

New York State Office of People with Developmental Disabilities

PERIODIC REVIEW REPORT – REPORTING PERIOD APRIL 6, 2021, to APRIL 6, 2022

FORMER GOWANDA DAY HABILITATION CENTER

4 Industrial Place, Gowanda, NY

NYSDEC Site Number V00463

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135

www.bergmannpc.com

Issued: May 5, 2022 Revised: July 8, 2022

DASNY Project No.: 3136109999

TABLE OF CONTENTS

1.0	BACKGROUND	3
1.1	PERIODIC REVIEW REPORT	
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	6
2.1 2.2 2.3	Well Maintenance Activities	6
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	8
4.0	LABORATORY ANALYSIS	10
4.1 4.2 4.3 4.4	Laboratory Analysis of Groundwater Samples Monitoring Well Groundwater Analysis Summary Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary	10
5.0	REMEDIATION SYSTEM EFFICIENCY	13
5.1 5.2 5.3	Extent of Impacted GroundwaterGroundwater Analytical Results	12
5.4	Future Activities	15

Tables

Table 1: Percent Reductions in Total groundwater VOCs

Figures

Figure 1: Monitoring and Recovery Well Locations

Charts

Chart 1: Contamination Reduction, Gowanda Day Habilitation Center

Appendices

Appendix A: Quarterly Groundwater Characterization Reports

- Q3: September 2021 Characterization Report
- Q4: November 2021 Characterization Report
- Q1: March 2022 Characterization Report

Appendix B: IC/EC Checklist

1.0 BACKGROUND

NYSDEC Site Number V00463, the former Gowanda Day Habilitation Center facility, is located at 4 Industrial Place, Gowanda, New York. The New York State Office of People with Developmental Disabilities (OPWDD), as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463, effective August 16, 2001.

The Gowanda Day Habilitation Site (the Site) consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between 1948 and 1987 and was renovated in 1987 and 1988. New York State agencies have occupied the building since 1982 and New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. On-site operations ceased in April 2001. Bergmann investigated the nature and extent of contamination resulting from historical underground chemical storage at the Gowanda Day Habilitation Center as documented in the 2003 Site Investigation and 2004 Supplemental Site Investigation reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloromethane (cis-DCE), trans-1,2-Dichloroethene (trans-1,2-DCE), and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, activation of a Groundwater Treatment System (GTS) and Soil Vapor Extraction (SVE) System occurred on May 10, 2005. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to monitoring well MW-17 in November 2008. The GTS consists of seven (7) groundwater recovery wells (four dual-phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to treat recovered groundwater. The SVE System consists of a lobe blower and piping network which extract vapors and passed them through two (2) 10,000 lb. carbon filters. Once filtered, the vapors were discharged to the outdoor air. The attached Figure 1 depicts the site layout with respect to monitoring and recovery wells.

Recovered groundwater was formerly pumped to an equalization tank for settling of sediment. The groundwater was discharged to the Village of Gowanda Sewage Treatment Plant (STP) via the sanitary sewer in accordance with a Gowanda Sewer Use Permit. A Volatile Organic Compound (VOC) Groundwater Treatment Agreement between OPWDD and the Village was active until the shutdown of the system, discussed below in Section 2.2. As the system is currently shut down, water was not discharged to the sewer for the during the reporting period. If the system is re-activated, a new agreement will be executed between OPWDD and the Village.

In January 2008, OPWDD decommissioned the building. Bergmann winterized the GTS with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated unit heater in the treatment area for the GTS and SVE (former Machine Shop). The building remains unoccupied and in a state of disrepair for the 2021 year, and for Q1 of 2022. Numerous roof leaks and damage relative to two (2) flooding events have introduced excessive water infiltration and as a result mold to interior spaces. The roof leaks and mold do not appear to be impacting the remedial system. OPWDD and/or their agents will perform periodic inspections of the building for potential structural deficiency issues and will perform limited building envelope repairs as necessary to address any significant site safety concerns.

The next steps to eliminate remaining contamination at the Site have been discussed with OPWDD, DASNY, and NYSDEC. In pursuit of this, Bergmann performed an additional subsurface investigation in August 2019 to determine if the contamination is within groundwater or within soils. The primary goal of the investigation was to evaluate the soil quality for VOCs in the two (2) source areas: the MW-1 area and the MW-17 area. The investigation identified that shallow soils beneath the building in the source area were impacted depths ranging

from one (1) to three (3) feet bgs. Chlorinated VOC-impacted soils at the south side of the building and within the southern portion of the building near MW-1/MW-11 continue to impact the groundwater. This finding is consistent with seasonal high groundwater fluctuations. The recommendations made by Bergmann based on this investigation included localized removal of VOC-impacted soil in the upgradient source, in-situ chemical oxidation (ISCO) material injection into the source area, or the introduction of thermal conduction or heating element to the source area.

As a result of this investigation Bergmann prepared an Overview Analysis for Site Closure document outlining cleanup options and costs analysis to identify the most feasible and cost-effective method to achieve chlorinated VOC levels closer to Site closure. Discussions with NYSDEC, OPWDD, DASNY, and Bergmann have concluded that a source area removal with the building remaining in place is the most cost-effective remedial option for site closure.

On August 13th and 14th, 2019, Bergmann conducted an Additional Subsurface Soil Investigation (ASI) at the former Gowanda Day Habilitation Center facility for further evaluation of soils at upgradient and downgradient chlorinated solvent source areas. Five (5) soil borings were installed in the building source area with the historically highest chlorinated VOCs concentrations upgradient source area, and five (5) soil borings were installed at the down gradient source area, north along Torrance Place. One (1) soil sample was collected from each of the ten (10) boring locations based on Photoionization Detector (PID) measurements, depths intervals above the top of the groundwater table, and historic groundwater levels. The targeted zone for soil sample collection was from depths ranging to 6.5 feet at the upgradient source area and 11.5 feet at the downgradient source area.

Elevated PID measurements for total VOCs were detected in the fill soils at shallows depths ranging from one (1) to three (3) ft. bgs and above the elevation of the groundwater table in the upgradient source area at the south side of the building near MW-1/MW-11. Laboratory soil sample results indicated detections of chlorinated VOCs. Cis-DCE exceeded Unrestricted Use Soil Cleanup Objectives (UUSCOs), while TCE exceeded UUSCOs, Restricted Residential Use Soil Cleanup Objectives (RRUSCOs) and Commercial Use Soil Cleanup Objectives (CUSCOs. Vinyl Chloride exceeded RRUSCOs in soil borings SB-01 through SB-05.

Chlorinated VOC-impacted soils at the south side of the building continue to impact the groundwater consistent with seasonal variation in groundwater level fluctuations, and chlorinated VOCs were non-detect in the soil within the downgradient groundwater source area. Bergmann's hypothesis from this investigation is that downgradient groundwater source area is an area of elevated VOCs controlled by a preferential pathway in the overburden soils, and an alluvium historic buried stream channel or imported fill below the sewer lateral that runs along the northern side of the building is likely to be that pathway.

Based on this ASI, Bergmann issued a report on March 3, 2020, which identified four (4) preliminary remedial alternatives to address the remaining source areas of soil and groundwater contamination at the former Gowanda Day Habilitation Center facility. These four (4) alternatives include 1) PlumeStop® Barrier & Bioremediation, an in-situ source area containment and bioremediation treatment; 2) Soil and groundwater removal, to reduce the impacted soil and groundwater from the Site with off-Site disposal; 3) Thermal soil and groundwater remediation, for in-place destruction and/or vapor removal from the subsurface soil and groundwater media; and 4) Soil and groundwater removal with building demolition, which includes remedy alternative #2, with the addition of the complete demolition of the Site building.

On March 25th and March 26th, 2021, Bergmann conducted a Soil Vapor Intrusion and Indoor Air Sampling Investigation (SVI/IA) for three (3) of five (5) identified residential homes in the NYSDEC, NYSDOH, DASNY, and OPWDD approved *OPWDD Gowanda Day Habilitation Center NYSDEC VCA Site Number V-00462-9 Soil Vapor Intrusion and Indoor Air Quality Sampling Work Plan*, Bergmann, February 2021. The three (3) residences sampled were addressed as 98, 114, and 118 Torrance Place, Gowanda, New York. Access was not granted for

SVI/IA sampling at 106 and 110 Torrance Place. These residential homes are located down-gradient of the former Gowanda Day Habilitation Center facility, with respect to groundwater flow direction.

One (1) sub-slab vapor sample, one (1) basement indoor air quality sample, and one (1) first floor indoor air quality sample were collected from each of the three (3) residences, Additionally, one (1) outdoor air sample, one (1) outdoor matrix spike/matrix spike duplicate sample, and one (1) blind duplicate indoor air sample were collected as part of this investigation. The results of this sampling were compared to NYSDOH Final Guidance for Evaluation Soil Vapor Intrusion in New York State (October 2006 with 2017 amendment), NYSDOH Upper Fence Values from the NYSDOH Fuel Oil Study, and NYSDOH Soil Vapor Indoor Air Matrix A and B (May 2017).

Four (4) targeted VOCs were detected in the sub-slab samples: Acetone, Carbon Disulfide, Tetrachloroethene, and Trichloroethene, which are associated with VOCs historically detected at the groundwater at the Site. Three (3) targeted VOCs, Acetone, Carbon Disulfide, and Trichloroethene, were detected in indoor and outdoor air samples, with outdoor air concentrations being similar or lower than targeted VOCs detected in the indoor air and sub-slab samples. Acetone and Carbon disulfide were detected below NYSDOH Upper Fence levels for residential homes, while Trichloroethene exceeded the NYSDOH Upper Fence level in each indoor air sample.

