	12		(ug/L or ug		ug/Kg	
	CAS Number	Compound	Name	RT	Est. Conc.	Q
	1. 629-96-9	1-Eicosanol		23.46		J
	2. 629-78-7	Heptadecane		25.44		J
	3. 629-97-0	Docosane		26.06		J
	4. 629-94-7	Heneicosane		26.75		J
	5. 630-02-4	Octacosane		27.54		J
	6. 7098-22-8	Tetratetracontane		28.48		J
	7. 630-03-5	Nonacosane		29.59 30.92		J
	8. 630-06-8	Hexatriacontane		32.52	660	J
	9. 638-68-6 10.	Triacontane Unknown		34.47	620	J
		Toluene, 4-chloro-2-f	uoro-5	36.21	120	J
	12. 3386-33-2	Octadecane, 1-chloro		36.84	540	J
	13.					
	14.					
	15.					
	16.					
	17.					
	18.					
	19.					
	20.					
	21.					
	22.					
	23.					
	24.					
	25.					
	26.					
	27.					
	28.					
	29.					
	30.	<u> </u>			l	

FORM I SV-TIC

1

- Mar

J

13

ŧ. .

15.14

EPA SAMPLE NO.

	Bala					
Lab Name:	Name: CHEMTECH		Contract:	IVI ENVIRONMENT	B6'6' Tal	
Lab Code:	CHEM	Ca	se No.: L3355	SAS No.:	LB12321	SDG No.: MW1
Matrix: (soil/w		SOIL			Lab Sample ID:	023
Sample wt/vol		30.0	(g/mL) G		Lab File ID:	BS030241.D
Level: (low/		LOW			Date Received:	2/27/01
% Moisture:	•		decanted: (Y/N):	Ν	Date Extracted:	3/1/01
Concentrated Extract Volume:		ume:	<u>500</u> (uL)		Date Analyzed:	3/3/01
Injection Volume:		2.0	(uL)		Dilution Factor:	1.0
GPC Cleanup	o: (Y/N)	Y	pH:			
CAS	S No.	Compound		Concentrati ug/L or ug/ł		Q
	-95-2	Phenol			370	U
	57-8	2-Chloroph	enol		370	U
	48-7	2-Methylph			370	U
	94-96-9	3+4-Methy			370	U
88-75-5 105-67-9 120-83-2 59-50-7		2-Nitropher	lor	370 370		U
		2,4-Dimeth	ylphenol			U
		2,4-Dichlorophenol 4-Chloro-3-methylphenol		370 370		U
						U
88-0			1,6-Trichlorophenol		370	U
95-95-4 51-28-5		2,4,5-Trichlorophenol 2,4-Dinitrophenol		940 940		U
						UUU
	-02-7	4-Nitrophe			940	U
	-52-1		2-methylphenol		940 940	U
87-8	86-5	Pentachlor	ophenol		940	
	,					
				+		
				1		

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

			OLATILE ORGANICS ENTATIVELY IDENTI			EET	B6'6'
Lab Name: CHEMTI	ECH			Contract:	IVI ENV	IRONMEN	ITAL
Lab Code: CHEM			Case No.: L3355	SAS No.:	LB1232	1	SDG No.: MW1
Matrix: (soil/water)	_	SOIL			Lab S	ample ID:	023
Sample wt/vol:	_	30.0	(g/mL) <u>G</u>		L	ab File ID:	BS030241.D
Level: (low/med)	-	LOW			Date	Received:	2/27/01
% Moisture: 11			decanted: (Y/N)	N			3/1/01
Concentrated Extract	Volun	ne:	(uL)			Analyzed:	
Injection Volume:	-	2.0	(uL)		Diluti	on Factor:	1.0
GPC Cleanup: (Y/N)	-	Y	•				
		10	C	oncentration (ug/L or ug		ua/Ka	
Number TICs found:		18	-				
	CAS	Number	Compound	Name		Est. Conc.	
	1.		Unknown		8.05	110	J
	2.		Unknown		10.44	100	JJJ
		506-52-5	1-Hexacosanol		23.49	200	J
		54699-29-5	Cyclohexane, (ethoxy	metnoxy)	23.99 24.84	140	J
		629-78-7	Heptadecane		25.46	140	J
		646-31-1	Tetracosane		26.09	220	J
		629-99-2	Pentacosane	tor	26.45	83	J
		22393-88-0	Oleic acid, eicosyl es Nonacosane		26.78	250	J
		630-03-5 629-97-0	Docosane		27.58	280	J
		7098-21-7	Tritetracontane		28.52	310	J
		1030-21-1	Unknown		28.90		J
		629-94-7	Heneicosane		29.64	350	J
		630-06-8	Hexatriacontane		30.97	330	J
		14167-59-0	Tetratriacontane		32.59		J
	16.		Unknown		34.56		J
	17.		Unknown		36.33		J
	18.	638-68-6	Triacontane		36.93	220	J
	19.						
	20.						
	21.						
	22.						
	23.						
	24.						
	25						
	26						
	27						
	28				1		
	30						
	_ 30						

1

.

:

÷. .

FORM I SV-TIC

1B

T

and the second

1

Î

10.40

i. Nora

EPA SAMPLE NO.

		SEM	IVOLATILE ORGANI		IS DATA SHEET	B7'6'
Lab Nai	me: CHEMTE	СН		Contract:	IVI ENVIRONMENT	
			ase No.: <u>L3355</u>	SAS No.:	LB12321	SDG No.: MW1
	(soil/water)		_		Lab Sample ID:	
Sample	wt/vol:	30.0	(g/mL) <u>G</u>		Lab File ID:	BS030240.D
Level:	(low/med)	LOW	_		Date Received:	2/27/01
% Mois	ture: 15		decanted: (Y/N):	N	Date Extracted:	3/1/01
Concer	trated Extract V	olume:	500 (uL)		Date Analyzed:	3/3/01
Injectio	n Volume:	2.0	_(uL)		Dilution Factor:	1.0
GPC C	leanup: (Y/N)	Y	_ pH:			
	CAS No.	Compoun		Concentration (ug/L or ug/l		Q
	108-95-2	Phenol		1	390	U
	95-57-8	2-Chlorop	henol		390	U
	95-48-7	2-Methylp			390	U
	65794-96-9	3+4-Meth			390	U
	88-75-5	2-Nitrophe			390	U
	105-67-9	2,4-Dimet			390	U
	120-83-2	2,4-Dichlo			390	U
	59-50-7		3-methylphenol		390	U
	88-06-2		hlorophenol		390	U
	95-95-4		hlorophenol		980	U
	51-28-5	2,4-Dinitro			980	U U
	100-02-7	4-Nitrophe	enol		980	U
	534-52-1		p-2-methylphenol		980	U
	87-86-5	Pentachlo	rophenol		980	0
						├ ────┤
						<u> </u>
						LJ

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1F

		TENTATIVELY IDENTIF	IED COMP	OUNDS		B7'6'
ab Name: CHEMT	ECH		Contract:	IVI ENVIRC	NMEN	TAL
ab Code: CHEM		Case No.: L3355	SAS No.:	LB12321		SDG No.: MW
Aatrix: (soil/water)	SOIL	_		Lab Sam	ple ID:	024
ample wt/vol:	30.0	(g/mL) <u>G</u>		Lab F	ile ID:	BS030240.D
evel: (low/med)	LOW			Date Red	ceived:	2/27/01
6 Moisture: 15		 decanted: (Y/N)	N	Date Ext	racted:	3/1/01
Concentrated Extract					alyzed:	3/3/01
njection Volume:				Dilution	Factor:	1.0
SPC Cleanup: (Y/N)						
FC Cleanup. (The)		-	oncentration	n Units		
lumber TICs found:	13	C		g/Kg) ug	g/Kg	
ſ		Compound	Name	RT Est	Conc	Q
	CAS Number		Name	23.49	260	J
	1. 1454-85-9	1-Heptadecanol		24.84	150	J
	2. 629-99-2	Pentacosane Unknown		25.47	230	J
	3.			26.09	350	J
	4. 629-97-0	Docosane		26.78	370	J
	5. 646-31-1	Tetracosane		27.59	500	J
	6. 630-03-5	Nonacosane		28.52	600	J
	7.7098-22-8	Tetratetracontane		29.64	630	J
	8. 544-85-4	Dotriacontane		30.98	620	J
	9. 629-94-7	Heneicosane		32.59	620	J
	10.	10-Methylnonadecan	<u> </u>	34.56	530	J
	11. 7098-21-7	Tritetracontane		36.33	100	J
	12.	Unknown		36.95	420	J
	13. 630-06-8	Hexatriacontane		30.95	420	
	.14.					
	15.					
	16.					
	17.					
	18.					
	19.					
	20.					
	21.					
	22.					
	23.					
	24.					
	25.					
	26.					
	27.					
	28.					
	29.					
	30.					

The second

1

10

-È.

.

