

NEW YORK STATE OFFICE OF PEOPLE WITH DEVELOPMENTAL DISABILITIES

2016 PERIODIC REVIEW REPORT

Former Gowanda Day Habilitation Center 4 Industrial Place Town of Gowanda, Cattaraugus County Voluntary Cleanup Program Agreement V-00463-9

Prepared for:

New York State Department of Environmental Conservation, Region 9

Bergmann Project No. 6974.85

Issuance Date: May 2, 2017

PAGE

SECTION

TABLE OF CONTENTS

1.0	Back	ground1	
2.0	Grour	ndwater Sampling Overview and Methods2) -
	2.1	Well Maintenance Activities2) -
	2.2	Groundwater Treatment System and Soil Vapor Extraction System Maintenance2) -
	2.3	Groundwater Field Monitoring and Sampling Activities2) -
3.0	Local	Groundwater Flow Characterization	;
4.0	Labor	ratory Analysis4	ŀ
	4.1	Laboratory Analysis on Groundwater Samples4	ŀ
	4.2	Monitoring Well Groundwater Analysis Summary4	ŀ
	4.3	Sentry Well Groundwater Analysis Summary5	;)
	4.4	Recovery Well Groundwater Analysis Summary6	;
5.0	Reme	ediation System Efficiency6	ò
	5.1	Extent of Impacted Groundwater6	;
	5.2	Groundwater Analytical Results9)
	5.3	Compliance1	0
	5.4	Future Activities1	1

- Table 1 Percent Reductions in Total Groundwater VOCs
- Figure 1 Monitoring and Recovery Well Locations
- Chart 1 Contaminant Reduction, Gowanda Day Habilitation Center
- Appendix A Quarterly Groundwater Characterization Reports

June 2016 Groundwater Characterization Report

- September 2016 Groundwater Characterization Report
- November 2016 Groundwater Characterization Report
- Appendix B IC/EC Checklist

1.0 Background

NYSDEC Site Number V00463, the former Gowanda Day Habilitation Center facility, is located at 4 Industrial Place, Gowanda, NY. The New York State Office of People with Developmental Disabilities (OPWDD), as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463, effective August 16, 2001.

The Gowanda Day Habilitation site (the Site) consists of a 5.94 acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between 1948 and 1987 and was renovated in 1987 and 1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001 on-site operations ceased. Bergmann investigated the nature and extent of contamination resulting from historical underground chemical storage at the Gowanda Day Habilitation Center in 2003 Site Investigation and 2004 Supplemental Site Investigation reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2,Dichloroethene, (Cis-DCE) trans-1,2-Dichloroethene (Trans-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, activation of the Groundwater Treatment System (GTS) and Soil Vapor Extraction (SVE) System occurred on May 10, 2005. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to monitoring well MW-17 in November 2008. The GTS consists of seven groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to treat recovered groundwater. The SVE System consists of a lobe blower and piping network which extract vapors and pass them through two 10,000 lb carbon filters. Once filtered, the vapors are discharged to the outdoor air. The attached Figure 1 depicts the site layout with regard to monitoring and recovery wells.

Recovered groundwater was formerly pumped to an equalization tank for settling of sediment. The groundwater was discharged to the Village of Gowanda Sewage Treatment Plant (STP) via the sanitary sewer in accordance with a Gowanda Sewer Use Permit. A VOC Groundwater Treatment Agreement between OPWDD and the Village was active until the shutdown of the system, discussed below in Section 2.2. As the system is currently shut down, water was not discharged to the sewer for the 2015 calendar year. If the system is re-activated, a new agreement will be executed between OPWDD and the Village.

In January 2008, the OPWDD decommissioned the building. Bergmann winterized the GTS with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated unit heater in the treatment area for the GTS and SVE (former Machine Shop). The building remains unoccupied and in a state of disrepair for the 2015 year. Numerous roof leaks and damage relative to a flooding event in 2009 have introduced mold to interior spaces. The roof leaks and mold do not appear to be impacting the remedial system. OPWDD and/or their agents will perform periodic inspections of the building for potential structural deficiency issues and will perform limited building envelope repairs as necessary to address any significant site safety concerns. Bergmann performed two building inspections during 2015 and prepared building inspection reports under separate cover.

2.0 Groundwater Sampling Overview and Methods

2.1 Well Maintenance Activities

During the 2016 sampling events, all wells were accessible and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of redevelopment activities performed on August 19, 2015 to clear sediment from wells after an in-situ chemical oxidation (ISCO) injection. All stand pipes and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stand pipes. The monitoring wells within the building are secured with flush-mount roadway covers.

Replacement to damaged flush-mount protective roadway boxes was completed on June 27, 2007. Well rehabilitation and silt removal was conducted June 25 – 26, 2007 and August 19, 2015.

2.2 Groundwater Treatment System and Soil Vapor Extraction System Maintenance

During an October 2013 site visit, a section of piping broke away from the SVE due to system pressure. The SVE system was shut down until a repair could be made. Bergmann assessed the GTS during a January 2014 site visit and determined that two of the seven well pumps were operational. The remaining pumps appeared to be damaged. Bergmann replaced the SVE pipe section and inspected the well pumps for damage. The pumps appeared to be in poor condition and were removed from the wells. DR-1, DR-2, DR-3, DR-4 were pulled. DR-4 was coated in a black sludge-like material and had a hole in the casing. DR-2, DR-3 and G-2 were coated in orange-brown sediment and the hose and pump effluent lines were clogged with sediment. DR-1 was also coated in orange-brown sediment.

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann performed an ISCO remediation in May 2015 and a second round of injections in September 2015. The groundwater treatment was performed to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future.

2.3 Groundwater Field Monitoring and Sampling Activities

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for monitoring wells are determined on a quarterly basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Although the system was shut down for the 2016 year and the pumps were pulled from recovery wells, hydraulic containment of the plume was achieved. Groundwater samples were collected from the 14 of 21 site-related groundwater monitoring wells during the 2016 sampling events. Depth to groundwater measurements were obtained from 21 of the 21 monitoring wells for the 2016 sampling events. Results are indicators of the performance of the treatment system and the continued containment of the contaminant plume.

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a Horiba U-53 to ensure sufficient well purging prior to sampling. Dedicated bailers were used to collect groundwater samples from recovery wells after the ISCO remediation occurred in May 2015. During past sampling events, groundwater samples were collected from the 7 recovery wells using dedicated bailers, as the GTS was actively pulling groundwater into the system, allowing for collection of groundwater samples similar to purging monitoring wells. As the system was shut down during the 2016 quarterly sampling events, the wells were purged and sampled using the same method as the monitoring well sampling where possible. One duplicate sample and one field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to a NYSDOH certified laboratory for testing using EPA Method 8260B for targeted chlorinated VOCs.

3.0 Local Groundwater Flow Characterization

Delineation of the local water table surface and groundwater flow pattern was determined for 2016 using elevations measured from the 21 site-related monitoring wells. The current network of monitoring wells at the facility is shown on Figure 1. Groundwater characteristics were determined using depth to water measurements obtained on June 28-29, 2016, September 14-15, 2016, and November 21-22, 2016. The well gauging values and groundwater elevations are provided in Table 1 of each Quarterly Report included in Appendix A – Quarterly Groundwater Characterization Reports.

The quarterly groundwater contour maps show a local flow pattern similar to the water table observed historically since 2002. The local groundwater was flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The following is a summary of groundwater flow for each sampling event in the reporting period:

June 2016

The June 2016 depths to groundwater range from 7.11 ft below top of casing (btoc) at MW-2, located on the south side of the property to 13.48 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 10.03 ft bgs. The site-wide average depth to water table increased by approximately 0.61 ft when compared to the November 2015 sampling event. This increase in the water table is inferred as seasonal.

September 2016

The September 2016 depths to groundwater range from 7.56 ft below top of casing (btoc) at MW-2, located on the south side of the property to 13.72 ft btoc at MW-17 located at the northern property line. The average depth to groundwater at the wells measured was 10.28 ft bgs. The site-wide average depth to water table increased by approximately 0.25 ft when compared to the June 2016 sampling event. This increase in the water table is inferred as seasonal.

November 2016

The November 2016 depths to groundwater range from 6.07 ft below top of casing (btoc) at MW-2, located on the south side of the property to 13.22 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 9.62 ft bgs. The site-wide average

depth to water table decreased by approximately 0.66 ft when compared to the September 2016 sampling event. This increase in the water table is inferred as seasonal.

Groundwater Contour Maps indicating the depths to groundwater for each sampling event are presented as Figure 1 of each Groundwater Characterization Report for the report period. Copies of these reports are included in Appendix A.

4.0 Laboratory Analysis

4.1 Laboratory Analysis of Groundwater Samples

Laboratory analysis was completed on groundwater samples from groundwater monitoring wells and recovery wells on site. Monitoring wells that were determined in 2008 by the NYSDEC and Bergmann personnel to be outside the area of impact by the GTS include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-13, and MW-21. NYSDEC added MW-21 to the sampling plan for the 2015 sampling events. The remainder of these wells were not sampled. Sentry groundwater monitoring wells were established to monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the subject property. These wells include MW-19R, MW-20, and MW-4.

All samples were analyzed for volatile organic compounds (VOCs) via United States Environmental Protection Agency (US EPA) Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following chlorinated halogens (VOCs) were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

For quality assurance/quality control (QA/QC) purposes, a duplicate groundwater sample was collected from monitoring well MW-1, designated sample "MW-X." Results from sample MW-X were consistent with the sample collected from MW-1.

A trip blank was supplied by the laboratory for QA/QC and submitted for analysis with the groundwater samples. The trip blank sample was non-detect for chlorinated halogens VOCs. A field blank was also collected for QA/QC purposes to ensure proper cleaning of the sampling equipment. The field blank was non-detect for chlorinated halogens for each sampling event in 2016.

4.2 Monitoring Well Groundwater Analysis Summary

Analytical results for monitoring wells during each quarterly sampling event are summarized as follows:

<u>June 2016</u>

Concentrations in 4 of the 14 monitoring well groundwater samples increased when compared to the November 2015 sampling event while concentrations in 7 of the 14 monitoring well groundwater

samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The June 2016 sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 79% since activation of the GTS in May 2005.

September 2016

Concentrations in 7 of the 14 monitoring well groundwater samples increased when compared to the June 2016 sampling event while concentrations in 4 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 69% since activation of the GTS in May 2005.

November 2016

Concentrations in 3 of the 14 monitoring well groundwater samples increased when compared to the September 2016 sampling event while concentrations in 8 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 71% since activation of the GTS in May 2005.

Contaminant distribution maps indicating the results for each sampling event are presented as Figures 2 and 3 of each Quarterly Groundwater Characterization Report. Copies of these reports are included in Appendix A.

4.3 Sentry Well Groundwater Analysis Summary

Analytical results for sentry wells during each sampling event in 2016 are summarized as follows:

<u>June 2016</u>

The eastern sentry wells sampled for this event included MW-19R, MW-20, and MW-4. The June 2016 results indicate non-detect for these three wells.

September 2016

The eastern sentry wells sampled for this event included MW-19R, MW-20, and MW-4. The September 2016 results indicate non-detect for these three wells.

November 2016

The eastern sentry wells sampled for this event included MW-19R, MW-20, and MW-4. The November 2016 results indicate non-detect for these three wells.

The risk of migrating groundwater from the Gowanda Electronics site onto the Day Habilitation Center property was a concern that prompted the installation of sentry wells along Industrial Place. MW-19R has been impacted in the past from the Gowanda Electronics plume. The Gowanda Electronics plume of impacted groundwater does not appear to currently extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center subject property does not appear to extend off-site to the east to Industrial Place.

5

During the March 2014 sampling event, Mr. Chris Sanson, Environmental Scientist for Groundwater & Environmental Services, Inc. (GES) was conducting groundwater level measurements along Torrance Place. Mr. Sanson stated that an in-situ chemical oxidation (ISCO) was being implemented for the Gowanda Electronics site at that time.

4.4 Recovery Well Groundwater Analysis Summary

Analytical results for recovery wells during each sampling event in 2016 are summarized as follows:

<u>June 2016</u>

During the June 2016 sampling event, 6 of the 7 recovery wells were sampled. Recovery well G-2 was dry and was therefore not sampled. Recovery well G-3 was mislabeled in the field as G-2, as reflected in the June 2016 Groundwater Characterization Report and associated laboratory analytical data package. The June 2016 analytical results indicate detection of 2 chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from all 6 of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased since activation of the GTS in May 2005. The average reduction in VOCs for the June 2016 sampling event is 47% relative to concentrations prior to GTS activation in 2005.

September 2016

During the September 2016 sampling event, 7 of the 7 recovery wells were sampled. The September 2016 analytical results indicate detection of 2 chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from 6 of the 7 sampled recovery wells. Total VOCs at the 7 recovery wells for which past data is available have decreased since activation of the GTS in May 2005. The average reduction in VOCs for the September 2016 sampling event is 41% relative to concentrations prior to GTS activation in 2005.

November 2016

During the November 2016 sampling event, 6 of the 7 recovery wells were sampled. The November 2016 analytical results indicate detection of 2 chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from 6 of the 6 sampled recovery wells. Total VOCs at the 7 recovery wells for which past data is available have decreased since activation of the GTS in May 2005. The average reduction in VOCs for the November 2016 sampling event is 47% relative to concentrations prior to GTS activation in 2005.

Recovery wells DR-3 and G-1 have shown a gradual decrease in percent reduction since December 2013. DR-3 and G-1 were areas of focus for the ISCO groundwater remediation. Since the ISCO groundwater remediation, the average reduction in VOCs for DR-3 is approximately 40% and the average reduction in VOCs for G-1 is 65%.

5.0 Remediation System Efficiency

5.1 Extent of Impacted Groundwater

The area of highest impacted groundwater is consistent for all 2016 sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery wells DR-1 and DR-2.

The contaminant plume appears to have stabilized due to the previous operation of the GTS for over 10 years. While in operation, the GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during the 2016 sampling events and overall sample results are similar to previous quarterly reports. It appears that residual VOCs in the plume have not migrated and are contained when compared to sample results with operation of the GTS during previous monitoring events.

The remedial program at the Site was modified by terminating the GTS and soil vapor extraction system, believed to have achieved the extent of it practical benefits in favor of ISCO treatment of the residual concentration of VOCs in Groundwater. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future.

Analytical results for each sampling event in the reporting period are summarized as follows:

<u>June 2016</u>

Chlorinated VOCs were detected in groundwater from 10 of the 14 sampled monitoring wells. VOCs were not detected in groundwater from 3 of the sampled monitoring wells (MW-4, MW-18, MW-19R and MW-20). Sample results from these wells have historically indicated low to non-detect levels of VOCs. Groundwater samples from 11 monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11 (580 ppb), is located in the area of the historically greatest impacted groundwater.

Concentrations in 4 of the 14 monitoring well groundwater samples increased when compared to the November 2015 sampling event while concentrations in 7 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The June 2016 sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 79% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 75% since groundwater monitoring of these wells began in 2002.

During the June 2016 sampling event, 6 of the 7 recovery wells were sampled. Recovery well G-2 was dry and was therefore not sampled. Recovery well G-3 was mislabeled in the field as G-2. Sample results on the laboratory analytical report included in Appendix A of the June 2016 Groundwater Characterization Report referring to G-2 are the results for G-3. The June 2016 sampling event results showed an increase of total VOCs at 4 recovery wells (DR-1, DR-2, DR-3, and G-3) when compared to the November 2015 sampling event. This increase is attributed to residual contamination released to the capillary fringe to the dissolve phase in groundwater at the Site.

VOCs were not detected at MW-4, MW-19R, and MW-18 during the June 2016 sampling event. Monitoring well MW-21 was added to the list of sampled wells at the request of the NYSDEC. The total VOC concentration at MW-21 for the June 2016 sampling event is 8.7 ppb, a decrease from the November 2015 value of 20 ppb.

September 2016

Chlorinated VOCs were detected in groundwater from 11 of the 14 sampled monitoring wells. VOCs were not detected in groundwater from 3 of the sampled monitoring wells (MW-4, MW-19R and MW-20). Sample results from these wells have historically indicated low to non-detect levels of VOCs. Groundwater samples from 11 monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (838 ppb), is located in the area of the historically greatest impacted groundwater. Concentrations in 7 of the 14 monitoring well groundwater samples increased when compared to the June 2016 sampling event while concentrations in 4 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The September 2016 sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 69% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 70% since groundwater monitoring of these wells began in 2002.

During the September 2016 sampling event, 7 of the 7 recovery wells were sampled. The September 2016 sampling event results showed an increase of total VOCs at 4 recovery wells (DR-2, DR-3, DR-4, and G-1) when compared to the June 2016 sampling event. This increase is attributed to residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

VOCs were not detected at MW-19R and MW-20 during the September 2016 sampling event. The total VOC concentration at MW-18 for the September 2016 sampling event (26 ppb) shows an increase from the June 2016 sampling event (6.9 ppb). This increase is attributed to residual contamination released to the capillary fringe to the dissolve phase in groundwater at the Site. The total VOC concentration at MW-21 for the September 2016 sampling event (39 ppb) shows an increase from the June 2016 sampling event (8.7 ppb). MW-19R, MW-18 and MW-21 are off-site monitoring wells north of the facility. These monitoring points are inferred as beyond the area of hydraulic influence of the recovery wells. Impacted groundwater at these areas was detected prior to activation of the GTS in May 2005.

November 2016

Chlorinated VOCs were detected in groundwater from 11 of the 14 sampled monitoring wells. VOCs were not detected in groundwater from 3 of the sampled monitoring wells (MW-4, MW-19R and MW-20). Sample results from these wells have historically indicated low to non-detect levels of VOCs. Groundwater samples from 11 monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,467 ppb), is located in the area of the historically greatest impacted groundwater.

Concentrations in 3 of the 14 monitoring well groundwater samples increased when compared to the September 2016 sampling event while concentrations in 8 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The November 2016 sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 71% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 61% since groundwater monitoring of these wells began in 2002.

During the November 2016 sampling event, 6 of the 7 recovery wells were sampled. Recovery well G-2 was dry and was therefore not sampled. The November 2016 sampling event results showed an increase of total VOCs at 1 recovery well (DR-1) when compared to the September 20016 sampling event. This increase is attributed to residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

VOCs were not detected at MW-19R during the November 2016 sampling event. The total VOC concentration at MW-18 for the November 2016 sampling event (10 ppb) shows a decrease from the September 2016 event (26 ppb). The total VOC concentration at MW-21 for the November 2016 sampling event (17 ppb) shows a decrease from the September 2016 event (39 ppb). MW-19R, MW-18 and MW-21 are off-site monitoring wells north of the facility. These monitoring points are inferred as beyond the area of hydraulic influence of the recovery wells. Impacted groundwater at these areas was detected prior to activation of the GTS in May 2005.

Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when viewed over the past 10 years of sampling. After the next quarterly monitoring event occurs, a meeting with Bergmann, DASNY and NYSDEC should be scheduled to determine next steps for further contaminant reduction and eventual spill closure.

5.2 Groundwater Analytical Results

During the reporting period, three quarterly sampling events were conducted. Copies of these reports are included in Appendix A. Results for each sampling event are used to evaluate and document contamination reduction. Chart 1 shows contamination reduction since activation of the GTS and SVE Systems.

Contamination levels generally trend towards a reduction as time progresses with some fluctuations that result in slight increases and decreases in contamination levels between sample events due to rising and falling groundwater elevations and the shutdown of the GTS.

Groundwater Contour maps were also prepared for each sampling event, which allowed Bergmann to monitor the change in groundwater flow across the site. Groundwater Contour maps are included in each of the quarterly the Groundwater Characterization Reports in Appendix A.

Overall contaminant reduction is monitored at each individual sampling point and also in three specific "groups" of points: site-wide, original plume area only and recovery wells. These three groups allow Bergmann to more thoroughly monitor the system's effectiveness and adjust network operation. Table 1 of this report shows the breakdown of those three groups by quarter since activation of the GTS and SVE Systems.

Overall contaminant reduction at the recovery wells decreased to 47% (November 2016) from 60% in November 2015. Reduction at the recovery wells remained consistently between the 90-95% range since 2010 until the shutdown of the system. The GTS was turned off for the 2014, 2015, and 2016 quarterly sampling events. Contaminant concentration rebound during these years may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

Overall contaminant reduction at the monitoring wells increased to 71% (November 2016) from 66% in November 2015. Reduction at the monitoring wells remained consistently between the 70 and 85% since 2010 until the shutdown of the system. The GTS was turned off for the 2014, 2015, and 2016 quarterly sampling events. Contaminant concentration rebound during the year may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

The remediation system at the Gowanda Day Habilitation Center previously controlled and removed contaminants from the groundwater plume area. Contaminant levels decreased more than 80% from May 2005 to June 2015. The ISCO groundwater treatment completed in September 2015 may have released residual contamination in the capillary fringe to the dissolve phase in groundwater at the Site. Next steps to eliminate remaining contamination at the Site should be discussed with NYSDEC.

5.3 Compliance

During the 2016 reporting period, the remedial system was not in operation and therefore was not discharging water. The existing wells and monitoring well network is adequate to monitor the performance of the remediation program and to allow for the collection of groundwater quality samples.

On December 13, 2016 and January 10, 2017, Bergmann oversaw the removal and transport 4 spent carbon towers and 9 drums for disposal from the Site. Carbon towers were transported under proper manifest by Weavertown Transport Leasing, Inc. to Evoqua Water Technologies LLC in Darlington, Pennsylvania. Drums were transported under proper manifest by Tonawanda Tank Transport to Michigan Disposal Waste Treatment Plant in Belleville, Michigan.

Building Condition Assessment (BCAs) were conducted at the Site in January and August 2016. The following conclusions/recommendations were made:

The building is currently vacant and unoccupied. Notification should be given to any individual(s) entering the building so appropriate precautions and PPE can be utilized for building access. The building should be posted with signage identifying the potential hazard and limiting access to properly trained and equipped personnel. Notification of suspect mold growth within the building should be given to any individual(s) entering the building, prior to entry, so they can take appropriate precautions. Notification of broken glass within the building should be given to any individual(s) entering the building, prior to entry, so they can take appropriate precautions. Notification of broken glass within the building should be given to any individual(s) entering the building, prior to entry, so they can take appropriate precautions. Notification of exit and emergency lighting within the building should be given to any individual(s) entering the building prior to entry. Notification of the ceiling debris should be given to any individual(s) entering the building prior to entry. Notification of the ceiling debris should be given to any individual(s) entering the building, prior to entry, so they can take appropriate precautions. In November 2016, Bergmann found all exterior entrance doors padlocked, one exterior entrance door was locked from the outside, and the remaining entrance doors were locked from the inside. Any

10

individual(s) entering the building should be provided with keys to open doors before working within the building to ensure safe emergency exit.

Regarding structural concerns with the building:

- 1. The roof structure appears structurally sound and stable; however, there is evidence of roof leaks that could result in damage to the structure over time. If the building is not heated, damage from freezing could occur.
- 2. The roof gutter system and downspouts should be fixed or reinstalled for regular function as required, to help prevent water intrusion into the building.
- 3. One roof support connection for the existing structural bracing system on the west parapet wall on the roof is completely rusted and needs to be fixed or renovated.

Structural issues requiring immediate attention are currently being addressed by OPWDD, as well as other building envelope maintenance/security issues. Those issues not requiring immediate attention will be addressed if the building is re-occupied in the future.

5.4 Future Activities

Activities scheduled for 2017 include:

- 2nd Quarter groundwater sampling event June 2017.
- Meeting with NYSDEC to determine future contaminant reduction opportunities and continued groundwater monitoring requirements.
- 3rd Quarter groundwater sampling event September 2017.
- 4th Quarter groundwater sampling event November 2017.
- Building Condition Assessments (2) TBD.

TABLE 1

Table 1 Percent Reductions in Total Groundwater VOCs Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

-																																			
Monitoring Well	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011	% Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008	% Reduction 2002 to Nov 2005					
MW-1 [†]	-91.0%	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1%	26.6%	15.5%	-1.3%	15.8%	-44.2%	11.8%	-12.0%	8.2%	-90.5%	-46.9%					
MW-2	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	99.6%	Not Sampled	99.6%	99.6%					
MW-3	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	99.3%	99.3%					
MW-4	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	/ 100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%					
MW-5	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampler	d Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	99.3%	63.4%					
MW-6	78.6%	70.4%	78.6%	70.4%	76.4%	78.8%	6 80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	79.9%	73.6%	76.4%	81.3%	77.1%	78.4%	72.2%	69.7%	74.1%	42.6%					
MW-7	75.6%	86.2%	75.6%	89.1%	71.1%	87.1%	6 100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	87.1%	64.3%	74.6%	96.6%	52.7%	79.5%	22.7%	45.8%	56.3%	-1.3%					
MW-8	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	92.9%	92.9%					
MW-9	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	97.6%	97.6%					
MW-10	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	96.2%	96.2%					
MW-11	86.1%	90.4%	86.1%	77.2%	86.4%	90.4%	6 89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	87.3%	86.4%	83.5%	83.3%	86.5%	83.0%	90.6%	87.8%	78.0%	76.3%					
MW-12	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	õ 99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	99.3%	99.2%	98.7%	98.1%	99.4%	97.8%	99.5%	98.7%	98.7%	62.2%					
MW-13	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	Not Sampled	100.0%	100.0%					
MW-14	75.9%	68.3%	75.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	92.3%	87.6%	79.3%	85.9%	87.1%	88.9%	94.3%	87.9%	90.7%	55.6%					
MW-15	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	6 98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	97.7%	91.5%	96.9%	98.3%	91.1%	99.3%	84.5%	89.4%	97.5%	62.9%					
MW:16*	72.7%	60.9%	72.7%	39.5%	74.6%	86.7%	δ 100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%	81.0%	93.3%	99.7%	94.2%	42.1%	41.6%	57.4%	43.9%	77.5%	-72.1%					
MW-17*	62.9%	54.0%	62.9%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%	94.1%	61.4%	71.3%	97.7%	71.8%	99.5%	10.1%	26.0%	24.7%	-24.2%					
MW-18:*	97.4%	93.4%	97.4%	100.0%	100.0%	100.0%	δ 100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	88.7%	74.4%	82.7%	96.0%	-23.3%	91.8%	-50.0%	27.6%	64.8%	-135.8%					
MW-19 R*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	δ 100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	73.3%	99.0%	99.0%	57.3%	99.0%	-36.7%	-5.7%	99.0%	-102.0%					
MW-20**	100.0%	100.0%	, 100.0%	100.0%	100.0%	100.0%	o 100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%					
MW-21**	34.6%	-50.0%	, 34.6%	23.1%	, 23.1%	61.5%	Not Sampled	67.5%	Not Sampled	96.7%	-13.7%																								
* Well installed 2003 ** Well Installed 2004				1																						1									
Site-Wide reduction:	70.8%	68.7%	79.0%	66.2%	69.1%	87.7%	o 88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%	79.7%	72.2%	83.7%	86.9%	78.3%	81.4%	87.9%	61.1%	82.1%	56.0%	59.7%	78.5%	35.7%					
Impacted Groundwater	1 I	1		1 '	· · · ·																				1	· '	(I	.							
Plume Area Only:	60.8%	69.6%	75.2%	58.6%	58.5%	84.6%	6 80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%	71.9%	64.1%	84.1%	83.0%	72.5%	72.4%	82.1%	65.2%	79.8%	57.7%	64.2%	53.7%	28.4%					
Plume Area = MW-1, MW-1	1, MW-12, MW-	14, MW-15, MW	J-7, MW-17, MW	/-6		·																													
% reduction = percent reduc	uction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated																																		
+Negative values indicate an	increase in total	I VOCs since mr	unitoring comme	nced in 2002. Th	le percent increa	use in total grour	ndwater VOCs is	shown below for	MW-1.	1						1 1																			

Recovery Well	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011	% Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008
DR-1	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%	97.9%	98.1%	96.9%	95.6%	94.5%	99.2%	98.0%	95.1%	96.8%	91.0%	89.2%	93.4%
DR-2	75.1%	60.3%	75.1%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%	89.7%	88.0%	86.6%	92.4%	89.3%	87.3%	90.6%	90.1%	88.8%	89.7%	85.8%	92.3%
DR-3	35.7%	-1.0%	35.7%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%	95.0%	95.4%	98.3%	98.0%	97.4%	94.6%	91.6%	91.5%	88.7%	94.9%	91.7%	88.4%
DR-4	90.8%	88.9%	90.8%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%	89.2%	92.7%	94.3%	95.9%	86.9%	91.2%	95.4%	95.5%	96.2%	92.7%	97.7%	97.6%
G-1	57.7%	47.4%	57.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%	87.6%	89.8%	87.7%	91.0%	94.4%	80.1%	76.0%	69.9%	76.7%	77.9%	68.7%	65.8%
G-2	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%	92.3%	83.0%	87.7%	86.5%	98.4%	97.8%	98.5%	85.4%	40.0%	92.6%	89.8%	79.0%
G-3	27.3%	-0.2%	27.3%	35.0%	8.2%	Not Sampled	79.7%	NA																					
Overall Reduction	46.5%	41.3%	38.0%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1%	91.9%	93.2%	93.5%	91.7%	91.7%	87.9%	81.2%	89.8%	87.2%	86.1%
*Sampling of recovery well	s initiated in 2005																												

Monitoring Well	% Increase 2002 to Nov 2016	% Increase 2002 to Sep 2016	% Increase 2002 to Jun 2016	% Increase 2002 to Nov 2015	% Increase 2002 to Aug 2015	% Increase 2002 to Jun 2015	% Increase 2002 to Mar 2015	% Increase 2002 to Nov 2014	% Increase 2002 to Sep 2014	% Increase 2002 to Jun 2014	% Increase 2002 to Mar 2014	% Increase 2002 to Dec 2013	% Increase 2002 to Jul 2013	% Increase 2002 to Apr 2013	% Increase 2002 to Dec 2012	% Increase 2002 to Jun 2012	% Increase 2002 to Mar 2012	% Increase 2002 to Sep 2011	% Increase 2002 to Jun 2011	% Increase 2002 to Mar 2011	% Increase 2002 to Dec 2010	% Increase 2002 to Sep 2010	% Increase 2002 to Jun 2010	% Increase 2002 to Jan 2010	% Increase 2002 to Jul 2009	% Increase 2002 to Feb 2009	% Increase 2002 to Sep 2008	% Increase 2002 to Jun 2008	% Increase 2002 to Mar 2008	% Increase 2002 to Nov 2005
MW-1 [†]	NA	8.4%	NA	49.8%	47.8%	NA	NA	NA	NA	22.4%	22.4%	55.9%	7.5%	16.3%	46.7%	NA	13.6%	NA	41.7%	NA	NA	NA	100.0%	NA	30.6%	NA	100.0%	NA	47.5%	31.9%
MW-21 [†]	NA	33.3%	NA	NA NA	NA	NA NA	NA NA	. NA	NA NA	. NA	NA NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA								
DR-1 [†]	7.1%	6.0%	37.0%	NA	NA NA	NA	NA NA	NA NA	. NA	NA NA	. NA	NA NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA							
DR-3 [†]	NA	1.0%	NA	NA	NA	NA	NA	15.7%	27.4%	NA	NA	NA NA	NA	NA NA	NA NA	. NA	NA	. NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
G-3 [†]	NA	0.2%	NA	NA NA	NA NA	NA	NA	. NA	NA NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA										
†Negative values indicate a	n increase in total	VOCs since mo	onitoring commer	nced in 2002. Th	ne percent increa	ise in total groun	idwater VOCs is	shown above fo	MW-1, DR-1 an	d DR-3.																				

