

New York State Office of People with Developmental Disabilities

2018 PERIODIC REVIEW REPORT

FORMER GOWANDA DAY HABILITATION CENTER - SITE NO: V00463

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: January 21, 2020

TABLE OF CONTENTS

1.0	BACKGROUND	3
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	4
2.1 2.2 2.3	Well Maintenance Activities	4
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	5
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4	Laboratory Analysis of Groundwater Samples	7 8
5.0	REMEDIATION SYSTEM EFFICIENCY	9
5.1 5.2 5.3	Extent of Impacted Groundwater Groundwater Analytical Results Compliance	11 11
5.4	Future Activities	12

Tables

Table 1: Percent Reductions in Total groundwater VOCs

Figures

Figure 1: Monitoring and Recovery Well Locations

Charts

Chart 1: Contamination Reduction, Gowanda Day Habilitation Center

Appendices

Appendix A: Quarterly Groundwater

- April 2018 Characterization Report
- May 2018 Characterization Report
- August 2018 Characterization Report
- November 2018 Characterization Report

Appendix B: IC/EC Checklist

1.0 BACKGROUND

NYSDEC Site Number V00463, the former Gowanda Day Habilitation Center facility, is located at 4 Industrial Place, Gowanda, New York. The New York State Office of People with Developmental Disabilities (OPWDD), as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463, effective August 16, 2001.

The Gowanda Day Habilitation site (the Site) consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between 1948 and 1987 and was renovated in 1987 and 1988. New York State agencies have occupied the building since 1982 and New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001 on-site operations ceased. Bergmann investigated the nature and extent of contamination resulting from historical underground chemical storage at the Gowanda Day Habilitation Center in 2003 Site Investigation and 2004 Supplemental Site Investigation reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloromethane, (Cis-DCE) trans-1,2-Dichloroethene (Trans-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, activation of the Groundwater Treatment System (GTS) and Soil Vapor Extraction (SVE) System occurred on May 10, 2005. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to monitoring well MW-17 in November 2008. The GTS consists of seven (7) groundwater recovery wells (four dual-phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to treat recovered groundwater. The SVE System consists of a lobe blower and piping network which extract vapors and pass them through two 10,000 lb carbon filters. Once filtered, the vapors are discharged to the outdoor air. The attached Figure 1 depicts the site layout with regard to monitoring and recovery wells.

Recovered groundwater was formerly pumped to an equalization tank for settling of sediment. The groundwater was discharged to the Village of Gowanda Sewage Treatment Plant (STP) via the sanitary sewer in accordance with a Gowanda Sewer Use Permit. A Volatile Organic Compound (VOC) Groundwater Treatment Agreement between OPWDD and the Village was active until the shutdown of the system, discussed below in Section 2.2. As the system is currently shut down, water was not discharged to the sewer for the 2018 calendar year. If the system is re-activated, a new agreement will be executed between OPWDD and the Village.

In January 2008, OPWDD decommissioned the building. Bergmann winterized the GTS with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated unit heater in the treatment area for the GTS and SVE (former Machine Shop). The building remains unoccupied and in a state of disrepair for the 2018 year. Numerous roof leaks and damage relative to two (2) flooding events in 2009 and 2014 have introduced excessive mold to interior spaces. The roof leaks and mold do not appear to be impacting the remedial system at this time. OPWDD and/or their agents will perform periodic inspections of the building for potential structural deficiency issues and will perform limited building envelope repairs as necessary to address any significant site safety concerns.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the 2018 sampling events, all wells except MW-19R and MW-21 were accessible and the integrity of the wells was not compromised. MW-19R and MW-21 are paved over as first noted by Bergmann in the August 2017 Quarterly Characteristic Report. Bergmann will contact the Town of Gowanda and schedule these wells to be recovered in the second half of the 2019 calendar year. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of redevelopment activities performed on August 19, 2015 to clear sediment from wells after an in-situ chemical oxidation (ISCO) injection. All stand pipes and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stand pipes. The monitoring wells within the building are secured with flush-mount roadway covers.

Replacement to damaged flush-mount protective roadway boxes was completed on June 27, 2007. Well rehabilitation and silt removal was conducted June 25 – 26, 2007 and August 19, 2015.

2.2 GROUNDWATER TREATMENT SYSTEM AND SOIL VAPOR EXTRACTION SYSTEM MAINTENANCE

During an October 2013 site visit, a section of piping broke away from the SVE due to system pressure. The SVE system was shut down until a repair could be made. Bergmann assessed the GTS during a January 2014 site visit and determined that two of the seven well pumps were operational. The remaining pumps appeared to be damaged. Bergmann replaced the SVE pipe section and inspected the well pumps for damage. The pumps appeared to be in poor condition and were removed from the wells. DR-1, DR-2, DR-3, DR-4 were all pulled. DR-4 was coated in a black sludge-like material and had a hole in the casing. DR-2, DR-3 and G-2 were coated in orange-brown sediment and the hose and pump effluent lines were clogged with sediment. DR-1 was also coated in orange-brown sediment.

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann performed an ISCO remediation in May 2015 and a second round of injections in September 2015. The groundwater treatment was performed to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. No maintenance was conducted during the 2018 calendar year on the GTS or SVE systems.

2.3 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for monitoring wells are determined on a quarterly basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Although the system was shut down for the 2016 year and the pumps were pulled from recovery wells, hydraulic containment of the plume was achieved.

Groundwater samples were collected from the 19 of 21 site-related groundwater monitoring wells during the 2018 sampling events. Depth to groundwater measurements were obtained from 19 of the 21 monitoring wells

for the 2018 sampling events. Results are indicators of the performance of the treatment system and the continued contamination of the plume.

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via hand bailing. Sample parameters including turbidity, temperature, pH, oxygen, and specific conductivity were monitored using a Horiba U-53 to ensure sufficient well purging prior to sampling. Dedicated bailers were used to collect groundwater samples from recovery wells after the ISCO remediation occurred in May 2015. During past sampling events, groundwater samples were collected from the seven (7) recovery wells using dedicated bailers, as the GTS was actively pulling groundwater into the system, allowing for collection of groundwater samples similar to purging monitoring wells. As the system was shut down during the 2018 quarterly sampling events, the wells were purged and sampled using the same method as the monitoring well sampling where possible. One (1) duplicate sample and one (1) field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to a New York State Department of Health (NYSDOH) certified laboratory for testing using EPA Method 8260B for targeted chlorinated VOCs.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

Delineation of the local water table surface and groundwater flow pattern was determined for 2018 using elevations measured from the 19 sampled, site-related monitoring wells. The current network of monitoring wells at the facility is shown on Figure 1. Groundwater characteristics were determined using depth to water measurements obtained on:

- April 10, 2018 (Q1 Sampling Event).
- May 30, 2018 (Q2 Sampling Event).
- August 22, 2018 (Q3 Sampling Event).
- November 13, 2018 (Q4 Sampling Event).

The well gauging values and groundwater elevations are provided in Table 1 of each Quarterly Report included in Appendix A – Quarterly Groundwater Characterization Reports.

The quarterly groundwater contour maps show a local flow pattern similar to the water table observed historically since 2002. The local groundwater was flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The following is a summary of groundwater flow for each sampling event in the reporting period:

April 2018

The April 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-3, to 12.90 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 9.18 ft btoc. The site-wide average depth to water table increased by approximately 0.2 ft when compared to the November 2017 sampling event (previous sampling event). This increase in the water table is inferred as seasonal.

May 2018

The May 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The May 2018 depths to groundwater range from 6.12 ft below top of casing (btoc) at MW-1, to 13.22 ft btoc at MW-17 located at the northern

property line. The average depth to groundwater at the wells measured was 9.49 ft btoc. The site-wide average depth to water table increased by approximately 0.31 ft when compared to the April 2018 sampling event. This increase in the water table is inferred as seasonal.

August 2018

The August 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The August 2018 depths to groundwater range from 6.00 ft below top of casing (btoc) at MW-2, to 13.45 ft btoc at MW-7. The average depth to groundwater at the wells measured was 9.84 ft btoc. The site-wide average depth to water table increased by approximately 0.35 ft when compared to the May 2018 sampling event. This increase in the water table is inferred as seasonal.

November 2018

The November 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The November 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-2, to 13.00 ft btoc at MW-7. The average depth to groundwater at the wells measured was 8.83 ft btoc, which is a decrease from the average depth to water of the previous sampling event in August (9.84 ft.). The site-wide average depth to water table decreased by approximately 1.01 ft when compared to the August 2018 sampling event. This decrease in the water table is inferred as seasonal.

Groundwater Contour Maps indicating the depths to groundwater for each sampling event are presented as Figure 1 of each Groundwater Characterization Report for the report period. Copies of these reports are included in Appendix A.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS OF GROUNDWATER SAMPLES

Laboratory analysis was completed on groundwater samples from groundwater monitoring wells and recovery wells on site. Monitoring wells that were determined in 2008 by the NYSDEC and Bergmann personnel to be outside the area of impact by the GTS include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-13, and MW-21. NYSDEC added MW-21 to the sampling plan for the 2015 sampling events. The remainder of these wells were not sampled. Sentry groundwater monitoring wells were established to monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the subject property. These wells include MW-19R, MW-20, and MW-4. Monitoring wells MW-19R and MW-20 have been inaccessible and paved over as first noted by Bergmann in the August 2017 Quarterly Characterization Report.

Samples were analyzed for volatile organic compounds (VOCs) via United States Environmental Protection Agency (US EPA) Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following chlorinated halogens (VOCs) were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

For quality assurance/quality control (QA/QC) purposes, a duplicate groundwater sample was collected from monitoring well MW-1 or MW-8 during the 2018 quarterly sampling events, designated sample "MW-X." Results from samples MW-X were consistent with the sample collected from MW-1 or MW-8.

A trip blank was supplied by the laboratory for QA/QC and submitted for analysis with the groundwater samples. The trip blank sample was non-detect for chlorinated halogens VOCs. A field blank was also collected for QA/QC purposes to ensure proper cleaning of the sampling equipment. The field blank was non-detect for chlorinated halogens for each sampling event in 2018.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for monitoring wells during each quarterly sampling event are summarized as follows:

April 2018

Concentrations in three (3) of the 18 monitoring well groundwater samples increased when compared to the November sampling event while concentrations in six (6) of the 18 monitoring well groundwater samples decreased. Concentrations in nine (9) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 84.2% since activation of the GTS in May 2005.

May 2018

Concentrations in three (3) of the 19 monitoring well groundwater samples increased when compared to the April 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in 12 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 81.2% since activation of the GTS in May 2005.

August 2018

Concentrations in four (4) of the 19 monitoring well groundwater samples increased when compared to the May 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 78.0% since activation of the GTS in May 2005.

November 2018

Concentrations in five (5) of the 19 monitoring well groundwater samples increased when compared to the August 2018 sampling event while concentrations in three (3) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 85.1% since activation of the GTS in May 2005.

Contaminant distribution maps indicating the results for each sampling event are presented as Figures 2 and 3 of each Quarterly Groundwater Characterization Report. Copies of these reports are included in Appendix A.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for sentry wells during each sampling event in 2018 are summarized as follows:

April 2018

The eastern sentry wells sampled for this event were limited to MW-4 and MW-20. As previously stated in the August 2017 Report, the third eastern sentry well, MW-19R had been paved over. The August 2018 results indicate non-detect for both of these wells.

May 2018

The eastern sentry wells sampled for this event included MW-20, and MW-4. The November 2018 results indicate non-detect for these two wells.

August 2018

The eastern sentry wells sampled for this event included MW-20, and MW-4. The November 2018 results indicate non-detect for these two wells.

November 2018

The eastern sentry wells sampled for this event included MW-20, and MW-4. The November 2018 results indicate non-detect for these two wells.

The risk of migrating groundwater from the Gowanda Electronics site onto the Day Habilitation Center property was a concern that prompted the installation of sentry wells along Industrial Place. MW-19R has been impacted in the past from the Gowanda Electronics plume. The Gowanda Electronics plume of impacted groundwater does not appear to currently extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center subject property does not appear to extend off-site to the east to Industrial Place.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for recovery wells during each sampling event in 2018 are summarized as follows:

April 2018

The April 2018 analytical results indicate detection of five (5) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, TRANS-DCE, VC, and TCA. Chlorinated VOCs were detected in samples from five (5) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the sampling event is 54.6% relative to concentrations prior to GTS activation in 2002.

May 2018

The May 2018 analytical results indicate detection of three (3) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS-DCE. Chlorinated VOCs were detected in samples from all six (6) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current event is 37.2% relative to concentrations prior to GTS activation in 2002.

August 2018

The August 2018 analytical results indicate detection of three (3) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the sampling event is 28.9% relative to concentrations prior to GTS activation in 2002.

November 2018

The November 2018 analytical results indicate detection of two (2) chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the sampling event is 47.2% relative to concentrations prior to GTS activation in 2002.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent for all four (4) of the 2018 sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery wells DR-1 and DR-2.

The contaminant plume appears to have stabilized due to the previous operation of the GTS for over fifteen (15) years. While in operation, the GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during the 2018 sampling events and overall sample results are similar to previous quarterly reports. It appears that residual VOCs in the plume have not migrated and are contained when compared to sample results with operation of the GTS during previous monitoring events.

The remedial program at the Site was modified by terminating the GTS and soil vapor extraction system, believed to have achieved the extent of its practical benefits in favor of ISCO treatment of the residual concentration of VOCs in Groundwater. The SVE and GTS equipment will remain on site in the event that reactivation is required in the future.

Analytical results for each sampling event in the reporting period are summarized as follows:

April 2018

Chlorinated VOCs were detected in groundwater from seven (7) of the eighteen (18) sampled monitoring wells. VOCs were not detected in groundwater from eleven (11) of the sampled monitoring wells. Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11 (1,160 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in three (3) of the 18 monitoring well groundwater samples increased when compared to the November 2018 sampling event while concentrations in six (6) of the 18 monitoring well groundwater samples decreased. Concentrations in nine (9) groundwater samples from monitoring wells had no change. The April 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of 84.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of

impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of 76.6% since groundwater monitoring of these wells began in 2002.

May 2018

Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. VOCs were not detected in groundwater from 12 of the sampled monitoring wells. Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,110 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in three (3) of the 19 monitoring well groundwater samples increased when compared to the April 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in 12 groundwater samples from monitoring wells had no change. The May 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 81.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of 65.3% since groundwater monitoring of these wells began in 2002.

August 2018

Chlorinated VOCs were detected in groundwater from eight (8) of the 19 sampled monitoring wells. VOCs were not detected in groundwater from eleven (11) of the sampled monitoring wells. Groundwater samples from eight (8) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,190 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in four (4) of the 19 monitoring well groundwater samples increased when compared to the May 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The August 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of 78.0% since activation of the GTS in May 2005.

November 2018

Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. Analytical. VOCs were not detected in groundwater from 12 of the sampled monitoring wells. Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,080 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in five (5) of the 19 monitoring well groundwater samples increased when compared to the August 2018 sampling event while concentrations in three (3) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The November 2018 sampling analytical results indicate an average site-wide decrease in total VOCs of 85.1% since activation of the GTS in May 2005.

5.2 GROUNDWATER ANALYTICAL RESULTS

During the reporting period, four (4) quarterly sampling events were conducted. Copies of these reports are included in Appendix A. Results for each sampling event are used to evaluate and document contamination reduction. Chart 1 shows contamination reduction since activation of the GTS and SVE Systems.

Contamination levels generally trend towards a reduction as time progresses with some fluctuations that result in slight increases and decreases in contamination levels between sample events due to rising and falling groundwater elevations and the shutdown of the GTS.

Groundwater Contour maps were also prepared for each sampling event, which allowed Bergmann to monitor the change in groundwater flow across the site. Groundwater Contour maps are included in each of the quarterly the Groundwater Characterization Reports in Appendix A.

Overall contaminant reduction is monitored at each individual sampling point and in three specific "groups" of points: site-wide, original plume area only, and recovery wells. These three (3) groups allow Bergmann to more thoroughly monitor the system's effectiveness and adjust network operation. Table 1 of this report shows the breakdown of those three (3) groups by quarter since activation of the GTS and SVE Systems.

Overall contaminant reduction at the recovery wells decreased to 47.2% (November 2018) from 60% in November 2017. Reduction at the recovery wells remained consistently between the 90-95% range since 2010 until the shutdown of the system. The GTS was turned off for the 2018 quarterly sampling events. Contaminant concentration rebound during these years may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

Overall contaminant reduction at the monitoring wells increased to 85.1% (November 2018) from 67.6% in November 2017. Reduction at the monitoring wells remained consistently between the 70% - 85% since 2010 until the shutdown of the system. The GTS was turned off for the 2018 quarterly sampling events. Contaminant concentration rebound during the year may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

The remediation system at the Gowanda Day Habilitation Center previously controlled and removed contaminants from the groundwater plume area. Contaminant levels decreased by 74.6% from May 2005 to November 2018. The ISCO groundwater treatment completed in September 2015 may have released residual contamination in the capillary fringe to the dissolve phase in groundwater at the Site. Next steps to eliminate remaining contamination at the Site have be discussed with NYSDEC. Bergmann has submitted a proposal for an additional subsurface investigation at the Site. Bergmann would like to determine if the contamination is within the groundwater or within the soils. The primary goal of this investigation is to evaluate the soil quality for VOCs in the two (2) source areas: the MW-1 area and the MW-17 area. The investigation will consist of five (5) soil borings at each location for a total of ten (10) borings. The scope of work has been agreed upon by Bergmann and DASNY but no formal contract has been received by Bergmann at the time of this PRR.

5.3 COMPLIANCE

During the 2018 reporting period, the remedial system was not in operation and therefore was not discharging water. The existing wells and monitoring well network is adequate to monitor the performance of the remediation program and to allow for the collection of groundwater quality samples.

The building is currently secure, vacant, and unoccupied. Notification is given to any individual(s) entering the building so appropriate precautions and PPE can be utilized for building access. The building is posted with

signage identifying the potential hazard and limiting access to properly trained and equipped personnel. Notification of extensive mold growth within the building is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Notification of broken glass within the building is given to any individual(s) entering the building prior to entry. Notification of the dead-end corridor and affected/unusable exits is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Notification of exit and emergency lighting within the building is given to any individual(s) entering the building prior to entry. Notification of the ceiling debris should is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Any individual(s) entering the building is provided with keys to open doors before working within the building to ensure safe emergency exit.

Any structural issues requiring immediate attention are currently being addressed by OPWDD, as well as other building envelope maintenance/security issues. Those issues not requiring immediate attention will be addressed if the building is re-occupied in the future.

5.4 FUTURE ACTIVITIES

Activities scheduled for 2019 include:

- 3rd Quarter groundwater sampling event September 2019.
- 4th Quarter groundwater sampling event December 2019.
- Meeting with NYSDEC, DASNY, and Bergmann to discuss future events, elimination of remaining contamination, and spill closure in July of 2019.

TABLE 1

Table 1 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center
4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
Monitoring Well	2010	2010	2010	April 2010	NOV 2017	Aug 2017	1407 2010	3ep 2010	Juli 2010	1107 2013	Aug 2013	Juli 2013	IVIAI 2013	100 2014	3ep 2014	Juli 2014	Wai 2014	Dec 2013	301 2013	Apr 2013	Dec 2012	Juli 2012	IVIAI 2012
MW-1 [†]	-40.6%	-54.9%	-44.5%		-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%
MW-2	100%	100%	100%	Not Sampled	Not Sampled		Not Sampled		 	Not Sampled													
MW-3	100%	100%	100%		100%	100.0%	Not Sampled			Not Sampled													
MW-4	100%	100%	100%		100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%
MW-5	100%	100%	100%		100%		Not Sampled				Not Sampled	 	Not Sampled		Not Sampled		Not Sampled		Not Sampled		Not Sampled	Not Sampled	
MW-6	100%	-83.3%	15.4%		-84.60%	15.4%	81.3%	70.4%			76.4%		80.0%			76.4%	76.8%	68.0%	75.6%		75.6%	78.6%	78.9%
MW-7	80.0%	79.3%	81.0%		98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%
MW-8	100%	100%	100%		Not Sampled		Not Sampled																
MW-9	100%	100%	100%			Not Sampled		Not Sampled				Not Sampled											
MW-10	100%	100%	100%			100.0%	Not Sampled	Not Sampled		Not Sampled													
MW-11	89.5%	93.9%	89.5%		89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	001170	89.2%			90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%
MW-12	99.6%	99.8%	99.2%		99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%
MW-13	100%	100%	100%		Not Sampled		Not Sampled	Not Sampled	Not Sampled														
MW-14	90.3%	92.9%	92.8%		87.90%	2.3%	75.9%	68.3%	81.9%		69.5%	83.5%	68.6%			82.9%	76.8%	70.2%	84.4%		85.1%	87.4%	75.7%
MW-15	100%	99.1%	100%		100%	99.0%	98.5%	96.7%	98.5%		98.1%		98.7%			99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%
MW:16*	19.9%	80.5%	19.9%		2.80%	2.3%	72.7%	60.9%	27.7%	39.5%						59.0%	53.1%	60.9%	77.9%		52.6%	88.5%	67.9%
MW-17*	78.4%	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%		Not Sampled	66.8%			66.5%	83.5%	58.5%	50.6%		46.9%	53.0%	67.9%
MW-18:*	100%	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%			100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%			100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%
MW-20**	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003																							
** Well Installed 2004																							
Site-Wide reduction:	85.1%	78.0%	81.2%	84.2%	67.60%	62.1%	74.1%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%
Impacted Groundwater																							
Plume Area Only:	74.6%	72.1%	65.3%	76.6%	51.40%	41.1%	66.5%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%

Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6
% reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated
†Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-128.5%	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	60.7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	52.1%	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%
DR-4	95.7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%
G-1	62.8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	91.2%	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	96.3%	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA				
Overall Reduction	47.2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

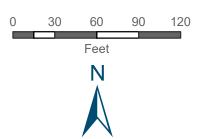
*Sampling of recovery wells initiated in 2005

FIGURE 1

DASNY

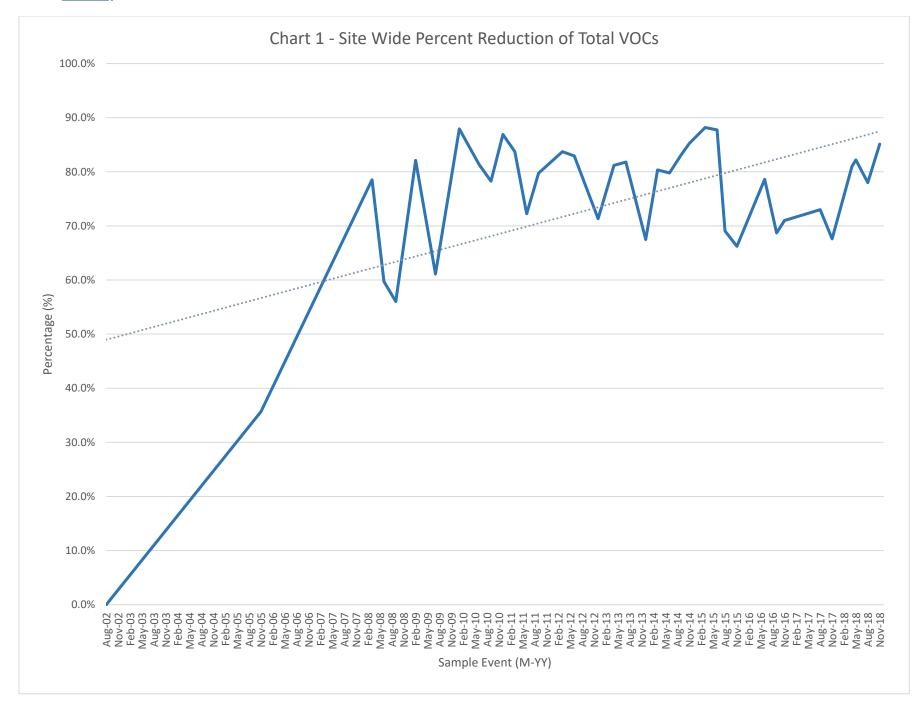
Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY



BERGMANN

ARCHITECTS ENGINEERS PLANNER


Figure 1

Monitoring and Recovery Well Locations

CHART 1

APPENDIX A:

QUARTERLY GROUNDWATER CHARACTERIZATION REPORTS

APRIL 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities

GROUNDWATER CHARACTERIZATION REPORT – APRIL 2018

Bergmann Associates

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: June 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of WorkSite Background	4 4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	
2.1 2.2	Well Maintenance Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	7
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	
5.0	REMEDIATION SYSTEM EFFICIENCY	11
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	12

Tables

Table 1: Groundwater Elevations and Field Measurements – April 2018

Table 2: April 2018 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary

Table 4: Percent Reduction in Total Groundwater VOCs

Figures

Figure 1: April 2018 Groundwater Contour Map

Figure 2: April 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

Figure 3: April 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations

Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations

Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations

Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations

Chart 6: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - April 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the April 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on April 10, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 18 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), four (4) were not sampled. These monitoring wells include MW-2, MW-19, MW-19R, and MW-21. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in November

2017 and included analysis of groundwater samples from 18 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells. Authorization to conduct 2017 quarterly sampling was not received until the third quarter of 2017. Results of the November 2017 sampling event were summarized in a report dated February 2018.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the April 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-2, MW-19, MW-19R, MW-21, and G-3. MW-19, MW-19R, and MW-21, which are all located on Torrance Place, were still paved over, as previously reported in the August 2017 summary. G-3 was not located due to extensive vegetative growth around the well cap. Bergmann personnel will use a metal detector during the May 2018 sampling event in an attempt to locate the well. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flushmount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the April 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 18 of the 21 site-related groundwater monitoring wells for laboratory analysis on April 10, 2018. Depth to groundwater measurements were obtained from 24 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis. The duplicate

sample was not collected during this event but will be collected during the May 2018 sampling event because there was a limited number of bottles due to fractures and cracks in several bottles.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2002 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for April 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on April 10, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements - April 2018.

The April 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The April 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-3, to 12.90 ft btoc at MW-6 located at the northern property line. The average depth to groundwater at the wells measured was 9.18 ft btoc.

The site-wide average depth to water table increased by approximately 0.2 ft when compared to the November 2017 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and April 2018 Groundwater Contours are presented on Figure 1 – April 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 18 monitoring wells and six (6) recovery wells collected April 10, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The April 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from seven (7) of the 18 sampled monitoring wells. Analytical results are summarized in Table 2 – April 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report April 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from eleven (11) of the sampled monitoring.

Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11 (1,160 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in three (3) of the 18 monitoring well groundwater samples increased when compared to the November sampling event while concentrations in six (6) of the 18 monitoring well groundwater samples decreased. Concentrations in nine (9) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 84.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 76.6% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the April 2018 sampling event was 374 parts per billion (ppb), a decrease from the November 2017 value of 1,003 ppb. Since activation of the GTS, detected VOCs at MW-1 have decreased by about 51%.

Monitoring well MW-11 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the April 2018 sampling event is 1,160 ppb, an increase from the April 2018 value of 470 ppb. Since activation of the GTS, detected VOCs at MW-11 have decreased by 75%.

Monitoring well MW-12 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the April 2018 sampling event is 113 ppb, an increase from the November 2017 value of 31 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the April 2018 sampling event is 28 ppb, a decrease from the November 2017 value of 38 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 91.1%.

Monitoring well MW-15 remained the same in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the April 2018 sampling event was Not Detected (ND), which was no change from the November 2017 sampling event. MW-15 is nearest to recovery well DR-4. Since activation of the GTS the detected VOCs at MW-15 have remained unchanged at non-detect levels.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a recent re-sealing operation. The wells were still inaccessible during the April 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – April 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the April 2018 sampling event, six (6) of the seven (7) recovery wells were sampled. The G-3 well could not be located and is assumed to be overgrown with vegetation. Bergmann personnel will bring appropriate equipment to attempt to locate G-3 during the May 2018 sampling event.

The April 2018 analytical results indicate detection of five (5) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, TRANS, VC, and TCA. Chlorinated VOCs were detected in samples from five (5) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2005. The average reduction in VOCs for the current sampling event is about 55% relative to concentrations prior to GTS activation in 2005. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the April 2018 sampling event is 1,070 ppb, a decrease from the November 2017 value of 1,540 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 86.6% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the April 2018 sampling event is 130 ppb, a decrease from the November 2017 value of 181 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 76% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the April 2018 sampling event is 34 ppb, a decrease from the November 2017 value of 48 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 78% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the April 2018 sampling event is 31.6 ppb, a decrease from the November 2017 value of 46 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 96% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the April 2018 sampling event was 22 ppb, a decrease from the November 2017 value of 70 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 80% since activation of the GTS.

Recover well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the April 2018 sampling event was 46 ppb, an increase from the November 2017 value of 8.5 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 84% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – April 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

For quality assurance purposes a duplicate groundwater sample is typically collected from monitoring well MW-11, designated sample "MW-X". A duplicate groundwater sample was not taken during the April 2018 sampling event because there was a limited number of bottles due to fractures and cracks in several bottles. A duplicate sample will be taken during the next sampling event (May 2018).

A trip blank was supplied by the laboratory for the April 2018 sampling event. An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the six (6) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all six (6) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent a decrease of total VOCs at five (5) recovery wells (DR-1, DR-2, DR-3, DR-4 and G-1) when compared to the November 2017 sampling event.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (374 ppb) show a decrease from the November 2017 sampling event (1,003 ppb). The current total VOCs at MW-11 (1,160 ppb) shows an increase from the November 2017 sampling event (470 ppb). The current total VOCs at DR-1 (1,070 ppb) show a decrease from the November 2017 sampling event (1,540 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (113 ppb) show an increase from the November 2017 sampling event (31 ppb). The current total VOCs at recovery well DR-2 (130 ppb) show a decrease from the November 2017 sampling event (181 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (28 ppb) show a decrease from the November 2017 sampling event (38 ppb). The current total VOCs at recovery well DR-3 (34 ppb) show a decrease from the November 2017 sampling event (48 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (ND) show no change from the November 2017 sampling event. The current total VOCs at recovery well DR-4 (31.6 ppb) show a decrease from the November 2017 sampling event (46 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (5.1) show a decrease from the November 2017 sampling event (222). The current total VOCs at recovery well G-1 (22 ppb) show a decrease from the November 2017 sampling event (70 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 was not sampled during the August 2017 or November 2016 sampling events, as the well was dry during these events. During the April 2018 sampling event, G-2 was sampled and had a total VOC of 46 ppb. The April 2018 total VOCs of MW-7 (ND) showed a decrease from the November 2017 sampling event (5.8 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (5.1) showed a decrease from the November 2017 sampling event (222). The current total VOCs at recovery well G-3 were not calculated due to recovery well G-3 not being sampled during the April 2018 sampling event.

Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the November 2017 and April 2018 sampling events due to the fact that they were both paved over and inaccessible.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. A meeting with Bergmann, DASNY, and NYSDEC is to be scheduled in June 2018 determine next steps for further contaminant reduction and eventual spill closure.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for May 2018. This sampling event will include sampling and laboratory analysis for the limited number of wells as determined by Bergmann correspondence with the NYSDEC. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements April 2018

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	NA	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	5.60	NA	4.90	7.10	10.20	12.90	12.50	9.09	7.90	9.02
Groundwater Elevation	772.63	NA	773.48	771.33	768.41	768.20	768.44	772.24	774.71	771.00
Well Diameter	2"	NA	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	NA	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	NA	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	10.42	NA	11.40	8.68	3.75	9.98	9.30	8.56	13.06	10.40
Minimum Purge Volume (gal)	1.7	NA	1.9	1.4	0.6	1.6	1.5	1.4	2.1	1.7
3 Volumes	5.1	NA	5.6	4.2	1.8	4.9	4.5	4.2	6.4	5.1
Actual volume purged	5.1	NA	NS	4.2	1.4	4.9	4.5	NS	NS	NS
Comments	Flush = -0.29 '	Not Located.	Flush = $-0.23'$	Flush = -0.34 '	Flush = -0.24 '	Stickup=2.17'	Stickup=2.17'	Stickup=2.84	Stickup=2.05	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	5.79	6.47	6.78	10.41	10.18	12.00	12.70	8.50	NA	9.30	NA
Groundwater Elevation	772.79	772.03	771.61	768.02	768.20	768.43	767.15	767.89	NA	768.74	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	9.69	10.91	10.62	7.74	9.62	11.26	NA	16.50	NA	5.45	NA
Minimum Purge Volume (gal)	1.6	1.8	1.7	1.3	1.6	1.8	NS	2.7	NA	0.9	NA
3 Volumes	4.7	5.3	5.2	3.8	4.7	5.5	NS	8.1	NA	2.7	NA
Actual volume purged	4.7	5.3	NS	3.8	4.7	5.5	NS	8.1	NA	2.7	NA
Comments	Flush = $-0.23'$	Flush = -0.35 '	Flush = -0.48 '	Flush = $-0.39'$	Flush = -0.38	Stickup=2.26	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

							1
	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NS
Depth to Groundwater (btoc)	6.94	6.70	11.30	11.22	11.32	11.43	NS
Groundwater Elevation	772.72	773.23	768.48	768.42	768.51	NA	NS
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	NS
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NS
Thickness of Water Column	11.12	11.36	9.15	8.47	11.66	9.17	NS
Minimum Purge Volume (gal)	7.26	7.42	5.97	5.53	7.61	5.98	NS
3 Volumes	21.78	22.25	17.92	16.59	22.84	17.94	NS
Actual volume purged	21.78	22.25	NS	16.59	22.84	17.94	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	NA

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over a few size.

Table 2 April 2018 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		850	290	5.0
CIS		140	84	5.0
TRANS		13	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	1,003	374	

Monitoring Well MW-2

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-3

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
Т	otal VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: NS

Monitoring Well MW-4

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Monitoring Well MW-5

Sampling Events

Analyte in ppl	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VC	Cs ND	ND	

Monitoring Well MW-6

Sampling Events

Sampling Events					
Analyte ir	n ppb	Nov 2017	April 2018	NYS Guidance Value	
TCE		ND	ND	5.0	
CIS		100	76	5.0	
TRANS		ND	ND	5.0	
VC		ND	ND	2.0	
TCA		ND	ND	5.0	
Tota	I VOCs	100	76		

Page 1 of 6

Table 2 April 2018 Analytical Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		5.8	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	5.8	ND	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

Camping				
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)
Page 2 of 6

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Monitoring Well MW-10

Sampling Events

9				
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Monitoring Well MW-11

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		270	900	5.0
CIS		200	260	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	470	1,160	

Monitoring Well MW-12

Sampling Events

<u> </u>			
Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	15	14	5.0
CIS	16	99	5.0
TRANS	ND	ND	5.0
VC	ND	8.9	2.0
TCA	ND	ND	5.0
Total VOCs	31	121.9	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
T	otal VOCs	ND	ND	

Monitoring Well MW-14

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		27	18	5.0
CIS		11	10	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	38	28	

Monitoring Well MW-15

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 3 of 6

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Monitoring Well MW-16

Sampling Events

• • • • • • • • • • • • • • • • • • •				
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		32	43	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	32	43	

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Monitoring Well MW-17

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		42	5.1	5.0
CIS		180	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	222	5.1	

Monitoring Well MW-18

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	6.3	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	6.3	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 201	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 04/10/2018

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Monitoring Well MW-21

Sample Date: NS

Sampling Events

Camping	_ + 01110			
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		1200	880	5.0
CIS		190	190	5.0
TRANS		50	ND	5.0
VC		50	ND	2.0
TCA		50	ND	5.0
	Total VOCs	1540	1070	

Recovery Well DR-2

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	31	31	5.0
CIS	150	99	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOC	s 181	130	

Recovery Well DR-3

Sampling Events

Camping	LVOING			
Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		30	23	5.0
CIS		18	11	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	48	34	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)
Page 5 of 6

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Recovery Well DR-4

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		34	24	5.0
CIS		12	7.6	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	46	31.6	

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Sample Date: 04/10/2018

Recovery Well G-1

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		70	22	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	70.0	22	

Recovery Well G-2

Sampling Events

Analyte in ppb	Nov 2018	April 2018	NYS Guidance Value
TCE	NS	8.0	5.0
CIS	8.5	38	5.0
TRANS	NS	ND	5.0
VC	NS	ND	2.0
TCA	NS	ND	5.0
Total VOC	s 8.5	46.0	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Duplicate Blank

Sample Date: NS

Sampling Events

			NYS
			Guidance
Analyte	in ppb	April 2018	Value
TCE		NS	5.0
CIS		NS	5.0
TRANS		NS	5.0
VC		NS	2.0
TCA		NS	5.0
To	tal VOCs	NS	

Equipment Blank

Sample Date: 04/10/2018

Sampling Events

Analyte in ppb	Nov 2017	April 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 6 of 6

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York

VCA # V-00463-9

											М	ONITORING	WELLS													
Monitoring Well Number	Total VOCs April 2018	Total VOCs Nov 2017	Total VOCs Aug 2017	Total VOCs Nov 2016	Total VOCs Sep 2016	Total VOCs Jun 2016	Total VOCs Nov 2015	Total VOCs Aug 2015	Total VOCs Jun 2015	Total VOCs Mar 2015	Total VOCs Nov 2014 (ppb)	Total VOCs Sep 2014 (ppb)	Total VOCs Jun 2014 (ppb)	Total VOCs Mar 2014 (ppb)	Total VOCs Dec 2013 (ppb)	Total VOCs Jul 2013 (ppb)	Total VOCs Apr 2013 (ppb)	Total VOCs Dec 2012 (ppb)	Total VOCs Jun 2012 (ppb)	Total VOCs Mar 2012 (ppb)	Total VOCs Sep 2011 (ppb)	Total VOCs Jun 2011	Total VOCs Mar 2011	Total VOCs Dec 2010	Total VOCs Sep 2010	Total VOCs Jun 2010
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)												(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889	442	1,318.1	583	564	649	778
MW-2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-6	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7	101	79	73.2	81.8	107	96
MW-7	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5	209.16	70.9	22.3	58.2	160.5	114.46
MW-8	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS								
MW-9	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS								
MW-10	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
MW-11	1,160	470	525	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617	508.7	722	623	588	630.7	765
MW-12	113	31	40	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22	92.8	162.9	90.82	90.4	100	159.8
MW-13	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS								
MW-14	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6	77.3	104.98	31.9	24.33	38.93	65.22
MW-15	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25	32.46	16.18	6.92	16.85	62	22.93
MW-16	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2	6.07	23.1	28.9	7.21	2.53	ND
MW-17	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1	449	225.2	26.7	48.1	312.3	232.1
MW-18	ND	6.3	ND	10	26	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33	28.7	13.9	6.43	17.9	40.77	27.5
MW-19R	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	2.67	ND							
MW-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	NS	NS	NS	17	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-X (DUP)	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913	457	1,022.2	Sample	588	611	264
` '															'							•	loss*			1
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

RECOVERY WELLS

Recovery Well	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total	Total	Total	Total																
Number	VOCs	VOCs	VOCs	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	VOCs	VOCs	VOCs	VOCs
	April 2018	Nov 2017	Aug 2017	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	Mar 2011	Dec 2010	Sep 2010	Jun 2010									
	(ppb)	(ppb)	(ppb)																				(ppb)	(ppb)	(ppb)	(ppb)
DR-1	1.070	15/10	1 970	 617	610	910	310	160	l NS	21.7	63	55	75	132	87	73	82	//3	29.38	673	166.5	154.5	250.1	355.5	442.5	60.3
DR-2	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3	206.1	240.93	267.75	152.3	213.52	255.2
DR-3	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9	74.3	67.7	25.3	30.1	38.1	79.7
DR-4	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND	191.03	128.4	101.4	71.7	230.58	155.04
G-1	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58	67.52	55.81	67.02	48.8	30.5	108.3
G-2	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9	29.8	65.6	47.2	51.8	6.02	8.37
G-3	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2	296.2	224.7	209.8	159.3	233.2	277.8

NS= This well not included in this sampling event.

ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample

EB - Equipment/Field Blank Sample

* - Sample was broken in transit and not able to be analyzed DWS- Different Well Sampled than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center
4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

Monitoring Well	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011
MW-1 [†]	51.3%	-39.90%	-57.6%		-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	, 24.1%
MW-2	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100.0%	Not Sampled																			
MW-4	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%
MW-5	100%	100%	100.0%	Not Sampled																			
MW-6	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%
MW-7	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%
MW-8	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-9	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-10	100%	100%	100.0%	Not Sampled																			
MW-11	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%
MW-12	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%
MW-13	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-14	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%
MW-15	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%
MW:16*	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%
MW-17*	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%
MW-18:*	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%
MW-20**	100%	1	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
MW-21**	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled													
* Well installed 2003 ** Well Installed 2004																							
Site-Wide reduction:	81.0%	67.60%	62.1%	83.5%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%	79.7%	72.2%	83.7%
Impacted Groundwater Plume Area Only:		51.40%	Δ1 10 ₄	82.9%	69.6%	76.0%	58.1%	58 6%	8/1 6%	80.8%	77.3%	75.0%	72.3%	73.0%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%	71 9%	64.1%	84 1%

Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6
% reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated
†Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	% Reduction 2002 to Mar 2011
DR-1	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%	97.9%	98.1%	96.9%
DR-2	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%	89.7%	88.0%	86.6%
DR-3	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%	95.0%	95.4%	98.3%
DR-4	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%	89.2%	92.7%	94.3%
G-1	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%	87.6%	89.8%	87.7%
G-2	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%	92.3%	83.0%	87.7%
G-3	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA												
Overall Reduction	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1%	91.9%

*Sampling of recovery wells initiated in 2005

FIGURES

(MW-19R NORTH**→** MW−18 767.89 MW-7 768.44 G-3 NS MW-16 768.43 MW-17 767.15 MW-6 768.20 MW-20 768.74 MW-5 768.41 MW-15 768.20 G-1 768.51 DR-4 768.42 MW-14 768.02 DR-3 768.48 DR-2 773.23 MW-12 772.03 MW-13 771.61 MW-4 771.33 MW-11 772.79 MW-8 772.24 DR-1 772.72 MW-3 773.48 MW-1 772.63 MW-9 774.71 120 FT MW-10 771.00 SCALE BAR

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS

NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Note:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manager:	Checked By:
S. DEMEO	S. DEMEO
Designed By:	Drawn By: C. WOOD
Date Issued:	Scale:
06/01/2018	1" = 60'
Project Number:	

APRIL 2018 WATER LEVEL

Drawing Number:

FIGURE 1

CONTOUR MAP

DASNY

Gowanda Day Habilitation Center

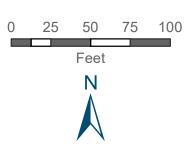

4 Industrial Place Gowanda, NY

Figure 2

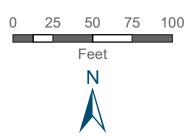
ARCHITECTS ENGINEERS PLANNERS

April 2018
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

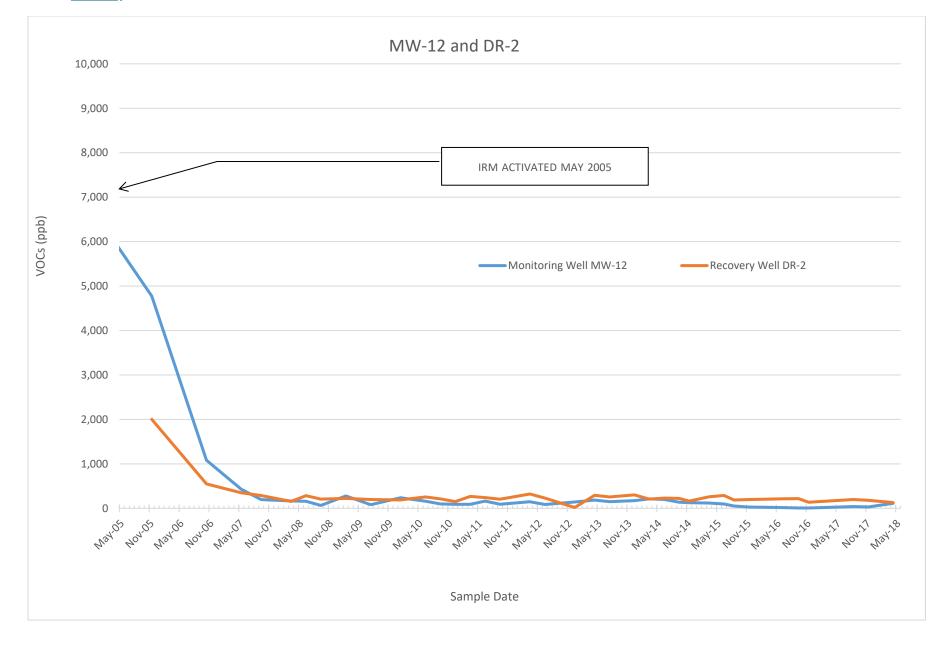


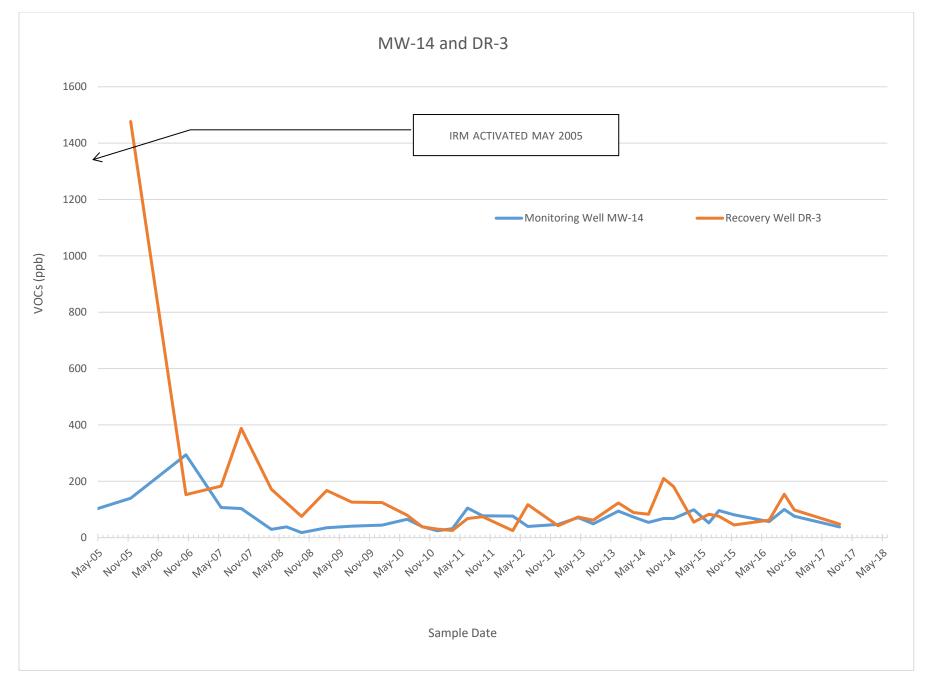
BERGMANN

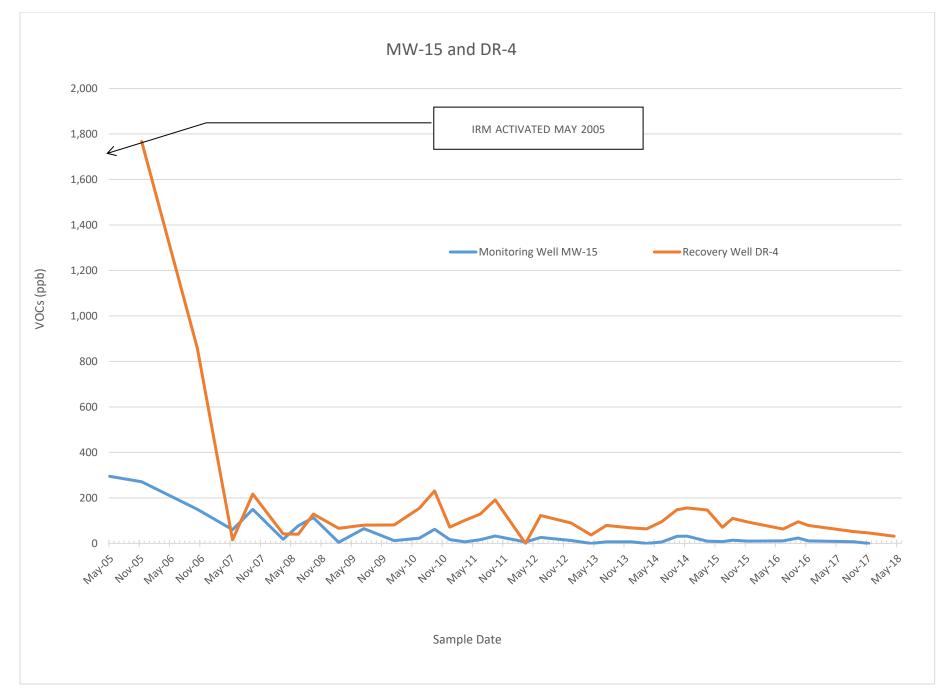
ADCHITECTS ENGINEEDS DIANNEDS

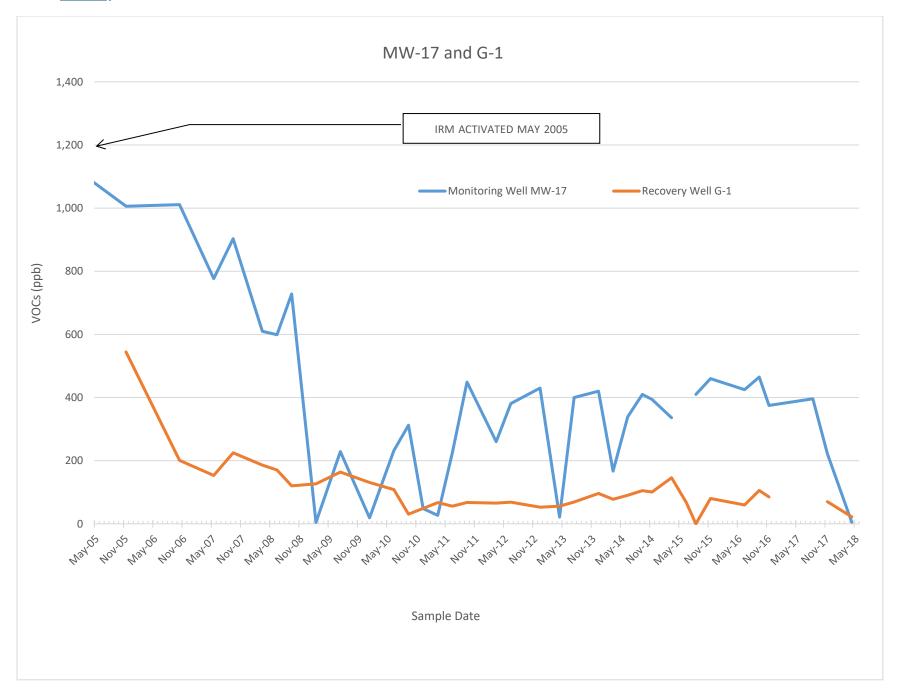
Figure 3

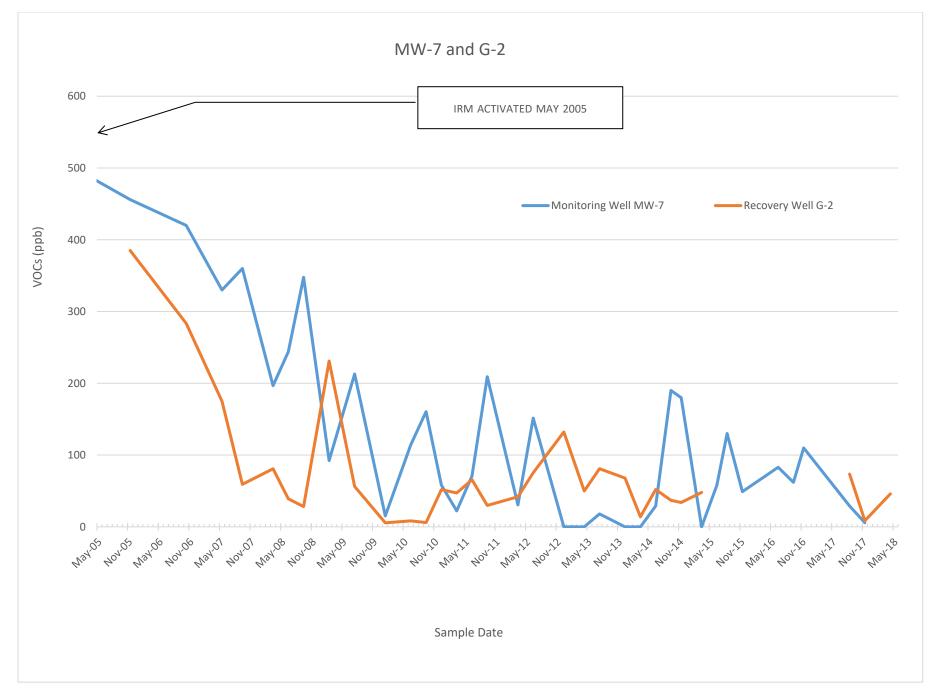

April 2018
Distribution of
Groundwater
Analytical Results:
Recovery Wells

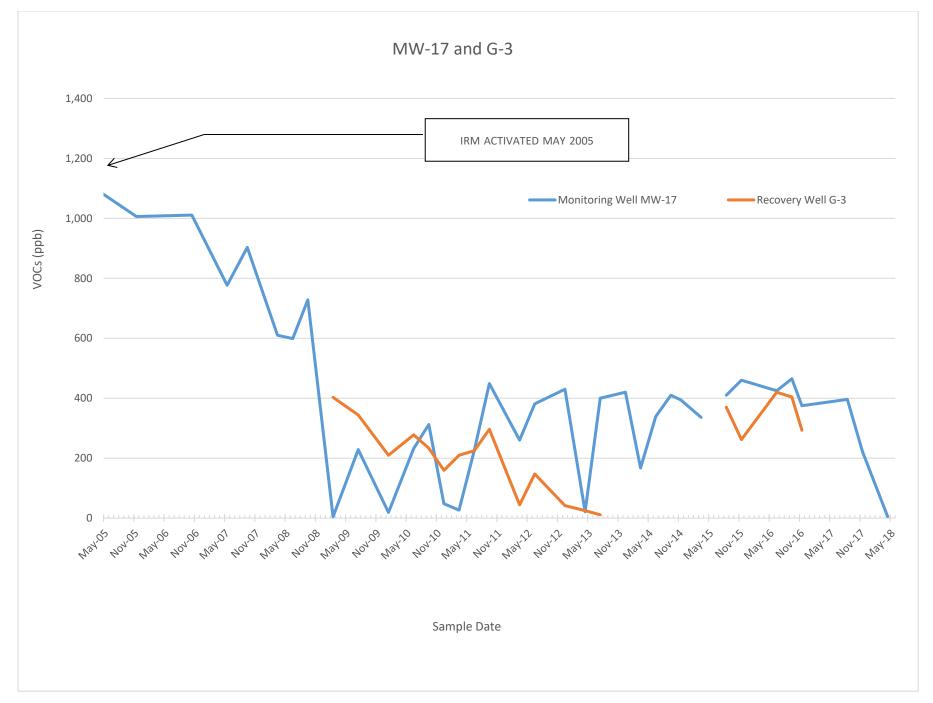



CHARTS









APPENDIX A:

LABORATORY ANALYTICAL RESULTS

Service Request No:R1803166

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory April 11, 2018 For your reference, these analyses have been assigned our service request number **R1803166**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Goldy Kulken

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Bergmann Associates, Incorporated Service Request: R1803166

Project: Gowanda Date Received: 04/11/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty four water samples were received for analysis at ALS Environmental on 04/11/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

	Bady Kuller
Approved by	

Date	04/18/2018	
Date	U4/ 10/ZU 10	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1	Lab ID: R1803166-001								
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	84		0.60	10	ug/L	8260C			
Trichloroethene (TCE)	290		0.44	10	ug/L	8260C			
CLIENT ID: MW-6		Lab	ID: R1803	3166-006					
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	76		0.30	5.0	ug/L	8260C			
CLIENT ID: MW-11		Lab	ID: R1803	3166-010					
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	260		1.5	25	ug/L	8260C			
Trichloroethene (TCE)	900		1.1	25	ug/L	8260C			
LIENT ID: MW-12		Lab	ID: R1803	3166-011					
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	99		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	14		0.22	5.0	ug/L	8260C			
Vinyl Chloride	8.9		0.32	5.0	ug/L	8260C			
LIENT ID: MW-14	Lab ID: R1803166-013								
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	10		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	18		0.22	5.0	ug/L	8260C			
LIENT ID: MW-16		Lab	ID: R1803	3166-015					
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	43		0.30	5.0	ug/L	8260C			
LIENT ID: MW-17		Lab	ID: R1803	3166-016					
Analyte	Results	Flag	MDL	PQL	Units	Method			
Trichloroethene (TCE)	5.1		0.22	5.0	ug/L	8260C			
LIENT ID: G-1		Lab	ID: R1803	3166-019					
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	22		0.30	5.0	ug/L	8260C			
LIENT ID: G-2		Lab	ID: R1803	3166-020					
Analyte	Results	Flag	MDL	PQL	Units	Method			
cis-1,2-Dichloroethene	38		0.30	5.0	ug/L	8260C			
Trichloroethene (TCE)	8.0		0.22	5.0	ug/L	8260C			
LIENT ID: DR-1		Lab	ID: R1803	3166-021					
Analyte	Results	Flag	MDL	PQL	Units	Method			
	400		2.0	<u> </u>	ua/l	8260C			
cis-1,2-Dichloroethene	190		3.0	50	ug/L	0200C			

SAMPLE DETECTION SUMMARY

CLIENT ID: DR-2	Lab ID: R1803166-022									
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	99		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	31		0.22	5.0	ug/L	8260C				
CLIENT ID: DR-3										
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	11		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	23		0.22	5.0	ug/L	8260C				
CLIENT ID: DR-4		Lab	ID: R1803	166-024						
Analyte	Results	Flag	MDL	PQL	Units	Method				
cis-1,2-Dichloroethene	7.6		0.30	5.0	ug/L	8260C				
Trichloroethene (TCE)	24		0.22	5.0	ug/L	8260C				

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

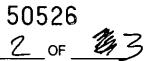
SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1803166-001	MW-1	4/10/2018	1210
R1803166-002	MW-3	4/10/2018	1200
R1803166-003	MW-4	4/10/2018	1145
R1803166-004	MW-5	4/10/2018	1115
R1803166-005	MW-7	4/10/2018	1100
R1803166-006	MW-6	4/10/2018	1030
R1803166-007	MW-8	4/10/2018	1006
R1803166-008	MW-9	4/10/2018	0944
R1803166-009	MW-10	4/10/2018	1000
R1803166-010	MW-11	4/10/2018	1140
R1803166-011	MW-12	4/10/2018	1120
R1803166-012	MW-13	4/10/2018	1145
R1803166-013	MW-14	4/10/2018	1050
R1803166-014	MW-15	4/10/2018	1033
R1803166-015	MW-16	4/10/2018	1020
R1803166-016	MW-17	4/10/2018	1045
R1803166-017	MW-18	4/10/2018	1220
R1803166-018	MW-20	4/10/2018	1130
R1803166-019	G-1	4/10/2018	1100
R1803166-020	G-2	4/10/2018	1020
R1803166-021	DR-1	4/10/2018	1136
R1803166-022	DR-2	4/10/2018	1125
R1803166-023	DR-3	4/10/2018	1150
R1803166-024	DR-4	4/10/2018	1220

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

50525

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____O


OF	43

Project Name GOWAND Project Number G974, 90 PRESERVATIVE 1 Preservative) Preservative Preservat	e Key
Company/Address Berymann 250 F Preservative 1. HCL 2. HNO3	Key
	•
280 E Broad St, Suite 200 \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
200 F (Broad St, Suite 200 Rochester N) X, 14604 Phono & 585-498-7950 Sampler's Signature Cash Blever Ash Blever Alternate Description	
Phone 585-498-7950 Email Collected bergmunge com Sampler's Signature 1 2 2 2 5 Sampler's Printed Name	'
COCNESTER N)Y, 14604 Prono 585-495-7950 Email Chile Colory Munner Com Sampler's Signature Sampler's Printed Name Cash Blence	TION
FOR OFFICE USE SAMPLING CLIENT SAMPLE ID ONLY LAB ID DATE TIME MATRIX	
MW-1 04/10/18 12:10pm CaW 3 x	
MW-3 4/10/18 (2:00pm GW 3 x	
MW-4 4/10/18 11:45 cm GW 3 x	
MW-5 4/10/18 11:15 am (gW 3 X)	
MW-7 4/10/18 11:00 am (94) 3 x	
MW-6 4/10/14 101304M GW 3 X	•
MW-8 4/10/18 10:06am (2W 3 x	
MW-9 4/10/18 9:446m /2W 3 2	
MW-10 4/10/18 10:60cm GW 3x	
AW-11 4/10/1X 11:40 cm GW 3 X	
MW-12 4/10/18 11:20 um GW 3 X	
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION	N
Metals RUSH (SURCHARGES APPLY) 1. Results Only	
1 day2 day3 day	
4 day 15 day	
REQUESTED REPORT DATE	
SOO CLAPP - NYS DEC Equis	·
STATE WHERE SAMPLES WERE COLLECTED ()-Ch) York Edeta X Yes No	
RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY	
Signature / V, / D// Signature / Signature Signature	
Signature (MI B) Signature (Signature Signature Signature Signature Signature (Signature Signature Signature Signature Signature (Signature Signature Signature Signature Signature (R1803166 5) Printed Name Printed Name Printed Name Bergmann Associates, Incorporated Gowands	
Firm Berymann Firm ALS Firm Firm Firm	
Date/Time 04/11/2017 Date/Time 41/18 08>6 Date/Time Date/Time Date/Time	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

					_																	
Project Name Gowanda	Project Nu	6974.	90		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
Project Manager C. Blere	Report CC				PRE	SERVA	ATIVE	Ιι					Ī									
Company/Address	-))) ,	/ 	/ 	/ 	/ 	<u> </u>	} /	//	 	/ 	$\overline{}$	-/ -	reservative Key . NONE
Bergmann	<u> </u>				E			/			_/	/	/				_/				/ O.	, NONE ,
280 E Bro	ad St. 8	suite 2	OP)		IAIN							/,	\langle / \rangle	./.						/	/ 2	. HCL . HNO ₃ . H ₂ SO ₄ . N ₈ OH
Rochester NY	14604				NUMBER OF CONTAINERS	/	/ કુ/	/, /	/ &/	/ ,	/ /	METALS, THE PROPERTY OF THE PR	0 5 5 13 8	7	/ /	/ /	/ /	/ /	/ /	/ /	5. 6.	. Zn. Acetate . MeOH
Phone 585-498-79	Email	ener @ ben	manaa	Tion	HH H	/š		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8/5	88/	8/8											. NaHSO4 . Other
Sampler's Signature	——————————————————————————————————————	Printed Name	eres	-(0000	N C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ૢ૾ ૺઙૺૄૺ							/		/	/		/ ,,		MARKS/ E DESCRIPTION
0000	FOR OFFICE USE	SAMP												f1							ICHRAIL	: DESCRIPTION
CLIENT SAMPLE ID	ONLY LAB ID	DATE	TIME	MATRIX		ļ ,			_	-	_			\vdash			ļ					
MW-13	<u> </u>	1/10/16	11:45 cm	GW	3	X				<u> </u>	<u> </u>	ļ					·					
MW-14	1	 	10: 50 um	GW	3	X			_	ļ	_	ļ		 -								
MW-15	<u> </u>		10133 am	GW	3	X			<u> </u>		<u> </u>		_	<u> </u>								
MW-16	<u> </u>	9/10/18	10:20 m	GW	3	X	ļ				<u> </u>	<u> </u>	_	igwdown			ļ					
MW-17		1,10,18	10:45am	GW	3	X			-													
MW-18	<u> </u> ;	9/10/18	12:20 am	GW	3	K	<u> </u>		* '		<u> </u>		ļ									
Mur-20	<u>[i</u>	1	1130 am	GW	3	k,	<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>									
(n-1	<u> </u>	4/10/18	<u>11:00 am</u>	aw	3	X					<u> </u>											
6.2	1	4/10/18	10! 20 am		3	X	<u> </u>	ļ	ļ	<u> </u>	<u> </u>											
DR-1	<u> </u>	4/0/18	11:36 am		3	λ							ļ									
DP-2	1	14/10/18	11:28um	aw	13	X							<u> </u>						لـــــــا			
SPECIAL INSTRUCTIONS/COMMENTS		-					TL	JRNAR	OUND	REQU	IREME	NTS		REP	ORT R	EQUIR	EMENT	rs		INV	ICE INF	FORMATION
Metals								_ RUS	H (SUR	CHARGE	S APPLY	n	1_	_ I. Resi	itts Only	,						
								1 da) dev	3 day		l_	_ II. Res	ults + Q	C Summ	aries		PO#			
								4 da	y - X -	5 day	3 day	,		(LCS,	DUP, MS	S/MSD &	s require	so)	BILL	TO:		
i				•									-	_ III. Res		C and C	alibratio	ก				
·							REQ	UESTE	D REPO	ORT DA	TE '		_			tion Rep	ort with	Raw Da	a			
See QAPP						•					•		I_{M}	ys de	U	Equ	is					
STATE WHERE SAMPLES WERE CO	LLECTED A) &	V YORK	•				-						7			Yes	_	No				
RELINQUISHED BY	RECEIVE		REL	JNQUISHED	BY				RECE	IVED B	Y			Я	ELINO	UISHED) BY				RECEIV	ED BY
Signature Child	Signature Seely	Indi	Signature				Signati	ure					Signa				_	7.0	ļ <u>.</u>	`		
Printed Name Cash Believ Printed Name Body Yollow Printed Name							Printed	d Name				-	1	R1	803	316	heorp	_ orated	5			
Firm Bergmann Firm Aus Firm						Firm					Bergmann Associates, Incorporated Gowands											
Date/Time 4/11//6	Date/Time	411118 0830	Date/Time			0	Date/T	lme					\perp				HHIII			1661 	<u> </u>	
Dietribution: White - Leb Come Vellow - Return	to Originator												~								@ 2012 I	hu AIC Croun

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

50527

Project Name GOWanda	Project Nurr	6974.	90		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																			
Project Manager (. Bless	Report CC		I <u>V</u>		PRES	SERVA	TIVE	1																
Company/Address Berymann	I				S		$\overline{}$				7			\neg	\forall					\neg	\neg	O NON	ative Key IE	7
280 E Broad St. Suite 200					NUMBER OF CONTAINERS							/,	,/									1. HCL 2. HNC 3. H ₂ S 4. NaC) ₃ O ₄	
Rochester, NY	14604				F CON	/	/ 3/	/ /	/ &/		/ /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7	/ /	/ /	/ /	/ /	/ /	/ /	/	 4n. 4 6. MeC 	Acetate H	
Phone # 585-498-7950	S Email Col	Printed Names	mannoc	. COM	ABER C	848	\$ 8 S		\$ 50 TA		8 8	8 8										7. NaH 8. Othe		
Sampler's Signature Oul Old	Sampler's F	Sh BL.	4		NUS	18	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ૢૺૺૢૺ૽ૢ૽ૢ૽						_		_	igspace	_	_	<u>/</u> ^		REMARKS		
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPI DATE		MATRIX																				
De-3		4/10/18	ll:Soam	GW	3																			
DR-4		4/10/18	12:20 pm		3	1																		
	<u> </u>																	 -					<u>-</u> .	_
			_																					\neg
			••																				_	
										<u> </u>	,													
				<u></u>																ļ				
																		<u> </u>						
SPECIAL INSTRUCTIONS/COMMENTS Metals	<u> </u>				<u> </u>		τυ			REQU					ORT RI		EMEN1	TS		IMV	OICE	NFORM	NOITA	_
								1 da	:	day	3 day	,	_	_ II. Res	utta + O	C Summ			PO -	,		•	-	_
								4 day	بلا،	day day				•			is require Calibratio	•	Bill	. TO:				
							REQU	UESTE) REPO	ORT DA	LE			Summ	aries				_					
_													1/1				ort with							
See QAPP	LECTED AL.A	N/a-W		. "									┦"	YSOC Edan	a Y	L Yes		No					-	
STATE WHERE SAMPLES WERE COI	LLECTED NW	YWK.	REL	INQUISHED	BY				RECE	IVED B	Y		+-	Я	ELINO	UISHE	D BY		+	- ,	REC	IVED BY		_
A. Mala													F	18	031	166)	•	5	7				
Signature Signature Signature Signature							Signatu						Be	rgmann	Associ	ates, In	corpora		11 4 E LED 1	. 111 1 :				
Printed Name Cash Blever Printed Name Bridg Kulknan Printed Name							ļ	i Name				!												
Bery mann	Finn AL		Firm			• • • •	Firm	4					111 	-										
Date/Time 4/11/201 X	Date/Time $u _{t^*}$	1.8 0830	Date/Time			40	Date/T	imė					Date	1 kme					Date	/Time				

(ALS)

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.doc

Cooler Receipt and Preservation Check For

\bigcap	R1803166 5

3/12/18

TIONOCOCIN	ent O €	eramani]	,	Folder	r Number _			· · · · · · · · · · · · · · · · · · ·		
Cooler receive	11 11	18	by:			COURIER:	ALS	UPS FEDE	X VELO	CITY CLIEN	D
		outside of coole	r?		Y (N)	5a Perchl	lorate :	samples have re	quired head	Ispace? Y	NNA
2 Custody	papers prope	rly completed (in	k, signe	ed)? (V)N	5b Did Vo	OA via	ls, Alk,or Sulfid	e have sig*	bubbles? Y	ON NA
3 Did all be	ottles arrive in	good condition (unbrok	en)?	Ŷ) N	6 Where	did the	bottles origina	te?	ALS/ROC	CLIENT_
4 Circle:	Wet Ice Dry	Ice Gel packs	pres	ent?	Ŷ) N	7 Soil V	OA rec	eived as: B	ulk Enc	ore 5035set	NA
8. Temperatur	re Readings	Date: 4-11-	8	Time:	09:00	ID: (IR#7	D _{IR#9}	From 1	emp Blank	Sample Bottle
Observed Te		6,3 1.1	3 (,,9	sample.						
Correction F	` '	+0.5		05							
Corrected To		7,		,4		-					
Within 0-6°0	Type of bottle	0.11 1710	<u> </u>	04 V) Y	N N	YN	Y	N Y	N	YN	YN
L	e samples froz				N	YN	<u>1</u> Y	N Y	N	YN	YN
		note packing/ic	e condi		14	Ice melte		oorly Packed (d			ne Day Rule
	•	un Samples:			ding Appr			•		,	
-			R-002		y 167	on 41/19	,			•	
	held in storag es placed in st	ge location: orage location:	NOVA		λ <u>11 Ω</u>	on 7/1/1	o at	9:07			
										····	
Cooler Bro	eakdown/Prese	ervation Check**	: Date	: 4,	111/18	Time:	1810	by:	DIW		
9. V	Vere all bottle	labels complete (i.e. ana	lysis,	preservati			YES YES	NO		
		bels and tags agr ontainers used for				?			NO NO		
		s acceptable (no				g)?		ÆS YES	NO	M	
		Cassettes / Tubes					ized		Bags Inflat	tedi (√√	TR
pH	Lot of test	Reagent	Preser	ved?	Lot Rec						
≥12	paper		Yes	Nο	200 1000	eivea	Exp	Sample ID	Vol. Added	Lot Added	Final
1 2 1 2		NaOH	Yes	No	201 1000	erved	Exp	Sample ID Adjusted	Vol. Added		
≤2		NaOH HNO3	Yes	No	200 1000	eived	Exp		1		Final
<u>≤</u> 2 ≤2		HNO ₃ H ₂ SO ₄	Yes	No	Dot Noo.	eived	Exp		1		Final
≤2 ≤2 <4		HNO ₃ H ₂ SO ₄ NaHSO ₄	Yes	No			Exp		1		Final
≤2 ≤2 <4 5-9		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	Yes	No	No=Noti	fy for 3day	Exp		1		Final
≤2 ≤2 <4 5-9 Residual		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	Yes	No	No=Noti	fy for 3day act PM to add	Exp		1		Final
≤2 ≤2 <4 5-9 Residual Chlorine		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	Yes	No	No=Noti 1f +, conta Na ₂ S ₂ O ₃ (fy for 3day act PM to add	Exp		1		Final
≤2 ≤2 <4 5-9 Residual		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	Yes	No	No=Noti 1f +, conta Na ₂ S ₂ O ₃ (fy for 3day act PM to add (625, 608,	Exp	Adjusted	Added	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	-	_	No=Noti If+, conta Na ₂ S ₂ O ₃ (CN), asco	fy for 3day act PM to add (625, 608, orbic (phenol).	Ëxp	Adjusted **VOAs and 166	Added Added	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	Yes - **	No - **	No=Noti 1f +, conta Na ₂ S ₂ O ₃ (fy for 3day act PM to add (625, 608, orbic (phenol).	Ëxp	Adjusted **VOAs and 166	Added 4 Not to be tettles of all sar	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine (-)		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	-	_	No=Noti If+, conta Na ₂ S ₂ O ₃ (CN), asco	fy for 3day act PM to add (625, 608, orbic (phenol).	Ëxp	**VOAs and 166 Otherwise, all bo	Added 4 Not to be tettles of all sar	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine (-)		HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	- **	- **	No=Noti: If+, conta Na ₂ S ₂ O ₃ (CN), asco	fy for 3day act PM to add (625, 608, orbic (phenol).		**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine (-)	l Discrepanci	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749-co7 es/ Other Comming	- ** ents:	- **	No=Noti: If +, conta Na ₂ S ₂ O ₃ (CN), asco	fy for 3day act PM to add (625, 608, orbic (phenol).	3 víal	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine (-)	l Discrepanci	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7 es/ Other Commons	- ** ents:	- **	No=Noti: If +, conta Na ₂ S ₂ O ₃ (CN), asco	fy for 3day act PM to add (625, 608, orbic (phenol).	3 V(a)	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain al	Discrepanci	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- cc7 es/ Other Commits 13 MW-16 PIR-6		- **	No=Noti: If+, conta Na2S2O3 (CN), asco LH517	fy for 3day act PM to add (625, 608, orbic (phenol). C MW-13: All DR-4: All	3 víal 13 vía	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added ested before analys nples with chemical atives).	Final pH
≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain al	Discrepanci	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- cc7 es/ Other Commits 13 MW-16 PIR-6		- **	No=Noti: If+, conta Na2S2O3 (CN), asco LH517	fy for 3day act PM to add (625, 608, orbic (phenol). C MW-13: All DR-4: All	3 víal 13 vía	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added ested before analysinples with chemical atives). CLRES DO	Final pH is. al preservatives BULK FLDT
≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain al	Discrepanci	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- cc7 es/ Other Commits 13 MW-16 PIR-6		- **	No=Noti: If+, conta Na2S2O3 (CN), asco LH517	fy for 3day act PM to add (625, 608, orbic (phenol). C MW-13: All DR-4: All	3 víal 13 vía	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added ested before analys inples with chemical atives). CLRES DO HPROD	is. al preservatives BULK FLDT HGFB
≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain al	Discrepanci	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- co7 es/ Other Community 13 MW-16		- **	No=Noti: If+, conta Na2S2O3 (CN), asco LH517	fy for 3day act PM to add (625, 608, orbic (phenol). G MW-13: All MW-11: All DR-4: All G-1; All DR-3: A	3 víal 3 vía 3 vía 3 vía 3 vía	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	CLRES DO HPROD HTR PH SO3	is. al preservatives BULK FLDT HGFB LL.3541
S2 S2 S-9 Residual Chlorine (-) Bottle lot Explain al MW-1 MW-1 MW-1 MW-1 MW-1	I Discrepanci 1 of 3 vid 1 All 3 vid 1 lof 3 vid 5: All 3 vid 4: 2 of 3 l	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749-007 es/Other Common 13 MW-16 13 DR-16 13 DR-16 13 MW-16 13 MW-16	ents:);20);30 0;10	- **	No=Noti: If+, conta Na2S2O3 (CN), asco LH517	fy for 3day act PM to add (625, 608, orbic (phenol). C MW-13: All DR-4: All	3 víal 3 vía 3 vía 3 vía 3 vía	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar	Lot Added Lot Added CLRES DO HPROD HTR PH	Final pH is. al preservatives BULK FLDT HGFB LL3541 SUB
S2 S2 S-9 Residual Chlorine (-) Bottle lot Explain al MW-1 MW-1 MW-1 MW-1 MW-1 Labels s	I Discrepanci 1 of 3 vic 1 All 3 vic 1 lof 3 vic 5: All 3 vic 4: 2 of 3 l	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl 7-749- cv7 es/ Other Community Als DR-1 Als DR-1 Als MW-1		- **	No=Noti: If+, conta Na2S2O3 (CN), asco LH517	fy for 3day act PM to add (625, 608, orbic (phenol). G MW-13: All DR-4: All G-1; All DR-3: A G-2; 20	3 víal 1 3 vía 3 vía 3 vía 3 vía 11 3 l	**VOAs and 166 Otherwise, all bo are checked (not	Added 4 Not to be tettles of all sar just represent	CLRES DO HPROD HTR PH SO3 ALS	Final pH is. al preservatives BULK FLDT HGFB LL3541 SUB MARRS REV

11 of 54

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to <a href="https://www.alsglobal.com/locations/americas/north-

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

Service Request: R1803166

Sample Name: MW-1

Lab Code: R1803166-001

Sample Matrix: Water

Date Collected: 04/10/18 **Date Received:** 04/11/18

Analysis Method

8260C

Extracted/Digested By Analyzed By

KRUEST

Sample Name: MW-3

Lab Code:

R1803166-002

Sample Matrix: Water

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-4

Lab Code:

R1803166-003

Water

Sample Matrix:

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

Lab Code:

R1803166-004

Sample Matrix:

Water

MW-5

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-7

Lab Code:

R1803166-005

Sample Matrix:

Water

Date Collected: 04/10/18 **Date Received:** 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 4/18/2018 7:29:53 AM

Superset Reference:18-0000462156 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

MW-6 Date Collected: 04/10/18

Service Request: R1803166

Analyzed By

Lab Code: R1803166-006 **Date Received:** 04/11/18

Sample Matrix: Water

Sample Name:

Sample Matrix:

Analysis Method

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-8 Date Collected: 04/10/18

Lab Code: R1803166-007 **Date Received:** 04/11/18

Sample Matrix: Water

Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-9 Date Collected: 04/10/18

Lab Code: R1803166-008 **Date Received:** 04/11/18

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-10 Date Collected: 04/10/18

Lab Code: R1803166-009 **Date Received:** 04/11/18 **Sample Matrix:** Water

8260C KRUEST

Sample Name: MW-11 Date Collected: 04/10/18

Lab Code:R1803166-010Date Received: 04/11/18Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By 8260C KRUEST

Printed 4/18/2018 7:29:53 AM Superset Reference:18-0000462156 rev 00

Extracted/Digested By

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

Service Request: R1803166

Sample Name: MW-12

Lab Code: R1803166-011

Sample Matrix: Water

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By KRUEST

Sample Name: MW-13 Date Collecte

Lab Code: R1803166-012

Sample Matrix: Water

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-14

Lab Code:

R1803166-013

Water

Sample Matrix:

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-15

Lab Code:

R1803166-014

Sample Matrix: Water

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

MW-16

Lab Code:

R1803166-015

Sample Matrix: Water

Date Collected: 04/10/18 **Date Received:** 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 4/18/2018 7:29:54 AM

Superset Reference:18-0000462156 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Project:**

Sample Name: MW-17

Lab Code: R1803166-016

Sample Matrix: Water **Date Collected:** 04/10/18**Date Received:** 04/11/18

Service Request: R1803166

Analyzed By Analysis Method Extracted/Digested By

8260C **KRUEST**

Sample Name: MW-18 **Date Collected:** 04/10/18

Lab Code: R1803166-017 **Date Received:** 04/11/18

Sample Matrix: Water

Water

Sample Matrix:

Analysis Method

Extracted/Digested By Analyzed By **Analysis Method**

8260C **KRUEST**

Sample Name: MW-20 **Date Collected:** 04/10/18

Lab Code: R1803166-018 **Date Received:** 04/11/18

Analyzed By

Extracted/Digested By

KRUEST 8260C

Sample Name: G-1 **Date Collected:** 04/10/18

Lab Code: R1803166-019 **Date Received:** 04/11/18 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

8260C **KRUEST**

Sample Name: G-2 **Date Collected:** 04/10/18

R1803166-020 Lab Code: **Date Received:** 04/11/18 Water Sample Matrix:

Analyzed By Extracted/Digested By Analysis Method 8260C **KRUEST**

Printed 4/18/2018 7:29:54 AM Superset Reference:18-0000462156 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

Service Request: R1803166

Date Collected: 04/10/18**Date Received:** 04/11/18

Sample Name: DR-1 Lab Code:

R1803166-021

Water

Analysis Method

Sample Matrix:

8260C

Analyzed By Extracted/Digested By

KRUEST

Sample Name: DR-2

Lab Code:

R1803166-022

Sample Matrix: Water **Date Collected:** 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: DR-3

Lab Code:

R1803166-023

Date Received: 04/11/18

Date Collected: 04/10/18

Sample Matrix: Water

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

DR-4

Lab Code:

R1803166-024

Sample Matrix:

Water

Date Collected: 04/10/18

Date Received: 04/11/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 12:10

Sample Matrix: Water Date Received: 04/11/18 08:30

Sample Name: MW-1 Units: ug/L

Lab Code: R1803166-001 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	84	10	2	04/14/18 05:07	_
trans-1,2-Dichloroethene	10 U	10	2	04/14/18 05:07	
Tetrachloroethene (PCE)	10 U	10	2	04/14/18 05:07	
1,1,1-Trichloroethane (TCA)	10 U	10	2	04/14/18 05:07	
Trichloroethene (TCE)	290	10	2	04/14/18 05:07	
Vinyl Chloride	10 U	10	2	04/14/18 05:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	04/14/18 05:07	
Dibromofluoromethane	101	89 - 119	04/14/18 05:07	
Toluene-d8	104	87 - 121	04/14/18 05:07	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 12:00

Sample Matrix: Water Date Received: 04/11/18 08:30

Sample Name: MW-3 Units: ug/L

Lab Code: R1803166-002 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 15:58	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 15:58	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 15:58	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 15:58	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 15:58	
Vinyl Chloride	5.0 []	5.0	1	04/13/18 15:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	04/13/18 15:58	
Dibromofluoromethane	99	89 - 119	04/13/18 15:58	
Toluene-d8	101	87 - 121	04/13/18 15:58	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 04/10/18 11:45 Gowanda/6974.90

Sample Matrix: Water **Date Received:** 04/11/18 08:30

MW-4 **Sample Name:** Units: ug/L Lab Code:

R1803166-003 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:20	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:20	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 16:20	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 16:20	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 16:20	
Vinyl Chloride	5.0 []	5.0	1	04/13/18 16:20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/13/18 16:20	
Dibromofluoromethane	102	89 - 119	04/13/18 16:20	
Toluene-d8	104	87 - 121	04/13/18 16:20	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1803166 **Date Collected:** 04/10/18 11:15 Gowanda/6974.90

Project: Sample Matrix: Water **Date Received:** 04/11/18 08:30

Sample Name: MW-5 Units: ug/L Lab Code: R1803166-004 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:42	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 16:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 16:42	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 16:42	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 16:42	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 16:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/13/18 16:42	
Dibromofluoromethane	103	89 - 119	04/13/18 16:42	
Toluene-d8	103	87 - 121	04/13/18 16:42	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 11:00

Sample Matrix: Water Date Received: 04/11/18 08:30

Sample Name: MW-7 Units: ug/L

Lab Code: R1803166-005 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 17:04	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 17:04	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 17:04	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 17:04	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 17:04	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 17:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/13/18 17:04	
Dibromofluoromethane	103	89 - 119	04/13/18 17:04	
Toluene-d8	105	87 - 121	04/13/18 17:04	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1803166 **Date Collected:** 04/10/18 10:30 **Project:** Gowanda/6974.90

Sample Matrix: Water **Date Received:** 04/11/18 08:30

Sample Name: MW-6 Units: ug/L

Lab Code: R1803166-006 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	76	5.0	1	04/13/18 22:54	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 22:54	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 22:54	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 22:54	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 22:54	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 22:54	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/13/18 22:54	
Dibromofluoromethane	102	89 - 119	04/13/18 22:54	
Toluene-d8	105	87 - 121	04/13/18 22:54	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 10:06

Sample Matrix: Water Date Received: 04/11/18 08:30

Sample Name: MW-8 Units: ug/L

Lab Code: R1803166-007 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:16	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:16	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 23:16	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 23:16	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 23:16	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 23:16	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/13/18 23:16	
Dibromofluoromethane	103	89 - 119	04/13/18 23:16	
Toluene-d8	104	87 - 121	04/13/18 23:16	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1803166 **Date Collected:** 04/10/18 09:44 Gowanda/6974.90

Sample Matrix: Water **Date Received:** 04/11/18 08:30

MW-9 **Sample Name:** Units: ug/L

Lab Code: R1803166-008 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:38	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 23:38	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 23:38	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 23:38	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 23:38	
Vinvl Chloride	5.0 U	5.0	1	04/13/18 23:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	04/13/18 23:38	
Dibromofluoromethane	103	89 - 119	04/13/18 23:38	
Toluene-d8	104	87 - 121	04/13/18 23:38	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90 **Date Collected:** 04/10/18 10:00

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R1803166-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:00	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:00	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 00:00	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 00:00	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 00:00	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 00:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 00:00	
Dibromofluoromethane	102	89 - 119	04/14/18 00:00	
Toluene-d8	105	87 - 121	04/14/18 00:00	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 04/10/18 11:40 Gowanda/6974.90

Sample Matrix: Water **Date Received:** 04/11/18 08:30

MW-11 **Sample Name:** Units: ug/L

Lab Code: R1803166-010 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	260	25	5	04/14/18 05:28	
trans-1,2-Dichloroethene	25 U	25	5	04/14/18 05:28	
Tetrachloroethene (PCE)	25 U	25	5	04/14/18 05:28	
1,1,1-Trichloroethane (TCA)	25 U	25	5	04/14/18 05:28	
Trichloroethene (TCE)	900	25	5	04/14/18 05:28	
Vinyl Chloride	25 U	25	5	04/14/18 05:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 05:28	
Dibromofluoromethane	101	89 - 119	04/14/18 05:28	
Toluene-d8	104	87 - 121	04/14/18 05:28	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 11:20

Service Request: R1803166

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-12
 Units: ug/L

 Lab Code:
 R1803166-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	99	5.0	1	04/14/18 00:22	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:22	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 00:22	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 00:22	
Trichloroethene (TCE)	14	5.0	1	04/14/18 00:22	
Vinyl Chloride	8.9	5.0	1	04/14/18 00:22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	04/14/18 00:22	
Dibromofluoromethane	103	89 - 119	04/14/18 00:22	
Toluene-d8	105	87 - 121	04/14/18 00:22	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 11:45

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R1803166-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:44	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 00:44	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 00:44	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 00:44	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 00:44	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 00:44	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/14/18 00:44	
Dibromofluoromethane	101	89 - 119	04/14/18 00:44	
Toluene-d8	105	87 - 121	04/14/18 00:44	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 10:50

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R1803166-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	10	5.0	1	04/14/18 01:06	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:06	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 01:06	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 01:06	
Trichloroethene (TCE)	18	5.0	1	04/14/18 01:06	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 01:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 01:06	
Dibromofluoromethane	101	89 - 119	04/14/18 01:06	
Toluene-d8	105	87 - 121	04/14/18 01:06	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 10:33

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-15
 Units: ug/L

 Lab Code:
 R1803166-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:28	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:28	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 01:28	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 01:28	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 01:28	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 01:28	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/14/18 01:28	
Dibromofluoromethane	102	89 - 119	04/14/18 01:28	
Toluene-d8	104	87 - 121	04/14/18 01:28	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90 **Date Collected:** 04/10/18 10:20

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R1803166-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	43	5.0	1	04/14/18 01:50	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 01:50	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 01:50	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 01:50	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 01:50	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 01:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	04/14/18 01:50	
Dibromofluoromethane	101	89 - 119	04/14/18 01:50	
Toluene-d8	107	87 - 121	04/14/18 01:50	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 10:45

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-17
 Units: ug/L

 Lab Code:
 R1803166-016
 Basis: NA

Volatile Organic Compounds by GC/MS

, samue o game o samp samue a,

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:12	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:12	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 02:12	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 02:12	
Trichloroethene (TCE)	5.1	5.0	1	04/14/18 02:12	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 02:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 02:12	
Dibromofluoromethane	103	89 - 119	04/14/18 02:12	
Toluene-d8	104	87 - 121	04/14/18 02:12	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 12:20

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-18
 Units: ug/L

 Lab Code:
 R1803166-017
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:33	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:33	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 02:33	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 02:33	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 02:33	
Vinyl Chloride	5.0 11	5.0	1	04/14/18 02:33	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	04/14/18 02:33	
Dibromofluoromethane	104	89 - 119	04/14/18 02:33	
Toluene-d8	106	87 - 121	04/14/18 02:33	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 11:30

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 MW-20
 Units: ug/L

 Lab Code:
 R1803166-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:55	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 02:55	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 02:55	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 02:55	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 02:55	
Vinyl Chloride	5.0 11	5.0	1	04/14/18 02:55	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/14/18 02:55	
Dibromofluoromethane	101	89 - 119	04/14/18 02:55	
Toluene-d8	102	87 - 121	04/14/18 02:55	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 04/10/18 11:00 Gowanda/6974.90

Project: Sample Matrix: Water **Date Received:** 04/11/18 08:30

G-1 **Sample Name:** Units: ug/L

Lab Code: R1803166-019 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	22	5.0	1	04/14/18 03:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 03:17	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 03:17	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 03:17	
Trichloroethene (TCE)	5.0 U	5.0	1	04/14/18 03:17	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 03:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 03:17	
Dibromofluoromethane	104	89 - 119	04/14/18 03:17	
Toluene-d8	102	87 - 121	04/14/18 03:17	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 10:20