Based on the results of the SVI/IA sampling, it appears that a Vapor Intrusion Condition (migration pathway) into the residential homes is a risk from sub-slab vapors to indoor air. It appears that VOCs detected in the sub-slab vapor samples have a low to moderate potential to migrate into indoor air in the residential homes.

1.1 PERIODIC REVIEW REPORT

This Periodic Review Report (PRR) was prepared by Bergmann, on behalf of New York State OPWDD, in accordance with the requirements set forth in the NYSDEC Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation, dated May 2010. The Reporting Period for this PRR is from April 6, 2021 to April 6, 2022. The following items are included in this PRR:

- Identification, assessment, and certification of all Industrial Controls (ICs)/Engineering Controls (ECs) required by the Remedy for the Site;
- Results of the Site inspection and sampling events including applicable inspection forms and other records generated for the Site during the Reporting Period;
- A summary of any discharge monitoring data and/or information generated during the Reporting Period with comments and conclusions;
- Data summary tables of groundwater Contaminants of Concern by media;
- Laboratory analytical results and the required laboratory data deliverables for each sample collected during the Reporting Period have been and will continue to be submitted electronically in a NYSDEC-approved EQuIS format; and
- A Site evaluation, which includes the following:
 - I. The compliance of the Remedy with the requirements of the Site-specific Record of Decision (ROD) including ICs/ECs;
 - II. The operation and the effectiveness of each treatment unit, including identification of any needed repairs or modifications;
 - III. Any new conclusions or observations regarding Site contamination based on inspection or lab data generated during the monitoring events;
 - IV. Recommendations regarding any necessary changes to the Remedy and/or SMP; and
 - V. The overall performance and effectiveness of the Remedy to date.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the 2021 sampling events, all wells were accessible, and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, except for redevelopment activities performed on August 19, 2015 to clear sediment from wells after an in-situ chemical oxidation (ISCO) injection program. All standpipes and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking standpipes. The monitoring wells within the building are secured with flush-mount roadway covers.

As noted above, replacement to damaged flush-mount protective roadway boxes was completed on June 27, 2007. Well rehabilitation and silt removal were conducted on June 25 – 26, 2007 and August 19, 2015.

2.2 GROUNDWATER TREATMENT SYSTEM AND SOIL VAPOR EXTRACTION SYSTEM MAINTENANCE

During an October 2013 site visit, a section of piping broke away from the SVE due to system pressure. The SVE system was shut down until a repair could be made. Bergmann assessed the GTS during a January 2014 site visit and determined that two (2) of the seven (7) well pumps were operational. The remaining pumps appeared to be damaged. Bergmann replaced the SVE pipe section and inspected the well pumps for damage. The pumps appeared to be in poor condition and were removed from the wells. DR-1, DR-2, DR-3, DR-4 were all pulled. DR-4 was coated in a black sludge-like material and had a hole in the casing. DR-2, DR-3 and G-2 were coated in orange-brown sediment and the hose and pump effluent lines were clogged with sediment. DR-1 was also coated in orange-brown sediment.

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an ISCO Remedial Action Plan (RAP) and implementation of an ISCO treatment. Bergmann performed an ISCO remediation in May 2015 and a second round of injections in September 2015. The in-situ groundwater treatment was performed to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on-site in the event that re-activation is required in the future. No maintenance was conducted on the GTS or SVE systems during the 2021 calendar year.

2.3 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater for monitoring wells are determined on a quarterly basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Operation of the recovery wells was intended to establish hydraulic containment of the plume of impacted groundwater beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Although the system was shut down and the pumps were pulled from recovery wells for the reporting period, hydraulic containment of the plume has been historically achieved since the shutdown of the system.

Groundwater samples were collected from all twenty-on (21) site-related groundwater monitoring wells during the 2021 sampling events. Depth to groundwater measurements were obtained from all twenty-one (21) monitoring wells for the Q3, Q4 2021 and Q1 2022 sampling events. It is noted that Q2 samples were not collected due to the pending 2021 contract approval. Results are indicators of the performance of the treatment system and the continued contamination of the plume.

Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via hand bailing. Sample parameters including turbidity, temperature, pH, oxygen, and specific conductivity were monitored using an YSI Quatro Pro to ensure sufficient well purging prior to sampling. Dedicated bailers were used to collect groundwater samples from recovery wells after the ISCO remediation occurred in May 2015. During past sampling events, groundwater samples were collected from the seven (7) recovery wells using dedicated bailers, as the GTS was actively pulling groundwater into the system, allowing for collection of groundwater samples similar to purging monitoring wells. As the system was shut down during the 2021 quarterly sampling events, the wells were purged and sampled using the same method as the monitoring well sampling where possible. One (1) duplicate sample and one (1) field blank sample were collected and submitted for laboratory analysis.

Groundwater samples were delivered via chain-of-custody protocol to a New York State Department of Health (NYSDOH) certified laboratory (Alpha Analytical, Inc.) for testing using EPA Method 8260C for targeted chlorinated VOCs.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

Delineation of the local water table surface and groundwater flow pattern was determined for 2021 and Q1 2022 using elevations measured from the 21 sampled, site-related monitoring wells. The current network of monitoring wells at the facility is shown on Figure 1. Groundwater characteristics were determined using depth to water measurements obtained on:

- September 16th and September 17th, 2021 (Q3 2021 Sampling Event).
- November 18th and 19th, 2021 (Q4 2021 Sampling Event).
- March 24th and 25th, 2022 (Q1 2022 Sampling Event).

The well gauging values and groundwater elevations are provided in Table 1 of each Quarterly Report included in Appendix A – Quarterly Groundwater Characterization Reports.

The quarterly groundwater contour maps show a local flow pattern similar to the water table observed historically since 2002. The local groundwater was flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The following is a summary of groundwater flow for each sampling event in the reporting period:

September 2021

The September 2021 groundwater contour map (depicted within the September 2021 Groundwater Characterization Report as Figure 1: September 2021 Groundwater Contour Map) shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The September 2021 depths to groundwater, as indicated on Table 1: Groundwater Elevations and Field Measurements - September 2021, range from 6.10 ft. below top of casing (btoc) at MW-2, to 13.50 ft. btoc at MW-6 and MW-7. The average depth to groundwater at the wells measured was 9.49 ft btoc. The site-wide average depth to water table decreased by approximately 0.41 ft. when compared to the March 2021 sampling event (9.90 ft. btoc). This decrease in the water table is inferred as seasonal.

November 2021

The November 2021 groundwater contour map (depicted within the November 2021 Groundwater Characterization Report as Figure 1: November 2021 Groundwater Contour Map) shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The November 2021 depths to groundwater, as indicated on Table 1: Groundwater Elevations and Field Measurements – November 2021, range from 4.9 ft. below top of casing (btoc) at MW-2, to 12.95 ft. btoc at MW-7. The average depth to groundwater at the wells measured was 8.88 ft. btoc, which is a decrease from the average depth to water of the previous sampling event in September 2021 (9.49 ft. btoc). The site-wide average depth to water table decreased by approximately 0.61 ft. when compared to the September 2021 sampling event. This decrease in the water table is inferred as seasonal.

March 2022

The March 2022 groundwater contour map (depicted within the March 2022 Groundwater Characterization Report as Figure 1: March 2022 Groundwater Contour Map) shows a flow pattern similar to groundwater contours observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. The March 2022 depths to groundwater, as indicated on Table 1: Groundwater Elevations and Field Measurements – March 2022, range from 5.30 ft. below top of casing (btoc) at MW-2, to 13.20 ft. btoc at MW-6. The average depth to groundwater at the wells measured was 9.11 ft. btoc, which is an increase from the average depth to water of the previous

sampling event in November 2021 (8.88). The site-wide average depth to water table increased by approximately 0.23 ft. when compared to the November 2021 sampling event. This decrease in the water table is inferred as seasonal.

Groundwater Contour Maps indicating the elevations of groundwater for each sampling event are presented as Figure 1 of each Groundwater Characterization Report for the respective report period. Copies of these reports are included in Appendix A.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS OF GROUNDWATER SAMPLES

Laboratory analysis was completed on groundwater samples from groundwater monitoring wells and recovery wells on site. Monitoring wells that were determined in 2008 by the NYSDEC and Bergmann personnel to be outside the area of impact by the GTS include MW-2, MW-3, MW-5, MW-8, MW-9, MW-10, MW-13, and MW-21. NYSDEC added MW-21 to the sampling plan for the 2015 sampling events. Sentry groundwater monitoring wells were established to monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Site. These wells include MW-19R, MW-20, and MW-4.

Samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs) using United States Environmental Protection Agency (US EPA) Method 8260C. Analysis was performed in accordance with the October 2006 OM&M Manual. The following chlorinated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- cis-1,2-Dichloroethene (Cis-DCE)
- trans-1,2-Dichloroethene (trans-1,2-DCE)
- Vinyl Chloride (VC)

For Quality Assurance/Quality Control (QA/QC) purposes, duplicate groundwater samples (Duplicate Blanks) were collected during each sampling event. During the Q3 2021 sampling event, this duplicate was collected from monitoring well MW-4. A duplicate was collected for the Q4 2021 sampling event from monitoring well MW-18. The duplicate collected during the Q1 2022 sampling event was collected at monitoring well MW-14. All duplicates for all sampling events were labeled 'MW-X'. Results from these samples were consistent with the samples collected from their respective sampling locations. Refer to the attached table.