-

5

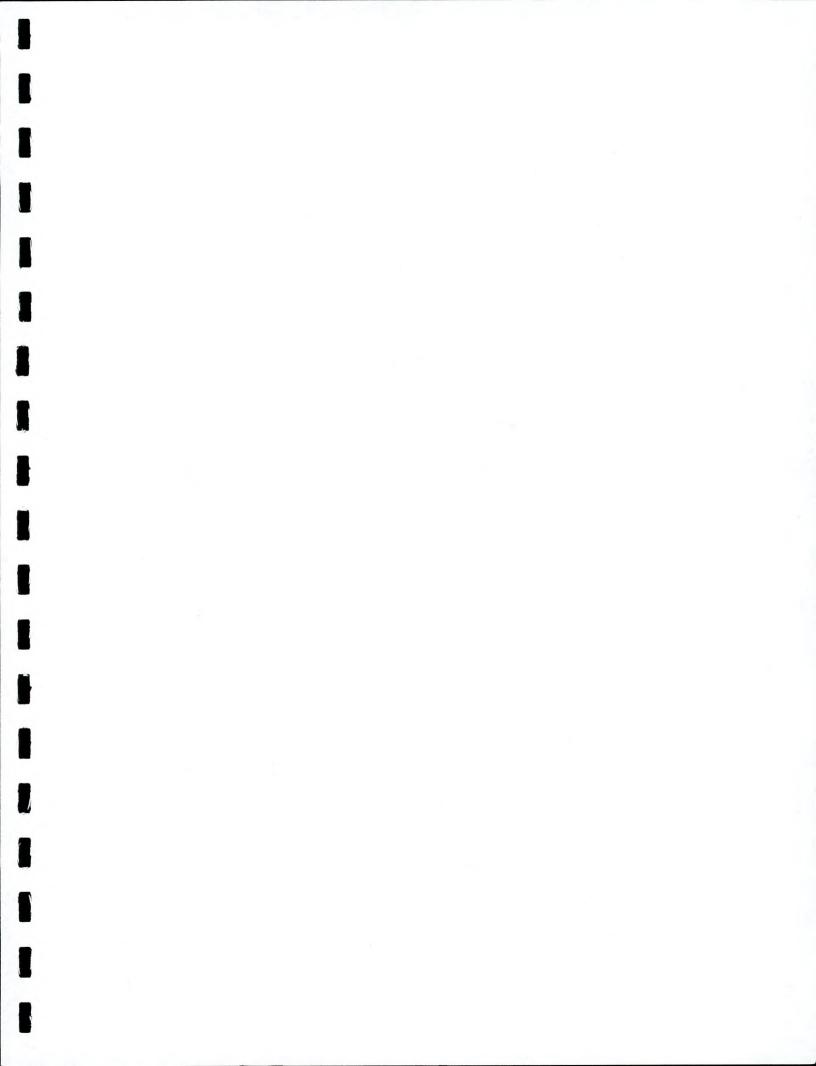
2.20

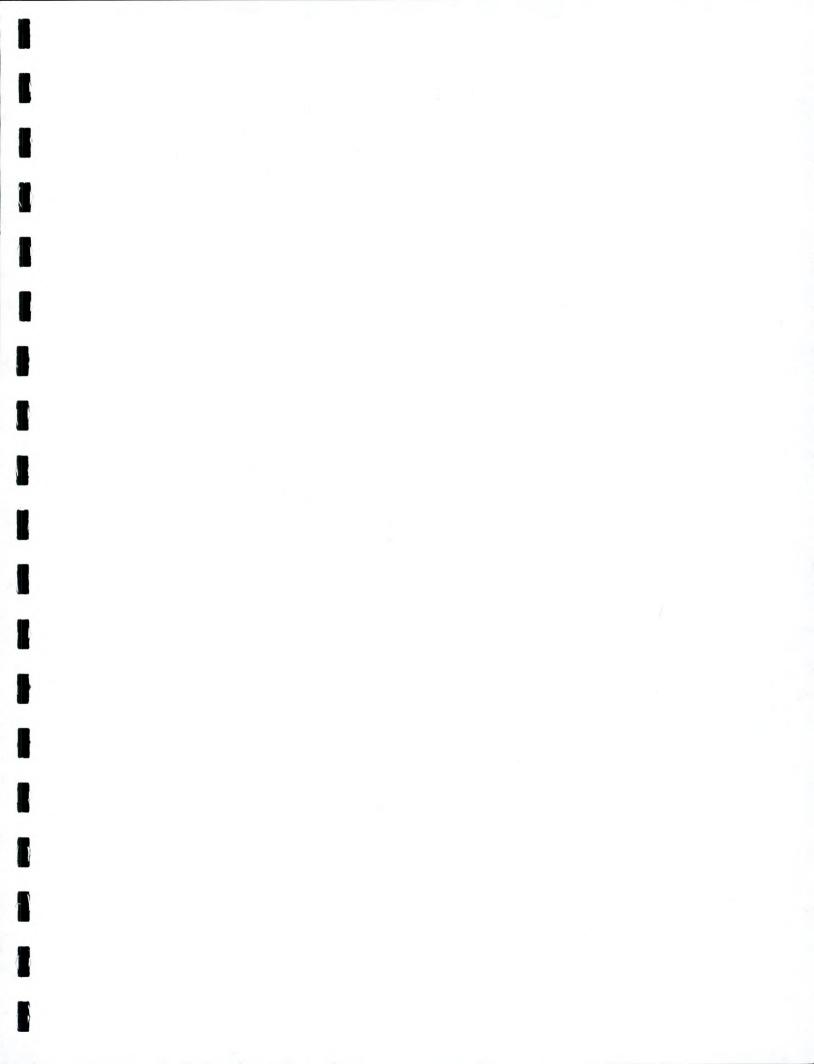
1

90

1B

EPA SAMPLE NO


	SEMIVOLATILE ORGANIC	S ANALYS	IS DATA SHEET	B8'6'
Lab Name: CHEMTE	СН	Contract:	IVI ENVIRONMEN	
Lab Code: CHEM	Case No.: L3355	SAS No.:	LB12361	SDG No.: MW1
Matrix: (soil/water)	SOIL		Lab Sample ID:	025
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	BS030626.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: 16	decanted: (Y/N):	N	Date Extracted:	3/1/01
			Date Analyzed:	3/7/01
Injection Volume:			Dilution Factor:	1.0
GPC Cleanup: (Y/N)				
		Concentratio	on Units:	
CAS No.	Compound (ug/L or ug/K	(g) <u>ug/Kg</u>	Q
108-95-2	Phenol		400	U
111-44-4	bis(2-Chloroethyl)ether		400	U
95-57-8	2-Chlorophenol		400	U
95-50-1	1,2-Dichlorobenzene		400	U
541-73-1	1,3-Dichlorobenzene		400	U
106-46-7	1,4-Dichlorobenzene	400		U
95-48-7	2-Methylphenol		400	U
108-60-1	2,2'-oxybis(1-Chloropropane)		400	U
65794-96-9	3+4-Methylphenols		400	U
621-64-7	N-Nitroso-di-n-propylamine		400	U
67-72-1	Hexachloroethane		400	U
98-95-3	Nitrobenzene		400	U
78-59-1	Isophorone		400	U
88-75-5	2-Nitrophenol		400	U
105-67-9	2,4-Dimethylphenol		400	U
111-91-1	bis(2-Chloroethoxy)methane		400	UUU
120-83-2	2,4-Dichlorophenol		400	U
120-82-1	1,2,4-Trichlorobenzene		400	
91-20-3	Naphthalene	+	400 400	U
106-47-8	4-Chloroaniline		400	U
87-68-3	Hexachlorobutadiene		400	U
59-50-7	4-Chloro-3-methylphenol		400	U
91-57-6	2-Methylnaphthalene		400	U
77-47-4	Hexachlorocyclopentadiene		400	
88-06-2	2,4,6-Trichlorophenol		990	U
95-95-4	2,4,5-Trichlorophenol	+	400	U
91-58-7	2-Chloronaphthalene 2-Nitroaniline		990	U
88-74-4	Dimethylphthalate		400	U
131-11-3	Acenaphthylene	+	400	U
208-96-8 606-20-2	2,6-Dinitrotoluene		400	U
99-09-2	3-Nitroaniline		990	U
83-32-9	Acenaphthene		400	U
03-32-9	Acchapitalene			


1.24

1

F

Form I SV-1

EPA SAMPLE NO.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	SEIVIVOLATILE	URGANICS ANAL IS	IO DATA ONLET	E	38'6'
Lab Name: CHEM	TECH	Contract:	IVI ENVIRONMENT	TAL	
Lab Code: CHEN	Case No.: L	3355 SAS No.:	LB12361	SDG No.	MW1
Matrix: (soil/water)	SOIL		Lab Sample ID:	025	-
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	BS030626.	D
Level: (low/med)	LOW		Date Received:	2/27/01	-
% Moisture: 16	deca	nted: (Y/N): N	Date Extracted:	3/1/01	
	ct Volume: 500 (i	JL)	Date Analyzed:	3/7/01	
Injection Volume:	2.0 (uL)		Dilution Factor:	1.0	_
GPC Cleanup: (Y/N		pH:			
		Concentrati	on Units:		
CAS No.	Compound	(ug/L or ug/k	(g) ug/Kg	Q	
51-28-5	2,4-Dinitrophenol		990	U	1
100-02-7	4-Nitrophenol		990	U	1
132-64-9	Dibenzofuran		400	U	1
121-14-2	2,4-Dinitrotoluene		400	U	1
84-66-2	Diethylphthalate		400]
7005-72-3		vlether	400]
86-73-7			400	U]
100-01-6	4-Nitroaniline		990	U	
534-52-1	4,6-Dinitro-2-methylp	henol	990	U	
86-30-6	N-Nitrosodiphenylam		400	UU	
101-55-3	4-Bromophenyl-pher		400		1
118-74-1	Hexachlorobenzene		400		4
87-86-5	Pentachlorophenol		990	UU	_
85-01-8	Phenanthrene		400 400		_
120-12-7	Anthracene				_
86-74-8	Carbazole		400	U	4
84-74-2	Di-n-butylphthalate		100	J	-
206-44-0	Fluoranthene		55	J	-
129-00-0	Pyrene		50		-
85-68-7	Butylbenzylphthalate		400		-
91-94-1	3,3'-Dichlorobenzidir		400		-
56-55-3	Benzo(a)anthracene		400	U	
218-01-9	Chrysene		400	U	-
117-81-7	bis(2-Ethylhexyl)phth	nalate	400	U	
117-84-0	Di-n-octyl phthalate		400 400	U	-
205-99-2	Benzo(b)fluoranthen		400		-
207-08-9	Benzo(k)fluoranthen	e	400		-
50-32-8	Benzo(a)pyrene		400	U	-
193-39-5	Indeno(1,2,3-cd)pyre		400		-
53-70-3	Dibenzo(a,h)anthrac		400	U	-
191-24-2	Benzo(g,h,i)perylene	:	400		_

(1) - Cannot be separated from Diphenylamine

Form I SV-2

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		TENTATIVELY IDENT	IFIED COMF	POUNDS		B8'6'
_ab Name: <u>CHEMT</u>	ECH		Contract:	IVI ENVIF	RONMEN	ITAL
_ab Code: <u>CHEM</u>		Case No.: L3355	SAS No.:	LB12361		SDG No.: MW
Matrix: (soil/water)	SOIL	_		Lab Sa	mple ID:	O25
Sample wt/vol:	30.0	(g/mL) G		Lab	File ID:	BS030626.D
Level: (low/med)	LOW			Date R	eceived:	2/27/01
% Moisture: 16		decanted: (Y/N)	Ν			3/1/01
Concentrated Extract		(uL)				3/7/01
Injection Volume:						1.0
GPC Cleanup: (Y/N)		-				
		-		. I luiter		
Number TICs found:	19	C		η Units: g/Kg) ι		
Number HCS lound.	19	-	(ug/L of ug	(//y) <u>(</u>	iy/ry	
	CAS Number	Compoun	d Name	RT Es	st. Conc.	Q
	1. 79-34-5	Ethane, 1,1,2,2-tetra	chloro-	6.59	130	J
	2. 19047-85-9	Phosphonic acid, dio	ctadecyl	18.66	84	J
	3. 60-33-3	9,12-Octadecadienoic acid (Z		20.84	120	J
	4. 2136-70-1	Ethanol, 2-(tetradecyloxy)-		23.51	260	J
	5. 629-99-2	Pentacosane Heneicosane		24.84	160	J
	6. 629-94-7			25.47	260	J
	7.	Unknown		25.79	110	J
	8. 55045-08-4	Dodecane, 2-methyl-6-propyl-		26.09	490	J
	9. 7206-19-1	3-Octadecene, (E)-		26.45	120	J
	10. 629-97-0	Docosane		26.78	430	J
	11. 638-68-6	Triacontane		27.58	520	J
	12.	Unknown		27.71	200	J
	13. 629-78-7	Heptadecane		28.52	660	J
- 1	14. 7098-22-8	Tetratetracontane		29.63	610	J
	15. 544-85-4	Dotriacontane		30.97	590	J
	16. 14167-59-0	Tetratriacontane		32.58	450	J
	17. 7098-21-7	Tritetracontane		34.55	350	J
	18.	Unknown		36.33	95	J
	19. 14167-59-0	Tetratriacontane		36.91	230	J
	20.					
	21.					
	22.					
	23.					
	24.					
	25.					
	26.					
	27.					
	28.					
	29.					
	30.					

FORM I SV-TIC

1B

EPA SAMPLE NO.