Sample Matrix: Water Date Received: 04/11/18 08:30

Sample Name: G-2 Units: ug/L

Lab Code: R1803166-020 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	38	5.0	1	04/14/18 03:39	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 03:39	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 03:39	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 03:39	
Trichloroethene (TCE)	8.0	5.0	1	04/14/18 03:39	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 03:39	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 03:39	
Dibromofluoromethane	103	89 - 119	04/14/18 03:39	
Toluene-d8	102	87 - 121	04/14/18 03:39	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1803166 **Date Collected:** 04/10/18 11:36 Gowanda/6974.90

Sample Matrix: Water **Date Received:** 04/11/18 08:30

Sample Name: DR-1 Units: ug/L

Lab Code: R1803166-021 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	190	50	10	04/14/18 05:50	
trans-1,2-Dichloroethene	50 U	50	10	04/14/18 05:50	
Tetrachloroethene (PCE)	50 U	50	10	04/14/18 05:50	
1,1,1-Trichloroethane (TCA)	50 U	50	10	04/14/18 05:50	
Trichloroethene (TCE)	880	50	10	04/14/18 05:50	
Vinyl Chloride	50 U	50	10	04/14/18 05:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	04/14/18 05:50	
Dibromofluoromethane	103	89 - 119	04/14/18 05:50	
Toluene-d8	106	87 - 121	04/14/18 05:50	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 11:25

Sample Matrix: Water Date Received: 04/11/18 08:30

 Sample Name:
 DR-2
 Units: ug/L

 Lab Code:
 R1803166-022
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	99	5.0	1	04/14/18 04:01	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 04:01	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 04:01	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 04:01	
Trichloroethene (TCE)	31	5.0	1	04/14/18 04:01	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 04:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 04:01	
Dibromofluoromethane	103	89 - 119	04/14/18 04:01	
Toluene-d8	104	87 - 121	04/14/18 04:01	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1803166 **Date Collected:** 04/10/18 11:50 Gowanda/6974.90

Sample Matrix: Water **Date Received:** 04/11/18 08:30

Sample Name: DR-3 Units: ug/L

Lab Code: R1803166-023 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	11	5.0	1	04/14/18 04:23	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 04:23	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 04:23	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 04:23	
Trichloroethene (TCE)	23	5.0	1	04/14/18 04:23	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 04:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	04/14/18 04:23	
Dibromofluoromethane	103	89 - 119	04/14/18 04:23	
Toluene-d8	105	87 - 121	04/14/18 04:23	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90 **Date Collected:** 04/10/18 12:20

Sample Matrix: Water Date Received: 04/11/18 08:30

Sample Name: DR-4 Units: ug/L

Lab Code: R1803166-024 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.6	5.0	1	04/14/18 04:45	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/14/18 04:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/14/18 04:45	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/14/18 04:45	
Trichloroethene (TCE)	24	5.0	1	04/14/18 04:45	
Vinyl Chloride	5.0 U	5.0	1	04/14/18 04:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/14/18 04:45	
Dibromofluoromethane	100	89 - 119	04/14/18 04:45	
Toluene-d8	105	87 - 121	04/14/18 04:45	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Bergmann Associates, Incorporated Service Request: R1803166

Project: Gowanda/6974.90

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C **Extraction Method:** EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121
MW-1	R1803166-001	99	101	104
MW-3	R1803166-002	100	99	101
MW-4	R1803166-003	102	102	104
MW-5	R1803166-004	101	103	103
MW-7	R1803166-005	104	103	105
MW-6	R1803166-006	104	102	105
MW-8	R1803166-007	104	103	104
MW-9	R1803166-008	103	103	104
MW-10	R1803166-009	102	102	105
MW-11	R1803166-010	102	101	104
MW-12	R1803166-011	105	103	105
MW-13	R1803166-012	104	101	105
MW-14	R1803166-013	102	101	105
MW-15	R1803166-014	101	102	104
MW-16	R1803166-015	105	101	107
MW-17	R1803166-016	102	103	104
MW-18	R1803166-017	103	104	106
MW-20	R1803166-018	101	101	102
G-1	R1803166-019	102	104	102
G-2	R1803166-020	102	103	102
DR-1	R1803166-021	106	103	106
DR-2	R1803166-022	102	103	104
DR-3	R1803166-023	104	103	105
DR-4	R1803166-024	102	100	105
Lab Control Sample	RQ1803335-03	105	106	104
Method Blank	RQ1803335-04	101	103	103
Lab Control Sample	RQ1803359-03	103	105	103
Method Blank	RQ1803359-04	102	104	105
DR-1 MS	RQ1803359-05	106	104	106
DR-1 DMS	RQ1803359-06	104	106	105

QA/QC Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.90

Sample Matrix: Water **Service Request:**

R1803166

Date Collected:

04/10/18

Date Received:

04/11/18

Date Analyzed: Date Extracted: 04/14/18 NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: DR-1

Units:

ug/L

Lab Code:

Prep Method:

Project:

R1803166-021

Basis:

NA

Analysis Method:

8260C

EPA 5030C

Matrix Spike RQ1803359-05 **Duplicate Matrix Spike**

RQ1803359-06

Analyta Nama	Sample	Dogult	Spike	% Rec	Dogul4	Spike	0/ Dog	% Rec Limits	DDD	RPD Limit
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	190	732	500	107	719	500	105	72-133	2	30
trans-1,2-Dichloroethene	50 U	545	500	109	528	500	106	77-125	3	30
Tetrachloroethene (PCE)	50 U	461	500	92	445	500	89	67-137	4	30
1,1,1-Trichloroethane (TCA)	50 U	514	500	103	507	500	101	74-127	1	30
Trichloroethene (TCE)	880	1380	500	99	1380	500	99	62-142	<1	30
Vinyl Chloride	50 U	572	500	114	541	500	108	60-157	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1803166

Project:Gowanda/6974.90Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1803335-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 11:49	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 11:49	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 11:49	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 11:49	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 11:49	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 11:49	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	04/13/18 11:49	
Dibromofluoromethane	103	89 - 119	04/13/18 11:49	
Toluene-d8	103	87 - 121	04/13/18 11:49	

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1803166

Project:Gowanda/6974.90Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1803359-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 22:33	
trans-1,2-Dichloroethene	5.0 U	5.0	1	04/13/18 22:33	
Tetrachloroethene (PCE)	5.0 U	5.0	1	04/13/18 22:33	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	04/13/18 22:33	
Trichloroethene (TCE)	5.0 U	5.0	1	04/13/18 22:33	
Vinyl Chloride	5.0 U	5.0	1	04/13/18 22:33	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	04/13/18 22:33	
Dibromofluoromethane	104	89 - 119	04/13/18 22:33	
Toluene-d8	105	87 - 121	04/13/18 22:33	

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

Sample Matrix: Water

Date Analyzed: 04/13/18

Service Request: R1803166

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1803335-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	19.8	20.0	99	80-121
trans-1,2-Dichloroethene	8260C	20.4	20.0	102	80-120
Tetrachloroethene (PCE)	8260C	17.2	20.0	86	78-124
1,1,1-Trichloroethane (TCA)	8260C	17.3	20.0	86	74-120
Trichloroethene (TCE)	8260C	17.7	20.0	88	78-123
Vinyl Chloride	8260C	19.8	20.0	99	69-133

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.90

Sample Matrix: Water

Service Request: R1803166 **Date Analyzed:** 04/13/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1803359-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	19.8	20.0	99	80-121
trans-1,2-Dichloroethene	8260C	18.7	20.0	94	80-120
Tetrachloroethene (PCE)	8260C	16.6	20.0	83	78-124
1,1,1-Trichloroethane (TCA)	8260C	17.7	20.0	88	74-120
Trichloroethene (TCE)	8260C	17.7	20.0	89	78-123
Vinyl Chloride	8260C	20.0	20.0	100	69-133

MAY 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities

GROUNDWATER CHARACTERIZATION REPORT – MAY 2018

Bergmann Associates

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: July 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of WorkSite Background	4 4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	5
2.1 2.2	Well Maintenance Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples	
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	11

Tables

Table 1: Groundwater Elevations and Field Measurements – May 2018

Table 2: May 2018 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary

Table 4: Percent Reduction in Total Groundwater VOCs

Figures

Figure 1: May 2018 Groundwater Contour Map

Figure 2: May 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

Figure 3: May 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations

Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations

Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations

Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations

Chart 6: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - May 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the May 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, has entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on May 30, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 19 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), three (3) were not sampled. These monitoring wells include MW-19R, MW-21, and G-3. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in April 2018 and included analysis of groundwater samples from 18 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies have occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the May 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-19R, MW-21, and G-3. MW-19R and MW-21, both located on Torrance Place, were still paved over as originally reported in the August 2017 summary report. G-3 was not located due to extensive vegetative growth around the well vault. Bergmann personnel will request the site maintenance staff to remove the excessive vegetation that is growing around the site in attempts to locate the well. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the May 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 19 of the 21 site-related groundwater monitoring wells for laboratory analysis on May 31, 2018. Depth to groundwater measurements were obtained from 25 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low-flow pumping using a Geo-pump electric peristaltic pump. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated

volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2002 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for May 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on May 30, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements - May 2018.

The May 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The May 2018 depths to groundwater range from 6.12 ft below top of casing (btoc) at MW-1, to 13.22 ft btoc at MW-17 located at the northern property line. The average depth to groundwater at the wells measured was 9.49 ft btoc.

The site-wide average depth to water table increased by approximately 0.31 ft when compared to the April 2018 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and May 2018 Groundwater Contours are presented on Figure 1 – May 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 19 monitoring wells and six (6) recovery wells collected May 30, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The May 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. Analytical results are summarized in Table 2 – May 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report May 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 12 of the sampled monitoring wells.

Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, DR-1 (1,319 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in three (3) of the 19 monitoring well groundwater samples increased when compared to the April 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in 12 groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 81.2% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 65.3% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the May 2018 sampling event was 1,110 parts per billion (ppb), a decrease from the April 2018 value of 374 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 44.5%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the May 2018 sampling event is 489 ppb, a decrease from the April 2018 value of 1,160 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 89.5%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the April 2018 sampling event is 100 ppb, a decrease from the April 2018 value of 113 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the May 2018 sampling event is 22.8 ppb, an increase from the April 2018 value of 28 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 93%.

Monitoring well MW-15 remained the same in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the May 2018 sampling event was Not Detected (ND), which was no change from the April 2018 sampling event. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have remained unchanged at non-detect levels.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible.

It was observed that the wells were likely paved over by a re-sealing operation. The wells were still inaccessible and paved over during the May 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – May 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R, but MW-19R is unable to be sampled because it is paved over. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the May 2018 sampling event, six (6) of the seven (7) recovery wells were sampled. The G-3 well could not be located and is assumed to be overgrown with vegetation. Bergmann personnel will request the site maintenance crew to clear the vegetation around the area of G-3 prior to the next sampling event.

The May 2018 analytical results indicate detection of five (5) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS. Chlorinated VOCs were detected in samples from all six (6) of the sampled recovery wells. Total VOCs at the 6 recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current sampling event is about 37% relative to concentrations prior to GTS activation in 2002. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the May 2018 sampling event is 1,319 ppb, a decrease from the April 2018 value of 1,070 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 130% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the May 2018 sampling event is 128 ppb, a decrease from the April 2018 value of 130 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 76.7% since activation of the GTS.

Recovery well DR-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the May 2018 sampling event is 125.5 ppb, an increase from the April 2018 value of 24 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 17.8% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the May 2018 sampling event is 31.2 ppb, a decrease from the April 2018 value of 31.6 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 96.4% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the May 2018 sampling event was 40 ppb, an increase from the April value of 22 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 80% since activation of the GTS.

Recover well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the May 2018 sampling event was 50 ppb, an increase from the April 2018 value of 46 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 82.4% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – May 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

For quality assurance purposes a duplicate groundwater sample is typically collected from monitoring well MW-11, designated sample "MW-X". TRANS was detected in the duplicate sample but not in the original sample (MW-11). This is most likely a result of laboratory contamination.

A trip blank was supplied by the laboratory for the May 2018 sampling event. An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the six (6) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all six (6) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent a decrease of total VOCs at two (2) recovery wells (DR-2 and G-2) when compared to the April 2018 sampling event.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,110 ppb) show an increase from the April 2018 sampling event (374 ppb). The current total VOCs at MW-11 (489 ppb) shows a decrease from the April 2018 sampling event (1,160 ppb). The current total VOCs at DR-1 (1,319 ppb) show an increase from the April 2018 sampling event (1,070 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (100 ppb) show a decrease from the April 2018 sampling event (113 ppb). The current total VOCs at recovery well DR-2 (128 ppb) show a decrease from the April 2018 sampling event (130 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (22.8 ppb) show a decrease from the April 2018 sampling event (28 ppb). The current total VOCs at recovery well DR-3 (125.4 ppb) show an increase from the April 2018 sampling event (34 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (ND) show no change from the April 2018 sampling event. The current total VOCs at recovery well DR-4 (31.2 ppb) show a decrease from the April 2018 sampling event (31.6 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (112.5) show an increase from the April 2018 sampling event (5.1). The current total VOCs at recovery well G-1 (40 ppb) show an increase from the April 2018 sampling event (22 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC of 50 ppb, which shows an increase from the April 2018 sampling event (46 ppb). The May 2018 total VOCs of MW-7 (ND) showed no change from the April 2018 sampling event (ND).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (112.5) showed an increase from the April 2018 sampling event (5.1). The current total VOCs at recovery well G-3 were not calculated due to recovery well G-3 not being sampled during the May 2018 sampling event. Groundwater sampling results from monitoring wells along the western and eastern perimeters have consistently been non-detect.

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the May 2018 and April 2018 sampling events due to the fact that they were both paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report. Additionally, G-3 was not sampled because it is inaccessible due to excessive vegetative growth around the well vault. Bergmann will ask the site maintenance crew to cut vegetation in the area of G-3 and all other exterior wells prior to the next sampling event (August 2018).

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. The following notes are a summary of the meeting held on June 22, 2018 between Bergmann, DASNY, and the NYSDEC.

- Bergmann will be implementing a subsurface investigation plan consisting of soil borings to locate the source of contamination on site.
- Soils will be sampled for the same VOCs that are consistently present in groundwater samples to determine if the contamination is residual in the soils on site.
- Details of the proposed additional investigation are outlined in the Additional Subsurface Investigation Plan dated July 2018 and submitted to DASNY on July 23, 2018.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for August 2018. This sampling event will include sampling and laboratory analysis for the limited number of wells as determined by Bergmann correspondence with the NYSDEC. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements May 2018

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

i										
	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.12	6.40	6.35	7.44	10.60	13.10	13.10	9.32	9.25	7.00
Groundwater Elevation	772.11	771.68	772.03	770.99	768.01	768.00	767.84	772.01	773.36	773.02
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	9.90	10.75	9.95	8.34	3.35	9.78	8.70	8.33	11.71	12.42
Minimum Purge Volume (gal)	1.6	1.75	1.6	1.4	0.5	1.6	1.4	1.4	1.9	2.0
3 Volumes	4.8	5.26	4.9	4.1	1.6	4.8	4.3	4.1	5.7	6.1
Actual volume purged	4.8	5.26	NS	4.1	1.4	4.8	4.3	NS	NS	NS
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = -0.34 '	Flush = -0.24 '	Stickup=2.17	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

											
	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	7.53	7.18	7.61	10.79	10.76	12.50	13.22	9.10	NA	9.81	NA
Groundwater Elevation	771.05	771.32	770.78	767.64	767.62	767.93	766.63	767.29	NA	768.23	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	7.95	10.20	9.79	7.36	9.04	10.76	NA	15.90	NA	4.94	NA
Minimum Purge Volume (gal)	1.3	1.7	1.6	1.2	1.5	1.8	NS	2.6	NA	0.8	NA
3 Volumes	3.9	5.0	4.8	3.6	4.4	5.3	NS	7.8	NA	2.4	NA
Actual volume purged	3.9	5.0	NS	3.6	4.4	5.3	NS	7.8	NA	2.4	NA
Comments	Flush = $-0.23'$	Flush = -0.35 '	Flush = -0.48 '	Flush = $-0.39'$	Flush = -0.38	Stickup=2.26'	Stickup=1.18	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	NS
Depth to Groundwater (btoc)	7.70	7.41	10.92	10.41	11.90	11.81	NS
Groundwater Elevation	771.96	772.52	768.86	769.23	767.93	NA	NS
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	NS
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	NS
Thickness of Water Column	10.36	10.65	9.53	9.28	11.08	9.17	NS
Minimum Purge Volume (gal)	6.77	6.95	6.22	6.06	7.24	5.98	NS
3 Volumes	20.30	20.86	18.67	18.18	21.71	17.94	NS
Actual volume purged	20.30	20.86	NS	18.18	21.71	17.94	NS
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03	Stickup=0.86	NA

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over a few size.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	290	920	5.0
CIS	84	190	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	374	1,110	

Monitoring Well MW-2

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	NS	ND	5.0
CIS	NS	ND	5.0
TRANS	NS	ND	5.0
VC	NS	ND	2.0
TCA	NS	ND	5.0
Total VOCs	NS	ND	

Monitoring Well MW-3

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Monitoring Well MW-4

Sampling Events

• • • • • • • • • • • • • • • • • • •				
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC TCA		ND	ND	2.0
TCA		ND	ND	5.0
To	tal VOCs	ND	ND	

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
Т	otal VOCs	ND	ND	

Monitoring Well MW-6

Sampling Events

Value
_

Page 1 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-8

Sampling Events

Analyte in ppt	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VO	Cs ND	ND	

Monitoring Well MW-9

Sampling Events

Camping i	_ , 0			
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)
Page 2 of 6

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Monitoring Well MW-10

Sampling Events

Camping Ev				
Analyte	in ppb	April 2018	May 21018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Monitoring Well MW-11

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		900	430	5.0
CIS		260	59	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1,160	489	

Monitoring Well MW-12

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
	pp-0	7 (prii 2010	May 2010	1110 Caldance Value
TCE		14	27	5.0
CIS		99	73	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	113	100	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
_	Total VOCs	ND	ND	

Monitoring Well MW-14

Sampling Events

Analyte in	ppb April 20	18 May 2018	NYS Guidance Value
TCE	18	17	5.0
CIS	10	5.8	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total \	/OCs 28	22.8	

Monitoring Well MW-15

Sampling Events

Camping				
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)
Page 3 of 6

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Monitoring Well MW-16

Sampling Events

9				
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		43	41	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	43	41	

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Monitoring Well MW-17

Sampling Events

<u> </u>	- 1 0 1 110			
Analyte	in ppb	Nov 2017	May 2018	NYS Guidance Value
TCE		5	20	5.0
CIS		ND	85	5.0
TRANS		ND	7.5	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	5.1	112.5	

Monitoring Well MW-18

Sampling Events

<u> </u>			
Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
Tot	al VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 05/30/2018

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND ND	ND	

Monitoring Well MW-21

Sample Date: NS

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value					
TCE	NS	NS	5.0					
CIS	NS	NS	5.0					
TRANS	NS	NS	5.0					
VC	NS	NS	2.0					
TCA	NS	NS	5.0					
Total VOCs	NS	NS						

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		880	1100	5.0
CIS		190	219	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	1070	1319	

Recovery Well DR-2

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	31	31	5.0
CIS	99	97	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	130	128	

Recovery Well DR-3

Sampling Events

Camping Lyone											
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value							
TCE		23	30	5.0							
CIS		11	86	5.0							
TRANS		ND	9.4	5.0							
VC		ND	ND	2.0							
TCA		ND	ND	5.0							
	Total VOCs	34	125.4								

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Recovery Well DR-4

Sampling Events

Camping 2 voite										
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value						
TCE		24	24	5.0						
CIS		7.6	7.2	5.0						
TRANS		ND	ND	5.0						
VC		ND	ND	2.0						
TCA		ND	ND	5.0						
-	Total VOCs	31.6	31.2							

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Sample Date: 05/30/2018

Recovery Well G-1

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		ND	6.3	5.0
CIS		22	34	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	22	40	

Recovery Well G-2

Sampling Events

Sampling Events										
Analyte	in ppb	April 2018	May 2018	NYS Guidance Value						
TCE		8	ND	5.0						
CIS		38	50	5.0						
TRANS		ND	ND	5.0						
VC		ND	ND	2.0						
TCA		ND	ND	5.0						
	Total VOCs	46	50							

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	April 2018	May 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Duplicate Blank

Sample Date: 05/30/2018

Sampling Events

			NYS
			Guidance
Analyte	in ppb	May 2018	Value
TCE		370	5.0
CIS		54	5.0
TRANS		10	5.0
VC		NS	2.0
TCA		NS	5.0
Tot	al VOCs	434	

Equipment Blank

Sample Date: 05/30/2018

Sampling Events

Analyte in ppb	April 2018	May 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 6 of 6

Table 3 Historic Groundwater Analysis Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

MONITORING WELLS

Monitoring	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs				
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
	May 2018	April 2018	Nov 2017	Aug 2017	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	,	"" /	,	,	,	,	,	,	,	1
MW-1	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-6	77	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7
MW-7	ND	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
MW-8	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS						
MW-11	489	1,160	470	525	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617
MW-12	100	113	31	40	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22
MW-13	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-14	22.8	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
MW-15	ND	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25
MW-16	41	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
MW-17	112.5	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	ND NO	ND NO	6.3	ND NO	10	26	6.9	ND	ND ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND 0.5	16.6	2.33
MW-19R	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND						
MW-20	ND ND	ND ND	ND ND	ND NO	ND 15	ND	ND	ND	ND	ND 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	NS 194	NS NS	NS 122	NS DWG	17	39	8.7	20	20	10	NS 107	NS	NS	NS	NS	NS 1.050	NS	NS	NS 1.150	NS	NS
MW-X (DUP)	434	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

RECOVERY WELLS

Recovery Well Number	Total VOCs May 2018 (ppb)	Total VOCs April 2018 (ppb)	Total VOCs Nov 2017 (ppb)	Total VOCs Aug 2017 (ppb)	Total VOCs Nov 2016 (ppb)	Total VOCs Sep 2016 (ppb)	Total VOCs Jun 2016 (ppb)	Total VOCs Nov 2015 (ppb)	Total VOCs Aug 2015 (ppb)	Total VOCs Jun 2015 (ppb)		Total VOCs Nov 2014 (ppb)		1	Total VOCs Mar 2014 (ppb)				Total VOCs Dec 2012 (ppb)		Total VOCs Mar 2012 (ppb)
DR-1	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

NS= This well not included in this sampling event.

ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample
EB - Equipment/Field Blank Sample
* - Sample was broken in transit and not able to be analyzed

DWS- Different Well Sampled than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

Monitoring Well	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
MW-1 [†]	-44.5%	51.3%	-39.90%	-57.6%		-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	6 -15.8%
MW-2	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100%	100.0%	Not Sampled																
MW-4	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	6 100.0%
MW-5	100%	100%	100%	100.0%	Not Sampled																
MW-6	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	6 78.9%
MW-7	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	6 93.2%
MW-8	100%	100%	Not Sampled																		
MW-9	100%	100%	Not Sampled																		
MW-10	100%	100%	100%	100.0%	Not Sampled																
MW-11	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	6 86.7%
MW-12	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	6 98.8%
MW-13	100%	100%	Not Sampled																		
MW-14	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	
MW-15	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	
MW:16*	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	
MW-17*	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled	66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	
MW-18:*	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	6 98.5%
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	
MW-20**	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	6 99.4%
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003																				1	
** Well Installed 2004																					
Site-Wide reduction:	81.2%	84.2%	67.60%	62.1%	83.5%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%
Impacted Groundwater Plume Area Only:	65.3%	76.6%	51.40%	41.1%	82.9%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%

Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6
% reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated
†Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%
DR-4	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%
G-1	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA				
Overall Reduction	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURES

(MW-19R MW-18 767.29 MW-7 767.84 MW-16 G-3 NS 767.93 MW-17 MW-6 768.00 MW-20 768.23 766.63 MW-5 768.01 G-2 NA MW-15 767.62 G-1 767.93 DR-4 769.23 MW-14 767.64 DR-3 768.86 MW-13 770.78 DR-2 772.52 MW-4 770.99 MW-12 771.32 MW-11 771.05 DR-1 771.96 772 MW-3 772.03 MW-8 772.01 MW-1 772.11 MW-2 771.68 MW-9 773.36 120 FT MW-10 773.02 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

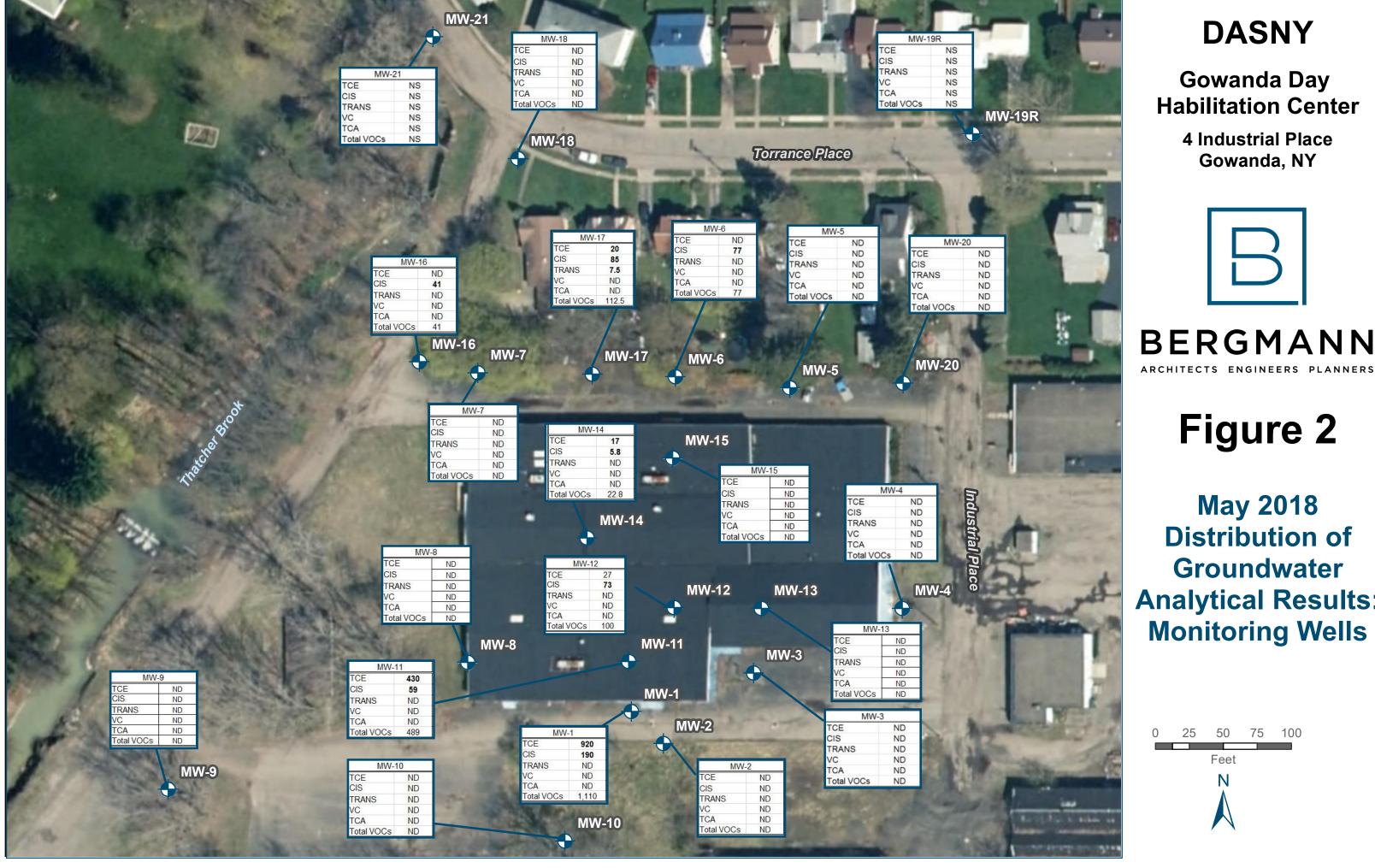
office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS

NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C


Note:

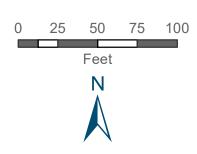
Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

MAY 2018 WATER LEVEL CONTOUR MAP

Drawing Number:

FIGURE 1

DASNY


Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY

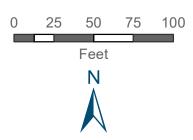
Figure 2

May 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

DASNY

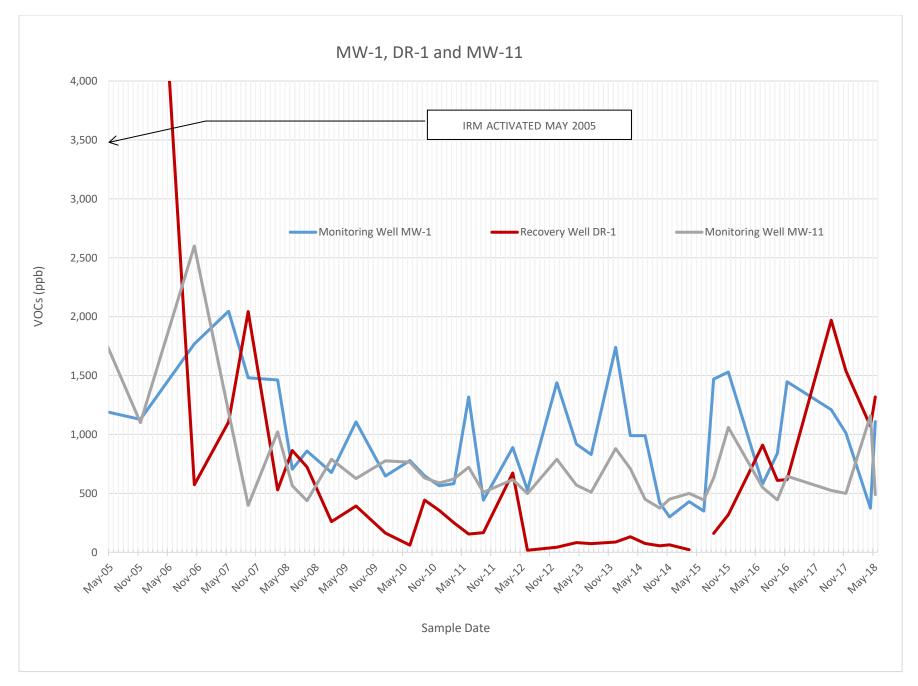
Gowanda Day Habilitation Center

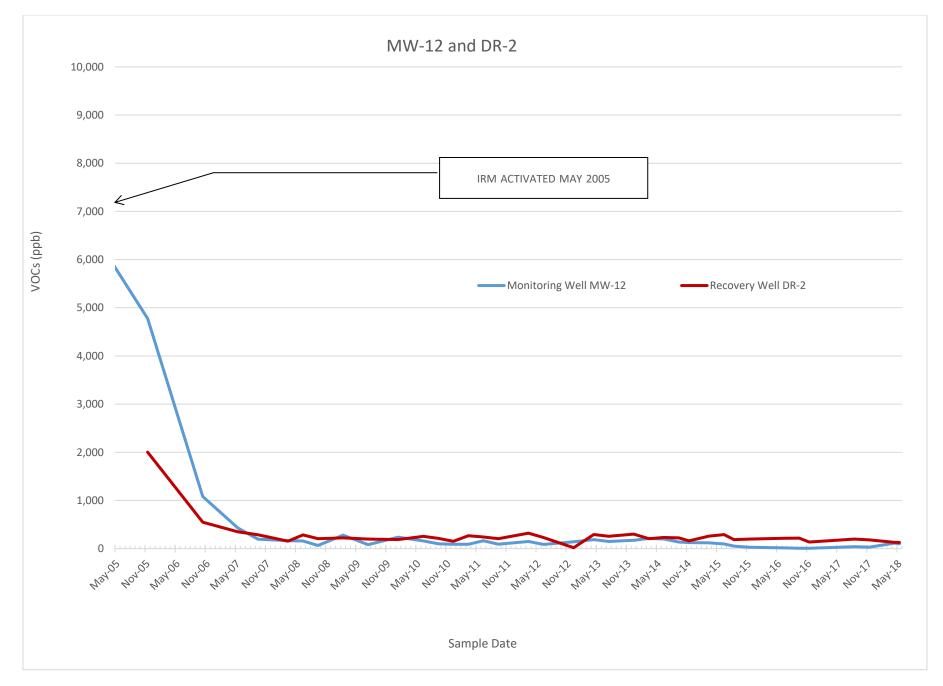
4 Industrial Place Gowanda, NY

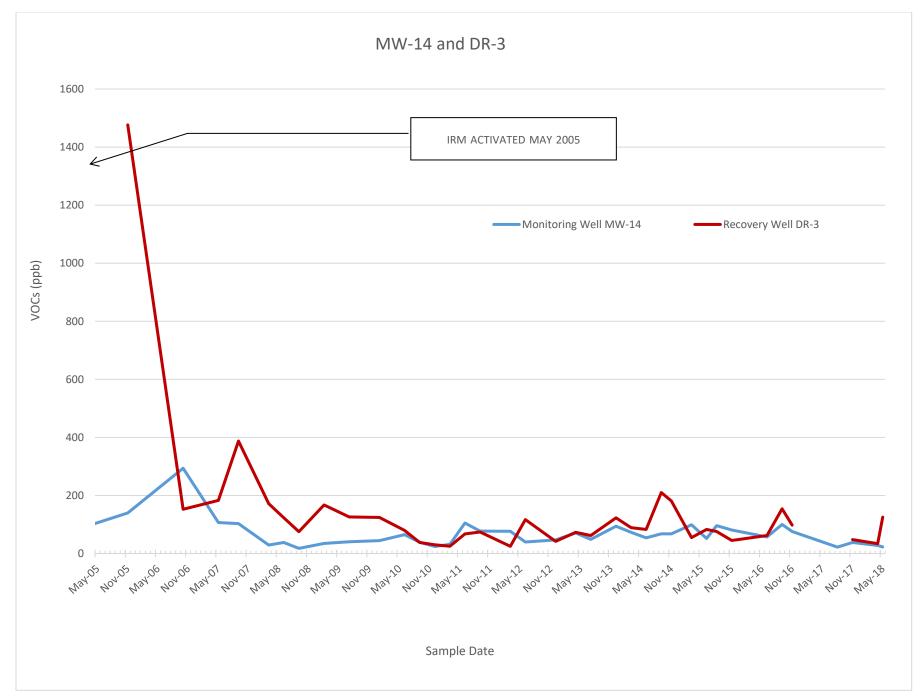


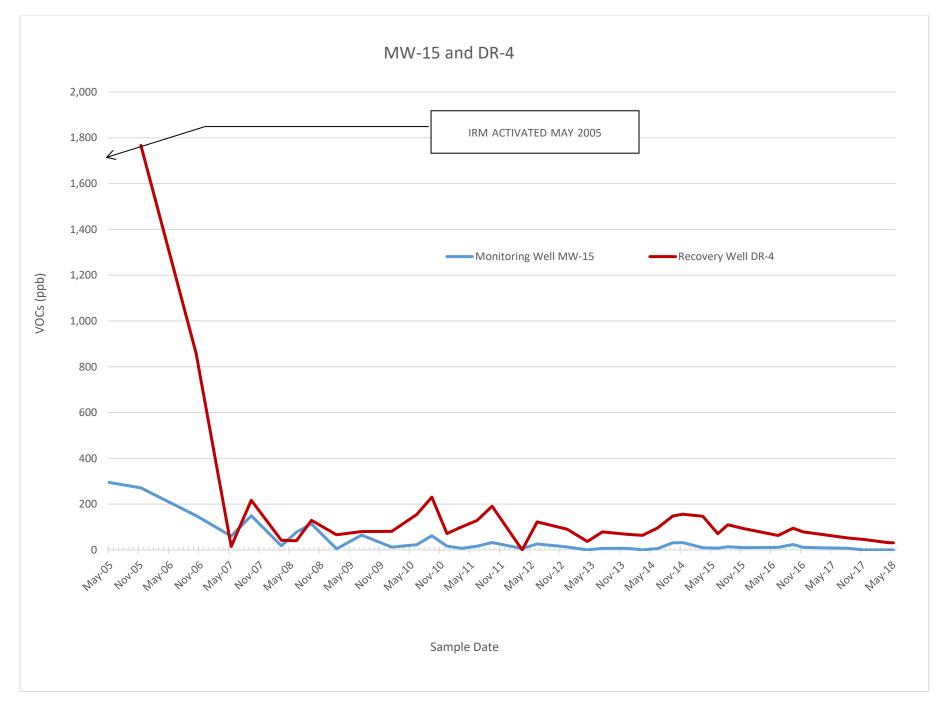
BERGMANN

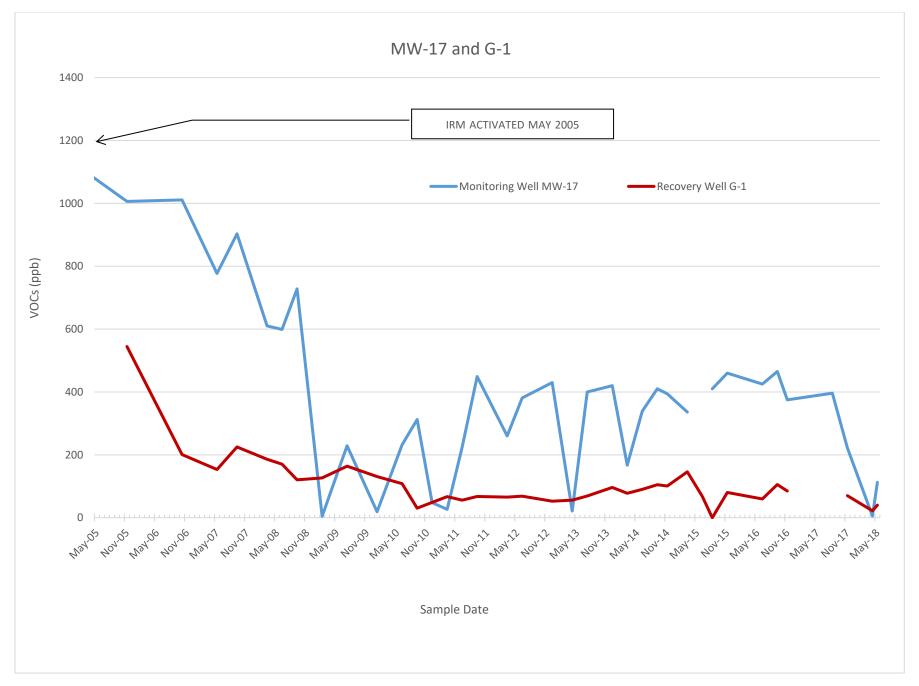
ARCHITECTS ENGINEERS PLANNERS

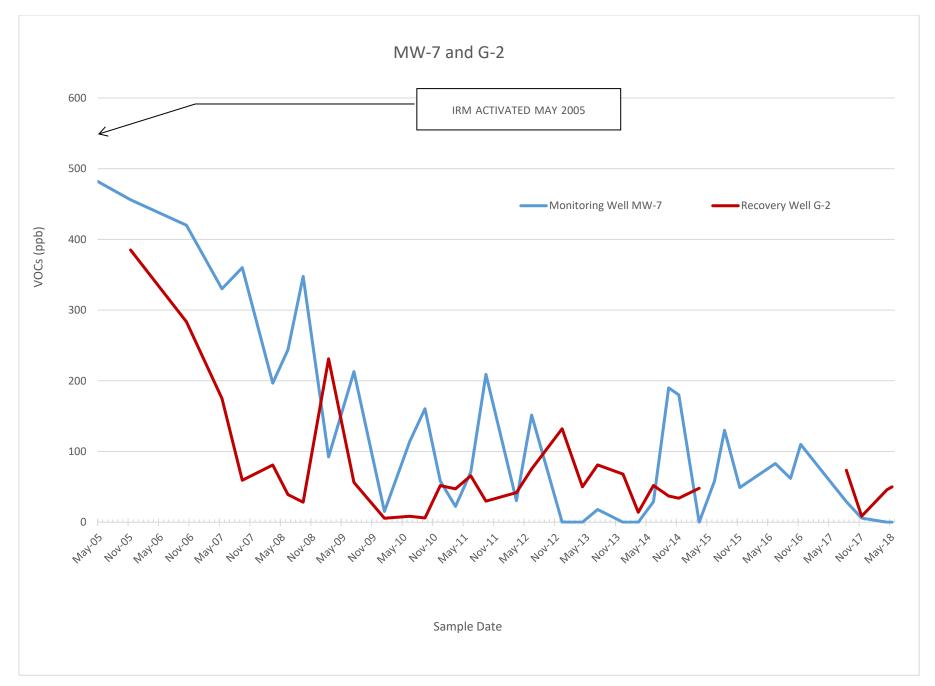

Figure 3

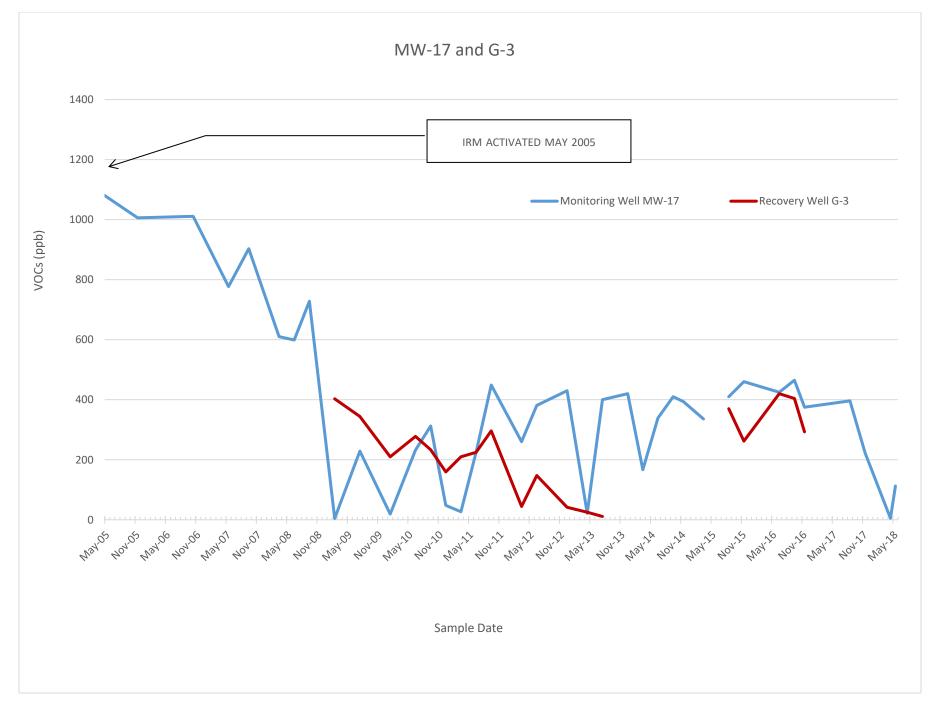

May 2018
Distribution of
Groundwater
Analytical Results:
Recovery Wells




CHARTS







APPENDIX A:

LABORATORY ANALYTICAL RESULTS

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory May 31, 2018 For your reference, these analyses have been assigned our service request number **R1805029**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Goldy Kulken

ADDRESS

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Bergmann Associates, Incorporated Service Request: R1805029

Project: Gowanda Date Received: 05/31/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty eight water samples were received for analysis at ALS Environmental on 05/31/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

	Bady Kuller
Approved by	

_	
Date	06/06/2018

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-01		Lab	ID: R1805	029-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	190		0.52	10	ug/L	8260C
Trichloroethene (TCE)	920	D	2.0	50	ug/L	8260C
CLIENT ID: MW-06		Lab	ID: R1805	029-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	77		0.26	5.0	ug/L	8260C
CLIENT ID: MW-11		Lab	ID: R1805	029-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	59		1.3	25	ug/L	8260C
Trichloroethene (TCE)	430		1.0	25	ug/L	8260C
CLIENT ID: MW-12		Lab	ID: R1805	029-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	73		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	27		0.20	5.0	ug/L	8260C
CLIENT ID: MW-14		Lab	ID: R1805	029-014		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	5.8		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	17		0.20	5.0	ug/L	8260C
CLIENT ID: MW-16		Lab	ID: R1805	029-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	41		0.26	5.0	ug/L	8260C
CLIENT ID: MW-17		Lab	ID: R1805	029-017		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	85		0.26	5.0	ug/L	8260C
trans-1,2-Dichloroethene	7.5		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	20		0.20	5.0	ug/L	8260C
CLIENT ID: G-1		Lab	ID: R1805	029-020		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	34		0.26	5.0	ug/L	8260C
Trichloroethene (TCE)	6.3		0.20	5.0	ug/L	8260C
CLIENT ID: G-2		Lab	ID: R1805	029-021		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	50		0.26	5.0	ug/L	8260C
CLIENT ID: DR-1		Lab	ID: R1805	029-022		
Analyte	Results	Flag	MDL	MRL	Units	Method
					/1	00000
cis-1,2-Dichloroethene	210		2.6	50	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: DR-2	Lab ID: R1805029-023									
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	97		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	31		0.20	5.0	ug/L	8260C				
CLIENT ID: DR-3		Lab	ID: R1805	5029-024						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	86		0.26	5.0	ug/L	8260C				
trans-1,2-Dichloroethene	9.4		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	30		0.20	5.0	ug/L	8260C				
CLIENT ID: DR-4		Lab	ID: R1805	5029-025						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	7.2		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	24		0.20	5.0	ug/L	8260C				
CLIENT ID: MW-X		Lab	ID: R1805	5029-026						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	54		0.26	5.0	ug/L	8260C				
trans-1,2-Dichloroethene	10		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	370	D	0.50	13	ug/L	8260C				