Trip blanks were supplied by the laboratory for QA/QC and submitted with the groundwater samples. An equipment blank was also collected for QA/QC purposes to ensure proper cleaning of the sampling equipment. The equipment blank was non-detect for chlorinated halogens for each sampling event in 2021 and Q1 2022.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for monitoring wells during each quarterly sampling event for 2021 and Q1 2022 are summarized as follows:

September 2021

Concentrations in ten (10) of the twenty-one (21) monitoring well groundwater samples increased when compared to the March 2021 sampling event while concentrations in six (6) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in five (5) groundwater samples from monitoring wells had no change. The September 2021 sampling analytical results indicated an average site-wide decrease in total VOCs of approximately 88.11% since activation of the GTS in May 2005.

November 2021

Concentrations in eight (8) of the twenty-one (21) monitoring well groundwater samples increased when compared to the September 2021 sampling event while concentrations in seven (7) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in six (6) groundwater samples from

monitoring wells had no change. The November 2021 sampling analytical results indicated an average site-wide decrease in total VOCs of approximately 84.88% since activation of the GTS in May 2005.

March 2022

Concentrations in seven (7) of the twenty-one (21) monitoring well groundwater samples increased when compared to the November 2021 sampling event while concentrations in eight (8) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in six (6) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 88.47% since activation of the GTS in May 2005.

Contaminant distribution maps indicating the results for each sampling event are presented as Figures 2 and 3 of each Quarterly Groundwater Characterization Report. Copies of these reports are included in Appendix A.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for sentry wells during each sampling event in 2021 and Q1 2022 are summarized as follows:

September 2021

The eastern sentry wells sampled for this event included MW-4 and MW-19R. The September 2021 results indicated non-detect levels for VOCs for MW-4 and a concentration of 0.34 ppb for Trichloroethene (TCE) for MW-19R.

November 2021

The eastern sentry wells sampled for this event included MW-4 and MW-19R. The November 2021 results indicated non-detect levels for VOCs for MW-4 and a concentration of 0.29 ppb for Trichloroethene (TCE) for MW-19R.

March 2022

The eastern sentry wells sampled for this event were MW-4 and MW-19R. The March 2022 results indicated non-detect levels for VOCs for MW-4 and a concentration of 0.30 ppb for Trichloroethene (TCE) for MW-19R.

The risk of migrating groundwater from the Gowanda Electronics site onto the Day Habilitation Center property was a concern that prompted the installation of sentry wells along Industrial Place. MW-19R has been impacted in the past from the Gowanda Electronics plume. The Gowanda Electronics plume of impacted groundwater does not appear to currently extend to the Day Habilitation Center property, based on consistent historic non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center subject property does not appear to extend off-site to the east to Industrial Place.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

Analytical results for recovery wells during the sampling events in 2021 and 2022 are summarized as follows:

September 2021

The September 2021 analytical results indicated detection of four (4) chlorinated VOCs in recovery well samples that include: TCE, Cis-DCE, trans-1,2-DCE, and VC. Chlorinated VOCs were detected in samples from all seven (7) of the recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in VOCs for the September 2021 sampling event is about 86.51% relative to concentrations prior to GTS activation in 2002.

November 2021

The November 2021 analytical results indicated detection of four (4) chlorinated VOCs in recovery well samples that include: TCE, Cis-DCE, VC, and Trans-1,2-DCE. Chlorinated VOCs were detected in samples from all seven (7) of the recovery wells. Total VOCs at the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in VOCs for the November 2021 sampling event is about 85.99% relative to concentrations prior to GTS activation in 2002.

March 2022

The March 2022 analytical results indicated detection of four (4) chlorinated VOCs in all seven (7) recovery well samples that include: TCE, Cis-DCE, VC, and trans-1,2-DCE. Total VOCs detected in the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in VOCs for the March 2022 sampling event is about 88.56% relative to concentrations prior to GTS activation in 2002.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent for all three (3) quarters of the Q3 2021 through Q1 2022 reporting period. The contaminant plume appears to be concentrated beneath the building in the source area which is located in the vicinity of monitoring wells MW-1 and MW-11 and extends north to recovery wells DR-1 and DR-2.

The contaminant plume appears to have stabilized due to the previous operation of the GTS for over nine (9) years. While in operation, the GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during the current reporting period and overall sample results are similar to previous quarterly reports. In general, VOCs levels fluctuate slightly higher during periods of higher groundwater table elevations and lower VOCs levels when groundwater table is at lower elevations. It appears that residual VOCs in the plume have not migrated and are contained when compared to sample results with operation of the GTS during previous monitoring events. It is Bergmann's hypothesis that the downgradient groundwater source area is an area of elevated VOCs controlled by a preferential pathway in the overburden soils. An alluvium historic buried stream channel or imported fill below the sewer lateral that runs along the northern side of the building is likely to be that pathway. Refer to the attached quarterly reports that include data tables.

During January 2014, as discussed with the NYSDEC representative, the remedial program at the Site was modified by terminating the GTS and soil vapor extraction system, which was believed to have achieved the extent of its practical benefits in favor of ISCO treatment of the residual concentration of VOCs in groundwater. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future.

Analytical results for monitoring and recovery wells for each sampling event in the reporting period are summarized as follows:

September 2021

Chlorinated VOCs were detected in groundwater samples from fifteen (15) of the twenty-one (21) sampled monitoring wells. Groundwater samples from eleven (11) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (404.62 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in ten (10) of the twenty-one (21) monitoring well groundwater samples increased when compared to the March 2021 sampling event while concentrations in six (6) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in five (5) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 88.11% since activation of the GTS in May 2005.

November 2021

Chlorinated VOCs were detected in groundwater samples from fourteen (14) of the twenty-one (21) sampled monitoring wells. Groundwater samples from eleven (11) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1 (980.46 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in eight (8) of the twenty-one (21) monitoring well groundwater samples increased when compared to the September 2021 sampling event while concentrations in seven (7) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in six (6) groundwater samples from monitoring wells had no change. The current

sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 84.88% since activation of the GTS in May 2005.

March 2022

Chlorinated VOCs were detected in groundwater samples from fifteen (15) of the twenty-one (21) sampled monitoring wells. Groundwater samples from ten (10) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11 (420.6 ppb), is located in the area of historically greatest impacted groundwater. Concentrations in seven (7) of the twenty-one (21) groundwater monitoring wells increased when compared to the November 2020 sampling event while concentrations in eight (8) of the twenty-one (21) groundwater monitoring wells decreased. Concentrations in six (6) groundwater monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 88.47% since activation of the GTS in May 2005.

5.2 GROUNDWATER ANALYTICAL RESULTS

During the reporting period, three (3) quarterly sampling events were conducted. Copies of these reports are included in Appendix A. Results for each sampling event are used to evaluate and document contamination reduction. Table 1 and Chart 1 show contamination reduction since activation of the GTS and SVE Systems.

Contamination levels generally trend towards a reduction as time progresses with some fluctuations that result in slight increases and decreases in contamination levels between sample events. This appears to be due to rising and falling groundwater elevations and the shutdown of the GTS.

Groundwater Contour maps were also prepared for each sampling event, which allowed Bergmann to monitor the change in groundwater flow across the Site. Groundwater Contour maps are included in each of the quarterly the Groundwater Characterization Reports in Appendix A.

Overall contaminant reduction is monitored at each individual sampling point and in three specific "groups" of points: site-wide, original plume area only, and recovery wells. These three (3) groups allow Bergmann to thoroughly monitor the system's effectiveness and adjust network operation. Table 1 of this report shows the breakdown of those three (3) groups by quarter since activation of the GTS and SVE Systems.

Overall contaminant reduction at the recovery wells increased to 88.56% (March 2022) from 87.31% in March 2021. Reduction at the recovery wells remained consistently between the 90-95% range since 2010 until the shutdown of the system. The GTS was turned off during the reporting period. Contaminant concentration rebound during these years may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

Overall contaminant reduction at the monitoring wells decreased to 88.47% (March 2022) from 87.65% in March 2021. Reduction at the monitoring wells remained consistently between 70%- 85% since 2010 until the shutdown of the system. The GTS was turned off for the 2021 and Q1 2022 quarterly sampling events. Contaminant concentration rebound during the year may be associated with the system shutdown and associated groundwater level recovery, as well as residual contamination released in the capillary fringe to the dissolve phase in groundwater at the Site.

The remediation system at the Gowanda Day Habilitation Center previously controlled and removed contaminants from the groundwater plume area. Contaminant levels decreased by 83.00% from August 2002 to March 2022. The ISCO groundwater treatments, completed in May 2015 and September 2015, may have released residual contamination in the capillary fringe to the dissolve phase in groundwater at the Site.

The ASI completed in August 2019 indicated that chlorinated VOC-impacted soils at the south side of the building continue to impact the groundwater consistent with seasonal variation in groundwater level fluctuations, and chlorinated VOCs were non-detect in the soil within the downgradient groundwater source area. Bergmann's hypothesis from this investigation is that downgradient groundwater source area is an area of elevated VOCs controlled by a preferential pathway in the overburden soils, and an alluvium historic buried stream channel or imported fill below the sewer lateral that runs along the northern side of the building is likely to be that pathway.

5.3 COMPLIANCE

During the April 6, 2021 – April 6, 2022 Reporting Period, the remedial system was not in operation and therefore was not discharging water. The existing wells and monitoring well network are adequate to monitor the performance of the remediation program and to allow for the collection of groundwater quality samples.

Three (3) quarters of groundwater samples were collected in 2021/2022 in accordance with site management procedures. Four (4) quarters of groundwater sampling are expected during the PRR reporting period of April 6, 2022 to April 6, 2023.

The building is currently secure, vacant, and unoccupied. Notification is given to any individual(s) entering the building so appropriate precautions and PPE can be utilized for building access. The building is posted with signage identifying the potential hazard and limiting access to properly trained and equipped personnel. Notification of extensive mold growth within the building is given to any individual(s) entering the building prior to entry so appropriate precautions can be taken. Notification of broken glass within the building is given to any individual(s) entering the building prior to entry. Notification of the dead-end corridor and affected/unusable exits is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Notification of the ceiling debris is given to any individual(s) entering the building prior to entry. Notification of the ceiling debris is given to any individual(s) entering the building, prior to entry, so appropriate precautions can be taken. Any individual(s) entering the building is provided with keys to open doors before working within the building to ensure safe emergency exit.