Г

SEMIVOLATILE	ORGANICS ANALYSIS	S DATA SHEET

			VOLATILE OROAN		IVI ENVIRONMEN	B8D'6'
Lab Name	e: <u>CHEMTEC</u>					
Lab Code	CHEM	_ Ca	ase No.: L3355	SAS No.:	LB12361	SDG No.: MW1
Matrix: (s	soil/water)	SOIL			Lab Sample ID:	026
Sample w	vt/vol:	30.0	(g/mL) <u>G</u>		Lab File ID:	BS030627.D
Level:	(low/med)	LOW			Date Received:	2/27/01
	re: 9		decanted: (Y/N):	N	Date Extracted	3/1/01
	ated Extract Vo	-	500 (uL)		Date Analyzed	3/7/01
	Volume:	2.0	(uL)		Dilution Factor	1.0
•	anup: (Y/N)	Y	pH			
	a			Concentrat	ion Units:	
	CAS No.	Compound		(ug/L or ug/l		Q
	108-95-2	Phenol		1	370	U
	111-44-4		oethyl)ether		370	U
	95-57-8	2-Chloroph			370	U
	95-50-1	1,2-Dichlor			370	U
	541-73-1	1,3-Dichlor			370	U
	106-46-7	1,4-Dichlorobenzene			370	U
	95-48-7	2-Methylph		370		U
	108-60-1		(1-Chloropropane)		370	U
	65794-96-9	3+4-Methy			370	U
	621-64-7		di-n-propylamine		370	U
	67-72-1	Hexachlor		370		U
1	98-95-3	Nitrobenze			370	U
	78-59-1	Isophoron			370	U
	88-75-5	2-Nitrophe			370	U
	105-67-9	2,4-Dimet			370	U
	111-91-1		roethoxy)methane		370	U
	120-83-2	2,4-Dichlo			370	U
	120-82-1		lorobenzene		370	U
	91-20-3	Naphthale			370	U
	106-47-8	4-Chloroa	niline		370	U
	87-68-3	Hexachlor	obutadiene		370	U
	59-50-7	4-Chloro-3	-methylphenol		370	U
	91-57-6	2-Methyln	aphthalene		370	U
	77-47-4	Hexachlor	ocyclopentadiene		370	U
	88-06-2	2,4,6-Tricl	nlorophenol		370	U
	95-95-4	2,4,5-Tricl	nlorophenol		920	U
	91-58-7		aphthalene		370	U
	88-74-4	2-Nitroani			920	U
	131-11-3	Dimethylp			370	U
	208-96-8	Acenapht			370	U
	606-20-2	2,6-Dinitro			370	U
	99-09-2	3-Nitroani			920	U
	83-32-9	Acenapht	nene		370	U

tion of the second

Man and Man

.....

1C

EPA SAMPLE NO.

SEMIVOLATILE	ORGANICS ANALYSIS	DATA SHEET
--------------	-------------------	------------

				B8D'6'
Lab Name	e: CHEMTEC	Н	Contract: IVI ENVIRONMEN	
Lab Code	CHEM	Case No.: L3355	SAS No.: LB12361	SDG No.: MW1
Matrix: (s	soil/water)	SOIL	Lab Sample ID:	O26
Sample w	/t/vol:	30.0 (g/mL) <u>G</u>	Lab File ID:	BS030627.D
Level: ((low/med)	LOW	Date Received:	2/27/01
% Moistu	re: 9	decanted: (Y/N):	N Date Extracted:	3/1/01
Concentra	ated Extract Vo	- lume:500(uL)	Date Analyzed:	3/7/01
Injection V	Volume:	2.0 (uL)	Dilution Factor:	1.0
GPC Clea	anup: (Y/N)	Y pH:	·	
	CAS No.		Concentration Units: (ug/L or ug/Kg) ug/Kg_	Q
Г	51-28-5	2,4-Dinitrophenol	920	U
	100-02-7	4-Nitrophenol	920	U
	132-64-9	Dibenzofuran	370	U
	121-14-2	2,4-Dinitrotoluene	370	U
	84-66-2	Diethylphthalate	370	U
[7005-72-3	4-Chlorophenyl-phenylether	370	U
	86-73-7	Fluorene	370	U
	100-01-6	4-Nitroaniline	920	U
L	534-52-1	4,6-Dinitro-2-methylphenol	920	U
	86-30-6	N-Nitrosodiphenylamine	370	UUU
	101-55-3	4-Bromophenyl-phenylether	370 370	U
	118-74-1	Hexachlorobenzene	920	U
	87-86-5	Pentachlorophenol Phenanthrene	62	J
	85-01-8 120-12-7	Anthracene	370	U
	86-74-8	Carbazole	370	U
	84-74-2	Di-n-butylphthalate	370	U
	206-44-0	Fluoranthene	95	J
	129-00-0	Pyrene	100	J
	85-68-7	Butylbenzylphthalate	370	U
	91-94-1	3,3'-Dichlorobenzidine	370	U
	56-55-3	Benzo(a)anthracene	40	J
	218-01-9	Chrysene	55	J
	117-81-7	bis(2-Ethylhexyl)phthalate	370	U
	117-84-0	Di-n-octyl phthalate	370	U
	205-99-2	Benzo(b)fluoranthene	65	J
	207-08-9	Benzo(k)fluoranthene	370	U
. 13	50-32-8	Benzo(a)pyrene	38	J
	193-39-5	Indeno(1,2,3-cd)pyrene	370	UUU
	53-70-3	Dibenzo(a,h)anthracene	370	U
	191-24-2	Benzo(g,h,i)perylene	370	

(1) - Cannot be separated from Diphenylamine

Form I SV-2

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	Т	ENTATIVELY IDENTI	FIED COMP	OUNDS		B8	3D'6'
Lab Name: CHEMT	ECH		Contract:	IVI ENV		TAL	
Lab Code: CHEM		Case No.: <u>L3355</u>	SAS No.:	LB1236	1	SDG No.:	MW1
Matrix: (soil/water)	SOIL	-		Lab S	Sample ID:	O26	
Sample wt/vol:	30.0	(g/mL) <u>G</u>		L	ab File ID:	BS030627	.D
Level: (low/med)	LOW	-		Date	Received:	2/27/01	
% Moisture: 9		decanted: (Y/N)	N	Date	Extracted:	3/1/01	
Concentrated Extract	Volume:	(uL)		Date	Analyzed:	3/7/01	
Injection Volume:	2.0	_(uL)		Diluti	on Factor:	1.0	
GPC Cleanup: (Y/N)	Y	pH:					
		C	oncentration	Units:			
Number TICs found:	20	<u>.</u>	(ug/L or ug	J/Kg)	ug/Kg	(
	CAS Number	Compound	Name	RT	Est. Conc.	Q]
	1. 121-00-6	3-tert-Butyl-4-hydroxy	anisol	14.47	87	J]
	2. 57-10-3	Hexadecanoic acid		19.38		J	
	3. 60-33-3	9,12-Octadecadienoi	c acid (Z	20.83	95	J	
	4.	Unknown		22.88	75	J	
	5. 629-96-9	1-Eicosanol		23.49	260	J	
	6. 629-62-9	Pentadecane		24.83	150	J	
	7. 638-67-5	Tricosane		25.47	310	J	4
	8. 4602-84-0	2,6,10-Dodecatrien-1	-ol, 3,7	25.62	440	J	4
	9. 629-78-7	Heptadecane		26.10	180	J J	-
	10. 192-97-2	Benzo[e]pyrene	15 totro	26.33	100 140	J	-
	11. 54833-48-6	Heptadecane, 2,6,10	15-tetra	26.78 27.15	140	J	-
	12.	Unknown Tetratetracontane		27.15	250	J	1
	13. 7098-22-8 14. 53584-60-4	28-Nor-17.alpha.(H)-	honane	27.73	340	J	1
	15. 112-95-8	Eicosane	lopane	28.51	380	J	1
	16.	Unknown		29.55	160	J	1
1	17.	Unknown		29.64	250	J	1
	18. 593-49-7	Heptacosane		30.96	140	J	1
	19.	Unknown		32.56	120	J	1
	20.	Unknown		34.50	84	J	1
	21.]
	22.]
	23.]
	24.						
	25.						
	26.						1
	27.						1
	28.						1
	29.						1
	30.						

G .

FORM I SV-TIC

1B

EPA SAMPLE NO.

ſ

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

Lab Name: CHEMTE	ECH	Contract: IVI ENVIRONMEN	B8D'6'RE
Lab Code: CHEM	Case No.: L3355	SAS No.: LB12361	SDG No.: MW1
Matrix: (soil/water)		Lab Sample ID:	
	30.0 (g/mL) G	Lab File ID:	BS030732.D
Level: (low/med)	LOW	Date Received:	2/27/01
% Moisture: 9	decanted: (Y/N)	. N Date Extracted:	3/1/01
Concentrated Extract	/olume:500(uL)	Date Analyzed:	3/8/01
Injection Volume:	(uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	у рН	:	
	Compound	Concentration Units: (ug/L or ug/Kg) ug/Kg	Q
CAS No.	1		
108-95-2	Phenol	370	U
111-44-4	bis(2-Chloroethyl)ether	370	U
95-57-8	2-Chlorophenol	370	U
95-50-1	1,2-Dichlorobenzene	370	U
541-73-1	1,3-Dichlorobenzene	370	U
106-46-7	1,4-Dichlorobenzene	370	U
95-48-7	2-Methylphenol	370	U
108-60-1	2,2'-oxybis(1-Chloropropane)	370	U
65794-96-9	3+4-Methylphenols	370	U
621-64-7	N-Nitroso-di-n-propylamine	370	U
67-72-1	Hexachloroethane	370	U
98-95-3	Nitrobenzene	370	U
78-59-1	Isophorone	370	U
88-75-5	2-Nitrophenol	370	U
105-67-9	2,4-Dimethylphenol	370	U
111-91-1	bis(2-Chloroethoxy)methane	370	U
120-83-2	2,4-Dichlorophenol	370	U
120-82-1	1,2,4-Trichlorobenzene	370	U
91-20-3	Naphthalene	370	U
106-47-8	4-Chloroaniline	370	U
87-68-3	Hexachlorobutadiene	370	U
59-50-7	4-Chloro-3-methylphenol	370	U
91-57-6	2-Methylnaphthalene	370	U
77-47-4	Hexachlorocyclopentadiene	370	U
88-06-2	2,4,6-Trichlorophenol	370	U
95-95-4	2,4,5-Trichlorophenol	920	U
91-58-7	2-Chloronaphthalene	370	U
88-74-4	2-Nitroaniline	920	U
131-11-3	Dimethylphthalate	370	U
208-96-8	Acenaphthylene	370	U
606-20-2	2,6-Dinitrotoluene	370	U
99-09-2	3-Nitroaniline	920	U
83-32-9	Acenaphthene	370	U