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	<u>DATE</u>	TIME
R1805029-001	MW-01	5/30/2018	1130
R1805029-002	MW-02	5/30/2018	1130
R1805029-003	MW-03	5/30/2018	1115
R1805029-004	MW-04	5/30/2018	1100
R1805029-005	MW-05	5/30/2018	1030
R1805029-006	MW-06	5/30/2018	1015
R1805029-007	MW-07	5/30/2018	0945
R1805029-008	MW-08	5/30/2018	1201
R1805029-009	MW-09	5/30/2018	1155
R1805029-010	MW-10	5/30/2018	1145
R1805029-011	MW-11	5/30/2018	1115
R1805029-012	MW-12	5/30/2018	1020
R1805029-013	MW-13	5/30/2018	1030
R1805029-014	MW-14	5/30/2018	0952
R1805029-015	MW-15	5/30/2018	0935
R1805029-016	MW-16	5/30/2018	0920
R1805029-017	MW-17	5/30/2018	1000
R1805029-018	MW-18	5/30/2018	1230
R1805029-019	MW-20	5/30/2018	1045
R1805029-020	G-1	5/30/2018	0924
R1805029-021	G-2	5/30/2018	0913
R1805029-022	DR-1	5/30/2018	1100
R1805029-023	DR-2	5/30/2018	1015
R1805029-024	DR-3	5/30/2018	1000
R1805029-025	DR-4	5/30/2018	0942
R1805029-026	MW-X	5/30/2018	1100
R1805029-027	Equ Blank	5/30/2018	1230
R1805029-028	Trip Blank	5/30/2018	1230

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 5 51502

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____ OF _____

Project Name	ect Name :																_							
Gavanda Project Number 06974-91					ANALYSIS REQUESTED (Include Method Number and Container Preservative)																			
Project Manager C. Bleier	Project Manager & Becort CC					SERVA	TIVE	1																
Compeny/Address Begmann					ERS		$\overline{}$				7			·/						\mathcal{I}		Preservation NONE	tive Key E	
280 E Broad &	St. Suite	200			YAN TAN		/					/ 3		./	/							1. HCL 2. HNO3 3. H2SO 4. NaOH	34	
Rochaster, NY 14	1604	•			NUMBER OF CONTAINERS	/ /) 3/3	/ z /	/ &/	/ /	METALS POS		8 E	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/	5. Zn. A 6. MeOł 7. NaHS	cetate H	
565-498-7950	Cole	iere bergn	nannpc.C	om	/BER	20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8/8	8/4		8/	8 3	8 3	8									8. Other		
Sampler's Signature	Sempler's	Printed Name, L Bleier	-	•	Ž	\\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ <i>§</i>	૿ૺૺૺૢૼ૾ૢૼ		<u> </u>		# E E		/	/	/	/	/	/	/ ,		REMARKS/ ATE DESCR		
	FOR OFFICE USE	SAMPL	LING					ſŤ		[, ,									<u>Li Li ili</u>	112 02001		
CLIENT SAMPLE ID	ONLY LAB ID	05/30/18	TIME 11:30 am	MATRIX Cili)	3	x			 -	 									\vdash	2	vikls	:		_
MW-01 MW-02	 		1130am	GW	3	X	_			 						· · · · · · · · · · · · · · · · · · ·			\vdash		Vikl			_
MW-03			li:(Sam	GW	3	$\frac{1}{x}$				 									<u> </u>		VIL			
Mw-04		05/30/16		GW	3	Î			<u> </u>	 											vial			_
MW-05	 		10:30am	GW	3	X															NYI			
MW-06		, , , , , , , , , , , , , , , , , , , 	10:15am	GW	3	X				†														_
MW-07	1		9:45am	GW	3	X				T					•					7	VIVI	3		
MW-08					3	Х														3	Vikl	5		_
MW-09	1	05/30/18	11.55 ava	GW	3	X				 					-					3	كالمتهو	}		
Mw-l()		05/30/18 1	1:45am	aw	3	X																		
MW-11		05/30/18	11:15 am	GW	3	X														3	v.hl:	5		
SPECIAL INSTRUCTIONS/COMMENTS Metals				·	·		τυ				IREME S APPLY		_		ORT R	EQVIR	EMEN'	TS		INV	OICE II	NFORMAT	rion	
								1 da	у:	2 day	3 day			_		C Summ			PO	#				
								4 da Stan	y 	5 day business	3 day	Surcharg	ro)	-		S/MSD a Cand C	-		BILL	LTO:				_
							REQL	UESTE	D REPO	ORT DA	ΓE			Summ										_
													1.			rtion Rep			te					-
See QAPP	ee OAPP 🗔									<u>, </u>			_\ <i>N</i>	ys Q		ر الر	quis		-					_
TATE WHERE SAMPLES WERE COLLECTED NEW YORK							<u> </u>							Eda		Yes		.No	—					_
RELINQUISHED BY	RELINQUISHED BY RELINQUISHE				BY				RECE	IVED B	Y			F	EUNO	UISHEI	D BY				RECE	EIVED BY		
Signature W XVI	Signature	al	Signature				Signatu	ure				_	Signa	iture				40	Sign	ature		5		
Printed Name Cash Bleiver	Printed Name Quice	MKG	Printed Name				Printed	d Name						od Namo			Ber	gmann	JCU DOISA	029	; ;orporat	••		
Firm Berg monn	Flrm /465		Flrm				Firm.						Firm Gowan					wanaa 						
Date/Time 5/31/2018 1607 Date/Time 5/31/18/ 1607 Date/Time					Date/Time						Dato/Time						_							

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 51502

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 3

Project Number 06974-91					ANALYSIS REQUESTED (Include Method Number and Container Preservative)															
Project Manager C. Bleier	Report CC	1- 11	PRE	SERVA	TIVE	1			Ī											· ••=•
Compeny/Address Bergmann					7	7	7	$\overline{}$	7	\forall	$\overline{}$	•/	7	$\overline{}$	7	\neg	$\overline{}$	$\overline{}$	Pro 0. 1.	eservative Key NONE HCL
~ ~ ~ .					/ /	Ι.			/ `	/ ,	/ z		/	/				/	2.	NONE HCL HNO3 H ₂ SO ₄ NaOH Zn. Acetate
•	Cochester, NY 14604				20 00 00 00 00 00 00 00 00 00 00 00 00 0	, /	&/	/ /			8	/ /		' /	/ /	/ /	' /	' /	ъ.	Zn. Acetate MeOH NaHSO4
585-498-7950	C bleiere bergn	range.com	NUMBER OF CONTAINERS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 / 5 / 6 / 5 / 5 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 /			8/2/	8 8										8.	Other X
Sampler's Signature A Blad	Sampler's Printed Name, Cash Bleier		₹	\જે ફ	\\&\\	\ê <u>`</u> \$\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>	\ <u>\. \. \. \. \. \. \. \. \. \. \. \. \. \</u>	(F) 18/2 (F)	<u>/_</u> ,	/						/ AL		NARKS/ DESCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE SAMPI ONLY LAB ID DATE	TIME MATRIX																		
MW-12	05/30/18	10:20 am GW	3	X															<u>Viàl</u>	
MW-13	05/30/18	10:30 am GW	3	Х															Viels	
MW-14	05/30/18	1:52 am GW	3	Х															Va12	
MW-15	05/30/18	1:35am GW	3	X															wals	
Mw-16	05/30/18	9:20 am GW	3	X														2	Ma(
MW-17	US/30/1X	10:00 am GW	3	X																
MW-18	05/30/18	12:30 pm GW	3	X														ሜν	in (S	
MW-20	(25/30/18	10:45am (94)	3	Х						}									ials	
G-1	05/30/18	9:24 am GW	3	X								Ì					Į		كاءً	
G-Z	05/30/18	9113 am GW	3	X		T	ヿ												Wals	
DQ-1		11:00 gm GW	3	X					Î									3	A17/12	
SPECIAL INSTRUCTIONS/COMMENTS	<u> </u>		·		านต	NARO	UND	REQUI	REME	NTS	T	REPO	RT RE	QUIRE	EMENT	——→ 'S	T	INV	ICE INFO	ORMATION
Motats	•								APPLY)		l	_ I. Resul					1			
•													-	Summa	aries		PO #			
	•					. 1 day . . 4 day .	V 5	day day	3 day			-			s require	ď)	\perp			
									laya-No S	Surcherge	»l	_ III. Resu	rits + Q(C and Ci	alibratio	1	BILL	TO:		
					REQUE	ESTED	REPO	RT DAT	E		1	Summa		ion Dans	ant suiths t	Raw Date				
See QAPP								· ·			In	5 D	E(£/	در براد مرزن کر	MIN POL				
STATE WHERE SAMPLES WERE COL	LECTED NEW YORK				 						┤~``	Edata	Ž	Yes		No				
RELINQUISHED BY						F	RECEIV	/ED BY			 	RE	 -	JISHED			T	-	RECEIVE	D BY
Signature A Signature	Signature Signature Signature Signature					3	_				Signat	ure					Signa	ture		
					Printed N							d Name						ed klasses		
					Firm						Firm			- <u>F</u>	₹18	05	029	•	5	
			Data/Time					Date/Time Bergmann Associates, Incorporated Gowands												
Date/Time 5/31/2018 1/00 7 Date/Time 5/31/18/1/007 Dete/Time					33	-					Date	H160		-						

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 5 51502

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 3 OF 3

Project Name Gowarda	Project I	Project Number 06974-91					ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Managor C. Bleier	Report 0				PRE	SERVA	TIVE	I															_
Compeny/Address Bergmann					NERS				\mathcal{T}	$\overline{/}$	-	./	\mathcal{T}			7	$\overline{}$				_/	Preservative Key 0. NONE 1. HCL 2. HNO3 3. H2SO4	-
280 E Broad S	L, Suite	200			Į Ž		/		/	/		/ 3		/	/		/	/			/	4. NAON	
	604	•			OF CONTAINERS	/) 3)	/ \$ /	/ &/.		/ /	8 7 8 8 8 8 8	THE CONTROLL OF THE PARTY OF TH	' /	' /	/ /	/ /	/ /	/ /	/ /	′	5. Zn. Acetate 6. MeOH 7. NaHSO ₄	
585-498-7950	Cbl	eiere berg	mannpc.	Com	NUMBER	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			PESTICIDES		METALS. TO	8 3	8									8. Other X	
Sempler's Signature Al Black	- Sample	r's Printed Name.	er v		ž	\જેૄ૽ૡ૾	<i>\&</i>	ૢૺૺૺૹૢ૽ૺૺૺ		\2 ⁵ &	S SEE	14.3				_		_		<u>/ ^</u>		REMARKS/ ATE DESCRIPTION	
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID		PLING TIME	MATRIX																			
DRZ		05/30/18	10:15am		3	X											,			31	rials	1	
DQ-3			10:00 am	GW	3	X															<u> ۷,7/2</u>		
DR-4	_	05/30/18	9:42 am	GW	3	X													<u>l</u>	3	vial?	<u> </u>	
Mw-X	i	05/30/18	Willam		3	X														1	V,W12		
Egu. Blank		05/30/18	12:30 pm	GW	3	X														31	vials		
		65/30/1X	:	616	3	*													<u></u>				
		05/30/16		64	3	×	(B)	12,8	K														
		05/3c/18	B VVR	GW)	3	*	517	UN.															
		05/30/18	5/3/10	GW	3	X																	
		65/30/18	•	(qu)	3	X																	
		05/30/18		atv	3	X																	
SPECIAL INSTRUCTIONS/COMMENTS							TI	JRNAF	OUND	REQU	IREME	NTS	Î.	REP	ORT R	EQUIR	EMEN	rs		INV	OICE I	NFORMATION	
Metals									H (SURC				<u> </u>	_ I. Resi	ults Only	,							
•							<u> </u>	1 de	y 2	day	3 day	,	-	-		C Summ		wn.	PO	*			_
								4 da Stan	y 5 dard (10 b	day usinoss	days-No:	Surcherç	(o)			OC and C			BiL	L TO:			
							REQ	UESTE	D REPO	RT DAT	TE			Summ		rtion Rep		D D-					
							-						$\frac{1}{I}$						2140				
See OAPP							-						⊣ ~′	r D W	14C	LYes	46.5	•	-				_
STATE WHERE SAMPLES WERE COL	////	W YOCK	1				<u> </u>						+					NO.	-		prot	IVED BY	
RELINQUISHED BY	, \	VED BY	REI	LINQUISHED	BT				RECEN	, EU B	·			r	ICUNU	UISHEI	וטע				HEVE		
	Signature Ju	hif	Signature				Signat	ture					Signa						Ť	nature			
	Printed Name CANIZ	Thate	Printed Name				↓	d Name						d Name						ted Name -			
Firm Bersynamy Firm As Firm						Films						Date/Time R18050							ı	5	·		
Date/Time 5/31/201X 11/07	Date/Time 5731/	18/1407	Date/Time				Date/1	Пте					Date/	Time		Berg	mann A	ssoci	ites, Inc	orporate		1911 1 99 1	
Distribution: White - Lab Copy; Yellow - Return	to Originator					10 of	f 63															ΙÞ	

Cooler Receipt and Preservation Check Form

(AL				•							_ ,				
Project/Clie	ent_Berg	smann Assc.			Fold	er Nur	mber_				`_				
Cooler receive	ed on 5/31	118	by: D	h	_	COU	RIER:	ALS	UPS	FEDE	EX VE	LOCIT	Y CLAE	NI	
1 Were Cu	stody seals o	n outside of coole	r?	1	Y &	5a	Perch	lorate :	samples	have re	equired h	eadspac	ce?	Y N	NA.
2 Custody	papers prop	erly completed (in	k, sign	ed)?	& N	5b	Did Y	OA via	ls, Alk,	or Sulfi	de have s	sig* bu l	bbles?	Y N	l NA
3 Did all be	ottles arrive in	n good condition	(unbrol	ken)?	& N	6	When	e did the	bottles	origina	ate?	AL S	ZROC _	CLIE	NT
	Wet De Dr	y Ice Gel packs	pre	sent?	Ø N	7	Soil V	OA rec	eived a	s: E	Bulk 1	Encore	5035s	et 🕥	<u>A</u>
						L									
3. Temperatur	e Readings	Date: 5731	, 0	_Time	1646		ID:	R#7	IR#9		From	: Temp	Blank	Samp	le Bottle
Observed Te		5,7 °											<u></u>		
Correction F		10.5													
Corrected Te	- , ,	517													
· - · · · · · · · · · · · · · · · · · ·	Type of bottle									**					
Within 0-6°0		⊗ N		Y	N		N	Y	N	Y	N	Y	N	Y	N
	e samples fro			Y			N	Y	N	Y	N	Y			N
		e, note packing/ic					Ice mel		•		describe		•	ame D	ay Rule
&Client A	Approval to	Run Samples:								-оп (Jient no	ипеа ву	y:		
	held in stora				by <mark>ഉ∕</mark> №			' Y at [ميكار	İ					
5035 sample	es placed in s	storage location:		1	by	01	n	at _							
11. V 12. V 13. A	Were correct of Were 5035 via Air Samples:	labels and tags agreentainers used for als acceptable (no Cassettes / Tubes	r the te extra la Intact	sts ind abels, with N	licated? not leakir MS? C	ng)? anisters	Pressu				NO NO Bags Ir		ot Addoo	N/A)	Final
pН	Lot of test paper	Reagent	Presei Yes	No No	Lot Re	ceivea		Exp	Samp Adjus		Vol. Adde	- 1	ot Added	1	pH /
≥12		NaOH													
<u>≤2</u> <u>≤2</u>		HNO ₃		<u> </u>							_				$-\!\!\!/-$
<u>≤</u> 2 <4		H ₂ SO ₄ NaHSO ₄		1	 										$\overline{}$
5-9		For 608pest	 	1	No=No	tify for	3day				1				
Residual		For CN,			lf+, cor										
Chlorine		Phenol, 625, 608pest, 522			Na ₂ S ₂ O ₃ CN), aso									/	
(-)		Na ₂ S ₂ O ₃		-				-					-/		
	<u>L</u>	ZnAcetate	-	-			,		**VO/	As and 16	64 Not to	be tested	before anal	ysis.	amentivas
		HCl	**	**	41.	15120	,				t just repre			ncar pres	SCIVALIVES
		// /	7	0.10	4 4 4										
Bottle lot	numbers: Il Discrepanc	4-060-003 ies/ Other Comm	ents:	749-	002							-/-			
s.p.aa.	OO Comma	ats on C.c.C	•••••								11		CLRES	BU	LK
₽ - 3								1	11 1		, 4		DO	FLI	TC
								Rei	1	ap Bi	luch		HPROI) HG	FB
									not	in B	300.		HTR		3541
									•	,			PH	SUI	
		-											SO3		RRS
													ALS	RE	<u>v</u>
	econdary r ondary Rev	eviewed by: iew:	60			*sign	ificant	air bubl	oles: V	OA > 5	-6 mm :	WC >1	in. diam	eter	
	-					_									

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.doc -

· 11 of 63

3/12/18

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Service Request: R1805029

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

Sample Name: MW-01 Date Collected: 05/30/18

Lab Code: R1805029-001 **Date Received:** 05/31/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-02 Date Collected: 05/30/18

Lab Code: R1805029-002 **Date Received:** 05/31/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-03 Date Collected: 05/30/18

Lab Code: R1805029-003 Date Received: 05/31/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-04 Date Collected: 05/30/18

Lab Code: R1805029-004 Date Received: 05/31/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-05 Date Collected: 05/30/18

Lab Code: R1805029-005 Date Received: 05/31/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
8260C KRUEST

Printed 6/7/2018 11:46:24 AM Superset Reference:18-0000468196 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

Sample Name: MW-06

Lab Code: R1805029-006

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-07

Lab Code: R1805029-007

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-08

Lab Code: R1805029-008

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-09

Lab Code: R1805029-009

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-10

Lab Code: R1805029-010

Sample Matrix: Water

Analysis Method

8260C

Date Collected: 05/30/18

Service Request: R1805029

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

Sample Name: MW-11

Lab Code: R1805029-011

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-12

Lab Code: R1805029-012

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-13

Lab Code: R1805029-013

Water

Sample Matrix:

Analysis Method

8260C

Sample Name: MW-14

Lab Code: R1805029-014

Sample Matrix: Water

Analysis Method

8260C

Sample Name: MW-15

Lab Code: R1805029-015

Sample Matrix: Water

Analysis Method

8260C

Se

Service Request: R1805029

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

KRUEST

Analyzed By

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By Analyzed By

KRUEST

Superset Reference:18-0000468196 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Project:**

Water

MW-16 **Date Collected:** 05/30/18

Extracted/Digested By

Service Request: R1805029

Analyzed By

Lab Code: R1805029-016 **Date Received:** 05/31/18

Sample Matrix: Water

Sample Name:

Analysis Method

Analyzed By Analysis Method Extracted/Digested By

8260C **KRUEST**

Sample Name: MW-17 **Date Collected:** 05/30/18

Lab Code: R1805029-017 **Date Received:** 05/31/18 Sample Matrix:

8260C **KRUEST**

Sample Name: MW-18 **Date Collected:** 05/30/18

Lab Code: R1805029-018 **Date Received:** 05/31/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

KRUEST 8260C

Sample Name: MW-20 **Date Collected:** 05/30/18

Lab Code: R1805029-019 **Date Received:** 05/31/18 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

8260C **KRUEST**

Sample Name: G-1 **Date Collected:** 05/30/18

R1805029-020 Lab Code: **Date Received:** 05/31/18 Sample Matrix: Water

Analyzed By Extracted/Digested By Analysis Method 8260C **KRUEST**

Printed 6/7/2018 11:46:24 AM Superset Reference:18-0000468196 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Project:**

Sample Name: G-2

Lab Code: R1805029-021

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-1

Lab Code: R1805029-022

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-2

Lab Code:

R1805029-023

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-3

Lab Code: R1805029-024

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-4

R1805029-025 Lab Code:

Water Sample Matrix:

Analysis Method

8260C

Extracted/Digested By

Date Collected: 05/30/18

Date Received: 05/31/18

Analyzed By

KRUEST

Service Request: R1805029

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/30/18

Date Received: 05/31/18

Extracted/Digested By

Analyzed By

KRUEST

Printed 6/7/2018 11:46:24 AM

Superset Reference:18-0000468196 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

Sample Name: MW-X

Lab Code: R1805029-026

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: Equ Blank Date Collected: 05/30/18

Lab Code: R1805029-027 **Date Received:** 05/31/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: Trip Blank Date Collected: 05/30/18

Lab Code: R1805029-028 **Date Received:** 05/31/18 **Sample Matrix:** Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Service Request: R1805029

Date Collected: 05/30/18

Date Received: 05/31/18

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
,	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
-	
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:30

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-01
 Units: ug/L

 Lab Code:
 R1805029-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	190	10	2	06/05/18 04:04	
trans-1,2-Dichloroethene	10 U	10	2	06/05/18 04:04	
Tetrachloroethene (PCE)	10 U	10	2	06/05/18 04:04	
1,1,1-Trichloroethane (TCA)	10 U	10	2	06/05/18 04:04	
Trichloroethene (TCE)	920 D	50	10	06/05/18 16:45	
Vinyl Chloride	10 U	10	2	06/05/18 04:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 04:04	
Dibromofluoromethane	98	89 - 119	06/05/18 04:04	
Toluene-d8	99	87 - 121	06/05/18 04:04	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:30

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-02
 Units: ug/L

 Lab Code:
 R1805029-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 16:24	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 16:24	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 16:24	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 16:24	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/04/18 16:24	
Dibromofluoromethane	98	89 - 119	06/04/18 16:24	
Toluene-d8	101	87 - 121	06/04/18 16:24	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:15

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-03
 Units: ug/L

 Lab Code:
 R1805029-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 17:08	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 17:08	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 17:08	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 17:08	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	06/04/18 17:08	
Dibromofluoromethane	96	89 - 119	06/04/18 17:08	
Toluene-d8	99	87 - 121	06/04/18 17:08	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:00

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: MW-04 Units: ug/L

Lab Code: R1805029-004 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 17:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 17:30	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 17:30	
Vinvl Chloride	5.0 U	5.0	1	06/04/18 17:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 17:30	
Dibromofluoromethane	98	89 - 119	06/04/18 17:30	
Toluene-d8	100	87 - 121	06/04/18 17:30	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 05/30/18 10:30 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

MW-05 **Sample Name:** Units: ug/L Lab Code: R1805029-005

Basis: NA

Service Request: R1805029

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 17:52	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 17:52	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 17:52	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 17:52	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 17:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/04/18 17:52	
Dibromofluoromethane	96	89 - 119	06/04/18 17:52	
Toluene-d8	99	87 - 121	06/04/18 17:52	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 10:15

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-06
 Units: ug/L

 Lab Code:
 R1805029-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	77	5.0	1	06/04/18 18:14	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:14	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 18:14	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 18:14	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 18:14	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 18:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 18:14	
Dibromofluoromethane	100	89 - 119	06/04/18 18:14	
Toluene-d8	100	87 - 121	06/04/18 18:14	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 09:45

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-07
 Units: ug/L

 Lab Code:
 R1805029-007
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:35	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:35	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 18:35	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 18:35	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 18:35	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 18:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/04/18 18:35	
Dibromofluoromethane	99	89 - 119	06/04/18 18:35	
Toluene-d8	100	87 - 121	06/04/18 18:35	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 05/30/18 12:01 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

MW-08 **Sample Name:** Units: ug/L Lab Code: R1805029-008

Basis: NA

Service Request: R1805029

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:57	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 18:57	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 18:57	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 18:57	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 18:57	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 18:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/04/18 18:57	
Dibromofluoromethane	100	89 - 119	06/04/18 18:57	
Toluene-d8	102	87 - 121	06/04/18 18:57	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1805029 **Date Collected:** 05/30/18 11:55 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

MW-09 **Sample Name:** Units: ug/L Lab Code: R1805029-009 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:19	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:19	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 19:19	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 19:19	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 19:19	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 19:19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/04/18 19:19	
Dibromofluoromethane	100	89 - 119	06/04/18 19:19	
Toluene-d8	102	87 - 121	06/04/18 19:19	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:45

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R1805029-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:41	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 19:41	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 19:41	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 19:41	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 19:41	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 19:41	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 19:41	
Dibromofluoromethane	99	89 - 119	06/04/18 19:41	
Toluene-d8	101	87 - 121	06/04/18 19:41	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:15

Service Request: R1805029

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: MW-11 Units: ug/L

Lab Code: R1805029-011 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	59	25	5	06/05/18 04:26	
trans-1,2-Dichloroethene	25 U	25	5	06/05/18 04:26	
Tetrachloroethene (PCE)	25 U	25	5	06/05/18 04:26	
1,1,1-Trichloroethane (TCA)	25 U	25	5	06/05/18 04:26	
Trichloroethene (TCE)	430	25	5	06/05/18 04:26	
Vinyl Chloride	25 U	25	5	06/05/18 04:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 04:26	
Dibromofluoromethane	97	89 - 119	06/05/18 04:26	
Toluene-d8	100	87 - 121	06/05/18 04:26	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 10:20

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-12
 Units: ug/L

 Lab Code:
 R1805029-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	73	5.0	1	06/04/18 20:03	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 20:03	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 20:03	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 20:03	
Trichloroethene (TCE)	27	5.0	1	06/04/18 20:03	
Vinyl Chloride	5.0 11	5.0	1	06/04/18 20:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 20:03	
Dibromofluoromethane	95	89 - 119	06/04/18 20:03	
Toluene-d8	99	87 - 121	06/04/18 20:03	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 05/30/18 10:30 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

MW-13 **Sample Name:** Units: ug/L Lab Code:

R1805029-013 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 23:42	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 23:42	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 23:42	
Vinyl Chloride	5.0 []	5.0	1	06/04/18 23:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/04/18 23:42	
Dibromofluoromethane	99	89 - 119	06/04/18 23:42	
Toluene-d8	101	87 - 121	06/04/18 23:42	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 09:52

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R1805029-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.8	5.0	1	06/05/18 00:04	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:04	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 00:04	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 00:04	
Trichloroethene (TCE)	17	5.0	1	06/05/18 00:04	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 00:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/05/18 00:04	
Dibromofluoromethane	99	89 - 119	06/05/18 00:04	
Toluene-d8	102	87 - 121	06/05/18 00:04	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 09:35

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-15
 Units: ug/L

 Lab Code:
 R1805029-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:26	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:26	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 00:26	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 00:26	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 00:26	
Vinvl Chloride	5.0 U	5.0	1	06/05/18 00:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 00:26	
Dibromofluoromethane	98	89 - 119	06/05/18 00:26	
Toluene-d8	100	87 - 121	06/05/18 00:26	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 09:20

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R1805029-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	41	5.0	1	06/05/18 00:47	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 00:47	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 00:47	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 00:47	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 00:47	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 00:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 00:47	
Dibromofluoromethane	97	89 - 119	06/05/18 00:47	
Toluene-d8	99	87 - 121	06/05/18 00:47	

Analytical Report

Client: Bergmann Associates, Incorporated

> **Date Collected:** 05/30/18 10:00 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

MW-17 **Sample Name:** Units: ug/L Lab Code:

R1805029-017 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	85	5.0	1	06/05/18 01:09	
trans-1,2-Dichloroethene	7.5	5.0	1	06/05/18 01:09	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 01:09	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 01:09	
Trichloroethene (TCE)	20	5.0	1	06/05/18 01:09	
Vinvl Chloride	5.0 U	5.0	1	06/05/18 01:09	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/05/18 01:09	
Dibromofluoromethane	96	89 - 119	06/05/18 01:09	
Toluene-d8	100	87 - 121	06/05/18 01:09	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 12:30

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-18
 Units: ug/L

 Lab Code:
 R1805029-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:31	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 01:31	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 01:31	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 01:31	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 01:31	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/05/18 01:31	
Dibromofluoromethane	98	89 - 119	06/05/18 01:31	
Toluene-d8	101	87 - 121	06/05/18 01:31	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 10:45

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 MW-20
 Units: ug/L

 Lab Code:
 R1805029-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 01:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 01:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 01:53	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 01:53	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 01:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/05/18 01:53	
Dibromofluoromethane	98	89 - 119	06/05/18 01:53	
Toluene-d8	100	87 - 121	06/05/18 01:53	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1805029 **Date Collected:** 05/30/18 09:24 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

G-1 **Sample Name:** Units: ug/L

Lab Code: R1805029-020 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	34	5.0	1	06/05/18 02:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 02:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 02:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 02:15	
Trichloroethene (TCE)	6.3	5.0	1	06/05/18 02:15	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 02:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/05/18 02:15	
Dibromofluoromethane	97	89 - 119	06/05/18 02:15	
Toluene-d8	100	87 - 121	06/05/18 02:15	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91 **Date Collected:** 05/30/18 09:13

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: G-2 Units: ug/L

Lab Code: R1805029-021 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	50	5.0	1	06/05/18 02:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 02:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 02:37	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 02:37	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 02:37	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 02:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 02:37	
Dibromofluoromethane	97	89 - 119	06/05/18 02:37	
Toluene-d8	100	87 - 121	06/05/18 02:37	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:00

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: DR-1 Units: ug/L

Lab Code: R1805029-022 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	210	50	10	06/05/18 04:48	
trans-1,2-Dichloroethene	50 U	50	10	06/05/18 04:48	
Tetrachloroethene (PCE)	50 U	50	10	06/05/18 04:48	
1,1,1-Trichloroethane (TCA)	50 U	50	10	06/05/18 04:48	
Trichloroethene (TCE)	1100	50	10	06/05/18 04:48	
Vinyl Chloride	50 U	50	10	06/05/18 04:48	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	06/05/18 04:48	
Dibromofluoromethane	95	89 - 119	06/05/18 04:48	
Toluene-d8	99	87 - 121	06/05/18 04:48	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 10:15

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: DR-2 Units: ug/L

Lab Code: R1805029-023 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	97	5.0	1	06/05/18 02:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 02:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 02:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 02:59	
Trichloroethene (TCE)	31	5.0	1	06/05/18 02:59	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 02:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 02:59	
Dibromofluoromethane	98	89 - 119	06/05/18 02:59	
Toluene-d8	100	87 - 121	06/05/18 02:59	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 10:00

Sample Matrix: Water Date Received: 05/31/18 16:07

 Sample Name:
 DR-3
 Units: ug/L

 Lab Code:
 R1805029-024
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	86	5.0	1	06/05/18 03:21	
trans-1,2-Dichloroethene	9.4	5.0	1	06/05/18 03:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 03:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 03:21	
Trichloroethene (TCE)	30	5.0	1	06/05/18 03:21	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 03:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/05/18 03:21	
Dibromofluoromethane	97	89 - 119	06/05/18 03:21	
Toluene-d8	99	87 - 121	06/05/18 03:21	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 09:42

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: DR-4 Units: ug/L

Lab Code: R1805029-025 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.2	5.0	1	06/05/18 03:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 03:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 03:42	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 03:42	
Trichloroethene (TCE)	24	5.0	1	06/05/18 03:42	
Vinyl Chloride	5.0 U	5.0	1	06/05/18 03:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/05/18 03:42	
Dibromofluoromethane	97	89 - 119	06/05/18 03:42	
Toluene-d8	101	87 - 121	06/05/18 03:42	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 11:00

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name: MW-X Units: ug/L

Lab Code: R1805029-026 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	54	5.0	1	06/04/18 16:46	
trans-1,2-Dichloroethene	10	5.0	1	06/04/18 16:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 16:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 16:46	
Trichloroethene (TCE)	370 D	13	2.5	06/04/18 20:25	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 16:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 16:46	
Dibromofluoromethane	96	89 - 119	06/04/18 16:46	
Toluene-d8	101	87 - 121	06/04/18 16:46	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91 **Date Collected:** 05/30/18 12:30

Sample Matrix: Water Date Received: 05/31/18 16:07

Sample Name:Equ BlankUnits: ug/LLab Code:R1805029-027Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:02	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 16:02	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 16:02	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 16:02	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 16:02	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 16:02	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 16:02	
Dibromofluoromethane	95	89 - 119	06/04/18 16:02	
Toluene-d8	100	87 - 121	06/04/18 16:02	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1805029 **Date Collected:** 05/30/18 12:30 Gowanda/06974-91

Sample Matrix: Water **Date Received:** 05/31/18 16:07

Sample Name: Trip Blank Units: ug/L Lab Code: R1805029-028 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 15:41	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 15:41	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 15:41	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 15:41	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 15:41	
Vinyl Chloride	5.0 11	5.0	1	06/04/18 15:41	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/04/18 15:41	
Dibromofluoromethane	96	89 - 119	06/04/18 15:41	
Toluene-d8	99	87 - 121	06/04/18 15:41	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Bergmann Associates, Incorporated Service Request: R1805029

Project: Gowanda/06974-91

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
MW-01	R1805029-001	95	98	99
MW-02	R1805029-002	96	98	101
MW-03	R1805029-003	93	96	99
MW-04	R1805029-004	97	98	100
MW-05	R1805029-005	95	96	99
MW-06	R1805029-006	97	100	100
MW-07	R1805029-007	99	99	100
MW-08	R1805029-008	99	100	102
MW-09	R1805029-009	98	100	102
MW-10	R1805029-010	97	99	101
MW-11	R1805029-011	98	97	100
MW-12	R1805029-012	97	95	99
MW-13	R1805029-013	96	99	101
MW-14	R1805029-014	99	99	102
MW-15	R1805029-015	95	98	100
MW-16	R1805029-016	95	97	99
MW-17	R1805029-017	96	96	100
MW-18	R1805029-018	97	98	101
MW-20	R1805029-019	96	98	100
G-1	R1805029-020	97	97	100
G-2	R1805029-021	98	97	100
DR-1	R1805029-022	94	95	99
DR-2	R1805029-023	98	98	100
DR-3	R1805029-024	96	97	99
DR-4	R1805029-025	98	97	101
MW-X	R1805029-026	97	96	101
Equ Blank	R1805029-027	97	95	100
Trip Blank	R1805029-028	95	96	99
Method Blank	RQ1805466-04	96	100	101
Method Blank	RQ1805467-04	97	98	99
Method Blank	RQ1805500-04	95	96	98
Lab Control Sample	RQ1805466-03	97	100	99
Lab Control Sample	RQ1805467-03	99	103	100
Lab Control Sample	RQ1805500-03	98	101	100
MW-03 MS	RQ1805466-05	100	101	101
MW-03 DMS	RQ1805466-06	101	102	102
DR-1 MS	RQ1805467-05	98	102	100
	1121000107 00	70	102	100

QA/QC Report

Client: Bergmann Associates, Incorporated Service Request: R1805029

Project: Gowanda/06974-91

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85-122	89-119	87-121
DR-1 DMS	RQ1805467-06	97	98	99

QA/QC Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91

Sample Matrix: Water **Service Request:**

R1805029

Date Collected:

05/30/18

Date Received:

05/31/18

Date Analyzed: Date Extracted: 06/4/18 NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: MW-03 **Units:**

ug/L

Lab Code:

Prep Method:

Project:

R1805029-003

Basis:

NA

Analysis Method:

8260C

EPA 5030C

Matrix Spike

Duplicate Matrix Spike

		R	Q1805466-0	5		RQ1805466	-06			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	5.0 U	51.3	50.0	103	52.6	50.0	105	77-127	3	30
trans-1,2-Dichloroethene	5.0 U	50.8	50.0	102	52.9	50.0	106	73-118	4	30
Tetrachloroethene (PCE)	5.0 U	50.7	50.0	101	50.9	50.0	102	72-125	<1	30
1,1,1-Trichloroethane (TCA)	5.0 U	52.3	50.0	105	55.1	50.0	110	74-127	5	30
Trichloroethene (TCE)	5.0 U	49.9	50.0	100	52.7	50.0	105	74-122	6	30
Vinyl Chloride	5.0 U	50.1	50.0	100	51.4	50.0	103	74-159	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Bergmann Associates, Incorporated

Gowanda/06974-91

Sample Matrix: Water **Service Request:**

R1805029

Date Collected:

05/30/18

Date Received:

05/31/18

Date Analyzed: Date Extracted:

Units:

Basis:

06/5/18 NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: DR-1

ug/L NA

Lab Code:

Project:

R1805029-022

Analysis Method: Prep Method:

8260C

EPA 5030C

Duplicate Matrix Spike

		R	Q1805467-0	5		RQ1805467	-06			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	210	723	500	103	689	500	96	77-127	5	30
trans-1,2-Dichloroethene	50 U	522	500	104	505	500	101	73-118	3	30
Tetrachloroethene (PCE)	50 U	503	500	101	487	500	97	72-125	3	30
1,1,1-Trichloroethane (TCA)	50 U	533	500	107	509	500	102	74-127	5	30
Trichloroethene (TCE)	1100	1650	500	101	1590	500	87	74-122	4	30
Vinyl Chloride	50 U	497	500	99	482	500	96	74-159	3	30

Matrix Spike

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1805029

Project:Gowanda/06974-91Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1805466-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 12:47	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 12:47	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 12:47	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 12:47	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 12:47	
Vinyl Chloride	5.0 U	5.0	1	06/04/18 12:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	06/04/18 12:47	
Dibromofluoromethane	100	89 - 119	06/04/18 12:47	
Toluene-d8	101	87 - 121	06/04/18 12:47	

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1805029

Project:Gowanda/06974-91Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1805467-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:20	
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/04/18 23:20	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/04/18 23:20	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/04/18 23:20	
Trichloroethene (TCE)	5.0 U	5.0	1	06/04/18 23:20	
Vinyl Chloride	5.0 []	5.0	1	06/04/18 23:20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/04/18 23:20	
Dibromofluoromethane	98	89 - 119	06/04/18 23:20	
Toluene-d8	99	87 - 121	06/04/18 23:20	

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1805029

Project:Gowanda/06974-91Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1805500-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 11:51	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	06/05/18 11:51	
Tetrachloroethene (PCE)	5.0 U	5.0	1	06/05/18 11:51	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	06/05/18 11:51	
Trichloroethene (TCE)	5.0 U	5.0	1	06/05/18 11:51	
Vinyl Chloride	5.0 []	5.0	1	06/05/18 11:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	06/05/18 11:51	
Dibromofluoromethane	96	89 - 119	06/05/18 11:51	
Toluene-d8	98	87 - 121	06/05/18 11:51	

QA/QC Report

Volatile Organic Compounds by GC/MS

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

Sample Matrix: Water

Lab Control Sample Summary

Units:ug/L Basis:NA

Service Request: R1805029

Date Analyzed: 06/04/18

Lab Control Sample

RQ1805466-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	18.0	20.0	90	80-121
trans-1,2-Dichloroethene	8260C	17.7	20.0	89	73-118
Tetrachloroethene (PCE)	8260C	17.6	20.0	88	72-125
1,1,1-Trichloroethane (TCA)	8260C	17.5	20.0	88	75-125
Trichloroethene (TCE)	8260C	17.2	20.0	86	74-122
Vinyl Chloride	8260C	17.0	20.0	85	74-159

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91

Sample Matrix: Water

Service Request: R1805029 **Date Analyzed:** 06/04/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

> Units:ug/L Basis:NA

Lab Control Sample

RQ1805467-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.4	20.0	102	80-121
trans-1,2-Dichloroethene	8260C	20.1	20.0	101	73-118
Tetrachloroethene (PCE)	8260C	19.2	20.0	96	72-125
1,1,1-Trichloroethane (TCA)	8260C	20.3	20.0	102	75-125
Trichloroethene (TCE)	8260C	19.5	20.0	98	74-122
Vinyl Chloride	8260C	20.1	20.0	100	74-159

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/06974-91 Date Analyzed: 06/05/18

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R1805029

Lab Control Sample

RQ1805500-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	18.0	20.0	90	80-121
trans-1,2-Dichloroethene	8260C	18.3	20.0	91	73-118
Tetrachloroethene (PCE)	8260C	17.3	20.0	87	72-125
1,1,1-Trichloroethane (TCA)	8260C	17.8	20.0	89	75-125
Trichloroethene (TCE)	8260C	17.9	20.0	89	74-122
Vinyl Chloride	8260C	17.6	20.0	88	74-159

AUGUST 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

GROUNDWATER CHARACTERIZATION REPORT – AUGUST 2018

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com

Issued: October 10, 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of WorkSite Background	4 4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	5
2.1 2.2	Well Maintenance Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	8 8
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	11

Tables

Table 1: Groundwater Elevations and Field Measurements – August 2018

Table 2: August 2018 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary

Table 4: Percent Reduction in Total Groundwater VOCs

Figures

Figure 1: August 2018 Groundwater Contour Map

Figure 2: August 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

Figure 3: August 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations

Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations

Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations

Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations

Chart 6: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - August 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the August 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on August 22, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 19 of 21 site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), two (2) were not sampled. These monitoring wells are MW-19R and MW-21. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site. Monitoring Wells MW-19R and MW-20 have not been sampled due to the fact that they have been paved over as first reported by Bergmann in the August 2017 sampling report.

The prior groundwater sampling event was conducted in May 2018 and included analysis of groundwater samples from 19 of 21 site-related groundwater monitoring wells and six (6) of seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

EVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the August 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-19R and MW-21. MW-19R and MW-21, both located on Torrance Place, were still paved over as originally reported in the August 2017 summary report. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the August 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 19 of the 21 site-related groundwater monitoring wells for laboratory analysis on August 23, 2018. Depth to groundwater measurements were obtained from 26 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via bailing with dedicated bailers for each individual well. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample was not taken this quarter but a duplicate sample will be taken during the next sampling event (November 2018).

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSDOH certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2002 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for August 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on August 22, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements - August 2018.

The August 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The August 2018 depths to groundwater range from 6.00 ft below top of casing (btoc) at MW-2, to 13.45 ft btoc at MW-7. The average depth to groundwater at the wells measured was 9.84 ft btoc.

The site-wide average depth to water table increased by approximately 0.35 ft when compared to the May 2018 sampling event. This increase in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and August 2018 Groundwater Contours are presented on Figure 1 – August 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 19 monitoring wells and seven (7) recovery wells collected August 22, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The August 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from eight (8) of the 19 sampled monitoring wells. Analytical results are summarized in Table 2 – August 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report August 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from eleven (11) of the sampled monitoring wells.

Groundwater samples from eight (8) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,190 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in four (4) of the 19 monitoring well groundwater samples increased when compared to the May 2018 sampling event while concentrations in four (4) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 78.0% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 72.1% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the August 2018 sampling event was 1,190 parts per billion (ppb), an increase from the May 2018 value of 1,110 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 54.9%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the August 2018 sampling event is 282 ppb, a decrease from the May 2018 value of 489 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 93.9%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the August 2018 sampling event is 25 ppb, a decrease from the May 2018 value of 100 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99.8%.

Monitoring well MW-14 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the August 2018 sampling event is 22.3 ppb, a decrease from the May 2018 value of 22.8 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 92.9%.

Monitoring well MW-15 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the August 2018 sampling event was 6.5 ppb, which was an increase from the August 2018 sampling event, which was Non-detect (ND). MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased by 99.1%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-7, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible.

It was observed that the wells were likely paved over by a re-sealing operation. The wells were still inaccessible and paved over during the August 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – August 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R, but MW-19R is unable to be sampled because it is paved over. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the April 2018 sampling event, all of the seven (7) recovery wells were sampled.

The April 2018 analytical results indicate detection of three (3) chlorinated VOCs in recovery well samples: TCE, Cis-DCE, and TRANS. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current sampling event is about 28.9% relative to concentrations prior to GTS activation in 2002. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the August 2018 sampling event is 1,510 ppb, an increase from the May 2018 value of 1,319 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 163.3% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the August 2018 sampling event is 162 ppb, an increase from the May 2018 value of 128 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 70.5% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the August 2018 sampling event is 87 ppb, a decrease from the May 2018 value of 125.4 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 43% since activation of the GTS.

Recovery well DR-4 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the August 2018 sampling event is 48 ppb, an increase from the May 2018 value of

31.2 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 94.4% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the August 2018 sampling event was 77 ppb, an increase from the May value of 40.3 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 61.7% since activation of the GTS.

Recovery well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the August 2018 sampling event was 68 ppb, an increase from the May 2018 value of 50 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 76.0% since activation of the GTS.