Any structural issues requiring immediate attention are currently being addressed by OPWDD, as well as other building envelope maintenance/security issues. Those issues not requiring immediate attention will be addressed if the building is re-occupied in the future.

5.4 FUTURE ACTIVITIES

Activities scheduled for 2022 include:

- Ongoing quarterly groundwater sampling events for the following quarters:
 - o Q2 2022
 - o Q3 2022
 - Q4 2022
 - o Q1 2023

TABLE 1


Table 1 Percent Reductions in Total Groundwater VOCs Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well	% Reduction 2002 to March 2022	% Reduction 2002 to November 2021	% Reduction 2002 to September 2021	% Reduction 2002 to March 2021	% Reduction 2002 to ovember 2020	% Reduction 2002 to July 2020	% Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	% Reduction 2002 to Oct 2019	% Reductio 2002 to Au 2019	n %Reduc g 2002 to . 2019	tion %Reducti July 2002 to N 2018	on % Reduct ov 2002 to 2018	tion % Reducti Aug 2002 to M 2018	on %Reduction ay 2002 to April 2018	% Reduction 2002 to Nov 2017	%Reduction 2002 to Aug 2017	% Reduction 2002 to Nov 2016	% Reduction 9 2002 to Sep 2016	% Reduction 5 2002 to Jun 2016	Reduction % Red 2002 to 2000 Nov 2015 Aug	to 2002 015 Jun 2	% Reducti 2 to 2002 to 2015 Mar 201	% Reduction 2002 to Nov 2014	on % Reduction 2002 to 4 Sep 2014	% Reduction 2002 to Jun 2014	% Reduction % 2002 to Mar 2014	Reduction % I 2002 to Dec 2013	Reduction % F 2002 to 3 Jul 2013 A	teduction % Re 2002 to 20 pr 2013 De	duction % Redu 02 to 2002 2012 Jun 2	xction % Reduce 2 to 2002 to 2012 Mar 20	tion %Reducti 2002 to 112 Sep 201	% Reduct 2002 to Jun 201	tion % Reducti o 2002 to 11 Mar 201	% Reduction 2002 to 1 Dec 2010	% Reduction 2002 to Sep 2010	n %Reduction 2002 to Jun 2010	n % Reductio 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	Reduction 2002 to 2008	Reduction % F 02 to Sept 200 2007	teduction % 12 to May 2007	% Reduction 102 to Oct 2006	% Redi 2002 to 20
	50.18%	-27.66%	47.32%	-20.95%	55.12%	-32.81%	-29.14%	-29.36%	-31.4%	9.11%	-40.76	% -40.6%	-54.9	6 -44.5%	51.3%	-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2% -91.	1% 54.4	4% 44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5% -8	7.5% 31.3	3% -15.8	% 42.	.4% -71	1.6% 24.	1% 26.6	% 15.	% -1.3	% 15.8	6 -44.2%	6 11.89	-12.0%	8.2%	-90.5%	-92.8%	-166.4%	-130.3%	
	100%	100%	100%	100%	99%	100%	100%	100%	100%	98.78%	100%	100%	1009	100%	Not Sample	ed Not Sample	Not Sampled	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	(ed Not Sample	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled Not	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Sampl	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled		99.6%	Not Sampled	99.6%	99.6%	99.6%	99.6%	
	98.33%	100.00%	100%	91%	92%	100%	98%	100%	100%	98.13%	97.40	% 100%	1009	100%	100%	100%	100.0%	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	iled Not Sample	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled Not	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Samp	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled		Not Sampled	Not Sampled	99.3%	84.0%	99.3%	99.3%	
	100%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	100%	100%	1009	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0% 100	0% 100.	.0% 100.0%	100.0%	100.0%	100.0%	100.0% Not Sampled N	100.0%	100.0%	100.0% 10	0.00% 100.	.0% 100.0	% 97.	.4% 97	7.4% 97.	4% 97.4	1% 97.	% 97.4	% 97.4	6 97.4%	s 97.49°	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	
	95.71%	91.43%	89.29%	94%	89%	100%	96%	97%	96.64%	96.29%	93.57	% 100%	1009	100%	100%	100%	100.0%	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	iled Not Sample	led Not Sampled		Not Sampled N	ot Sampled No	t Sampled Not	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Sampl	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled		Not Sampled	Not Sampled	99.3%	75.6%	99.3%	99.3%	
	77.29%	72.41%	76.60%	80.79%	80.00%	83.74%	80.44%	84.04%	75.59%	77.18%	78.66	% 100%	-83.3	6 15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4% 76.	% 78.8	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1% 7	5.6% 78.6	6% 78.91	6 75.	.1% 80	0.5% 82.	.0% 79.9	9% 73.0	% 76.4	% 81.3	6 77.1%	6 78.49	72.2%	69.7%	74.1%	57.9%	62.8%	57.4%	
	92.65%	93.52%	77.25%	78.95%	61.41%	100.00%	83.58%	99.74%	87.65%	91.33%	93.82	% 80.0%	79.39	100.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1% 71.	% 87.1	1% 100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0% 10	0.0% 66.3	3% 93.25	6 53.	1.5% 84	1.2% 95.	.0% 87.1	1% 64.3	% 74.6	% 96.6	6 52.7%	s 79.59	22.7%	45.8%	56.3%	20.0%	26.7%	6.7%	
	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	1009	100%	100%	Not Sample	Not Sampled	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	(ed Not Samp)	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled Not	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Samp	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled	d Not Sampler	Not Sampled	Not Sampled	92.9%	92.9% No	Sampled	92.9%	
	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	1009	100%	100%	Not Sample	Not Sampled	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	(ed Not Sample	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled Not	Sampled Not 8	Sampled Not Sa	mpled Not Sam	pled Not Sampl	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled	■ Not Sampler	Not Sampled	Not Sampled	97.6%	97.6% Not	Sampled	97.6%	
	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	1009	100%	100%	100%	100.0%	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	iled Not Sample	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled Not	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Sampl	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sample	d Not Sample	d Not Sample	Not Sampled	d Not Sampler	Not Sampled	Not Sampled	96.2%	96.2% Not	Sampled	96.2%	
	90.95%	89.34%	91.67%	89.44%	88.24%	87.43%	72.57%	86.99%	84.95%	79.83%	77.21	% 89.5%	93.99	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2% 86.	% 90.4	4% 89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7% 8	3.0% 89.3	3% 86.79	% 89.	1.1% 84	1.5% 86.	6% 87.3	1% 86.	% 83.5	% 83.3	6 86.5%	6 83.09	90.6%	87.8%	78.0%	91.4%	74.4%	44.0%	
	97.85%	99%	99.48%	99.48%	99.53%	99.34%	98.85%	99.08%	99.57%	99.57%	99.38	% 99.6%	99.89	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8% 99.	% 99.2	2% 99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5% 9	8.9% 99.3	3% 98.89	% 99.	1.3% 98	3.7% 99.	.3% 99.3	1% 99.3	% 98.7	% 98.1	6 99.4%	A 97.89	o 99.5%	98.7%	98.7%	98.4%	96.6%	91.4%	
	98.38%	99.42%	99.70%	99.24%	99.57%	100.00%	99.14%	98.92%	99.33%	99.84%	99.56	% 100%	1009	100%	100%	Not Sample	Not Sampled	Not Sampled	Not Sampled N	Not Sampled 1	Not Sampled Not Sa	npled Not Sa	mpled Not Sampl	led Not Sample	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled No	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Sampl	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled	d Not Sampler	100.0%	Not Sampled	100.0%	99.4%	100.0%	100.0%	
	66.86%	70.86%	73.21%	93.40%	79.87%	95.87%	94.22%	89.21%	89.52%	91.59%	91.78	% 90.3%	92.95	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3% 69.	% 83.5	5% 68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5% 8	5.1% 87.4	4% 75.79	6 75.	5.5% 66	3.7% 89.	.9% 92.3	87.	% 79.3	% 85.9	6 87.1%	a 88.99°	94.3%	87.9%	90.7%	67.2%	66.1%	6.7%	
	98.71%	97.86%	96.60%	99.64%	96.47%	100.00%	99.32%	99.60%	98.89%	98.89%	99.33	% 100%	99.19	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6% 98.	% 98.9	9% 98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0% 9	B.2% 96.4	4% 99.19	% 95.	i.6% 97	7.8% 99.	.1% 97.7	1% 91.1	% 96.9	% 98.3	6 91.1%	6 99.39	84.5%	89.4%	97.5%	79.5%	91.7%	79.5%	
	7.84%	16.45%	40.63%	62.32%	70.29%	65.79%	96.66%	98.07%	86.11%	38.42%	26.54	% 19.9%	80.59	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5% 74.	% 86.7	7% 100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8% 5	2.6% 88.5	5% 67.99	6 84.	1.0% 39	9.2% 23.	9% 81.0	1% 93.	% 99.7	% 94.2	6 42.1%	A 41.69	57.4%	43.9%	77.5%	35.0%	-57.9%	-34.7%	
	89.47%	89.47%	71.50%	78.56%	66.52%	63.58%	73.67%	98.40%	80.91%	66.17%	72.60	% 78.4%	73.89	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5% 59.	% Not Sa	mpled 66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4% 4	6.9% 53.0	0% 67.95	6 44.	1.6% 72	2.2% 96.	.7% 94.1	1% 61.4	% 71.3	% 97.7	6 71.8%	6 99.59	a 10.1%	26.0%	24.7%	-11.5%	4.1%	-24.8%	
	97.56%	95.96%	96.02%	99.03%	95.52%	100.00%	99.42%	99.81%	62.50%	99.21%	99.29	% 100%	1009	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0% 100	0% 100.	.0% 100.0%	100.0%	100.0%	100.0%	100.0% N	ot Sampled	100.0%	100.0% 10	0.0% 89.0	6% 98.59	% 81.	.9% 91	1.3% 96.	.0% 88.7	% 74.	% 82.7	% 96.0	6 -23.3%	6 91.89	-50.0%	27.6%	64.8%	-352.2%	-178.0%	-146.5%	
R*	97.9%	97.93%	97.57%	96.43%	97.43%	100.00%	98.14%	98.64%	98.00%	95.71%	Not Sam	pled Not Sampl	ed Not Sam	pled Not Samp	ed Not Sample	ed Not Sample	Not Sampled	100.0%	100.0%	100.0%	100.0% 100	0% 100.	.0% 100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0% 7	5.0% 99.0	0% 99.01	% 99.	1.0% 99	9.0% 99.	.0% 99.0	1% 73.3	% 99.0	% 99.0	6 57.3%	6 99.09	a -36.7%	-5.7%	99.0%	-120.8%	73.6%	-14.0%	
	100% 98.2%	100%	97.94%	100%	95%	100.00%	98%	99%	100%	100%	100%	100%	1009	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0% 100	0% 100.	.0% 100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0% 9	9.4% 99.4	4% 99.49	% 99.	.4% 99	9.4% 99.	.4% 99.4	1% 99.	% 99.4	% 99.4	6 99.4%	6 99.49	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	
stalled 2003	98.2%	96.5%	95.61%	98.72%	92.65%	97.48%	98.65%	94.61%	94.38%	95.80%	Not Sam	pled Not Sampl	ed Not Sam	pled Not Samp	led Not Sample	ed Not Sample	Not Sampled	34.6%	-50.0%	66.5%	23.1% 23.	% 61.5	5% Not Sampl	iled Not Sample	led Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled No	Sampled Not 5	Sampled Not Sa	mpled Not Sam	pled Not Sampl	oled Not Samp	pled Not Sampl	led Not Sample	ed Not Sampl	d Not Sample	d Not Sample	Not Sampled	d Not Sampler	67.5%	Not Sampled	96.7%	-22.2%	27.1%	94.0%	
stalled 2003																																																
stalled 2004																																																
de reduction:	88.47%	84.88%	88.11%	87.65%	88.44%	88.59%	88.48%	91.11%	86.8%	87.42%	83.69	6 85.1%	78.05	82.2%	84.2%	67.60%	62.1%	74.1%	68.7%	78.6%	66.2% 69.	% 87.7	7% 88.2%	85.2%	83.2%	79.8%	80.3%	67.5%	81.8%	81.2% 7	1.3% 82.1	9% 80.79	16 79.	1.7% 72	2.2% 83.	7% 86.9	9% 78.	% 81.4	% 87.9	61.1%	82.19	56.0%	59.7%	78.5%	32.9%	39.8%	43.4%	_
d Groundwater	00.000	70.400	70.000	71.00	70.40/	74.040	74 440/	75.040	70.440	70.040	74.00	74.00	70.40	07.01	70.00	E4 400/	44.40	00.50	00.00	70.00	F0.40' F0			77.00	75.00	70.00	70.00	00.00	70.00	77.01	200	00/ 70 40				40 000	- TO				70.0		0.4.00/	60.70/	00.00/	00.00	40.00	_
Area Only:	83.00%	/3.10%	/9.20%	74.9%	78.4%	/4.04%	/1.41%	/5.61%	/Z.11%	/8.21%	/1.57	6 /4.0%	/2.13	07.0%	/0.0%	51.40%	41.1%	00.0%	09.0%	76.U%	58.1% 58.	176 84.0	076 80.876	11.3%	/5.0%	72.3%	73.9%	82.2%	13.2%	11.3% 6	2.0% / /5	2% /3.17	% /1.	.9% 64	4.1% 84.	.1% 83.0	7% /Z	76] /2.4	% 82.1	b 00.2%	<u>/9.8%</u>	57.7%	04.2%	53.7%	38.8%	32.0%	10.3%	$\overline{}$
ea = MW-1, MW-11, MV ion = percent reduction e values indicate an inc	vr-1z, mW-14, Mi in total Volatile C rease in total VO	w-15, MW-7, MW- Organic Compound Cs since monitorin	17, MW-0 is (VOCs) since gro g commenced in 2	undwater monitorin 02. The percent inc	was initiated				out the sum of TC	CE, CIS, TRANS,	vc, and TCA de	tected.	1																																			