11.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

			A A A A A A A A A A A A A A A A A A A	
	SEMIVOLATILE ORGANIC	CS ANALYS	SIS DATA SHEET	B8D'6'RE
Lab Name: CHEMTE	СН	Contract:	IVI ENVIRONMENT	
Lab Code: CHEM	Case No.: L3355	SAS No.:	LB12361	SDG No.: MW1
Matrix: (soil/water)			Lab Sample ID:	
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	BS030732.D
Level: (low/med)	LOW		Date Received:	2/27/01
% Moisture: 9	decanted: (Y/N):	<u>N</u>	Date Extracted:	3/1/01
Concentrated Extract V	olume: <u>500</u> (uL)		Date Analyzed:	3/8/01
Injection Volume:	(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	Y pH:			
		Concentrat		
CAS No.	Compound	ug/L or ug/l		Q
51-28-5	2,4-Dinitrophenol	7	920	U
100-02-7	4-Nitrophenol		920	U
132-64-9	Dibenzofuran		370	U
121-14-2	2,4-Dinitrotoluene		370	U
84-66-2	Diethylphthalate		370	U
7005-72-3	4-Chlorophenyl-phenylether		370	U
86-73-7	Fluorene		370	U
100-01-6	4-Nitroaniline		920	U
534-52-1	4,6-Dinitro-2-methylphenol		920	U
86-30-6	N-Nitrosodiphenylamine		370	U
101-55-3	4-Bromophenyl-phenylether		370	U
118-74-1	Hexachlorobenzene		370	U
87-86-5	Pentachlorophenol		920	U
85-01-8	Phenanthrene		62	J
120-12-7	Anthracene		370	U
86-74-8	Carbazole		370	U
84-74-2	Di-n-butylphthalate		370	U
206-44-0	Fluoranthene		100	J
129-00-0	Pyrene		100	J
85-68-7	Butylbenzylphthalate		370	U
91-94-1	3,3'-Dichlorobenzidine		370	U
56-55-3	Benzo(a)anthracene		39	J
218-01-9	Chrysene		51	J
117-81-7	bis(2-Ethylhexyl)phthalate		370	U
117-84-0	Di-n-octyl phthalate		370	U
205-99-2	Benzo(b)fluoranthene		75	J
207-08-9	Benzo(k)fluoranthene		370	U
50-32-8	Benzo(a)pyrene		39	J
193-39-5	Indeno(1,2,3-cd)pyrene		370	U
53-70-3	Dibenzo(a,h)anthracene	1	370	U
191-24-2	Benzo(g,h,i)perylene		370	U
131-24-2	Denzo(g,n,)peryone	1		

(1) - Cannot be separated from Diphenylamine

22

1

£

Form I SV-2

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOLINDS

		OLATILE ORGANICS			B8D'6'RE
Lab Name: CHEMT	ECH		Contract:	IVI ENVIRONMEN	ITAL
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB12361	SDG No.: MW1
Matrix: (soil/water)	SOIL	-		Lab Sample ID:	O26RE
Sample wt/vol:	30.0	(g/mL) <u>G</u>		Lab File ID:	BS030732.D
Level: (low/med)	LOW	_		Date Received:	2/27/01
% Moisture: 9		decanted: (Y/N)	N	Date Extracted:	3/1/01
Concentrated Extract	Volume:	(uL)		Date Analyzed:	3/8/01
Injection Volume:	2.0	_(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	Y	pH:			
		C	oncentration	Units:	
Number TICs found:	14 (/Kg) _ug/Kg_	
	CAS Number	Compound	Name	RT Est. Conc.	Q
	1. 57-10-3	Hexadecanoic acid		19.35 190	J
	2. 74685-30-6	5-Eicosene, (E)-		23.48 240	J
	3.	Unknown		25.41 120	J
	4. 629-92-5	Nonadecane		25.44 190	J
	5. 36237-66-8	6,10,14-Hexadecatrie	en-1-ol.	25.59 350	J
	6. 638-67-5	Tricosane		26.07 180	J
	7. 629-97-0	Docosane		26.75 240	J
	8. 629-94-7	Heneicosane		27.55 210	J
	9. 55401-75-7		yltetrade	27.69 200	J
	10. 629-78-7	Heptadecane		28.45 96	J
	11.	Unknown		28.47 210	J
	12. 593-45-3	Octadecane		29.58 130	J
	13. 3386-33-2	Octadecane, 1-chloro)-	30.90 120	J
	14. 544-85-4	Dotriacontane		32.49 77	J
	15.				
	16.				
	17.				
	18.				
	19.				
	20.				
	21.				
	22.				
	23.				
	24.				+
	25.				+
	26.				
	27.				+
	28.				+
	29.				+
	30.			II	

-

San de antigen de

Variant And

City Contract

E

.

FORM I SV-TIC

1B

EPA SAMPLE NO.

ID	
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET	

		OLIM				B13'6'
Lab Name	e: CHEMTEC	H		Contract:	IVI ENVIRONMEN	
Lab Code	CHEM	. Ca	se No.: L3355	SAS No.:	LB12321	SDG No.: MW1
Matrix: (s	soil/water)	SOIL			Lab Sample ID	027
Sample w	vt/vol:	30.0	(g/mL) G		Lab File ID	BS030247.D
	(low/med)	LOW			Date Received	2/27/01
% Moistu	re: 17		decanted: (Y/N):	N	Date Extracted	3/1/01
Concentr	ated Extract Vo	lume:	500 (uL)		Date Analyzed	3/4/01
Injection '	Volume:	2.0	(uL)		Dilution Factor	1.0
GPC Clea	anup: (Y/N)	Y	pH:			
				Concentrati	on Units:	
	CAS No.	Compound	(ug/L or ug/ł	(g) ug/Kg	Q
	108-95-2	Phenol		1	400	U
	111-44-4		oethyl)ether		400	U
	95-57-8	2-Chloroph			400	U
	95-50-1	1,2-Dichlor			400	U
	541-73-1	1,3-Dichlor			400	U
	106-46-7	1,4-Dichlor	obenzene		400	U
	95-48-7	2-Methylph			400	U
	108-60-1		(1-Chloropropane)		400	U
	65794-96-9	3+4-Methy			400	U
	621-64-7	N-Nitroso-	li-n-propylamine		400	U
	67-72-1	Hexachloro	bethane		400	U
	98-95-3	Nitrobenze	ne		400	U
	78-59-1	Isophorone	2		400	U
	88-75-5	2-Nitrophe	nol		400	U
15	105-67-9	2,4-Dimeth	ylphenol		400	U
	111-91-1	bis(2-Chlor	oethoxy)methane		400	U
	120-83-2	2,4-Dichlor	ophenol		400	U
	120-82-1	1,2,4-Trich	lorobenzene		400	U
10	91-20-3	Naphthaler			400	U
• <u>]</u>	106-47-8	4-Chloroar			400	U
	87-68-3	Hexachlor			400	U
	59-50-7		-methylphenol		400	U
	91-57-6	2-Methylna			400	U
	77-47-4		ocyclopentadiene		400	U
	88-06-2	2,4,6-Trich			400	U
	95-95-4		lorophenol		1000	U
	91-58-7	2-Chlorona			400	U
	88-74-4	2-Nitroanili			1000	U
	131-11-3	Dimethylph			400	U
	208-96-8	Acenaphth			400	U
	606-20-2	2,6-Dinitro			400	U
	99-09-2	3-Nitroanil			1000	UUU
	83-32-9	Acenaphth	ene	1	400	

*

N/c + Version

Suale Constant

1C

EPA SAMPLE NO.

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
--------------	----------	----------	------	-------

			B13'6'
Lab Name: CHEMTEC	H	Contract: IVI ENVIRONMENT	
Lab Code: CHEM	Case No.: L3355	SAS No.: LB12321	SDG No.: MW1
Matrix: (soil/water)	SOIL	Lab Sample ID:	027
Sample wt/vol:	30.0 (g/mL) G	Lab File ID:	BS030247.D
Level: (low/med)	LOW	Date Received:	2/27/01
•	decanted: (Y/N)	N Date Extracted:	3/1/01
		Date Analyzed:	
Concentrated Extract Vo		Dilution Factor:	
Injection Volume:	(uL)		
GPC Cleanup: (Y/N)	үрн	:	
		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg)ug/Kg	Q
51-28-5	2,4-Dinitrophenol	1000	U
100-02-7	4-Nitrophenol	1000	U
132-64-9	Dibenzofuran	400	U
121-14-2	2,4-Dinitrotoluene	400	U
84-66-2	Diethylphthalate	400	U
7005-72-3	4-Chlorophenyl-phenylether	400	U
86-73-7	Fluorene	400	U
100-01-6	4-Nitroaniline	1000	U
534-52-1	4,6-Dinitro-2-methylphenol	1000	U
86-30-6	N-Nitrosodiphenylamine	400	U
101-55-3	4-Bromophenyl-phenylether	400	U
118-74-1	Hexachlorobenzene	400	U
87-86-5	Pentachlorophenol	1000	U
85-01-8	Phenanthrene	400	U
120-12-7	Anthracene	400	U
86-74-8	Carbazole	400	U
84-74-2	Di-n-butylphthalate	140	J
206-44-0	Fluoranthene	400	U
129-00-0	Pyrene	400 400	U
85-68-7	Butylbenzylphthalate		
91-94-1	3,3'-Dichlorobenzidine	400	
56-55-3	Benzo(a)anthracene	400	U
218-01-9	Chrysene	400	
117-81-7	bis(2-Ethylhexyl)phthalate	400	
117-84-0	Di-n-octyl phthalate	400	U
205-99-2	Benzo(b)fluoranthene	400	U
207-08-9	Benzo(k)fluoranthene	400	U
50-32-8	Benzo(a)pyrene	400	U
193-39-5	Indeno(1,2,3-cd)pyrene	400	U
53-70-3	Dibenzo(a,h)anthracene	400	U
191-24-2	Benzo(g,h,i)perylene	400	

(1) - Cannot be separated from Diphenylamine

I

Form I SV-2

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	1	ENTATIVELY IDENTIF	-IED COMP	OUNDS		B13'6'
Lab Name: CHEMTE	СН		Contract:	IVI ENVI	RONMEN	TAL
Lab Code: CHEM		Case No.: L3355	SAS No.:	LB12321		SDG No.: MW1
Matrix: (soil/water)	SOIL			Lab Sa	ample ID:	027
Sample wt/vol:	30.0	(g/mL) <u>G</u>		La	b File ID:	BS030247.D
Level: (low/med)	LOW			Date F	Received:	2/27/01
% Moisture: 17		decanted: (Y/N)_	N	Date E	Extracted:	3/1/01
					Analyzed:	
Concentrated Extract						
Injection Volume:	2.0	_(uL)		Dilutic	on Factor.	1.0
GPC Cleanup: (Y/N)	ΥΥ	- pH: _				
		C	oncentration			
Number TICs found:	12	<u>.</u>	(ug/L or ug	g/Kg) _	ug/Kg	
Γ	CAS Number	Compound	Name	RT E	Est. Conc.	Q
	1. 112-92-5	1-Octadecanol		18.67	100	J
	2. 4570-41-6	2-Benzoxazolamine		19.95	150	J
ľ	3. 1454-84-8	1-Nonadecanol		20.43	330	J
	4. 593-03-3	3-Hexadecanol		21.07	140	J
	5. 6624-79-9	1-Dotriacontanol		23.50	200	J
	6. 638-68-6	Triacontane		26.09	83	J
	7. 630-06-8	Hexatriacontane		26.78	99	J
	8. 7098-21-7	Tritetracontane		27.59	92	J
	9. 14167-59-0	Tetratriacontane		28.52	92	J
	10. 630-07-9	Pentatriacontane		29.62	100 88	J
	11.	Unknown		30.97 32.57	84	J
	12.	Unknown		32.57	04	<u> </u>
	13.					
	<u>14.</u> 15.					
	<u>15.</u> 16.					
	17.					
	18.					
	19.					
	20.					
	21.					
	22.					
	23.					
	24.					
	25.					
	26.					
	27.					
	28.					
	29.					
	30.					