Recovery well G-3 increased in targeted chlorinated VOCs relative to the last time it was sampled, which was November 2016. The total VOC concentration at G-3 for the August 2018 sampling event was 322 ppb, an increase from the November 2016 value of 293 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 20.1% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – August 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens.

Laboratory analytical results are included in Appendix A.

AUGUST 2018 SAMPLING REPORT

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center. Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

The current sampling event results represent a decrease of total VOCs at DR-3 when compared to the April 2018 sampling event.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,190 ppb) show an increase from the May 2018 sampling event (1,110 ppb). The current total VOCs at MW-11 (282 ppb) shows a decrease from the May 2018 sampling event (489 ppb). The current total VOCs at DR-1 (1,510 ppb) show an increase from the May 2018 sampling event (1,319 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (25 ppb) show a decrease from the May 2018 sampling event (100 ppb). The current total VOCs at recovery well DR-2 (162 ppb) show an increase from the May 2018 sampling event (128 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (22.3 ppb) show a decrease from the May 2018 sampling event (22.8 ppb). The current total VOCs at recovery well DR-3 (87 ppb) show a decrease from the May 2018 sampling event (125.4 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (6.5) show an increase from the May 2018 sampling event (non-detect). The current total VOCs at recovery well DR-4 (48 ppb) show an increase from the May 2018 sampling event (31.2 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (265) show an increase from the May 2018 sampling event (112.5). The current total VOCs at recovery well G-1 (77 ppb) show an increase from the May 2018 sampling event (40.3 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC of 68 ppb, which shows an increase from the May 2018 sampling event (50 ppb). The May 2018 total VOCs of MW-7 (ND) showed no change from the April 2018 sampling event (5.8 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (265) showed an increase from the May 2018 sampling event (112.5). The current total VOCs at recovery well G-3 was 322. Well G-3 was not sampled during the May 2018 sampling event.

AUGUST 2018 SAMPLING REPORT

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the May 2018 and August 2018 sampling events due to the fact that they were both paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. The following notes are a summary of the meeting held on June 22, 2018 between Bergmann, DASNY, and the NYSDEC.

- Bergmann submitted an Additional Subsurface Investigation Plan (ASIP) consisting of additional soil borings to locate the source of contamination on site.
- As part of the ASIP, soils will be sampled for the same VOCs that are consistently present in groundwater samples to determine if the contamination is residual in the soils on site.
- Details of the proposed additional investigation are outlined in the Additional Subsurface Investigation Plan dated July 2018 and submitted to DASNY on July 23, 2018.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for November 2018. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

AUGUST 2018 SAMPLING REPORT 11

TABLES

Table 1 Groundwater Elevations and Field Measurements August 2018

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

i										
	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.20	6.00	6.40	7.05	12.60	13.40	13.45	10.41	7.20	6.80
Groundwater Elevation	772.03	772.08	771.98	771.38	766.01	767.70	767.49	770.92	775.41	773.22
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	9.82	11.15	9.90	8.73	1.35	9.48	8.35	7.24	13.76	12.62
Minimum Purge Volume (gal)	1.6	1.82	1.6	1.4	0.2	1.5	1.4	1.2	2.2	2.1
3 Volumes	4.8	5.45	4.8	4.3	0.7	4.6	4.1	3.5	6.7	6.2
Actual volume purged	4.8	5.45	NS	4.3	1.4	4.6	4.1	NS	NS	NS
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = -0.34 '	Flush = -0.24 '	Stickup=2.17	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	7.30	7.41	7.48	12.02	10.83	13.10	13.25	9.02	NA	9.70	NA
Groundwater Elevation	771.28	771.09	770.91	766.41	767.55	767.33	766.60	767.37	NA	768.34	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	8.18	9.97	9.92	6.13	8.97	10.16	NA	15.98	NA	5.05	NA
Minimum Purge Volume (gal)	1.3	1.6	1.6	1.0	1.5	1.7	NS	2.6	NA	0.8	NA
3 Volumes	4.0	4.9	4.9	3.0	4.4	5.0	NS	7.8	NA	2.5	NA
Actual volume purged	4.0	4.9	NS	3.0	4.4	5.0	NS	7.8	NA	2.5	NA
Comments	Flush = $-0.23'$	Flush = -0.35 '	Flush = -0.48 '	Flush = $-0.39'$	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

	i e						
	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	8.14	10.56	11.82	11.74	11.87	11.81	10.25
Groundwater Elevation	771.52	769.37	767.96	767.90	767.96	767.91	769.17
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND						
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	9.92	7.50	8.63	7.95	11.11	9.17	7.90
Minimum Purge Volume (gal)	6.48	4.90	5.64	5.19	7.25	5.98	5.16
3 Volumes	19.43	14.69	16.91	15.57	21.76	17.94	15.48
Actual volume purged	19.43	14.69	16.91	15.57	21.76	17.94	15.48
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over a few size.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	920	930	5.0
CIS	190	260	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	1,110	1,190	

Monitoring Well MW-2

Sampling Events

9				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3

Sampling Events

Camping				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Monitoring Well MW-4

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-6

Sampling Events

Sampling L	761113			
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		77	84	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	77	84	

Page 1 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

Camping	LVOING			
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 2 of 6

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Monitoring Well MW-10

Sampling Events

<u> </u>				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Monitoring Well MW-11

Sampling Events

1				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		430	160	5.0
CIS		59	120	5.0
TRANS		ND	2.1	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	489	282	

Monitoring Well MW-12

Sampling Events

Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	27	5.0	5.0
CIS	73	20	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	100	25	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

• ag				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-14

Sampling Events

Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	17	15	5.0
CIS	5.8	7.3	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOC	s 22.8	22.3	

Monitoring Well MW-15

Sampling Events

Camping				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	6.5	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	6.5	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)
Page 3 of 6

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Monitoring Well MW-16

Sampling Events

<u> </u>				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		41	10	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
To	otal VOCs	41	10	

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Monitoring Well MW-17

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		20	45	5.0
CIS		85	220	5.0
TRANS		7.5	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	112.5	265	

Monitoring Well MW-18

Sampling Events

<u> </u>			
Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	April 2018	Aug 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 08/22/2018

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
To	tal VOCs	ND	ND	

Monitoring Well MW-21

Sample Date: NS

Sampling Events

Analyte in ppb	April 2018	Aug 2018	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC	NS	NS	2.0
TCA	NS	NS	5.0
Total VOCs	NS	NS	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		1100	1300	5.0
CIS		219	210	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1319	1,510	

Recovery Well DR-2

Sampling Events

Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	31	32	5.0
CIS	97	130	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	128	162	

Recovery Well DR-3

Sampling Events

<u> </u>				
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		30	24	5.0
CIS		86	63	5.0
TRANS		9.4	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	125.4	87	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 5 of 6

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Recovery Well DR-4

Sampling Events

Analyte in p	pb May 2018	Aug 2018	NYS Guidance Value
TCE	24	29	5.0
CIS	7.2	19	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total V	OCs 31.2	48	

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Sample Date: 08/22/2018

Recovery Well G-1

Sampling Events

Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		6.3	ND	5.0
CIS		34	77	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	40.3	77	

Recovery Well G-2

Sampling Events

Sampling E	VEITIS			
Analyte	in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		50	68	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	50	68	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	Nov 2016	Aug 2018	NYS Guidance Value
TCE		53	52	5.0
CIS		240	270	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	293	322	

Duplicate Blank

Sample Date: 08/22/2018

Sampling Events

			NYS
			Guidance
Analyte	in ppb	Aug 2018	Value
TCE		NS	5.0
CIS		NS	5.0
TRANS		NS	5.0
VC		NS	2.0
TCA		NS	5.0
To	otal VOCs	NS	

Equipment Blank

Sample Date: 08/22/2018

Sampling Events

Analyte in ppb	May 2018	Aug 2018	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 6 of 6

Table 3 Historic Groundwater Analysis Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

MONITORING WELLS

Monitoring	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs				
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Total VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
Well Nulliber	August 2018	May 2018	April 2018	Nov 2017	Aug 2017	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	•					•		(ppb)	
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
NAVA / 4													000	400	000	000	4.740	000	040	4 440	500	000
MW-1	1,190	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	ND ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
MW-4	ND ND	ND ND	ND	ND ND	ND	ND ND	ND NO	ND NO	ND NO	ND NO	ND NO	ND	ND	ND	ND	ND	ND	ND NG	ND	ND	ND NO	ND
MW-5	ND	ND	ND 70	ND 100	ND 24	NS	NS 100	NS 100	NS 100	NS	NS	NS	NS	NS	NS 00	NS	NS 100	NS	NS	NS	NS 00.7	NS 05.7
MW-6	84	77 ND	76	100	91	87	120	100	120	96	86	81 ND	110	110	96	94	130	99	93	99	86.7	85.7
MW-7	ND ND	ND ND	ND	5.8	29	110	62	83	49 NO	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
MW-8	ND ND	ND ND	ND	ND ND	NS NS	NS NO	NS NO	NS NG	NS NO	NS NO	NS NG	NS NO	NS NC	NS NC	NS NC	NS	NS	NS NC	NS NO	NS	NS NC	NS NS
MW-9	ND ND	ND ND	ND	ND ND	NS ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS NC
MW-10	ND	ND 480	ND 1.160	ND 470	ND 525	NS C46	NS 445	NS FF0	NS 4.000	NS 630	NS 444	NS 500	NS 454	NS 275	NS 450	NS 740	NS 000	NS 540	NS 570	NS 700	NS 400	NS 617
MW-11	282	489	1,160	470	525	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	
MW-12	25 ND	100	113	31	40 NC	7.1	7.8	15.8	28.8	52 NC	97 NC	120	126	136	200	212 NC	173	149.3	186.6	142	86.5	148.22
MW-13	ND	ND 22.0	ND	ND	NS 22.4	NS 76	NS 400	NS 57	NS 04	NS oc	NS F2	NS 00	NS 69	NS 60	NS 54	NS 72	NS 04	NS 40	NS 74	NS 47	NS 20.7	NS 76.6
MW-14	22.3	22.8 ND	28 ND	38 ND	22.1 7.4	76	100 23.8	57	81 9.9	96 14	52	99	68	68 31	54	73	94	49 7	71 ND	47 12.9	39.7 26.26	76.6 6.25
MW-15 MW-16	6.5 10	41	43	32	36	11 14		11 37	31		8.1 6.8	9.8 ND	32 5.2	9.4	6.1 21	ND 24	6.8 20	8.4	24	12.9	4.36	12.2
MW-17	265	112.5	5.1	222	396	375	20 465	425	460	13 410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	ND	ND	ND	6.3	ND	10	26	6.9	ND	ND	ND	ND	ND	ND	 ND	ND	NS NS	ND	ND	ND	16.6	2.33
MW-19R	NS NS	NS NS	NS	NS	NS	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	2.5	ND	ND
MW-20	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
MW-21				NS NS	NS	17		8.7														NS NS
MW-X (DUP)	NS ND	NS 434	NS NS	490	DWS	1,705	39 879	550	20 1,720	20 410	10 360	NS 407	NS 300	NS 400	NS 870	NS	NS 1.850	NS 540	NS 186.8	NS 1,450	NS 521	913
	טאו	404	INO	490	טעע	1,705	019	550	1,720	410	300	407	300	400	010	990	1,850	540	186.8	1,450	JZ 1	913
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																		RECOVE	RY WELLS			

																			WELLO			
Recovery Well	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs									
Number	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
	August 2018	May 2018	April 2018	Nov 2017	Aug 2017	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)										
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)																	
DR-1	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	87	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	48	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	77	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

NS= This well not included in this sampling event.
ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample
EB - Equipment/Field Blank Sample
* - Sample was broken in transit and not able to be analyzed
DWS- Different Well Sampled than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

Monitoring Well	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
MW-1 [†]	-54.9%	-44.5%	51.3%	-39.90%	-57.6%		-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%
MW-2	100%	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100%	100%	100.0%	Not Sampled																
MW-4	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%
MW-5	100%	100%	100%	100%	100.0%	Not Sampled																
MW-6	-83.3%	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%
MW-7	79.3%	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%
MW-8	100%	100%	100%	Not Sampled																		
MW-9	100%	100%	100%	Not Sampled																		
MW-10	100%	100%	100%	100%	100.0%	Not Sampled	' '															
MW-11	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%
MW-12	99.8%	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%
MW-13	100%	100%	100%	Not Sampled																		
MW-14	92.9%	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%
MW-15	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%
MW:16*	80.5%	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%		100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%
MW-17*	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%		66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%
MW-18:*	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%
MW-19 R*	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%
MW-20**	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled										
* Well installed 2003 ** Well Installed 2004																						
Site-Wide reduction:	78.0%	81.2%	84.2%	67.60%	62.1%	83.5%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%
Impacted Groundwater																						1
Plume Area Only:	72.1%	65.3%	76.6%	51.40%	41.1%	82.9%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%

Plume Area = MW-1, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6
% reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated
†Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%		63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%		
DR-4	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%		82.9%	81.8%			92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	
G-1	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	
G-2	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA				
Overall Reduction	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURES

(MW-19R MW-18 767.37 MW-7 767.49 MW-16 767.33 MW-17 766.60 MW-6 767.70 MW-20 768.34 MW-5 766.01 G-3 769.17 G-2 767.91 MW-15 767.55 G-1 767.96 DR-4 767.90 MW-14 766.41 DR-3 767.96 769 DR-2 769.37 MW-4 771.38 770.91 MW-12 771.09 MW-11 771.28 DR-1 771.52 MW-3 771.98 MW-8 770.92 MW-1 772.03 MW-2 772.08 120 FT MW-10 773.22 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

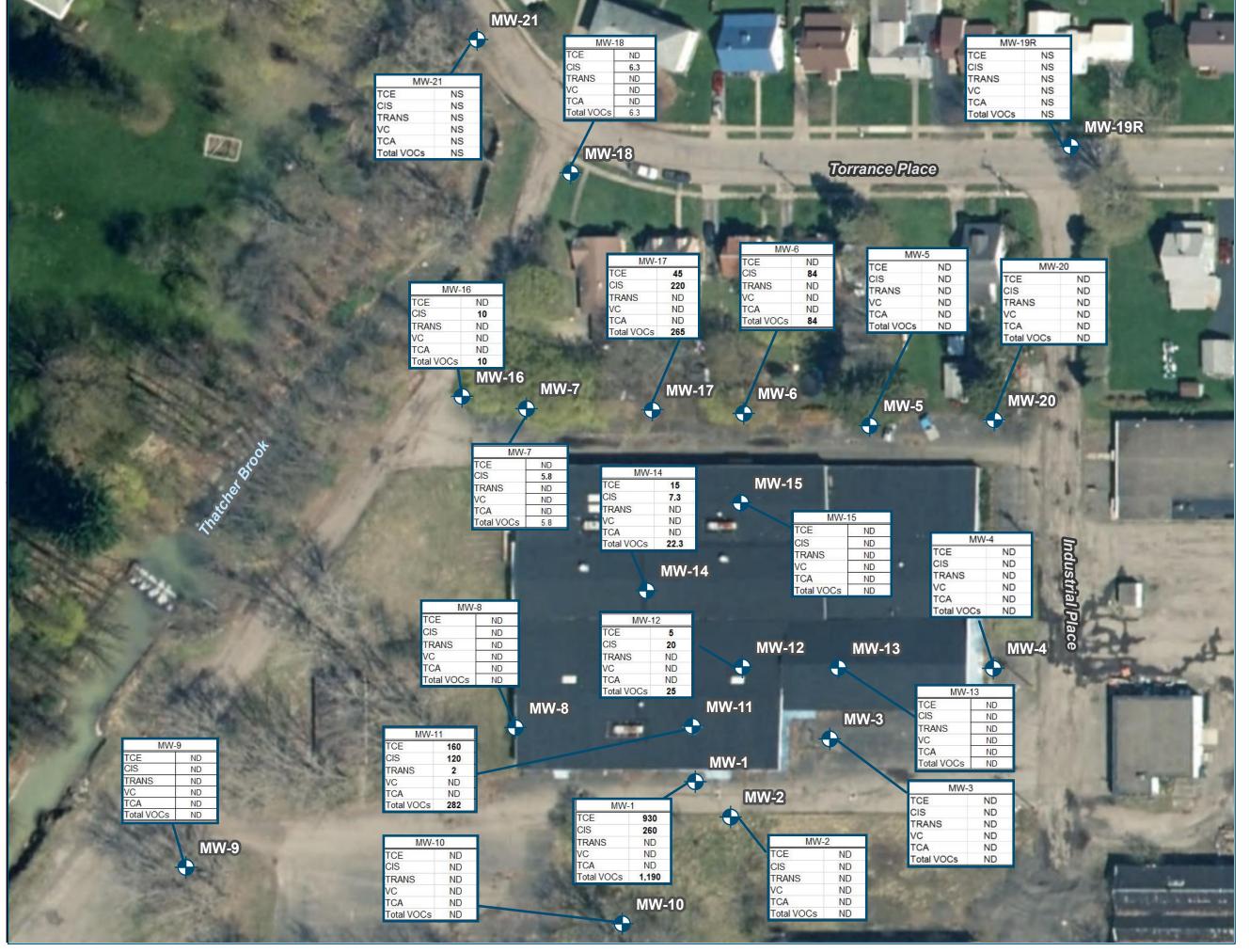
www.bergmannpc.com

REVISIONS

NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

lote:


Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manager:	Checked By:
S. DEMEO	S. DEMEO
Designed By:	Drawn By:
	C. WOOD
Date Issued:	Scale:
09/26/2018	1" = 60'
Project Number:	
6974.96	

AUGUST 2018 WATER LEVEL CONTOUR MAP

Drawing Number:

FIGURE 1

DASNY

Gowanda Day Habilitation Center

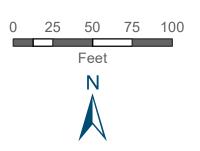

4 Industrial Place Gowanda, NY

Figure 2

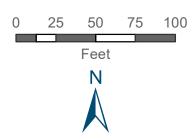
ARCHITECTS ENGINEERS PLANNERS

August 2018
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

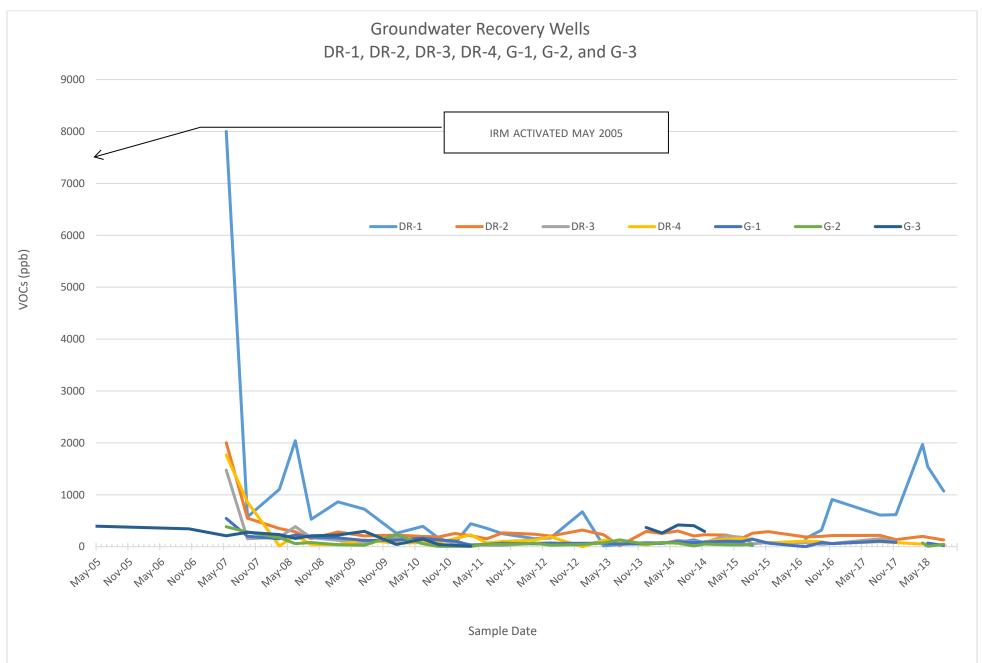
4 Industrial Place Gowanda, NY

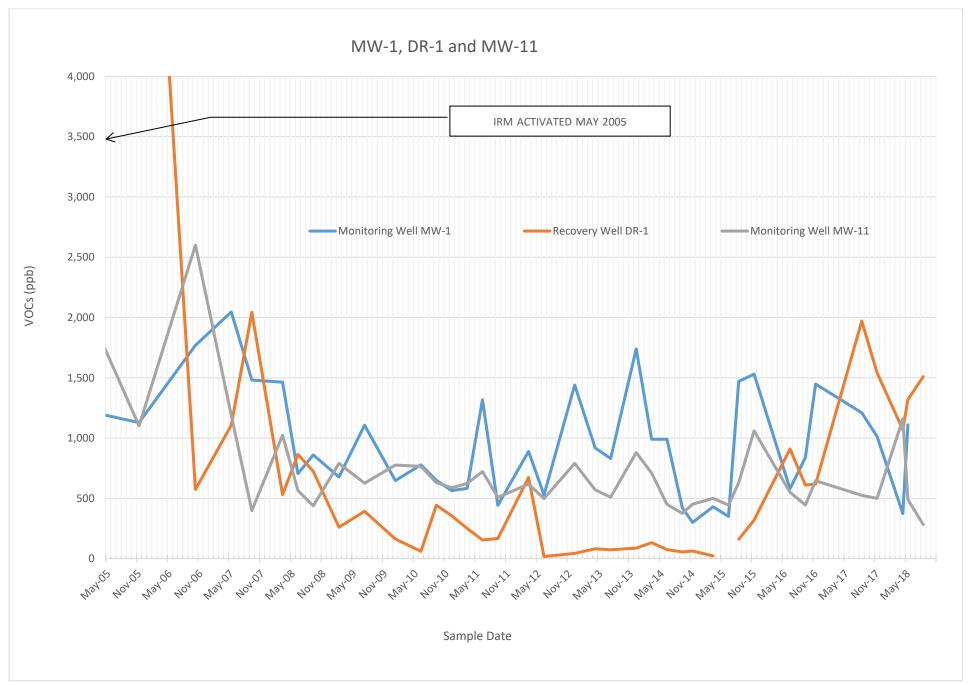


BERGMANN

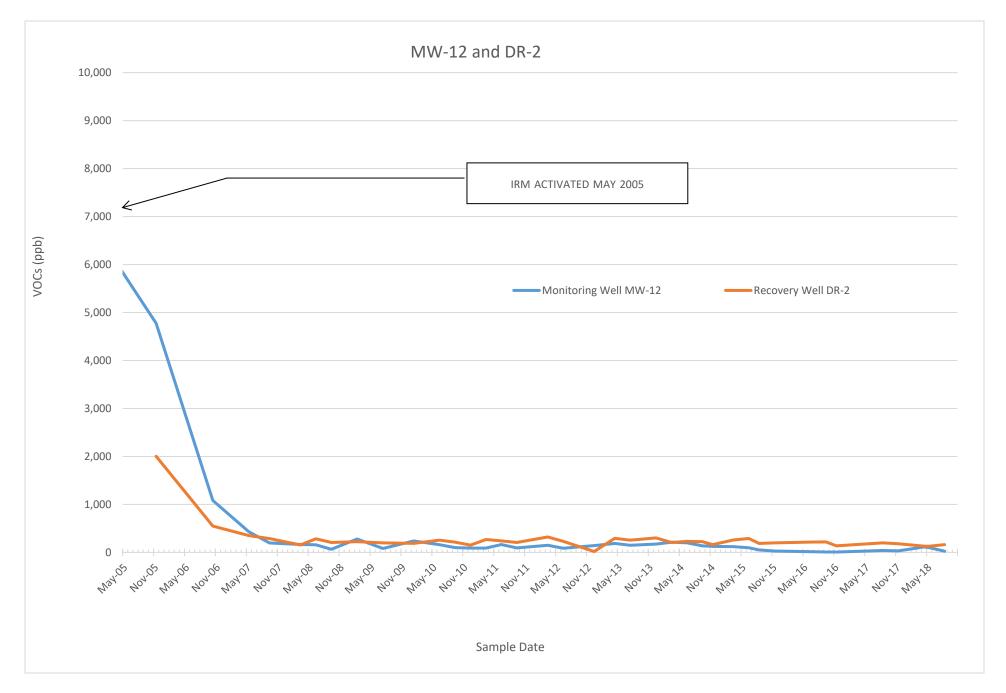
ARCHITECTS ENGINEERS PLANNERS

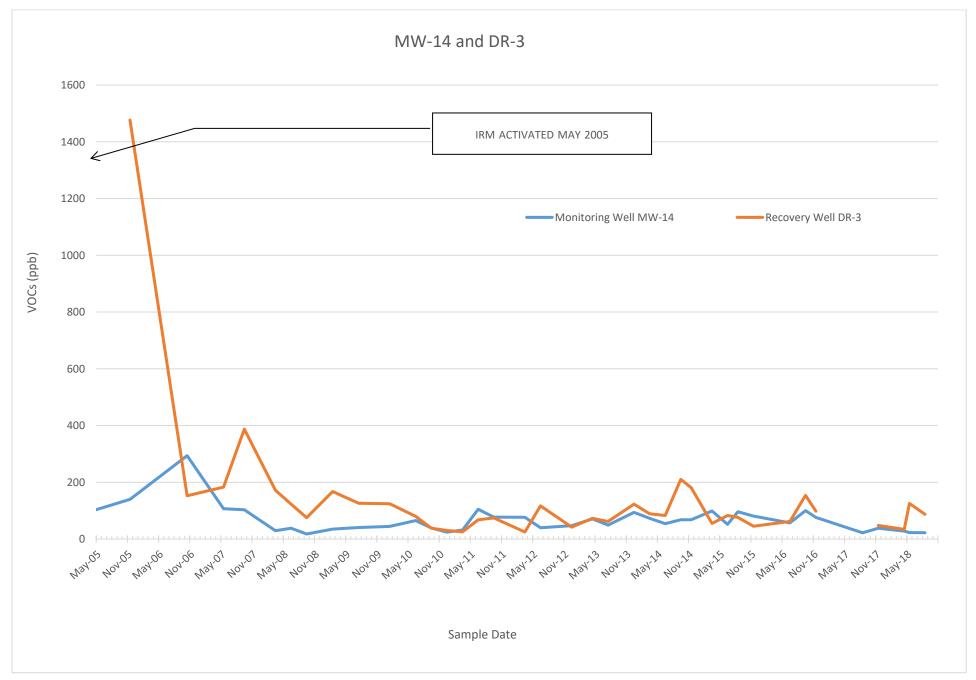
Figure 3

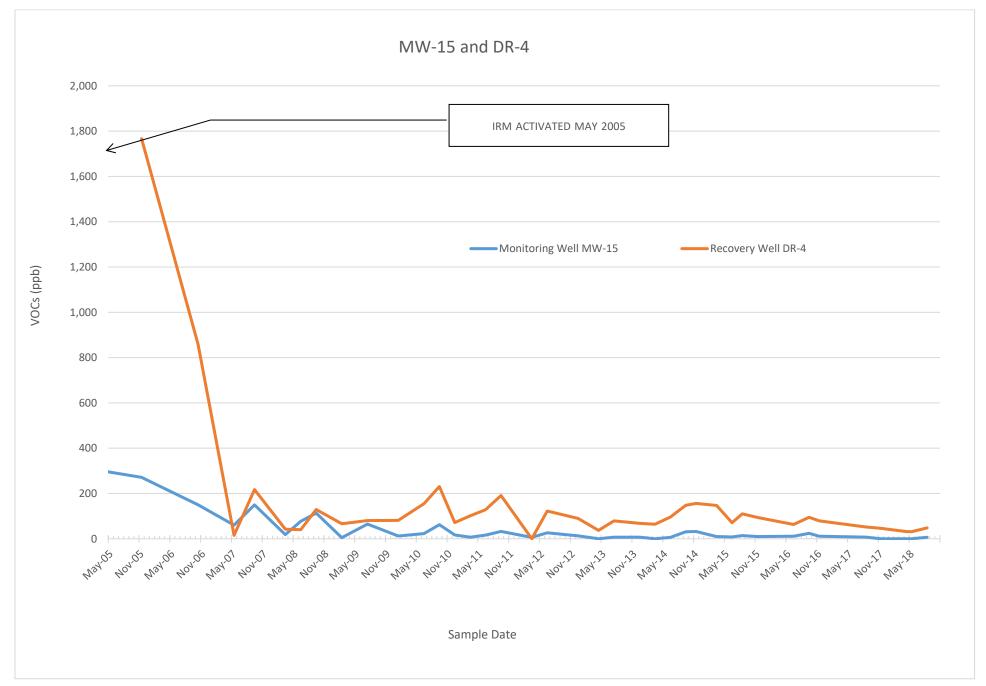

August 2018
Distribution of
Groundwater
Analytical Results:
Recovery Wells

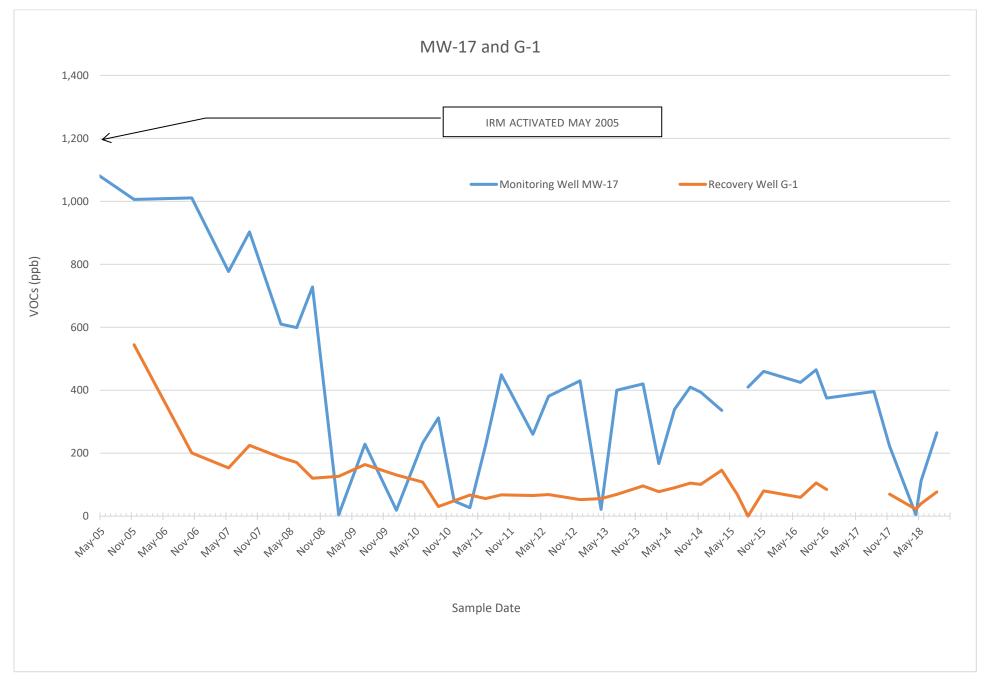


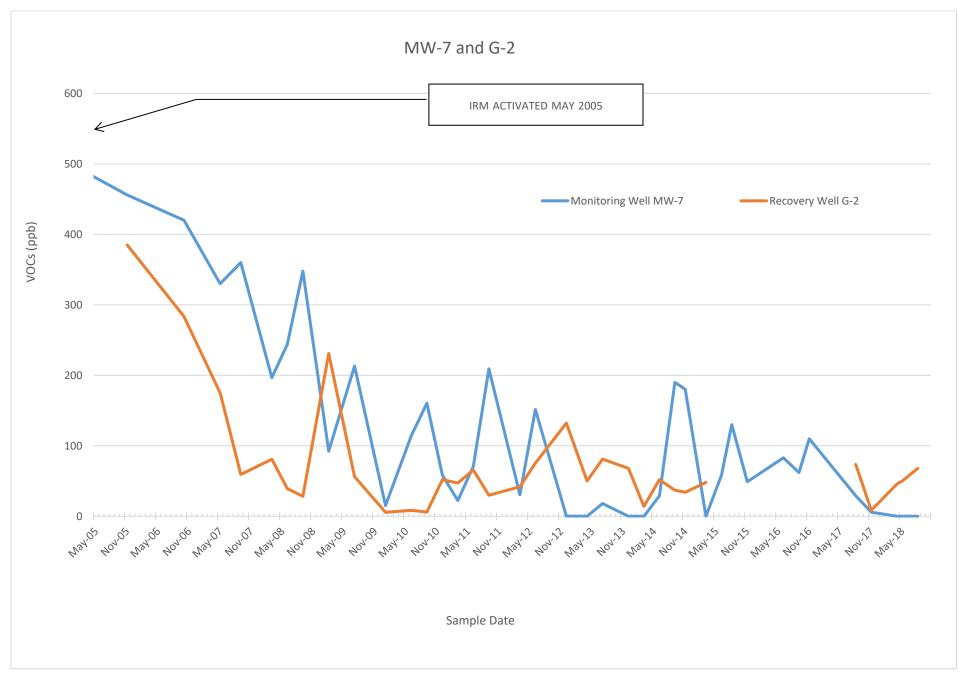
CHARTS

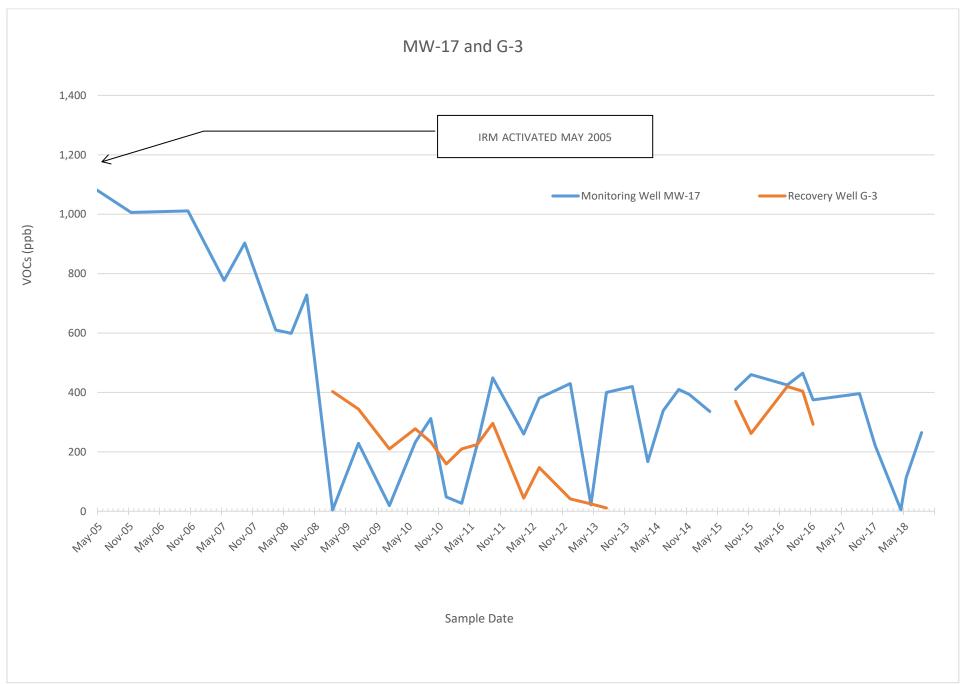












APPENDIX A:

LABORATORY ANALYTICAL RESULTS

Service Request No:R1808107

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda Q3 2018

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory August 23, 2018 For your reference, these analyses have been assigned our service request number **R1808107**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Goldy Kulken

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Bergmann Associates, Incorporated Service Request: R1808107

Project: Gowanda Q3 2018 Date Received: 08/23/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty seven water samples were received for analysis at ALS Environmental on 08/23/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Buch	Kulka
------	-------

Approved by

Date	08/31/2018	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1	Lab ID: R1808107-001												
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	260		1.3	25	ug/L	8260C							
Trichloroethene (TCE)	930		1.0	25	ug/L	8260C							
CLIENT ID: MW-6		Lab	ID: R1808	3107-006									
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	84		0.26	5.0	ug/L	8260C							
CLIENT ID: MW-11		Lab	Lab ID: R1808107-011										
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	120		0.26	5.0	ug/L	8260C							
trans-1,2-Dichloroethene	5.1		0.26	5.0	ug/L	8260C							
Trichloroethene (TCE)	160		0.20	5.0	ug/L	8260C							
CLIENT ID: MW-12		Lab	ID: R1808	3107-012									
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	20		0.26	5.0	ug/L	8260C							
Trichloroethene (TCE)	5.2		0.20	5.0	ug/L	8260C							
CLIENT ID: MW-14	Lab ID: R1808107-014												
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	7.3		0.26	5.0	ug/L	8260C							
Trichloroethene (TCE)	15		0.20	5.0	ug/L	8260C							
CLIENT ID: MW-15		Lab ID: R1808107-015											
Analyte	Results	Flag	MDL	MRL	Units	Method							
Trichloroethene (TCE)	6.5		0.20	5.0	ug/L	8260C							
CLIENT ID: MW-16		Lab	ID: R1808	3107-016									
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	10		0.26	5.0	ug/L	8260C							
CLIENT ID: MW-17		Lab	ID: R1808	3107-017									
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	220	D	0.52	10	ug/L	8260C							
Trichloroethene (TCE)	45		0.20	5.0	ug/L	8260C							
CLIENT ID: G-1		Lab	ID: R1808	3107-020									
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	77		0.26	5.0	ug/L	8260C							
CLIENT ID: G-2			ID: R1808										
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	68		0.26	5.0	ug/L	8260C							

SAMPLE DETECTION SUMMARY

CLIENT ID: G-3	Lab ID: R1808107-022												
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	270		0.52	10	ug/L	8260C							
Trichloroethene (TCE)	52		0.40	10	ug/L	8260C							
CLIENT ID: DR-1		Lab ID: R1808107-023											
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	210		2.6	50	ug/L	8260C							
Trichloroethene (TCE)	1300		2.0	50	ug/L	8260C							
CLIENT ID: DR-2		Lab ID: R1808107-024											
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	130		0.26	5.0	ug/L	8260C							
Trichloroethene (TCE)	32		0.20	5.0	ug/L	8260C							
CLIENT ID: DR-3		Lab ID: R1808107-025											
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	63		0.26	5.0	ug/L	8260C							
Trichloroethene (TCE)	24		0.20	5.0	ug/L	8260C							
CLIENT ID: DR-4		Lab ID: R1808107-026											
Analyte	Results	Flag	MDL	MRL	Units	Method							
cis-1,2-Dichloroethene	19		0.26	5.0	ug/L	8260C							
Trichloroethene (TCE)	29		0.20	5.0	ug/L	8260C							

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1808107-001	MW-1	8/22/2018	1130
R1808107-002	MW-2	8/22/2018	1140
R1808107-003	MW-3	8/22/2018	1120
R1808107-004	MW-4	8/22/2018	1110
R1808107-005	MW-5	8/22/2018	1040
R1808107-006	MW-6	8/22/2018	1025
R1808107-007	MW-7	8/22/2018	0950
R1808107-008	MW-8	8/22/2018	1110
R1808107-009	MW-9	8/22/2018	1200
R1808107-010	MW-10	8/22/2018	1150
R1808107-011	MW-11	8/22/2018	1140
R1808107-012	MW-12	8/22/2018	1015
R1808107-013	MW-13	8/22/2018	1040
R1808107-014	MW-14	8/22/2018	1000
R1808107-015	MW-15	8/22/2018	0955
R1808107-016	MW-16	8/22/2018	0935
R1808107-017	MW-17	8/22/2018	1015
R1808107-018	MW-18	8/22/2018	1230
R1808107-019	MW-20	8/22/2018	1100
R1808107-020	G-1	8/22/2018	0935
R1808107-021	G-2	8/22/2018	0930
R1808107-022	G-3	8/22/2018	1010
R1808107-023	DR-1	8/22/2018	1100
R1808107-024	DR-2	8/22/2018	1020
R1808107-025	DR-3	8/22/2018	1005
R1808107-026	DR-4	8/22/2018	0945
R1808107-027	Equipment Blank	8/22/2018	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

52912

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 6974.96 ANALYSIS REQUESTED (Include Method Number and Container Preservative) Q3 2018 Project Manager **PRESERVATIVE** Company/Address Preservative Key 0 NONE 1. HCL 2. HNO3 3. H₂SO₄ 4. NaOH NUMBER OF CONTAINERS Zn. Acetate METALS. TOTAL 6. MeOH \$200 800% \$200 800% 7. NaHSO4 PESTICIOES See, See Collect & bergmanner. com 8. Other REMARKS/ Bheire ALTERNATE DESCRIPTION FOR OFFICE USE SAMPLING **CLIENT SAMPLE ID** ONLY LAB (D DATE TIME **MATRIX** 3 GW Mw-3 GW Mu-2 3 MWっろ OW GW GW Mw-S 3 GW Mw-6 GW $M w^{-7}$ 3 MW-9 3 GW Mu1-9 3 X M W-10 MW-1 SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION Metals **RUSH (SURCHARGES APPLY)** I. Results Only PO# II. Results + QC Summaries day ____2 day ____3 day (LCS, DUP, MS/MSD as required) BILL TO: Standard (10 business days-No Surcharge) Itl, Results + QC and Calibration Summarles REQUESTED REPORT DATE See QAPP New STATE WHERE SAMPLES WERE COLLECTED YOCK RECEIVED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY Signature Signature Printed Name Printed Name Printed Name Firm jutätä/Time Date/Time Date/Time Date/Time Date/Time

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

52913

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 3

Project Name Gowanda 03 2018 Project Number 6974.96						ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
Project Manager C. Bleier	Report CC	· · · · · ·	_		PRES	SERVA	TIVE																
Company/Address Bergmann					NERS		7		7	$\overline{/}$	7	$\sqrt{}$	$\overline{}$	7	7	7	7	7	7	7		Preservat 0 NONE 1. HCL 2. HNO	•
280 F. Broad	St. Sui	te voc)		OF CONTAINERS	,	/ , /	/ ,	/ ,	/ ,	/ /			/ /	/ ,	/ ,	/ ,	/	/ ,	/ /	/	 H₂SC NaO+ Zn. A 	4 I cetate
Phone #	460H				ROFC	/ %	3/5	* /	8 8	,	g (2)											6. MeOl 7. NaHS	do₄ √
5 45 - 494 - 7950 Sampler's Signature (2001)	Clol- Sampler's F	eielebe	eryman	npc co	NUMBE	, 60, 100, 08, 80, 80, 80, 80, 80, 80, 80, 80,	00 8 8 8 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\? \? \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F53/0.89/82 8.50/89/82		METALS, TOWN	METALS.	SOUTH SOUTH	/ ,	/ ,	/ ,	/		/ .	/ 🛦		8. Other REMARKS/ TE DESCF	DIPTION
Caun Great	FOR OFFICE USE ONLY LAB ID	SAMPLII	NG	MATRIV			7		, ,											, ,,,	1		
CLIENT SAMPLE ID MW-1Z	ONET DIB ID	C(17.7_/10	TIME ID: 15	MATRIX	3	X					_										7		
MW-13		4/22/14	0:40	GW	3	X														X			
MW-14		4/22/18/1	01.00	aw	3	X														X	-		
MW-15		8/22/18	7:55	GW	3	X														47			
MW-16.		8/22/18	7:35	GIN	3	X														1			
Mw-17		8122118	10115	CIN	3	X		_															
MW-18		8/22/(8)	2:30	(JW	3	X																	
MW-20		8/22/18/1	1:00	GW	3						ļ									*	<u> </u>		
G-1		6/22/18	1135_	aw.	3	X														*			
G-Z		8/22/180	7:30	GW	3	X																	
C9-3		8/22/18	10:10	(aw	3	X													لــــا				-
SPECIAL INSTRUCTIONS/COMMENTS Metals						TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RUSH (SURCHARGES APPLY) REPORT REQUIREMENTS L. Results Only								INV	OICE I	NFORMAT	TION						
				•		1 day2 day3 day A CS_DIED MSANSD as required							PO #	PO#									
						4 day 35 day Standard (10 business days-No Surcharge) III. Results + QC and Calibration Summaries							n	BILL TO:									
		·				REQUESTED REPORT DATE							ort with I	Raw Da	Data								
See QAPP													1	IYSE	EC	6	qui.	S	_				
STATE WHERE SAMPLES WERE COL	LECTED 1/)e	w Yark				_							7	Edat	ا ل م	∠Yes	<u> </u>	No					
RELINQUISHED BY RECEIVED BY RELINQUISHED I					BY			-	RECE	VED BY	′					UISHE			RECEIVED BY				
	iignature muluulu	7 1	Signature				Signate				40	7	Siona	5		`			Sign				
Printed Name Cash Bleier Printed Name will which Printed Name							Printed			808		(Incorpo	areted	J		_				ed Name			
Firm Bergmann F	irm/LS		Firm				Flrm	_ [owand	Q3 20	18 	11111111				1			Firm				
Date/Time \ \ \ 23/2)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							Date/1	imı				11111				Ż			Date	/Time		_	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