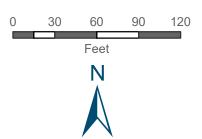
	% Reduct 2002 to M	tion %Re	ceduction	% Reduction 2002 to	% Reduction	on %Redu	ction %R	eduction 2 to July	% Reduction 2002 to Jun	% Reducti 2002 to F	ion %Re	Reduction 02 to Oct	% Reduction 2002 to Aug	% Reduction	ion % Redu	uction %R	teduction 12 to Aug	% Reduction 2002 to May	% Reduction 2002 to	% Reduction 2002 to	%Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction	n %Reductio	n %Reductio	on %Reduction	n %Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction	n %Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction 2002 to	% Reduction	%Reduction 2002 to	%Reduction 2002 to	% Reduction 2002 to	% Reduction	n % Reducti	on %Reduct	on % Reduct	on % Reducti	% Reduction 2002 to	on %Reduct	tion %Reduction 2002 to	on %Reduction 2002 to		ion %Reducti	ion
Recovery Well	2002 to M 2022	Noven	ember 2021	September 2021	2021			2020	2020	2020		2019	2019	2019	201	18	2018	2018	April 2018	Nov 2017	Aug 2017	Nov 2016	Sep 2016	Jun 2016	Nov 2015	Aug 2015	Jun 2015	Mar 2015	Nov 2014	Sep 2014	Jun 2014	Mar 2014	Dec 2013	Jul 2013	Apr 2013	Dec 2012	Jun 2012	Mar 2012	Sep 2011	Jun 2011	Mar 2011	Dec 2010	Sep 2010	Jun 201	Jan 201	Jul 2009	Feb 2009	Sep 201	38 Jun 2008	8 Mar 2008	Sept 2005		
DR-1	91.719	% 90	92.52%	98.77%	93.93%	98.5	3% 8	38.64%	-113.39%	-95.95%	6 -5	59.16%	-81.03%	-219.509	% -128	.5% -	163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1%	Not Sample	d 96.2%	89.0%	90.4%	86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8%	91.6%	97.99	98.19	96.99	6 95.6	% 94.	5% 99	2% 98	0% 95.	1% 96.8	8% 91	.0% 89.3	2% 93.4	% 74.	.5% 86.	.2% 92.8
DR-2	93.55%	% 87	87.45%	91.89%	92.80%	94.4	3% 9	34.21%	76.38%	74.91%	6	66.15%	65.04%	71.60%	60.	7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0%	52.8%	70.5%	59.2%	58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%	89.79	88.03	86.69	6 92.4	% 89.	3% 87	3% 90	6% 90.	1% 88.8	8% 89	1.7% 85.1	8% 92.3	% 85.	.6% 82.	.5% 72.6
DR-3	94.879	% 90	93.53%	94.19%	95.48%	94.4	3% 5	95.73%	46.36%	55.61%	3	34.62%	33.77%	40.33%	52.	1%	43.0%	17.8%	78%	68.5%	Not Sample	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6%	63.9%	-18.7%	-37.7%	45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%	95.09	95.49	98.39	6 98.0	% 97.	4% 94	8% 91	6% 91.	5% 88.7	7% 94	1.9% 91.3	7% 88.4	% 73.	.8% 87.	.6% 89.7
DR-4	98.369	% 96	98.04%	98.07%	98.19%	97.6	3% 9	98.31%	96.45%	96.23%	9	95.27%	94.58%	95.34%	95.	7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7%	82.9%	81.8%	82.8%	88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1%	100.0%	89.29	92.79	94.39	6 95.9	% 86.	9% 91	2% 95	4% 95.	96.2	2% 92	.7% 97.3	7% 97.6	% 87.	.7% 99.	.1% 51.4
G-1	91.339	% 90	90.14%	90.48%	91.58%	81.5	2% 9	90.27%	81.27%	75.05%	6	65.14%	60.81%	74.90%	62.	8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1%	27.3%	49.8%	47.7%	55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%	87.69	89.83	6 87.79	6 91.0	% 94.	4% 80	1% 76	0% 69.	76.7	7% 77	.9% 68.3	7% 65.8	% 58.	.7% 71.	8% 63.1
G-2	88.229	% 86	86.32%	88.21%	83.28%	90.2	3% 8	35.97%	89.10%	93.37%	6	68.07%	68.24%	75.65%	91.:	2%	76.0%	82.4%	84%	100.0%	Not Sample	Not Sampled	100.0%	Not Sampled	Not Sampled	90.1%	Not Sample	d 83.1%	88.0%	86.9%	81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%	92.39	83.09	87.79	6 86.5	% 98.	4% 97	8% 98	5% 85.	1% 40.0	0% 92	1.6% 89.1	8% 79.0	% 84.	.6% 54.	.5% 26.4
G-3	61.859	% 50	53.90%	43.90%	55.90%	41.3	5% 4	1.69%	32.42%	16.74%	. 2	24.23%	24.23%	23.19%	96.	3%	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sample	27.3%	-0.2%	-4.2%	35.0%	8.2%	Not Sample	d Not Sample	ed Not Sample	d Not Sample	Not Sample	1 79.7%	NA.	NA NA	NA NA	NA.	NA NA	NA NA	N _i	N.	N/	A	4A	NA	NA	NA	NA I	NA	NA	NA N	IA	NA.	NA N
Overall Reduction	88.569	% 85	85.99%	86.50%	87.31%	85.4	5% 8	34.97%	44.08%	45.14%	. 4	42.05%	37.95%	23.07%	47.	2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6%	67.7%	60.1%	54.9%	69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.99	91.19	91.99	6 93.2	% 93.	5% 91	7% 91	7% 87.	% 81.2	2% 89	87.2	2% 86.1	% 77.	.5% 80.	3% 66.0
*Sampling of recovery wells	initiated in 2005			Total VOC	Os values are r	not the total W	Cs detected,	but the sum o	of TCE, CIS, T	RANS, VC, and	d TCA detec	cted.								-											-				-	-					1												_