FIGURE 1

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 1

Monitoring and Recovery Well Locations

CHART 1

APPENDIX A

QUARTERLY GROUNDWATER CHARACTERIZATION REPORTS

JUNE 2016

GROUNDWATER CHARACTERIZATION REPORT

NEW YORK STATE OFFICE OF PEOPLE WITH DEVELOPMENTAL DISABILITIES

GROUNDWATER CHARACTERIZATION REPORT JUNE 2016 SAMPLING EVENT

Former Gowanda Day Habilitation Center 4 Industrial Place Town of Gowanda, Cattaraugus County Voluntary Cleanup Program Agreement V-00463-9

Prepared for:

Dormitory Authority & New York State Office of People with Developmental Disabilities

Bergmann Project No. 6974.85

Issuance Date: September 27, 2016

TABLE OF CONTENTS

<u>SEC</u>	TION	PAGE
1.0	Introd	uction1
	1.1	Scope of Work 1
	1.2	Site Background1
2.0	Grour	ndwater Sampling Overview and Methods2
	2.1	Well Maintenance Activities
	2.2	Groundwater Field Monitoring and Sampling Activities2
3.0	Local	Groundwater Flow Characterization
4.0	Labor	atory Analysis
	4.1	Laboratory Analysis on Groundwater Samples
	4.2	Monitoring Well Groundwater Analysis Summary
	4.3	Sentry Well Groundwater Analysis Summary5
	4.4	Recovery Well Groundwater Analysis Summary5
	4.5	Quality Assurance and Quality Control Samples6
5.0	Reme	diation System Efficiency
	5.1	Impact of the GTS Recovery Wells
	5.2	Extent of Impacted Groundwater7
	5.3	Future Groundwater Monitoring and Analysis Activities8
TAE	BLES	
	Table	1 Groundwater Elevations and Field Measurements June 2016

Table T	Groundwater Elevations and Field Measurements June 20
Table 2	June 2016 Analytical Results Summary
Table 3	Historic Groundwater Analysis Results Summary
Table 4	Percent Reductions in Total Groundwater VOCs

FIGURES

Figure 1	June 2016 Groundwater Contour Map
Figure 2	June 2016 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3	June 2016 Distribution of Groundwater Analytical Results: Recovery Wells

<u>CHARTS</u>

- Chart 1 Groundwater Recovery Wells Summary
- Chart 2 DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
- Chart 3 DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
- Chart 4 DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
- Chart 5 DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
- Chart 6 G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
- Chart 7 G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
- Chart 8 G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

APPENDICES

A Laboratory Analytical Results Report June 2016 Sampling Event

1.0 Introduction

Bergmann Associates (Bergmann) is submitting this groundwater characterization report for the June 2016 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 Scope of Work

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on June 28-29, 2016. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 14 of 21 site-related groundwater monitoring wells and 6 of 7 groundwater recovery wells were sampled for laboratory analysis. Of the 8 monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), 7 were not sampled. These monitoring wells include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10 and MW-13. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in November 2015 and included analysis of groundwater samples from 14 of 21 site-related groundwater monitoring wells and 6 of 7 groundwater recovery wells. Results of the November 2015 sampling event were summarized in a report dated March 21, 2016.

1.2 Site Background

The Gowanda Day Habilitation site consists of a 5.94 acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2,Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of 7 groundwater recovery wells (4 dual phase recovery wells and 3 groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 **Groundwater Sampling Overview and Methods**

2.1 **Well Maintenance Activities**

During the June 2016 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the June 2016 sampling event.

2.2 **Groundwater Field Monitoring and Sampling Activities**

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for groundwater monitoring wells are determined on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 14 of the 21 siterelated groundwater monitoring wells for laboratory analysis on June 28-29, 2016. Depth to groundwater measurements were obtained from 27 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a Horiba U-53 to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis. The duplicate sample was collected after sampling MW-1, the well with the highest concentration of contamination for historic sampling events.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted for comparative purposes from sampling events completed 2002 -2015.

3.0 Local Groundwater Flow Characterization

The Site water table potentiometric surface pattern and groundwater flow direction was determined for June 2016 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on June 28, 2016. The well gauging values and groundwater elevations are provided in Table 1 - Groundwater Elevations and Field Measurements June 2016.

The June 2016 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The June 2016 depths to groundwater range from 7.11 ft below top of casing (btoc) at MW-2, located on the south side of the property to 13.48 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 10.03 ft bgs.

The site-wide average depth to water table increased by approximately 0.61 ft when compared to the June 2016 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and June 2016 Groundwater Contours are presented on Figure 1 – June 2016 Groundwater Contour Map.

4.0 Laboratory Analysis

4.1 Laboratory Analysis on Groundwater Samples

Laboratory analysis was completed on the groundwater samples from 14 monitoring wells and 6 recovery wells collected June 28-29, 2016. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 Monitoring Well Groundwater Analysis Summary

The June 2016 analytical results indicate 2 chlorinated VOCs in monitoring well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in groundwater from 10 of the 14 sampled monitoring wells. Analytical results are summarized in Table 2 – June 2016 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report June 2016 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 3 of the sampled monitoring wells (MW-4, MW-19R, and MW-20). Sample results from these wells have historically indicated low to non-detect levels of VOCs.

Groundwater samples from 11 monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (580 ppb), is located in the area of the historically greatest impacted groundwater.

Concentrations in 4 of the 14 monitoring well groundwater samples increased when compared to the November 2015 sampling event while concentrations in 7 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 79% since activation of the GTS in May 2005.

Due to high concentrations of TCE and Cis-DCE in the samples from monitoring wells MW-1, MW-11, MW-17, DR-1 and G-3, diluted analysis and correspondingly elevated detection limits were required. It is

possible that related chlorinated VOCs Trans-1,2 DCE and Vinyl Chloride may be present at concentrations below the elevated detection limits for these samples.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 73% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the June 2016 sampling event is 580 parts per billion (ppb), a decrease from the November 2015 value of 1,530 ppb. Since activation of the GTS, detected VOCs at MW-1 have decreased by 0.2%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the June 2016 sampling event is 550 ppb, a decrease from the November 2015 value of 1,060 ppb. Since activation of the GTS, detected VOCs at MW-11 have decreased by 88%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the June 2015 sampling event is 15.8 ppb, a decrease from the November 2015 value of 28.8 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by 100%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the June 2016 sampling event is 57 ppb, a decrease from the November 2015 value of 81 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by 82%.

Monitoring well MW-15 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the June 2016 sampling event is 11 ppb, an increase from the November 2015 value of 9.9 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS the detected VOCs at MW-15 have decreased by 99%.

Five groundwater monitoring wells are located along the subject property's north perimeter, downgradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. MW-5 has not been sampled since the March 2008 sampling event. Analytical results are discussed below. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect for MW-18 and MW-19R. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. The total VOC concentration at MW-21 for the June 2016 sampling event is 8.7 ppb, a decrease from the November 2015 value of 20 ppb. Monitoring well MW-21 is located north-northwest of the Site, on the opposite side of Thatcher Brook.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – November 2015 Distribution of Groundwater Analytical Results: Monitoring Wells.

4

4.3 Sentry Well Groundwater Analysis Summary

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event included MW-19R, MW-20 and MW-4. The current results indicate non-detect for all three samples from the eastern sentry wells.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 Recovery Well Groundwater Analysis Summary

During the June 2016 sampling event, 6 of the 7 recovery wells were sampled. Recovery well G-2 was dry and was therefore not sampled. Recovery well G-3 was mislabeled in the field as G-2. Sample results on the laboratory analytical report included in Appendix A referring to G-2 are the results for G-3.

The June 2016 analytical results indicate detection of 2 chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from all 6 of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased since activation of the GTS in May 2005. The average reduction in VOCs for the current sampling event is 47% relative to concentrations prior to GTS activation in 2005. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the June 2016 sampling event is 910 ppb, an increase from the November 2015 value of 319 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 37% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in the area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the June 2016 sampling event is 215 ppb, an increase from the November 2015 value of 199 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of 61% since activation of the GTS.

Recovery well DR-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the June 2016 sampling event is 62 ppb, an increase from the November 2015 value of 45 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of 59% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the June 2016 sampling event is 63 ppb, a decrease from the November 2015 value of 94 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of 93% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the June 2016 sampling event was 60 ppb, a decrease from the November

2015 value of 80 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 93% since activation of the GTS.

Recovery well G-2 was dry during the June 2016 sampling event and was therefore not sampled. During the June 2016 sampling event, the sample collected from recovery well G-3 was mislabeled as G-2.

Recovery well G-3 (labeled in the field and on the laboratory analytical report as G-2) increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the June 2016 sampling event is 420 ppb, an increase from the November 2015 value of 262 ppb. The current sampling event indicates an increase in VOCs at G-3 of 4% since activation of the GTS. Recovery well G-3 is located along the northern property boundary.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – June 2016 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 Quality Assurance and Quality Control Samples

For quality assurance purposes a duplicate groundwater sample was collected from monitoring well MW-1, designated sample "MW-X." Results from sample MW-X were consistent with the sample collected from MW-1.

A trip blank was not supplied by the laboratory for the June 2016 sampling event. An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 Remediation System Efficiency

5.1 Impact of the GTS Recovery Wells

Groundwater control charts for the 6 sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all 7 groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent an increase of total VOCs at 4 recovery wells (DR-1, DR-2, DR-3 and G-3) when compared to the November 2015 sampling event. This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (580 ppb) show a decrease from the November 2015 sampling event (1,000 ppb). The current total VOCs at MW-11 (550 ppb) shows a decrease from the November 2015 sampling event (1,060 ppb). The current total VOCs at DR-1 (910 ppb) show an increase from the November 2015 sampling event (319 ppb). This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015.

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (15.8 ppb) show a decrease from the November 2015 sampling event (28.8 ppb). The current total VOCs at recovery well DR-2 (215 ppb) show a slight increase from the November 2015 sampling event (199 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (57 ppb) show a decrease from the November 2015 sampling event (81 ppb). The current total VOCs at recovery well DR-3 (62 ppb) show an increase from the November 2015 sampling event (45 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (11 ppb) show a slight increase from the November 2015 sampling event (9.9 ppb). The current total VOCs at recovery well DR-4 (63 ppb) show a decrease from the November 2015 sampling event (94 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well G-1 (59.7 ppb) show a decrease from the November 2015 sampling event (80.3 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 was not sampled during the June 2016 or November 2015 sampling events, as the well was dry during these events. The August 2015 total VOCs (28 ppb) showed a decrease from the March 2015 sampling event (48 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at recovery well G-3 (420 ppb) show an increase from the November 2015 sampling event (262 ppb). Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 Extent of Impacted Groundwater

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not detected at MW-19R during the June 2016 sampling event. Monitoring well MW-21 was added to the sampling plan at the request of the NYSDEC. The total VOC concentration at MW-21 for the current sampling event (8.7 ppb) is the lower than the November concentration (20 ppb). MW-19R, MW-18 and MW-21 are off-site monitoring wells located north of the facility. These monitoring points are inferred as beyond the area of hydraulic influence of the recovery wells. Impacted groundwater at these areas was detected prior to activation of the GTS in May 2005.

The redevelopment of wells performed in fall 2015 at the Site was performed to remove sediment from wells at the Site after the ISCO in-situ injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when viewed over the past 10 years of sampling. A meeting with Bergmann, DASNY and NYSDEC should be scheduled to determine next steps for further contaminant reduction and eventual spill closure.

7

5.3 Future Groundwater Monitoring and Analysis Activities

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three routine quarterly monitoring events are required to complete NYSDEC requirements for the ISCO groundwater treatment.

Activities scheduled for the 2nd Quarter 2016 include:

• 2^{nd t} Quarter groundwater sampling event.

Activities scheduled for the 3rd Quarter 2016 include:

- 3rd Quarter groundwater sampling event.
- Disposal of waste material associated with GTS.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for September 2016. This sampling event will include sampling and laboratory analysis for the limited number of wells as determined by Bergmann correspondence with the NYSDEC. Future sampling and analytical events will be conducted to track the effects of the treatment system and ISCO treatment on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be performed during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements June 2016 Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	7.28	7.11	7.53	7.98	10.98	13.48	13.28	10.53	10.53	9.95
Groundwater Elevation	770.95	770.97	770.85	770.45	767.63	767.62	767.66	770.80	772.08	770.07
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	8.74	NA	8.77	7.80	2.97	9.40	8.52	7.12	10.43	9.47
Minimum Purge Volume (gal)	1.4	NA	1.4	1.3	0.5	1.5	1.4	1.2	1.7	1.5
3 Volumes	4.3	NA	4.3	3.8	1.5	4.6	4.2	3.5	5.1	4.6
Actual volume purged	4.3	NS	NS	3.8	NS	4.6	4.2	NS	NS	NS
Comments	Flush = -0.29'	Flush = -0.30'	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17	Stickup=2.17	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	7.88	7.88	10.07	10.62	10.62	12.72	13.37	9.78	8.54	10.13	9.54
Groundwater Elevation	770.70	770.62	768.32	767.81	767.76	767.71	766.48	766.61	765.66	767.91	765.22
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	7.60	9.50	7.33	7.53	9.18	10.54	NA	15.22	9.13	4.62	6.28
Minimum Purge Volume (gal)	1.2	1.5	1.2	1.2	1.5	1.7	NS	2.5	1.5	0.8	1.02
3 Volumes	3.7	4.6	3.6	3.7	4.5	5.2	NS	7.4	4.5	2.3	3.1
Actual volume purged	3.7	4.6	NS	3.7	4.5	5.2	NS	7.4	4.5	2.3	NS
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NA
Depth to Groundwater (btoc)	8.10	8.33	11.23	11.25	11.45	NA	10.60
Groundwater Elevation	771.56	771.60	768.55	768.39	768.38	NA	NA
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	~27.00
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NA
Thickness of Water Column	9.96	9.73	9.22	8.44	11.53	NA	NA
Minimum Purge Volume (gal)	6.50	6.35	6.02	5.51	7.53	NS	NS
3 Volumes	19.51	19.06	18.06	16.53	22.59	NS	NS
Actual volume purged	19.51	19.06	18.06	16.53	22.59	NS	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	

NOTES btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Table 2 June 2016 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 06/29/2016

Sampling Events

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	390	1,000	5.0
CIS	190	530	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	580	1,530	

Monitoring Well MW-2

Sample Date: NS

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-3

Sample Date: NS

Sampling Events

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC	NS	NS	2.0
ТСА	NS	NS	5.0
Total VOC	s NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 1 of 6

Monitoring Well MW-4

Sample Date: 06/28/2016

|--|

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs ND	ND	

Monitoring Well MW-5

Sampling Events

Sample Date: NS

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-6 Sampling Events

Sample Date: 06/28/2016

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		ND	ND	5.0
CIS		100	120	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	100	120	

Table 2 June 2016 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 06/28/2016

Sampling Events

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	ND	ND	5.0
CIS	83	49	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	83	49	

Monitoring Well MW-8

Sample Date: NS

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-9

Sample Date: NS

Sampling	Events			
Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Monitoring	Well	MW-10
------------	------	-------

Sample Date: NS

Sampling Events

Analyte ir	n ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Tota	I VOCs	NS	NS	

Monitoring Well MW-11

Sampling Events

NYS Guidance Value Analyte Jun 2016 Nov 2015 in ppb TCE 250 500 5.0 CIS 560 300 5.0 TRANS ND ND 5.0 ND ND 2.0 VC TCA ND ND 5.0 Total VOCs 1,060 550

Monitoring Well MW-12 Sampling Events

Sample Date: 06/28/2016

Sample Date: 06/28/2016

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		5.8	8.8	5.0
CIS		10	20	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	15.8	28.8	
Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: NS

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
ТСА		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-14

Sample Date: 06/28/2016

Sampling Events

Analyte in p	ob Jun 2016	Nov 2015	NYS Guidance Value
TCE	34	39	5.0
CIS	23	42	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VC	DCs 57	81	

Monitoring Well MW-15 Sampling Events

Sample Date: 06/28/2016

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	11	9.9	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	11	9.9	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Monitoring Well MW-16

Sample Date: 06/28/2016

Sampling Events

Analyte in pp	b Jun 2016	Nov 2015	NYS Guidance Value
TCE	ND	ND	5.0
CIS	37	31	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VC	DCs 37	31	

Monitoring Well MW-17

Sampling Events

Sample Date: 06/29/2016

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		95	120	5.0
CIS		330	340	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	425	460	

Monitoring Well MW-18

Sampling Events

Sample Date: 06/28/2016

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		ND	ND	5.0
CIS		6.9	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	6.9	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: 06/28/2016

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-20

Sample Date: 06/28/2016

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-21

Sample Date: 06/28/2016

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		ND	ND	5.0
CIS		8.7	20	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	8.7	20	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sample Date: 06/29/2016

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		750	240	5.0
CIS		160	66	5.0
TRANS		ND	13	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	910	319	

Recovery Well DR-2 Sampling Events

Sample Date: 06/29/2016

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	35	49	5.0
CIS	180	150	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	215	199	

Recovery Well DR-3 Sampling Events

Sample Date: 06/29/2016

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	31	29	5.0
CIS	31	16	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	62	45	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Recovery Well DR-4

Sample Date: 06/29/2016

Samp	ling	Even	ts

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		39	33	5.0
CIS		24	61	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	63	94	

Recovery Well G-1

Sampling Events

Sample Date: 06/29/2016

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	6.7	7.3	5.0
CIS	53	73	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	59.7	80.3	

Recovery Well G-2 Sampling Events

Sample Date: NS

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: 06/29/2016

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		110	72	5.0
CIS		310	190	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	420	262	

Duplicate Blank

Sample Date: 06/29/2016

Sampling Events

Analyte	in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE		370	1200	5.0
CIS		180	520	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	550	1,720	

Equipment Blank Sampling Events

Sample Date: 06/29/2016

Analyte in ppb	Jun 2016	Nov 2015	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOC	s ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

															MONITO	ORING WELL	S																
Monitoring	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	Sep 2007	May 2007	Oct 2006	Nov 2005	Oct 2004	Jul 2003	Aug 2002
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)												(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889	442	1,318.1	583	564	649	778	1107.16	677	860	705	1,463	1,481	2,046	1,769	1,128	1,250	2,879	768
MW-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	ND	ND	ND	ND	ND	7.1	23
MW-3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	2.4	ND	ND	8.42	5.6	3.1	15
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	1.8	3.8
MW-5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	3.41	ND	ND	5.13	6.7	7.3	14
MW-6	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7	101	79	73.2	81.8	107	96	92.8	87.8	113	123	105	171	151	173	233	280	333	406
MW-7	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5	209.16	70.9	22.3	58.2	160.5	114.46	213	92.34	347.8	244	196.7	360	330.5	420	455.7	508	534	450
MW-8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	1.4
MW-9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	4.2
NVV-10	NS 550	1.000	NS C20	NS	NS 500	NS 454	NS 075	NS	NS 74.0	NS	<u>NS</u>	NS	NS 700	NS 100	NS C47	NS	NS 700	NS COO	NS 500	NS (200.7	NS	NS	NS 700	NS 407.0	NS	NS	ND 200. C	NS	ND	ND	ND 0.055	ND	2.6
N/V/ 12	15.9	1,060	630	444	120	401	3/5	450	212	172	140.2	570 196.6	142	498	149.22	02.9	162.0	00.92	00.4	100	150.9	625.9	790	437.3	150	1,023	398.0	1,189	2,600	1,101	2,300	34,169	4,047
MW/ 12	NS	20.0	JZ NS	57 NS	NS	NS	NS	200 NS	NS	NS	149.3 NS	180.0	NS	NIS	140.22 NG	92.0 NS	102.9 NS	90.02 NS	50.4 NS	NS	139.0 NG	NS	279.01 NS	05.0	NS	105.0	2.02	429 ND	1,002	4,770	0,900	21	215
MW-13	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6	77.3	104.98	31.9	24.33	38.93	65.22	40.72	34.9	17.8	38.15	29.3	103.2	106.8	293.9	139.9	67	140	315
MW-15	11	99	14	8.1	9.8	32	31	61	ND	68	7	ND	12.9	26.26	6.25	32.46	16 18	6.92	16.85	62	22.93	64.8	49	113.3	77.3	18.2	149.6	60.4	149.9	271	320	258	730
MW-16	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2	6.07	23.1	28.9	7.21	2.53	ND	22	22.2	16.2	21.3	8.56	24.7	60.0	51.2	65.4	82	38	NA
MW-17	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1	449	225.2	26.7	48.1	312.3	232.1	228.8	4.41	728	599	610	903.0	777	1.011	1.006	1.154	810	NA
MW-18	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33	28.7	13.9	6.43	17.9	40.77	27.5	196	13.07	238.6	115.2	56.0	719	442	392	375	460	159	NA
MW-19R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	2.67	ND	4.27	ND	13.7	10.57	ND	22.1	2.64	11.4	20.2	14	10*	NA
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	NA	NA
MW-21	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	141.8	NS	14.3	533	318	29	495.6	436	NA	NA
MW-X (DUP)	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913	457	1,022.2	Sample loss*	588	611	264	598	678	902	648	12.41	888	437	1,350	1031.49	540.6	7.1	133.63
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	NS	NS	ND	ND	NS	ND	0.001
															RECO	VERY WELLS	3																
Recovery Well	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOC	s Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total				
Number	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs Oct	VOCs Feb	VOCs Oct	VOCs	VOCs Aug
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	Sep 2007	May 2007	2006	2005	2004	Jul 2003	2002
	,	,	,	,	,	,	,	,	,	,	,	,	,	/	,	,	,	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DR-1	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673	166.5	154.5	250.1	355.5	442.5	60.3	392.28	260	724	864	530	2,043.5	1,106	573.4	8,000	NA	NA	NA NA
DR-2	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3	206.1	240.93	267.75	152.3	213.52	255.2	198.24	223.79	206.6	284.3	154.4	288.1	350.1	549.2	2,003	NA	NA	NA
DR-3	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9	74.3	67.7	25.3	30.1	38.1	79.7	125.96	167.34	75.4	123.2	171.7	387.5	183	152.5	1,467	NA	NA	NA
DR-4	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND	191.03	128.4	101.4	71.7	230.58	155.04	80.3	66.3	129.1	40.2	42.1	217.0	15.21	859.0	1,760	NA	NA	NA
G-1	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58	67.52	55.81	67.02	48.8	30.5	108.3	164	126.6	120.4	170.5	186	225.0	153.3	200.8	544	NA	NA	NA
G-2	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9	29.8	65.6	47.2	51.8	6.02	8.37	56.2	231	28.3	39.1	80.92	59.3	174.92	283.4	385	NA	NA	NA
G-3	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2	296.2	224.7	209.8	159.3	233.2	277.8	344	403	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NS: This well not included in this sampling event. ND = Not Detected, results less than Method Detection Limit. Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21 All compounds are measured in parts per billion (ppb). VOC - Volatile Organic Compounds. DUP - Duplicate Sample

Table 4 Percent Reductions in Total Groundwater VOCs Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

	% Reduction 2002 to Nov																											
Monitoring Well	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jan 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	2005
MW-1 [†]	0.2%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28,9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1%	26.6%	15.5%	-1.3%	15.8%	-44.2%	11.8%	-12.0%	8.2%	-90.5%	-46.9%
MW-2	Not Sampled	99.6%	Not Sampled	99.6%	99.6%																							
MW-3	Not Sampled	99.3%	99.3%																									
MW-4	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%
MW-5	Not Sampled	99.3%	63.4%																									
MW-6	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	79.9%	73.6%	76.4%	81.3%	77.1%	78.4%	72.2%	69.7%	74.1%	42.6%
MW-7	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	87.1%	64.3%	74.6%	96.6%	52.7%	79.5%	22.7%	45.8%	56.3%	-1.3%
MW-8	Not Sampled	92.9%	92.9%																									
MW-9	Not Sampled	97.6%	97.6%																									
MW-10	Not Sampled	96.2%	96.2%																									
MW-11	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	87.3%	86.4%	83.5%	83.3%	86.5%	83.0%	90.6%	87.8%	78.0%	76.3%
MW-12	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	99.3%	99.2%	98.7%	98.1%	99.4%	97.8%	99.5%	98.7%	98.7%	62.2%
MW-13	Not Sampled	100.0%	Not Sampled	100.0%	100.0%																							
MW-14	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	92.3%	87.6%	79.3%	85.9%	87.1%	88.9%	94.3%	87.9%	90.7%	55.6%
MW-15	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	97.7%	91.5%	96.9%	98.3%	91.1%	99.3%	84.5%	89.4%	97.5%	62.9%
MW:16*	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%	81.0%	93.3%	99.7%	94.2%	42.1%	41.6%	57.4%	43.9%	77.5%	-72.1%
MW-17*	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%	94.1%	61.4%	71.3%	97.7%	71.8%	99.5%	10.1%	26.0%	24.7%	-24.2%
MW-18:*	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	88.7%	74.4%	82.7%	96.0%	-23.3%	91.8%	-50.0%	27.6%	64.8%	-135.8%
MW-19 R*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	73.3%	99.0%	99.0%	57.3%	99.0%	-36.7%	-5.7%	99.0%	-102.0%
MW-20**	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
MW-21**	66.5%	23.1%	23.1%	61.5%	Not Sampled	67.5%	Not Sampled	96.7%	-13.7%																			
* Well installed 2003																										, ,		
** Well Installed 2004																										, ,		
Site-Wide reduction:	76.9%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%	79.7%	72.2%	83.7%	86.9%	78.3%	81.4%	87.9%	61.1%	82.1%	56.0%	59.7%	78.5%	35.7%
		/-															/ .								/-			
Impacted Groundwater																												
Plume Area Only:	72.9%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%	71.9%	64.1%	84.1%	83.0%	72.5%	72.4%	82.1%	65.2%	79.8%	57.7%	64.2%	53.7%	28.4%
Plume Area = MW-1, MW-1	11, MW-12, MW-	14, MW-15, MV	/-7, MW-17, M\	N-6																								
% reduction = percent redu	ction in total Vola	tile Organic Cor	npounds (VOCs	s) since groundw	ater monitoring	was initiated																						
†Negative values indicate a	in increase in tota	al VOCs since m	onitoring comm	nenced in 2002.	The percent incr	ease in total gro	undwater VOCs	is shown below	tor MW-1.	1	I				I	1												

Recovery Well	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011	% Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008	
DR-1 DR-2 DR-3 DR-4 G-1 G-2 G-3	-58.7% 60.9% 59.3% 92.7% 92.7% Not Sampled -4.2%	44.4% 63.8% 70.5% 89.1% 60.0% Not Sampled 35.0%	72.1% 66.0% 50.2% 87.2% 100.0% 90.1% 8.2%	Not Sampled 47.0% 45.6% 91.7% 66.1% Not Sampled Not Sampled	96.2% 52.8% 63.9% 82.9% 27.3% 83.1% Not Sampled	89.0% 70.5% -18.7% 81.8% 49.8% 88.0% Not Sampled	90.4% 59.2% -37.7% 82.8% 47.7% 86.9% Not Sampled	86.9% 58.0% 45.6% 88.8% 55.0% 81.7% Not Sampled	77.0% 62.3% 41.6% 92.5% 61.3% 95.1% 79.7%	84.8% 45.0% 19.3% 90.8% 65.6% 71.4% NA	99.1% 87.2% 95.8% 95.5% 87.3% 79.0% NA	99.0% 85.4% 95.1% 97.9% 89.8% 87.0% NA	99.5% 99.1% 97.2% 94.9% 90.3% 65.7% NA	99.8% 88.5% 92.1% 93.1% 87.4% 80.4% NA	91.6% 83.9% 98.3% 100.0% 88.0% 89.1% NA	97.9% 89.7% 95.0% 89.2% 87.6% 92.3% NA	98.1% 88.0% 95.4% 92.7% 89.8% 83.0% NA	96.9% 86.6% 98.3% 94.3% 87.7% 87.7% NA	95.6% 92.4% 98.0% 95.9% 91.0% 86.5% NA	94.5% 89.3% 97.4% 86.9% 94.4% 98.4% NA	99.2% 87.3% 94.6% 91.2% 80.1% 97.8% NA	98.0% 90.6% 91.6% 95.4% 76.0% 98.5%	95.1% 90.1% 91.5% 95.5% 69.9% 85.4% NA	96.8% 88.8% 88.7% 96.2% 76.7% 40.0% NA	91.0% 89.7% 94.9% 92.7% 77.9% 92.6% NA	89.2% 85.8% 91.7% 97.7% 68.7% 89.8% NA	93.4% 92.3% 88.4% 97.6% 65.8% 79.0%	- - - -
Overall Reduction	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1%	91.9%	93.2%	93.5%	91.7%	91.7%	87.9%	81.2%	89.8%	87.2%	86.1%	,
*Sampling of recovery well:	s initiated in 2008	5																										
Monitoring Well	% Increase 2002 to Jun 2016	% Increase 2002 to Nov 2015	% Increase 2002 to Aug 2015	% Increase 2002 to Jun 2015	% Increase 2002 to Mar 2015	% Increase 2002 to Nov 2014	% Increase 2002 to Sep 2014	% Increase 2002 to Jun 2014	% Increase 2002 to Mar 2014	% Increase 2002 to Dec 2013	% Increase 2002 to Jul 2013	% Increase 2002 to Apr 2013	% Increase 2002 to Dec 2012		% Increase 2002 to Mar 2012		% Increase 2002 to Jun 2011				% Increase 2002 to Jun 2010		% Increase 2002 to Jul 2009		% Increase 2002 to Sep 2008		% Increase 2002 to Mar 2008	% Increase 2002 to Nov 2005
MW-1 [†] DR-1 [†] DR-3 [†] G-3	NA 37.0% NA 4.0%	49.8% NA NA NA	47.8% NA NA	NA NA NA NA NA NA	NA NA NA	NA NA 15.7% NA	NA NA 27.4% NA	22.4% NA NA	22.4% NA NA NA	55.9% NA NA NA	7.5% NA NA NA	16.3% NA NA NA	46.7% NA NA	NA NA NA	13.6% NA NA NA	NA NA NA	41.7% NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	100.0% NA NA	NA NA NA NA	30.6% NA NA NA	NA NA NA	100.0% NA NA NA	NA NA NA	47.5% NA NA NA	31.9% N N N N

FIGURES

I:\DASNY\006974.85 DASNY - GOWANDA 2016 O & M\4.0 Dwgs\4.10 GIS\Figure_1_2016_Q2.mxd

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 1 June 2016 Groundwater **Contour Map**

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 2

June 2016 Distribution of Groundwater **Analytical Results: Monitoring Wells**

		G-3	Torrance	Dace
	G-2 TCE NS CIS NS TRANS NS VC NS	TCE110CIS310TRANSNDVCNDTCANDTotal VOCs420		
Thathatadk	TCA NS Total VOCs NS G-2	G-1 DR-4	DR-4 TCE 39 CIS 24 TRANS ND VC ND TCA ND	
	CIS 53 TRANS ND VC ND TCA ND Total VOCs 59.7	DR-3 DR-2 T DR-2	DR-3DR-3CE31IS31RANSNDCNDCANDDatal VOCs62	tranpace
	TCE CIS TRANS VC TCA Total VC	49 150 ND ND ND OCs 199	DR-1 TCE 750 CIS 160 TRANS ND VC NS	
			TCA NS Total VOCs 910	

DASNY

Gowanda Day **Habilitation Center**

4 Industrial Place Gowanda, NY

Figure 3

June 2016 **Distribution of** Groundwater **Analytical Results: Recovery Wells**

CHARTS

Chart 2: MW-1, DR-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 6: MW-17 and G-1 Groundwater Volatile Organic Compound Concentrations

APPENDIX A

LABORATORY ANALYTICAL RESULTS REPORT JUNE 2016 SAMPLING EVENT

Ms. Megan Borruso Bergmann Associates, Incorporated 200 First Federal Plaza 28 East Main St. Rochester, NY 14614

Laboratory Results for: Gowanda

Dear Ms.Borruso,

Enclosed are the results of the sample(s) submitted to our laboratory June 29, 2016 For your reference, these analyses have been assigned our service request number **R1606856**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7478. You may also contact me via email at Vanessa.Badman@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Janassa T. Badman

Vanessa Badman Customer Service Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

CASE NARRATIVE

This report contains analytical results for the following samples:

Service Request Number: R1606856

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R1606856-001	MW-4	6/28/2016	1110
R1606856-002	MW-20	6/28/2016	1130
R1606856-003	MW-19R	6/28/2016	1210
R1606856-004	MW-15	6/28/2016	1230
R1606856-005	MW-14	6/28/2016	1250
R1606856-006	MW-18	6/28/2016	1320
R1606856-007	MW-21	6/28/2016	1345
R1606856-008	MW-16	6/28/2016	1500
R1606856-009	MW-7	6/28/2016	1520
R1606856-010	MW-6	6/28/2016	1540
R1606856-011	MW-12	6/28/2016	1600
R1606856-012	MW-11	6/28/2016	1615
R1606856-013	MW-1	6/29/2016	0930
R1606856-014	MW-X	6/29/2016	1200
R1606856-015	MW-17	6/29/2016	1000
R1606856-016	DR-1	6/29/2016	1025
R1606856-017	DR-2	6/29/2016	1035
R1606856-018	DR-3	6/29/2016	1100
R1606856-019	DR-4	6/29/2016	1120
R1606856-020	G-1	6/29/2016	1140
R1606856-021	G-2	6/29/2016	1150
R1606856-022	EQUIPMENT BLANK	6/29/2016	1200

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by ALS personnel have been in accordance with "ALS Field Procedures and Measurements Manual" or by client specifications.