52914

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 3 OF 3

Project Name Gowarda Q3 2018 Project Number 6974.96				ANALYSIS REQUESTED (Include Method Number and Container Preservative)																			
Project Manager C. Bleier	Report CC		· · · · · · · · · · · · · · · · · · ·		PRE	SERVA	TIVE																
Company/Address Deng mann 2 MA F. O. A. C.I. C. 14 200				INERS						\mathcal{I}	\int			\mathcal{I}	$\overline{}$	\mathcal{I}	-	\mathcal{T}	\mathcal{I}		Preserva 0 NON 1. HCD 8 HNO	E .	
280 E Broad St. Suite 200 Pochestic, NY 14604				NUMBER OF CONTAINERS	 /.	/ 2 2 2 2 2	<u> </u>	/ §/.	//		The parties of the pa	SOLITE PARTY OF THE PARTY OF TH	//	/ /	/ /	/ /	/ /	/ /	/ /	/	 H₂SC NaOI Zn. A MeOI NaHS 	74 1 cetate H	
Sampler Shnatur BOOM	Coleid Cas	er Chery	mann fc.	com	NUMBER	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\$0.50 \$0.50	PESTICIOS.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	METALS, E.	Cherris Som	S S			/	/			/_		8. Other	<u>ग्र </u>
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE		MATRIX																	.		
DR-1	, '	4/22/18	11:00	GW	5	X															<u> </u>		
09-2		8122(18)	10:20	(3W)	3	LX_																	
OR-3	1	6/22/18	10:05	GW	3	X														Ø,			
DR-4		8/22/18	9:45	GW	3	X	<u> </u>													_\$			
			_										···										
·																							
	i																						
					ļ	<u> </u>	<u> </u>												<u> </u>				
SPECIAL INSTRUCTIONS/COMMENTS Metals						TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMA RUSH (SURCHARGES APPLY) I. Results Only					NFORMAT	rion											
							l	1 day	2	day	3 day		1_	_		C Summ			PO I	I			
										day day business			»		sults + O	S/MSD &			BILL	10:		-	
							REQU	UESTEC	REPC	ORT DAT	E		_	_ IV. Dat	a Valida	tion Rep			ها				
See QAPP													11/	ys ()[:(54	ais	•					
STATE WHERE SAMPLES WERE COL	LECTED	-								•			1	Eda	ia	E4 	_	No					
RELINQUISHED BY	RECEIVED) BY	REL	INQUISHED	BY				RECE	VED BY	′					UISHEC					RECE	IVED BY	
Signature Signature	Signature	<i>\(\</i>	Signature				Signati	ure					Signa	F	218	80	10:	7	-	5			
Cash Where	Printed Name OXM	el Wit	Printed Name					d Name					Printe	Go	remann Wanda	A880¢. Q3 2016	intes, in	corpor	eted				
	Firm ALS		Firm				Firm						Firm										
Date/Time (7.8/70/X 55	Date/Time \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \	8/ 1530	Dete/Time				Date/T	lime					Derte/	Three					11 WILL ES	tt in hi ji	m /		

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r16.doc

Cooler Receipt and Preservation Check Form

R1808107	5
Bergmann Associates, Incorpor Gowands Q3 2018	
	

3/12/18

Project/Clie	ent //	. 1		Л	_Folde	r Number_								
Cooler receive	-611°	3/1/	by:	1		COURIER:	ALS	UPS	FEDEX	VEL	OCIT	y OSIE	<u> </u>	
	— t	outside of cooler	?	T	Y W	5a Perch	lorate s	samples	have requ	uired he	adspa	ce?	$\frac{Y}{2}$ N	I (NA)
1 1	<u> </u>	ly completed (in		xd)? (Ŷ N	5b Did V	5b Did VOA vials, Alk, or Sulfide have sig* bubbles? (Y) N N						I NA	
- - - - - - - -					\simeq	6 Where did the bottles originate? (ALS/ROO CLIEN					NT			
<u> </u>							OA rec				ncore	5035s		JA)
4 Circle: C	wei ice Dry		, '	١.			-	CI VOG U.	· Du	_		_		
8. Temperatur		Date 5/23/		Time:	T6:02	ID:	(R#7)	IR#9		From:	Temp	p.Blank	Samp	le Bottle
Observed Te		10				<u>-</u>								
Corrected To		3-0							<u> </u>	+		<u> </u>		
	Type of bottle	Cent fun												
Within 0-6°		Y N	-	Y	N	YN	Y	N	Υ	N	Y	N	Y	N
	e samples froz				N	YN		N		N	Ÿ	N	<u>.</u> Y	N
L		note packing/ice	o condi		·	Ice mel			acked (de					Day Rule
	•	un Samples:	Condi			roval Clien		-						
		<u>-</u>	[/) (a)	_					¬				**	
	held in storag		<u> </u>		y 20	on <u>X</u> (2)	<u> </u>	<u>4:19</u>						
5035 sample	es placed in st	orage location:		^r	у	on	_ at _							
				5/	173/19		1741	,	::	V n			· · · · · · · · · · · · · · · · · · ·	, "· · · ·
Cooler Br	eakdown/Prese	ervation Check** labels complete (: Date	: <u>8</u>	nrecervati	Time:_	140		by:_ ES	NO				_
		bels and tags agr						ď	<u>ES</u>	NO				
		ontainers used for							ES	NO				
		,	a.cc.	, m				C		110				
		s acceptable (no	extra la	bels, r	not leaking			Ÿ	ES	NO	_		NZA	
	Air Samples: C	s acceptable (no cassettes / Tubes l	extra la intact	bels, r with N	iot leakini 1S? Ca	misters Pressu		Ÿ	ES Tedlar® l	NO Bags Inf			ŊĀ	Tringl
	Air Samples: C Lot of test	s acceptable (no	extra la intact Preser	bels, r with M	not leaking	misters Pressu	rized Exp	Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	Final
13. A	Air Samples: C	s acceptable (no cassettes / Tubes Reagent	extra la intact	bels, r with N	iot leakini 1S? Ca	misters Pressu		Ÿ	ES Tedlar® l le ID	NO Bags Inf	L		ŊĀ	Final pH
13. A pH ≥12	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent	extra la intact Preser	bels, r with M	iot leakini 1S? Ca	misters Pressu		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. A	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent	extra la intact Preser	bels, r with M	iot leakini 1S? Ca	misters Pressu		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. A pH ≥12 ≤2 ≤2 <4	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO3	extra la intact Preser	bels, r with M	not leaking IS? Ca Lot Rec	unisters Pressur ceived		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. A pH ≥12 ≤2 ≤2 <4 5-9	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	extra la intact Preser	bels, r with M	not leaking IS? Ca Lot Rec No=Noti	eristers Pressureived		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. // pH ≥12 ≤2 ≤2 <4 5-9 Residual	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	extra la intact Preser	bels, r with M	not leaking IS? Ca Lot Rec No=Noti	eristers Pressureived		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. /pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	extra la intact Preser	bels, r with M	No=Noti	eristers Pressureived		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. // pH ≥12 ≤2 ≤2 <4 5-9 Residual	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	extra la intact Preser	bels, r with M	No=Noti	risters Pressureived ify for 3day tact PM to add (625, 608,		Samp	ES Tedlar® l le ID	NO Bags Inf Vol.	L		ŊĀ	
13. /pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	extra la intact Preser	bels, r with M	No=Noti	risters Pressureived ify for 3day tact PM to add (625, 608,		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	I I	Lot Added	N/A	pН
13. /pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	Air Samples: C Lot of test	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	extra la intact Preser	bels, r with M ved?	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	risters Pressure reived ify for 3day tact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Lot Added	N/A	pН
13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	Air Samples: C Lot of test paper	s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	extra la intact Preser Yes	bels, rwith Nved? No **	No=Noti	risters Pressure reived ify for 3day tact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Lot Added	N/A	pН
13. /pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	Air Samples: C Lot of test paper numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na2S2O3 ZnAcetate HCl	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	risters Pressure reived ify for 3day tact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Lot Added	N/A	pН
13. /pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-)	Air Samples: C Lot of test paper numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	risters Pressure reived ify for 3day tact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	before ana s with chemes).	N/A	pH
13. pH ≥12 ≤2 ≤4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl C-O ³ Q-OO ⁴ es/ Other Comm	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	before ana s with chemes).	lysis. hical pre	pH
13. pH ≥12 ≤2 ≤4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl C-O ³ Q-OO ⁴ es/ Other Comm	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	before and s with chemes).	lysis. nical pre	pH servatives
13. pH ≥12 ≤2 ≤4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl C-O ³ Q-OO ⁴ es/ Other Comm	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Dot Added before ana s with chemes). CLRES DO HPRO	lysis. hical pre	pH servatives JLK DT GFB
13. pH ≥12 ≤2 ≤4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl C-O ³ Q-OO ⁴ es/ Other Comm	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	before ana s with chemes). CLRES DO HPRO HTR	lysis. iical pre	pH Servatives JLK DT GFB 3541
13. pH ≥12 ≤2 ≤4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl C-O ³ Q-OO ⁴ es/ Other Comm	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Dot Added before ana s with chemes). CLRES DO HPRO HTR PH	lysis. sical pre	pH Servatives JLK DT GFB 3541 JB
13. pH ≥12 ≤2 ≤4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers:	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na2S2O3 ZnAcetate HCl	Preser Yes - **	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Defore ana s with chemes). CLRES DO HPRO HTR PH SO3	lysis. hical pre	pH Secretarives JLK DT GFB 3541 JB ARRS
13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers: Il Discrepanci	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H2SO4 NaHSO4 For 608pest For CN, Phenol, 625, 608pest, 522 Na2S2O3 ZnAcetate HCl S-039-004 es/ Other Comm	restra la intact Preser Yes - ** Cliver ents:	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).		Samp Adjus	ES Tedlar® le ID sted	NO Bags Inf Vol. Added	L L	Dot Added before ana s with chemes). CLRES DO HPRO HTR PH	lysis. sical pre	pH Secretarives JLK DT GFB 3541 JB ARRS
13. pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine (-) Bottle lot Explain a	numbers: Il Discrepanci	s acceptable (no cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl S-039-004 es/ Other Comm	restra la intact Preser Yes - ** Cliver ents:	bels, rwith Nved? No **	No=Noti If+, cont Na ₂ S ₂ O ₃ CN), asco	ify for 3day lact PM to add (625, 608, orbic (phenol).	Ехр	Samp Adjus **VOA Otherw are che	ES Tedlar® le ID le ID sted As and 1664 rise, all bott juick ed (not juick)	NO Bags Inf Vol. Added	e tested sample entative	CLREST DO HPRO HTR PH SO3 ALS	lysis. sical pre	pH Secretarives JLK DT GFB 3541 JB ARRS

11 of 60

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to <a href="https://www.alsglobal.com/locations/americas/north-

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Project:**

Service Request: R1808107

Sample Name: MW-1

Lab Code: R1808107-001

Sample Matrix: Water **Date Collected:** 08/22/18 **Date Received:** 08/23/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By FNAEGLER

Sample Name: MW-2 **Date Collected:** 08/22/18

Lab Code: R1808107-002 **Date Received:** 08/23/18

Sample Matrix: Water

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: MW-3

Lab Code:

R1808107-003

Sample Matrix: Water **Date Collected:** 08/22/18

Date Received: 08/23/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: MW-4

Lab Code:

R1808107-004

Water

Date Collected: 08/22/18 **Date Received:** 08/23/18

Analysis Method

Sample Matrix:

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: MW-5

Lab Code:

R1808107-005

Water

Date Collected: 08/22/18 **Date Received:** 08/23/18

Analysis Method

Sample Matrix:

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Project:**

Service Request: R1808107

Sample Name: MW-6

Lab Code: R1808107-006

Sample Matrix: Water **Date Received:** 08/23/18

Date Collected: 08/22/18

Analysis Method

8260C

Analyzed By Extracted/Digested By

FNAEGLER

Sample Name: MW-7

Lab Code: R1808107-007

Sample Matrix: Water **Date Collected:** 08/22/18 **Date Received:** 08/23/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: MW-8

Lab Code:

R1808107-008

Sample Matrix:

Date Collected: 08/22/18

Date Received: 08/23/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By FNAEGLER

Sample Name:

MW-9

Water

Lab Code:

R1808107-009

Sample Matrix: Water **Date Collected:** 08/22/18 **Date Received:** 08/23/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By FNAEGLER

Sample Name:

MW-10

Lab Code:

R1808107-010

Water Sample Matrix:

Date Collected: 08/22/18 **Date Received:** 08/23/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Printed 8/31/2018 9:58:40 AM

Superset Reference:18-0000478699 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Project:**

Water

Service Request: R1808107

Date Collected: 08/22/18

Date Received: 08/23/18

Analyzed By

Sample Name: MW-11

Lab Code: R1808107-011

Sample Matrix: Water

Analysis Method Extracted/Digested By 8260C **FNAEGLER**

Sample Name: MW-12 **Date Collected:** 08/22/18

Lab Code: R1808107-012 **Date Received:** 08/23/18

Sample Matrix: Water

Sample Matrix:

Extracted/Digested By Analyzed By Analysis Method

8260C **FNAEGLER**

Sample Name: MW-13 **Date Collected:** 08/22/18

Lab Code: R1808107-013 **Date Received:** 08/23/18

Analysis Method Extracted/Digested By Analyzed By

8260C **FNAEGLER**

Sample Name: MW-14 **Date Collected:** 08/22/18

Lab Code: R1808107-014 **Date Received:** 08/23/18 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

8260C **FNAEGLER**

Sample Name: MW-15 **Date Collected:** 08/22/18

R1808107-015 Lab Code: **Date Received:** 08/23/18 Water Sample Matrix:

Analyzed By Extracted/Digested By Analysis Method 8260C **FNAEGLER**

Printed 8/31/2018 9:58:40 AM Superset Reference:18-0000478699 rev 00 17 of 60

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

MW-16 **Date Collected:** 08/22/18

Service Request: R1808107

Lab Code: R1808107-016 **Date Received:** 08/23/18

Sample Matrix: Water

Sample Name:

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-17 Date Collected: 08/22/18

Lab Code: R1808107-017 **Date Received:** 08/23/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-18 Date Collected: 08/22/18

Lab Code: R1808107-018 Date Received: 08/23/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-20 Date Collected: 08/22/18

Lab Code: R1808107-019 Date Received: 08/23/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: G-1 Date Collected: 08/22/18

Lab Code:R1808107-020Date Received: 08/23/18Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By 8260C FNAEGLER

Printed 8/31/2018 9:58:40 AM Superset Reference:18-0000478699 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Project:**

Sample Name: G-2

Lab Code: R1808107-021

Sample Matrix: Water

Analysis Method

Sample Name: G-3

Lab Code: R1808107-022

Sample Matrix: Water

Analysis Method

8260C

8260C

Sample Name: DR-1

Lab Code: R1808107-023

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-2

Lab Code: R1808107-024

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-3

R1808107-025 Lab Code:

Water Sample Matrix:

Analysis Method

8260C

Extracted/Digested By

Date Collected: 08/22/18

Date Received: 08/23/18

Analyzed By

FNAEGLER

Analyzed By

Service Request: R1808107

Date Collected: 08/22/18

Date Received: 08/23/18

Extracted/Digested By

FNAEGLER

Date Collected: 08/22/18

Date Received: 08/23/18

Extracted/Digested By

Analyzed By FNAEGLER

Date Collected: 08/22/18

Date Received: 08/23/18

Extracted/Digested By

Analyzed By

FNAEGLER

Date Collected: 08/22/18

Date Received: 08/23/18

Extracted/Digested By

Analyzed By FNAEGLER

Printed 8/31/2018 9:58:40 AM

19 of 60

Superset Reference:18-0000478699 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

Service Request: R1808107

Sample Name: DR-4

Lab Code: R1808107-026

Sample Matrix: Water

Date Collected: 08/22/18 **Date Received:** 08/23/18

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: Equipment Blank Date Collected: 08/22/18

Lab Code: R1808107-027 **Date Received:** 08/23/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 08/22/18 11:30 Gowanda Q3 2018/6974.96

Sample Matrix: Water **Date Received:** 08/23/18 15:50

Sample Name: MW-1 Units: ug/L Lab Code:

R1808107-001 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	260	25	5	08/28/18 17:00	
trans-1,2-Dichloroethene	25 U	25	5	08/28/18 17:00	
Tetrachloroethene (PCE)	25 U	25	5	08/28/18 17:00	
1,1,1-Trichloroethane (TCA)	25 U	25	5	08/28/18 17:00	
Trichloroethene (TCE)	930	25	5	08/28/18 17:00	
Vinyl Chloride	25 U	25	5	08/28/18 17:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 17:00	
Dibromofluoromethane	98	89 - 119	08/28/18 17:00	
Toluene-d8	100	87 - 121	08/28/18 17:00	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:40

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-2
 Units: ug/L

 Lab Code:
 R1808107-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:23	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:23	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 17:23	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 17:23	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 17:23	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 17:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 17:23	
Dibromofluoromethane	97	89 - 119	08/28/18 17:23	
Toluene-d8	100	87 - 121	08/28/18 17:23	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:20

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: MW-3 Units: ug/L

Lab Code: R1808107-003 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:45	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 17:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 17:45	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 17:45	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 17:45	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 17:45	-

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 17:45	
Dibromofluoromethane	96	89 - 119	08/28/18 17:45	
Toluene-d8	99	87 - 121	08/28/18 17:45	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:10

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-4
 Units: ug/L

 Lab Code:
 R1808107-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 18:08	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 18:08	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 18:08	
Vinyl Chloride	5.0 11	5.0	1	08/28/18 18:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 18:08	
Dibromofluoromethane	96	89 - 119	08/28/18 18:08	
Toluene-d8	99	87 - 121	08/28/18 18:08	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:40

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-5
 Units: ug/L

 Lab Code:
 R1808107-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 18:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 18:30	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 18:30	
Vinyl Chloride	5.0 11	5.0	1	08/28/18 18:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 18:30	
Dibromofluoromethane	97	89 - 119	08/28/18 18:30	
Toluene-d8	98	87 - 121	08/28/18 18:30	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:25

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: MW-6 Units: ug/L

Lab Code: R1808107-006 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	84	5.0	1	08/28/18 18:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 18:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 18:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 18:53	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 18:53	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 18:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 18:53	
Dibromofluoromethane	96	89 - 119	08/28/18 18:53	
Toluene-d8	98	87 - 121	08/28/18 18:53	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 09:50

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: MW-7 Units: ug/L

Lab Code: R1808107-007 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 19:15	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 19:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 19:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 19:15	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 19:15	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 19:15	-

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/28/18 19:15	
Dibromofluoromethane	98	89 - 119	08/28/18 19:15	
Toluene-d8	102	87 - 121	08/28/18 19:15	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:10

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: MW-8 Units: ug/L

Lab Code: R1808107-008 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 22:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 22:15	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 22:15	
Vinvl Chloride	5.0 U	5.0	1	08/28/18 22:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/28/18 22:15	
Dibromofluoromethane	97	89 - 119	08/28/18 22:15	
Toluene-d8	101	87 - 121	08/28/18 22:15	

Analytical Report

Client: Bergmann Associates, Incorporated

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: MW-9 Units: ug/L

Lab Code: R1808107-009 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:38	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 22:38	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 22:38	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 22:38	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 22:38	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 22:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 22:38	
Dibromofluoromethane	97	89 - 119	08/28/18 22:38	
Toluene-d8	100	87 - 121	08/28/18 22:38	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:50

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R1808107-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 23:00	_
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 23:00	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 23:00	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 23:00	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 23:00	
Vinyl Chloride	5.0 11	5.0	1	08/28/18 23:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 23:00	
Dibromofluoromethane	96	89 - 119	08/28/18 23:00	
Toluene-d8	99	87 - 121	08/28/18 23:00	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:40

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-11
 Units: ug/L

 Lab Code:
 R1808107-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	120	5.0	1	08/29/18 17:09	
trans-1,2-Dichloroethene	5.1	5.0	1	08/29/18 17:09	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 17:09	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 17:09	
Trichloroethene (TCE)	160	5.0	1	08/29/18 17:09	
Vinyl Chloride	5.0 11	5.0	1	08/29/18 17:09	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	08/29/18 17:09	
Dibromofluoromethane	96	89 - 119	08/29/18 17:09	
Toluene-d8	98	87 - 121	08/29/18 17:09	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:15

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-12
 Units: ug/L

 Lab Code:
 R1808107-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	20	5.0	1	08/28/18 23:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 23:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 23:45	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 23:45	
Trichloroethene (TCE)	5.2	5.0	1	08/28/18 23:45	
Vinvl Chloride	5.0 U	5.0	1	08/28/18 23:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/28/18 23:45	
Dibromofluoromethane	99	89 - 119	08/28/18 23:45	
Toluene-d8	101	87 - 121	08/28/18 23:45	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:40

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R1808107-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:07	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:07	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 00:07	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 00:07	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 00:07	
Vinvl Chloride	5.0 U	5.0	1	08/29/18 00:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	08/29/18 00:07	
Dibromofluoromethane	100	89 - 119	08/29/18 00:07	
Toluene-d8	102	87 - 121	08/29/18 00:07	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:00

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R1808107-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	7.3	5.0	1	08/29/18 00:29	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:29	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 00:29	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 00:29	
Trichloroethene (TCE)	15	5.0	1	08/29/18 00:29	
Vinvl Chloride	5.0 U	5.0	1	08/29/18 00:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/29/18 00:29	
Dibromofluoromethane	97	89 - 119	08/29/18 00:29	
Toluene-d8	99	87 - 121	08/29/18 00:29	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 09:55

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-15
 Units: ug/L

 Lab Code:
 R1808107-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 00:52	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 00:52	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 00:52	
Trichloroethene (TCE)	6.5	5.0	1	08/29/18 00:52	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 00:52	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/29/18 00:52	
Dibromofluoromethane	99	89 - 119	08/29/18 00:52	
Toluene-d8	102	87 - 121	08/29/18 00:52	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 09:35

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R1808107-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	10	5.0	1	08/29/18 01:14	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:14	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 01:14	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 01:14	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 01:14	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 01:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	08/29/18 01:14	
Dibromofluoromethane	98	89 - 119	08/29/18 01:14	
Toluene-d8	101	87 - 121	08/29/18 01:14	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:15

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: MW-17 Units: ug/L

Lab Code: R1808107-017 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	220 D	10	2	08/29/18 17:32	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 01:37	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 01:37	
Trichloroethene (TCE)	45	5.0	1	08/29/18 01:37	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 01:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/29/18 01:37	
Dibromofluoromethane	99	89 - 119	08/29/18 01:37	
Toluene-d8	101	87 - 121	08/29/18 01:37	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 12:30

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-18
 Units: ug/L

 Lab Code:
 R1808107-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 01:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 01:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 01:59	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 01:59	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 01:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	08/29/18 01:59	
Dibromofluoromethane	98	89 - 119	08/29/18 01:59	
Toluene-d8	102	87 - 121	08/29/18 01:59	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 11:00

Sample Matrix: Water Date Received: 08/23/18 15:50

 Sample Name:
 MW-20
 Units: ug/L

 Lab Code:
 R1808107-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 02:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 02:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 02:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 02:21	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 02:21	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 02:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/29/18 02:21	
Dibromofluoromethane	97	89 - 119	08/29/18 02:21	
Toluene-d8	101	87 - 121	08/29/18 02:21	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 09:35

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: G-1 Units: ug/L

Lab Code: R1808107-020 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	77	5.0	1	08/29/18 02:44	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 02:44	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 02:44	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 02:44	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 02:44	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 02:44	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/29/18 02:44	
Dibromofluoromethane	98	89 - 119	08/29/18 02:44	
Toluene-d8	99	87 - 121	08/29/18 02:44	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 09:30

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: G-2 Units: ug/L

Lab Code: R1808107-021 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	68	5.0	1	08/29/18 03:06	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 03:06	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 03:06	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 03:06	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 03:06	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 03:06	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	08/29/18 03:06	
Dibromofluoromethane	97	89 - 119	08/29/18 03:06	
Toluene-d8	100	87 - 121	08/29/18 03:06	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:10

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: G-3 Units: ug/L

Lab Code: R1808107-022 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	270	10	2	08/29/18 03:29	
trans-1,2-Dichloroethene	10 U	10	2	08/29/18 03:29	
Tetrachloroethene (PCE)	10 U	10	2	08/29/18 03:29	
1,1,1-Trichloroethane (TCA)	10 U	10	2	08/29/18 03:29	
Trichloroethene (TCE)	52	10	2	08/29/18 03:29	
Vinyl Chloride	10 U	10	2	08/29/18 03:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	08/29/18 03:29	
Dibromofluoromethane	98	89 - 119	08/29/18 03:29	
Toluene-d8	101	87 - 121	08/29/18 03:29	

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 08/22/18 11:00 Gowanda Q3 2018/6974.96

Project: Sample Matrix: Water **Date Received:** 08/23/18 15:50

Sample Name: DR-1 Units: ug/L

Lab Code: R1808107-023 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	210	50	10	08/29/18 03:51	
trans-1,2-Dichloroethene	50 U	50	10	08/29/18 03:51	
Tetrachloroethene (PCE)	50 U	50	10	08/29/18 03:51	
1,1,1-Trichloroethane (TCA)	50 U	50	10	08/29/18 03:51	
Trichloroethene (TCE)	1300	50	10	08/29/18 03:51	
Vinyl Chloride	50 U	50	10	08/29/18 03:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	08/29/18 03:51	
Dibromofluoromethane	99	89 - 119	08/29/18 03:51	
Toluene-d8	103	87 - 121	08/29/18 03:51	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:20

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: DR-2 Units: ug/L

Lab Code: R1808107-024 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	130	5.0	1	08/29/18 04:13	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 04:13	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 04:13	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 04:13	
Trichloroethene (TCE)	32	5.0	1	08/29/18 04:13	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 04:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/29/18 04:13	
Dibromofluoromethane	101	89 - 119	08/29/18 04:13	
Toluene-d8	101	87 - 121	08/29/18 04:13	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 10:05

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: DR-3 Units: ug/L

Lab Code: R1808107-025 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	63	5.0	1	08/29/18 04:36	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 04:36	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 04:36	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 04:36	
Trichloroethene (TCE)	24	5.0	1	08/29/18 04:36	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 04:36	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	08/29/18 04:36	
Dibromofluoromethane	103	89 - 119	08/29/18 04:36	
Toluene-d8	105	87 - 121	08/29/18 04:36	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96 **Date Collected:** 08/22/18 09:45

Sample Matrix: Water Date Received: 08/23/18 15:50

Sample Name: DR-4 Units: ug/L

Lab Code: R1808107-026 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	19	5.0	1	08/29/18 04:58	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 04:58	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 04:58	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 04:58	
Trichloroethene (TCE)	29	5.0	1	08/29/18 04:58	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 04:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	08/29/18 04:58	
Dibromofluoromethane	102	89 - 119	08/29/18 04:58	
Toluene-d8	103	87 - 121	08/29/18 04:58	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1808107 **Date Collected:** 08/22/18 **Project:** Gowanda Q3 2018/6974.96

Sample Matrix: Water **Date Received:** 08/23/18 15:50

Sample Name: Equipment Blank Units: ug/L Lab Code: R1808107-027 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 21:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 21:53	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 21:53	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 21:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	08/28/18 21:53	
Dibromofluoromethane	112	89 - 119	08/28/18 21:53	
Toluene-d8	116	87 - 121	08/28/18 21:53	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Service Request: R1808107

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Extraction Method:** EPA 5030C

Sample Name Lab Code 88-122 89-119 87-121 MW-1 R1808107-002 91 97 100 MW-2 R1808107-003 90 96 99 MW-3 R1808107-004 91 96 99 MW-4 R1808107-005 91 97 98 MW-5 R1808107-006 90 96 98 MW-6 R1808107-007 93 98 102 MW-7 R1808107-008 93 97 101 MW-8 R1808107-009 90 97 100 MW-10 R1808107-001 91 96 99 MW-11 R1808107-011 89 96 98 MW-12 R1808107-013 92 100 102 MW-13 R1808107-014 90 97 99 MW-14 R1808107-015 93 99 101 MW-15 R1808107-016 93 98 101 MW-16 R18081			4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
MW-2 R1808107-002 91 97 100 MW-3 R1808107-003 90 96 99 MW-4 R1808107-004 91 96 99 MW-5 R1808107-005 91 97 98 MW-6 R1808107-006 90 96 98 MW-7 R1808107-007 93 98 102 MW-8 R1808107-008 93 97 101 MW-9 R1808107-009 90 97 100 MW-10 R1808107-010 91 96 99 MW-11 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 101 MW-16 R1808107-016 93 98 101 MW-20 R1808107-021	Sample Name	Lab Code	85-122	89-119	87-121
MW-3 R1808107-003 90 96 99 MW-4 R1808107-004 91 96 99 MW-5 R1808107-005 91 97 98 MW-6 R1808107-006 90 96 98 MW-7 R1808107-007 93 98 102 MW-8 R1808107-009 90 97 101 MW-9 R1808107-010 91 96 99 MW-10 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-019 91 97 101 MW-19 R1808107-021	MW-1	R1808107-001	90	98	100
MW-4 R1808107-004 91 96 99 MW-5 R1808107-005 91 97 98 MW-6 R1808107-006 90 96 98 MW-7 R1808107-007 93 98 102 MW-8 R1808107-008 93 97 101 MW-9 R1808107-010 91 96 99 MW-10 R1808107-011 89 96 98 MW-11 R1808107-012 91 96 99 MW-12 R1808107-012 91 96 98 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-019 91 97 101 G-1 R1808107-021	MW-2	R1808107-002	91	97	100
MW-5 R1808107-005 91 97 98 MW-6 R1808107-006 90 96 98 MW-7 R1808107-007 93 98 102 MW-8 R1808107-008 93 97 101 MW-9 R1808107-010 91 96 99 MW-10 R1808107-011 89 96 98 MW-11 R1808107-012 91 96 99 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-029 90 98 99 G-2 R1808107-021	MW-3	R1808107-003	90	96	99
MW-6 R1808107-006 90 96 98 MW-7 R1808107-007 93 98 102 MW-8 R1808107-008 93 97 101 MW-9 R1808107-010 91 96 99 MW-10 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-025	MW-4	R1808107-004	91	96	99
MW-7 R1808107-007 93 98 102 MW-8 R1808107-008 93 97 101 MW-9 R1808107-009 90 97 100 MW-10 R1808107-010 91 96 99 MW-11 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-013 92 100 102 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-021 91 97 101 G-1 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-025	MW-5	R1808107-005	91	97	98
MW-8 R1808107-008 93 97 101 MW-9 R1808107-009 90 97 100 MW-10 R1808107-010 91 96 99 MW-11 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-016 93 98 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-018 92 98 102 MW-20 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-025 <td>MW-6</td> <td>R1808107-006</td> <td>90</td> <td>96</td> <td>98</td>	MW-6	R1808107-006	90	96	98
MW-9 R1808107-009 90 97 100 MW-10 R1808107-010 91 96 99 MW-11 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-20 R1808107-018 92 98 102 MW-20 R1808107-029 90 98 99 G-1 R1808107-029 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-025 95 103 105 DR-2 R1808107-025	MW-7	R1808107-007	93	98	102
MW-10 R1808107-010 91 96 99 MW-11 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-015 93 99 102 MW-15 R1808107-015 93 98 101 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-021 91 97 101 MW-20 R1808107-021 91 97 100 G-3 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-025 95 103 105 DR-3 R1808107-026	MW-8	R1808107-008	93	97	101
MW-11 R1808107-011 89 96 98 MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-025 95 103 105 DR-3 R1808107-027	MW-9	R1808107-009	90	97	100
MW-12 R1808107-012 91 99 101 MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-027 107 112 116 Method Blank RQ180	MW-10	R1808107-010	91	96	99
MW-13 R1808107-013 92 100 102 MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-022 92 98 101 DR-2 R1808107-023 94 99 103 DR-2 R1808107-025 95 103 105 DR-3 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank	MW-11	R1808107-011	89	96	98
MW-14 R1808107-014 90 97 99 MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank	MW-12	R1808107-012	91	99	101
MW-15 R1808107-015 93 99 102 MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-022 92 98 101 DR-2 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank	MW-13	R1808107-013	92	100	102
MW-16 R1808107-016 93 98 101 MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-025 95 103 105 DR-4 R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809064-03 95 102 101 Duplicate Lab	MW-14	R1808107-014	90	97	99
MW-17 R1808107-017 91 99 101 MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101	MW-15	R1808107-015	93	99	102
MW-18 R1808107-018 92 98 102 MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 <td>MW-16</td> <td>R1808107-016</td> <td>93</td> <td>98</td> <td>101</td>	MW-16	R1808107-016	93	98	101
MW-20 R1808107-019 91 97 101 G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809076-05 105 110	MW-17	R1808107-017	91	99	101
G-1 R1808107-020 90 98 99 G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809076-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117	MW-18	R1808107-018	92	98	102
G-2 R1808107-021 91 97 100 G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	MW-20	R1808107-019	91	97	101
G-3 R1808107-022 92 98 101 DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	G-1	R1808107-020	90	98	99
DR-1 R1808107-023 94 99 103 DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809076-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	G-2	R1808107-021	91	97	100
DR-2 R1808107-024 90 101 101 DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	G-3	R1808107-022	92	98	101
DR-3 R1808107-025 95 103 105 DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	DR-1	R1808107-023	94	99	103
DR-4 R1808107-026 96 102 103 Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	DR-2	R1808107-024	90	101	101
Equipment Blank R1808107-027 107 112 116 Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	DR-3	R1808107-025	95	103	105
Method Blank RQ1809064-05 90 98 99 Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	DR-4	R1808107-026	96	102	103
Method Blank RQ1809076-04 97 101 105 Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	Equipment Blank	R1808107-027	107	112	116
Method Blank RQ1809124-04 105 113 117 Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	Method Blank	RQ1809064-05	90	98	99
Lab Control Sample RQ1809064-03 95 102 101 Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	Method Blank	RQ1809076-04	97	101	105
Duplicate Lab Control Sample RQ1809064-04 93 101 99 Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	Method Blank	RQ1809124-04	105	113	117
Lab Control Sample RQ1809076-03 98 106 105 Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	Lab Control Sample	RQ1809064-03	95	102	101
Lab Control Sample RQ1809124-03 117 118 118 DR-1 MS RQ1809076-05 105 110 110	Duplicate Lab Control Sample	RQ1809064-04	93	101	99
DR-1 MS RQ1809076-05 105 110 110	Lab Control Sample	RQ1809076-03	98	106	105
	Lab Control Sample	RQ1809124-03	117	118	118
	DR-1 MS	RQ1809076-05	105	110	110
DR-1 DMS RQ1809076-06 106 113 111	DR-1 DMS	RQ1809076-06	106	113	111

QA/QC Report

Client: Bergmann Associates, Incorporated **Project:**

Gowanda Q3 2018/6974.96

Sample Matrix: Water **Service Request:**

R1808107

Date Collected:

08/22/18

Date Received:

08/23/18

Date Analyzed:

08/29/18

Date Extracted:

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: DR-1

Units:

ug/L

Lab Code:

R1808107-023

Basis:

NA

Analysis Method:

8260C

Prep Method:

EPA 5030C **Matrix Spike**

Duplicate Matrix Spike

RQ1809076-06

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	210	623	500	83	677	500	94	77-127	8	30
trans-1,2-Dichloroethene	50 U	442	500	88	508	500	102	73-118	14	30
Tetrachloroethene (PCE)	50 U	478	500	96	513	500	103	72-125	7	30
1,1,1-Trichloroethane (TCA)	50 U	400	500	80	455	500	91	74-127	13	30
Trichloroethene (TCE)	1300	1640	500	73 *	1700	500	85	74-122	4	30
Vinyl Chloride	50 U	431	500	86	491	500	98	74-159	13	30

RQ1809076-05

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1808107

Project: Gowanda Q3 2018/6974.96

Date Collected: NA

Sample Matrix: Water

Date Received: NA

Sample Name: Method Blank Lab Code: RQ1809064-05

Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 11:31	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 11:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 11:31	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 11:31	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 11:31	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 11:31	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	08/28/18 11:31	
Dibromofluoromethane	98	89 - 119	08/28/18 11:31	
Toluene-d8	99	87 - 121	08/28/18 11:31	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1809076-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/28/18 21:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/28/18 21:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/28/18 21:30	
Trichloroethene (TCE)	5.0 U	5.0	1	08/28/18 21:30	
Vinyl Chloride	5.0 U	5.0	1	08/28/18 21:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	08/28/18 21:30	
Dibromofluoromethane	101	89 - 119	08/28/18 21:30	
Toluene-d8	105	87 - 121	08/28/18 21:30	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda Q3 2018/6974.96 **Date Collected:** NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1809124-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 13:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	08/29/18 13:17	
Tetrachloroethene (PCE)	5.0 U	5.0	1	08/29/18 13:17	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	08/29/18 13:17	
Trichloroethene (TCE)	5.0 U	5.0	1	08/29/18 13:17	
Vinyl Chloride	5.0 U	5.0	1	08/29/18 13:17	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	08/29/18 13:17	
Dibromofluoromethane	113	89 - 119	08/29/18 13:17	
Toluene-d8	117	87 - 121	08/29/18 13:17	

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

Sample Matrix: Water

Date Analyzed: 08/28/18

Service Request: R1808107

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1809076-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	17.3	20.0	86	80-121
trans-1,2-Dichloroethene	8260C	17.3	20.0	87	73-118
Tetrachloroethene (PCE)	8260C	17.7	20.0	88	72-125
1,1,1-Trichloroethane (TCA)	8260C	16.0	20.0	80	75-125
Trichloroethene (TCE)	8260C	17.3	20.0	86	74-122
Vinyl Chloride	8260C	17.1	20.0	86	74-159

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

Sample Matrix: Water

Service Request: R1808107 **Date Analyzed:** 08/29/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1809124-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	18.8	20.0	94	80-121
trans-1,2-Dichloroethene	8260C	19.1	20.0	95	73-118
Tetrachloroethene (PCE)	8260C	21.1	20.0	106	72-125
1,1,1-Trichloroethane (TCA)	8260C	17.4	20.0	87	75-125
Trichloroethene (TCE)	8260C	19.0	20.0	95	74-122
Vinyl Chloride	8260C	19.9	20.0	99	74-159

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda Q3 2018/6974.96

Sample Matrix: Water

Service Request: R1808107 Date Analyzed: 08/28/18

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

> Units:ug/L Basis:NA

Lab Control Sample

Duplicate Lab Control Sample

RQ1809064-03

RQ1809064-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
cis-1,2-Dichloroethene	8260C	18.6	20.0	93	18.6	20.0	93	80-121	<1	30
trans-1,2-Dichloroethene	8260C	19.5	20.0	98	18.5	20.0	93	73-118	5	30
Tetrachloroethene (PCE)	8260C	22.1	20.0	110	21.4	20.0	107	72-125	3	30
1,1,1-Trichloroethane (TCA)	8260C	17.9	20.0	90	17.6	20.0	88	75-125	2	30
Trichloroethene (TCE)	8260C	19.8	20.0	99	19.3	20.0	97	74-122	3	30
Vinyl Chloride	8260C	20.1	20.0	101	19.1	20.0	95	74-159	5	30

NOVEMBER 2018 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

GROUNDWATER CHARACTERIZATION REPORT – NOVEMBER 2018

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135

www.bergmannpc.com

Issued: January 2019

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work Site Background	4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	
2.1 2.2	Well Maintenance ActivitiesGroundwater Field Monitoring and Sampling Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples	6 8
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	11

Tables

Table 1: Groundwater Elevations and Field Measurements – November 2018

Table 2: November 2018 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary

Table 4: Percent Reduction in Total Groundwater VOCs

Figures

Figure 1: November 2018 Groundwater Contour Map

Figure 2: November 2018 Distribution of Groundwater Analytical Results: Monitoring Wells

Figure 3: November 2018 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations

Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations

Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations

Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations

Chart 6: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - November 2018 Sampling Event

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the November 2018 sampling event on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on November 13, 2018. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from 19 of 21 site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), two (2) were not sampled. These monitoring wells are MW-19R and MW-21. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site. Monitoring Wells MW-19R and MW-21 have not been sampled due to the fact that they have been paved over as first reported by Bergmann in the August 2017 sampling report.

The prior groundwater sampling event was conducted in August 2018 and included analysis of groundwater samples from 19 of 21 site-related groundwater monitoring wells and all seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

SVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO remedial action plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015. An ISCO Report was prepared under a separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the November 2018 site visit, all monitoring wells were accessible and the integrity of the wells was not compromised except for MW-19R and MW-21. MW-19R and MW-21, both located on Torrance Place, were still paved over as originally reported in the August 2017 summary report. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the November 2018 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from 19 of the 21 site-related groundwater monitoring wells for laboratory analysis on November 13, 2018. Depth to groundwater measurements were obtained from 26 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via bailing with dedicated bailers for each individual well. Sample parameters including turbidity, temperature, pH, oxygen, salinity and conductivity were monitored using a YSI Quatro to ensure sufficient well purging prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to ALS Environmental Services located in Rochester, NY, a NYSELAP certified laboratory, for testing using EPA Method 8260B for targeted chlorinated volatile organic compounds (VOCs) of concern. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2012 – 2018.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for November 2018 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on November 13, 2018. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements – November 2018.

The November 2018 groundwater contour map shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The November 2018 depths to groundwater range from 4.90 ft below top of casing (btoc) at MW-2, to 13.00 ft btoc at MW-7. The average depth to groundwater at the wells measured was 8.83 ft btoc, which is a decrease from the average depth to water of the previous sampling event in August (9.84 ft.).

The site-wide average depth to water table decreased by approximately 1.01 ft when compared to the August 2018 sampling event. This decrease in the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented Table 1 and November 2018 Groundwater Contours are presented on Figure 1 – November 2018 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from 19 monitoring wells and seven (7) recovery wells collected November 13, 2018. Samples were analyzed for VOCs via EPA Method 8260B. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-DCE)
- Vinyl Chloride (VC)

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The November 2018 analytical results indicate three (3) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, and Trans-DCE. Chlorinated VOCs were detected in groundwater from seven (7) of the 19 sampled monitoring wells. Analytical results are summarized in Table 2 – November 2018 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical reporting package is provided in Appendix A – Laboratory Analytical Results Report

November 2018 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from 12 of the sampled monitoring wells.

Groundwater samples from seven (7) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (1,080 ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in five (5) of the 19 monitoring well groundwater samples increased when compared to the August 2018 sampling event while concentrations in three (3) of the 19 monitoring well groundwater samples decreased. Concentrations in eleven (11) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 85.1% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 74.6% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the November 2018 sampling event was 1,080 parts per billion (ppb), a decrease from the August 2018 value of 1,190 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 40.6%.

Monitoring well MW-11 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the November 2018 sampling event is 489.3 ppb, an increase from the August 2018 value of 282 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 89.5%.

Monitoring well MW-12 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the November 2018 sampling event is 53 ppb, an increase from the August 2018 value of 25 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99.9%.

Monitoring well MW-14 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the November 2018 sampling event is 30.7 ppb, an increase from the August 2018 value of 22.3 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 90.3%.

Monitoring well MW-15 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the November 2018 sampling event was non-detect (ND), which was a decrease from the August 2018 sampling event, which was 6.5 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased almost 100%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system.

The current results indicate non-detect levels for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a re-sealing operation. The wells were still inaccessible and paved over during the November 2018 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – November 2018 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry well sampled for this event was only MW-4. The current results indicate non-detect levels for this eastern sentry well.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R, but MW-19R is unable to be sampled because it is paved over. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the November 2018 sampling event, all of the seven (7) recovery wells were sampled.

The November 2018 analytical results indicate detection of two (2) chlorinated VOCs in recovery well samples: TCE and Cis-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the sampled recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average reduction in VOCs for the current sampling event is about 47.2% relative to concentrations prior to GTS activation in 2002. Relative percent reductions in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the November 2018 sampling event is 1,310 ppb, a decrease from the August 2018 value of 1,510 ppb. The current sampling event indicates an increase in VOCs at DR-1 of 128.5% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the November 2018 sampling event is 216 ppb, an increase from the August 2018 value of 162 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 60.7% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the November 2018 sampling event is 73 ppb, a decrease from the August 2018 value of 87 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 52.1% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the November 2018 sampling event is 37.2 ppb, a decrease from the August 2018 value of 48 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 95.7% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the November 2018 sampling event was 74.6 ppb, a decrease from the August 2018 value of 77 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 62.8% since activation of the GTS.

Recovery well G-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the November 2018 sampling event was 25 ppb, a decrease from the August 2018 value of 68 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 91.2% since activation of the GTS.

Recovery well G-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the November 2018 sampling event was 15 ppb, a decrease from the August 2018 value of 322 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 96.3% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – November 2018 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected to ensure proper cleaning of the sampling equipment. The equipment blank, designated as EB, was non-detect for chlorinated halogens. In addition, a duplicate blank (labeled as MW-X) was taken from MW-8.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center.

Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (1,080 ppb) show a decrease from the August 2018 sampling event (1,190 ppb). The current total VOCs at MW-11 (489.3 ppb) shows an increase from the August 2018 sampling event (282 ppb). The current total VOCs at DR-1 (1,310 ppb) show a decrease from the August 2018 sampling event (1,510 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (53 ppb) shows an increase from the August 2018 sampling event (25 ppb). The current total VOCs at recovery well DR-2 (216 ppb) show an increase from the August 2018 sampling event (162 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (30.7 ppb) show an increase from the August 2018 sampling event (22.3 ppb). The current total VOCs at recovery well DR-3 (73 ppb) show a decrease from the August 2018 sampling event (87 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (ND) show a decrease from the August 2018 sampling event (6.5 ppb). The current total VOCs at recovery well DR-4 (37.2 ppb) show a decrease from the August 2018 sampling event (48 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (218 ppb) show a decrease from the August 2018 sampling event (265 ppb). The current total VOCs at recovery well G-1 (74.6 ppb) show a decrease from the August 2018 sampling event (77 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC concentration of 25 ppb, which shows a decrease from the August 2018 sampling event (68 ppb). The November 2018 total VOCs of MW-7 (ND) showed no change from the August 2018 sampling event (ND).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (218 ppb) showed a decrease from the August 2018 sampling event (265 ppb). The current total VOCs at recovery well G-3 was 15 ppb, a decrease from the August 2018 sampling event (322).

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the November 2018 and August 2018 sampling events due to the fact that they were both paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred at the Site when compared to the past ten (10) years of sampling. The following notes are a summary of the meeting held on June 22, 2018 between Bergmann, DASNY, and the NYSDEC.

- Bergmann submitted an Additional Subsurface Investigation Plan (ASIP) consisting of additional soil borings to further delineate the contamination on site and proposed a method of remediation.
- As part of the ASIP, soils will be sampled for the same VOCs that are consistently present in groundwater samples to determine if the contamination is residual in the soils on site.
- Details of the proposed additional investigation are outlined in the Additional Subsurface Investigation Plan dated July 2018 and submitted to DASNY on July 23, 2018.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO RAP in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future; however, system components may need repair and/or replacement. Prior to restart, three (3) routine quarterly monitoring events will be completed to fulfill the NYSDEC requirements for post ISCO groundwater treatment.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for February 2019. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements November 2018

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	5.05	4.90	5.40	6.35	10.75	12.65	13.00	8.61	7.90	5.80
Groundwater Elevation	773.18	773.18	772.98	772.08	767.86	768.45	767.94	772.72	774.71	774.22
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.42
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.60
Thickness of Water Column	10.97	12.25	10.90	9.43	3.20	10.23	8.80	9.04	13.06	13.62
Minimum Purge Volume (gal)	1.8	2.00	1.8	1.5	0.5	1.7	1.4	1.5	2.1	2.2
3 Volumes	5.4	5.99	5.3	4.6	1.6	5.0	4.3	4.4	6.4	6.7
Actual volume purged	5.4	5.99	NS	4.6	1.4	5.0	4.3	NS	NS	NS
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = -0.34 '	Flush = -0.24 '	Stickup=2.17'	Stickup=2.17	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	NA	778.04	NA
Depth to Groundwater (btoc)	5.70	6.32	6.67	10.36	10.24	12.60	12.65	8.60	NA	5.95	NA
Groundwater Elevation	772.88	772.18	771.72	768.07	768.14	767.83	767.20	767.79	NA	772.09	NA
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	NA	2"	NA
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	NA	14.75	NA
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	NA	763.29	NA
Thickness of Water Column	9.78	11.06	10.73	7.79	9.56	10.66	NA	16.40	NA	8.80	NA
Minimum Purge Volume (gal)	1.6	1.8	1.7	1.3	1.6	1.7	NS	2.7	NA	1.4	NA
3 Volumes	4.8	5.4	5.2	3.8	4.7	5.2	NS	8.0	NA	4.3	NA
Actual volume purged	4.8	5.4	NS	3.8	4.7	5.2	NS	8.0	NA	4.3	NA
Comments	Flush = -0.23 '	Flush = -0.35 '	Flush = -0.48 '	Flush = $-0.39'$	Flush = -0.38	Stickup=2.26	Stickup=1.18'	Flush =-0.26'	Paved Over	Flush=-0.43'	Paved Over.

							i
	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	6.75	6.51	11.25	11.22	11.43	11.39	9.75
Groundwater Elevation	772.91	773.42	768.53	768.42	768.40	768.33	769.67
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	11.31	11.55	9.20	8.47	11.55	9.17	8.40
Minimum Purge Volume (gal)	7.39	7.54	6.01	5.53	7.54	5.98	5.49
3 Volumes	22.16	22.63	18.02	16.59	22.63	17.94	16.46
Actual volume purged	22.16	22.63	18.02	16.59	22.63	17.94	16.46
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser) All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed. Wells MW-19R, MW-20 and MW-21 were installed in October 2004, MW-19R and MW-21 have been paved over a few size.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		930	900	5.0
CIS		260	180	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1,190	1,080	

Monitoring Well MW-2

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3

Sampling Events

1 0				
Analyte	in ppb	Ag 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Monitoring Well MW-4

Sampling Events

<u> </u>				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-6

Sampling Events

Camping E				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		77	81	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	77	81	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

-				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

 ${\sf NS}={\sf Not}$ Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Monitoring Well MW-10

Sampling Events

• • • • • • • • • • • • • • • • • • •				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Monitoring Well MW-11

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		160	290	5.0
CIS		120	190	5.0
TRANS		2.1	9.3	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	282	489.3	

Monitoring Well MW-12

Sampling Events

Camping L				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		5.0	18	5.0
CIS		20	35	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	25	53	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Camping Li	Orito			
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-14

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		15	21	5.0
CIS		7.3	9.7	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	22.3	30.7	

Monitoring Well MW-15

Sampling Events

Camping Ev				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		6.5	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	6.5	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Monitoring Well MW-16

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		10	41	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	10	41	

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Monitoring Well MW-17

Sampling Events

<u> </u>				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		45	38	5.0
CIS		220	180	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	265	218	

Monitoring Well MW-18

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: NS

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		NS	NS	5.0
CIS		NS	NS	5.0
TRANS		NS	NS	5.0
VC		NS	NS	2.0
TCA		NS	NS	5.0
	Total VOCs	NS	NS	

Monitoring Well MW-20

Sample Date: 11/13/2018

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
٦	Total VOCs	ND	ND	

Monitoring Well MW-21

Sample Date: NS

Sampling Events

Analyte in pp	b Aug 2018	Nov 2018	NYS Guidance Value
TCE	NS	NS	5.0
CIS	NS	NS	5.0
TRANS	NS	NS	5.0
VC TCA	NS	NS	2.0
TCA	NS	NS	5.0
Total V	OCs NS	NS	

ND = Non-detect

 ${\sf NS}={\sf Not}$ Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1 Sampling Events Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		1300	1100	5.0
CIS		210	210	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1,510	1,310	

Recovery Well DR-2 Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		32	46	5.0
CIS		130	170	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	162	216	

Recovery Well DR-3 Sampling Events

1 0				
Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		24	31	5.0
CIS		63	42	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	87	73	

ND = Non-detect

 ${\sf NS}={\sf Not}$ Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Recovery Well DR-4

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		29	28	5.0
CIS		19	9.2	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	48	37.2	

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Sample Date: 11/13/2018

Recovery Well G-1

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	6.6	5.0
CIS		77	68	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	77	74.6	

Recovery Well G-2
Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		68	25	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	68	25	

Page 5 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3

Sample Date: NS

Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		52	8.8	5.0
CIS		270	6.2	5.0
TRANS		ND	ND	5.0
VC TCA		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	322	15	

Duplicate Blank (MW-8)

Sample Date: 11/13/2018

Sampling Events

			NYS
			Guidance
Analyte	in ppb	Nov 2018	Value
TCE		ND	5.0
CIS		ND	5.0
TRANS		ND	5.0
VC		ND	2.0
TCA		ND	5.0
	Total VOCs	ND	

Sample Date: 11/13/2018

Equipment Blank Sampling Events

Analyte	in ppb	Aug 2018	Nov 2018	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary

Gowanda Day Habilitation Center

4 Industrial Place, Gowanda, New York

VCA # V-00463-9

	MONITORING WELLS																						
Monitoring	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs	Total VOCs				
Well Number	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
	Nov 2018	August 2018	May 2018	April 2018	Nov 2017	Aug 2017	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)										1
MW-1	1,080	1,190	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-6	81	84	77	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7
MW-7	ND	ND	ND	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
MW-8	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-11	489.3	282	489	1,160	470	525	646	445	550	1,060	630	444	500	451	375	450	710	880	510	570	790	498	617
MW-12	53	25	100	113	31	40	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22
MW-13	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-14	30.7	22.3	22.8	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
MW-15	ND	6.5	ND	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25
MW-16	41	10	41	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
MW-17	218	265	112.5	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	ND NO	ND NO	ND NO	ND NO	6.3	ND	10 ND	26 ND	6.9	ND	ND	ND	ND	ND	ND	ND ND	ND	NS	ND	ND	ND 0.5	16.6	2.33
MW-19R	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND
MW-20	ND NO	ND NO	ND NO	ND NO	ND NO	ND	ND	ND	ND 0.7	ND	ND 33	ND 10	ND	ND NO	ND	ND NO	ND	ND NO	ND NO	ND	ND NO	ND	ND
MW-21	NS NB	NS NS	NS 40.4	NS NC	NS 400	NS DWC	17	39	8.7	20	20	10	NS 407	NS	NS 400	NS 070	NS	NS 4.050	NS 540	NS 400.0	NS 4.450	NS 504	NS 040
MW-X (DUP)	ND	ND	434	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										RECOVE	RY WELLS												

Recovery Well Number	Total VOCs Nov 2018 (ppb)	Total VOCs August 2018 (ppb)	Total VOCs May 2018 (ppb)	Total VOCs April 2018 (ppb)	Total VOCs Nov 2017 (ppb)	Total VOCs Aug 2017 (ppb)	Total VOCs Nov 2016 (ppb)	Total VOCs Sep 2016 (ppb)	Total VOCs Jun 2016 (ppb)	Total VOCs Nov 2015 (ppb)	Total VOCs Aug 2015 (ppb)		Total VOCs Mar 2015 (ppb)	l	Total VOCs Sep 2014 (ppb)	Total VOCs Jun 2014 (ppb)	1	1			Total VOCs Dec 2012 (ppb)		
DR-1	1,310	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	216	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3 DR-4 G-1	73 37.2 74.6	87 48 77	125.4 31.2 40	34 31.6 22	48 46 70	NS 52 73.5	98 79 85	154 95 105.6	62 63 59.7	45 94 80.3	76 110 ND	83 71 68	55 147 146	181 156 101	210 148 105	96 90	89 64 78	123 68 96.2	62 79 69.1	73 37 55.8	90 52.6	116.96 122.6 68.55	24.9 ND 65.58
G-2	25	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	15	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS		NS	11	25	41.6	147.3	44.2

NS= This well not included in this sampling event.
ND = Not Detected, results less than Method Detection Limit.

Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb). VOC - Volatile Organic Compounds.

DUP - Duplicate Sample

EB - Equipment/Field Blank Sample

* - Sample was broken in transit and not able to be analyzed DWS- Different Well Sampled than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs

Gowanda Day Habilitation Center
4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treatment System was activated in May 2005

	% Reduction 2002 to Nov	% Reduction 2002 to Aug	% Reduction 2002 to May	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to										
Monitoring Well	2018	2018	2018	April 2018	Nov 2017	Aug 2017	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012
MW-1 [†]	-40.6%	-54.9%	-44.5%		-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2%	-91.4%	54.4%	44.0%			-28.9%		-126.6%		-19.5%	-87.5%	31.3%	-15.8%
MW-2	100%	100%	100%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-3	100%	100%	100%	100%	100%	100.0%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-4	100%	100%	100%		100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%
MW-5	100%	100%	100%		100%	100.0%	Not Sampled	Not Sampled			Not Sampled	Not Sampled			Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled		Not Sampled	Not Sampled	Not Sampled
MW-6	100%	-83.3%	15.4%		-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8%	80.0%		72.9%	76.4%		68.0%	75.6%		75.6%	78.6%	
MW-7	80.0%	79.3%	81.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1%	100.0%	60.0%	57.8%	93.6%		100.0%	96.0%	100.0%	100.0%	66.3%	93.2%
MW-8	100%	100%	100%		Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled				Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
MW-9	100%	100%	100%			Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled		Not Sampled	Not Sampled			Not Sampled		Not Sampled	Not Sampled		Not Sampled	Not Sampled	Not Sampled
MW-10	100%	100%	100%		100%	100.0%	. tot Gampioa			Not Sampled		Not Sampled					Not Sampled						
MW-11	89.5%	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%			90.4%	89.2%			90.3%		81.1%	89.0%	87.7%	83.0%	89.3%	
MW-12	99.6%	99.8%	99.2%		99.80%	75.0%	99.9%	99.9%	99.9%			99.2%	99.1%		98.4%	98.4%		98.6%	98.8%	98.5%	98.9%	99.3%	
MW-13	100%	100%	100%		Not Sampled			Not Sampled				Not Sampled			Not Sampled		Not Sampled	Not Sampled			Not Sampled	Not Sampled	
MW-14	90.3%	92.9%	92.8%		87.90%	2.3%	75.9%	68.3%	81.9%			83.5%	68.6%	78.4%	78.4%	82.9%		70.2%	84.4%	77.5%	85.1%	87.4%	
MW-15	100%	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%		98.1%	98.9%	98.7%			99.2%		99.1%		100.0%	98.2%	96.4%	
MW:16*	19.9%	80.5%	19.9%		2.80%		72.7%	60.9%	27.7%			86.7%	100.0%			59.0%		60.9%	77.9%		52.6%	88.5%	67.9%
MW-17*	78.4%	73.8%	88.9%		78*		62.9%	54.0%	58.0%			Not Sampled	66.8%			66.5%		58.5%			46.9%	53.0%	
MW-18:*	100%	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%			100.0%	100.0%	100.0%	89.6%	
MW-19 R*	Not Sampled	Not Sampled	Not Sampled		Not Sampled	_	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	
MW-20**	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	
MW-21**	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled
* Well installed 2003																							
** Well Installed 2004	1																						
	1	=======================================	0.1.55	0.1.55	07.000	20.151									20.55		20.55	0		04.55			1 20 51
Site-Wide reduction:	85.1%	78.0%	81.2%	84.2%	67.60%	62.1%	74.1%	68.7%	78.6%	66.2%	69.1%	87.7%	88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%
Impacted Groundwater																							
Plume Area Only:	74.6%	72.1%	65.3%	76.6%	51.40%	41.1%	66.5%	69.6%	76.0%	58.1%	58.6%	84.6%	80.8%	77.3%	75.0%	72.3%	73.9%	82.2%	73.2%	77.3%	62.5%	75.2%	73.1%

Plume Area = MW-1, MW-11, MW-12, MW-14, MW-15, MW-7, MW-17, MW-6
% reduction = percent reduction in total Volatile Organic Compounds (VOCs) since groundwater monitoring was initiated
†Negative values indicate an increase in total VOCs since monitoring commenced in 2002. The percent increase in total groundwater VOCs is shown below for MW-1.

Recovery Well	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 2002 to Sep 2016	% Reduction 2002 to Jun 2016	% Reduction 2002 to Nov 2015	% Reduction 2002 to Aug 2015	% Reduction 2002 to Jun 2015	% Reduction 2002 to Mar 2015	% Reduction 2002 to Nov 2014	% Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012
DR-1	-128.5%	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sampled	96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%
DR-2	60.7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%
DR-3	52.1%	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%
DR-4	95.7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%
G-1	62.8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%
G-2	91.2%	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sampled	83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%
G-3	96.3%	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sampled	79.7%	NA	NA	NA	NA	NA	NA NA				
Overall Reduction	47.2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%

*Sampling of recovery wells initiated in 2005

FIGURES

(MW-19R MW-18 767.79 MW-7 767.94 MW-20 772.09 MW-16 G-3 769.67 MW-17 767.20 767.83 MW-6 768.45 MW-5 767.86 G-2 768.33 MW-15 768.14 G-1 768.40 DR-4 768.42 MW-14 768.07 DR-3 768.53 MW-13 771.72 MW-4 772.08 MW-12 772.18 MW-8 772.72 DR-1 772.91 MW-3 772.98 MW−1 773.18 MW-2 773.18 MW-9 774.71 120 FT MW-10 774.22 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS

NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

lote:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manager:	Checked By:
S. DEMEO	S. DEMEO
Designed By:	Drawn By: C. WOOD
Date Issued:	Scale:
12/27/2018	1" = 60'
Project Number: 6074 96	

NOVEMBER 2018 WATER LEVEL CONTOUR MAP

Drawing Number:

FIGURE 1

DASNY

Gowanda Day Habilitation Center

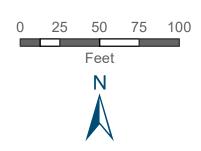

4 Industrial Place Gowanda, NY

Figure 2

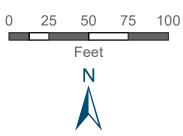
ARCHITECTS ENGINEERS PLANNERS

November 2018
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

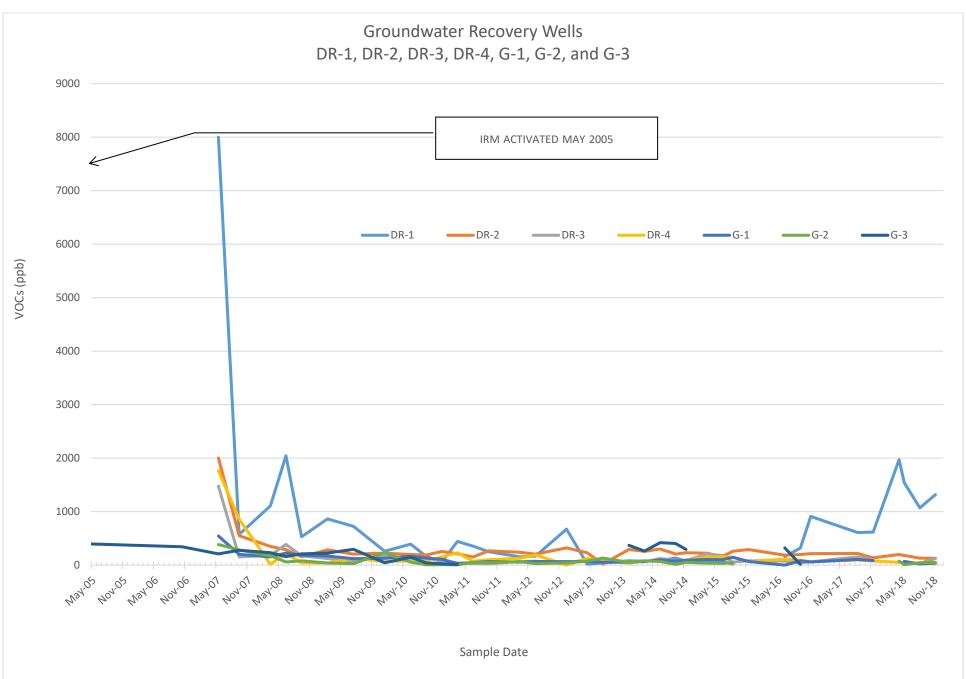
4 Industrial Place Gowanda, NY

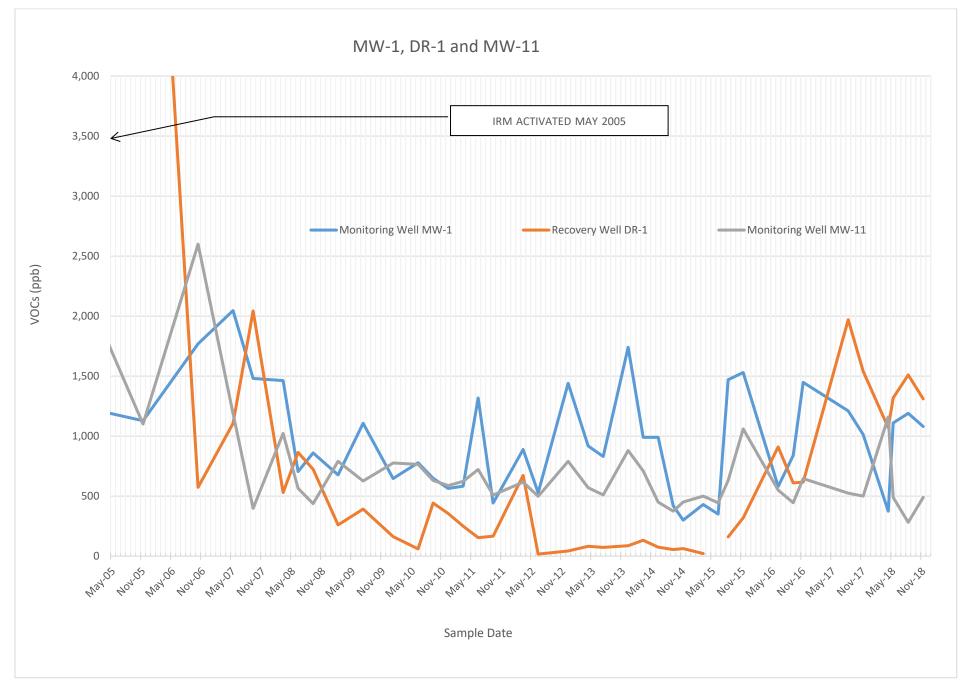


BERGMANN

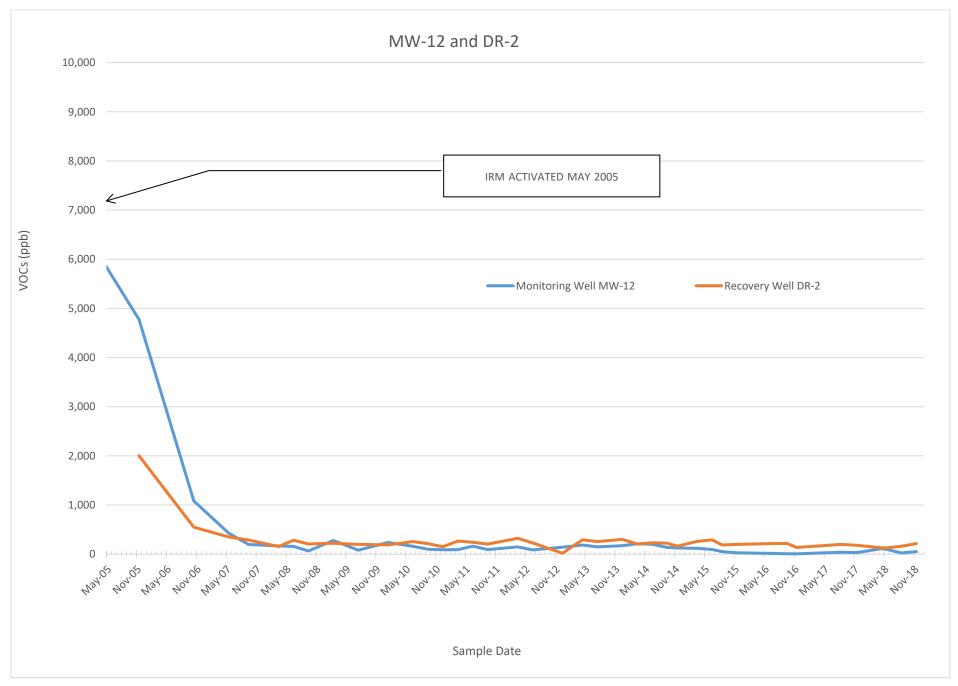
ARCHITECTS ENGINEERS PLANNERS

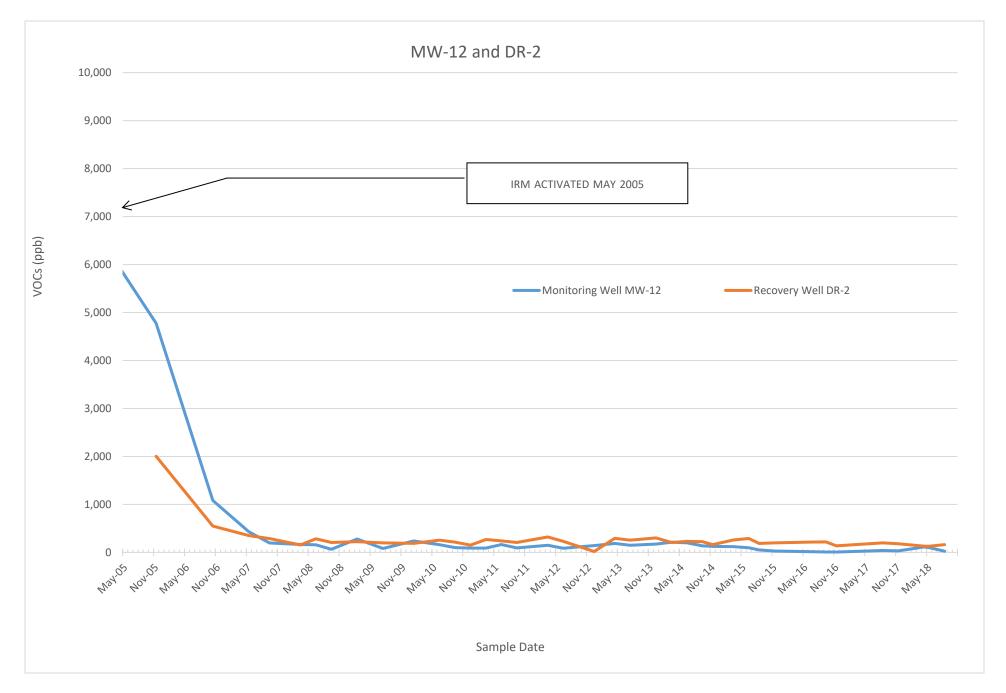
Figure 3

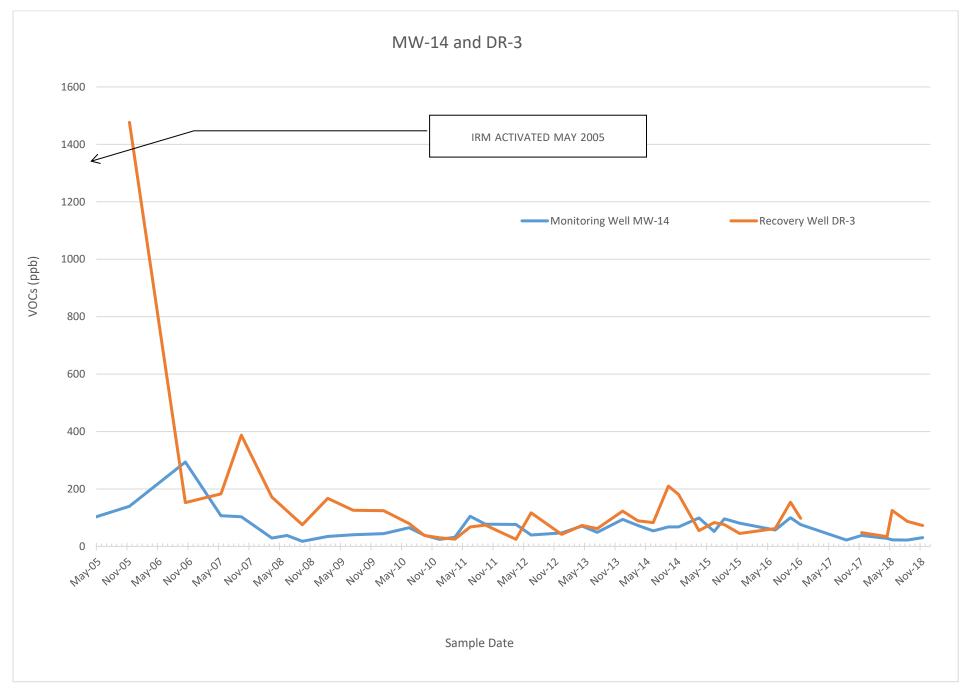

November 2018
Distribution of
Groundwater
Analytical Results:
Recovery Wells

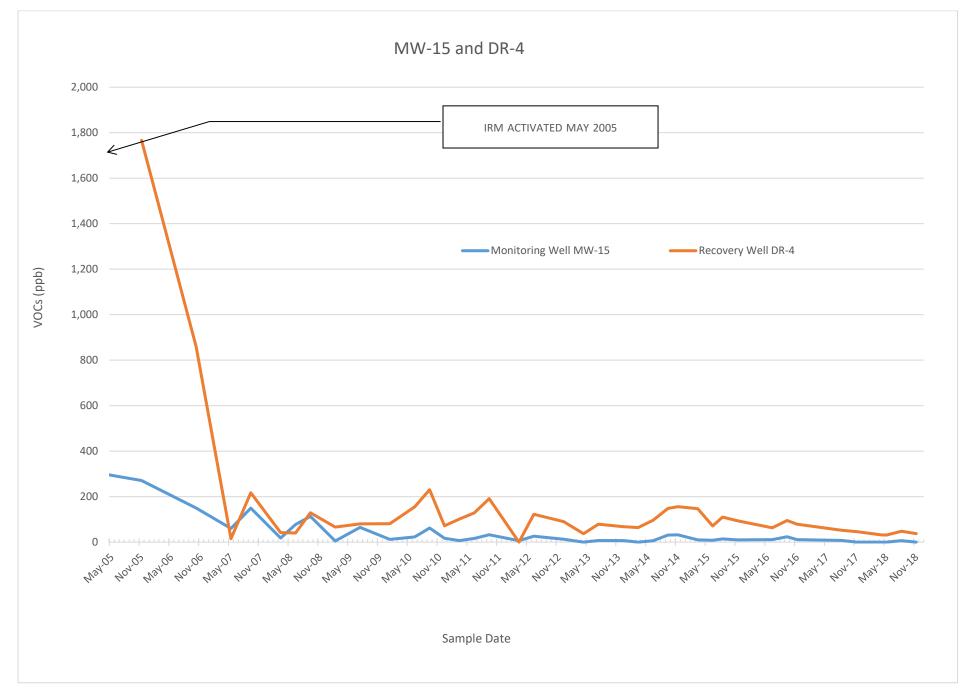


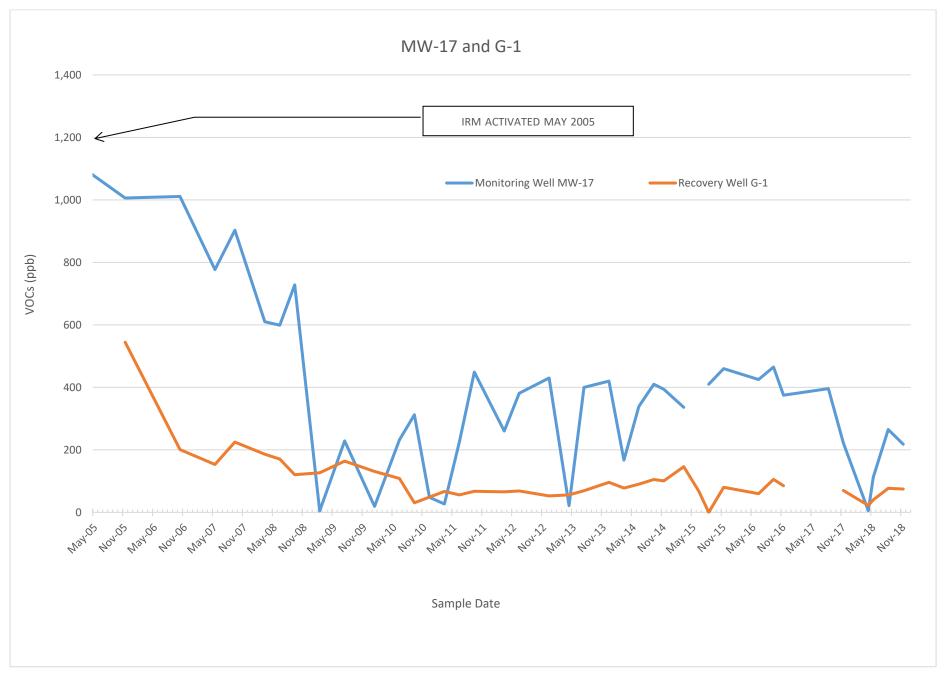
CHARTS

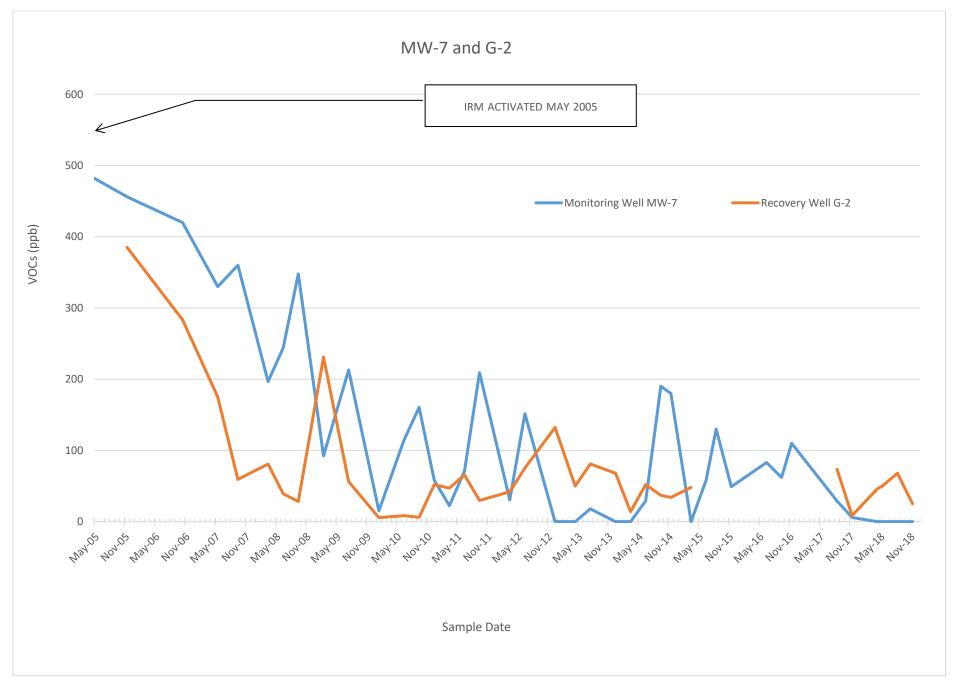


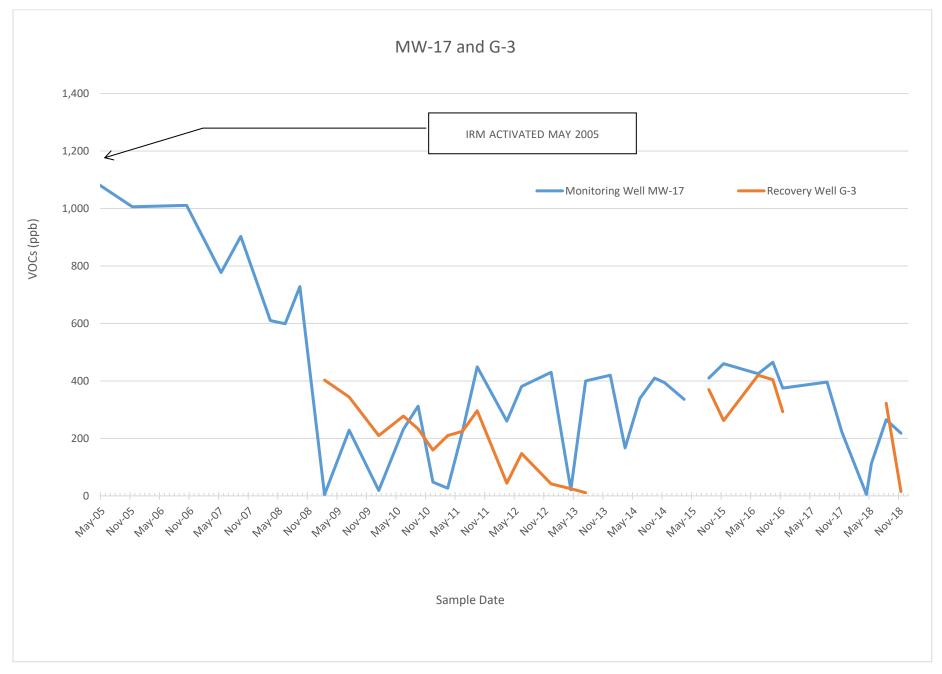












APPENDIX A:

LABORATORY ANALYTICAL RESULTS

Service Request No:R1811036

Mr. Cash Bleier Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Gowanda

Dear Mr.Bleier,

Enclosed are the results of the sample(s) submitted to our laboratory November 14, 2018 For your reference, these analyses have been assigned our service request number **R1811036**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Brady.Kalkman@alsglobal.com.

Respectfully submitted,

Goody Kullen

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Bergmann Associates, Incorporated Service Request: R1811036

Project: Gowanda Date Received: 11/14/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Twenty nine water samples were received for analysis at ALS Environmental on 11/14/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 0 to 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature. If any samples were received for the analysis of pH, chlorine residual, sulfite, dissolved oxygen, or ferrous iron, the samples were analyzed past their holding time expiration since these analyses are required to be analyzed within 15 minutes of sampling.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

	Gody Kulker
Approved by	

Date	11/26/2018	
Date	11/20/2010	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1 Lab ID: R1811036-001										
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	180		1.3	25	ug/L	8260C				
Trichloroethene (TCE)	900		1.0	25	ug/L	8260C				
CLIENT ID: MW-6		Lab	ID: R1811	036-006						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	81		0.26	5.0	ug/L	8260C				
CLIENT ID: MW-11		Lab	ID: R1811	036-011						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	190		0.26	5.0	ug/L	8260C				
trans-1,2-Dichloroethene	9.3		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	290	D	1.0	25	ug/L	8260C				
CLIENT ID: MW-12		Lab	ID: R1811	036-012						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	35		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	18		0.20	5.0	ug/L	8260C				
CLIENT ID: MW-14		Lab	ID: R1811	036-014						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	9.7		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	21		0.20	5.0	ug/L	8260C				
CLIENT ID: MW-16		Lab	ID: R1811	036-016						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	41		0.26	5.0	ug/L	8260C				
CLIENT ID: MW-17		Lab	ID: R1811	036-017						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	180	D	0.52	10	ug/L	8260C				
Trichloroethene (TCE)	38		0.20	5.0	ug/L	8260C				
CLIENT ID: G-1		Lab	ID: R1811	036-020						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	68		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	6.6		0.20	5.0	ug/L	8260C				
CLIENT ID: G-2		Lab	ID: R1811	036-021						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	25		0.26	5.0	ug/L	8260C				
CLIENT ID: G-3		Lab	ID: R1811	036-022						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	6.2		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	6.8		0.20	5.0	ug/L	8260C				

SAMPLE DETECTION SUMMARY

CLIENT ID: DR-1 Lab ID: R1811036-023										
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	210		2.6	50	ug/L	8260C				
Trichloroethene (TCE)	1100		2.0	50	ug/L	8260C				
CLIENT ID: DR-2		Lab	ID: R1811	1036-024						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	170		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	46		0.20	5.0	ug/L	8260C				
Vinyl Chloride	5.6		0.22	5.0	ug/L	8260C				
CLIENT ID: DR-3		Lab	ID: R1811	1036-025						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	42		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	31		0.20	5.0	ug/L	8260C				
CLIENT ID: DR-4		Lab	ID: R1811	1036-026						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	9.2		0.26	5.0	ug/L	8260C				
Trichloroethene (TCE)	28		0.20	5.0	ug/L	8260C				

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96

SAMPLE CROSS-REFERENCE

SAMPLE#	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1811036-001	MW-1	11/13/2018	1210
R1811036-002	MW-2	11/13/2018	1220
R1811036-003	MW-3	11/13/2018	1200
R1811036-004	MW-4	11/13/2018	1150
R1811036-005	MW-5	11/13/2018	1115
R1811036-006	MW-6	11/13/2018	1100
R1811036-007	MW-7	11/13/2018	1030
R1811036-008	MW-8	11/13/2018	1300
R1811036-009	MW-9	11/13/2018	1240
R1811036-010	MW-10	11/13/2018	1230
R1811036-011	MW-11	11/13/2018	1245
R1811036-012	MW-12	11/13/2018	1215
R1811036-013	MW-13	11/13/2018	1200
R1811036-014	MW-14	11/13/2018	1015
R1811036-015	MW-15	11/13/2018	1030
R1811036-016	MW-16	11/13/2018	1015
R1811036-017	MW-17	11/13/2018	1040
R1811036-018	MW-18	11/13/2018	1315
R1811036-019	MW-20	11/13/2018	1130
R1811036-020	G-1	11/13/2018	1015
R1811036-021	G-2	11/13/2018	1000
R1811036-022	G-3	11/13/2018	1300
R1811036-023	DR-1	11/13/2018	1230
R1811036-024	DR-2	11/13/2018	1138
R1811036-025	DR-3	11/13/2018	1100
R1811036-026	DR-4	11/13/2018	1045
R1811036-027	MW-X	11/13/2018	2359
R1811036-028	Equip Blank	11/13/2018	2359
R1811036-029	Trip Blank	11/13/2018	2359

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 54368

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF _____

Project Namo Gawarda					Al	VALYS	SIS RE	QUEST	red (nclude	e Meth	od Nu	ımber	and C	ontain	er Pre	servati	ve)					
Project Manager C. Bleise	Report CC	[™] 6974.			PRE	SERVA	ATIVE	1															
Bergmann	L Suite	200			TAINERS		/	7		$\overline{/}$	$\overline{/}$			\int	/	$\overline{/}$	\mathcal{T}	$\overline{/}$	$\overline{/}$	\mathcal{I}	F 0	reservative K NONE HCD HNO3 H2SO4 NaOH	ey
	0 Email Ch	eier@bei	ymanng eier	K. Eom	NUMBER OF CONTAINERS	SCARS W.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PESTICIOE		METALS, TOS	METALS, OFFICE PRO	Somments Colored		//	//	//	//	/	//	5 6 7 8 RE	. 2n. Acetate . MeOH . NaHSO ₄ . Other	_
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPL DATE		MATRIX		, .			/ 0		, "	7 2								/ A	LTERNAT	E DESCRIPTIO	<u>N</u>
MW-1		11/13/18	12:100	aw	3	×.																	
Mw-Z		11/13/18	12:20g	CIW	3	X																	
Mw-3		11/13/18	12:00e	GW	3	X																	
MW-4		113/18	11:50a	GW	3	ĸ																	
MWS		11/13/18	11:159	GW	3	X																	
Mw-G		(1/13/18)	11:00 4	GW	3	X																	
MW-7		11/13/18	10:309	GW	3	X																	
MW-8		11/13/18	1:00pm	GW	3	X																	
MW-9		11/13/18	12:400	CW	3	Χ																	
MW-10	·	(113/18	12:30g	GW	3	χ																	
Mw-II		11/13/18	12:450	614	3	X																	
SPECIAL INSTRUCTIONS/COMMENTS Metals		•	· · ·				TL			REQU CHARGE			_		ORT RE		EMEN1	S		INV	DICE INI	ORMATION	
									11/2	day	3 day			_		C Summ S/MSD a	aries s require	ď)	PO A	· -			
							$ \overline{\mathcal{X}} $	•	-	bushess	days-No :	Surcharge	» —	_ KI. Res Summ		C and C	alibratio	n	BILL	TO:			
							REQ	UESTE	REPO	ORT DAT	E		<u> </u>		a Validat		ort with I						
See QAPP :													<i>l</i> .	ŊS	blin	رنگ	50 0	0					
STATE WHERE SAMPLES WERE COLLECTED / Jew York													1	Edat	. Д.	Yes	_	No					
RELINQUISHED BY RELINQUISHED A LI ROLLA					BY				RECE	VED 81	′			R	ELINOI	UISHED) BY				RECEIV	ED BY	
Signature Signature Signature		um	Signature				Signati	ure					Signa	ture			D4	011	103	16		5	-
Printed Name Cash Bleirer	GHOLDY D. F	smellan	Printed Name				Printed	Name					Printe	d Name			Berami	inn Ass	clates	6 incorp	orated	#165 (# 1 5	
	AS		Firm				Firm						Firm				Gowan		11111				
Deto/Time 1/14/18 09:50 Date/Time 1-14:18 09:50 Date/Time						0 -6	Dete/T	lme					Date/	Time		_		10 (0) (1) 	1111111	- 	in duran	THE BOX 12.	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 54369