FORM I SV-TIC

EPA SAMPLE NO.

MW1

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.:

SAS No.: SDG No.: L3355

Matrix (soil/water): WATER

Lab Sample ID: L3355-01 S Date Received: 02/27/01

T

Level (low/med): LOW

% Solids:

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

		1					
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-57440-36-07440-38-27440-39-37440-41-77440-43-97440-70-27440-47-37440-47-37440-48-47440-50-87439-89-67439-92-1	Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	$\begin{array}{c} 11400 \\ 8.9 \\ 29.3 \\ 342 \\ 0.95 \\ 0.86 \\ 105000 \\ 120 \\ 7.2 \\ 42.8 \\ 60300 \\ 35.4 \\ 17200 \\ 697 \\ 1.0 \\ 25.9 \end{array}$	— в в	E		
Color Before:	BROWN	Clari	ty Before: CLO	UD.	Y	Te	xture:
Color After:	YELLOW	Clari	ty After: CLE	AR		Art	tifacts:
Comments:							

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Matrix (soil/water): WATER

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

0.0

Lab Sample ID: L3355-02 S

Date Received: 02/27/01

Level (low/med): LOW

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 26400 - N P 7440-36-0 Antimony 7.5 U P 7440-38-2 Arsenic 6.4 B P 7440-39-3 Barium 153 B P 7440-41-7 Beryllium 1.8 B P 7440-43-9 Cadmium 1.5 B P 7440-43-9 Calcium 51700 P P 7440-47-3 Chromium 84.4 P P 7440-50-8 Copper 38.9 P P 7439-89-6 Iron 51500 P P 7439-92-1 Lead 40.9 P P 7439-92-1 Lead 40.9 P P	
7429-90-5 Artuminum 20100 P 7440-36-0 Antimony 7.5 U P 7440-38-2 Arsenic 6.4 B P 7440-39-3 Barium 153 B P 7440-41-7 Beryllium 1.8 B P 7440-43-9 Cadmium 1.5 B P 7440-70-2 Calcium 51700 P 7440-47-3 Chromium 84.4 P 7440-48-4 Cobalt 37.0 B P 7440-50-8 Copper 38.9 P 7439-89-6 Iron 51500 P 7439-92-1 Lead 40.9 P	
7439-95-4Magnesrum19900P7439-96-5Manganese1080CV7439-97-6Mercury0.25CV7440-02-0Nickel79.4P7440-09-7Potassium11500E7782-49-2Selenium4.8U7440-22-4Silver1.6U7440-23-5Sodium37200P7440-28-0Thallium7.6B7440-62-2Vanadium44.4B7440-66-6Zinc234P	
Color Before: BROWN Clarity Before: CLOUDY Texture:	
Color After: YELLOW Clarity After: CLEAR Artifacts	3:
Comments:	

TALMET

.

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

SDG No.: L3355

ab Code: CHEMED Case No.: SAS No.: Matrix (soil/water): WATER

Lab Sample ID: L3355-03 S

Date Received: 02/27/01

LOW LOW

% Solids: 0.0

20.

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CD C No	Analyte	Concentration	С	Q	М	(
	CAS No.	-		_		P	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.50 54800 14.6 4.9 10.0 10500 12.0 6260 181 0.20 15.6	UUBBU BB UBBUU UB UBBUU UB	E	$\mathbf{r} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} h$	
		_l Clari	ty Before: CLC	DUE	ΟY	Te	exture:
Color Before:						Δr	rtifacts:
Color After:	YELLOW	Clar	ty After: CLE	SAL		111	
Comments:							

TALMET

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088 Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Matrix (soil/water): WATER

0.0

Date Received: 02/27/01

Lab Sample ID: L3355-04 S

T

LOW LOW

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	T:	1				
	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5	Aluminum	170000	-	N	P
	7440-36-0	Antimony	7.5	U		P
	7440-38-2	Arsenic	49.3			P
	7440-39-3	Barium	634			P
	7440-41-7	Beryllium	8.2			P
	7440-43-9	Cadmium	1.3	В		P
	7440-70-2	Calcium	56400			P
2	7440-47-3	Chromium	2040			P
	7440-48-4	Cobalt	132			P
	7440-50-8	Copper	589			P
	7439-89-6	Iron	503000			P
	7439-92-1	Lead	620			P
<u>.</u>	7439-95-4	Magnesium	55600			P
	7439-96-5	Manganese				P
	7439-97-6	Mercury	2.2			CV
	7440-02-0	Nickel	904			P
	7440-09-7	Potassium			E	P
	7782-49-2	Selenium	11.2			P
	7440-22-4	Silver	1.6	U		P
	7440-23-5	Sodium	30400			P
	7440-28-0	Thallium	21.1			P
	7440-62-2	Vanadium	187			P
	7440-66-6	Zinc	8730			P
				-		
	DDOUN	Clari	ty Before: CLO		Y	Texture:
Color Before:	BROWN	CIALI	cy berore. Cho	55		
Color After:	YELLOW	Clari	ty After: CLE	AR		Artifacts:
Comments:						

TALMET

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

B9

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

0.0

Lab Sample ID: L3355-05 S

T

Matrix (soil/water): WATER

Date Received: 02/27/01

Level (low/med): LOW

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-92-1 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-02-0 7440-02-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	4700 0.48 495	U B	N	P P P P P P P P P P P P P P P P P P P
Color Before:	BROWN	Clari	ty Before: CLO	UD.	Y	Texture:
Color After:	BROWN	Clari	ty After: CLE	AR		Artifacts:
Comments:						

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

0.0

Lab Sample ID: L3355-06 S

Matrix (soil/water): WATER

Date Received: 02/27/01

TT

Low/med): LOW

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.50 27200 6.3 3.4 6.8 5710 8.1 5450 313 0.20 9.5	UBBBU BBB UB UU BB	E	P P P P P P P P P P P P P P P P P P P
Color Before:	COLORLESS	Clari	ty Before: CLO	UD	Y	Texture:
Color After:	COLORLESS	Clari	ty After: CLE	AR		Artifacts:
Comments:						

TALMET

EPA SAMPLE NO.

B10D

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Lab Sample ID: L3355-07 S

Matrix (soil/water): WATER

Date Received: 02/27/01

evel (low/med): LOW

% Solids:

.

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	C	q	M	
	7400 00 5	Aluminum	3130	-	N	- <u>P</u>	
	7429-90-5	Antimony	7.5	U		P	
	7440-36-0	Arsenic	13.2			P	
	7440-38-2		45.6	B		P	
	7440-39-3	Barium		B		P	
	7440-41-7	Beryllium	0.10	U		P	
	7440-43-9	Cadmium				P	
	7440-70-2	Calcium	26000			P	
	7440-47-3	Chromium	4.8	B		P	
	7440-48-4	Cobalt	2.3	B		P	
	7440-50-8	Copper	5.5	В			
	7439-89-6	Iron	4690			P	
	7439-92-1	Lead	7.1			P	
	7439-95-4	Magnesium	5070			P	
	7439-96-5	Manganese				P	
	7439-97-6	Mercury	0.20	U		CV	
	7440-02-0	Nickel	8.1	B		P	
	7440-09-7	Potassium	7150		E	P	
	7782-49-2	Selenium	4.8	U		P	
	7440-22-4	Silver	1.6	U		P	
	7440-23-5	Sodium	21200			P	
		Thallium	5.2	U		P	
	7440-28-0	Vanadium	3.5	B		P	
	7440-62-2		34.9	-		P	
	7440-66-6	Zinc	51.5				
		_	.	'	I		Suttais
or Before:	COLORLESS	Clari	ty Before: CLO	UD	Y	Tex	ture:
or After:	COLORLESS	Clari	ty After: CLE	AR		Art	ifacts
nments:							

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355 Matrix (soil/water): WATER

Lab Sample ID: L3355-08 S

Date Received: 02/27/01

Level (low/med): LOW

% Solids:

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS NO.	Analyte	Concentration	C	Q	M
	7429-90-5	Aluminum	24700	-	N	- <u>P</u>
	7440-36-0	Antimony	7.5	U		P
	7440-38-2	Arsenic	11.9			P
	7440-39-3	Barium	136	B		P
	7440-41-7	Beryllium	1.3	B		P
	7440-43-9	Cadmium	0.50	U		P
	7440-70-2	Calcium	14700			P
	7440-47-3	Chromium	34.5			P
	7440-48-4	Cobalt	18.7	B		P
	7440-50-8	Copper	32.2			P
	7439-89-6	Iron	36300			P
	7439-92-1	Lead	37.6			P
	7439-95-4	Magnesium	11000			P
	7439-96-5	Manganese	704			P
	7439-97-6	Mercury	0.20	U		CV
	7440-02-0	Nickel	56.6			P
	7440-09-7	Potassium	7350		E	P
	7782-49-2	Selenium	7.9			P
	7440-22-4	Silver	1.6	U		P
	7440-23-5	Sodium	23900			P
	7440-28-0	Thallium	6.8	В		P
	7440-62-2	Vanadium	30.1	В		P
	7440-66-6	Zinc	227			P
				-		
Color Befor	e: BROWN	Clari	ty Before: CLO	UDY	Z	Texture:
Color After	: YELLOW	Clari	ty After: CLE	AR		Artifacts
Comments:						

TALMET

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

ab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Lab Sample ID: L3355-09 S

Date Received: 02/27/01

TT

Matrix (soil/water): WATER

evel (low/med): LOW

% Solids:

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

and a second		T				
	CAS No.	Analyte	Concentration	С	Q	М
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Sodium Thallium	0.86 51400 108 80.2 250 148000 223 27800 6580 0.85 173	B B B	E	P P <t< td=""></t<>
Color Before	: BROWN	Clari	ty Before: CLC	UD	Y	Texture:
Color After:		Clari	ty After: CLE	AR		Artifacts:

Comments:

TALMET

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Lab Sample ID: L3355-10 S

Date Received: 02/27/01

TT

Matrix (soil/water): WATER

evel (low/med): LOW

5.3

0.0 % Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	C	Q	M
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	44.3 279000 3160 1700 3580 2560000 2460 421000 70700 8.2 3910	В	E	P P P P P P P P P P P P P P P P P P P
Color Before:	BROWN	Clari	ty Before: CLO	UD.	Y	Texture:
Color After:	YELLOW	Clari	ty After: CLE	AR		Artifacts:
Comments:						

TALMET

EPA SAMPLE NO.