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-15	Lab ID: R1	606856-	004			
Analyte	Results	Flag	MDL	PQL	Units	Method
Trichloroethene (TCE)	11		0.22	5.0	ug/L	8260C
CLIENT ID: MW-14	Lab ID: R1	606856-	005			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	23		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	34		0.22	5.0	ug/L	8260C
CLIENT ID: MW-18	Lab ID: R1	606856-	006			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	6.9		0.30	5.0	ug/L	8260C
CLIENT ID: MW-21	Lab ID: R1	606856-	007			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	8.7		0.30	5.0	ug/L	8260C
CLIENT ID: MW-16	Lab ID: R1	606856-	800			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	37		0.30	5.0	ug/L	8260C
CLIENT ID: MW-7	Lab ID: R1	606856-	009			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	83		0.30	5.0	ug/L	8260C
CLIENT ID: MW-6	Lab ID: R1	606856-	010			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	100		0.30	5.0	ug/L	8260C
CLIENT ID: MW-12	Lab ID: R1	606856-	011			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	10		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	5.8		0.22	5.0	ug/L	8260C
CLIENT ID: MW-11	Lab ID: R1	606856-	012			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	300		0.75	13	ug/L	8260C
Trichloroethene (TCE)	250		0.55	13	ug/L	8260C
CLIENT ID: MW-1	Lab ID: R1	606856-	013			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	190		0.75	13	ug/L	8260C
Trichloroethene (TCE)	390		0.55	13	ug/L	8260C
CLIENT ID: MW-X	Lab ID: R1	606856-	014			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	180		0.75	13	ug/L	8260C
Trichloroethene (TCE)	370		0.55	13	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-17	Lab ID: R1606856-015									
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	330		0.60	10	ug/L	8260C				
Trichloroethene (TCE)	95		0.44	10	ug/L	8260C				
CLIENT ID: DR-1	Lab ID: R1	606856-	016							
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	160	D	1.5	25	ug/L	8260C				
Trichloroethene (TCE)	750	D	1.1	25	ug/L	8260C				
CLIENT ID: DR-2	Lab ID: R1	606856-	017							
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	180		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	35		0.22	5.0	ug/L	8260C				
Vinyl Chloride	7.0		0.32	5.0	ug/L	8260C				
CLIENT ID: DR-3	Lab ID: R1	606856-	018							
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	31		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	31		0.22	5.0	ug/L	8260C				
CLIENT ID: DR-4	Lab ID: R1	606856-	019							
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	24		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	39		0.22	5.0	ug/L	8260C				
CLIENT ID: G-1	Lab ID: R1	606856-	020							
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	53		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	6.7		0.22	5.0	ug/L	8260C				
CLIENT ID: G-2	Lab ID: R1	606856-	021							
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	310	D	0.75	13	ug/L	8260C				
Trichloroethene (TCE)	110		0.22	5.0	ug/L	8260C				

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 51

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R1606856-001	MW-4	6/28/2016	1110
R1606856-002	MW-20	6/28/2016	1130
R1606856-003	MW-19R	6/28/2016	1210
R1606856-004	MW-15	6/28/2016	1230
R1606856-005	MW-14	6/28/2016	1250
R1606856-006	MW-18	6/28/2016	1320
R1606856-007	MW-21	6/28/2016	1345
R1606856-008	MW-16	6/28/2016	1500
R1606856-009	MW-7	6/28/2016	1520
R1606856-010	MW-6	6/28/2016	1540
R1606856-011	MW-12	6/28/2016	1600
R1606856-012	MW-11	6/28/2016	1615
R1606856-013	MW-1	6/29/2016	0930
R1606856-014	MW-X	6/29/2016	1200
R1606856-015	MW-17	6/29/2016	1000
R1606856-016	DR-1	6/29/2016	1025
R1606856-017	DR-2	6/29/2016	1035
R1606856-018	DR-3	6/29/2016	1100
R1606856-019	DR-4	6/29/2016	1120
R1606856-020	G-1	6/29/2016	1140
R1606856-021	G-2	6/29/2016	1150
R1606856-022	EQUIPMENT BLANK	6/29/2016	1200

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

1_OF 2

Project Name Grwunda	Project Number						ANALYSIS REQUESTED (Include Method Number and Container Preservative)															
Project Manager	Report CC		· · · · ·		PRE	SERVA	TIVE	1														
Corripany/Address Bernann 28 F. Main St. p	Company/Address Bermann Associates 28 F. Main St. Rochester Ny 14614						ALL OF	ALL A				1.00							/		Pr 0. 1. 2. 3. 4.	eservative Key NONE HCL HNO3 H2SO4 NaOH
585 232 5135 Phone # CMLEGAN E. Banual Sanjoter's Spinature	Set 232 5135 Tet Email Megan E. Banuso Sters & Stinature Megan E. Barriso Megan E. Barriso Megan E. Barriso						GCMS SVOL	GC 100 625	PESTICIDED	PCBs 608	METALS, TO	METALS, DIC. De	III comments bei						/		8. 8. REN LTERNATE	Zn. Acetate MeOH NaHSO4 Other MARKS/ DESCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE (ONLY LAB ID	SAMPI DATE	LING TIME	MATRIX																		
mw-4		6/28/2016	1110	A GN	3	$ \chi $													 			
mw-20	de la compañía de la Compañía de la compañía	6/28/2016	1130	AG GW	3	X																
MW-19R		6/28/2016	1210	AGEN	3	X																
15		6/28/2016	1230	AG GW	12	X																
<u>mw - 14</u>		6/28/2016	1250	AG GW	13	X																. <u></u>
mw-18		6/28/2016	1320	AG GU	13	X																
mw-21	100 A	6/28/2016	1345_	Ag GW	3	X																
MW-16		6/28/2016	1500	AGEN	3	X														 		· · · · · · · · · · · · · · · · · · ·
$m\omega - 7$		6/28/2016	1520	Aq CW	13	X															,	· · · · · · · · · · · · · · · · · · ·
mw-6		6/28/2016	1540	Ag GIN	3	X					·								<u> </u>			
mw - 12		6/28/2016	1600	Ag GN	3	X							ا <u>ن</u> ا						1	<u> </u>		
SPECIAL INSTRUCTIONS/COMMENTS				U			τυ	IRNAR	OUND	REQU	IREME	NTS		REPC	RTR	EQUIRI	EMENT	rs		INV	OICE INF	ORMATION
Metals								RUSI	H (SURC	HARGE	S APPLI	'n		_ I. Resu	lts Only							
r								1 day	y2 v5	day day	3 day	,		_ II. Resu (LCS, D	ilts + Q DUP, MS	C Summ S/MSD a	aries s require	ed)		# 		
							G	mi i	NAD	ד מ	'Ar	-		_ III. Res	ults + C	C and C	alibratio	'n		Ber	gmann	Associates
							REQU	UESTER	D REPC	DRT DA	TE			_ IV. Date	aries a Valida	tion Rep	ort with	Raw Da	ita			
														Ņуs	DEC	E	QUI.	S				
See QAPP		<u> </u>					╂						-	Edat	a <u>X</u>	Yes		No				
STATE WHERE SAMPLES WERE CO	DLLECTED Vew	York	BE	UNQUISHED	BY		+		RECE	IVED B	Y			R	ELINQ	UISHED	BY				RECEIV	ED BY
RELINQUISHED BY	REGEIVE	A																				
Stinature	Signature	47-	Signature				Signat	lure					Sions		204		:c		Sig	nature		
Megan E. BIIINSO	Printeg Mame	P	Printed Name				Printe	d Name						K I C sergman	DUI In Ass	DOC oclates	ncorp	porate	C h	,		
Berzmann Associates	Firm 744	ip-	Firm	- <u></u>			Firm						- 6	owand:	a 							
1/29/16 1500	Date/Tigle	100	Date/fime				Date/	Time					-									
Date/Time	GIZYILL						<u> </u>						_						-		@ 2012 F	w ALS Group

Distribution: White - Lab Copy; Yellow - Return to Originator

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Rcad, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ___

Project Name	Project Name Project Number							ANALYSIS REQUESTED (Include Method Number and Container Preservative)													
Project Manager	Report CC			PRE	SERVA	TIVE	1													_	
Corpany/Address Bergmann Alsociates 28 E. Main St. Rochester, NY 14614						ALL'S	- Line		/		elow	ED elowy	7				/			Pres 0. 1 1. 1 2. 1 3. 1 4. 1 5. 1	servative Key NONE HCL HNO3 H2SO4 NaOH Zn. Acetate
JES 2 32 57 35 Phone # <u>Megane Burnes</u> Sarphers Signature	5 mbornisgo bergnunnpe.com Email Megan E. Bornio Samplers Printed Name					CCMS SVOA	6C VOAS	PESTICIDES 0 8081 0 001602	PCBs 608	METALS, TOTA.	METALS. DISCO	nonments t							AL	6. 1 7. 1 8. (REMA ERNATE D	MeOH NaHSO4 Other RKS/ ÆSCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPLING DATE TI																			
MW-11	61	28/2016 161	5 Az GU	3	X																
mw-1	4/4	28/2016 093	O AGEW	3	X															<u> </u>	
mw-x	6/-	29/2016 120	U Az Gu	3	X																
MW-17	0/	29/2016 100	Ag GW	13	X													ļ		t	
DR-1	6/3	29/2016 100	5 Azer	13	X																
DR-2	b/,	29/2016 103	5 AzGW	13	X																
DR -3	6/3	20/2016 100	1/2 60	12	X																
DR-4 .	6/	29/2016 112	Ay 6W	2	X				<u> </u>											<u> </u>	
G-1	6/2	29/2016 114	5 AGU	3	×																
6-2	6/	39/2016 115	O AG GW	12	X	┣───┡												<u> </u>			
EQUIPMENT BLANK	6/6	201/2016 120	o W	3	X	<u> </u>]						T			I	L	I	1	L		
SPECIAL INSTRUCTIONS/COMMENTS						τυ	RNAR	OUND F	REQU	REME	NTS		REPO	DRT RI	EQUIR	EMEN	TS		INVC	ICE INFO	RMATION
WELEIS							RUSI	I (SURCE	HANGE	SAPPLI	,		_1. Hesu		0.0			PO			
							1 day	2.	day	3 day		<u> </u> ~	(LCS, I	uits + Q DUP, M	C Summ S/MSD a	naries as require	ed)				
							4 day	/50 /0000	day ກໍາ	24			lit, Res	sults + C	C and C	Calibratic	วท	BILL	TO:	mann	L Associate
									י ע הי ע				Summ	aries					<u> </u>	<u>, </u>	
						REGU	JESTEL	JREPUR					_ IV. Dat	a Valida	ition Rep	port with	Raw Da	ta 🗕			
												N	YSDL	Z.	EQ.	zur	2				
	ECTED Alaul V											1	Edat	la _	K_Yes		_No				
BELINQUISHED BY	RECEIVED BY RELINQUISHE							RECEIN	ED B	(1	R	ELINQ	UISHE	DBY		Τ		RECEIVED) BY
Maga Show		1																Sig	oturo		
Signatura Sign	Signature Signature					Signat	ure					Signa	ture	Ď	160	200		, l ^{orgi}			
Printed Name	E. Bov I nov Printed Name Printed Name					Printed	d Name					Printe	d Nr	Berg	IO(mann A		5 36	orpora	5		
Firm 1) // Firm	man Association Firm					Firm						Firm		Gowa	anda III III				 		
0/39/16 1000 Date/Time Date	tertipetzs //L	15D Date/T	me			Date/T	Time				ہ کے خارجہ رکن	Date/	Time								M S Group

Distribution: White - Lab Copy; Yellow - Return to Originator

() ()						D		r 			l	R16	068 Associat	56 es, Incorpo	5	
(AL	s)	- (coole	r Re	ceipt and	Pres	serv	atio	n Ch	eck F	or	Gowanda				100
Project/Clie	ent DU	$A \cap$	ЫA	<u> </u>	F	older	Nun	nber_	RIL-	6856		80 01 0 	u k i i m i i i i i i i i i i i i i i i i i i i			
Cooler receive	ed on 2	<u>16</u>)	by	SUX_	(COU	RIER	ALS	UPS	FEDE	ex vi	ELOCI	TYCL	IENT	
1 Were Cu	stody seals on	outsid	e of co	oler?	00	N	5a	Perc	hlorate	samples	have re	quired	headsp	ace?	B.N	NA
2 Custody	papers prope	rly com	pleted	(ink, s	igned)?	N	5b	Did V	/OA vi	als, Alk,o	r Sulfi	de have	sig* b	ubbles?	YQ	NA
3 Did all b	ottles arrive in	good c	onditi	on (unt	oroken)? Y	N	6	When	e did th	ne bottles	origina	nte?	AL	S/ROC	CLIE	₩ <u>7</u>
4 Circle: Z	Wet Ice) Dry	Ice C	Fel pac	ks p	present?	N	7	Soil	VOA re	ceived as	: E	Bulk	Encor	e 503	5set N	<u>s</u>
8. Temperatu	re Readings	Da	te.	29/1	Time:3	3p		ID	IR#3) IR#5		From	n: Ter	np Blank	Samp	le Bottle
Observed Te	emp (°C)		1.9	.h												
Correction F	factor (°C)		-0	. 1				•								
Corrected T	emp (°C)		1.	8												
Within 0-6°	C?		Ľ	N	Y N		Y	N	Y	N	Y	N	Y	<u> </u>	Y	N
If <0°C, wer	e samples froz	en?	Y C	\mathfrak{D}	Y N		Y	<u>N</u>	<u>Y</u>	N	Y	N	Y	<u> </u>	<u> </u>	N
If out of 7	l'emperature,	note p	acking	g/ice co	ndition:		I	ce mel	ted	Poor	y Pack	ed	5	Same Da	y Rule	
&Client A	Approval to R	un Sai	nples:		Standing	Appro	oval	Clien	it aware	e at drop-	off C	lient n	otified	by:		
All samples 5035 sample	held in storag es placed in st	e locat orage l	ion: ocatio	n:	K-002	by (by _	54	5	on on	গস	6	at	116)		
PC Second	dary Review: _															
Or allan Du	-1-1		1.11	2/110	Time	7726		L .								n ne is s
1. V	eakdown: Da Vere all hottle	le : labels (comple	te (i.e.	analysis, prese	ervation	n. etc	0	y: <u></u>	- እግ	ES	NC)			
2. I	Did all bottle la	bels an	d tags	agree v	with custody p	apers?	,			Ý	<u>ES</u>	NC)			
3. V	Vere correct co	ontaine	rs used	for the	tests indicate	d?`		_		Y	ES	NO)			
4. A	Air Samples: C	assette	s / Tub	es Inta	ct	Can	isters	Pressu	irized	Т	edlar®	Bags	Inflated	E	SU/A	
pH	Reagent	Yes	No	Lot R	eceived	Exp	Sar	nple I	D	Vol.	Lot A	dded		Final] Yes=A	11
- 10						<u> </u>				Added				pH	sample	s OK
≥ 12	NaOH UNO														No=Sa	mnlec
<u><u></u></u>	HINO3				· · · · · · · · · · · · · · · · · · ·										were	inpies
<u></u>	NaUSO														nreserv	ed at
Residual	For CN			If+.c	ontact PM to			· · · · · · · · · · · · · · · · · · ·							The lat	as
Chlorine	Phenol			add N	$a_2S_2O_3$ (CN),								1		listed	
(-)	and 522			ascorb	vic (phenol).											
	Na ₂ S ₂ O ₃	-				+	1						l-		PM OK	C to
	ZnAcetate	-	- 1				ן**ן	Not to	be test	ed before	analys	sis – pH	I tested	l and	Adjust:	
	HCI	**	**	4114	070	5117	rec	orded	by VO	As on a s	eparat	e work	sheet			
		·	ا		,	-lu			-		-					
Bottle lot	numbers: (6-06	0-004													

Other Comments:

PC Secondary Review: ___

*significant air bubbles: VOA > 5-6 mm : WC > 1 in. diameter

9/24/15

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r9.doc

10 of 51

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 11 of 51

SEnvironmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester L	ab ID # for State Certifica/	tions ¹	
		ХТ Т	T

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratoryø NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

ALS Group USA, Corp.

dba ALS Environmental

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda		Service Request: R1606856
Sample Name: Lab Code: Sample Matrix:	MW-4 R1606856-001 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-20 R1606856-002 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-19R R1606856-003 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-15 R1606856-004 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-14 R1606856-005 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Printed 7/8/2016 11:11:3	39 AM		Superset Reference:16-0000383511 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda		Service Request: R1606856
Sample Name: Lab Code: Sample Matrix:	MW-14 R1606856-005 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method		Extracted/Digested By	Analyzed By
Sample Name: Lab Code: Sample Matrix:	MW-18 R1606856-006 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-21 R1606856-007 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-16 R1606856-008 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-7 R1606856-009 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

ALS Group USA, Corp.

dba ALS Environmental

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda		Service Request: R1606856
Sample Name: Lab Code: Sample Matrix:	MW-6 R1606856-010 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-12 R1606856-011 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-11 R1606856-012 Water		Date Collected: 06/28/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-1 R1606856-013 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-X R1606856-014 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Printed 7/8/2016 11:11:3	39 AM	16 of 51	Superset Reference:16-0000383511 rev 00
Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda		Service Request: R1606856
Sample Name: Lab Code: Sample Matrix:	MW-X R1606856-014 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method		Extracted/Digested By	Analyzed By
Sample Name: Lab Code: Sample Matrix:	MW-17 R1606856-015 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-1 R1606856-016 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-2 R1606856-017 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-3 R1606856-018 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

ALS Group USA, Corp.

dba ALS Environmental

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda		Service Request: R1606856
Sample Name: Lab Code: Sample Matrix:	DR-4 R1606856-019 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-1 R1606856-020 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-2 R1606856-021 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	EQUIPMENT BLANK R1606856-022 Water		Date Collected: 06/29/16 Date Received: 06/29/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
-	
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 20 of 51

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 11:10
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-4	Units: ug/L
Lab Code:	R1606856-001	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/01/16 13:20	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 13:20	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 13:20	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 13:20	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 13:20	
Vinyl Chloride	ND U	5.0	1	07/01/16 13:20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	07/01/16 13:20	
Dibromofluoromethane	115	89 - 119	07/01/16 13:20	
Toluene-d8	110	87 - 121	07/01/16 13:20	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 11:30
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-20	Units: ug/L
Lab Code:	R1606856-002	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/01/16 13:51	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 13:51	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 13:51	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 13:51	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 13:51	
Vinyl Chloride	ND U	5.0	1	07/01/16 13:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/01/16 13:51	
Dibromofluoromethane	112	89 - 119	07/01/16 13:51	
Toluene-d8	114	87 - 121	07/01/16 13:51	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 12:10
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-19R	Units: ug/L
Lab Code:	R1606856-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/01/16 14:21	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 14:21	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 14:21	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 14:21	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 14:21	
Vinyl Chloride	ND U	5.0	1	07/01/16 14:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/01/16 14:21	
Dibromofluoromethane	111	89 - 119	07/01/16 14:21	
Toluene-d8	115	87 - 121	07/01/16 14:21	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 12:30
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-15	Units: ug/L
Lab Code:	R1606856-004	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/01/16 14:52	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 14:52	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 14:52	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 14:52	
Trichloroethene (TCE)	11	5.0	1	07/01/16 14:52	
Vinyl Chloride	ND U	5.0	1	07/01/16 14:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/01/16 14:52	
Dibromofluoromethane	114	89 - 119	07/01/16 14:52	
Toluene-d8	116	87 - 121	07/01/16 14:52	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 12:50
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-14	Units: ug/L
Lab Code:	R1606856-005	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	23	5.0	1	07/01/16 15:23	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 15:23	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 15:23	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 15:23	
Trichloroethene (TCE)	34	5.0	1	07/01/16 15:23	
Vinyl Chloride	ND U	5.0	1	07/01/16 15:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	07/01/16 15:23	
Dibromofluoromethane	114	89 - 119	07/01/16 15:23	
Toluene-d8	113	87 - 121	07/01/16 15:23	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 13:20
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-18	Units: ug/L
Lab Code:	R1606856-006	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	6.9	5.0	1	07/01/16 15:54	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 15:54	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 15:54	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 15:54	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 15:54	
Vinyl Chloride	ND U	5.0	1	07/01/16 15:54	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	07/01/16 15:54	
Dibromofluoromethane	111	89 - 119	07/01/16 15:54	
Toluene-d8	109	87 - 121	07/01/16 15:54	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 13:45
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-21	Units: ug/L
Lab Code:	R1606856-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	8.7	5.0	1	07/01/16 16:24	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 16:24	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 16:24	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 16:24	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 16:24	
Vinyl Chloride	ND U	5.0	1	07/01/16 16:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/01/16 16:24	
Dibromofluoromethane	112	89 - 119	07/01/16 16:24	
Toluene-d8	114	87 - 121	07/01/16 16:24	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 15:00
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1606856-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	37	5.0	1	07/01/16 16:55	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 16:55	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 16:55	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 16:55	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 16:55	
Vinyl Chloride	ND U	5.0	1	07/01/16 16:55	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/01/16 16:55	
Dibromofluoromethane	110	89 - 119	07/01/16 16:55	
Toluene-d8	110	87 - 121	07/01/16 16:55	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 15:20
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-7	Units: ug/L
Lab Code:	R1606856-009	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	83	5.0	1	07/01/16 17:26	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 17:26	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 17:26	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 17:26	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 17:26	
Vinyl Chloride	ND U	5.0	1	07/01/16 17:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/01/16 17:26	
Dibromofluoromethane	113	89 - 119	07/01/16 17:26	
Toluene-d8	115	87 - 121	07/01/16 17:26	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 15:40
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-6	Units: ug/L
Lab Code:	R1606856-010	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	100	5.0	1	07/01/16 17:56	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 17:56	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 17:56	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 17:56	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 17:56	
Vinyl Chloride	ND U	5.0	1	07/01/16 17:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	07/01/16 17:56	
Dibromofluoromethane	112	89 - 119	07/01/16 17:56	
Toluene-d8	113	87 - 121	07/01/16 17:56	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 16:00
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-12	Units: ug/L
Lab Code:	R1606856-011	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	10	5.0	1	07/01/16 18:27	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 18:27	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 18:27	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 18:27	
Trichloroethene (TCE)	5.8	5.0	1	07/01/16 18:27	
Vinyl Chloride	ND U	5.0	1	07/01/16 18:27	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	07/01/16 18:27	
Dibromofluoromethane	112	89 - 119	07/01/16 18:27	
Toluene-d8	108	87 - 121	07/01/16 18:27	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/28/16 16:15
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-11	Units: ug/L
Lab Code:	R1606856-012	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	300	13	2.5	07/05/16 19:07	
trans-1,2-Dichloroethene	ND U	13	2.5	07/05/16 19:07	
Tetrachloroethene (PCE)	ND U	13	2.5	07/05/16 19:07	
1,1,1-Trichloroethane (TCA)	ND U	13	2.5	07/05/16 19:07	
Trichloroethene (TCE)	250	13	2.5	07/05/16 19:07	
Vinyl Chloride	ND U	13	2.5	07/05/16 19:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/05/16 19:07	
Dibromofluoromethane	113	89 - 119	07/05/16 19:07	
Toluene-d8	110	87 - 121	07/05/16 19:07	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 09:30
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-1	Units: ug/L
Lab Code:	R1606856-013	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	190	13	2.5	07/05/16 19:38	
trans-1,2-Dichloroethene	ND U	13	2.5	07/05/16 19:38	
Tetrachloroethene (PCE)	ND U	13	2.5	07/05/16 19:38	
1,1,1-Trichloroethane (TCA)	ND U	13	2.5	07/05/16 19:38	
Trichloroethene (TCE)	390	13	2.5	07/05/16 19:38	
Vinyl Chloride	ND U	13	2.5	07/05/16 19:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/05/16 19:38	
Dibromofluoromethane	111	89 - 119	07/05/16 19:38	
Toluene-d8	113	87 - 121	07/05/16 19:38	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 12:00
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-X	Units: ug/L
Lab Code:	R1606856-014	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180	13	2.5	07/05/16 15:02	
trans-1,2-Dichloroethene	ND U	13	2.5	07/05/16 15:02	
Tetrachloroethene (PCE)	ND U	13	2.5	07/05/16 15:02	
1,1,1-Trichloroethane (TCA)	ND U	13	2.5	07/05/16 15:02	
Trichloroethene (TCE)	370	13	2.5	07/05/16 15:02	
Vinyl Chloride	ND U	13	2.5	07/05/16 15:02	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/05/16 15:02	
Dibromofluoromethane	112	89 - 119	07/05/16 15:02	
Toluene-d8	114	87 - 121	07/05/16 15:02	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 10:00
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	MW-17	Units: ug/L
Lab Code:	R1606856-015	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	330	10	2	07/05/16 14:31	
trans-1,2-Dichloroethene	ND U	10	2	07/05/16 14:31	
Tetrachloroethene (PCE)	ND U	10	2	07/05/16 14:31	
1,1,1-Trichloroethane (TCA)	ND U	10	2	07/05/16 14:31	
Trichloroethene (TCE)	95	10	2	07/05/16 14:31	
Vinyl Chloride	ND U	10	2	07/05/16 14:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/05/16 14:31	
Dibromofluoromethane	114	89 - 119	07/05/16 14:31	
Toluene-d8	104	87 - 121	07/05/16 14:31	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 10:25
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	DR-1	Units: ug/L
Lab Code:	R1606856-016	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	160 D	25	5	07/05/16 20:08	
trans-1,2-Dichloroethene	ND U	25	5	07/05/16 20:08	
Tetrachloroethene (PCE)	ND U	25	5	07/05/16 20:08	
1,1,1-Trichloroethane (TCA)	ND U	25	5	07/05/16 20:08	
Trichloroethene (TCE)	750 D	25	5	07/05/16 20:08	
Vinyl Chloride	ND U	25	5	07/05/16 20:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/05/16 20:08	
Dibromofluoromethane	113	89 - 119	07/05/16 20:08	
Toluene-d8	115	87 - 121	07/05/16 20:08	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 10:35
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	DR-2	Units: ug/L
Lab Code:	R1606856-017	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180	5.0	1	07/05/16 16:34	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 16:34	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 16:34	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 16:34	
Trichloroethene (TCE)	35	5.0	1	07/05/16 16:34	
Vinyl Chloride	7.0	5.0	1	07/05/16 16:34	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	07/05/16 16:34	
Dibromofluoromethane	113	89 - 119	07/05/16 16:34	
Toluene-d8	112	87 - 121	07/05/16 16:34	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 11:00
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	DR-3	Units: ug/L
Lab Code:	R1606856-018	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	31	5.0	1	07/05/16 17:04	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 17:04	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 17:04	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 17:04	
Trichloroethene (TCE)	31	5.0	1	07/05/16 17:04	
Vinyl Chloride	ND U	5.0	1	07/05/16 17:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	109	85 - 122	07/05/16 17:04	
Dibromofluoromethane	112	89 - 119	07/05/16 17:04	
Toluene-d8	115	87 - 121	07/05/16 17:04	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 11:20
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	DR-4	Units: ug/L
Lab Code:	R1606856-019	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	24	5.0	1	07/05/16 17:35	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 17:35	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 17:35	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 17:35	
Trichloroethene (TCE)	39	5.0	1	07/05/16 17:35	
Vinyl Chloride	ND U	5.0	1	07/05/16 17:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	109	85 - 122	07/05/16 17:35	
Dibromofluoromethane	112	89 - 119	07/05/16 17:35	
Toluene-d8	116	87 - 121	07/05/16 17:35	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 11:40
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	G-1	Units: ug/L
Lab Code:	R1606856-020	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	53	5.0	1	07/05/16 18:06	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 18:06	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 18:06	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 18:06	
Trichloroethene (TCE)	6.7	5.0	1	07/05/16 18:06	
Vinyl Chloride	ND U	5.0	1	07/05/16 18:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/05/16 18:06	
Dibromofluoromethane	111	89 - 119	07/05/16 18:06	
Toluene-d8	109	87 - 121	07/05/16 18:06	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 11:50
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	G-2	Units: ug/L
Lab Code:	R1606856-021	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	310 D	13	2.5	07/06/16 20:52	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 18:36	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 18:36	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 18:36	
Trichloroethene (TCE)	110	5.0	1	07/05/16 18:36	
Vinyl Chloride	ND U	5.0	1	07/05/16 18:36	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/05/16 18:36	
Dibromofluoromethane	113	89 - 119	07/05/16 18:36	
Toluene-d8	113	87 - 121	07/05/16 18:36	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: 06/29/16 12:00
Sample Matrix:	Water	Date Received: 06/29/16 15:00
Sample Name:	EQUIPMENT BLANK	Units: ug/L
Lab Code:	R1606856-022	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/05/16 16:03	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 16:03	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 16:03	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 16:03	
Trichloroethene (TCE)	ND U	5.0	1	07/05/16 16:03	
Vinyl Chloride	ND U	5.0	1	07/05/16 16:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	07/05/16 16:03	
Dibromofluoromethane	112	89 - 119	07/05/16 16:03	
Toluene-d8	114	87 - 121	07/05/16 16:03	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 43 of 51

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	Water

Service Request: R1606856

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8	
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121	
MW-4	R1606856-001	104	115	110	
MW-20	R1606856-002	107	112	114	
MW-19R	R1606856-003	108	111	115	
MW-15	R1606856-004	107	114	116	
MW-14	R1606856-005	105	114	113	
MW-18	R1606856-006	105	111	109	
MW-21	R1606856-007	108	112	114	
MW-16	R1606856-008	108	110	110	
MW-7	R1606856-009	107	113	115	
MW-6	R1606856-010	105	112	113	
MW-12	R1606856-011	106	112	108	
MW-11	R1606856-012	107	113	110	
MW-1	R1606856-013	107	111	113	
MW-X	R1606856-014	107	112	114	
MW-17	R1606856-015	108	114	104	
DR-1	R1606856-016	108	113	115	
DR-2	R1606856-017	107	113	112	
DR-3	R1606856-018	109	112	115	
DR-4	R1606856-019	109	112	116	
G-1	R1606856-020	108	111	109	
G-2	R1606856-021	108	113	113	
EQUIPMENT BLANK	R1606856-022	106	112	114	
Lab Control Sample	RQ1607829-07	107	110	115	
Method Blank	RQ1607829-08	106	113	115	
Lab Control Sample	RQ1607892-03	110	111	114	
Method Blank	RQ1607892-04	110	112	117	
DR-1 MS	RQ1607892-05	111	112	116	
DR-1 DMS	RQ1607892-06	112	113	115	
Lab Control Sample	RQ1607961-03	108	111	116	
Method Blank	RQ1607961-04	108	111	116	