FIGURE 1

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY



BERGMANN

ARCHITECTS ENGINEERS PLANNER

Figure 1

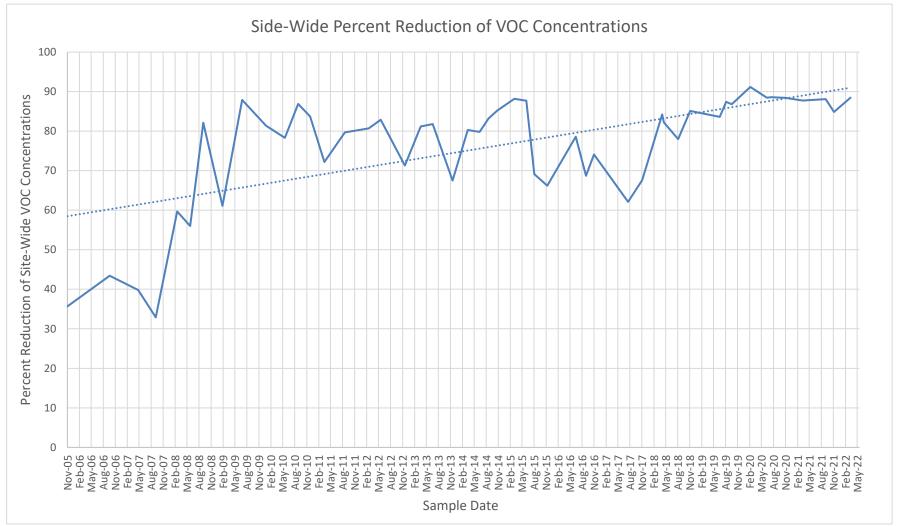

Monitoring and Recovery Well Locations

CHART 1

Chart 1 Gowanda Site V00463

CHART 2

Chart 2 Gowanda Site V00463

APPENDIX A:

QUARTERLY GROUNDWATER CHARACTERIZATION REPORTS

SEPTEMBER 2021 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

4 Industrial Place, Gowanda, NY

GROUNDWATER CHARACTERIZATION REPORT-SEPTEMBER 2021 (Q3 2021)

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135

Revised: July 5, 2022

www.bergmannpc.com

Issued: November 30, 2021

DASNY Project No.: 3136109999

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work	4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	
2.1 2.2	Well Maintenance Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	6
4.0	LABORATORY ANALYSIS	6
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis SummarY Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	8 8
5.0	REMEDIATION SYSTEM EFFICIENCY	10
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	11
	e ,	

Tables

Table 1: Groundwater Elevations and Field Measurements – September 2021

Table 2: September 2021 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary

Table 4: Percent Reduction in Total Groundwater VOCs

Table 5: Full Analytical Results Summary Table

Figures

Figure 1: September 2021 Groundwater Contour Map

Figure 2: September 2021 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3: September 2021 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
Chart 6: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - September 2021 Sampling Event

Appendix B: Field Forms

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the third quarter 2021 sampling event, conducted on September 16th and 17th, 2021, on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on September 16th and September 17th, 2021. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from all twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), all were sampled. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in March 2021 and included analysis of groundwater samples from all twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells. A Q2 sampling event was not conducted in 2021 due to pending contract arrangements.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the

SVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an In-Situ Chemical Oxidation (ISCO) Remedial Action Plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015 and a second round of injections in September 2015. An ISCO Report was prepared and submitted under a separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the September 2021 site visit, all monitoring wells were accessible, and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015 and removal of asphalt from several flush mount wells located on Torrance Place for sampling access. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the September 2021 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from twenty-one (21) of the twenty-one (21) site-related groundwater monitoring wells for laboratory analysis on September 16th and September 17th, 2021. Depth to groundwater measurements were obtained from 28 total wells (including seven [7] recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged. Sample parameters including turbidity, temperature, pH, oxygen, and conductivity were monitored using a YSI Quatro prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. Sampling was performed based on discussion and direction from a telephone conversation with David Szymanski (NYSDEC project manager at the time) in January 2018 in which no noticeable changes in test results were noticed comparing bailing and slow purge methods. This was first noted in Q3 2018 and is also noted in the approved PRR dated 2019. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis during this sampling event.

Bergmann delivered the groundwater samples to Alpha Analytical's service center in Rochester, NY. The samples were then transported by Alpha Analytical via a chain-of-custody protocol to their NYSELAP certified laboratory located in Westborough, Massachusetts. The samples were then tested for targeted chlorinated volatile organic compounds (VOCs) of concern, using EPA Method 8260C. Sample holding times were in compliance with the analytical method requirements. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2012 – 2021.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for September 2021 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on September 16th and September 17th, 2021. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements – September 2021.

The September 2021 groundwater table map shows a flow pattern similar to groundwater flow pattern observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. It is noted that the residential properties along Torrance Place utilize municipal/public water. The September 2021 depths to groundwater range from 6.10 ft. below top of casing (btoc) at MW-2, to 13.50 ft. btoc at MW-6 and MW-7. The average depth to groundwater at the wells measured was 9.49 ft. btoc, which is a decrease from the average depth to water of the previous sampling event in March of 2021 (9.90).

The site-wide average depth to water table decreased by approximately 0.41 ft. when compared to the previous sampling event from March 2021. This decrease in depth to the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented in Table 1 and September 2021 Groundwater Contours are presented on Figure 1 – September 2021 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from twenty-one (21) monitoring wells and seven (7) recovery wells collected September 16th and September 17th, 2021. Samples were analyzed for VOCs via EPA Method 8260C. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-1,2-DCE)
- Vinyl Chloride (VC)

Total VOCs values, as present throughout this report, in the text, charts, and Tables 2, 3, and 4, are not representative of total VOCs detected, but are exclusively representative of the sum of TCE, CIS, TRANS, VC, and TCA detected.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The September 2021 analytical results indicate detection of four (4) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, VC and Trans-1,2-DCE. Chlorinated VOCs were detected in groundwater samples from fifteen (15) of the twenty-one (21) monitoring wells. Analytical results are summarized in Table 2 – September 2021 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical report is provided in Appendix A – Laboratory Analytical Results Report September 2021 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from six (6) of the sampled monitoring wells.

Groundwater samples from eleven (11) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1, with a value of 404.62 parts per billion (ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in ten (10) of the twenty-one (21) monitoring well groundwater samples increased when compared to the March 2021 sampling event while concentrations in six (6) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in five (5) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 88.11% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 79.20% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the September 2021 sampling event was 404.62 parts per billion (ppb), a decrease from the March 2021 value of 928.9 ppb. Since activation of the GTS, detected VOCs at MW-1 have decreased by about 47.32%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the September 2021 sampling event is 386.9 ppb, a decrease from the March 2021 value of 490.7 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 91.67%.

Monitoring well MW-12 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the September 2021 sampling event is 65.86 ppb, a decrease from the March 2021 value of 65.88 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99.48%.

Monitoring well MW-13 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-13 for the September 2021 sampling event was 0.95 ppb, a decrease from the March 2021 sampling event, which was 2.40 ppb. Since activation of the GTS, detected VOCs at MW-13 have decreased by about 99.70%.

Monitoring well MW-14 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the September 2021 sampling event is 84.40 ppb, an increase from the March 2021 value of 20.80 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 73.21%.

Monitoring well MW-15 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the September 2021 sampling event was 24.80 ppb, an increase from the March 2021 sampling event, which was 2.6 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased 96.60%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-16, MW-17 and MW-21. The current analytical results exhibit an increase in targeted VOCs at the sampled monitoring wells along the north perimeter, compared to the March 2021 sampling event.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate a total VOC concentration of 6.33 ppb for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a re-sealing the Torrance Place road surface. These wells were uncovered after the July 2019 sampling event, and subsequent sampling events. Well MW-19R had a total VOC concentration of 0.34 ppb, and well MW-21 had a total VOC concentration of 19.16 ppb during the September 2021 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – September 2021 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event were MW-4 and MW-19R. The current results indicate non-detect levels for MW-4 and 0.34 ppb for MW-19R.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the September 2021 sampling event, all of the seven (7) recovery wells were sampled.

The September 2021 analytical results indicate detection of chlorinated VOCs in all seven (7) recovery well samples that include: TCE, Cis-DCE, VC and Trans-1,2-DCE. Total VOCs detected in the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in VOCs for the current sampling event is about 86.51% relative to concentrations prior to GTS

activation in 2002. Relative percent increase in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the September 2021 sampling event is 98.05 ppb, a decrease from the March 2021 value of 485.3 ppb. The current sampling event indicates a decrease in VOCs at DR-1 of 98.77% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the September 2021 sampling event is 162.4 ppb, an increase from the March 2021 value of 144.2 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 91.89% since activation of the GTS.

Recovery well DR-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the September 2021 sampling event is 85.26 ppb, an increase from the March 2021 value of 66.77 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 94.19% since activation of the GTS.