B14

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Matrix (soil/water): WATER

Lab Sample ID: L3355-11 S

Date Received: 02/27/01

Level (low/med): LOW

% Solids:

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	C	Q	M
	7429-90-5	Aluminum	1680000	-	N	P
	7429-90-5	Antimony	7.5	U		P
		Arsenic	637			P
	7440-38-2	Barium	21400			P
	7440-39-3	Beryllium				P
	7440-41-7	Cadmium	59.3			P
	7440-43-9	Calcium	337000			P
	7440-70-2	Chromium	2860			P
	7440-47-3	Cobalt	1940			P
	7440-48-4	Copper	4010			P
		Iron	3630000			P
	7439-89-6	Lead	3050			P
	7439-92-1	Magnesium				P
	7439-96-5	Manganese				P
	7439-90-5	Mercury	4.0			CV
	7440-02-0	Nickel	4060			P
	7440-02-0	Potassium	53600		E	P
	7782-49-2	Selenium	93.2			P
	7440-22-4	Silver	19.4			P
	7440-23-5	Sodium	20600			P
	7440-28-0	Thallium	270			P
	7440-62-2	Vanadium	772			P
	7440-66-6	Zinc	16600			P
	/ 110 00			. _		
or Before:	BROWN	Clari	ty Before: CLC	UD	Y	Texture:
		- 7	ty After: CLE	קעי		Artifacts:
lor After:	YELLOW	Cları	ty After: CLE	MI		
nments:						

EPA SAMPLE NO.

B18

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

hab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

0.0

Matrix (soil/water): WATER

Date Received: 02/27/01

Lab Sample ID: L3355-13 S

LOW (low/med):

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	C	Q	M
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-02-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	1.2 68400 188 395 362000 277 63300 22000 0.87 414	B	N	P P P P P P P P P P P P P P P P P P P
Color Before: Color After:	BROWN		ty Before: CLC ty After: CLE			Texture: Artifacts:
Comments:						

EPA SAMPLE NO.

FB22/23

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Lab Sample ID: L3355-16 S

Date Received: 02/27/01

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids:

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	С	Q	М
	7429-90-5	Aluminum	19.9	B	N	P
		Antimony	7.5	U	14	P
	7440-36-0		4.5	U		P
	7440-38-2	Arsenic	0.30	1 1		P
	7440-39-3	Barium	0.10			P
	7440-41-7					P
	7440-43-9	Cadmium	0.50	U		P
	7440-70-2	Calcium	3.1			P
	7440-47-3	Chromium	0.50			
	7440-48-4	Cobalt	1.1	U		P
	7440-50-8	Copper	1.2	U		P
	7439-89-6	Iron	23.7	В		P
	7439-92-1	Lead	1.5	U		P
	7439-95-4	Magnesium	5.5	U		P
	7439-96-5	Manganese	0.30	U		P
	7439-97-6	Mercury	0.20	1		CV
	7440-02-0	Nickel	1.6	U		P
	7440-09-7	Potassium	22.3	U	E	P
	7782-49-2		4.8	U		P
	7440-22-4		1.6	U		P
	7440-23-5		289	U		P
	7440-28-0		5.2	U		P
	7440-28-0		0.80			P
	7440-62-2	Zinc	8.2	B		P
	/440-66-6					
olor Before:	COLORLESS	Clari	ty Before: CLE	AR		Texture:
olor After:	COLORLESS	Clari	ty After: CLE	AR		Artifacts:
Slor Aller:	COLORDESS	CIUII				
omments:						

Narizi. ZUU: 2.0(FM

U.S. EPA - CLP 1

EPA SAMPLE NO.

B6

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088 Lab Code: CHEMED Case No.: SAS No.:

0.0

SDG No.: L3656

Matrix (soil/water): WATER

Lab Sample ID: L3656-01 S

Date Received: 03/23/01

Level (low/med): LOW % Solids:

.....

2

4.1

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS NO.	Analyte	Concentration	C	Q	M
	7440-70-2 7440-47-3 7440-48-4	Sodium Thallium	5.76 73100 2.3 24.8 1.2 615 1.5 13900 1390 0.2 26.1	B B B U U U B U U U U U U U U U U U		קיט עיט עיט עיט שישישישישישי אישי שישישישישישישישישישישישי אישי שישישישישישישישישישישישישישישישישיש
Color Before:	COLORLESS	Clar	ity Before: CLI	EAR		Texture:
Color After:		Clar	ity After: CLI	EAR		Artifacts:

Comments:

FORM I - IN

Mariz - 2000 - 2+1:50

U.S. EPA - CLP 1

EPA SAMPLE NO.

B8

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 58-W00-088 Lab Code: CHEMED Case No.: SAS No.:

.

SDG No.: L3656

Matrix (soil/water): WATER

Lab Sample ID: L3656-02 S

Level (low/med): LOW

0.0

Date Received: 03/23/01

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

Ĩ	CAS No.	Analyte	Concentration	C	Q	M
	7440-38-2 7440-39-3 7440-41-7	Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	0.50 39900 1.6 2.0 2.3 324 8.7 5400 397 0.2 5.6			P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.
Color Before:	COLORLESS	Clar	ity Before: CLI	EAR		Texture:
Color After:	COLORLESS	Clar	ity After: CL	EAF	2	Artifacts:
Comments:						

Comments:

FORM I - IN

Mar.27. 2001 2.30100 -

U.S. EPA - CLP 1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 58-W00-088

0.0

SDG No.: L3656

Lab Code: CHEMED Case No.: SAS No.:

Lab Sample ID: L3656-03 S

Date Received: 03/23/01

T-----T

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	7440-39-3	Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Concentration 78.8 9.8 4.5 26.6 0.10 0.50 75100		<u></u>	M P P P P P P P P P
	7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-65-5	Sodium Thallium	122 0.2 3.6	BBUU UB UU UB	r	P P P P P P P P P P P P P P P P P P P
Color Before:	COLORLESS	Clar	ity Before: CL	EAF	2	Texture:
Color After:	COLORLESS	Clar	ity After: CL	EAF	2	Artifacts:

Comments:

FORM I - IN

TALMET

War.11. 2001 2:36PM

U.S. EPA - CLP 1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088 Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3656

.

Matrix (scil/water): WATER

Lab Sample ID: L3656-04 S Date Received: 03/23/01

TT

Level (low/mad): LOW

% Solids: 0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-47-3 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7440-02-0	Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	48.2 7.5 5.8 87.3 0.10 0.50 108000 0.50 18.6 1.2 20.6 1.5 14700 5150 0.2 36.6	C HUBBUU UBUUU UB	Q	
	7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2	Selenium Silver Sodium Thallium Vanadium	4.8 1.6 58700 5.2 080	น น น		ט יט יט ים ט יס ים ט
Color Before:	7440-66-6	Clari	40.8 ty Before: CLE			Texture:
Color After:			ty After: CLE			Artifacts:

Comments:

FORM I - IN

TAIMET

Mar.27. 2001 1 21:58FM

U.S. EPA - CLP 1

EPA SAMPLE NC.

B13

INORGANIC ANALYSIS DATA SHEE	1	
------------------------------	---	--

Lab Name: CHEMTECH EDISÓN Contract: 68-WC0-038 Lab Code: CHEMED Case No.:

0.0

.

SAS NO.: SDG NO.: L3656

Lab Sample ID: L3656-05 S

Matrix (soil/water): WATER Date Received: 03/23/01

Level (low/med): LOW

& Solids:

Concentration Units (ug/L or mg/Kg dry weight): UG/L

Ţ	CAS No.	Analyte	Concentration		Q	M
		Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	$ \begin{array}{c} 0.30\\ 77500\\ 0.94\\ 6.4\\ 4.3\\ 45.0\\ 1.5\\ 6720\\ 3040\\ 0.2\\ 10.8\\ 10200\\ 4.8\\ 1.7\\ 17700\\ 5.2\\ \end{array} $	U BBBBU UB BBBU UB BU BUU BUU		
Color Before:	COLORLESS	Clar	ity Before: CL	EAR		Texture:
Color After:	COLORLESS	clar	ity After: CI	EAR		Artifacts:

Comments:

FORM I - IN

- 柳白子・五子・ ビッビト - ビ・タクト的

U.S. EPA - CLP 1

EPA SAMPLE NO.

B18

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088 Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3656 Matrix (soil/water): WATER

.

Lab Sample ID: L3656-06 S

Date Received: 03/23/01

Level (low/med): LOW

% Solids: 0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

+						
CAS No.	Analyte	Concentration		Q	M	
7429-90-	5 Aluminum	44.0	B		P	
7429-90-		7.5	U		P	
7440-38-		14.1			P	
7440-39-	-	30.6	B		P	
7440-41-		0.10	U		P	
7440-43-		0.50			P	
7440-70-		40000	1		P	
7440-10-		0.50	U		P	
7440-48-		20.4	B		P	
7440-48-		3.6	B		P	
7439-89-		61.0	B		P	
7439-89-		1.5	U		P	
	-	2750	B		P	
7439-95- 7439-96-	-				P	
7439-90-		0.2	JJ		CV	
7439-97-		17.0	B		P	
7440-02-					P	
		4.8	U		P	
7782-49		1.6	U		P	
7440-22		49500			P	
7440-23		5.2	U		P	
7440-28	•	0.80	U		P	
7440-62		18.3	B		P	
7440-66	-6 Zinc	_0.0	-			
			-1-	. 1	_ !	
Color Before: CCLORLES	s Clar:	ity Before: CLE	EAR		Te	xture:
Color After: COLORLES	s Clar	ity After: CLH	EAR	-	Ar	tifacts:

Comments:

FORM I - IN

CHEMTECH

már._/. 200 – 2×30€86

facsimile transmittal

Charles Real

. .

- WE 24-

DATE 3/27 C		
NAME: Chuc	KM. FAX# 914 694-2903	
COMPANY:	V.T. RE: Waters Edge	
	SENT BY :	
	Martha Guerra	
COMMENT:	metale data	
	voc data will le available	
	on 3/28/01.	
PROJECT #	L3456	
<u>2</u>	IF YOU DO NOT RECEIVE ALL PAGES, PLEASE CALL US AT (732) 225-4111 AS SOON AS POSSIBLE. 05 CAMPUS PLAZA 1. RARITAN CENTER. EDISON, NJ. 08837	
AND AND	UNINERS FOR THE ENVIRONMENT	

			TRANS	SACTION	REPOR	Т			
	FOR:				40	7 324		-01 03:3	1 PM
RECE	EIVE		~						
DATE	START	SENDE	R		PA	AGES	TIME	NOTE	
MAR-27	03:29 PM	630 7	762 0390	0		2	59"	ок	¢
*****	*****	*****	******	*****	:****	*****	******	******	*****
(
	44								