QA/QC Report

Client: Bergmann Associat		nn Associates	, Incorporated				Service Request:		R1606856 06/29/16		
Project:	Gowand	a			Date Collected:						
Sample Matrix:	Water						Date R	eceived:	06/29/16		
•							Date A	nalyzed:	07/5/	/16	
							Date E	xtracted:	NA		
			Dı	uplicate Mat	rix Spike	Summary					
			Volat	ile Organic (Compound	ds by GC/I	MS				
Sample Name:	DR-1							Units:	ug/L		
Lab Code:	R16068	56-016						Basis:	NA		
Analysis Method: 8260C											
Prep Method:	EPA 503	30C									
			I	Matrix Spik RO1607892-(e)5	Du	plicate Matr RO1607892	ix Spike 2-06			
Analyte Name		Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,1,1-Trichloroethan	e (TCA)	ND U	226	250	90	232	250	93	74-127	3	30
cis-1,2-Dichloroether	ne	160 D	433	250	110	438	250	112	72-133	1	30
Tetrachloroethene (PCE)		ND U	256	250	102	262	250	105	67-137	3	30
trans-1,2-Dichloroeth	nene	ND U	258	250	103	264	250	106	77-125	2	30
Trichloroethene (TC	E)	750 D	1040	250	115	1060	250	123	62-142	2	30
Vinvl Chloride		ND U	257	250	103	264	250	105	60-157	2	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Bergmann Associates, Incorporated	Service Request:	R1606856
Gowanda	Date Collected:	NA
Vater	Date Received:	NA
Aethod Blank	Units:	ug/L
RQ1607829-08	Basis:	NA
	Bergmann Associates, Incorporated Gowanda Vater Method Blank RQ1607829-08	Bergmann Associates, IncorporatedService Request:GowandaDate Collected:WaterDate Received:Method BlankUnits:RQ1607829-08Basis:

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/01/16 10:47	
trans-1,2-Dichloroethene	ND U	5.0	1	07/01/16 10:47	
Tetrachloroethene (PCE)	ND U	5.0	1	07/01/16 10:47	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/01/16 10:47	
Trichloroethene (TCE)	ND U	5.0	1	07/01/16 10:47	
Vinyl Chloride	ND U	5.0	1	07/01/16 10:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	07/01/16 10:47	
Dibromofluoromethane	113	89 - 119	07/01/16 10:47	
Toluene-d8	115	87 - 121	07/01/16 10:47	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1607892-04	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/05/16 11:57	
trans-1,2-Dichloroethene	ND U	5.0	1	07/05/16 11:57	
Tetrachloroethene (PCE)	ND U	5.0	1	07/05/16 11:57	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/05/16 11:57	
Trichloroethene (TCE)	ND U	5.0	1	07/05/16 11:57	
Vinyl Chloride	ND U	5.0	1	07/05/16 11:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	110	85 - 122	07/05/16 11:57	
Dibromofluoromethane	112	89 - 119	07/05/16 11:57	
Toluene-d8	117	87 - 121	07/05/16 11:57	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1606856
Project:	Gowanda	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1607961-04	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	07/06/16 12:10	
trans-1,2-Dichloroethene	ND U	5.0	1	07/06/16 12:10	
Tetrachloroethene (PCE)	ND U	5.0	1	07/06/16 12:10	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	07/06/16 12:10	
Trichloroethene (TCE)	ND U	5.0	1	07/06/16 12:10	
Vinyl Chloride	ND U	5.0	1	07/06/16 12:10	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	07/06/16 12:10	
Dibromofluoromethane	111	89 - 119	07/06/16 12:10	
Toluene-d8	116	87 - 121	07/06/16 12:10	

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	Water

Service Request: R1606856 **Date Analyzed:** 07/01/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1607829-07

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.1	20.0	100	80-121
trans-1,2-Dichloroethene	8260C	20.8	20.0	104	80-120
Tetrachloroethene (PCE)	8260C	22.7	20.0	113	78-124
1,1,1-Trichloroethane (TCA)	8260C	19.2	20.0	96	74-120
Trichloroethene (TCE)	8260C	21.0	20.0	105	78-123
Vinyl Chloride	8260C	20.9	20.0	105	69-133

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	Water

Service Request: R1606856 **Date Analyzed:** 07/05/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1607892-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	22.5	20.0	112	80-121
trans-1,2-Dichloroethene	8260C	20.7	20.0	104	80-120
Tetrachloroethene (PCE)	8260C	22.8	20.0	114	78-124
1,1,1-Trichloroethane (TCA)	8260C	18.5	20.0	92	74-120
Trichloroethene (TCE)	8260C	21.6	20.0	108	78-123
Vinyl Chloride	8260C	20.7	20.0	103	69-133

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda
Sample Matrix:	Water

Service Request: R1606856 **Date Analyzed:** 07/06/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1607961-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	21.6	20.0	108	80-121
trans-1,2-Dichloroethene	8260C	20.3	20.0	102	80-120
Tetrachloroethene (PCE)	8260C	21.1	20.0	105	78-124
1,1,1-Trichloroethane (TCA)	8260C	18.8	20.0	94	74-120
Trichloroethene (TCE)	8260C	22.7	20.0	114	78-123
Vinyl Chloride	8260C	21.2	20.0	106	69-133

SEPTEMBER 2016

GROUNDWATER CHARACTERIZATION REPORT

www.bergmannpc.com

NEW YORK STATE OFFICE OF PEOPLE WITH DEVELOPMENTAL DISABILITIES

GROUNDWATER CHARACTERIZATION REPORT SEPTEMBER 2016 SAMPLING EVENT

Former Gowanda Day Habilitation Center 4 Industrial Place Town of Gowanda, Cattaraugus County Voluntary Cleanup Program Agreement V-00463-9

Prepared for:

Dormitory Authority & New York State Office of People with Developmental Disabilities

Bergmann Project No. 6974.85

Issuance Date: April 6, 2017

TABLE OF CONTENTS

<u>SEC</u>	TION	PAGI	Ξ
1.0	Introd	uction	1
	1.1	Scope of Work	1
	1.2	Site Background	1
2.0	Grour	dwater Sampling Overview and Methods	2
	2.1	Well Maintenance Activities	2
	2.2	Groundwater Field Monitoring and Sampling Activities	2
3.0	Local	Groundwater Flow Characterization	2
4.0	Labor	atory Analysis	3
	4.1	Laboratory Analysis on Groundwater Samples	3
	4.2	Monitoring Well Groundwater Analysis Summary	3
	4.3	Sentry Well Groundwater Analysis Summary	5
	4.4	Recovery Well Groundwater Analysis Summary	5
	4.5	Quality Assurance and Quality Control Samples	6
5.0	Reme	diation System Efficiency	6
	5.1	Impact of the GTS Recovery Wells	6
	5.2	Extent of Impacted Groundwater	7
	5.3	Future Groundwater Monitoring and Analysis Activities	8
<u>TAE</u>	BLES		
	Table	1 Groundwater Elevations and Field Measurements September 2016	

Table 1	Groundwater Elevations and Field Measurements September 201
Table 2	September 2016 Analytical Results Summary
Table 3	Historic Groundwater Analysis Results Summary
Table 4	Percent Reductions in Total Groundwater VOCs

FIGURES

Figure 1	September 2016 Groundwater Contour Map
Figure 2	September 2016 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3	September 2016 Distribution of Groundwater Analytical Results: Recovery Wells

<u>CHARTS</u>

- Chart 1 Groundwater Recovery Wells Summary
- Chart 2 DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
- Chart 3 DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
- Chart 4 DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
- Chart 5 DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
- Chart 6 G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
- Chart 7 G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
- Chart 8 G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

APPENDICES

A Laboratory Analytical Results Report September 2016 Sampling Event

1.0 Introduction

Bergmann Associates (Bergmann) is submitting this groundwater characterization report for the September 2016 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 Scope of Work

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on September 14-15, 2016. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 14 of 21 site-related groundwater monitoring wells and 7 of 7 groundwater recovery wells were sampled for laboratory analysis. Of the 8 monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), 7 were not sampled. These monitoring wells include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10 and MW-13. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in June 2016 and included analysis of groundwater samples from 14 of 21 site-related groundwater monitoring wells and 6 of 7 groundwater recovery wells. Results of the June 2016 sampling event were summarized in a report dated March 21, 2016.

1.2 Site Background

The Gowanda Day Habilitation site consists of a 5.94 acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2,Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of 7 groundwater recovery wells (4 dual phase recovery wells and 3 groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

1

In January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015 and a second round was implemented in September 2015. An ISCO Report was prepared under separate cover.

2.0 Groundwater Sampling Overview and Methods

2.1 Well Maintenance Activities

During the September 2016 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the September 2016 sampling event.

2.2 Groundwater Field Monitoring and Sampling Activities

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for groundwater monitoring wells are determined on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 14 of the 21 site-related groundwater monitoring wells for laboratory analysis on September 14-15, 2016. Depth to groundwater measurements were obtained from 27 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a Horiba U-53 to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater to reduce collection of sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis. The duplicate sample was collected after sampling MW-1, the well with the highest concentration of contamination for historic sampling events.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted for comparative purposes from sampling events completed 2002 – 2015.

3.0 Local Groundwater Flow Characterization

The Site water table potentiometric surface pattern and groundwater flow direction was determined for September 2016 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on September 14, 2016. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements September 2016.

The September 2016 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The September 2016 depths to groundwater range from 7.56 ft below top of casing (btoc) at MW-2, located on the south side of the property to 13.72 ft btoc at MW-17 located at the northern property line. The average depth to groundwater at the wells measured was 10.28 ft bgs.

The site-wide average depth to water table increased by approximately 0.25 ft when compared to the June 2016 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and Groundwater Contours are presented on Figure 1 – September 2016 Groundwater Contour Map.

4.0 Laboratory Analysis

4.1 Laboratory Analysis on Groundwater Samples

Laboratory analysis was completed on the groundwater samples from 14 monitoring wells and 7 recovery wells collected September 14-15, 2016. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 Monitoring Well Groundwater Analysis Summary

The September 2016 analytical results indicate 3 chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Vinyl Chloride. Chlorinated VOCs were detected in groundwater from 11 of the 14 sampled monitoring wells. Analytical results are summarized in Table 2 – September 2016 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report September 2016 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 3 of the sampled monitoring wells (MW-4, MW-19R, and MW-20). Sample results from these wells have historically indicated low to non-detect levels of VOCs.

Groundwater samples from 11 monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (838 ppb), is located in the area of the historically greatest impacted groundwater.

Concentrations in 7 of the 14 monitoring well groundwater samples increased when compared to the June 2016 sampling event while concentrations in 4 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 69% since activation of the GTS in May 2005.

Due to high concentrations of TCE and Cis-DCE in the samples from monitoring wells MW-1, MW-4, MW-11, MW-17, DR-1 and G-3, diluted analysis and correspondingly elevated detection limits were required. It is possible that related chlorinated VOCs Trans-1,2 DCE and Vinyl Chloride may be present at concentrations below the elevated detection limits for these samples.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 70% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the September 2016 sampling event is 838 parts per billion (ppb), an increase from the June 2016 value of 580 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by 8%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the September 2016 sampling event is 445 ppb, a decrease from the June 2016 value of 550 ppb. Since activation of the GTS, detected VOCs at MW-11 have decreased by 90%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the September 2016 sampling event is 7.8 ppb, a decrease from the June 2016 value of 15.8 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by 100%.

Monitoring well MW-14 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the September 2016 sampling event is 100 ppb, an increase from the June 2016 value of 57 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by 68%.

Monitoring well MW-15 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the September 2016 sampling event is 23.8 ppb, an increase from the June 2016 value of 11 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS the detected VOCs at MW-15 have decreased by 97%.

Five groundwater monitoring wells are located along the subject property's north perimeter, downgradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. MW-5 has not been sampled since the March 2008 sampling event. Analytical results are discussed below. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect for MW-18 and MW-19R. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2016 sampling event. The total VOC concentration at MW-21 for the September 2016 sampling event is 39 ppb, an increase from the June 2016 value of 8.7 ppb. Monitoring well MW-21 is located north-northwest of the Site, on the opposite side of Thatcher Brook.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – September 2016 Distribution of Groundwater Analytical Results: Monitoring Wells.

www.bergmannpc.com

4.3 Sentry Well Groundwater Analysis Summary

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event included MW-19R, MW-20 and MW-4. The current results indicate non-detect for all three samples from the eastern sentry wells.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 Recovery Well Groundwater Analysis Summary

During the September 2016 sampling event, 7 of the 7 recovery wells were sampled. The September 2016 analytical results indicate detection of 2 chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from 6 of the 7 sampled recovery wells. Total VOCs at the 7 recovery wells for which past data is available have decreased since activation of the GTS in May 2005. The average reduction in VOCs for the current sampling event is 41% relative to concentrations prior to GTS activation in 2005. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the September 2016 sampling event is 610 ppb, a decrease from the June 2016 value of 910 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 6% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in the area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the September 2016 sampling event is 218 ppb, a slight increase from the June 2016 value of 215 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of 60% since activation of the GTS.

Recovery well DR-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the September 2016 sampling event is 154 ppb, an increase from the June 2016 value of 62 ppb. The current sampling event indicates an increase in VOCs at DR-3 of 1% since activation of the GTS.

Recovery well DR-4 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the September 2016 sampling event is 95 ppb, an increase from the June 2016 value of 63 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of 89% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the September 2016 sampling event was 105.6 ppb, an increase from the June 2016 value of 59.7 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 47% since activation of the GTS.

Recovery well G-2 last sampled in August 2015. Recovery well G-2 decreased in targeted chlorinated VOCs relative to the August 2015 sampling event. The total VOC concentration at G-1 for the September 2016 sampling event was non-detect, a decrease from the August 2015 value of 28 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 100% since activation of the GTS.

Recovery well G-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the September 2016 sampling event is 404 ppb, a decrease from the June 2016 value of 420 ppb. The current sampling event indicates an increase in VOCs at G-3 of 0.2% since activation of the GTS. Recovery well G-3 is located along the northern property boundary.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – September 2016 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 Quality Assurance and Quality Control Samples

For quality assurance purposes a duplicate groundwater sample was collected from monitoring well MW-1, designated sample "MW-X." Results from sample MW-X were consistent with the sample collected from MW-1.

A trip blank was supplied by the laboratory and submitted for analysis along with the groundwater samples. The trip blank sample was non-detect for chlorinated halogens. An equipment blank was also collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 Remediation System Efficiency

5.1 Impact of the GTS Recovery Wells

Groundwater control charts for the 7 recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all 7 groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent an increase of total VOCs at 4 recovery wells (DR-2, DR-3, DR-4 and G-1) when compared to the June 2016 sampling event. This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May and September 2015.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (838 ppb) show an increase from the June 2016 sampling event (580 ppb). This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015. The current total VOCs at MW-11 (445 ppb) show a decrease from the June 2016 sampling event (550 ppb). The current total VOCs at DR-1 (610 ppb) show a decrease from the June 2016 sampling event (910 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and monitoring well MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (7.8 ppb) show a decrease from the June 2016 sampling event (15.8 ppb). The current total VOCs at recovery well DR-2 (218 ppb) show a slight increase from the June 2016 sampling event (215 ppb).

6

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (100 ppb) show an increase from the June 2016 sampling event (57 ppb). The current total VOCs at recovery well DR-3 (154 ppb) show an increase from the June 2016 sampling event (62 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (11 ppb) show a slight increase from the November 2015 sampling event (9.9 ppb). The current total VOCs at recovery well DR-4 (63 ppb) show a decrease from the November 2015 sampling event (94 ppb). This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015.

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. Recovery well G-1 is located in the northern portion of the building and monitoring well MW-17 is located along the northern property line. The current total VOCs at recovery well G-1 (105.6 ppb) show an increase from the June 2016 sampling event (59.7 ppb). This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015.

Chart 7 compares laboratory results between recovery well G-2 and monitoring well MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. The current total VOCs at recovery well G-2 are non-detect, which shows a decrease from the last time the well was sampled, August 2015, total VOCs (28 ppb). The current total VOCs at monitoring well

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at recovery well G-3 (404 ppb) show a slight increase from the June 2016 sampling event (420 ppb). The current total VOCs at monitoring well MW-17 (465 ppb) show a slight increase from the June 2016 sampling event (425 ppb). Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 Extent of Impacted Groundwater

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not detected at MW-19R during the June 2016 sampling event. Monitoring well MW-21 was added to the sampling plan at the request of the NYSDEC. The total VOC concentration at MW-21 for the current sampling event (8.7 ppb) is the lower than the November concentration (20 ppb). MW-19R, MW-18 and MW-21 are off-site monitoring wells located north of the facility. These monitoring points are inferred as beyond the area of hydraulic influence of the recovery wells. Impacted groundwater at these areas was detected prior to activation of the GTS in May 2005.

The redevelopment of wells performed in fall 2015 at the Site was performed to remove sediment from wells at the Site after the ISCO in-situ injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when viewed over the past 10 years of sampling. A meeting with Bergmann, DASNY and NYSDEC should be scheduled to determine next steps for further contaminant reduction and eventual spill closure.

5.3 Future Groundwater Monitoring and Analysis Activities

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three routine quarterly monitoring events are required to complete NYSDEC requirements for the ISCO groundwater treatment.

A site-wide groundwater sampling and laboratory analysis event occurred on November 21-22, 2016, discussed under separate cover. This sampling event included sampling and laboratory analysis for the limited number of wells as determined by Bergmann correspondence with the NYSDEC. Future sampling and analytical events will be conducted to track the effects of the treatment system and ISCO treatment on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be performed during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements September 2016 Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	7.73	7.56	7.57	8.30	11.03	13.54	13.49	10.62	10.62	10.02
Groundwater Elevation	770.50	770.52	770.81	770.13	767.58	767.56	767.45	770.71	771.99	770.00
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	8.29	NA	8.73	7.48	2.92	9.34	8.31	7.03	10.34	9.40
Minimum Purge Volume (gal)	1.4	NA	1.4	1.2	0.5	1.5	1.4	1.1	1.7	1.5
3 Volumes	4.1	NA	4.3	3.7	1.4	4.6	4.1	3.4	5.1	4.6
Actual volume purged	4.1	NS	NS	3.7	NS	4.6	4.1	NS	NS	NS
Comments	Flush = -0.29'	Flush = -0.30'	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17'	Stickup=2.17'	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	8.14	8.26	10.27	10.76	10.80	12.89	13.72	9.72	8.70	10.53	9.72
Groundwater Elevation	770.44	770.24	768.12	767.67	767.58	767.54	766.13	766.67	765.50	767.51	765.04
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	7.34	9.12	7.13	7.39	9.00	10.37	NA	15.28	8.97	4.22	6.10
Minimum Purge Volume (gal)	1.2	1.5	1.2	1.2	1.5	1.7	NS	2.5	1.5	0.7	0.99
3 Volumes	3.6	4.5	3.5	3.6	4.4	5.1	NS	7.5	4.4	2.1	3.0
Actual volume purged	3.6	4.5	NS	3.6	4.4	5.1	NS	7.5	4.4	2.1	NS
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NA
Depth to Groundwater (btoc)	8.65	8.76	11.46	11.38	11.63	11.46	10.62
Groundwater Elevation	771.01	771.17	768.32	768.26	768.20	768.26	NA
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	~27.00
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NA
Thickness of Water Column	9.41	9.30	8.99	8.31	11.35	NA	NA
Minimum Purge Volume (gal)	6.14	6.07	5.87	5.43	7.41	NS	NS
3 Volumes	18.43	18.22	17.61	16.28	22.23	NS	NS
Actual volume purged	18.43	18.22	17.61	16.28	22.23	NS	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	

NOTES btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 09/15/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		410	390	5.0
CIS		410	190	5.0
TRANS		ND	ND	5.0
VC		18	ND	2.0
TCA		ND	ND	5.0
То	tal VOCs	838	580	

Monitoring Well MW-2

Sample Date: NS

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-3 Sampling Events

Sample Date: NS

<u> </u>				
Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 1 of 6

Monitoring Well MW-4

Sample Date: 09/14/2016

|--|

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-5

Sampling Events

Sample Date: NS

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-6 Sampling Events

Sample Date: 09/14/2016

1 0				
Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		120	100	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	120	100	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 09/14/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		62	83	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	62	83	

Monitoring Well MW-8

Sample Date: NS

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-9 Sampling Events

Sample Date: NS

Analyte in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC	NS	NS	2.0
TCA	NS	NS	5.0
Total VOCs	s NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Monitoring Well MW-10 Sampling Events

Sample Date: NS

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
T	otal VOCs	NS	NS	

Monitoring Well MW-11 Sampling Events

Sample Date: 09/14/2016

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		130	250	5.0
CIS		300	300	5.0
TRANS		ND	ND	5.0
VC		15	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	445	550	

Monitoring Well MW-12 Sampling Events

Sample Date: 09/14/2016

1 3				
Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	5.8	5.0
CIS		7.8	10	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	7.8	15.8	

Page 2 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: NS

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-14

Sample Date: 09/14/2016

Sampling Events

Analyte in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE	31	34	5.0
CIS	69	23	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	100	57	

Monitoring Well MW-15 Sampling Events

Sample Date: 09/14/2016

1 0			
Analyte in ppl	D Sep 2016	Jun 2016	NYS Guidance Value
TCE	17	11	5.0
CIS	6.8	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs 23.8	11	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Monitoring	Well MW-16
Sampling Ev	/ents

Sample Date: 09/14/2016

Sample Date: 09/15/2016

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		20	37	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	20	37	

Monitoring Well MW-17

in ppb

Sampling Events

Analyte

Sep 2016 Jun 2016 NYS Guidance Value

TCE	95	95	5.0
CIS	370	330	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	465	425	

Monitoring Well MW-18 Sampling Events

Sample Date: 09/14/2016

1 0				
Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		26	6.9	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	26	6.9	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: 09/14/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-20

Sample Date: 09/14/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
ТСА		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-21 Sampling Events

Sample Date: 09/14/2016

Analyte in pp	b Sep 2016	Jun 2016	NYS Guidance Value
TCE	ND	ND	5.0
CIS	39	8.7	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs 39	8.7	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sample Date: 09/15/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		500	750	5.0
CIS		110	160	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	610	910	

Recovery Well DR-2

Sample Date: 09/15/2016

Sampling Events

oumphing L				
Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		38	35	5.0
CIS		180	180	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	218	215	

Recovery Well DR-3 Sampling Events

Sample Date: 09/15/2016

Analyte in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE	34	31	5.0
CIS	120	31	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
ТСА	ND	ND	5.0
Total VOCs	154	62	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Sampling Events

Sample Date: 09/15/2016

Analyte ir	n ppb Sep	2016 Jun 2	016 NYS Guida	nce Value
TCE	3	4 39	9 5.	0
CIS	6	1 24	4 5.	0
TRANS	N	D NI	D 5.	0
VC	N	D NI	D 2.	0
TCA	N	D NI	D 5.	0
Tota	I VOCs 9	5 63	3	

Recovery Well G-1

Sampling Events

Sample Date: 09/15/2016

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		5.6	6.7	5.0
CIS		100	53	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	105.6	59.7	

Recovery Well G-2 Sampling Events

Sample Date: 09/15/2016

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		ND	NS	5.0
CIS		ND	NS	5.0
TRANS		ND	NS	5.0
VC		ND	NS	2.0
TCA		ND	NS	5.0
	Total VOCs	ND	NS	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: 09/15/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		84	110	5.0
CIS		320	310	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	404	420	

Duplicate Blank

Sample Date: 09/15/2016

Sampling Events

Analyte	in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE		430	370	5.0
CIS		430	180	5.0
TRANS		ND	ND	5.0
VC		19	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	879	550	

Equipment Blank Sampling Events

Sample Date: 09/15/2016

Analyte in ppb	Sep 2016	Jun 2016	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MONITORING WELLS																																	
Monitoring	Total	Total	Total	Total	Total	Total	Total VOCs	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total										
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	Sep 2007	May 2007	Oct 2006	Nov 2005	Oct 2004	Jul 2003	Aug 2002										
	(ppb)	(ppb)	(ppb)	(ddd)	(ppb)	(ppb)	,	,			,			/		,	,	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	838	580	1.530	1.470	350	430	300	420	990	990	1.740	830	910	1.440	528	889	442	1.318.1	583	564	649	778	1107.16	677	860	705	1.463	1.481	2.046	1.769	1.128	1.250	2.879	768
MW-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	ND	ND	ND	ND	ND	7.1	23
MW-3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	2.4	ND	ND	8.42	5.6	3.1	15
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	1.8	3.8
MW-5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	3.41	ND	ND	5.13	6.7	7.3	14
MW-6	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7	101	79	73.2	81.8	107	96	92.8	87.8	113	123	105	171	151	173	233	280	333	406
MW-7	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5	209.16	70.9	22.3	58.2	160.5	114.46	213	92.34	347.8	244	196.7	360	330.5	420	455.7	508	534	450
MW-8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	1.4
MW-9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	4.2
MW-10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	2.6
MW-11	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617	508.7	722	623	588	630.7	765	625.9	790	437.3	564.9	1,023	398.6	1,189	2,600	1,101	2,355	34,169	4,647
MW-12	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22	92.8	162.9	90.82	90.4	100	159.8	82	279.01	65.8	159	165.6	196.9	429	1,082	4,776	6,900	12,100	12,643
MW-13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	2.02	ND	ND	ND	ND	31	315
MW-14	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6	77.3	104.98	31.9	24.33	38.93	65.22	40.72	34.9	17.8	38.15	29.3	103.2	106.8	293.9	139.9	67	140	315
MW-15	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25	32.46	16.18	6.92	16.85	62	22.93	64.8	4.9	113.3	77.3	18.2	149.6	60.4	149.9	271	320	258	730
MW-16	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2	6.07	23.1	28.9	7.21	2.53	ND	22	22.2	16.2	21.3	8.56	24.7	60.0	51.2	65.4	82	38	NA
MW-17	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1	449	225.2	26.7	48.1	312.3	232.1	228.8	4.41	728	599	610	903.0	777	1,011	1,006	1,154	810	NA
MW-18	26	6.9	ND	NS	ND	ND	ND	16.6	2.33	28.7	13.9	6.43	17.9	40.77	27.5	196	13.07	238.6	115.2	56.0	719	442	392	375	460	159	NA							
MW-19R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	2.67	ND	4.27	ND	13.7	10.57	ND	22.1	2.64	11.4	20.2	14	10*	NA
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	NA	NA
MW-21	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	141.8	NS	14.3	533	318	29	495.6	436	NA	NA													
MW-X (DUP)	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913	457	1,022.2	Sample loss*	588	611	264	598	678	902	648	12.41	888	437	1,350	1031.49	540.6	7.1	133.63
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	NS	NS	ND		<u>NS</u>	ND	0.001
															I	RECOVERY	WELLS																	
Recovery Wel	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Number	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs Oct	. VOCs Feb	VOCs Oct	VOCs	VOCs Aug
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	Sep 2007	May 2007	2006	2005	2004	Jul 2003	2002
																			(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DR-1	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673	166.5	154.5	250.1	355.5	442.5	60.3	392.28	260	724	864	530	2,043.5	1,106	573.4	8,000	NA	NA	NA
DR-2	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3	206.1	240.93	267.75	152.3	213.52	255.2	198.24	223.79	206.6	284.3	154.4	288.1	350.1	549.2	2,003	NA	NA	NA
DR-3	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9	74.3	67.7	25.3	30.1	38.1	79.7	125.96	167.34	75.4	123.2	171.7	387.5	183	152.5	1,467	NA	NA	NA
DR-4	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND	191.03	128.4	101.4	71.7	230.58	155.04	80.3	66.3	129.1	40.2	42.1	217.0	15.21	859.0	1,760	NA	NA	NA
G-1	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58	67.52	55.81	67.02	48.8	30.5	108.3	164	126.6	120.4	170.5	186	225.0	153.3	200.8	544	NA	NA	NA
G-2	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9	29.8	65.6	47.2	51.8	6.02	8.37	56.2	231	28.3	39.1	80.92	59.3	174.92	283.4	385	NA	NA	NA
G-3	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2	296.2	224.7	209.8	159.3	233.2	277.8	344	403	NA	NA	NA	NA						

NS: This well not included in this sampling event. ND = Not Detected, results less than Method Detection Limit. Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21 All compounds are measured in parts per billion (ppb). VOC - Volatile Organic Compounds. DUP - Duplicate Sample

Table 4 Percent Reductions in Total Groundwater VOCsGowanda Day Habilitation Center4 Industrial Place, Gowanda, New YorkVCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to Nov
Monitoring Well	Sep 2016	Jun 2016	NOV 2015	Aug 2015	Jun 2015	Mar 2015	NOV 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	JUI 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jan 2010	JUI 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	2005
MW-1 [†]	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.19	6 26.6%	15.5%	-1.3%	15.8%	-44.2%	11.8%	-12.0%	8.2%	-90.5%	-46.9%
MW-2	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	99.6%	Not Sampled	99.6%	99.6%
MW-3	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	99.3%	99.3%
MW-4	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	6 97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%
MW-5	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	99.3%	63.4%
MW-6	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	6 79.9%	73.6%	76.4%	81.3%	77.1%	78.4%	72.2%	69.7%	74.1%	42.6%
MW-7	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	6 87.1%	64.3%	74.6%	96.6%	52.7%	79.5%	22.7%	45.8%	56.3%	-1.3%
MW-8	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	92.9%	92.9%
MW-9	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	97.6%	97.6%
MW-10	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	96.2%	96.2%
MW-11	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	6 87.3%	86.4%	83.5%	83.3%	86.5%	83.0%	90.6%	87.8%	78.0%	76.3%
MW-12	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	6 99.3%	99.2%	98.7%	98.1%	99.4%	97.8%	99.5%	98.7%	98.7%	62.2%
MW-13	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	Not Sampled	100.0%	100.0%
MW-14	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	6 92.3%	87.6%	79.3%	85.9%	87.1%	88.9%	94.3%	87.9%	90.7%	55.6%
MW-15	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	6 97.7%	91.5%	96.9%	98.3%	91.1%	99.3%	84.5%	89.4%	97.5%	62.9%
MW:16*	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.99	6 81.0%	93.3%	99.7%	94.2%	42.1%	41.6%	57.4%	43.9%	77.5%	-72.1%
MW-17*	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	5 72.2%	96.7%	6 94.1%	61.4%	71.3%	97.7%	71.8%	99.5%	10.1%	26.0%	24.7%	-24.2%
MW-18:*	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	6 88.7%	74.4%	82.7%	96.0%	-23.3%	91.8%	-50.0%	27.6%	64.8%	-135.8%
MW-19 R*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	6 99.0%	73.3%	99.0%	99.0%	57.3%	99.0%	-36.7%	-5.7%	99.0%	-102.0%
MW-20**	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	6 99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
MW-21**	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled	67.5%	Not Sampled	96.7%	-13.7%																			
* Well installed 2003																													1
** Well Installed 2004																													1
Site-Wide reduction:	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%	79.7%	72.2%	83.7%	6 86.9%	78.3%	81.4%	87.9%	61.1%	82.1%	56.0%	59.7%	78.5%	35.7%
Immediate Consumption																													1
Plume Area Only:	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%	71.9%	64.1%	84.19	6 83.0%	72.5%	72.4%	82.1%	65.2%	79.8%	57.7%	64.2%	53.7%	28.4%
Plume Area = MW-1, MW-1	me Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6																												
% reduction = percent reduc	tion in total Vola	tile Organic Con	pounds (VOCs) since aroundw	ater monitoring	was initiated																							ļ
+Negative values indicate an	n increase in tota	al VOCs since m	onitoring comm	enced in 2002.	The percent incr	ease in total gro	oundwater VOCs	s is shown below	for MW-1.				1	I		1	1												ŀ

Recovery Well	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011	% Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008	
DR-1 DR-2 DR-3 DR-4 G-1 G-2 G-3 Overall Reduction	-6.4% 60.3% -1.0% 88.9% 47.4% 100.0% -0.2% 41.3%	-58.7% 60.9% 59.3% 92.7% 92.7% Not Sampled -4.2% 40.4%	44.4% 63.8% 70.5% 89.1% 60.0% Not Sampled 35.0% 60.4%	72.1% 66.0% 50.2% 100.0% 90.1% 8.2% 67.7%	Not Sampled 47.0% 45.6% 66.1% Not Sampled Not Sampled 62.6%	96.2% 52.8% 63.9% 82.9% 27.3% 83.1% Not Sampled 67.7%	89.0% 70.5% -18.7% 81.8% 49.8% 88.0% Not Sampled 60.1%	90.4% 59.2% -37.7% 82.8% 47.7% 86.9% Not Sampled 54.9%	86.9% 58.0% 45.6% 88.8% 55.0% 81.7% Not Sampled 69.3%	77.0% 62.3% 41.6% 92.5% 61.3% 95.1% 79.7% 72.8%	84.8% 45.0% 19.3% 90.8% 65.6% 71.4% NA 62.8%	99.1% 87.2% 95.8% 95.5% 87.3% 79.0% NA 90.7%	99.0% 85.4% 95.1% 89.8% 89.8% 87.0% NA 92.3%	99.5% 99.1% 97.2% 94.9% 90.3% 65.7% NA 91.1%	99.8% 88.5% 92.1% 93.1% 87.4% 80.4% NA 90.2%	91.6% 83.9% 98.3% 100.0% 88.0% 89.1% NA 91.8%	97.9% 89.7% 95.0% 87.6% 92.3% NA 91.9%	98.1% 88.0% 95.4% 92.7% 89.8% 83.0% NA 91.1%	96.9% 86.6% 98.3% 94.3% 87.7% 87.7% NA 91.9%	95.6% 92.4% 98.0% 95.9% 91.0% 86.5% NA 93.2%	94.5% 89.3% 97.4% 86.9% 94.4% 98.4% NA 93.5%	99.2% 87.3% 94.6% 91.2% 80.1% 97.8% NA 91.7%	98.0% 90.6% 91.6% 95.4% 76.0% 98.5% NA 91.7%	95.1% 90.1% 91.5% 95.5% 69.9% 85.4% NA 87.9%	96.8% 88.8% 96.2% 76.7% 40.0% NA 81.2%	91.0% 89.7% 94.9% 92.7% 77.9% 92.6% NA 89.8%	89.2% 85.8% 91.7% 97.7% 68.7% 89.8% NA 87.2%	93.4% 92.3% 88.4% 97.6% 65.8% 79.0% NA 86.1%	
*Sampling of recovery wells	initiated in 2005	5																											
Monitoring Well	% Increase 2002 to Sep 2016	% Increase 2002 to Jun 2016	% Increase 2002 to Nov 2015	% Increase 2002 to Aug 2015	% Increase 2002 to Jun 2015	% Increase 2002 to Mar 2015	% Increase 2002 to Nov 2014	% Increase 2002 to Sep 2014	% Increase 2002 to Jun 2014	% Increase 2002 to Mar 2014	% Increase 2002 to Dec 2013	% Increase 2002 to Jul 2013	% Increase 2002 to Apr 2013	% Increase 2002 to Dec 2012		% Increase 2002 to Mar 2012		% Increase 2002 to Jun 2011				% Increase 2002 to Jun 2010		% Increase 2002 to Jul 2009		% Increase 2002 to Sep 2008		% Increase 2002 to Mar 2008	% Increase 2002 to Nov 2005
MW-1 [†] DR-1 [†] DR-3 [†] G-3	8.4% 6.0% 1.0% 0.2%	NA 37.0% NA 4.0%	49.8% NA NA NA	47.8% NA NA NA	NA NA NA	NA NA NA	NA NA 15.7% NA	NA NA 27.4% NA	22.4% NA NA NA	22.4% NA NA NA	55.9% NA NA NA	7.5% NA NA NA	16.3% NA NA NA	46.7% NA NA NA	NA NA NA	13.6% NA NA NA	NA NA NA NA	41.7% NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	100.0% NA NA NA	NA NA NA	30.6% NA NA NA	NA NA NA	100.0% NA NA NA	NA NA NA	47.5% NA NA NA	31.9% NA NA NA

thegative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown above for MW-1 and DR-3.