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 3

Project Name Gadanda					AN	ALYS	IS REC	UEST	ED (I	nclud	e Meth	od Nu	mber	and Co	ontain	er Pres	ervativ	9)				
Project Manager C. Blexco	Report CC			PRES	SERVA	ΠVE			·													
280 E Brown Pochester UY	Bergmann 280 E Broud St, Suite 20 Pochoster, UY 14604 Cheier Bergmann 585-498-7950 Sampler's Signature Sampler's Printed Name						, S.	PESTICIOES POR PORTO POR		WEING 70F.	METALS, DISCOME	" comments below.							ALT	7 3. H 4. N 5. Zi 6. M 7. N 8. O	h. Acetati eOH aHSO4 ther X ks/	e
			MATRIX																			
MW-12	111/13/	18 12:15R	GW	3	X																	
MW-13	ii/ <i>i</i> 3	16 12:00R	GW	3	X																	
MW-14	11/13	118 10:159	GW	3	X																	
MW-15	11/0	118 10:304	GW	3	人																	
Mw-16.	11/13	(18/10:150	GW	3	X													,				
MW-17	11/13	18 10:40a	GW	3	X																	
Mw-18	11/13	/18 1:15pm	GW	3	X																	
MW-20	<u> </u>	3/18 11:309	GW	3	X.																	
G1-1	11/13	3/18 101 15a	GW	3	X				ļ			-										
<i>G</i> 1-7_	11/13	116 10:000	GW	_	X.	_	\downarrow															
G-3	11/12	11611.000	GIM	3	$ \mathbf{X} $]														
SPECIAL INSTRUCTIONS/COMMENTS	•	•				TUR	RNARO	DUND	REQUI	REME	NTS	1	REPO	RT RE	QUIRE	EMENT	's	1	INVO	ICE INFOR	NOITAN	
Metals							RUSH	(SURC	HARGES	APPLY)	+		_ i. Resu	tts Only								
							. 1 day	2	day	_3 day		I	_	itta + QC				PO #				
							4 day	5	day				•			s require	-	BILL	ro:			\dashv
						_	_ Stand	ard (10t	ousinosa d	lays-No S	- Americans	"	_ III. Res Summa		C and C	alibratio	n	\vdash				
						REQUE	ESTED	REPO	RT DAT	E			IV Date	n Validat	ion Reor	ort with f	Row Oat	, [
										-	111	ÇΕ	V. (4	۲.								
See QAPP										4	707	Ĺ	401	'>	.							
STATE WHERE SAMPLES WERE COLL RELINQUISHED BY	LECTED NEW YO	ML BEI	NOUISHED I					DECER	VED BY			+	Edat	ELINOL	Ties		No	┿		RECEIVED (\dashv
Ad Allan	- 11 11/1			9 1				NEGEN	VĘD B1				ru	CONC	JOHCO	, , ,				ALOLIVED (,	
	900/97/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Signature Signature				Signatun						Signa			. D	18	111	136		5		
	Gregoy D. Emeri					Printed N	Vame						d Name						orporate			
persivery	ate/Time 1-14-18 09:5	Firm Date/Time				Firm						Firm			_						II I :	
Date/Time 11/14/16 Da			9 of	Date/Tim 61	né					Date/	Time						1) (1911 66	165 (1415 6111	161			

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

54370

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 3 OF 3

Project Name Gayanda					Al	NALYS	IS RE	QUEST	ED (nclude	Meth	od Nu	ımber	and C	ontair	er Pre	servati	ve)					
Project Manager C. Bleiel	Report C	tumber 6974	• • • • • • • • • • • • • • • • • • • •		PRES	SERVA	TIVE	1															
Compeny/Address Beagmann					S2		$\overline{}$	$\overline{}$	$\overline{}$	$ \top $	$\overline{}$	$\overline{}$	$\overline{}$	$ \top $	7		$\overline{}$			7	1	Preserva DNON	tive Key
280 E Brown	d St.	Suite 2	200		NUMBER OF CONTAINERS							/ 2	/ 3								/`	2. HNO: 3. H ₂ SC 4. NaOI	3 }₄
Rochester, NY	14604				or co	/	/ 3/	/ و	/ &/	/ /	/ /		Town Parket	/ /	/ /	/ /	/ /	/ /	/ /	/ /		5. Zл. А 6. MeO: 7. NaHS	cetate -t
Prone " 585- 498-79	50 Email	deier Ober	SManne	C. Com	MBER	701 ships	7 X X X X X X X X X X X X X X X X X X X	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	8 20		METALS DOB		8									Other	i
Sampler's Signature Cull Blue	Sampler (ASK BLE	iec .		₹	\2 \&	\\&\	<i>ૢૻૺઙ૽</i> ૾ૢ૽ૼ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \$ \$					\angle	_	igspace	_	/ A		EMARKS/ TE DESCI	
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	DATE DATE	TIME	MATRIX															ļ				
DP-1		11/13/16	12:30pm	GW	5	Х													ļ				
DR-2		11/13/18	11:38 g	GW	3	X																	
DR-5		11/13/18	11:00 4	OW	3	X																	
DR-4		11/13/8	LOI USa	GW	3	X																	
		Ţ																					
	:																						
					I																		
	1																						
SPECIAL INSTRUCTIONS/COMMENTS Metals							TU				IREME S APPLY		 		ORT RI		EMEN'	rs		INV	OICE II	IFORMA	TION
											3 day					C Summ	naries es require	ed)	PO	•			
							7		/5 dard (10)	-	daya-No 8	Surcharg	al	_ III. Res Summ		C and C	Celibratio	n	eiu	TO:			
							REQU	UESTE	O REPO	RT DAT	ΓE		_			tion Rep	oort with	Raw Da	nta -				
See QAPP											N	/S,	F41	'nS)	_							
STATE WHERE SAMPLES WERE COL	LECTED													Edal	10 - X	Yes	_	No					
RELINOUISHED BY RECEIVED BY RELINOUISH									RECE	VED BY	Y			A	ELINO	UISHE	D BY				RECE	IVED BY	
Signature Signature	Signature	A Julilla	Signature				Signati	ure		-			Signa	ture					Sign	eture			
Printed Name (GS) Bloke	PICTURE VI	time rian	Printed Name				Printed	d Name					Printe	d Name						ed Name			
Firm Resumana	Floor To All	3	Firm				Firm						Flm						Firm				
Date/Time 11 / 141 2018 09150 Date/Time 1-14-18 09150 Date/Time						10-	Date/T	îme					Date/	Time					Date	/Time			

Cooler Receipt and Preservation Check Form

ď	R1811036	- - - -
i	Bergmann Associates, Incorpora	ated C
		18 (8 8)) ((8 8))) 1 9 6 1
١,	, (8840) 101 ((881 (816) 1861 1811	10100 HILL BILL HOLL

oject/Client	ramann	•		Folder Nu	ımhar						6 68 6	
i lin	114	. Y	/ 7	-		41.0	Line				-	
oler received on 171		by: <u>(</u>	<u></u>	6	URIER:					CITY CLIEN		
Were Custody seals or			Y	(N) 5a	}		•	-	uired heads			NA
Custody papers prope	•	_	· 19		Did V	OA vial	s, Alk,or	Sulfide	have sig*		Y) N	NA
Did all bottles arrive in	good condition ((unbroke	n)? (Y	N 6	Where	did the	bottles of	riginate	? A	LS/ROC	CLIEN	T
Circle: Wet Ice Dr	y Ice Gel packs	prese	nt? (Y) N 7	Soil V	OA rec	eived as:	Bu	k Enco	ore 5035sc	et NA	
emperature Readings	Date: 11-14	-18 T	ime:_	10:00	ID:	IR#7	(R#10)	From: (1	emp Blank	Sampl	e Bottle
oserved Temp (°C)	0,1											
rrection Factor (°C)	10.4											
rrected Temp (°C)	0.5											
mp from:Type of bottle	<u> </u>											77
ithin 0-6°C?	(V) N		Y N		N	<u>Y</u>	N		N	Y N	<u>Y</u>	N
<0°C, were samples fro	zen? Y N		Y N	Y	N	Y	N	Y	N .	<u>Y N</u>	Y ame Da	N
Client Approval to I samples held in stora samples placed in s	ge location:	R-00.			on H4		0/03					
12. Were 5035 via	containers used for als acceptable (no Cassettes / Tubes	extra lab	els, no	t leaking)?	ers Pressur	ized		edlar® l	NO NO Bags Inflat		N7.4 N7.4)	
pH Lot of test paper	Reagent	Preserv Yes	ed? No	Lot Receive	d	Exp	Sample Adjuste		Vol. Added	Lot Added	1	Final pH
<u>paper</u> ≥12	NaOH						Tajast	-			-	
≤2 ≤2	HNO ₃											
	H ₂ SO ₄										 /	<u>/</u>
(4	NaHSO ₄			NINI	- 2 4	-					-A	
5-9	For 608 pest For CN,	 		No=Notify fo							/-	
Pacidual	I TOLCIN,	1 1	;	Na ₂ Ś ₂ O ₃ (625,				,			/ 1	
	Phenol, 625,	1 1						ŀ				
Chlorine	Phenol, 625, 608pest, 522		•	CN), ascorbic	(phenol).				,			
Chlorine	608pest, 522 Na ₂ S ₂ O ₃		• 1	CN), ascorbic	(phenol).						1. cain	 -
Chlorine	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	-	-				**VOAs	and 1664	Not to be te	sted before and	lysis.	ervatives
Chlorine	608pest, 522 Na ₂ S ₂ O ₃	- **	- **	H117096			Otherwis	e, all bott	Not to be te les of all san ust representa	nples/with chen	lysis. nical pres	ervatives
Chlorine -)	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	- **	-				Otherwis	e, all bott	les of all san	nples/with chen	lysis. nical prese	ervatives
Chlorine -) Bottle lot numbers:	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl		-**	4117090	0		Otherwis are check	e, all bott	les of all san	nples/with chen	lysis. nical preso	ervatives
Chlorine -) Bottle lot numbers:	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl		-**	4117090	0	F3 1	Otherwis are check	e, all bott	les of all san	nples/with chen	nical pres	
Chlorine -) Bottle lot numbers:	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl		-**	4117090	0	f3 1	Otherwis are check	e, all bott	les of all san	nples with chen	nical pres	
Chlorine -) Bottle lot numbers:	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl		-**	4117090	0	f3 1 f3 V	Otherwis are check	e, all bott	les of all sam	CLRE	S BUI	LK DT
Bottle lot numbers: F Explain all Discrepanc G-1; 20f3 Vial3	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	ients: ! lof 3 ! dof 3	- ** 3 Vial 3 Vial	4117090 113 MW- 3 MW- 113 MW-	0	f3 1 f3 v f3 v	Otherwis are check	e, all bott	les of all sam	CLRE	S BUI	LK DT FB
Residual Chlorine (-) Bottle lot numbers:f Explain all Discrepanc G- ; 20f3 Vial3 MW 5: 20f3 Via DR-4: 20f3 Via MM 5: 20f3 Via	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	ients: ! lof 3 ! dof 3	- ** 3 Vial 3 Vial	4117090 113 MW- 3 MW- 113 MW-	0	f3 1 f3 v f3 v	Otherwis are check	e, all bott	les of all sam	CLRE	S BUI FLC D HGI	LK DT FB 541
Sottle lot numbers: F Explain all Discrepanc G-1; 2053 Vial3 MW-15: 2053 Vi	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	ients: ! lof 3 ! dof 3	- ** 3 Vial 3 Vial	4117090 113 MW- 3 MW- 113 MW-	0	f3 1 f3 v f3 v	Otherwis are check	e, all bott	les of all sam	CLRE	S BUI FLC D HGI LL3	LK DT FB
Chlorine -) Bottle lot numbers:	608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	ients: ! lof 3 ! dof 3	- ** 3 Vial 3 Vial	4117090 113 MW- 3 MW- 113 MW-	0	f3 1 f3 v st3 v	Otherwis are check	e, all bott	les of all san	CLRE	S BUI FLC D HGI LL3	LK DT FB 541 3 RRS

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Service Request: R1811036

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96

Sample Name: MW-1 Date Collected: 11/13/18

Lab Code: R1811036-001 **Date Received:** 11/14/18

Sample Matrix: Water

Sample Matrix:

Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-2 Date Collected: 11/13/18

Lab Code: R1811036-002 **Date Received:** 11/14/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-3 Date Collected: 11/13/18

Lab Code: R1811036-003 **Date Received:** 11/14/18

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-4 Date Collected: 11/13/18

Lab Code: R1811036-004 Date Received: 11/14/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-5 Date Collected: 11/13/18

Lab Code:R1811036-005Date Received:11/14/18Sample Matrix:Water

Analysis MethodExtracted/Digested ByAnalyzed By8260CFNAEGLER

Printed 11/26/2018 11:21:07 AM Superset Reference:18-0000488955 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Service Request: R1811036

FNAEGLER

Superset Reference:18-0000488955 rev 00

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96

Sample Name: MW-6 Date Collected: 11/13/18

Lab Code: R1811036-006 **Date Received:** 11/14/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-7 Date Collected: 11/13/18

Lab Code: R1811036-007 **Date Received:** 11/14/18

Sample Matrix: Water

Water

Sample Matrix:

8260C

Printed 11/26/2018 11:21:07 AM

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-8 Date Collected: 11/13/18

Lab Code: R1811036-008 **Date Received:** 11/14/18

Analysis Method Extracted/Digested By Analyzed By
8260C FNAEGLER

Sample Name: MW-9 Date Collected: 11/13/18

Lab Code: R1811036-009 **Date Received:** 11/14/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-10 Date Collected: 11/13/18

Lab Code: R1811036-010 **Date Received:** 11/14/18 **Sample Matrix:** Water

Analysis Method Extracted/Digested By Analyzed By

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96

MW-11 Date Collected: 11/13/18

Service Request: R1811036

 Sample Name:
 MW-11
 Date Collected: 11/13/18

 Lab Code:
 R1811036-011
 Date Received: 11/14/18

Lab Code: R1811036-011 Date Received: 11/14/1
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-12 Date Collected: 11/13/18

Lab Code: R1811036-012 **Date Received:** 11/14/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-13 Date Collected: 11/13/18

Lab Code: R1811036-013 **Date Received:** 11/14/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-14 Date Collected: 11/13/18

Lab Code: R1811036-014 Date Received: 11/14/18
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-15 Date Collected: 11/13/18

Lab Code:R1811036-015Date Received:11/14/18Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By 8260C FNAEGLER

Printed 11/26/2018 11:21:07 AM Superset Reference:18-0000488955 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Service Request: R1811036

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96

> MW-16 **Date Collected:** 11/13/18

Lab Code: R1811036-016 **Date Received:** 11/14/18

Sample Matrix: Water

Sample Name:

Analyzed By Analysis Method Extracted/Digested By

8260C **FNAEGLER**

Sample Name: MW-17 **Date Collected:** 11/13/18

Lab Code: R1811036-017 **Date Received:** 11/14/18

Sample Matrix: Water

Extracted/Digested By Analyzed By Analysis Method

8260C **FNAEGLER**

MW-18 Sample Name: **Date Collected:** 11/13/18

Lab Code: R1811036-018 **Date Received:** 11/14/18

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C **FNAEGLER**

Sample Name: MW-20 **Date Collected:** 11/13/18

Lab Code: R1811036-019 **Date Received:** 11/14/18 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

8260C **FNAEGLER**

Sample Name: G-1 **Date Collected:** 11/13/18

R1811036-020 Lab Code: **Date Received:** 11/14/18 Water **Sample Matrix:**

Analyzed By Extracted/Digested By Analysis Method 8260C **FNAEGLER**

Printed 11/26/2018 11:21:07 AM Superset Reference:18-0000488955 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda/6974.96 **Project:**

Sample Name: G-2

R1811036-021

Sample Matrix: Water

Analysis Method

8260C

Lab Code:

Sample Name: G-3

Lab Code: R1811036-022

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-1

Lab Code: R1811036-023

Sample Matrix: Water

Analysis Method

8260C

Sample Name: DR-2

Lab Code: R1811036-024

Sample Matrix:

Analysis Method

8260C

Sample Name: DR-3

R1811036-025 Lab Code:

Water

Sample Matrix: Water

Analysis Method

8260C

Service Request: R1811036

Date Collected: 11/13/18

Date Received: 11/14/18

Extracted/Digested By

Analyzed By FNAEGLER

Date Collected: 11/13/18

Date Received: 11/14/18

Extracted/Digested By

Analyzed By

FNAEGLER

Date Collected: 11/13/18

Date Received: 11/14/18

Extracted/Digested By

Analyzed By

FNAEGLER

Date Collected: 11/13/18

Date Received: 11/14/18

Extracted/Digested By

Analyzed By

FNAEGLER

Date Collected: 11/13/18

Date Received: 11/14/18

Extracted/Digested By

Analyzed By

FNAEGLER

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Bergmann Associates, Incorporated

Gowanda/6974.96 **Project:**

Service Request: R1811036

Sample Name: DR-4

Lab Code: R1811036-026

Sample Matrix: Water **Date Collected:** 11/13/18 **Date Received:** 11/14/18

Analysis Method

8260C

Analyzed By Extracted/Digested By

FNAEGLER

Sample Name: MW-X

Lab Code: R1811036-027

Sample Matrix: Water **Date Collected:** 11/13/18 **Date Received:** 11/14/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: Equip Blank Lab Code:

Sample Matrix:

R1811036-028

Water

Date Collected: 11/13/18

Date Received: 11/14/18

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name:

Trip Blank R1811036-029

Sample Matrix: Water **Date Collected:** 11/13/18 **Date Received:** 11/14/18

Analysis Method

8260C

Lab Code:

Extracted/Digested By

Analyzed By

FNAEGLER

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
,	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
-	
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.96 **Date Collected:** 11/13/18 12:10

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-1
 Units: ug/L

 Lab Code:
 R1811036-001
 Basis: NA

Service Request: R1811036

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180	25	5	11/19/18 01:08	
trans-1,2-Dichloroethene	25 U	25	5	11/19/18 01:08	
Tetrachloroethene (PCE)	25 U	25	5	11/19/18 01:08	
1,1,1-Trichloroethane (TCA)	25 U	25	5	11/19/18 01:08	
Trichloroethene (TCE)	900	25	5	11/19/18 01:08	
Vinvl Chloride	25 U	25	5	11/19/18 01:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 01:08	
Dibromofluoromethane	97	89 - 119	11/19/18 01:08	
Toluene-d8	100	87 - 121	11/19/18 01:08	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 12:20 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-2 Units: ug/L Lab Code: R1811036-002 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 01:30	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 01:30	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 01:30	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 01:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 01:30	
Dibromofluoromethane	97	89 - 119	11/19/18 01:30	
Toluene-d8	98	87 - 121	11/19/18 01:30	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 12:00 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-3 Units: ug/L Lab Code: R1811036-003

Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 01:52	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 01:52	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 01:52	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 01:52	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 01:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 01:52	
Dibromofluoromethane	96	89 - 119	11/19/18 01:52	
Toluene-d8	99	87 - 121	11/19/18 01:52	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 11:50 **Project:** Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

MW-4 **Sample Name:** Units: ug/L Lab Code: R1811036-004 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:15	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 02:15	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 02:15	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 02:15	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 02:15	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 02:15	
Dibromofluoromethane	98	89 - 119	11/19/18 02:15	
Toluene-d8	100	87 - 121	11/19/18 02:15	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 11:15

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-5
 Units: ug/L

 Lab Code:
 R1811036-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 02:37	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 02:37	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 02:37	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 02:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 02:37	
Dibromofluoromethane	98	89 - 119	11/19/18 02:37	
Toluene-d8	101	87 - 121	11/19/18 02:37	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 11:00 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-6 Units: ug/L

Lab Code: R1811036-006 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	81	5.0	1	11/19/18 02:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 02:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 02:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 02:59	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 02:59	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 02:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 02:59	
Dibromofluoromethane	99	89 - 119	11/19/18 02:59	
Toluene-d8	101	87 - 121	11/19/18 02:59	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 10:30 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-7 Units: ug/L

Lab Code: R1811036-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 03:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 03:21	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 03:21	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 03:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 03:21	
Dibromofluoromethane	97	89 - 119	11/19/18 03:21	
Toluene-d8	99	87 - 121	11/19/18 03:21	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 13:00 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-8 Units: ug/L Lab Code: R1811036-008 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:43	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 03:43	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 03:43	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 03:43	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 03:43	
Vinyl Chloride	5.0 11	5.0	1	11/19/18 03:43	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 03:43	
Dibromofluoromethane	97	89 - 119	11/19/18 03:43	
Toluene-d8	99	87 - 121	11/19/18 03:43	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 12:40 **Project:** Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

MW-9 **Sample Name:** Units: ug/L

Lab Code: R1811036-009 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:05	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:05	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 04:05	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 04:05	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 04:05	
Vinvl Chloride	5.0 U	5.0	1	11/19/18 04:05	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 04:05	
Dibromofluoromethane	98	89 - 119	11/19/18 04:05	
Toluene-d8	101	87 - 121	11/19/18 04:05	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 12:30 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

MW-10 **Sample Name:** Units: ug/L Lab Code: R1811036-010 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:27	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 04:27	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 04:27	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 04:27	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 04:27	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 04:27	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 04:27	
Dibromofluoromethane	98	89 - 119	11/19/18 04:27	
Toluene-d8	100	87 - 121	11/19/18 04:27	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 12:45

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-11
 Units: ug/L

 Lab Code:
 R1811036-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	190	5.0	1	11/19/18 04:49	
trans-1,2-Dichloroethene	9.3	5.0	1	11/19/18 04:49	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 04:49	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 04:49	
Trichloroethene (TCE)	290 D	25	5	11/20/18 02:08	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 04:49	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	11/19/18 04:49	
Dibromofluoromethane	97	89 - 119	11/19/18 04:49	
Toluene-d8	98	87 - 121	11/19/18 04:49	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 12:15 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

MW-12 **Sample Name:** Units: ug/L Lab Code: R1811036-012 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	35	5.0	1	11/19/18 05:11	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:11	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 05:11	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 05:11	
Trichloroethene (TCE)	18	5.0	1	11/19/18 05:11	
Vinyl Chloride	5.0 11	5.0	1	11/19/18 05:11	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 05:11	
Dibromofluoromethane	98	89 - 119	11/19/18 05:11	
Toluene-d8	100	87 - 121	11/19/18 05:11	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 12:00

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R1811036-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:33	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:33	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 05:33	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 05:33	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 05:33	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 05:33	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 05:33	
Dibromofluoromethane	97	89 - 119	11/19/18 05:33	
Toluene-d8	99	87 - 121	11/19/18 05:33	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 10:15

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R1811036-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	9.7	5.0	1	11/19/18 05:56	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 05:56	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 05:56	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 05:56	
Trichloroethene (TCE)	21	5.0	1	11/19/18 05:56	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 05:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/19/18 05:56	
Dibromofluoromethane	96	89 - 119	11/19/18 05:56	
Toluene-d8	98	87 - 121	11/19/18 05:56	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 10:30 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-15 Units: ug/L Lab Code: R1811036-015

Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 06:18	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 06:18	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 06:18	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 06:18	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 06:18	
Vinvl Chloride	5.0 U	5.0	1	11/19/18 06:18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 06:18	
Dibromofluoromethane	97	89 - 119	11/19/18 06:18	
Toluene-d8	99	87 - 121	11/19/18 06:18	

Analytical Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.96 **Date Collected:** 11/13/18 10:15

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R1811036-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	41	5.0	1	11/19/18 06:40	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 06:40	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 06:40	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 06:40	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 06:40	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 06:40	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 06:40	
Dibromofluoromethane	98	89 - 119	11/19/18 06:40	
Toluene-d8	99	87 - 121	11/19/18 06:40	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 10:40

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-17
 Units: ug/L

 Lab Code:
 R1811036-017
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	180 D	10	2	11/20/18 09:54	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 02:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 02:31	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 02:31	
Trichloroethene (TCE)	38	5.0	1	11/20/18 02:31	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 02:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/20/18 02:31	
Dibromofluoromethane	96	89 - 119	11/20/18 02:31	
Toluene-d8	99	87 - 121	11/20/18 02:31	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 13:15

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-18
 Units: ug/L

 Lab Code:
 R1811036-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 07:24	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 07:24	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 07:24	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 07:24	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	11/19/18 07:24	
Dibromofluoromethane	96	89 - 119	11/19/18 07:24	
Toluene-d8	98	87 - 121	11/19/18 07:24	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 11:30 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: MW-20 Units: ug/L Lab Code: R1811036-019 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 07:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 07:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 07:46	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 07:46	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 07:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 07:46	
Dibromofluoromethane	95	89 - 119	11/19/18 07:46	
Toluene-d8	98	87 - 121	11/19/18 07:46	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 10:15

Sample Matrix: Water Date Received: 11/14/18 09:50

Sample Name: G-1 Units: ug/L

Lab Code: R1811036-020 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	68	5.0	1	11/19/18 08:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 08:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 08:08	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 08:08	
Trichloroethene (TCE)	6.6	5.0	1	11/19/18 08:08	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 08:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	11/19/18 08:08	
Dibromofluoromethane	98	89 - 119	11/19/18 08:08	
Toluene-d8	101	87 - 121	11/19/18 08:08	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 10:00 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

G-2 **Sample Name:** Units: ug/L

Lab Code: R1811036-021 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	25	5.0	1	11/20/18 02:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 02:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 02:53	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 02:53	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 02:53	
Vinvl Chloride	5.0 U	5.0	1	11/20/18 02:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	11/20/18 02:53	
Dibromofluoromethane	97	89 - 119	11/20/18 02:53	
Toluene-d8	101	87 - 121	11/20/18 02:53	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 13:00 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

G-3 **Sample Name:** Units: ug/L

Lab Code: R1811036-022 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	6.2	5.0	1	11/20/18 10:16	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 10:16	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 10:16	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 10:16	
Trichloroethene (TCE)	6.8	5.0	1	11/20/18 10:16	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 10:16	,

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	11/20/18 10:16	
Dibromofluoromethane	95	89 - 119	11/20/18 10:16	
Toluene-d8	100	87 - 121	11/20/18 10:16	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 12:30 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: DR-1 Units: ug/L Lab Code: R1811036-023 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	210	50	10	11/20/18 03:37	
trans-1,2-Dichloroethene	50 U	50	10	11/20/18 03:37	
Tetrachloroethene (PCE)	50 U	50	10	11/20/18 03:37	
1,1,1-Trichloroethane (TCA)	50 U	50	10	11/20/18 03:37	
Trichloroethene (TCE)	1100	50	10	11/20/18 03:37	
Vinyl Chloride	50 U	50	10	11/20/18 03:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	11/20/18 03:37	
Dibromofluoromethane	100	89 - 119	11/20/18 03:37	
Toluene-d8	104	87 - 121	11/20/18 03:37	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 11:38 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: DR-2 Units: ug/L Lab Code: R1811036-024 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	170	5.0	1	11/20/18 03:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 03:59	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 03:59	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 03:59	
Trichloroethene (TCE)	46	5.0	1	11/20/18 03:59	
Vinyl Chloride	5.6	5.0	1	11/20/18 03:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	11/20/18 03:59	
Dibromofluoromethane	100	89 - 119	11/20/18 03:59	
Toluene-d8	101	87 - 121	11/20/18 03:59	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 11:00 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: DR-3 Units: ug/L

Lab Code: R1811036-025 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	42	5.0	1	11/20/18 04:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 04:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 04:21	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 04:21	
Trichloroethene (TCE)	31	5.0	1	11/20/18 04:21	
Vinvl Chloride	5.0 U	5.0	1	11/20/18 04:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	11/20/18 04:21	
Dibromofluoromethane	99	89 - 119	11/20/18 04:21	
Toluene-d8	102	87 - 121	11/20/18 04:21	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 10:45 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: DR-4 Units: ug/L

Lab Code: R1811036-026 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	9.2	5.0	1	11/20/18 04:43	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 04:43	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 04:43	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 04:43	
Trichloroethene (TCE)	28	5.0	1	11/20/18 04:43	
Vinvl Chloride	5.0 U	5.0	1	11/20/18 04:43	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/20/18 04:43	
Dibromofluoromethane	95	89 - 119	11/20/18 04:43	
Toluene-d8	98	87 - 121	11/20/18 04:43	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96 **Date Collected:** 11/13/18 23:59

Sample Matrix: Water Date Received: 11/14/18 09:50

 Sample Name:
 MW-X
 Units: ug/L

 Lab Code:
 R1811036-027
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 05:05	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 05:05	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 05:05	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 05:05	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 05:05	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 05:05	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	11/20/18 05:05	
Dibromofluoromethane	98	89 - 119	11/20/18 05:05	
Toluene-d8	102	87 - 121	11/20/18 05:05	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 23:59 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: Equip Blank Units: ug/L Lab Code: R1811036-028 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 01:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 01:46	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 01:46	
Vinvl Chloride	5.0 U	5.0	1	11/20/18 01:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/20/18 01:46	
Dibromofluoromethane	97	89 - 119	11/20/18 01:46	
Toluene-d8	99	87 - 121	11/20/18 01:46	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Date Collected:** 11/13/18 23:59 Gowanda/6974.96

Sample Matrix: Water **Date Received:** 11/14/18 09:50

Sample Name: Trip Blank Units: ug/L Lab Code: R1811036-029 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 01:24	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 01:24	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 01:24	
Vinyl Chloride	5.0 11	5.0	1	11/20/18 01:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	11/20/18 01:24	
Dibromofluoromethane	93	89 - 119	11/20/18 01:24	
Toluene-d8	98	87 - 121	11/20/18 01:24	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Bergmann Associates, Incorporated Service Request: R1811036

Project: Gowanda/6974.96

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

Sample Name Lab Code 88-122 89-119 87-121 MW-1 R1811036-001 93 97 100 MW-2 R1811036-002 93 97 98 MW-3 R1811036-003 93 96 99 MW-4 R1811036-004 93 98 100 MW-5 R1811036-005 94 98 100 MW-6 R1811036-006 94 99 101 MW-7 R1811036-007 93 97 99 MW-8 R1811036-008 94 97 99 MW-9 R1811036-009 94 98 100 MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036			4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8 87-121	
MW-2 R1811036-002 93 97 98 MW-3 R1811036-003 93 96 99 MW-4 R1811036-004 93 98 100 MW-5 R1811036-005 94 98 101 MW-6 R1811036-006 94 99 101 MW-7 R1811036-008 94 97 99 MW-8 R1811036-008 94 97 99 MW-9 R1811036-009 94 98 101 MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-015 93 97 99 MW-15 R1811036-015 93 97 99 MW-16 R1811036-015 93 98 99 MW-17 R1811036-015	Sample Name	Lab Code	85-122	89-119		
MW-3 R1811036-003 93 96 99 MW-4 R1811036-005 94 98 100 MW-5 R1811036-005 94 98 101 MW-6 R1811036-006 94 99 101 MW-7 R1811036-007 93 97 99 MW-8 R1811036-009 94 98 101 MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-013 93 97 99 MW-13 R1811036-013 93 97 99 MW-14 R1811036-013 93 97 99 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-019 93 95 98 101 G-2 R1	MW-1	R1811036-001	93	97	100	
MW-4 R1811036-004 93 98 100 MW-5 R1811036-005 94 98 101 MW-6 R1811036-006 94 99 101 MW-7 R1811036-007 93 97 99 MW-8 R1811036-008 94 97 99 MW-9 R1811036-010 94 98 100 MW-10 R1811036-011 92 97 98 MW-11 R1811036-011 92 97 98 MW-12 R1811036-013 93 97 99 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 98 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019	MW-2	R1811036-002	93	97	98	
MW-5 R1811036-005 94 98 101 MW-6 R1811036-006 94 99 101 MW-7 R181036-007 93 97 99 MW-8 R1811036-008 94 97 99 MW-9 R1811036-009 94 98 100 MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R181036-017 94 96 98 MW-20 R1811036-018 92 96 98 MW-20 R1811036-029 95 98 101 G-2 R1811036-021	MW-3	R1811036-003	93	96	99	
MW-6 R1811036-006 94 99 101 MW-7 R1811036-007 93 97 99 MW-8 R1811036-008 94 97 99 MW-9 R1811036-009 94 98 101 MW-10 R1811036-011 92 97 98 MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-016 93 98 99 MW-18 R1811036-017 94 96 99 MW-20 R1811036-018 92 96 98 MW-20 R1811036-020 95 98 101 G-2 R1811036-021	MW-4	R1811036-004	93	98	100	
MW-7 R1811036-007 93 97 99 MW-8 R1811036-008 94 97 99 MW-9 R1811036-010 94 98 101 MW-10 R1811036-011 92 97 98 MW-11 R1811036-012 94 98 100 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 98 MW-18 R1811036-019 93 95 98 G-1 R1811036-019 93 95 98 G-1 R1811036-019 93 95 98 G-1 R1811036-029 95 98 101 G-2 R1811036-023 <	MW-5	R1811036-005	94	98	101	
MW-8 R1811036-008 94 97 99 MW-9 R1811036-009 94 98 101 MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-013 93 97 99 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-021 95 98 101 G-2 R1811036-022 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023	MW-6	R1811036-006	94	99	101	
MW-9 R1811036-009 94 98 101 MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-018 92 96 98 MW-20 R1811036-021 95 98 101 G-2 R1811036-022 95 98 101 G-2 R1811036-022 95 95 100 DR-1 R181036-023 100 100 104 DR-2 R181036-025	MW-7	R1811036-007	93	97	99	
MW-10 R1811036-010 94 98 100 MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 95 98 101 G-3 R1811036-022 95 95 95 100 DR-1 R181036-023 100 100 104 DR-2 R1811036-025 98 99 102 DR-	MW-8	R1811036-008	94	97	99	
MW-11 R1811036-011 92 97 98 MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R181036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 98 101 DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R	MW-9	R1811036-009	94	98	101	
MW-12 R1811036-012 94 98 100 MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026	MW-10	R1811036-010	94	98	100	
MW-13 R1811036-013 93 97 99 MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-023 100 100 101 DR-3 R1811036-024 96 100 101 DR-4 R1811036-025 98 99 102 Equip Blank R1811036-027 96 98 102 Equip Blank R1811	MW-11	R1811036-011	92	97	98	
MW-14 R1811036-014 94 96 98 MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-023 100 100 101 DR-3 R1811036-024 96 100 101 DR-4 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04	MW-12	R1811036-012	94	98	100	
MW-15 R1811036-015 93 97 99 MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-023 100 100 101 DR-3 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-029 94 93 98 Method Blank RQ1812	MW-13	R1811036-013	93	97	99	
MW-16 R1811036-016 93 98 99 MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-029 94 93 98 Method Blank RQ1812	MW-14	R1811036-014	94	96	98	
MW-17 R1811036-017 94 96 99 MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-022 95 95 100 DR-2 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-05 101 100 101 MW-1 DMS RQ181	MW-15	R1811036-015	93	97	99	
MW-18 R1811036-018 92 96 98 MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-022 95 95 100 DR-2 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 DMS RQ1812914-06 100 100 100 Method Blank <	MW-16	R1811036-016	93	98	99	
MW-20 R1811036-019 93 95 98 G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 DMS RQ1812914-05 101 100 101 MW-1 DMS RQ1812915-04 93 96 100 L	MW-17	R1811036-017	94	96	99	
G-1 R1811036-020 95 98 101 G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98	MW-18	R1811036-018	92	96	98	
G-2 R1811036-021 95 97 101 G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101 <	MW-20	R1811036-019	93	95	98	
G-3 R1811036-022 95 95 100 DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	G-1	R1811036-020	95	98	101	
DR-1 R1811036-023 100 100 104 DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	G-2	R1811036-021	95	97	101	
DR-2 R1811036-024 96 100 101 DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	G-3	R1811036-022	95	95	100	
DR-3 R1811036-025 98 99 102 DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	DR-1	R1811036-023	100	100	104	
DR-4 R1811036-026 93 95 98 MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	DR-2	R1811036-024	96	100	101	
MW-X R1811036-027 96 98 102 Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	DR-3	R1811036-025	98	99	102	
Equip Blank R1811036-028 93 97 99 Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	DR-4	R1811036-026	93	95	98	
Trip Blank R1811036-029 94 93 98 Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	MW-X	R1811036-027	96	98	102	
Method Blank RQ1812914-04 93 97 100 Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	Equip Blank	R1811036-028	93	97	99	
Lab Control Sample RQ1812914-03 97 101 99 MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	Trip Blank	R1811036-029	94	93	98	
MW-1 MS RQ1812914-05 101 100 101 MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	Method Blank	RQ1812914-04	93	97	100	
MW-1 DMS RQ1812914-06 100 100 100 Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	Lab Control Sample	RQ1812914-03	97	101	99	
Method Blank RQ1812915-04 93 96 100 Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	MW-1 MS	RQ1812914-05	101	100	101	
Lab Control Sample RQ1812915-03 96 97 98 DR-1 MS RQ1812915-05 102 102 101	MW-1 DMS	RQ1812914-06	100	100	100	
DR-1 MS RQ1812915-05 102 102 101	Method Blank	RQ1812915-04	93	96	100	
	Lab Control Sample	RQ1812915-03	96	97	98	
DR-1 DMS RQ1812915-06 99 101 100	DR-1 MS	RQ1812915-05	102	102	101	
	DR-1 DMS	RQ1812915-06	99	101	100	

QA/QC Report

Client: Bergmann Associates, Incorporated

Gowanda/6974.96

Sample Matrix: Water **Service Request:**

R1811036

Date Collected:

11/13/18

Date Received:

11/14/18

Date Analyzed:

11/19/18

Date Extracted:

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

MW-1

ug/L

Lab Code:

Prep Method:

Project:

R1811036-001

Units: Basis:

NA

Analysis Method:

8260C

EPA 5030C

Matrix Spike RQ1812914-05

Duplicate Matrix Spike

RQ1812914-06

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	180	431	250	102	421	250	98	77-127	2	30
trans-1,2-Dichloroethene	25 U	265	250	106	259	250	104	73-118	2	30
Tetrachloroethene (PCE)	25 U	216	250	86	217	250	87	72-125	<1	30
1,1,1-Trichloroethane (TCA)	25 U	246	250	99	248	250	99	74-127	<1	30
Trichloroethene (TCE)	900	1120 E	250	88	1110 E	250	82	74-122	1	30
Vinyl Chloride	25 U	245	250	98	237	250	95	74-159	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Bergmann Associates, Incorporated

Service Request:

R1811036

Project: Gowanda/6974.96

Date Collected:

11/13/18

Sample Matrix: Water

Date Received: Date Analyzed: 11/14/18 11/20/18

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: DR-1

Units:

ug/L

Lab Code:

R1811036-023

Basis:

NA

Analysis Method:

8260C

Matrix Spike RO1812915-05 **Duplicate Matrix Spike**

RO1812915-06

		1	(Q1012)13-())		KQ1012713	7-00			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	210	751	500	109	737	500	106	77-127	2	30
trans-1,2-Dichloroethene	50 U	571	500	114	579	500	116	73-118	1	30
Tetrachloroethene (PCE)	50 U	504	500	101	497	500	99	72-125	1	30
1,1,1-Trichloroethane (TCA)	50 U	564	500	113	569	500	114	74-127	<1	30
Trichloroethene (TCE)	1100	1610	500	102	1520	500	83	74-122	6	30
Vinyl Chloride	50 U	559	500	112	553	500	111	74-159	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1811036

Project:Gowanda/6974.96Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1812914-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 00:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/19/18 00:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/19/18 00:46	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/19/18 00:46	
Trichloroethene (TCE)	5.0 U	5.0	1	11/19/18 00:46	
Vinyl Chloride	5.0 U	5.0	1	11/19/18 00:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/19/18 00:46	
Dibromofluoromethane	97	89 - 119	11/19/18 00:46	
Toluene-d8	100	87 - 121	11/19/18 00:46	

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R1811036

Project:Gowanda/6974.96Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1812915-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:02	
trans-1,2-Dichloroethene	5.0 U	5.0	1	11/20/18 01:02	
Tetrachloroethene (PCE)	5.0 U	5.0	1	11/20/18 01:02	
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	11/20/18 01:02	
Trichloroethene (TCE)	5.0 U	5.0	1	11/20/18 01:02	
Vinyl Chloride	5.0 U	5.0	1	11/20/18 01:02	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	11/20/18 01:02	
Dibromofluoromethane	96	89 - 119	11/20/18 01:02	
Toluene-d8	100	87 - 121	11/20/18 01:02	

QA/QC Report

Client: Bergmann Associates, Incorporated

Service Request: R1811036 **Project:** Gowanda/6974.96 **Date Analyzed:** 11/19/18

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1812914-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.7	20.0	104	80-121
trans-1,2-Dichloroethene	8260C	21.6	20.0	108	73-118
Tetrachloroethene (PCE)	8260C	20.3	20.0	101	72-125
1,1,1-Trichloroethane (TCA)	8260C	22.3	20.0	112	75-125
Trichloroethene (TCE)	8260C	19.0	20.0	95	74-122
Vinyl Chloride	8260C	21.4	20.0	107	74-159

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Gowanda/6974.96

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R1811036

Date Analyzed: 11/20/18

Lab Control Sample

RQ1812915-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
cis-1,2-Dichloroethene	8260C	20.6	20.0	103	80-121
trans-1,2-Dichloroethene	8260C	20.7	20.0	104	73-118
Tetrachloroethene (PCE)	8260C	18.8	20.0	94	72-125
1,1,1-Trichloroethane (TCA)	8260C	20.7	20.0	104	75-125
Trichloroethene (TCE)	8260C	17.9	20.0	90	74-122
Vinyl Chloride	8260C	20.8	20.0	104	74-159

APPENDIX B:

IC/EC CHECKLIST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11^{sh} Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547

www.dec.ny.gov

6/11/2019

Joe Whitney Director Of Capital Services NYS OPWDD 44 Holland Ave. Albany, NY 12229

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Gowanda Day Habilitation Center

Site No.: V00463

Site Address: 4 Industrial Place

Gowanda, NY 14070

Dear Joe Whitney:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **May 06, 2019**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact David Szymanski, the Project Manager, at 716-851-7220 or david.szymanski@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

cc: w/ enclosures

NYS OPWDD Ny State Opwdd

ec: w/ enclosures

David Szymanski, Project Manager

Chad Staniszewski, Hazardous Waste Remediation Supervisor, Region 9

Bergmann Associates - Stephen DeMeo - sdemeo@BERGMANNPC.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Site	No.	V00463	Site Details	Box 1		
,	Site	Name	Gowanda Day Habilitat	tion Center			
(City Cou	r/Town: unty: Cat	s: 4 Industrial Place Gowanda taraugus e: 5.940	Zip Code: 14070			
ļ	Reporting Period: October 23, 2018 to April 06, 2019						
					YES	NO	
	1.	Is the in	formation above correct?		×		
		If NO, ir	nclude handwritten above	e or on a separate sheet.	/ \		
;	2.		me or all of the site prope amendment during this l	rty been sold, subdivided, merged, or undergone a Reporting Period?			
	3.		ere been any change of us IYCRR 375-1.11(d))?	se at the site during this Reporting Period		¥	
s.	4.		ny federal, state, and/or lo t the property during this l	ocal permits (e.g., building, discharge) been issued Reporting Period?	' - ×		
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.						
,	5.	Is the si	ite currently undergoing d	levelopment?		X	
					Box 2		
				E.	YES	NO	
,	6.		urrent site use consistent ercial and Industrial	with the use(s) listed below?	X		
•	7.	Are all I	Cs/ECs in place and fund	ctioning as designed?	X		
		IF		R QUESTION 6 OR 7 IS NO, sign and date below a HE REST OF THIS FORM. Otherwise continue.	and		
		ad a	Policion B	be submitted along with this form to address thes Company Designated Representative Date	2019		

SITE NO. V00463

Description of Institutional Controls

Parcel

16.027-2-11

Owner

NY State OPWDD

Institutional Control

Ground Water Use Restriction Soil Management Plan Building Use Restriction

Site is deed restricted with an SMP (2/22/2008). There is use restriction for industrial and commercial, excluding, medical and day care services. Further restriction is that a sub-slab vapor mitigation system is required before occupancy.

Description of Engineering Controls

Parcel

Engineering Control

16.027-2-11

Groundwater Treatment System

Vapor Mitigation

Dual phase soil vapor and groundwater pump and treat with pneumatic high vacuum pumps. Treatment is by best available technology, currently air stripping with carbon treatment of exhaust gas. Treated water is passed to the municipal treatment facility.

	Periodic Review Report (PRR) Certification Statements					
1.	I certify by checking "YES" below that:					
	 a) the Periodic Review report and all attachments were prepared under the directio reviewed by, the party making the certification; 	n of, and				
	 to the best of my knowledge and belief, the work and conclusions described in the are in accordance with the requirements of the site remedial program, and generally 			е		
		X				
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for early or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that a following statements are true:		utional			
	the Institutional Control and/or Engineering Control(s) employed at this site is unchanged ce the date that the Control was put in-place, or was last approved by the Department;	d				
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;					
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;					
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and					
	if a financial assurance mechanism is required by the oversight document for the site, the sufficient for its intended purpose established in the document.	e mecha	nism remains v	alid		
		YES	NO			
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
ΑC	Corrective Measures Work Plan must be submitted along with this form to address these	issues.				
_	_					
	Signature of Owner, Remedial Party or Designated Representative Date	<u>-</u> _				

IC CERTIFICATIONS SITE NO. V00463

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false

statement made herein is punishable	as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal					
aw.	Bersmann					
· Cash Blever	at 280 F Broad St, #200 Rochester, NY, 14604					
print name	print business address					
am certifying as <u>Remedial</u>	Party Representative (Owner or Remedial Party)					
for the Site named in the Site Details Section of this form. 6/13/2019						
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification Date						

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Posert Sultara at print name at print business address Bergmann

am certifying as a Professional Engineer for the Bergmann

Bergmann: 280 E. Broad Street, Suite 200, Rochester, NY 14604

print business address

Bergmann

Posert Sultara at print business address

Bergmann

Bergmann: 280 E. Broad Street, Suite 200, Rochester, NY 14604

print business address

Bergmann

CF NEW COSTANTIAL A THE COSTANTIAL AND THE

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE) Date