HEMT	ECH	110 Route 4 Englewood, NJ 07631 (cont FOT CREB)	206 Campus Pl Edison, NJ 088 (732) 225-4111	əza 1 37		CHEMTECH JC	13650	A8
	ODY RECORD	(201) 567-6868 Fax (201) 567-1333	Fax (732) 225-4	1110				
HAIN OF CUS	ODT ALCOND		ECT INFORMATION			BILLING	NFORMATION	
	CLIENT INFORMATION				Ť			
	REPORT TO BE SENT TO:	PROJECT NAME: W	uters Edg	e	BILL TO	1015	PO #	
COMPANY I	VI		, (3				
10	5 Corporate Parki) e Plainestate NYZIP: 106	C PROJECT NO: EL	015676		ADDRESS			
ADDRESS U	S Corporation	09 PROJECT MANAGEH	n.k. M	ullisar	CITY.		STATE ZIP	
on Whit	e PlaineSTATE NYZIP: 106	Of PROJECT MANAGEH	MULT				PHONE	
		LOCATION PORT	Dervis, 1	<u>١٢</u>	ATTENTION.		NALYSIS	
ATTENTION CI	nucr				R 45-140 3 4 5		7777	,
0,146	9600 FAX	PHONE	FAX.	DN DE	T. H. Welter T. H. Welter 4. 45 3. 4 5 2. 5	/ / /	111.	/
PHONE.	A TURNAROUND INFORMATION		USEPA CLP	1	XY V	111		1
AS	A D DAYS'	LI RESULTS ONLY	XNYS ASP "B"	135	1.5/		////	1
HARD COPY	ASAP DAYS. DAYS.	C NJ REDUCED	LINYS ASP "A"	538 6	2//	/ / /	///	
TO BE APPROV	ED BY CHEMTECH	I NJ CLP I EDD FORMAT.		1 / 2 /	3 / 4 / 5	16/7/	8 9 COM	44.40
" NORMAL TUR	VAROUND TIME - 14 DAYS		SAMPLE 2		PRESERVA	TIVES	← Specity I	
			SAMPLE 2				A - HCl C - H ₂ SO ₂ E - ICE	
SAMPLE	PROJECT SAMPLE IDENTIFICATION			1 2 3	4 5	6 7		
ID				2			Filer	8
1 G)	BB	Walk X 31.	22 1	X		•	Filter	
and the second s	B 8	1000 71					Filter	
ford and and and	B9 Do not	with 1"		×			Filter	- 1
4. 04	B12 - Preserve.	Wat X "	"	X			Filte	
- et		wat X h	N 1	X			DEFILEI	
	BIS	water X "	R 1	*		+++		
6. C'b	314	Work X "	. 5	X		++-		
7 07	<u>B20</u>		1 2	X			INCOV	
8 08	B 21	BE DOCUMENTED BELOW E	CH TIME SAMPLES C	HANGE POSSE	SSION INCLUDI	NG COURIER DE	npliant (1) Temp. of Co	anti
RELINQUISHED BY		EDBY 3/23/01	Conditions of bottles of	r coolers at recel	ot: Complia	A Candle F	ipliant it temp. or or	004
1 C MA	1/100 3/22/01 1.6	110 1010	Comments:	BITTIGMAN	ten 1018 1	os Sample C	(88)	
RELINQUISHED BY	CATEATINE 1310 AECEN	unmy futer.		RecTB	RETONC			
2.1.1/10	DATE TIME REGET	VED FOR LAR BY		1	Shipment Co	mplete: Yes	No	_
DELLAORIENED EV			1099		FUNIT C	AMPLER COPY		,
RELINQUISHED BY	3.	TECH COPY FOR RETURN TO	CLIENT YELLOW -	CHEMTECH CO	PY PINK - SI	AMPLIAT GOV		

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088 Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Matrix (soil/water): SOIL

Lab Sample ID: L3355-17 S

Date Received: 02/27/01

Level (low/med): LOW

Solids: 79.7

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5	Aluminum	9890	-		P
	7440-36-0	Antimony	1.9	U		P
	7440-38-2	Arsenic	5.6			P
	7440-39-3	Barium	117			P
	7440-41-7	Beryllium		В		P
	7440-43-9	Cadmium	0.13	U		P
	7440-70-2	Calcium	2140			P
	7440-47-3	Chromium	9.7			P
	7440-48-4	Cobalt	6.8	В		P
	7440-50-8	Copper	19.7			P
	7439-89-6	Iron	15800			P
_	7439-92-1	Lead	66.9			P
	7439-95-4	Magnesium	2320			P
	7439-96-5	Manganese				P
	7439-97-6	Mercury	0.33		N	CV
	7440-02-0	Nickel	12.8			P
	7440-09-7	Potassium	760	B	Е	P
	7782-49-2	Selenium	1.2	U	· · · · ·	P
<u>.</u>	7440-22-4	Silver	0.40	U		P
	7440-23-5	Sodium	118	B		P
	7440-28-0	Thallium	1.5	B		P
	7440-62-2	Vanadium	12.7			P
	7440-66-6	Zinc	67.2			P
				_		
	1					_
Color Before:	BROWN	Clari	ty Before:			Texture: M
Color After:	YELLOW	Clari	ty After:			Artifacts:

ure: MEDIUM

Color After: YELLOW Clarity After:

Comments:

TALMET

TP35'

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

TP66'

LaD	Maine.	CILLITICI	LD100

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Matrix (soil/water): SOIL

Lab Sample ID: L3355-19 S

Date Received: 02/27/01

Level (low/med): LOW

% Solids:

Color Before

Color After:

Comments:

78.8

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М		
7429-90-5	Aluminum	12000	-		P		
7440-36-0	Antimony	1.9	U		P		
7440-38-2	Arsenic	4.1			P		
7440-39-3	Barium	112			P		
7440-41-7	Beryllium	0.81	В		P		
7440-43-9	Cadmium	0.13	U		P		
7440-70-2	Calcium	1780			P		
7440-47-3	Chromium	11.1			P		
7440-48-4	Cobalt	8.6	B		P		
7440-50-8	Copper	10.1			P		
7439-89-6	Iron	17900			P		
7439-92-1	Lead	14.6			P		
7439-95-4	Magnesium	3000			P		
7439-96-5	Manganese	797			P		
7439-97-6	Mercury	0.13	U	N	CV		
7440-02-0	Nickel	15.2			P		
7440-09-7	Potassium	1230	В	E	P		
7782-49-2	Selenium	1.3			P		
7440-22-4	Silver	0.40	U		P		
7440-23-5	Sodium	72.6	U		P		
7440-28-0	Thallium	3.6			P		
7440-62-2	Vanadium	11.5	В		P		
7440-66-6	Zinc	57.2			P		
			_				
ROWN	Clarit	ty Before:			Ter	kture:	MEDIUM
ELLOW	Clarit	ty After:			Art	cifacts:	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

B6'6'

ab Name: CHEMTECH EDISON

Contract: 68-W00-088

Lab Code: CHEMED Case No.:

SAS No.: SDG No.: L3355

Lab Sample ID: L3355-23 S

Date Received: 02/27/01

Matrix (soil/water): SOIL

LOW LOW

% Solids:

-least

....

89.2

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

				T				
	CAS No.	Analyte	Concentration	C	Q	М		
	7429-90-5	Aluminum	4390	-		P		
		Antimony	1.6	U		P		
	7440-38-2	Arsenic	0.98			P		
	7440-39-3	Barium	16.2	B		P		
	7440-41-7	Beryllium	0.15	В		P		
	7440-43-9	Cadmium	0.11	U		P P		
	7440-70-2	Calcium	262	В		P		
	7440-47-3	Chromium	5.2	в		P		
1	7440-48-4	Cobalt	3.1	B		P		
	7440-50-8	Copper	6890			P		
	7439-89-6	Iron	5.4			P		
•	7439-92-1	Lead Magnesium				P		
	7439-95-4 7439-96-5	Manganese				P		
	7439-98-5	Mercury	0.11	U	Ν	CV		
	7440-02-0	Nickel	7.7	В		P		
	7440-09-7		525	B	Е	P		
	7782-49-2	Selenium	1.0	U		P		
	7440-22-4		0.35			P		
	7440-23-5	Sodium	62.9	U		P		
	7440-28-0	Thallium	1.1	U		P		
star"	7440-62-2	Vanadium	4.9	B		P		
	7440-66-6	Zinc	28.6			P		
				-		-	, I	
Color Before:	BROWN	Clari	ty Before:			Те	xture:	MEI
Color After:	YELLOW	Clari	ty After:			Ar	tifacts	:

Comments:

in.

MEDIUM

~		c	-
0.	•	-	-

EPA SAMPLE NO.

B7'6'

INORGANIC ANALYSIS DATA SHEET

_ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Matrix (soil/water): SOIL

Lab Sample ID: L3355-24 S

Date Received: 02/27/01

T

Level (low/med): LOW

% Solids:

84.6

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

S NO. 29-90-5 40-36-0 40-39-3 40-41-7 40-43-9 40-70-2 40-47-3 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	4120 1.7 1.0 21.2 0.16 0.12 465 4.7 2.9 4.5 5930 5.7 1530 94.2	C UUBBUB BB	Q	M P P P P P P P P P P P P P P P P P P P	
40-36-0 40-38-2 40-39-3 40-41-7 40-43-9 40-70-2 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	$\begin{array}{c} 1.7\\ 1.0\\ 21.2\\ 0.16\\ 0.12\\ 465\\ 4.7\\ 2.9\\ 4.5\\ 5930\\ 5.7\\ 1530\\ 94.2 \end{array}$	U B U B B		P P P P P P P P P P P P	
40-38-2 40-39-3 40-41-7 40-43-9 40-70-2 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	$1.0 \\ 21.2 \\ 0.16 \\ 0.12 \\ 465 \\ 4.7 \\ 2.9 \\ 4.5 \\ 5930 \\ 5.7 \\ 1530 \\ 94.2$	U B U B B		P P P P P P P P P P P P P P	
40-39-3 40-41-7 40-43-9 40-70-2 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	21.2 0.16 0.12 465 4.7 2.9 4.5 5930 5.7 1530 94.2	B U B B		P P P P P P P P P P P	
40-41-7 40-43-9 40-70-2 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	0.16 0.12 465 4.7 2.9 4.5 5930 5.7 1530 94.2	B U B B		P P P P P P P P P P	
40-43-9 40-70-2 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	0.12 465 4.7 2.9 4.5 5930 5.7 1530 94.2	U B B		P P P P P P P P	
40-70-2 40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	465 4.7 2.9 4.5 5930 5.7 1530 94.2	B B		P P P P P P P	
40-47-3 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Chromium Cobalt Copper Iron Lead Magnesium Manganese	4.7 2.9 4.5 5930 5.7 1530 94.2	в		P P P P P	
40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Cobalt Copper Iron Lead Magnesium Manganese	2.9 4.5 5930 5.7 1530 94.2			P P P P P	
40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Copper Iron Lead Magnesium Manganese	4.5 5930 5.7 1530 94.2			P P P P	
39-89-6 39-92-1 39-95-4 39-96-5	Iron Lead Magnesium Manganese	5930 5.7 1530 94.2	в		P P P	
39-92-1 39-95-4 39-96-5	Lead Magnesium Manganese	5.7 1530 94.2			P P	
39-95-4 39-96-5	Magnesium Manganese	1530 94.2			P	
39-96-5	Manganese	94.2				
					P	
			1 1		GTT	
39-97-6	Mercury		1 1	Ν		
40-02-0	Nickel		1			
40-09-7	Potassium		1 1	E		
82-49-2	Selenium	1.1	U			
40-22-4	Silver	0.37	U			
	Sodium	67.0	U			
	Thallium	1.2	U			
		4.0	B		P	
		28.0			P	
			_		_	
WN	Clari	ty Before:			Texture:	MEDIUN
U.O.W	Clari	ty After:			Artifacts	:
1011		1				
	40-02-0 40-09-7 82-49-2 40-22-4 40-23-5 40-28-0 40-62-2 40-66-6	40-02-0 Nickel 40-09-7 Potassium 82-49-2 Selenium 40-22-4 Silver 40-23-5 Sodium 40-62-2 Vanadium 40-66-6 Zinc WN Clarit	40-02-0 Nickel 7.1 40-09-7 Potassium 513 82-49-2 Selenium 1.1 40-22-4 Silver 0.37 40-23-5 Sodium 67.0 40-62-2 Vanadium 4.0 40-66-6 Zinc 28.0 WN Clarity Before:	40-02-0 Nickel 7.1 B 40-09-7 Potassium 513 B 82-49-2 Selenium 1.1 U 40-22-4 Silver 0.37 U 40-23-5 Sodium 67.0 U 40-62-2 Vanadium 1.2 U 40-66-6 Zinc 28.0	A0-02-0 Nickel 7.1 B 40-09-7 Potassium 513 B E 82-49-2 Selenium 1.1 U 40-22-4 Silver 0.37 U 40-23-5 Sodium 67.0 U 40-62-2 Vanadium 1.2 U 40-66-6 Zinc 28.0 B	30-02-0 Nickel 7.1 B P 40-09-7 Potassium 513 B E P 82-49-2 Selenium 1.1 U P 40-22-4 Silver 0.37 U P 40-23-5 Sodium 67.0 U P 40-28-0 Thallium 1.2 U P 40-62-2 Vanadium 4.0 B P 40-66-6 Zinc 28.0 P P WN Clarity Before: Texture: Details factore