FIGURES

I:\DASNY\006974.85 DASNY - GOWANDA 2016 O & M\4.0 Dwgs\4.10 GIS\Figure_1_2016_Q3.mxd

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 1 September 2016 Groundwater Contour Map

I:\DASNY\006974.85 DASNY - GOWANDA 2016 O & M\4.0 Dwgs\4.10 GIS\Figure_2_2016_Q3.mxd

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 2

September 2016 Distribution of Groundwater Analytical Results: Monitoring Wells

		G-3 TCE 84 CIS 320 TRANS ND VC ND TCA ND	TorrancePla	
Thethe Brook	G-2 TCE ND CIS ND TRANS ND VC ND TCA ND Total VOCS ND G-2	G-2 G-1 DR-4	DR-4 TCE 34 CIS 61 TRANS ND VC ND	
	TCE CIS TRANS VC TCA Total VOCs	5.6 100 ND ND 105.6 DR-2 DR-2 CE 38 DR-1 DR-1	TCANDTotal VOCs95DR-3TCE34CIS120TRANSNDVCNDTCANDTotal VOCs154	Instital/Place
		TRANS ND /C ND /CA ND Total VOCs 218	DR-1TCE500CIS110TRANSNDVCNSTCANSTotal VOCs610	

DASNY

Gowanda Day **Habilitation Center**

4 Industrial Place Gowanda, NY

Figure 3

September 2016 **Distribution of** Groundwater **Analytical Results: Recovery Wells**

CHARTS

Chart 2: MW-1, DR-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 6: MW-17 and G-1 Groundwater Volatile Organic Compound Concentrations

APPENDIX A LABORATORY ANALYTICAL RESULTS REPORT SEPTEMBER 2016 SAMPLING EVENT

Service Request No:R1609806

Ms. Megan Borruso Bergmann Associates, Incorporated 200 First Federal Plaza 28 East Main St. Rochester, NY 14614

Laboratory Results for: Gowanda

Dear Ms.Borruso,

Enclosed are the results of the sample(s) submitted to our laboratory September 15, 2016 For your reference, these analyses have been assigned our service request number **R1609806**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Foundry Knotten

Brady Kalkman

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Bergmann Associates, IncorporatedProject:Gowanda/6974.85Sample Matrix:Water

Service Request:R1609806 Date Received:9/15/16

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt

Twenty four water samples were received for analysis at ALS Environmental on 09/15/2016. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at \leq 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260, R1609806-001: Sample(s) required dilution due to the foaming nature of the matrix. The reporting limits are adjusted to reflect the dilution.

Foundry Knothen Approved by Date 9/26/2016

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-15	Lab ID: R1	Lab ID: R1609806-004							
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	6.8		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	17		0.22	5.0	ug/L	8260C			
CLIENT ID: MW-14	Lab ID: R1	609806-	005						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	69		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	31		0.22	5.0	ug/L	8260C			
CLIENT ID: MW-18	Lab ID: R1	609806-	006						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	26		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-21	Lab ID: R1	609806-	007						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	39		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-16	Lab ID: R1	609806-	008						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	20		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-7	Lab ID: R1	609806-	009						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	62		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-6	Lab ID: R1	609806-	010						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	120		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-12	Lab ID: R1	609806-	011						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	7.8		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-11	Lab ID: R1	609806-	012						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	300		0.75	13	ug/L	8260C			
Trichloroethene (TCE)	130		0.55	13	ug/L	8260C			
Vinyl Chloride	15		0.80	13	ug/L	8260C			
CLIENT ID: MW-1	Lab ID: R1	609806-	013						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	410		0.75	13	ug/L	8260C			
Trichloroethene (TCE)	410		0.55	13	ug/L	8260C			
Vinyl Chloride	18		0.80	13	ug/L	8260C			

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-X	Lab ID: R1609806-014								
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	430		0.75	13	ug/L	8260C			
Trichloroethene (TCE)	430		0.55	13	ug/L	8260C			
Vinyl Chloride	19		0.80	13	ug/L	8260C			
CLIENT ID: MW-17	Lab ID: R1	609806-	015						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	370		0.60	10	ug/L	8260C			
Trichloroethene (TCE)	95		0.44	10	ug/L	8260C			
CLIENT ID: DR-1	Lab ID: R1	609806-	016						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	110		1.5	25	ug/L	8260C			
Trichloroethene (TCE)	500		1.1	25	ug/L	8260C			
CLIENT ID: DR-2	Lab ID: R1	609806-	017						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	180		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	38		0.22	5.0	ug/L	8260C			
CLIENT ID: DR-3	Lab ID: R1	609806-	018						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	120		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	34		0.22	5.0	ug/L	8260C			
CLIENT ID: DR-4	Lab ID: R1	609806-	019						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	61		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	34		0.22	5.0	ug/L	8260C			
CLIENT ID: G-1	Lab ID: R1	609806-	020						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	100		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	5.6		0.22	5.0	ug/L	8260C			
CLIENT ID: G-3	Lab ID: R1	609806-	022						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	320		0.60	10	ug/L	8260C			
Trichloroethene (TCE)	84		0.44	10	ug/L	8260C			

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 57

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	<u>TIME</u>
R1609806-001	MW-4	9/14/2016	1115
R1609806-002	MW-20	9/14/2016	1140
R1609806-003	MW-19R	9/14/2016	1210
R1609806-004	MW-15	9/14/2016	1240
R1609806-005	MW-14	9/14/2016	1306
R1609806-006	MW-18	9/14/2016	1436
R1609806-007	MW-21	9/14/2016	1502
R1609806-008	MW-16	9/14/2016	1530
R1609806-009	MW-7	9/14/2016	1610
R1609806-010	MW-6	9/14/2016	1640
R1609806-011	MW-12	9/14/2016	1720
R1609806-012	MW-11	9/14/2016	1750
R1609806-013	MW-1	9/15/2016	1015
R1609806-014	MW-X	9/15/2016	1030
R1609806-015	MW-17	9/15/2016	1106
R1609806-016	DR-1	9/15/2016	1121
R1609806-017	DR-2	9/15/2016	1143
R1609806-018	DR-3	9/15/2016	1208
R1609806-019	DR-4	9/15/2016	1218
R1609806-020	G-1	9/15/2016	1317
R1609806-021	G-2	9/15/2016	1327
R1609806-022	G-3	9/15/2016	1352
R1609806-023	TRIP BLANK	9/15/2016	
R1609806-024	EQUIPMENT BLANK	9/15/2016	1200

Project Name

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Project Number

40126

OF <u>3</u>

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

Project Name	Project Number				A	NALYS	IS REC	QUEST	FED (l	nclude	Meth	od Nu	mber	and C	ontain	er Pre	servativ	re)			
Project Manager	Report CC		PRF	SERVATIN	/E \	1															
Megan Borruso				1		╷丿	L	L					ļ,	<u> </u>	<u> </u>	J	╷╷	<u>_</u>			
Bergmann Associates			RS		1.1	' /	/	/	/	/	/	/	/	' /		/	' /		NONI	live Key E	
28 E. Main St / 20	10 First Fedoral Pla	r	JTAINEF			/	/	/				/	/	/	/	/	/.		HOL HNO	3	
Rochester NY 141,14					351	/ "/	/ /		ft Its below	ÓLYED Is belou	/ /	/	/ /	/ /	/ ,	/ ,		/ 4 5 6	. NaOl Zn. A MeOl	i cetate H	
Phone #	Email			1			[?] \$	8 /2		Se lie			/	/	- /	/		7	. NaHS	504	
Sampler's Signature	MDOTTUSO Dera	manpe.com		1000	\$ ° 8		° *			8/	/	/	/	/	/	/	/	8			
Megan E: Borriso	Mehan E.	Borruso	ž	\ઙૢ <i>૾ૢ</i> ૢૢૢૢૢૺૺૺૢ	<u>ଟ୍</u> ଟି କ୍ଷ୍ମ କ୍ଷ୍	3/48	<u></u>	Lest N	L'est	/ /	/ /	/	/	/	/	/	/ .	RE LTERNAT	MARKS/ E DESCI	RIPTION	
	FOR OFFICE USE SAM		,								Í						1				
						┼─┤															_
<u>100-4</u>	09/14/2014	1115 Ha GW	2			╂──┨	-+														_
MW-20	09/14/2016	170 49 600	13		_	+															
mw - 191s	09/14/2014	1010 Ha GN	3			╂──┨															
1114) = 15 mu = 14	09/14/2016	1201 12 60	2			╂──┨		-+													
mw-18	07/14/2016	1421 1.	<u>/ ゝ</u> , ぇ			┼──┤															
$m_{W} = 21$	04/14/2016	1577 AL	2	$\frac{1}{\sqrt{1}}$		<u>† </u>									<u> </u>	-					
M_{μ} = I_{μ}	09/14/2016	1530 A.C.	12	$\frac{x}{x}$		†										<u> </u>	<u> </u>	. <u>.</u>			_
Mu) - 7	D9/14 hail	1610 A	$\frac{3}{13}$	1×1		┼╌╌┦											+				_
mW - 6	11/2010 11/2/2010	1640 Arch	$\frac{3}{3}$	$\frac{1}{x}$		<u>†</u> †															
mur-12	114/2010	1720 Ac Cu	$\frac{3}{3}$	1X			-+														
SPECIAL INSTRUCTIONS/COMMENTS	Print	<u> </u>			TURNAS		BEOIN	BEME		4	BEPO	BT P		EMEN	L	Τ	I		ORMAT	ION	
Metals					RUS	H (SURC	HARGES	S APPLY))		_ I. Resul	Its Only			•						
						_				X	II. Resu	ilts + Q	C Summ	naries		PO	#				-
					1 da 	ıy2 ıy5	day day	3 day			(LCS, D	OUP, MS	S/MSD a	as require	ed)		69	74.7	5		
					STA	VDAR	20 7	AT			_ III. Res	ults + Q	C and C	Calibratio	n	BILI	10: Begi	nann			
				R I	EQUESTE	D REPO	RT DAT	E			Summa	aries					0				
				-							_ IV. Data	a Validat	tion Rep	ort with	Raw Da	ta					
See QAPP										_ ^	ĄSD	EC	ERI	us		-					
STATE WHERE SAMPLES WERE CO	ILLECTED Idew York										Edata	<u>ר</u> יי	C Yes		No						
RELINQUISHED BY	AEGEIVED BY	RELINQUISHE) BY			RECEN	VED BY	/			R	ELINQI	UISHED	D BY				RECEIV	ED BY		
Signature Merin E. Enrusio	Signature Dank White	Signature		Si	gnature					Signat	ure		·	i.	(")	10	nas	06		5	
Printed Name	Printed Name	Printed Name		Pr	inted Name					Printed	d Name				Ber	gmann	Associat	es, incor	porated	Ŭ	
Firm 01/15/2016 163D	Firm 9/15/16/163c	Firm		Fi	m		,			Firm							LI IN n i I n				
Date/Time	e/Time Date/Time Date/Time					Date/Time					Date/Time							•••]			

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

40127

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _2____ OF _____

Project Name		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																					
Project Manager	Report CC	7.55				000		, T		<u>ر الما</u>			T	<u> </u>				<u> </u>					
Megan Borruso					PRE	SERV	ALIVE	{								i		1					
Company/Address							/	່ ປ					- 1	1	7	7	7	/	7		/ Pr	reservat	ive Key
Bergmann Associated					SH:		k.	4/													/ 0.	HCL	-
28 E. Main St / 200	First Feder	al Plaza.			TAIN		E	Å		/	/	/ ,			/	/	/		/	/	/ 2. 3.	HNO3 H2SO	4
Rochast in the ult	11	4 / 449			CON		19 E 31	7,	/ _/	/ /	/ /	2000	LUED .	/ /	' /	/ /	/ ,		/ /	/ /	4. 5. 6	NaOH Zn. Ac MeOF	cetate
Phone #	Email				Р. Of		5 8 8	<u>5</u> %/	1/60	3.2	2 2					/		/			7.	NaHS	O4
· · · · · · · · · · · · · · · · · · ·	mborr	usabergn	rannpc.	com	MB		\$ \$ \$ \$ \$ \$ \$	ૢૢૢૢૢૢૢૢૢૢૢૢૺ	<u>ة اي</u>		s K	8 3	§/	/	/	/	/				8.	Other	
Sampler's Signature	Sampler's F	rinted Name	(1100)		₽	/ల్డ్	§/ઙૢૼ૾ૢ	<i>ୗ</i> ୖୄଌୢ୕ୢଛ	۲/ <i>٤</i> δ	\$ <i>\</i> &		[et]		/ .	/	/	/	/	/	/		MARKS/	
- Contraction	FOR OFFICE USE	SAMPL		T		<u> </u>	ſ	-	<u> </u>	<u> </u>			<u>′ </u>	f	-f	<u></u>	·	((DESCH	
CLIENT SAMPLE ID	ONLY LAB ID	DATE	TIME	MATRIX																			
Mw-11		69/14/2016	1750	Ag GW	3	X																	
MW-1		19/5/2016	1015	Ag GW	3	X																	
mw-X		09/15/2016	1030	Ag GW	3	X														·	<u></u>		
MW-17		09/15/2016	1106	AGGW	3	X																	
DR-1		9/15/2016	1121	Agow	3																		
DR-2		09/15/2014	1143	AGEW	3	×ا																	
DR-3		19/15/2016	1208	Agen	3	X																	
DR-4		09/15/2016	1218	AGEW	3	X_																	
G-1		09/15/2016	1317	Ag GU	3	X																	
6-2		09/15/2016	1327	AGW	3	X																	
<u>G-3</u>		09/15/2016	1352	AgGW	3	X	<u> </u>																
SPECIAL INSTRUCTIONS/COMMENTS				0			TU	JRNAR	OUND	REQU	REME	NTS		REPO	RT RE	QUIR	EMENT	rs		INVO	DICE INF	ORMAT	ION
Motais								RUSI	H (SURC	HARGE	S APPLY)		I. Resu	ts Only								
								1 day	/2	day	3 day		X	II. Resu	lts + QC		aries	, all	PO #	69	74.8	5	
								4 day	/5	day				(LCO, L			s require	su)	BILL	TO:	<u> </u>	<u>, </u>	
							5	TAN	DAR	UD 7	AT	-		_ III. Hes Summa	lits + Qi Iries	C and C	alibratio	n		<u>13-e</u>	<u>z na</u>	nn	
							REQ	UESTEI	D REPO	ORT DAT	E			_ IV. Data	Validat	ion Rep	ort with	Raw Dat	a				
										<u> </u>				(YSD	ΕC	E	ju is						
STATE WHERE SAMPLES WERE CO	DLLECTED Alena	York					1						1	Edata	<u> </u>	Yes		No					
RELINQUISHED BY	RECEIVEL	DBY	RE	LINQUISHED	BY		1		RECE	VED B1	(RI	LINQU	JISHED) BY	.			RECEIV	ED BY	
integan E. Bornesso	and my	/																					
Signature Megan E. Borrigo	Signature Prinie 1	NAC .	Signature				Signat	ure					Signat	ure					Signa	ature	•		-
Printed Name Bergmann	Printed Name		Printed Name				Printeo	d Name					Printeo	d Name			_	R1	609	380	6 ncorpora	ted)
Firm 09/15/2016 1103D	Firm 9/15/10/16	075	Firm				Firm						Firm				_	Gowan Linging	ia • • • • • • • • •		Like (die 1	1111 1111	. 6 111 1 511 1
Date/Time	Date/Time Date/Time					Date/Time Date/Time																	

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

40128

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 3 OF 3

Project Name		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																						
Project Manager	Uq Report C	<u>14-85</u>	a					I 1	r	T	<u> </u>	<u>r</u>	r		~		T	1	1		T			
Megan Borneso		-			PRE	SERVA	TIVE								0						ĺ			
CompanyAddress							/		//	/ /	,	,	//		7	· · · · /		//				Preserv	ative K	ey
Birgmann Associate	<u>r </u>				LIN .			N.										- /				0. NON 1. HCL	NE -	
38 E. Main St / 200 1	First Feder	al Plaza			NTAINE		12 S		/	/	/			1	/	/		/	/	/ .	/	 HNC HNC H₂S H₂S NaC 	D3 O4 0H	
Rochester, NY 146.	14				PF CC		2] /	 ङ्व			12 Per	50.1 <u>4</u>	143	' /	/ /	/ /		/ /	/ /	/	5. Zn. / 6. MeC	Acetate	, ,
Phone #	Email Mbol	ruso@beran	Mannpe .C	om	IBER			\$ \$ \$ \$ \$ \$ \$ \$ \$		² 28/	800			13				/				8. Othe	er	_
Sampler's Signature	Sampler	s Printed Name	<u> </u>		NUN	18	8/3	\$/3 \$		§ / 8 8			<i>٦ ق</i>	7	/	/	/	/	/	/	F		s/	
Megar E. Borno	<i>m</i> .	gen E. b	prruses			/ %	700	/ % %	1 2 2		123	123	/	\square	/	/	<u> </u>	<u> </u>	\square	<u> </u>	LTERNA	TE DESC	RIPTIO	<u>N</u>
CLIENT SAMPLE ID	FOR OFFICE USE ' ONLY LAB ID	DATE	LING TIME	MATRIX																				
TRIP BLANK				Aa	3	X																		
EQUIPMENT BLANK	÷	09/15/2016	1200	AG,	3	X																		
CARBON-1	-	09/15/2016	1500	SOUD	1								X											
				1														·						
				1				†																
				1														<u> </u>						
,,,,,			· · · · · · · · · · · · · · · · · · ·	+																				
				+						†														
																		·						
																		·						
SPECIAL INSTRUCTIONS/COMMENTS				-	•		Τι	JRNAR	OUND	REQU	IREME	NTS	1	REPO	ORT RI	EQUIR	EMEN	rs	1	INV		NFORMA		
Metals								RUS	H (SURC	CHARGE	S APPLY	າ		_ I. Resu	ilts Only									
													×	II. Res	ults + Q	C Sumn	naries		PO #	F .				
								1 da 4 da	yi yi	2 day 5 day	3 day			(LCS,	DUP, MS	S/MSD a	as require	ed)		614	1.8	5		
							9	TAN	OAL	S 7	41			III. Res	sults + C	C and C	Calibratic	'n	BILL	Berg	ma	nn		
							REQ	UESTE	D REPO	ORT DAT	ſE			Summ	aries					0				
														IV. Dat	a Valida	tion Rep	port with	Raw Da	ta 🗕 🗕					
See QAPP														K/Y-	Der	: 60	LW1							
STATE WHERE SAMPLES WERE CO	SAMPLES WERE COLLECTED Hew York													Edat	a <u>×</u>	Yes		No						:
RELINQUISHED BY	RELINQUISHED BY RELINQUISHE				BY				RECE	IVED B	Y]	R	ELINQ	UISHEI	DBY				RECE	IVED BY		
Signature	aure E Break Signature Danie Wid Signature						Signat	ure					Signa	ature					Sign	ature				
Printed Marne Berg Marne	Hame Printed Name Printed Name ALS						Printeo	d Name					Printe	ed Name					Print	ed Name		-		
Firm 09/15/2016 1630	15/2016 1630 Fing/15/16/1630 Firm						Firm						Firm						Firm					
Date/Time	Time Date/Time Date/Time					Date/Time Date/Time Date/Time						/Time												

Distribution: White - Lab Copy; Yellow - Return to Originator

A	
(ALS)	

Cooler Receipt and Preservation Check Form

(AL	5)	(Coole	er Re	ceipt	and	Pre	ser	vatio	n Ch	ieck F	orm	Gowan	da 	naces, mice		
Project/Clie	nt_ Bergy	m				F	older	Nu	mber				 				
Cooler receive	ed on 9/1	5116		by:	Oh			COL	JRIER	: ALS	UPS	FEDE	EX VE	LOCIT	Y CL	ENT	
1 Were Cu	stody seals or	1 outsic	le of co	oler?		Y	0	5a	Perc	hlorate	samples	have re	equired l	neadspac	ce?	Y N	M A
2 Custody	papers prope	rly con	npleted	l (ink, si	igned)?	8	N	5b	Did	VOA vi	als, Alk,	or Sulfi	de have	sig* bul	bbles?	Y 🗗	NA
3 Did all bo	ottles arrive in	good	conditi	on (unt	oroken)?	Q :	N	6	When	re did tl	ne bottles	origina	ate?	ALS	ROC	CLIEI	NT
4 Circle: N	Wet C Dry	Ice (Gel pa	cks p	present?	X	N	7	Soil	VOA re	ceived a	s: E	Bulk	Encore	503:	5set 👌	A2
8. Temperatur	e Readings	Da	nte: 9/	115/16	Time	 e: 1 ⁷	 734		ID	. IR#5	1R#6		From	: Tem	o Blank	Santo	le Bottle
Observed Te	mp (°C)	<u> </u>	101	'nι	4,6	t c			·					<u> </u>		1	
Correction F	actor (°C)		±0.	n'	+0.5					<u> </u>				1		-	
Corrected Te	mp (°C)		(Q)	<i>σ</i> ′	4,0	, ·		·		1				1			
Within 0-6°C	2?		Ø	N	Ø	N	1-	Y	N	Y	N	Y	N	Y	N	Y	N
If <0°C, were	e samples froz	zen?	Y	N	Y	N	1	Y	N	Y	N	Y	N	Y	N	Y	N
If out of T	emperature.	note r	oacking	e/ice co	ndition	:			Ice me	lted	Pool	·lv Pacl	ced	Sa	me Da	Rule	
&Client A	pproval to F	tun Sa	mples:		Star	nding	Appr	oval	Clien	nt aware	e at drop-	-off (Client no	tified by	y:		
All samples	held in storad	re loca	tion	-	R-mc	7	by €	Ju.		on	9/15/1	(0	at /	734			
5035 sample	s placed in storage	torage	locatio	n:		<u> </u>	by –			on –		<u> </u>	 at				:
	-																
Cooler Bre	akdown: Da	te :	91	4.114	Time		1.2	2	b		\sim						
1. W	/ere all bottle	labels	comple	ete (i.e.)	analysis,	prese	rvatio	n, et	0	<i></i>		ES,	NO				
2. D	id all bottle la	abels a	nd tags	agree v	vith custo	ody pa	pers?	-			ہے	ĒŚ	NO				
3. W	ere correct c	ontaine	ers used	l for the	tests inc	licated	i?				A A	ES	NO				
4. W	/ere 5035 via	ls acce	ptable (no extra	a labels,	not le	aking)?			Y	ΈS	NO		(^₩A	
5. A	ir Samples: (es / Tub	oes Intac	ct		Can	ister	s Pressu	rized	,	Tedlar	🖻 Bags I	nflated		N/A	
	y discrepanc	Vec	No	Let D			17				N/-I	Tat	أم ما ما م			Vor	11
p p i	Reagent		INO	LOIR	eceivea	-	Ехр	58	imple 1	וי	voi. Added	LOU	Addea		H	sample	es OK
≥12	NaOH	 						+				1				1	
≤2	HNO3	1						-				1				No=Sa	amples
≤2	H ₂ SO ₄															were	-
<4	NaHSO ₄							1				1				preser	ved at
Residual	For CN			If+, co	ontact PN	/I to						1				The la	b as
Chlorine	Phenol			add Na	a2S2O3 (C	:N),										listed	
(-)	and 522			ascorb	ic (phenc	ol).										J	
	$Na_2S_2O_3$	-	-													PM O	K to

**Not to be tested before analysis - pH tested and recorded by VOAs on a separate worksheet

Bottle lot numbers:	6-145-002
Other Comments:	

-**

**

4115022

,

ZnAcetate

HCl

CLRES	BULK
DO	FLDT
HFROD	HGFB
HTR	LL3541
PH	SUB
SO3	MARRS
ALS	REV

Adjust:

PC Secondary Review:

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

R1609806

Associates, Incorporated

5

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester L	ab ID # for State Certifica/	tions ¹	
		ХТ Т	T

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratoryø NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

uba ALS Environmentar

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda/6974.85		Service Request: R1609806
Sample Name:	MW-4		Date Collected: 09/14/16
Lab Code: Sample Matrix:	R1609806-001 Water		Date Received: 09/15/16
Analysis Method		Extracted/Digested By	Analyzed By
82000			KKUESI
Sample Name: Lab Code: Sample Matrix:	MW-20 R1609806-002 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name:	MW-19R		Date Collected: 09/14/16
Lab Code: Sample Matrix:	R1609806-003 Water		Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name:	MW-15		Date Collected: 09/14/16
Lab Code: Sample Matrix:	R1609806-004 Water		Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name:	MW-14		Date Collected: 09/14/16
Lab Code: Sample Matrix:	R1609806-005 Water		Date Received: 09/15/16
Analysis Method		Extracted/Digested By	Analyzed By

8260C

KRUEST

uba ALS Environmentar

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda/6974.85		Service Request: R1609806
Sample Name: Lab Code: Sample Matrix:	MW-18 R1609806-006 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-21 R1609806-007 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-16 R1609806-008 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-7 R1609806-009 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-6 R1609806-010 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Analyst Summary report

Bergmann Associates, Incorporated

Project:	Gowanda/6974.85		
Sample Name: Lab Code: Sample Matrix:	MW-12 R1609806-011 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-11 R1609806-012 Water		Date Collected: 09/14/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-1 R1609806-013 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-X R1609806-014 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-17 R1609806-015 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Client:

Service Request: R1609806

uba ALS Environmentar

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda/6974.85		Service Request: R1609806
Sample Name: Lab Code: Sample Matrix:	DR-1 R1609806-016 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-2 R1609806-017 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-3 R1609806-018 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	DR-4 R1609806-019 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-1 R1609806-020 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method		Extracted/Digested By	Analyzed By

8260C

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda/6974.85		Service Request: R1609806
Sample Name: Lab Code: Sample Matrix:	G-2 R1609806-021 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	G-3 R1609806-022 Water		Date Collected: 09/15/16 Date Received: 09/15/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Sample Name: TRIP BLANK Lab Code: R1609806-023 Sample Matrix: Water

Analyzed By **Analysis Method Extracted/Digested By** 8260C KRUEST Sample Name: EQUIPMENT BLANK **Date Collected:** 09/15/16 Lab Code: R1609806-024 **Date Received:** 09/15/16 Sample Matrix: Water