Recovery well DR-4 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the September 2021 sampling event is 34.1 ppb, an increase from the March 2021 value of 31.9 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 98.07% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the September 2021 sampling event was 51.83 ppb, an increase from the March 2021 value of 45.82 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 90.48% since activation of the GTS.

Recovery well G-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the September 2021 sampling event was 45.4 ppb, a decrease from the March 2021 value of 64.38 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 88.21% since activation of the GTS.

Recovery well G-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the September 2021 sampling event was 226.09 ppb, an increase from the March 2021 value of 177.73 ppb. The current sampling event indicates a decrease in VOCs at G-3 of 43.90% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – September 2021 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected. The analytical results for this equipment blank had a detected concentration of acetone of 2.8 ppb, which may be a laboratory artifact. A trip blank was supplied by the laboratory for the September 2021 sampling event, and was analyzed. A field duplicate (labeled as MW-X) was taken from MW-4.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center.

Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (404.62 ppb) show a decrease from the March 2021 sampling event (928.9 ppb). The current total VOCs at MW-11 (386.9 ppb) shows a decrease from the March 2021 sampling event (490.7 ppb). The current total VOCs at DR-1 (98.05 ppb) show a decrease from the March 2021 sampling event (485.3 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (65.86 ppb) shows a decrease from the March 2021 sampling event (65.88 ppb). The current total VOCs at recovery well DR-2 (162.4 ppb) show an increase from the March 2021 sampling event (144.2 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (84.40 ppb) show an increase from the March 2021 sampling event (20.80 ppb). The current total VOCs at recovery well DR-3 (85.26 ppb) show an increase from the March 2021 sampling event (66.77 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (24.80 ppb) show an increase from the March 2021 sampling event (2.6 ppb). The current total VOCs at recovery well DR-4 (34.1 ppb) show an increase from the March 2021 sampling event (31.9 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (230.86 ppb) show an increase from the March 2021 sampling event (173.6 ppb). The current total VOCs at recovery well G-1 (51.83 ppb) show an increase from the March 2021 sampling event (45.82 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC concentration of 45.4 ppb, which shows a decrease from the March 2021 sampling event (64.38 ppb). The September 2021 total VOCs of MW-7 (102.37 ppb) showed an increase from the March 2021 sampling event (94.74 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (230.86 ppb) showed an increase from the March 2021 sampling event (173.6 ppb). The current total VOCs at recovery well G-3 (226.09 ppb) showed an increase from the March 2021 sampling event (177.73 ppb).

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of historic cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Although concentrations of VOCs detected at downgradient monitoring wells generally increased between the March and September 2021 sampling events, this increase appears to be cyclical and is inferred as seasonal. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the July 2019 and November 2018 sampling events due to being paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report. These two (2) monitoring wells have since been uncovered and began to be sampled again starting with the August 2019 sampling event. The full analytical results are summarized in Table 5.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred due to completed remediation at the Site when compared to pre-remediation levels during the past fifteen (15) years of sampling.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these remediation systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO injection application in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future. However, system components may need repair and/or replacement prior to re-activation.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for Q4 2021. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements September 2021

Gowanda Day Habilitation Center
4 Industrial Place, Gowanda, New York VCA # V-00463-9

F										
	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.20	6.10	6.40	7.03	10.65	13.50	13.50	9.90	9.80	7.30
Groundwater Elevation	772.03	771.98	771.98	771.40	767.96	767.60	767.44	771.43	772.81	772.72
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.44
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.58
Thickness of Water Column	9.82	11.05	9.90	8.75	3.30	9.38	8.30	7.75	11.16	12.14
Minimum Purge Volume (gal)	1.60	1.80	1.61	1.43	0.54	1.53	1.4	1.26	1.82	2.0
3 Volumes	4.80	5.40	4.8	4.28	1.61	4.59	4.06	3.79	5.5	5.94
Actual volume purged	5.00	5.50	5.0	4.30	1.75	4.75	4.25	4.0	5.5	6.00
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = -0.34 '	Flush = -0.24 '	Stickup=2.17'	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	6.50	6.80	6.85	10.35	10.30	13.12	13.25	9.15	7.9	9.65	9.2
Groundwater Elevation	772.08	771.70	771.54	768.08	768.08	767.31	766.60	767.24	766.3	768.39	765.56
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	8.98	10.58	10.55	7.80	9.50	10.14	11.93	15.85	9.77	5.10	6.62
Minimum Purge Volume (gal)	1.46	1.72	1.72	1.27	1.55	1.7	1.94	2.58	1.6	0.8	1.1
3 Volumes	4.39	5.17	5.16	3.81	4.65	4.96	5.83	7.75	4.8	2.49	3.24
Actual volume purged	4.50	5.25	5.25	4.00	4.75	5.0	6.00	7.75	5.00	2.5	3.25
Comments	Flush = $-0.23'$	Flush = -0.35 '	Flush = -0.48 '	Flush = $-0.39'$	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	7.70	7.30	11.70	11.70	11.90	11.8	10.20
Groundwater Elevation	771.96	772.63	768.08	767.94	767.93	767.92	769.22
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	10.36	10.76	8.75	7.99	11.08	8.92	7.95
Minimum Purge Volume (gal)	6.77	7.03	5.71	5.22	7.24	5.82	5.19
3 Volumes	20.295	21.1	17.14	15.65	21.706	17.47	15.57
Actual volume purged	20.3	21.25	17.25	15.75	21.75	17.50	15.75
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Sample Date 09/17/2021

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		760.00	300.00	5.0
CIS		160.00	100.00	5.0
TRANS		8.9	3.9	5.0
VC		ND	0.72	2.0
TCA		ND	ND	5.0
	Total VOCs	928.90	404.62	

Monitoring Well MW-2

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		0.21	ND	5.0
CIS		1.10	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1.31	ND	

Monitoring Well MW-4

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		0.79	1.50	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	0.79	1.50	

Monitoring Well MW-6

Sampling Events

Analyte in p	pb Mar 2021	Sep 2021	NYS Guidance Value
TCE	ND	ND	5.0
CIS	65.00	57.00	5.0
TRANS	ND	ND	5.0
VC	13.00	38.00	2.0
TCA	ND	ND	5.0
Total V	OCs 78.00	95.00	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		1.00	0.97	5.0
CIS		93.00	100.00	5.0
TRANS		ND	ND	5.0
VC		0.74	1.40	2.0
TCA		ND	ND	5.0
	Total VOCs	94.74	102.37	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-10

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
Т	otal VOCs	ND	ND	

Sample Date: 09/17/2021

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Monitoring Well MW-11

Sampling Events

Camping Events						
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value		
TCE		370.00	94.00	5.0		
CIS		110.00	280.00	5.0		
TRANS		10.00	3.7	5.0		
VC		0.70	9.20	2.0		
TCA		ND	ND	5.0		
	Total VOCs	490.7	386.9			

Monitoring Well MW-12

Sampling Events

Camping L	VOITE			
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		22.00	18.00	5.0
CIS		42.00	47.00	5.0
TRANS		1.20	0.76	5.0
VC		0.68	0.10	2.0
TCA		ND	ND	5.0
	Total VOCs	65.88	65.86	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb). Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		2.40	0.95	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	2.40	0.95	

Monitoring Well MW-14

Sampling Events

				
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		12.0	9.4	5.0
CIS		8.8	73.0	5.0
TRANS		ND	ND	5.0
VC		ND	2.0	2.0
TCA		ND	ND	5.0
	Total VOCs	20.80	84.4	

Monitoring Well MW-15

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		2.60	16.00	5.0
CIS		ND	8.8	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	2.60	24.8	

Monitoring Well MW-16

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		0.18	0.26	5.0
CIS		14.00	22.00	5.0
TRANS		ND	ND	5.0
VC		0.14	0.30	2.0
TCA		ND	ND	5.0
	Total VOCs	14.32	22.56	

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Monitoring Well MW-17

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		22.00	20.00	5.0
CIS		150.00	210.00	5.0
TRANS		1.2	ND	5.0
VC		0.43	0.86	2.0
TCA		ND	ND	5.0
	Total VOCs	173.6	230.86	

Monitoring Well MW-18

Sampling Events

Damping L	VCIIIG			
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		0.61	0.77	5.0
CIS		0.94	5.4	5.0
TRANS		ND	ND	5.0
VC		ND	0.16	2.0
TCA		ND	ND	5.0
	Total VOCs	1.55	6.33	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb). Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		0.20	0.34	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		0.3	ND	5.0
	Total VOCs	0.50	0.34	

Monitoring Well MW-20

Sampling Events

<u> </u>				
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	0.35	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	0.35	

Monitoring Well MW-21

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		1.1	1.9	5.0
CIS		4.5	16.0	5.0
TRANS		ND	0.83	5.0
VC		ND	0.43	2.0
TCA		ND	ND	5.0
	Total VOCs	5.60	19.16	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb). Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1 Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		400	78	5.0
CIS		79	19	5.0
TRANS		5.1	0.89	5.0
VC		1.20	0.16	2.0
TCA		ND	ND	5.0
	Total VOCs	485.3	98.05	

Recovery Well DR-2 Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		29.0	29.0	5.0
CIS		110	130	5.0
TRANS		1.3	1.2	5.0
VC		3.90	2.2	2.0
TCA		ND	ND	5.0
	Total VOCs	144.2	162.4	

Recovery Well DR-3 Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		24	22	5.0
CIS		41	60	5.0
TRANS		0.92	0.76	5.0
VC		0.85	2.5	2.0
TCA		ND	ND	5.0
	Total VOCs	66.77	85.26	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb). Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Recovery Well DR-4