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Matrix (soil/water): SOIL

Lab Sample ID: L3355-25 S

Date Received: 02/27/01

Level (low/med): LOW

% Solids:

24

1.10

1111

5

Color After

84.3

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	CAS No.	Analyte	Concentration	С	Q	M	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-95-5 7439-97-6 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.11 852 6.3 3.6 5.5 7950 11.1 1910 139 0.12 8.3	UDBBUB BB UBB UUUB	N E		
Color Before:	BROWN	Clari	ty Before:			Texture:	MEDIUM
Color After:	YELLOW	Clari	ty After:			Artifacts:	
Comments:							

B8'6'

EPA SAMPLE NO.

B8D'6'

INORGANIC ANALYSIS DATA SHEET

ab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Lab Sample ID: L3355-26 S

Date Received: 02/27/01

Tatrix (soil/water): SOIL

pevel (low/med): LOW

🕏 Solids: 91.1

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

*	1	1		T			
	CAS No.	Analyte	Concentration	С	Q	M	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-95-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-62-2 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.11 1180 5.7 2.9 5.7 6140 18.8 936 271 0.10 5.6	U BBU B BBUUBUB	N E	P P P P P P P P P P P P P P P P P P P	
The Destance		Clari	ty Before:			Texture:	MEDIUM
Color Before:	DROMIN					Artifacts:	
Color After:	YELLOW	Clari	ty After:			ALLILACUS.	
Comments:							

TALMET

1

EPA SAMPLE NO.

B13'6'

INORGANIC ANALYSIS DATA SHEET

Lab Name: CHEMTECH EDISON Contract: 68-W00-088

Lab Code: CHEMED Case No.: SAS No.: SDG No.: L3355

Lab Sample ID: L3355-27 S

Date Received: 02/27/01

Matrix (soil/water): SOIL

Level (low/med): LOW

% Solids:

83.0

Concentration Units (ug/L or mg/Kg dry weight): MG/KG

	.1						
1	CAS No.	Analyte	Concentration	С	Q	M	
	7429-90-5	Aluminum	6700	-		P	
	7440-36-0	Antimony	1.8	U		P	
	7440-38-2	Arsenic	5.3			P	
	7440-39-3	Barium	24.4	В		P	
	7440-41-7	Beryllium	0.34	В		P	
	7440-43-9	Cadmium	0.12	U		P	
	7440-70-2	Calcium	813	В		P	
	7440-47-3	Chromium	7.3			P	
	7440-48-4	Cobalt	6.3	В		P	
	7440-50-8	Copper	14.3			P	
	7439-89-6	Iron	12600			P	
	7439-92-1	Lead	10.1			P	
	7439-95-4	Magnesium				P	
	7439-96-5	Manganese				P	
E 3	7439-97-6	Mercury	0.12	U	N	CV	
	7440-02-0	Nickel	15.6		_	P	
	7440-09-7	Potassium		B	E	P	
*	7782-49-2	Selenium	1.1	U		P	
	7440-22-4	Silver	0.38	U		P	
	7440-23-5	Sodium	68.3	U		P	
	7440-28-0	Thallium	1.2	U		P	
-	7440-62-2	Vanadium	8.3	B		P	
	7440-66-6	Zinc	50.2			P	
				_	I	II	
Color Before:	BROWN	Clari	ty Before:			Texture:	MEDIUM
Color After:	YELLOW	Clari	ty After:			Artifacts:	

Comments:

LABORATORY REPORT

CLIENT: IVI Environmental Inc. LAB RECEIVING #: L3355 ATTN.: CHUCK MULLIGAN Waters Edge Matrix: Water Analyzed: 2/28/01

Analysis Meth.: 150.1		Unit:	ph Units	Analyst:		BERTHA	
COMPOUNDS: pH	Lab Sample ID: Client Sample ID: D.F.:	Method Blank	L3355-01 MW1 1 5.9	L3355-02 B6 1 5.1	L3355-03 B7 1 6.4	L3355-04 B8 1 6.3	Detection Limit
COMPOUNDS:	Lab Sample ID: Client Sample ID: D.F.:		L3355-05 B9 1 6.4	L3355-06 B10 1 5.5	L3355-07 B10D 1 6.0	L3355-08 B11 1 5.2	Detection Limit
COMPOUNDS:	Lab Sample ID: Client Sample ID: D.F.:	Method Blank	L3355-09 B12 1 7.6	L3355-10 B13 1 7.1	L3355-11 B14 1 5.6	L3355-13 B18 1 7.3	Detection Limit

110 Route 4 Englewood, New Jersey 07631 Phone: 201.568.7400 Fax: 201.567.3231

NYSDOH Certification No. 10624

NYSDOH Certification No. 11376 NJDEP Certification No. 12013

140

.

LABORATORY REPORT

LAB RECEIVING #:

L3355

CLIENT: IVI Environmental Inc.

ATTN .: CHUCK MULLIGAN

Waters Edge

60.3	Matrix: Unit:	Solid %	Analyzed: Analyst:		3/1/01 PRAMIT
Lab Sample ID: Client Sample ID: Method Blank	L3355-17 TP35'	L3355-18 TP45'	L3355-19 TP66'	L3355-20 TP7'6'	Detection
D.F.:	1 79.7	1 91.2	1 78.8	79.9	Limit
Lab Sample ID: Client Sample ID: Method Blank	L3355-21 TP8'6'	L3355-22 TP9'4'	L3355-23 B6'6'	L3355-24 B7'6'	Detection Limit
D.F.:	81.0	83.0	89.2	84.6	Linit
Lab Sample ID: Client Sample ID: Method Blank D.F.:	L3355-25 B8'6' 1 84.3	L3355-26 B8D'6' 1 91.1	L3355-27 B13'6' 1 83.0	L3355-28 B151'-2' 1 85.0	Detection Limit
Lab Sample ID: Client Sample ID: Method Blank D.F.:	L3355-29 B161'-2' 1 84.3				Detection Limit
	Client Sample ID: D.F.: Lab Sample ID: Client Sample ID: D.F.: Lab Sample ID: Client Sample ID: D.F.: Lab Sample ID: Client Sample ID: Client Sample ID: Client Sample ID: Client Sample ID: Client Sample ID: Client Sample ID: Method Blank	60.3Unit:Lab Sample ID: Client Sample ID: D.F.:Method BlankL3355-17 TP35' 1 79.7Lab Sample ID: Client Sample ID: D.F.:Method BlankL3355-21 TP8'6' 1 81.0Lab Sample ID: D.F.:Method BlankL3355-25 B8'6' 1 81.0Lab Sample ID: D.F.:Method BlankL3355-25 B8'6' 1 84.3Lab Sample ID: D.F.:Method BlankL3355-25 B8'6' 1 84.3Lab Sample ID: D.F.:Method BlankL3355-29 B8'6' 1 1Lab Sample ID: D.F.:Method BlankL3355-29 B161'-2' 1	60.3 Unit: % Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-17 TP35' L3355-18 TP45' Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-21 TP8'6' L3355-22 TP9'4' Lab Sample ID: D.F.: Method Blank L3355-25 TP9'4' L3355-26 B8D'6' Lab Sample ID: D.F.: Method Blank L3355-25 B8'6' L3355-26 B8D'6' Lab Sample ID: D.F.: Method Blank L3355-25 B8'6' L3355-26 B8D'6' Lab Sample ID: D.F.: Method Blank L3355-25 B8'6' L3355-26 B8D'6' Lab Sample ID: D.F.: Method Blank L3355-29 B161'-2' L3355-29 B161'-2' D.F.: 1 1 1	60.3 Unit: % An Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-17 TP35' L3355-18 TP45' L3355-19 TP66' Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-21 TP8'6' L3355-22 TP9'4' L3355-23 B6'6' B6'6' Lab Sample ID: D.F.: Method Blank L3355-25 TP9'4' L3355-26 B6'6' L3355-27 B6'6' Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-25 B8'6' L3355-26 B8D'6' L3355-27 B13'6' Lab Sample ID: D.F.: Method Blank L3355-25 B8'6' L3355-26 B8D'6' L3355-27 B13'6' Lab Sample ID: D.F.: Method Blank L3355-29 B161'-2' L3355-29 B161'-2' L D.F.: 1 1 1 1	60.3 Unit: % Analyst: Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-17 TP35' L3355-18 TP45' L3355-19 TP66' L3355-20 TP76' Lab Sample ID: D.F.: Method Blank L3355-21 TP86' L3355-22 TP9'4' L3355-23 B6'6' L3355-24 B7'6' Lab Sample ID: D.F.: Method Blank L3355-21 TP8'6' L3355-22 TP9'4' L3355-23 B6'6' L3355-23 B176' L3355-24 B7'6' Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-25 B8'6' L3355-27 B8D'6' L3355-27 B13'6' L3355-27 B13'6' L3355-27 B13'6' L3355-27 B13'6' L3355-27 B13'6' L3355-28 B13'6' Lab Sample ID: D.F.: Method Blank L3355-29 B161'-2' L3355-29 B161'-2' L3355-27 D.F.: L3355-29 T L3355-27 B151'-2' L3355-27 B13'6' L3355-27 B13'6' L3355-27 B13'6' L3355-27 B13'6' L3355-27 B13'6' Lab Sample ID: Client Sample ID: D.F.: Method Blank L3355-29 B161'-2' L A A D.F.: 1 1 1 1 1 A A

110 Route 4 Englewood, New Jersey 07631 Phone: 201.568.7400 Fax: 201.567.3231

NYSDOH Certification No. 10624

205 Campus Plaza 1 Edison, NJ 08837 Phone: 732.225.4111 Fax: 732.225.4110

NYSDOH Certification No. 11376 NJDEP Certification No. 12013

105 Corporate Park Drive, Suite 115, White Plains, NY 10604 • 914-694-9600 (tel) • 914-694-1335 (fax)

Regional Offices

NEW YORK • CHICAGO • DALLAS • LOS ANGELES • MIAMI• SEATTLE • WASHINGTON, D.C. LONDON • PARIS • STOCKHOLM