Analyzed By **Analysis Method Extracted/Digested By** 8260C KRUEST

Date Collected: 09/15/16

Date Received: 09/15/16

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 21 of 57

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 22 of 57

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 11:15
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-4	Units: ug/L
Lab Code:	R1609806-001	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	50	10	09/21/16 18:43	
trans-1,2-Dichloroethene	ND U	50	10	09/21/16 18:43	
Tetrachloroethene (PCE)	ND U	50	10	09/21/16 18:43	
1,1,1-Trichloroethane (TCA)	ND U	50	10	09/21/16 18:43	
Trichloroethene (TCE)	ND U	50	10	09/21/16 18:43	
Vinyl Chloride	ND U	50	10	09/21/16 18:43	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/21/16 18:43	
Dibromofluoromethane	115	89 - 119	09/21/16 18:43	
Toluene-d8	115	87 - 121	09/21/16 18:43	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 11:40
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-20	Units: ug/L
Lab Code:	R1609806-002	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/21/16 18:12	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 18:12	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 18:12	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 18:12	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 18:12	
Vinyl Chloride	ND U	5.0	1	09/21/16 18:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/21/16 18:12	
Dibromofluoromethane	112	89 - 119	09/21/16 18:12	
Toluene-d8	111	87 - 121	09/21/16 18:12	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 12:10
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-19R	Units: ug/L
Lab Code:	R1609806-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/21/16 03:27	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 03:27	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 03:27	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 03:27	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 03:27	
Vinyl Chloride	ND U	5.0	1	09/21/16 03:27	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	09/21/16 03:27	
Dibromofluoromethane	113	89 - 119	09/21/16 03:27	
Toluene-d8	113	87 - 121	09/21/16 03:27	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 12:40
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-15	Units: ug/L
Lab Code:	R1609806-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	6.8	5.0	1	09/21/16 03:57	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 03:57	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 03:57	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 03:57	
Trichloroethene (TCE)	17	5.0	1	09/21/16 03:57	
Vinyl Chloride	ND U	5.0	1	09/21/16 03:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	09/21/16 03:57	
Dibromofluoromethane	111	89 - 119	09/21/16 03:57	
Toluene-d8	113	87 - 121	09/21/16 03:57	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 13:06
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-14	Units: ug/L
Lab Code:	R1609806-005	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	69	5.0	1	09/21/16 04:28	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 04:28	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 04:28	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 04:28	
Trichloroethene (TCE)	31	5.0	1	09/21/16 04:28	
Vinyl Chloride	ND U	5.0	1	09/21/16 04:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	110	85 - 122	09/21/16 04:28	
Dibromofluoromethane	115	89 - 119	09/21/16 04:28	
Toluene-d8	113	87 - 121	09/21/16 04:28	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 14:36
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-18	Units: ug/L
Lab Code:	R1609806-006	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	26	5.0	1	09/21/16 04:59	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 04:59	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 04:59	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 04:59	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 04:59	
Vinyl Chloride	ND U	5.0	1	09/21/16 04:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/21/16 04:59	
Dibromofluoromethane	111	89 - 119	09/21/16 04:59	
Toluene-d8	108	87 - 121	09/21/16 04:59	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 15:02
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-21	Units: ug/L
Lab Code:	R1609806-007	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	39	5.0	1	09/21/16 05:29	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 05:29	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 05:29	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 05:29	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 05:29	
Vinyl Chloride	ND U	5.0	1	09/21/16 05:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	110	85 - 122	09/21/16 05:29	
Dibromofluoromethane	112	89 - 119	09/21/16 05:29	
Toluene-d8	113	87 - 121	09/21/16 05:29	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 15:30
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1609806-008	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	20	5.0	1	09/21/16 06:00	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 06:00	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 06:00	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 06:00	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 06:00	
Vinyl Chloride	ND U	5.0	1	09/21/16 06:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	09/21/16 06:00	
Dibromofluoromethane	112	89 - 119	09/21/16 06:00	
Toluene-d8	113	87 - 121	09/21/16 06:00	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 16:10
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-7	Units: ug/L
Lab Code:	R1609806-009	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	62	5.0	1	09/21/16 06:31	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 06:31	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 06:31	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 06:31	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 06:31	
Vinyl Chloride	ND U	5.0	1	09/21/16 06:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	09/21/16 06:31	
Dibromofluoromethane	112	89 - 119	09/21/16 06:31	
Toluene-d8	114	87 - 121	09/21/16 06:31	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 16:40
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-6	Units: ug/L
Lab Code:	R1609806-010	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	120	5.0	1	09/21/16 07:01	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 07:01	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 07:01	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 07:01	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 07:01	
Vinyl Chloride	ND U	5.0	1	09/21/16 07:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	110	85 - 122	09/21/16 07:01	
Dibromofluoromethane	113	89 - 119	09/21/16 07:01	
Toluene-d8	113	87 - 121	09/21/16 07:01	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 17:20
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-12	Units: ug/L
Lab Code:	R1609806-011	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.8	5.0	1	09/21/16 07:32	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 07:32	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 07:32	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 07:32	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 07:32	
Vinyl Chloride	ND U	5.0	1	09/21/16 07:32	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	09/21/16 07:32	
Dibromofluoromethane	111	89 - 119	09/21/16 07:32	
Toluene-d8	109	87 - 121	09/21/16 07:32	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/14/16 17:50
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-11	Units: ug/L
Lab Code:	R1609806-012	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	300	13	2.5	09/21/16 19:14	
trans-1,2-Dichloroethene	ND U	13	2.5	09/21/16 19:14	
Tetrachloroethene (PCE)	ND U	13	2.5	09/21/16 19:14	
1,1,1-Trichloroethane (TCA)	ND U	13	2.5	09/21/16 19:14	
Trichloroethene (TCE)	130	13	2.5	09/21/16 19:14	
Vinyl Chloride	15	13	2.5	09/21/16 19:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/21/16 19:14	
Dibromofluoromethane	112	89 - 119	09/21/16 19:14	
Toluene-d8	108	87 - 121	09/21/16 19:14	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 10:15
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-1	Units: ug/L
Lab Code:	R1609806-013	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	410	13	2.5	09/21/16 19:44	
trans-1,2-Dichloroethene	ND U	13	2.5	09/21/16 19:44	
Tetrachloroethene (PCE)	ND U	13	2.5	09/21/16 19:44	
1,1,1-Trichloroethane (TCA)	ND U	13	2.5	09/21/16 19:44	
Trichloroethene (TCE)	410	13	2.5	09/21/16 19:44	
Vinyl Chloride	18	13	2.5	09/21/16 19:44	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/21/16 19:44	
Dibromofluoromethane	113	89 - 119	09/21/16 19:44	
Toluene-d8	111	87 - 121	09/21/16 19:44	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 10:30
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-X	Units: ug/L
Lab Code:	R1609806-014	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	430	13	2.5	09/21/16 20:15	
trans-1,2-Dichloroethene	ND U	13	2.5	09/21/16 20:15	
Tetrachloroethene (PCE)	ND U	13	2.5	09/21/16 20:15	
1,1,1-Trichloroethane (TCA)	ND U	13	2.5	09/21/16 20:15	
Trichloroethene (TCE)	430	13	2.5	09/21/16 20:15	
Vinyl Chloride	19	13	2.5	09/21/16 20:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/21/16 20:15	
Dibromofluoromethane	111	89 - 119	09/21/16 20:15	
Toluene-d8	112	87 - 121	09/21/16 20:15	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 11:06
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	MW-17	Units: ug/L
Lab Code:	R1609806-015	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	370	10	2	09/21/16 20:46	
trans-1,2-Dichloroethene	ND U	10	2	09/21/16 20:46	
Tetrachloroethene (PCE)	ND U	10	2	09/21/16 20:46	
1,1,1-Trichloroethane (TCA)	ND U	10	2	09/21/16 20:46	
Trichloroethene (TCE)	95	10	2	09/21/16 20:46	
Vinyl Chloride	ND U	10	2	09/21/16 20:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/21/16 20:46	
Dibromofluoromethane	114	89 - 119	09/21/16 20:46	
Toluene-d8	103	87 - 121	09/21/16 20:46	
Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 11:21
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	DR-1	Units: ug/L
Lab Code:	R1609806-016	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	110	25	5	09/21/16 08:03	
trans-1,2-Dichloroethene	ND U	25	5	09/21/16 08:03	
Tetrachloroethene (PCE)	ND U	25	5	09/21/16 08:03	
1,1,1-Trichloroethane (TCA)	ND U	25	5	09/21/16 08:03	
Trichloroethene (TCE)	500	25	5	09/21/16 08:03	
Vinyl Chloride	ND U	25	5	09/21/16 08:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	09/21/16 08:03	
Dibromofluoromethane	112	89 - 119	09/21/16 08:03	
Toluene-d8	114	87 - 121	09/21/16 08:03	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 11:43
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	DR-2	Units: ug/L
Lab Code:	R1609806-017	Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180	5.0	1	09/22/16 16:46	
trans-1,2-Dichloroethene	ND U	5.0	1	09/22/16 16:46	
Tetrachloroethene (PCE)	ND U	5.0	1	09/22/16 16:46	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/22/16 16:46	
Trichloroethene (TCE)	38	5.0	1	09/22/16 16:46	
Vinyl Chloride	ND U	5.0	1	09/22/16 16:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/22/16 16:46	
Dibromofluoromethane	111	89 - 119	09/22/16 16:46	
Toluene-d8	111	87 - 121	09/22/16 16:46	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 12:08
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	DR-3	Units: ug/L
Lab Code:	R1609806-018	Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	120	5.0	1	09/22/16 17:17	
trans-1,2-Dichloroethene	ND U	5.0	1	09/22/16 17:17	
Tetrachloroethene (PCE)	ND U	5.0	1	09/22/16 17:17	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/22/16 17:17	
Trichloroethene (TCE)	34	5.0	1	09/22/16 17:17	
Vinyl Chloride	ND U	5.0	1	09/22/16 17:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/22/16 17:17	
Dibromofluoromethane	111	89 - 119	09/22/16 17:17	
Toluene-d8	114	87 - 121	09/22/16 17:17	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 12:18
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	DR-4	Units: ug/L
Lab Code:	R1609806-019	Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	61	5.0	1	09/22/16 17:48	
trans-1,2-Dichloroethene	ND U	5.0	1	09/22/16 17:48	
Tetrachloroethene (PCE)	ND U	5.0	1	09/22/16 17:48	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/22/16 17:48	
Trichloroethene (TCE)	34	5.0	1	09/22/16 17:48	
Vinyl Chloride	ND U	5.0	1	09/22/16 17:48	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/22/16 17:48	
Dibromofluoromethane	113	89 - 119	09/22/16 17:48	
Toluene-d8	114	87 - 121	09/22/16 17:48	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 13:17
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	G-1	Units: ug/L
Lab Code:	R1609806-020	Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	100	5.0	1	09/22/16 18:18	
trans-1,2-Dichloroethene	ND U	5.0	1	09/22/16 18:18	
Tetrachloroethene (PCE)	ND U	5.0	1	09/22/16 18:18	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/22/16 18:18	
Trichloroethene (TCE)	5.6	5.0	1	09/22/16 18:18	
Vinyl Chloride	ND U	5.0	1	09/22/16 18:18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	09/22/16 18:18	
Dibromofluoromethane	113	89 - 119	09/22/16 18:18	
Toluene-d8	111	87 - 121	09/22/16 18:18	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 13:27
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	G-2	Units: ug/L
Lab Code:	R1609806-021	Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/22/16 18:49	
trans-1,2-Dichloroethene	ND U	5.0	1	09/22/16 18:49	
Tetrachloroethene (PCE)	ND U	5.0	1	09/22/16 18:49	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/22/16 18:49	
Trichloroethene (TCE)	ND U	5.0	1	09/22/16 18:49	
Vinyl Chloride	ND U	5.0	1	09/22/16 18:49	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	09/22/16 18:49	
Dibromofluoromethane	114	89 - 119	09/22/16 18:49	
Toluene-d8	98	87 - 121	09/22/16 18:49	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 13:52
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	G-3	Units: ug/L
Lab Code:	R1609806-022	Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	320	10	2	09/22/16 15:45	
trans-1,2-Dichloroethene	ND U	10	2	09/22/16 15:45	
Tetrachloroethene (PCE)	ND U	10	2	09/22/16 15:45	
1,1,1-Trichloroethane (TCA)	ND U	10	2	09/22/16 15:45	
Trichloroethene (TCE)	84	10	2	09/22/16 15:45	
Vinyl Chloride	ND U	10	2	09/22/16 15:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/22/16 15:45	
Dibromofluoromethane	113	89 - 119	09/22/16 15:45	
Toluene-d8	112	87 - 121	09/22/16 15:45	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1609806
Project:	Gowanda/6974.85	Date Collected:	09/15/16
Sample Matrix:	Water	Date Received:	09/15/16 16:30
Sample Name:	TRIP BLANK	Units:	ug/L
Lab Code:	R1609806-023	Basis:	NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/21/16 01:08	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 01:08	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 01:08	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 01:08	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 01:08	
Vinyl Chloride	ND U	5.0	1	09/21/16 01:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	109	85 - 122	09/21/16 01:08	
Dibromofluoromethane	113	89 - 119	09/21/16 01:08	
Toluene-d8	113	87 - 121	09/21/16 01:08	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: 09/15/16 12:00
Sample Matrix:	Water	Date Received: 09/15/16 16:30
Sample Name:	EQUIPMENT BLANK	Units: ug/L
Lab Code:	R1609806-024	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/21/16 01:39	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 01:39	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 01:39	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 01:39	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 01:39	
Vinyl Chloride	ND U	5.0	1	09/21/16 01:39	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	109	85 - 122	09/21/16 01:39	
Dibromofluoromethane	113	89 - 119	09/21/16 01:39	
Toluene-d8	114	87 - 121	09/21/16 01:39	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.85
Sample Matrix:	Water

Service Request: R1609806

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8	
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121	
MW-4	R1609806-001	105	115	115	
MW-20	R1609806-002	105	112	111	
MW-19R	R1609806-003	108	113	113	
MW-15	R1609806-004	107	111	113	
MW-14	R1609806-005	110	115	113	
MW-18	R1609806-006	105	111	108	
MW-21	R1609806-007	110	112	113	
MW-16	R1609806-008	108	112	113	
MW-7	R1609806-009	107	112	114	
MW-6	R1609806-010	110	113	113	
MW-12	R1609806-011	106	111	109	
MW-11	R1609806-012	102	112	108	
MW-1	R1609806-013	103	113	111	
MW-X	R1609806-014	103	111	112	
MW-17	R1609806-015	103	114	103	
DR-1	R1609806-016	108	112	114	
DR-2	R1609806-017	103	111	111	
DR-3	R1609806-018	102	111	114	
DR-4	R1609806-019	103	113	114	
G-1	R1609806-020	105	113	111	
G-2	R1609806-021	104	114	98	
G-3	R1609806-022	103	113	112	
TRIP BLANK	R1609806-023	109	113	113	
EQUIPMENT BLANK	R1609806-024	109	113	114	
Lab Control Sample	RQ1611146-03	108	111	114	
Method Blank	RQ1611146-04	109	114	117	
DR-1 MS	RQ1611146-05	111	111	116	
DR-1 DMS	RQ1611146-06	109	111	114	
Lab Control Sample	RQ1611217-03	105	110	113	
Method Blank	RQ1611217-04	103	113	115	
Lab Control Sample	RQ1611289-03	102	111	113	
Method Blank	RQ1611289-04	102	111	111	
DR-3 MS	RQ1611289-05	106	113	115	
DR-3 DMS	RQ1611289-06	107	113	115	

Analytical Report

Bergmann Associates, Incorporated	Service Request: R1609806
Gowanda/6974.85	Date Collected: NA
Water	Date Received: NA
Method Blank	Units: ug/L
RQ1611146-04	Basis: NA
	Bergmann Associates, Incorporated Gowanda/6974.85 Water Method Blank RQ1611146-04

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/21/16 00:37	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 00:37	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 00:37	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 00:37	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 00:37	
Vinyl Chloride	ND U	5.0	1	09/21/16 00:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	109	85 - 122	09/21/16 00:37	
Dibromofluoromethane	114	89 - 119	09/21/16 00:37	
Toluene-d8	117	87 - 121	09/21/16 00:37	

QA/QC Report

Client:	Bergman	nn Associates	, Incorpora	ted			Service	Request:	R160	9806	
Project:	Gowand	a/6974.85					Date C	ollected:	09/15	09/15/16	
Sample Matrix:	Water						Date R	eceived:	09/15	5/16	
							Date A	nalyzed:	09/21	l/16	
							Date E	xtracted:	NA		
			D	uplicate Mat	rix Spike (Summary					
			Volat	ile Organic (Compound	ls by GC/I	MS				
Sample Name:	DR-1							Units:	ug/L		
Lab Code:	R160980)6-016						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 503	30C									
				Matrix Spik	e	Du	plicate Matri	ix Spike			
				- RQ1611146-()5		- RQ1611146	-06			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroether	ne	110	393	250	114	384	250	111	72-133	2	30
trans-1,2-Dichloroeth	ene	ND U	283	250	113	277	250	111	77-125	2	30
Tetrachloroethene (P	CE)	ND U	282	250	113	273	250	109	67-137	3	30
1,1,1-Trichloroethane	e (TCA)	ND U	240	250	96	239	250	96	74-127	<1	30
Trichloroethene (TCH	E)	500	780	250	110	774	250	108	62-142	<1	30
Vinyl Chloride		ND U	286	250	114	278	250	111	60-157	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1609806
Project:	Gowanda/6974.85	Date Collected:	09/15/16
Sample Matrix:	Water	Date Received:	09/15/16
		Date Analyzed:	09/22/16
	Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS		
Sample Name:	DR-3	Units:	ug/L
Lab Code:	R1609806-018	Basis:	NA
Analysis Method:	8260C		

		F	Matrix Spik	e)5	Du	plicate Matri RO1611289	ix Spike			
	Sample	1	Spike			Spike	00	% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	120	162	50.0	93	171	50.0	110	72-133	5	30
trans-1,2-Dichloroethene	ND U	54.1	50.0	108	54.5	50.0	109	77-125	<1	30
Tetrachloroethene (PCE)	ND U	56.5	50.0	113	57.8	50.0	116	67-137	2	30
1,1,1-Trichloroethane (TCA)	ND U	46.4	50.0	93	47.4	50.0	95	74-127	2	30
Trichloroethene (TCE)	34	85.6	50.0	104	89.2	50.0	111	62-142	4	30
Vinyl Chloride	ND U	54.8	50.0	110	54.7	50.0	109	60-157	<1	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1609806
Project:	Gowanda/6974.85	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1611217-04	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/21/16 13:06	
trans-1,2-Dichloroethene	ND U	5.0	1	09/21/16 13:06	
Tetrachloroethene (PCE)	ND U	5.0	1	09/21/16 13:06	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/21/16 13:06	
Trichloroethene (TCE)	ND U	5.0	1	09/21/16 13:06	
Vinyl Chloride	ND U	5.0	1	09/21/16 13:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	09/21/16 13:06	
Dibromofluoromethane	113	89 - 119	09/21/16 13:06	
Toluene-d8	115	87 - 121	09/21/16 13:06	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request:	R1609806
Project:	Gowanda/6974.85	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	RQ1611289-04	Basis:	NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	09/22/16 14:14	
trans-1,2-Dichloroethene	ND U	5.0	1	09/22/16 14:14	
Tetrachloroethene (PCE)	ND U	5.0	1	09/22/16 14:14	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	09/22/16 14:14	
Trichloroethene (TCE)	ND U	5.0	1	09/22/16 14:14	
Vinyl Chloride	ND U	5.0	1	09/22/16 14:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	09/22/16 14:14	
Dibromofluoromethane	111	89 - 119	09/22/16 14:14	
Toluene-d8	111	87 - 121	09/22/16 14:14	

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.85
Sample Matrix:	Water

Service Request: R1609806 **Date Analyzed:** 09/20/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1611146-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	23.0	20.0	115	80-121
trans-1,2-Dichloroethene	8260C	22.6	20.0	113	80-120
Tetrachloroethene (PCE)	8260C	23.5	20.0	118	78-124
1,1,1-Trichloroethane (TCA)	8260C	20.1	20.0	101	74-120
Trichloroethene (TCE)	8260C	22.5	20.0	112	78-123
Vinyl Chloride	8260C	23.9	20.0	120	69-133

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.85
Sample Matrix:	Water

Service Request: R1609806 **Date Analyzed:** 09/21/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1611217-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	23.0	20.0	115	80-121
trans-1,2-Dichloroethene	8260C	22.3	20.0	111	80-120
Tetrachloroethene (PCE)	8260C	23.8	20.0	119	78-124
1,1,1-Trichloroethane (TCA)	8260C	19.6	20.0	98	74-120
Trichloroethene (TCE)	8260C	22.4	20.0	112	78-123
Vinyl Chloride	8260C	22.6	20.0	113	69-133

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda/6974.85
Sample Matrix:	Water

Service Request: R1609806 **Date Analyzed:** 09/22/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1611289-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	21.6	20.0	108	80-121
trans-1,2-Dichloroethene	8260C	21.2	20.0	106	80-120
Tetrachloroethene (PCE)	8260C	22.5	20.0	113	78-124
1,1,1-Trichloroethane (TCA)	8260C	19.2	20.0	96	74-120
Trichloroethene (TCE)	8260C	21.9	20.0	109	78-123
Vinyl Chloride	8260C	21.3	20.0	106	69-133

NOVEMBER 2016

GROUNDWATER CHARACTERIZATION REPORT

www.bergmannpc.com

NEW YORK STATE OFFICE OF PEOPLE WITH DEVELOPMENTAL DISABILITIES

GROUNDWATER CHARACTERIZATION REPORT NOVEMBER 2016 SAMPLING EVENT

Former Gowanda Day Habilitation Center 4 Industrial Place Town of Gowanda, Cattaraugus County Voluntary Cleanup Program Agreement V-00463-9

Prepared for:

Dormitory Authority & New York State Office of People with Developmental Disabilities

Bergmann Project No. 6974.85

Issuance Date: April 6, 2017

TABLE OF CONTENTS

<u>SEC</u>	TION	<u>P</u>	AGE
1.0	Introd	luction	1
	1.1	Scope of Work	1
	1.2	Site Background	1
2.0	Grour	ndwater Sampling Overview and Methods	2
	2.1	Well Maintenance Activities	2
	2.2	Groundwater Field Monitoring and Sampling Activities	2
3.0	Local	Groundwater Flow Characterization	2
4.0	Labor	atory Analysis	3
	4.1	Laboratory Analysis on Groundwater Samples	3
	4.2	Monitoring Well Groundwater Analysis Summary	3
	4.3	Sentry Well Groundwater Analysis Summary	5
	4.4	Recovery Well Groundwater Analysis Summary	5
	4.5	Quality Assurance and Quality Control Samples	6
5.0	Reme	ediation System Efficiency	6
	5.1	Impact of the GTS Recovery Wells	6
	5.2	Extent of Impacted Groundwater	7
	5.3	Future Groundwater Monitoring and Analysis Activities	8
TAF	I ES		

ABLES

Table 1	Groundwater Elevations and Field Measurements November 2016
Table 2	November 2016 Analytical Results Summary
Table 3	Historic Groundwater Analysis Results Summary
Table 4	Percent Reductions in Total Groundwater VOCs

FIGURES

Figure 1	November 2016 Groundwater Contour Map
Figure 2	November 2016 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3	November 2016 Distribution of Groundwater Analytical Results: Recovery Wells

<u>CHARTS</u>

- Chart 1 Groundwater Recovery Wells Summary
- Chart 2 DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations
- Chart 3 DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
- Chart 4 DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
- Chart 5 DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
- Chart 6 G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
- Chart 7 G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
- Chart 8 G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

APPENDICES

A Laboratory Analytical Results Report November 2016 Sampling Event

1.0 Introduction

Bergmann Associates (Bergmann) is submitting this groundwater characterization report for the November 2016 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 Scope of Work

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on November 21-22, 2016. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 14 of 21 site-related groundwater monitoring wells and 6 of 7 groundwater recovery wells were sampled for laboratory analysis. Of the 8 monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), 7 were not sampled. These monitoring wells include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10 and MW-13. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in September 2016 and included analysis of groundwater samples from 14 of 21 site-related groundwater monitoring wells and 7 of 7 groundwater recovery wells. Results of the September 2016 sampling event were summarized in a report dated December 12, 2016.

1.2 Site Background

The Gowanda Day Habilitation site consists of a 5.94 acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2,Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of 7 groundwater recovery wells (4 dual phase recovery wells and 3 groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

1

In January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015 and a second round was implemented in September 2015. An ISCO Report was prepared under separate cover.

2.0 Groundwater Sampling Overview and Methods

2.1 Well Maintenance Activities

During the November 2016 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the November 2016 sampling event.

2.2 Groundwater Field Monitoring and Sampling Activities

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for groundwater monitoring wells are determined on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 14 of the 21 site-related groundwater monitoring wells for laboratory analysis on November 21-22, 2016. Depth to groundwater measurements were obtained from 27 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a Horiba U-53 to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater to reduce collection of sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis. The duplicate sample was collected after sampling MW-1, the well with the highest concentration of contamination for historic sampling events.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted for comparative purposes from sampling events completed 2002 – 2015.

3.0 Local Groundwater Flow Characterization

The Site water table potentiometric surface pattern and groundwater flow direction was determined for November 2016 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on November 21, 2016. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements November 2016.

our people and our passion in every project

The November 2016 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The November 2016 depths to groundwater range from 6.07 ft below top of casing (btoc) at MW-2, located on the south side of the property to 13.22 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 9.62 ft bgs.

The site-wide average depth to water table decreased by approximately 0.66 ft when compared to the September 2016 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and Groundwater Contours are presented on Figure 1 – November 2016 Groundwater Contour Map.

4.0 Laboratory Analysis

4.1 Laboratory Analysis on Groundwater Samples

Laboratory analysis was completed on the groundwater samples from 14 monitoring wells and 6 recovery wells collected November 21-22, 2016. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 Monitoring Well Groundwater Analysis Summary

The November 2016 analytical results indicate 3 chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Vinyl Chloride. Chlorinated VOCs were detected in groundwater from 11 of the 14 sampled monitoring wells. Analytical results are summarized in Table 2 – November 2016 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report November 2016 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 3 of the sampled monitoring wells (MW-4, MW-19R, and MW-20). Sample results from these wells have historically indicated low to non-detect levels of VOCs.

Groundwater samples from 11 monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,467 ppb), is located in the area of the historically greatest impacted groundwater.

Concentrations in 3 of the 14 monitoring well groundwater samples increased when compared to the September 2016 sampling event while concentrations in 8 of the 14 monitoring well groundwater samples decreased. Concentrations in 3 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 71% since activation of the GTS in May 2005.

our people and our passion in every project

Due to high concentrations of VOCs in the samples from monitoring wells MW-1, MW-11, MW-17, DR-1 and G-3, diluted analysis and correspondingly elevated detection limits were required. It is possible that related chlorinated VOCs may be present at concentrations below the elevated detection limits for these samples.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 61% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the September 2016 sampling event is 838 parts per billion (ppb), an increase from the June 2016 value of 580 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by 8%.

Monitoring well MW-11 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the November 2016 sampling event is 646 ppb, an increase from the September 2016 value of 445 ppb. Since activation of the GTS, detected VOCs at MW-11 have decreased by 86%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the November 2016 sampling event is 7.1 ppb, a decrease from the September 2016 value of 7.8 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by 100%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the November 2016 sampling event is 76 ppb, a decrease from the September 2016 value of 100 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by 76%.

Monitoring well MW-15 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the November 2016 sampling event is 11 ppb, a decrease from the September 2016 value of 23.8 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS the detected VOCs at MW-15 have decreased by 99%.

Five groundwater monitoring wells are located along the subject property's north perimeter, downgradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. MW-5 has not been sampled since the March 2008 sampling event. Analytical results are discussed below. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect for MW-18 and MW-19R. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2016 sampling event. The total VOC concentration at MW-21 for the November 2016 sampling event is 17 ppb, a decrease from the September 2016 value of 39 ppb. Monitoring well MW-21 is located north-northwest of the Site, on the opposite side of Thatcher Brook.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – November 2016 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 Sentry Well Groundwater Analysis Summary

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event included MW-19R, MW-20 and MW-4. The current results indicate non-detect for all three samples from the eastern sentry wells.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 Recovery Well Groundwater Analysis Summary

During the November 2016 sampling event, 6 of the 7 recovery wells were sampled. The November 2016 analytical results indicate detection of 2 chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from 6 of the 6 sampled recovery wells. Total VOCs at the 7 recovery wells for which past data is available have decreased since activation of the GTS in May 2005. The average reduction in VOCs for the current sampling event is 47% relative to concentrations prior to GTS activation in 2005. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased slightly in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the November 2016 sampling event is 617 ppb, a slight increase from the September 2016 value of 610 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 7% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in the area of historically highest concentrations.

Recovery well DR-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the November 2016 sampling event is 137 ppb, a decrease from the September 2016 value of 218 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of 75% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the November 2016 sampling event is 98 ppb, a decrease from the September 2016 value of 154 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of 36% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the November 2016 sampling event is 79 ppb, a decrease from the September 2016 value of 95 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of 91% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the November 2016 sampling event was 85 ppb, a decrease from the September 2016 value of 105.6 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 58% since activation of the GTS.

Recovery well G-2 was dry during the November 2016 sampling event. The total VOC concentration at G-2 for the September 2016 sampling event was non-detect, a decrease from the previous sampling of G-2 in August 2015 value of 28 ppb. The previous sampling event indicated a decrease in VOCs at G-2 of 100% since activation of the GTS.

Recovery well G-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the November 2016 sampling event is 293 ppb, a decrease from the September 2016 value of 404 ppb. The current sampling event indicates a decrease in VOCs at G-3 of 27% since activation of the GTS. Recovery well G-3 is located along the northern property boundary.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – November 2016 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 Quality Assurance and Quality Control Samples

For quality assurance purposes a duplicate groundwater sample was collected from monitoring well MW-1, designated sample "MW-X." Results from sample MW-X were consistent with the sample collected from MW-1.

A trip blank was supplied by the laboratory and submitted for analysis along with the groundwater samples. The trip blank sample was non-detect for chlorinated halogens. An equipment blank was also collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 Remediation System Efficiency

5.1 Impact of the GTS Recovery Wells

Groundwater control charts for the 7 recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all 7 groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent an increase of total VOCs at 1 recovery well (DR-1) when compared to the September 2016 sampling event. This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May and September 2015.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,466.9 ppb) show an increase from the September 2016 sampling event (838 ppb). This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015. The current total VOCs at MW-11 (646 ppb) show an increase from the September 2016 sampling event (445 ppb). The current total VOCs at DR-1 (617 ppb) show a slight increase from the September 2016 sampling event (610 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and monitoring well MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (7.1 ppb) show a decrease from the September 2016 sampling event (7.8 ppb). The current total VOCs at recovery well DR-2 (137 ppb) show a decrease from the September 2016 sampling event (218 ppb).

our people and our passion in every project

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (76 ppb) show a decrease from the September 2016 sampling event (100 ppb). The current total VOCs at recovery well DR-3 (98 ppb) show an increase from the September 2016 sampling event (154 ppb). This increase may be attributed to residual contamination in the sand pack of the recovery wells due to the shutdown of the GTS and the movement of sand pack and sediment during the ISCO injections completed in May 2015 and September 2015.

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (11 ppb) show a decrease from the September 2016 sampling event (23.8 ppb). The current total VOCs at recovery well DR-4 (79 ppb) show a decrease from the September 2016 sampling event (95 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. Recovery well G-1 is located in the northern portion of the building and monitoring well MW-17 is located along the northern property line. The current total VOCs at recovery well G-1 (85 ppb) show a decrease from the September 2016 sampling event (105.6 ppb).

Chart 7 compares laboratory results between recovery well G-2 and monitoring well MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. G-2 was dry during the sampling event and was therefore not sampled. The total VOCs at recovery well G-2 for the September 2016 sampling event were non-detect.

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at recovery well G-3 (293 ppb) show a decrease from the September 2016 sampling event (404 ppb). The current total VOCs at monitoring well MW-17 (375 ppb) show a decrease from the September 2016 sampling event (465 ppb). Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 Extent of Impacted Groundwater

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not detected at MW-19R during the November 2016 sampling event. Monitoring well MW-21 was added to the sampling plan at the request of the NYSDEC. The total VOC concentration at MW-21 for the current sampling event (17 ppb) is the lower than the September 2016 concentration (39 ppb). MW-19R, MW-18 and MW-21 are off-site monitoring wells located north of the facility. These monitoring points are inferred as beyond the area of hydraulic influence of the recovery wells. Impacted groundwater at these areas was detected prior to activation of the GTS in May 2005.

The redevelopment of wells performed in fall 2015 at the Site was performed to remove sediment from wells at the Site after the ISCO in-situ injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when viewed over the past 10 years of sampling.

7

A meeting with Bergmann, DASNY and NYSDEC should be scheduled to determine next steps for further contaminant reduction and eventual spill closure.

5.3 Future Groundwater Monitoring and Analysis Activities

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three routine quarterly monitoring events are required to complete NYSDEC requirements for the ISCO groundwater treatment.

The next site-wide groundwater sampling is tentatively scheduled for April, 2017, pending budget approval. Future sampling and analytical events will be conducted to track the effects of the treatment system and ISCO treatment on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be performed during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements November 2016 Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.66	6.07	6.52	7.32	10.48	13.22	13.15	9.52	9.42	10.05
Groundwater Elevation	771.57	772.01	771.86	771.11	768.13	767.88	767.79	771.81	773.19	769.97
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	9.36	NA	9.78	8.46	3.47	9.66	8.65	8.13	11.54	9.37
Minimum Purge Volume (gal)	1.5	NA	1.6	1.4	0.6	1.6	1.4	1.3	1.9	1.5
3 Volumes	4.6	NA	4.8	4.1	1.7	4.7	4.2	4.0	5.6	4.6
Actual volume purged	4.6	NS	NS	4.1	NS	4.7	4.2	NS	NS	NS
Comments	Flush = -0.29'	Flush = -0.30'	Flush = -0.23'	Flush = -0.34'	Flush = -0.24'	Stickup=2.17'	Stickup=2.17'	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	7.01	7.20	11.21	10.42	10.36	12.52	13.20	9.25	8.23	9.85	9.15
Groundwater Elevation	771.57	771.30	767.18	768.01	768.02	767.91	766.65	767.14	765.97	768.19	765.61
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	8.47	10.18	6.19	7.73	9.44	10.74	NA	15.75	9.44	4.90	6.67
Minimum Purge Volume (gal)	1.4	1.7	1.0	1.3	1.5	1.8	NS	2.6	1.5	0.8	1.09
3 Volumes	4.1	5.0	3.0	3.8	4.6	5.3	NS	7.7	4.6	2.4	3.3
Actual volume purged	4.1	5.0	NS	3.8	4.6	5.3	NS	7.7	4.6	2.4	NS
Comments	Flush = -0.23'	Flush = -0.35'	Flush = -0.48'	Flush = -0.39'	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NA
Depth to Groundwater (btoc)	7.43	7.68	11.14	11.07	11.32	DRY	10.31
Groundwater Elevation	772.23	772.25	768.64	768.57	768.51	NA	NA
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	~27.00
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NA
Thickness of Water Column	10.63	10.38	9.31	8.62	11.66	NA	NA
Minimum Purge Volume (gal)	6.94	6.78	6.08	5.63	7.61	NS	NS
3 Volumes	20.82	20.33	18.24	16.89	22.84	NS	NS
Actual volume purged	20.82	20.33	18.24	16.89	22.84	NS	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	

NOTES btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Table 2 November 2016 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sample Date: 11/22/2016

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		1,100	410	5.0
CIS		340	410	5.0
TRANS		19	ND	5.0
VC		7.9	18	2.0
TCA		ND	ND	5.0
	Total VOCs	1,466.9	838	

Monitoring Well MW-2

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Tot	al VOCs	NS	NS	

Monitoring Well MW-3 Sampling Events

Sample Date: NS

1 0				
Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 1 of 6

Monitoring Well MW-4

Sample Date: 11/21/2016

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs ND	ND	

Monitoring Well MW-5

Sampling Events

Sample Date: NS

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC	NS	NS	2.0
TCA	NS	NS	5.0
Total VOC	s NS	NS	

Monitoring Well MW-6 Sampling Events

Sample Date: 11/21/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		87	120	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	87	120	

Table 2 November 2016 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sample Date: 11/21/2016

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		110	62	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	110	62	

Monitoring Well MW-8

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-9 Sampling Events

Sample Date: NS

Analyte i	n ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Tota	I VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Monitoring Well MW-10

Sampling Events

Sample Date: NS

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-11 Sampling Events

Sample Date: 11/22/2016

Analvte	dag ni	Nov 2016	Sep 2016	NYS Guidance Value
		440	420	
ICE		410	130	5.0
CIS		220	300	5.0
TRANS		16	ND	5.0
VC		ND	15	2.0
TCA		ND	ND	5.0
	Total VOCs	646	445	

Monitoring Well MW-12 Sampling Events

Sample Date: 11/22/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		7.1	7.8	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	7.1	7.8	

Page 2 of 6
Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-14

Sample Date: 11/21/2016

Sampling Events

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	28	31	5.0
CIS	48	69	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	76	100	

Monitoring Well MW-15 Sampling Events

Sample Date: 11/21/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		11	17	5.0
CIS		ND	6.8	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	11	23.8	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Monitoring	Well	MW-16
Sampling Ev	vents	

Sample Date: 11/21/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		14	20	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	14	20	

Monitoring Well MW-17

Sampling Events

Sample Date:11/22/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		75	95	5.0
CIS		300	370	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	375	465	

Monitoring Well MW-18 Sampling Events

Sample Date: 11/21/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		10	26	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	10	26	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: 11/21/2016

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-20

Sample Date: 11/21/2016

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-21 Sampling Events

Sample Date: 11/21/2016

Analyte in ppt	Nov 2016	Sep 2016	NYS Guidance Value
TCE	ND	ND	5.0
CIS	17	39	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs 17	39	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sample Date:11/22/2016

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		520	500	5.0
CIS		97	110	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	617	610	

Recovery Well DR-2

Sample Date:11/22/2016

Sampling Events

Analyte in	ppb Nov 2016	6 Sep 2016	NYS Guidance Value
TCE	37	38	5.0
CIS	100	180	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total	/OCs 137	218	

Recovery Well DR-3 Sampling Events

Sample Date:11/22/2016

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	31	34	5.0
CIS	67	120	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	98	154	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Recovery Well DR-4	
--------------------	--

Sampling Events

Sample Date:11/22/2016

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		34	34	5.0
CIS		45	61	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
T	otal VOCs	79	95	

Recovery Well G-1

Sampling Events

Sample Date:11/22/2016

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	ND	5.6	5.0
CIS	85	100	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	85	105.6	

Recovery Well G-2 Sampling Events

Sample Date:11/22/2016

	101110			
Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		NS	ND	5.0
CIS		NS	ND	5.0
TRANS		NS	ND	5.0
VC		NS	ND	2.0
TCA		NS	ND	5.0
	Total VOCs	NS	ND	

Page 5 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: 11/22/2016

Sampling Events

Analyte	in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE		53	84	5.0
CIS		240	320	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	293	404	

Duplicate Blank

Sample Date: 11/22/2016

Samp	ling	Events
------	------	--------

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	1300	430	5.0
CIS	380	430	5.0
TRANS	18	ND	5.0
VC	7	19	2.0
TCA	ND	ND	5.0
Total VOCs	1,705	879	

Equipment Blank Sampling Events

Sample Date: 11/22/2016

Analyte in ppb	Nov 2016	Sep 2016	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MONITORING WELLS nitoring Total Total <th< th=""></th<>																																		
Monitorina	Total	Total	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total									
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(daa)	(dqq)	(daa)	(dqq)	(daa)	(daa)	(dqq)	(dqq)	(daa)	(dqq)	(dqq)	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	Sep 2007	May 2007	Oct 2006	Nov 2005	Oct 2004	Jul 2003	Aug 2002
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)		u 1 - 7	ur -7	ur - 7	ur - 7	u r - 7	ur -7		u. r 7	U I · · /	4 F - 7	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
M\//_1	1 467	838	580	1 530	1 470	350	430	300	420	990	990	1 740	830	910	1 440	528	889	442	1 318 1	583	564	649	778	1107 16	677	860	705	1 463	1 481	2 046	1 769	1 1 2 8	1 250	2 879	768
MW-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	ND	2,040 ND	ND	ND	ND	7 1	23
MW-3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	2.4	ND	ND	8 4 2	5.6	3.1	15
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	1.8	3.8
MW-5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	3.41	ND	ND	5.13	6.7	7.3	14
MW-6	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7	101	79	73.2	81.8	107	96	92.8	87.8	113	123	105	171	151	173	233	280	333	406
MW-7	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5	209.16	70.9	22.3	58.2	160.5	114.46	213	92.34	347.8	244	196.7	360	330.5	420	455.7	508	534	450
MW-8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	1.4
MW-9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	4.2
MW-10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	ND	ND	ND	2.6
MW-11	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617	508.7	722	623	588	630.7	765	625.9	790	437.3	564.9	1,023	398.6	1,189	2,600	1,101	2,355	34,169	4,647
MW-12	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22	92.8	162.9	90.82	90.4	100	159.8	82	279.01	65.8	159	165.6	196.9	429	1,082	4,776	6,900	12,100	12,643
MW-13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	NS	ND	2.02	ND	ND	ND	ND	31	315
MW-14	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6	77.3	104.98	31.9	24.33	38.93	65.22	40.72	34.9	17.8	38.15	29.3	103.2	106.8	293.9	139.9	67	140	315
MW-15	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25	32.46	16.18	6.92	16.85	62	22.93	64.8	4.9	113.3	77.3	18.2	149.6	60.4	149.9	271	320	258	730
MW-16	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2	6.07	23.1	28.9	7.21	2.53	ND	22	22.2	16.2	21.3	8.56	24.7	60.0	51.2	65.4	82	38	NA
MW-17	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1	449	225.2	26.7	48.1	312.3	232.1	228.8	4.41	728	599	610	903.0	777	1,011	1,006	1,154	810	NA
MW-18	10	26	6.9	ND	NS	ND	ND	ND	16.6	2.33	28.7	13.9	6.43	17.9	40.77	27.5	196	13.07	238.6	115.2	56.0	719	442	392	375	460	159	NA							
MW-19R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	2.67	ND	4.27	ND	13.7	10.57	ND	22.1	2.64	11.4	20.2	14	10*	NA
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	NA	NA
MW-21	17	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	141.8	NS	14.3	533	318	29	495.6	436	NA	NA										
MW-X (DUP)	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913	457	1,022.2	Sample loss*	588	611	264	598	678	902	648	12.41	888	437	1,350	1031.49	540.6	7.1	133.63
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	NS	NS	ND	ND	NS	ND	0.001
																RECOVE	RY WELLS																		
Recovery Wel	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Number	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs Oct	VOCs Feb	VOCs Oct	VOCs	VOCs Aug
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jul 2009	Feb 2009	Sep 2008	Jun 2008	Mar 2008	Sep 2007	May 2007	2006	2005	2004	Jul 2003	2002
																				(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
DR-1	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673	166.5	154.5	250.1	355.5	442.5	60.3	392.28	260	724	864	530	2,043.5	1,106	573.4	8,000	NA	NA	NA
DR-2	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3	206.1	240.93	267.75	152.3	213.52	255.2	198.24	223.79	206.6	284.3	154.4	288.1	350.1	549.2	2,003	NA	NA	NA
DR-3	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9	74.3	67.7	25.3	30.1	38.1	79.7	125.96	167.34	75.4	123.2	171.7	387.5	183	152.5	1,467	NA	NA	NA
DR-4	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND	191.03	128.4	101.4	71.7	230.58	155.04	80.3	66.3	129.1	40.2	42.1	217.0	15.21	859.0	1,760	NA	NA	NA
G-1	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58	67.52	55.81	67.02	48.8	30.5	108.3	164	126.6	120.4	170.5	186	225.0	153.3	200.8	544	NA	NA	NA
G-2	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9	29.8	65.6	47.2	51.8	6.02	8.37	56.2	231	28.3	39.1	80.92	59.3	174.92	283.4	385	NA	NA	NA
G-3	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2	296.2	224.7	209.8	159.3	233.2	277.8	344	403	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NS: This well not included in this sampling event. ND = Not Detected, results less than Method Detection Limit. Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21 All compounds are measured in parts per billion (ppb). VOC - Volatile Organic Compounds. DUP - Duplicate Sample

Table 4 Percent Reductions in Total Groundwater VOCs Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

MW-1¹ DR-1[†] DR-3[†]

-	,		1																											
84	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011	% Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008	% Reduction 2002 to Nov 2005
wonitoring well																														
MW-1 ^T	-88.5%	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1%	26.6%	15.5%	-1.3%	15.8%	-44.2%	11.8%	-12.0%	8.2%	-90.5%	-46.9%
MW-2	Not Sampled	99.6%	Not Sampled	99.6%	99.6%																									
MW-3	Not Sampled	99.3%	99.3%																											
MW-4	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%
MW-5	Not Sampled	Not Sampleo	Not Sampled	99.3%	63.4%																									
MW-6	78.6%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	79.9%	73.6%	76.4%	81.3%	77.1%	78.4%	72.2%	69.7%	74.1%	42.6%
MW-7	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	87.1%	64.3%	74.6%	96.6%	52.7%	79.5%	22.7%	45.8%	56.3%	-1.3%
MW-8	Not Sampled	92.9%	92.9%																											
MW-9	Not Sampled	97.6%	97.6%																											
MW-10	Not Sampled	96.2%	96.2%																											
MW-11	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	87.3%	86.4%	83.5%	83.3%	86.5%	83.0%	90.6%	87.8%	78.0%	76.3%
MW-12	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	99.3%	99.2%	98.7%	98.1%	99.4%	97.8%	99.5%	98.7%	98.7%	62.2%
MW-13	Not Sampled	100.0%	Not Sampled	100.0%	100.0%																									
MW-14	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	92.3%	87.6%	79.3%	85.9%	87.1%	88.9%	94.3%	87.9%	90.7%	55.6%
MW-15	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	97.7%	91.5%	96.9%	98.3%	91.1%	99.3%	84.5%	89.4%	97.5%	62.9%
MW:16*	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%	81.0%	93.3%	99.7%	94.2%	42.1%	41.6%	57.4%	43.9%	77.5%	-72.1%
MW-17*	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%	94.1%	61.4%	71.3%	97.7%	71.8%	99.5%	10.1%	26.0%	24.7%	-24.2%
MW-18:*	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	88.7%	74.4%	82.7%	96.0%	-23.3%	91.8%	-50.0%	27.6%	64.8%	-135.8%
MW-19 R*	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	73.3%	99.0%	99.0%	57.3%	99.0%	-36.7%	-5.7%	99.0%	-102.0%
MW-20**	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
MW-21**	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled	67.5%	Not Sampled	96.7%	-13.7%																			
* Well installed 2003				-	-																									-
** Well Installed 2004																														
Site-Wide reduction:	71.0%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%	79.7%	72.2%	83.7%	86.9%	78.3%	81.4%	87.9%	61.1%	82.1%	56.0%	59.7%	78.5%	35.7%
Impacted Groundwater																														
Plume Area Only:	61.1%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%	71.9%	64.1%	84.1%	83.0%	72.5%	72.4%	82.1%	65.2%	79.8%	57.7%	64.2%	53.7%	28.4%
Plume Area = MW-1, MW-1	1, MW-12, MW-1	14, MW-15, MW	/-7, MW-17, MW	-6																										
% reduction = percent reduc	tion in total Volat	tile Organic Con	pounds (VOCs)	since groundwa	ter monitoring wa	as initiated																								
+Negative values indicate ar	n increase in total	I VOCs since m	nitoring comme	nced in 2002. Th	e percent increa	se in total groun	dwater VOCs is	shown below for	MW-1.	1	1							1												

	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction	% Reduction
	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to
Recovery Well	NOV 2016	Sep 2016	Jun 2016	NOV 2015	Aug 2015	Jun 2015	Mar 2015	NOV 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 2010	Jan 2010	Jui 2009	Feb 2009	Sep 2008	Jun 2008	War 2008
DR-1	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%	97.9%	98.1%	96.9%	95.6%	94.5%	99.2%	98.0%	95.1%	96.8%	91.0%	89.2%	93.4%
DR-2	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%	89.7%	88.0%	86.6%	92.4%	89.3%	87.3%	90.6%	90.1%	88.8%	89.7%	85.8%	92.3%
DR-3	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%	95.0%	95.4%	98.3%	98.0%	97.4%	94.6%	91.6%	91.5%	88.7%	94.9%	91.7%	88.4%
	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%	89.2%	92.7%	94.3%	95.9%	86.9%	91.2%	95.4%	95.5%	96.2%	92.7%	97.7%	97.6%
G-2	Not Sampled	47.4%	92.7 % Not Sampled	Not Sampled	90.1%	Not Sampled	27.3%	49.0%	47.7%	55.0% 81.7%	95.1%	71.4%	79.0%	87.0%	90.3%	80.4%	89.1%	07.0%	83.0%	87.7%	91.0%	94.4%	97.8%	98.5%	85.4%	40.0%	92.6%	89.8%	79.0%
G-3	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	00.176 NA	02.076 NA	NA	NA	NA	NA	NA	NA	00.4% NA	40.0% NA	02.070 NA	NA	NA				
Overall Reduction	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1%	91.9%	93.2%	93.5%	91.7%	91.7%	87.9%	81.2%	89.8%	87.2%	86.1%
*Sampling of recovery wells i	initiated in 2005						I								1	II													
	% Incroaso	% Incroase	% Incroaso	% Incroaso	% Incroaso	% Incroase	% Incroase	% Incroaso	% Incroase	% Incroase	% Incroaso	% Incroseo	% Incroase	% Incroase	% Incroseo		% Incroses		% Incroseo				% Incroaso		% Incroaso		% Incroseo		% Incroaso
	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to	2002 to		2002 to		2002 to				2002 to		2002 to		2002 to		2002 to
Monitoring Well	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012		Mar 2012		Jun 2011				Jun 2010		Jul 2009		Sep 2008		Mar 2008

16.3% NA NA

46.7% NA

NA NA NA

13.6% NA NA

NA NA NA NA

41.7% NA NA

NA NA NA

NA NA NA

NA NA NA

22.4% NA NA NA

22.4% NA NA

55.9% NA NA

7.5% NA NA NA

47.0% 7.1% NA NA 49.8% NA NA NA NA NA 15.7% NA NA NA 27.4% NA 8.4% 6.0% 1.0% 0.2% NA 37.0% NA 4.0% 47.8% NA NA NA NA NA NA NA NA NA VOCs is shown above for MW-1 and DR-3. enced in 2002. The percent increase in total ground e values indicate an incre ase in total VOCs since mon

rease 2 to 2010		% Increase 2002 to Jul 2009		% Increase 2002 to Sep 2008		% Increase 2002 to Mar 2008	% Increase 2002 to Nov 2005
100.0%	NA	30.6%	NA	100.0%	NA	47.5%	31.9%
NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA

FIGURES

I:\DASNY\006974.85 DASNY - GOWANDA 2016 O & M\4.0 Dwgs\4.10 GIS\Figure_1_2016_Q4.mxd

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 1 **November 2016** Groundwater **Contour Map**

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

Figure 2

November 2016 **Distribution of** Groundwater **Analytical Results: Monitoring Wells**

		G-3 TCE	53	Torrance Place	
	G-2 TCE NS CIS NS TRANS NS VC NS TCA NS	CIS TRANS VC TCA Total VOCs G-3	240 ND ND 293	l'	
that the second	Total VOCs NS	G-2 G-1 F-1 ND 85 ND	DR-4 TCE CIS TRANS VC TCA TOTAI VOCS DR-3	34 45 ND ND ND 79	Industrial
	VC TCA Total VOCs	ND ND 8 85 TCE 37 CIS 100 TRANS ND	DR-2 DR-2 TCE CIS TRANS VC TCA Total VOCs DR-1	31 67 ND ND 98	Place
		VC ND TCA ND Total VOCs 137	DR- TCE CIS TRANS VC TCA TCA Total VOCs	1 520 97 ND NS NS 617	

DASNY

Gowanda Day **Habilitation Center**

4 Industrial Place Gowanda, NY

Figure 3

November 2016 **Distribution of** Groundwater **Analytical Results: Recovery Wells**

CHARTS

Chart 2: MW-1, DR-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 6: MW-17 and G-1 Groundwater Volatile Organic Compound Concentrations

APPENDIX A

LABORATORY ANALYTICAL RESULTS REPORT NOVEMBER 2016 SAMPLING EVENT

Ms. Megan Borruso Bergmann Associates, Incorporated 200 First Federal Plaza 28 East Main St. Rochester, NY 14614

Laboratory Results for: Gowanda Day Hab Center

Dear Ms.Borruso,

Enclosed are the results of the sample(s) submitted to our laboratory November 22, 2016 For your reference, these analyses have been assigned our service request number **R1612386**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Pour Kullen

Brady Kalkman Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Bergmann Associates, IncorporatedProject:Gowanda Day Hab Center/6974.86Sample Matrix:Water

Service Request:R1612386 Date Received:11/22/16

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt

Twenty four water samples were received for analysis at ALS Environmental on 11/22/2016. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at \leq 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

No significant anomalies were noted with this analysis.

Pour Knothen Approved by Date 12/2/2016

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-15	Lab ID: R1	612386-	004			
Analyte	Results	Flag	MDL	PQL	Units	Method
Trichloroethene (TCE)	11		0.22	5.0	ug/L	8260C
CLIENT ID: MW-14	Lab ID: R1	612386-	005			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	48		0.30	5.0	ug/L	8260C
Trichloroethene (TCE)	28		0.22	5.0	ug/L	8260C
CLIENT ID: MW-18	Lab ID: R1	612386-	006			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	9.8		0.30	5.0	ug/L	8260C
CLIENT ID: MW-21	Lab ID: R1	612386-	007			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	17		0.30	5.0	ug/L	8260C
CLIENT ID: MW-16	Lab ID: R1	612386-	800			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	14		0.30	5.0	ug/L	8260C
CLIENT ID: MW-7	Lab ID: R1	612386-	009			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	110		0.30	5.0	ug/L	8260C
CLIENT ID: MW-6	Lab ID: R1	612386-	010			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	87		0.30	5.0	ug/L	8260C
CLIENT ID: MW-12	Lab ID: R1	612386-	011			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	7.1		0.30	5.0	ug/L	8260C
CLIENT ID: MW-11	Lab ID: R1	612386-	012			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	220	D	1.5	25	ug/L	8260C
trans-1,2-Dichloroethene	16		0.33	5.0	ug/L	8260C
Trichloroethene (TCE)	410		1.1	25	ug/L	8260C
CLIENT ID: MW-1	Lab ID: R1	612386-	013			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	340	D	3.0	50	ug/L	8260C
trans-1,2-Dichloroethene	19		0.33	5.0	ug/L	8260C
Trichloroethene (TCE)	1100	D	2.2	50	ug/L	8260C
Vinyl Chloride	7.9		0.32	5.0	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-X	Lab ID: R1612386-014								
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	380	D	3.0	50	ug/L	8260C			
trans-1,2-Dichloroethene	18		0.33	5.0	ug/L	8260C			
Trichloroethene (TCE)	1300	D	2.2	50	ug/L	8260C			
Vinyl Chloride	7.0		0.32	5.0	ug/L	8260C			
CLIENT ID: DR-1	Lab ID: R1	612386-	015						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	97		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	520	D	1.1	25	ug/L	8260C			
CLIENT ID: DR-2	Lab ID: R1	612386-	016						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	100		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	37		0.22	5.0	ug/L	8260C			
CLIENT ID: DR-3	Lab ID: R1	612386-	017						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	67		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	31		0.22	5.0	ug/L	8260C			
CLIENT ID: DR-4	Lab ID: R1	612386-	018						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	45		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	34		0.22	5.0	ug/L	8260C			
CLIENT ID: G-1	Lab ID: R1	612386-	020						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	85		0.30	5.0	ug/L	8260C			
CLIENT ID: G-3	Lab ID: R1	612386-	021						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	240		0.60	10	ug/L	8260C			
Trichloroethene (TCE)	53		0.44	10	ug/L	8260C			
CLIENT ID: MW-17	Lab ID: R1	612386-	022						
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	300		0.60	10	ug/L	8260C			
Trichloroethene (TCE)	75		0.44	10	ug/L	8260C			

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 52

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R1612386-001	MW-4	11/21/2016	1201
R1612386-002	MW-20	11/21/2016	1248
R1612386-003	MW-19R	11/21/2016	1315
R1612386-004	MW-15	11/21/2016	1422
R1612386-005	MW-14	11/21/2016	1450
R1612386-006	MW-18	11/21/2016	1520
R1612386-007	MW-21	11/21/2016	1550
R1612386-008	MW-16	11/21/2016	1620
R1612386-009	MW-7	11/21/2016	1650
R1612386-010	MW-6	11/21/2016	1715
R1612386-011	MW-12	11/22/2016	0800
R1612386-012	MW-11	11/22/2016	0820
R1612386-013	MW-1	11/22/2016	0940
R1612386-014	MW-X	11/22/2016	0940
R1612386-015	DR-1	11/22/2016	1118
R1612386-016	DR-2	11/22/2016	1141
R1612386-017	DR-3	11/22/2016	1212
R1612386-018	DR-4	11/22/2016	1231
R1612386-019	EQUIPMENT BLANK	11/22/2016	1200
R1612386-020	G-1	11/22/2016	1300
R1612386-021	G-3	11/22/2016	1315
R1612386-022	MW-17	11/22/2016	1330
R1612386-024	TRIP BLANK	11/22/2016	1315

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

41933

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

Project Name Brivenda, Day Hab Center (0974.86								A	NALYS	SIS RE	QUEST	red (Includ	e Meth	od Nu	mber	and C	ontain	er Pre:	servativ	re)		
Project Manager	Report CC	1 · 1 · 0 ¥			PRE	SERVA	TIVE	1															
Company/Address	L				<u> </u>	т—-		Ľ,	Ļ,	ļ,	\vdash	ļ,	ļ	,	L	<i>├</i>	},	<u> </u>	ļ,	┝──┝		Brosservet	ivo Kov
Bergmann Associates					SR SR			5			/	/										0. NONE	vertey
					NNE .		R	r)												/	/	2. HNO3	
280 Fast Broad Stree					11N		Jú S	7	/	/	/	/ 🖥		e/	/	/	/	/	/		/	 H2SO NaOH 	4
Rochester, NIV 141004	!				U U U		/ ೫/	'_ /	່ »/	/ /		ې چ چ	22	/ /	' /	/ /	/ /	/ /	/ /	'		5. Zn. Ac 6. MeOH	cetate
Phone #	Email bergmanapc.com					/	\$ _{\$}	Š. /	20	38/	3/2					./						7. NaHS	04
Samplar's Sinnature	mborr USQ and export							૾ૢૢૢૢૢૢૢૢૢૢૺૺઙૣૼ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		8/3	8		/		/	/					
Magan E- Barris	Me	Megan E. Borruso					<u>۱</u> ۳۶	ૢૺૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	<i>ૣૢૢૢૢૢૢૢૢૣૢૢૢૢૢૢૢૢૢૢૢૢૢૢ</i>	<i>ૣઽૣ</i> ૾ૢ	1	Les K	1		/ · .	/	/	/	/	/ 🗛	F LTERN/	REMARKS/	IPTION
	FOR OFFICE USE	SAMP	LING																				
			/201	MAIRIX Marcui	2																		
111W = 4 he w = 20		11/2/12016	1201	HIGEW	2	₩÷																	
$m(\lambda - 100)$		11/21/2010	12/15	My GW	2	1 x												<u> </u>					
MW-TIK		11/21/2010		rtg GU	12	<u> (</u> -																	
mul all		11/21/2010	14/5-70	M. GW	2	₩¢-																	
<u> </u>		Why have	1750	A CW	2											····							
$m_{\mu} = \rho_{\mu}$		11/21/2010	1500	Ar Lau	2																		
$m_{\mu} = 1/n$		11/21/2010	1620	ALC GU	2	1×	 															·	
m_{μ} -7	-	1/2/2010	1657	L. Cul	3	X																	··· ······
MW = 6		11/21/2014	1715	At CAU	3	×																	
mw-12		1/22/2016	6800	AT OU	3	×	1																
SPECIAL INSTRUCTIONS/COMMENTS	an a	10-9/00-121		0			Тти			REQU	IREME	NTS	'	REPO		EQUIR	EMEN	н тs		INV	OICE I	NFORMAT	ION
Metals								_ RUSI	H (SURC	HARGE	S APPLY)		_ I. Resu	ults Only	,		-					
													X	II. Res	uits + Q	C Summ	naries		PO I	¥			
								1 day 4 day	/2 /5	iday — iday	з бау			(LCS,	dup, Ms	S/MSD a	is require	əd)		69	174.	86	
							St	ANIT	ARI	DT	9-			_ III. Res	sults + C	C and C	Calibratio	'n	BILL	Ben	ina	n	
							REQU	JESTE	D REPC	ORT DAT	ΓE			Summ	aries				5	en c	212	Brad	Γ.×
	•													_ IV. Dat	a Valida	tion Rep	ort with	Raw Dat		<u></u>		invad	
				,									1 /	lysDe	2	EQI	us		₽ [®]	oche	Ner	, NY	14604
STATE WHERE SAMPLES WERE CO	LLECTED New	Vork												Edat	ta X	Yes		No					
RELINQUISHED BY		ED BY	RE	LINQUISHED	BY				RECE	IVED B	Ý			R	ELINQ	UISHEE) BY				RECE	IVED BY	
Signature	Signature		Signature				Signati	ure					Sians	iture					Sign	ature			
Megan E. Reward Printed Name / 6/1/2 Printed Name							Printed	Name					Print	d Name					-		~	5	, .
Megan E. Borruso Printed Name Will Mile Printed Name							Firm						Firm	B1612386									
Beignann Associates Min ALS					Firm Firm Bergmann Associate					OCIZION,													
Date/Ime///23/20110_1750	Date/11mg1/22/14/	1+10	Date/Time				of 52	II TIE					Date	nme		-	_						
Distribution: White - Lab Copy; Yellow - Return	n to Originator																	/////	illa tarr		⊎ 201	2 by ALS G	roup

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

41932

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 3

Project Name Project Number								A	VALYS	SIS RE	QUEST	FED (Includ	e Meth	od Nu	mber a	and Co	ontain	er Pres	servativ	ve)		
(20 Wanda Day Hab Cer	2011/11/10 Day Hab Center Ug 74.80											, 	r						I				
M. Barruan	Report CC				PRE	SERVA	TIVE	1															
Company/Address		· · · · · · ·					-/		7			7	/ /		7	-7		/ /	/ /			Preservat	ive Key
Bergmann Associates					ERS			LT/	/												/	U. NONE 1. HCL	
DED Tool Rom 1 Cha	1 .				AIN		/E	R)	/	/	/	/		/	/	/	/	/	/	/.	/	2. HNO3 3. H2SO	4
000 FAUT Droad. STY		-,,			Ň		103	7	/	/	/	/ ^m o%)]]]	/	/	/	/	/	/	/ .	/	4. NaOH	etate
Rochester NY 1460	94				OF C	/	" z/	' /	§	' /	' /,	1 2 2 1	100	' /	/	' /	' /	' /	' /	' /	,	6. MeOH	
Phone #							\$ <u>\$</u> }		100	? <u>\$</u>	S Z											8. Other	04
Sampler's Signature	Sampler's Printed Name					1 Sta		ိုင်္ဂို	10	چ (چ چ			ğ/	/	/	/	/	/	/	/			
Wegay E. Bornso	Megan E. Borruso				z	\ & &	/ & &	<u>/</u> ///////////////////////////////////	48		「「「	List /								<u> </u>	LTERN	HEMARKS/ ATE DESCR	
	FOR OFFICE USE		LING	MATON																			
CLIENI SAMPLE ID					0																		
<u>mw-11</u>		11/22/2016	0520	AL GW	3																		
		11/22/2016	0940	Ha GU	5																		
mw-x		11/23/ 2016	0940	ALGW	3																		
DR-1		11/22/3016	1/18	AG. GW	3								 										
DR-2		11/23/2016	//4/	AGEN	3								L										
DR-3		11/20/2016	1212	Agew	3	x																	
DR-4		11/22/2016	1231	AGEND	3	X						· ·											
EDWPMENT BLANK		11/22/2016	1200	Ŵ	3	X																	
6-1		11/22/2016	1300	Ag ELP	3	K																	
6-3		11/22/2016	1315	Ag GW	3	x																	
Mw-17		1/22/2016	1330	A. EW	3	X																	
SPECIAL INSTRUCTIONS/COMMENTS		, _,		ν			ти	IRNAR	OUND	REQU	IREME	NTS		REPO	ORT RI	QUIR	EMENT	rs		INV		NFORMAT	ION
Metais								FUSI	H (SURC	HARGE	S APPLY)		_ I. Resu	ults Only								
													X	II. Res	ults + Q	C Summ	aries		PO	· .	·		
								1 day 4 day	/2 /5	2 day 5 day				(LCS,	dup, Ms	S/MSD a	s require	ed)	L		,974	1.86	
							S	TAN	DAR	D 7	AT			III. Res	sults + C	IC and C	alibratio	n	BILL	Be	an	ann	
							REQU	UESTE	D REPO	, DRT DAT	ΓE			Summ	aries				h	n F.	12	Brand	G
														_ IV. Dat	a Valida	tion Rep	ort with	Raw Da	ta corer	<u>, ct</u>	<u>. 10</u>	Jung	
See QAPP													/	VYS!	DEC	EQ	us		Ľ∕	oche	<u>ster</u>	NY	14604
STATE WHERE SAMPLES WERE CO	LLECTED New	2 York												Edat	ta <u>X</u>	Yes	_	No					
RELINQUISHED BY	RECEIVE	D BÝ	RE	LINQUISHED	BY				RECE	IVED B	Y			R	ELINQ	UISHED	BY				REC	IVED BY	
Megan E. Borriso	Λ ()	1																					
Signature Meran E. Biraison	Signature	\mathcal{N}	Signature				Signatu	ure					Signa	iture					Sign	ature			E 7
Printed Name Belangen Associates Printed Name Dunit (White Printed Name							Printed	d Name					Printe	ed Name				R	161	23	86	rporated	C
Firm 11/22/2011/0 1750 Firm ALS Firm						Firm						Firm Bergm Gowa					rgmann Associates, incorporated Jwanda						
Date/Time	Internation Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time					9	Date/T	ïme					Date/	Time									

© 2012 by ALS Group

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

41931

1565 Jefferson Road, Building 30C, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE ______OF _____

Project Name Project Number								A	NALYS	SIS RE	QUES	TED (Includ	e Meth	od Nu	ımber	and C	ontair	er Pre	servati	ve)		
Honwahaa Kui Hab ('a	Report CC	914150		<u> </u>				<u>,</u>		<u> </u>		Г <u>.</u>	<u> </u>					<u> </u>	T				
M. Borruso					PRE	SERV/	TIVE	1															
Company/Address							7		/		7	/	/ /	7	7	/ /		/		7	/	Preserva	ative Key
Bergmann Associates					ERS -			ſЧ														1. HCL	E
Son Fit Read Street	<i>4-</i> -				MIN			Š/			/			/							/	2. HNC 3. H ₂ S('3 ⊃4
200 FAST DIDALA STREET					- Z		/ kg	9	/	/	/			7	/	/	/	/	/	/	/	4. NaO	H Acetate
Rochester, NV 14604	F == -11						19 3/	, "/	\$/	'	' ,	12 P	100 m	' /	' /	'	/ /	/ ,	/ /	' /		6. MeC	H
Phone #	Email	Email					\$ <u>\$</u> }/}) } } } }		? _{\$} \$	S A											8. Othe	ло ₄
Sampler's Signature	Sampler's	<u>LOO(OOErgn</u> Printed Name	ungoc.	con	- M	12	8/2	<u>૾/ઙ</u> ૻ	5/5	5 8 8	s z		8/ *	/	/	/				/			I
Megan E Berry	Megan E. Bornish					/ဇိန်	<u></u> (Y/& §	<i>\</i> #\$?/၃ [°] ခ်	<u>[</u>]				/	/	/	/		/ ^	LTERN	REMARKS	RIPTION
	FOR OFFICE USE		LING	MATDIX												[
haus-17		1/22/24/	12.24	Alla	2	† x																	
MIN I I	-	11/12/2010	10,00	ngew	17	f																	
		11/10/2016	1313	+ w		<u> ^ </u>		<u> </u>										\vdash	-				
			<u></u>				<u> </u>			-						<u> </u>		 	+				
																	<u> </u>			<u> </u>			·····
· · · · · · · · · · · · · · · · · · ·								<u> </u>						<u> </u>		┣──	1		+				
			,,,,,				1												<u> </u>				
																		1					
				+			1	<u> </u>		<u> </u>			·			<u> </u>			\vdash				
						1		<u> </u>															
						1											1		1				
SPECIAL INSTRUCTIONS/COMMENTS	<u> </u>	• · · · · · · · · · · · · · · · · · · ·				- I	τι	JRNAR		REQU	IREME	INTS	1	REP	ORT R	EQUIR		тѕ	·	INV	OICE	NFORMA	
Metals								RUS	H (SURC	HARGE	S APPLY	0		_ I. Resu	ults Only	,							
}													$ \chi$, II. Res	ults + Q	C Sumn	naries		PO	#		· • •	
								1 1a 4 1a	y2 y5	2 day <u>—</u> 5 day	3 day	'		(LCS,	DUP, MS	S/MSD a	as requir	ed)		4	,97.	1.50	
								STA	NDA	RD	TH	17-		_ ill. Re:	suits + C	C and (Calibratio	on	BILL	Be	<u>r</u> m	inn	
							REQ	UESTE	D REPO		TE:			Summ	aries				2	80 7	Tast	Ann	18-
														_ IV. Dat	ta Valida	tion Rep	port with	Raw D		1 1		1 Jour	<u>~ ~</u> /
See QAPP														<i>7</i> 4 y.	3De V	<i>r</i>	- 42 6	~1.2		loche	Ster	, NY	14604
STATE WHERE SAMPLES WERE CO	LLECTED New	York	_			_								Eda	ta 🛆	Yes		No					
RELINQUISHED BY									RECE	IVED B'	Y			F	ELINQ	UISHE	D BY				REC	EIVED BY	
Signature Bolling	Signature Signature Signature						Signat	ture					Signa	ture					Sigr	ature			
Printed Stame E. Bur ruso	Printed Name Printed Name Printed Name				·		Printed	d Namo					Printe	d Name									
Firmpornana Associates	Firm ALS		Firm	·			Firm						Firm Bergmann Associates, Inco Gowanda				rporate	d					
Date/Time 2/30/16 1750	Date/Time 11/72/14	11750	Date/Time			10	Date/1	lime					Date/	Time									

Distribution: White - Lab Copy; Yellow - Return to Originator

Cooler Receipt and Preservation Check Form

Project/Clie	nt_Bergin	<u>n 1</u>	issc.		Fo	older	Nur	nber			·			
Cooler receive	ed on_1/77/	16		by:_	Dhu	(COU	RIER:	ALS	UPS	FEDEX V	ELOCITY	CHEN	<u>r</u>
1 Were Cu	stody seals on	outsid	e of co	oler?	Y (5	5a	Perch	lorate	samples	have required	headspace	? Y	N NA
2 Custody	papers proper	ly con	pleted	(ink, si	gned)?	N	5b	Did V	OA via	ıls, Alk,o	r Sulfide hav	e sig* bubb	oles? Y	NA
3 Did all bo	ottles arrive in	good c	onditio	on (unb	roken)?	N	6	Where	e did th	e bottles	originate?	ALS/B	C C	LIENT
4 Circle: V	Wette Dry	Ice C	Gel pac	ks p	oresent? &	N I	7	Soil V	'OA rea	ceived as	: Bulk	Encore	5035set	
8. Temperatur	e Readings	Da	te:(\/·	22/16		55		ID:	B∰2	IR#8	Fro	m: Temp I	Blank S	ample Bottle
Observed Te	mp (°C)		115	¢										
Correction F	actor (°C)		-to-0			_								
Corrected Te	emp (°C)		ins	(_					. <u></u>			
Within 0-6°			Ø	N	Y N		Y	N	<u>Y</u>	N	Y N	<u> </u>	N	Y N
If <0°C, wer	e samples froz	en?	<u>Y</u>	N	Y N		Y	N	Y	N	Y N	<u>Y</u>	N	Y N
If out of T	`emperature,	note p	acking	/ice co	ndition:			Ice melt	ted	Poor	ly Packed	Sam	ie Day Ru	lle
&Client A	pproval to R	un Sai	nples:_		Standing	Appro	oval	Client	t aware	at drop-	off Client	notified by:		
All samples	held in storag	e locat	ion:		R-007	by 🛇	h		on	1/22/1	- at	1755		
5035 sample	es placed in sto	orage l	ocatior	1:		by _			on _		at			
							y, u., ; /.	:					a 40." d,930.""	Latin and the state
Cooler Bro	eakdown: Dat	e :	11/	23/10	Time:	07	903	byby	/:	Ø				
1. V	Vere all bottle	labels	comple	te (i.e.	analysis, prese	ervatio	n, etc	c.)?		Q	ÈS N	C		
2. Ľ	oid all bottle la	bels an	d tags	agree v	vith custody pa	apers?				<u>S</u>		2		
3. V	Vere correct co	ntaine	rs used	for the	tests indicated	1? olcina`	10			$\frac{\alpha}{v}$		ງ ງ	257	3
4. V	ir Samples: C	s accep	s / Tub	es Inta	a labels, not le	aking, Can): victor	e Pressu	rized	י ר	Fedlar® Bags	Inflated		× ×
Explain ar	iv discrepanci	assene es:	57 I UU	cs ma		Can	naton	5110330	11204		Cului O Dugo	minute	Ċ	~
pH	Reagent	Yes	No	Lot R	eceived	Exp	Sa	imple II	2	Vol. Added	Lot Added	Fin pH	nal Yo sa	es=All mples OK
≥12	NaOH													
≤2	HNO3												N	o=Samples
_≤2	H ₂ SO ₄					ļ					ļ		W	ere
<4	NaHSO ₄			TC									pr	eserveu ar
Residual	For CN Phonoi			11 +, 0	ontact PM to $a_2S_2O_2$ (CN)	1								ie lau as
(-)	and 522			ascorb	oic (phenol).									
	Na ₂ S ₂ O ₃	-					+							ví OK to
	ZnAcetate	-	-				**	Not to	be teste	ed before	analysis – p	H tested an	id A	djust:
	HCI	**	**	411	5022		re	corded	by VO	As on a s	separate worl	csheet		
		,												
Bottle lot	numbers:	6-	195	-001										
Other Con	nments:												CUDES	
/							- 1						CLRES	BULK
New	epine !	Equ	up -	blai	h (3,	ual							DO	FLDT
		U	•										HPROD	HGFB
													HTR	LL3541
													PH	SUB
													SO3	MARRS
													ALS	REV

PC Secondary Review: _

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r12.doc

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 12 of 52

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester I	Lab ID # for State Certifica	ations	i.
		NT T	т

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratoryø NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda Day Hab Center/6974.86		Service Request: R1612386
Sample Name: Lab Code: Sample Matrix:	MW-4 R1612386-001 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-20 R1612386-002 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-19R R1612386-003 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-15 R1612386-004 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-14 R1612386-005 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda Day Hab Center/6974.86		Service Request: R1612386
Sample Name: Lab Code: Sample Matrix:	MW-18 R1612386-006 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-21 R1612386-007 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-16 R1612386-008 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-7 R1612386-009 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-6 R1612386-010 Water		Date Collected: 11/21/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda Day Hab Center/6974.86		Service Request: R1612386
Sample Name: Lab Code: Sample Matrix:	MW-12 R1612386-011 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-11 R1612386-012 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C 8260C		Extracted/Digested By	Analyzed By MCYMBAL BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-1 R1612386-013 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C 8260C		Extracted/Digested By	Analyzed By MCYMBAL BALLGEIER
Sample Name: Lab Code: Sample Matrix:	MW-X R1612386-014 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C 8260C		Extracted/Digested By	Analyzed By MCYMBAL BALLGEIER

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda Day Hab Center/6974.86		Service Request: R1612386
Sample Name: Lab Code: Sample Matrix:	DR-1 R1612386-015 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C 8260C		Extracted/Digested By	Analyzed By BALLGEIER MCYMBAL
Sample Name: Lab Code: Sample Matrix:	DR-2 R1612386-016 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By BALLGEIER
Sample Name: Lab Code: Sample Matrix:	DR-3 R1612386-017 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By MCYMBAL
Sample Name: Lab Code: Sample Matrix:	DR-4 R1612386-018 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method		Extracted/Digested By	Analyzed By

8260C

Superset Reference:16-0000402905 rev 00

MCYMBAL

Analyst Summary report

Client: Project:	Bergmann Associates, Incorporated Gowanda Day Hab Center/6974.86		Service Request: R1612386
Sample Name: Lab Code: Sample Matrix:	EQUIPMENT BLANK R1612386-019 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By MCYMBAL
Sample Name: Lab Code: Sample Matrix:	G-1 R1612386-020 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By MCYMBAL
Sample Name: Lab Code: Sample Matrix:	G-3 R1612386-021 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By MCYMBAL
Sample Name: Lab Code: Sample Matrix:	MW-17 R1612386-022 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By MCYMBAL
Sample Name: Lab Code: Sample Matrix:	TRIP BLANK R1612386-024 Water		Date Collected: 11/22/16 Date Received: 11/22/16
Analysis Method 8260C		Extracted/Digested By	Analyzed By MCYMBAL

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation	
	Method	
6010C	3050B	
6020A	3050B	
6010C TCLP (1311)	3005A/3010A	
extract		
6010 SPLP (1312) extract	3005A/3010A	
7196A	3060A	
7199	3060A	
9056A Halogens/Halides	5050	
300.0 Anions/ 350.1/	DI extraction	
353.2/ SM 2320B/ SM		
5210B/ 9056A Anions		

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 21 of 52

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 12:01
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-4	Units: ug/L
Lab Code:	R1612386-001	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	11/30/16 13:09	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 13:09	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 13:09	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 13:09	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 13:09	
Vinyl Chloride	ND U	5.0	1	11/30/16 13:09	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	11/30/16 13:09	
Dibromofluoromethane	103	89 - 119	11/30/16 13:09	
Toluene-d8	106	87 - 121	11/30/16 13:09	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 12:48
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-20	Units: ug/L
Lab Code:	R1612386-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	11/30/16 13:34	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 13:34	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 13:34	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 13:34	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 13:34	
Vinyl Chloride	ND U	5.0	1	11/30/16 13:34	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	11/30/16 13:34	
Dibromofluoromethane	104	89 - 119	11/30/16 13:34	
Toluene-d8	107	87 - 121	11/30/16 13:34	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 13:15
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-19R	Units: ug/L
Lab Code:	R1612386-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	11/30/16 13:59	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 13:59	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 13:59	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 13:59	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 13:59	
Vinyl Chloride	ND U	5.0	1	11/30/16 13:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	11/30/16 13:59	
Dibromofluoromethane	105	89 - 119	11/30/16 13:59	
Toluene-d8	106	87 - 121	11/30/16 13:59	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 14:22
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-15	Units: ug/L
Lab Code:	R1612386-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	11/30/16 14:24	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 14:24	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 14:24	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 14:24	
Trichloroethene (TCE)	11	5.0	1	11/30/16 14:24	
Vinyl Chloride	ND U	5.0	1	11/30/16 14:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	11/30/16 14:24	
Dibromofluoromethane	107	89 - 119	11/30/16 14:24	
Toluene-d8	109	87 - 121	11/30/16 14:24	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 14:50
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-14	Units: ug/L
Lab Code:	R1612386-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	48	5.0	1	11/30/16 14:49	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 14:49	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 14:49	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 14:49	
Trichloroethene (TCE)	28	5.0	1	11/30/16 14:49	
Vinyl Chloride	ND U	5.0	1	11/30/16 14:49	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	11/30/16 14:49	
Dibromofluoromethane	104	89 - 119	11/30/16 14:49	
Toluene-d8	107	87 - 121	11/30/16 14:49	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 15:20
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-18	Units: ug/L
Lab Code:	R1612386-006	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	9.8	5.0	1	11/30/16 15:15	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 15:15	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 15:15	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 15:15	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 15:15	
Vinyl Chloride	ND U	5.0	1	11/30/16 15:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	11/30/16 15:15	
Dibromofluoromethane	105	89 - 119	11/30/16 15:15	
Toluene-d8	104	87 - 121	11/30/16 15:15	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 15:50
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-21	Units: ug/L
Lab Code:	R1612386-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	17	5.0	1	11/30/16 15:40	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 15:40	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 15:40	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 15:40	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 15:40	
Vinyl Chloride	ND U	5.0	1	11/30/16 15:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	11/30/16 15:40	
Dibromofluoromethane	106	89 - 119	11/30/16 15:40	
Toluene-d8	107	87 - 121	11/30/16 15:40	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 16:20
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1612386-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	14	5.0	1	11/30/16 16:06	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 16:06	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 16:06	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 16:06	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 16:06	
Vinyl Chloride	ND U	5.0	1	11/30/16 16:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	11/30/16 16:06	
Dibromofluoromethane	106	89 - 119	11/30/16 16:06	
Toluene-d8	106	87 - 121	11/30/16 16:06	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 16:50
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-7	Units: ug/L
Lab Code:	R1612386-009	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	110	5.0	1	11/30/16 16:31	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 16:31	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 16:31	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 16:31	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 16:31	
Vinyl Chloride	ND U	5.0	1	11/30/16 16:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	11/30/16 16:31	
Dibromofluoromethane	104	89 - 119	11/30/16 16:31	
Toluene-d8	106	87 - 121	11/30/16 16:31	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/21/16 17:15
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-6	Units: ug/L
Lab Code:	R1612386-010	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	87	5.0	1	11/30/16 16:56	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 16:56	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 16:56	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 16:56	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 16:56	
Vinyl Chloride	ND U	5.0	1	11/30/16 16:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	11/30/16 16:56	
Dibromofluoromethane	107	89 - 119	11/30/16 16:56	
Toluene-d8	105	87 - 121	11/30/16 16:56	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 08:00
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-12	Units: ug/L
Lab Code:	R1612386-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.1	5.0	1	11/30/16 17:21	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 17:21	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 17:21	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 17:21	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 17:21	
Vinyl Chloride	ND U	5.0	1	11/30/16 17:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	11/30/16 17:21	
Dibromofluoromethane	106	89 - 119	11/30/16 17:21	
Toluene-d8	107	87 - 121	11/30/16 17:21	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 08:20
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-11	Units: ug/L
Lab Code:	R1612386-012	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	220 р	25	5	12/01/16 18:38	
trans-1,2-Dichloroethene	16	5.0	1	11/30/16 17:47	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 17:47	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 17:47	
Trichloroethene (TCE)	410	25	5	12/01/16 18:38	
Vinyl Chloride	ND U	5.0	1	11/30/16 17:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	11/30/16 17:47	
Dibromofluoromethane	102	89 - 119	11/30/16 17:47	
Toluene-d8	106	87 - 121	11/30/16 17:47	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 09:40
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-1	Units: ug/L
Lab Code:	R1612386-013	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	340 D	50	10	12/01/16 19:03	
trans-1,2-Dichloroethene	19	5.0	1	11/30/16 18:12	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 18:12	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 18:12	
Trichloroethene (TCE)	1100 D	50	10	12/01/16 19:03	
Vinyl Chloride	7.9	5.0	1	11/30/16 18:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	11/30/16 18:12	
Dibromofluoromethane	104	89 - 119	11/30/16 18:12	
Toluene-d8	106	87 - 121	11/30/16 18:12	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 09:40
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-X	Units: ug/L
Lab Code:	R1612386-014	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	380 D	50	10	12/01/16 19:28	
trans-1,2-Dichloroethene	18	5.0	1	11/30/16 18:37	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 18:37	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 18:37	
Trichloroethene (TCE)	1300 D	50	10	12/01/16 19:28	
Vinyl Chloride	7.0	5.0	1	11/30/16 18:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	11/30/16 18:37	
Dibromofluoromethane	104	89 - 119	11/30/16 18:37	
Toluene-d8	109	87 - 121	11/30/16 18:37	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 11:18
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	DR-1	Units: ug/L
Lab Code:	R1612386-015	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	97	5.0	1	11/30/16 19:02	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 19:02	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 19:02	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 19:02	
Trichloroethene (TCE)	520 D	25	5	12/01/16 19:53	
Vinyl Chloride	ND U	5.0	1	11/30/16 19:02	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	11/30/16 19:02	
Dibromofluoromethane	107	89 - 119	11/30/16 19:02	
Toluene-d8	111	87 - 121	11/30/16 19:02	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 11:41
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	DR-2	Units: ug/L
Lab Code:	R1612386-016	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	100	5.0	1	11/30/16 19:28	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 19:28	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 19:28	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 19:28	
Trichloroethene (TCE)	37	5.0	1	11/30/16 19:28	
Vinyl Chloride	ND U	5.0	1	11/30/16 19:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	11/30/16 19:28	
Dibromofluoromethane	104	89 - 119	11/30/16 19:28	
Toluene-d8	108	87 - 121	11/30/16 19:28	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 12:12
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	DR-3	Units: ug/L
Lab Code:	R1612386-017	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	67	5.0	1	12/01/16 16:32	
trans-1,2-Dichloroethene	ND U	5.0	1	12/01/16 16:32	
Tetrachloroethene (PCE)	ND U	5.0	1	12/01/16 16:32	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/01/16 16:32	
Trichloroethene (TCE)	31	5.0	1	12/01/16 16:32	
Vinyl Chloride	ND U	5.0	1	12/01/16 16:32	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	12/01/16 16:32	
Dibromofluoromethane	109	89 - 119	12/01/16 16:32	
Toluene-d8	108	87 - 121	12/01/16 16:32	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 12:31
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	DR-4	Units: ug/L
Lab Code:	R1612386-018	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	45	5.0	1	12/01/16 16:57	
trans-1,2-Dichloroethene	ND U	5.0	1	12/01/16 16:57	
Tetrachloroethene (PCE)	ND U	5.0	1	12/01/16 16:57	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/01/16 16:57	
Trichloroethene (TCE)	34	5.0	1	12/01/16 16:57	
Vinyl Chloride	ND U	5.0	1	12/01/16 16:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	12/01/16 16:57	
Dibromofluoromethane	104	89 - 119	12/01/16 16:57	
Toluene-d8	109	87 - 121	12/01/16 16:57	

Analytical Report

Bergmann Associates, Incorporated	Service Request: R1612386
Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 12:00
Water	Date Received: 11/22/16 17:50
EQUIPMENT BLANK	Units: ug/L
R1612386-019	Basis: NA
	Bergmann Associates, Incorporated Gowanda Day Hab Center/6974.86 Water EQUIPMENT BLANK R1612386-019

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	12/01/16 16:07	
trans-1,2-Dichloroethene	ND U	5.0	1	12/01/16 16:07	
Tetrachloroethene (PCE)	ND U	5.0	1	12/01/16 16:07	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/01/16 16:07	
Trichloroethene (TCE)	ND U	5.0	1	12/01/16 16:07	
Vinyl Chloride	ND U	5.0	1	12/01/16 16:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	12/01/16 16:07	
Dibromofluoromethane	105	89 - 119	12/01/16 16:07	
Toluene-d8	108	87 - 121	12/01/16 16:07	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 13:00
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	G-1	Units: ug/L
Lab Code:	R1612386-020	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	85	5.0	1	12/01/16 17:23	
trans-1,2-Dichloroethene	ND U	5.0	1	12/01/16 17:23	
Tetrachloroethene (PCE)	ND U	5.0	1	12/01/16 17:23	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/01/16 17:23	
Trichloroethene (TCE)	ND U	5.0	1	12/01/16 17:23	
Vinyl Chloride	ND U	5.0	1	12/01/16 17:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	12/01/16 17:23	
Dibromofluoromethane	107	89 - 119	12/01/16 17:23	
Toluene-d8	107	87 - 121	12/01/16 17:23	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 13:15
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	G-3	Units: ug/L
Lab Code:	R1612386-021	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	240	10	2	12/01/16 17:48	
trans-1,2-Dichloroethene	ND U	10	2	12/01/16 17:48	
Tetrachloroethene (PCE)	ND U	10	2	12/01/16 17:48	
1,1,1-Trichloroethane (TCA)	ND U	10	2	12/01/16 17:48	
Trichloroethene (TCE)	53	10	2	12/01/16 17:48	
Vinyl Chloride	ND U	10	2	12/01/16 17:48	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	12/01/16 17:48	
Dibromofluoromethane	106	89 - 119	12/01/16 17:48	
Toluene-d8	111	87 - 121	12/01/16 17:48	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 13:30
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	MW-17	Units: ug/L
Lab Code:	R1612386-022	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	300	10	2	12/01/16 18:13	
trans-1,2-Dichloroethene	ND U	10	2	12/01/16 18:13	
Tetrachloroethene (PCE)	ND U	10	2	12/01/16 18:13	
1,1,1-Trichloroethane (TCA)	ND U	10	2	12/01/16 18:13	
Trichloroethene (TCE)	75	10	2	12/01/16 18:13	
Vinyl Chloride	ND U	10	2	12/01/16 18:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	12/01/16 18:13	
Dibromofluoromethane	105	89 - 119	12/01/16 18:13	
Toluene-d8	107	87 - 121	12/01/16 18:13	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: 11/22/16 13:15
Sample Matrix:	Water	Date Received: 11/22/16 17:50
Sample Name:	TRIP BLANK	Units: ug/L
Lab Code:	R1612386-024	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	12/01/16 15:42	
trans-1,2-Dichloroethene	ND U	5.0	1	12/01/16 15:42	
Tetrachloroethene (PCE)	ND U	5.0	1	12/01/16 15:42	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/01/16 15:42	
Trichloroethene (TCE)	ND U	5.0	1	12/01/16 15:42	
Vinyl Chloride	ND U	5.0	1	12/01/16 15:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	12/01/16 15:42	
Dibromofluoromethane	103	89 - 119	12/01/16 15:42	
Toluene-d8	107	87 - 121	12/01/16 15:42	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client:	Bergmann Associates, Incorporated
Project:	Gowanda Day Hab Center/6974.86
Sample Matrix:	Water

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8	
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121	
MW-4	R1612386-001	100	103	106	
MW-20	R1612386-002	101	104	107	
MW-19R	R1612386-003	101	105	106	
MW-15	R1612386-004	104	107	109	
MW-14	R1612386-005	102	104	107	
MW-18	R1612386-006	104	105	104	
MW-21	R1612386-007	105	106	107	
MW-16	R1612386-008	101	106	106	
MW-7	R1612386-009	101	104	106	
MW-6	R1612386-010	103	107	105	
MW-12	R1612386-011	103	106	107	
MW-11	R1612386-012	104	102	106	
MW-1	R1612386-013	100	104	106	
MW-X	R1612386-014	105	104	109	
DR-1	R1612386-015	106	107	111	
DR-2	R1612386-016	102	104	108	
DR-3	R1612386-017	103	109	108	
DR-4	R1612386-018	100	104	109	
EQUIPMENT BLANK	R1612386-019	104	105	108	
G-1	R1612386-020	102	107	107	
G-3	R1612386-021	105	106	111	
MW-17	R1612386-022	106	105	107	
TRIP BLANK	R1612386-024	101	103	107	
Lab Control Sample	RQ1614618-03	105	107	108	
Method Blank	RQ1614618-04	101	106	107	
Lab Control Sample	RQ1614683-03	103	103	106	
Method Blank	RQ1614683-04	101	108	109	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1614618-04	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	11/30/16 12:13	
trans-1,2-Dichloroethene	ND U	5.0	1	11/30/16 12:13	
Tetrachloroethene (PCE)	ND U	5.0	1	11/30/16 12:13	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	11/30/16 12:13	
Trichloroethene (TCE)	ND U	5.0	1	11/30/16 12:13	
Vinyl Chloride	ND U	5.0	1	11/30/16 12:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	11/30/16 12:13	
Dibromofluoromethane	106	89 - 119	11/30/16 12:13	
Toluene-d8	107	87 - 121	11/30/16 12:13	

Analytical Report

Client:	Bergmann Associates, Incorporated	Service Request: R1612386
Project:	Gowanda Day Hab Center/6974.86	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1614683-04	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	ND U	5.0	1	12/01/16 15:17	
trans-1,2-Dichloroethene	ND U	5.0	1	12/01/16 15:17	
Tetrachloroethene (PCE)	ND U	5.0	1	12/01/16 15:17	
1,1,1-Trichloroethane (TCA)	ND U	5.0	1	12/01/16 15:17	
Trichloroethene (TCE)	ND U	5.0	1	12/01/16 15:17	
Vinyl Chloride	ND U	5.0	1	12/01/16 15:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	12/01/16 15:17	
Dibromofluoromethane	108	89 - 119	12/01/16 15:17	
Toluene-d8	109	87 - 121	12/01/16 15:17	

QA/QC Report

Client:Bergmann Associates, IncorporatedProject:Gowanda Day Hab Center/6974.86Sample Matrix:Water

Service Request: R1612386 **Date Analyzed:** 11/30/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1614618-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	17.1	20.0	85	80-121
trans-1,2-Dichloroethene	8260C	16.8	20.0	84	80-120
Tetrachloroethene (PCE)	8260C	16.8	20.0	84	78-124
1,1,1-Trichloroethane (TCA)	8260C	18.0	20.0	90	74-120
Trichloroethene (TCE)	8260C	16.1	20.0	80	78-123
Vinyl Chloride	8260C	17.2	20.0	86	69-133

QA/QC Report

Client:Bergmann Associates, IncorporatedProject:Gowanda Day Hab Center/6974.86Sample Matrix:Water

Service Request: R1612386 **Date Analyzed:** 12/01/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1614683-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	17.6	20.0	88	80-121
trans-1,2-Dichloroethene	8260C	18.6	20.0	93	80-120
Tetrachloroethene (PCE)	8260C	17.7	20.0	88	78-124
1,1,1-Trichloroethane (TCA)	8260C	19.4	20.0	97	74-120
Trichloroethene (TCE)	8260C	18.5	20.0	92	78-123
Vinyl Chloride	8260C	18.5	20.0	93	69-133

APPENDIX B

IC/EC CHECKLIST

www.bergmannpc.com

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Environmental Remediation 625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

2/22/2017

Joe Whitney Director Of Capital Services NYS OPWDD 44 Holland Ave. Albany, NY 12229

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Gowanda Day Habilitation Center Site No.: V00463 Site Address: 4 Industrial Place Gowanda, NY 14070

Dear Joe Whitney:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than May 06, 2017. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, are to be submitted in electronic format to the Department of Environmental Conservation. The Department will not approve the PRR unless all documents and data generated in support of that report have been submitted in accordance with the electronic submissions protocol. In addition, the certification forms are required to be submitted in both paper and electronic formats.

Information on the format of the data submissions can be found at: http://www.dec.ny.gov/regulations/2586.html

The signed certification forms should be sent to David Szymanski, Project Manager, at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave Buffalo, NY 14203-2915

Phone number: 716-851-7220. E-mail: david.szymanski@dec.ny.gov

The contact information above is also provided so that you may notify the project manager about upcoming inspections, or for any other questions or concerns that may arise in regard to the site.

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

David Szymanski, Project Manager Chad Staniszewski, Hazardous Waste Remediation Engineer, Region 9

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

SITE NO. V00463

Description of Institutional Controls

Parcel 16.027-2-11

Owner NY State OPWDD

Institutional Control

Ground Water Use Restriction Soil Management Plan Building Use Restriction

Site is deed restricted with an SMP (2/22/2008). There is use restriction for industrial and commercial, excluding, medical and day care services. Further restriction is that a sub-slab vapor mitigation system is required before occupancy.

Box 4

Description of Engineering Controls

Parcel 16.027-2-11

Engineering Control

Groundwater Treatment System Vapor Mitigation

Dual phase soil vapor and groundwater pump and treat with pneumatic high vacuum pumps. Treatment is by best available technology, currently air stripping with carbon treatment of exhaust gas. Treated water is passed to the municipal treatment facility.

Box 3

Box	5
-----	---

			DONG	
	Periodic Review Report (PRR) Certification Statements			
	1. I certify by checking "YES" below that:			
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 			
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is converted and compared.			
	originooring practices, and the monthation presented is accurate and compete.	YES	NO	
	 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: 			
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;			
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;			
	 (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; 			
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and			
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.			
		YES	NO	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.			
	Signature of Owner, Remedial Party or Designated Representative Date	020		
ŝ.				

Enclosure 3

Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history. B.
 - Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- Site Overview (one page or less) II
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature and extent of contamination prior to site remediation.
 - Describe the chronology of the main features of the remedial program for the site, the components of B. the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the A. monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually B. completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed B. during this PRR reporting period.
 - Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated C. the ability of each component of the remedy subject to O&M requirements to perform as

designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

IC CERTIFICATIONS SITE NO. V00463 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Megan E. Borruso at 280 E. Brand St. Suite 200 Rocheder NY 14604 am certifying as Access Penal Law, (Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification 4/27/2017 Date

IC/EC CERTIFICATIONS

Professional Engineer Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

IANATOLe Micite Our Bergmann Associates am certifying as a Professional Engineer for the <u>Remedial Party</u> (Owner or Remedial Party) & OF NEW M. Coveri 511 2017

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

(Required for PE)

Date