Sampling Events

_camping _vo	1110			
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		25	25	5.0
CIS		6.9	9.1	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
T	otal VOCs	31.9	34.1	

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Sample Date: 09/16/2021

Recovery Well G-1

Sampling Events

Cumping L	27 01110			
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		4.20	4.1	5.0
CIS		41	47	5.0
TRANS	·	ND	ND	5.0
VC		0.62	0.73	2.0
TCA		ND	ND	5.0
	Total VOCs	45.82	51.83	

Recovery Well G-2

Sampling Events

Sampling Events			
Analyte in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE	0.38	0.72	5.0
CIS	63	44	5.0
TRANS	ND	ND	5.0
VC	1.00	0.68	2.0
TCA	ND	ND	5.0
Total VOCs	64.38	45.4	

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3
Sampling Events

1				
Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		26	24	5.0
CIS		150	200	5.0
TRANS		1.3	1.4	5.0
VC		0.43	0.69	2.0
TCA		ND	ND	5.0
	Total VOCs	177.73	226.09	

Duplicate Blank (MW-4)

Sampling Events

Analyte	in ppb	Sep 2021	NYS Guidance Value
TCE		ND	5.0
CIS		ND	5.0
TRANS		ND	5.0
VC		ND	2.0
TCA		ND	5.0
	Total VOCs	ND	

Equipment Blank

Sampling Events

Analyte	in ppb	Mar 2021	Sep 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Sample Date: 09/17/2021

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

More	V C/A # V-004	00 0													МС	NITORIN	IG WELL	s															
Montoring Sep Mar Nov July June Feb Oct Aug July Nov Aug Sep Jun Nov Aug Jun Mar Nov Sep Jun Mar Dec Jun M		Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Well Number Sep Mar Nov July June Feb Oct Aug July Sep Jun Nov Aug Nov Aug Nov Aug Nov Aug Nov Aug Nov Aug Jun Mar Nov Sep Jun Mar Dec Jun Mar June	Monitoring	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
2021 2021 2020 2020 2020 2020 2020 2020 2020 2020 2019 2019 2019 2019 2018 2018 2018 2016 2016 2016 2016 2015 2015 2015 2016 2014 2014 2014 2013 2013 2013 2013 2012 2012 2014		Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	Aug	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
MW-1 404.62 228.9 344.7 10200 991.8 993.5 1009 698 1081 1.080 1.190 1.110 374 1013 1.210 1.467 838 580 1.530 1.470 330 430 300 420 990 990 990 1.740 830 910 1.440 528 MW-3 ND ND ND ND ND ND ND N	well number	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
MW-2		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-3	MW-1	404.62	928.9	344.7	1020.0	991.8	993.5	1009	698	1,081	1,080	1,190	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-4 NO NO NO ND	MW-2	ND	ND	0.29	ND	ND	ND	ND	0.28	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-5 15.0 0.79 160 ND 0.51 0.42 0.47 0.52 0.9 ND ND ND ND ND ND ND N	MW-3	ND	1.31	1.14	ND	0.3	ND	ND	0.28	0.39	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-6 95.00 78.00 81.20 66.0 79.41 64.8 99.1 92.84 86.63 81 84 77 76 100 91 87 120 100 120 96 86 81 110 110 96 94 130 99 93 99 86.7 102.37 94.74 173.67 ND 73.89 1.16 55.58 39 27.83 ND ND ND ND ND ND ND N	MW-4	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-8 ND ND ND ND ND ND ND N											ND				ND		NS							NS			NS						NS
MW-8															100		87									- 00			99				85.7
MW-9 ND ND ND ND ND ND ND N				173.67																					.00								30.5
MW-10																																	NS_
MW-11 388.9 490.7 546.5 584.0 1274 60.45 699.3 337.4 1.059 489.3 282 489 1.160 470 525 646 445 550 1.060 630 444 500 451 375 450 710 880 510 570 790 498.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 480.8 580 450.8 580 480.8 580 480.8 580 480.8 580 480.8 450.8 4																																	NS
MW-12 65.86 65.88 60.05 84 147.03 116.54 54 54.48 79 53 25 100 113 31 40 7.1 7.8 15.8 28.8 52 97 120 126 136 200 212 173 149.3 186.6 142 86.5 MW-13 0.95 2.40 1.34 ND 2.7 3.4 2.1 0.50 1.38 ND ND ND ND ND ND ND N																																	NS
MW-13										1,059							646	445															617
MW-14 84-40 20.80 63.4 13.0 18.2 34 33 26.5 25.9 30.7 22.3 22.8 28 38 22.1 76 100 57 81 96 52 99 68 68 54 73 94 49 71 47 39.7 71 72 73 74 74 74 74 74 74 74										79							7.1	7.8															148.22
MW-15 24.80 2.6 25.8 ND 5.0 2.9 7.6 8.1 4.9 ND 6.5 ND ND ND ND ND ND ND N																																	NS
MW-16 22.56 14.32 11.29 13.0 37.43 25.62 7.11 31.53 37.61 41 10 41 43 32 36 14 20 37 31 13 6.8 ND 5.2 9.4 21 24 20 8.4 24 10 84 32 36 14 20 37 31 13 6.8 ND 5.2 9.4 21 24 20 8.4 24 40 40 39 36 14 20 37 31 13 6.8 ND 5.2 9.4 21 24 20 8.4 24 14 40 39 36 14 20 37 31 13 6.8 ND 8.5 35 8.5 12.5 22 39.6 37.3 31 13 8.8 18 8.8 41 10 41 43 32 36 14 20 37 31																	76		57										49				76.6
MW-17 230.86 173.6 271.2 295.0 266.2 16.2 193.01 342 277 218 265 112.5 5.1 222 396 375 465 425 460 410 NS 336 394 410 339 167 420 400 21.3 430 381 MW-18 6.33 1.55 7.13 ND 2.27 0.73 1.6 3.1 2.8 ND ND ND ND ND ND ND N												6.5					11		11						0.	6.1			/		12.9		6.25
MW-18 6.33 1.55 7.13 ND 2.27 0.73 1.6 3.1 2.8 ND ND ND ND ND ND ND N												10					14									21					18		12.2
MW-19R 0.34 0.50 0.36 ND 0.26 0.19 0.28 0.6 NS																																	260.1
MW-20 0.35 ND 0.88 ND																																	2.33
MW-21 19.16 5.60 32.04 11.0 5.9 23.5 24.49 18.33 NS									0.0	INS ND																							ND
MW-X (DUP) ND 152.4 100.5 13.0 2.4 3.3 1118.9 1118.9 914.6 ND ND 434 NS 490 DWS 1,705 879 550 1,720 410 360 407 300 400 870 990 1,850 540 186.8 1,450 521										ND	ND						ND 47	IND	ND 0.7														ND NS
										014.6	ND						1 705	970	6./ EEO														913
I FR INDINDINDINDINSINSINDINDINDINDINDINDINDINDINDINDINDINDINDI						Z.4											1,705	0/9															ND ND
ES IND ND ND ND NS NS ND	EB II	NÜ	שמ	L ND	ND	NS.	INS.	ND	LIND	LIND	ND	I ND	ND	ND			VWELL	<u> IND</u>	LND	L ND	שמ	ND	L ND	ND	ND	LIND	ND	ND	IND	ND	IND.	LIND	טע

	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Recovery	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Well Number	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	August	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
Well Rulliber	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
	(dqq)	(dqq)	(dqq)	(dqq)	(dqq)	(dqq)	(daa)	(dgg)	(dgg)	(daa)	(daa)	(daa)	(daa)	(dgg)	(dgg)	(dqq)	(daa)	(dgg)	(daa)	(dgg)	(dgg)	(daa)	(dgg)	(dqq)	(daa)	(daa)	(daa)	(dqq)	(dgg)	(daa)	(daa)	(dgg)
DR-1	98.05	485.3	117.8	909.0	1222.0	1123.6	912.6	1038	1,832	1,310	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	162.4	144.2	111.6	116.0	129.7	137.8	185.9	192	156	216	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	85.26	66.77	81.73	63.0	81.8	67.7	99.7	101	91	73	87	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	34.1	31.9	42.34	29.9	30.5	32.4	40.6	46.6	40	37.2	48	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	51.83	45.82	100.60	53.0	37.6	50.1	70	78.7	50.4	74.6	77	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	45.4	64.38	37.46	54.0	30.9	18.8	90.49	90	69	25	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	226.09	177.73	236.35	235.0	272.36	335.52	305.34	309.65	309.65	15	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS= This well not included in this sampling event.

ND = Not Detected, results less than Method Detection Limit.

Impacted north property lime wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21

All compounds are measured in parts per billion (ppb).

VOC - Volatile Organic Compounds.

DUP - Duplicate Sample

EB - Equipment/Field Blank Sample

*- Sample was broken in transit and not able to be analyzed

DWS- Different Well Sampled than previosuly tested.

The Groundwater Treatme	ent System was	activated in M	ay 2005																																											
Monitoring Well	% Reduction 2002 to September 2021	% Reduction 2002 to March 2021	% Reduction 2002 to November 202	%Reduction 2002 to July 2020	% Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	% Reduction 2002 to Oct 2019	%Reduction 2002 to Aug 2019	% Reduction 2002 to July 2019	% Reduction 2002 to Nov 2018	%Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	%Reduction 2002 to April 2018	% Reduction % 2002 to Nov 2017	Reduction 2002 to Aug 2017	Reduction 2002 to Nov 2016	% Reduction % 2002 to Sep 2016	Reduction 2002 to Jun 2016	% Reduction % 2002 to Nov 2015	Reduction 2002 to Aug 2015	%Reduction %Re 2002 to 20 Jun 2015 Ma	duction %Re 02 to 20 2015 No	duction %Reduction 102 to 2002 to Sep 20	to 2002 to Jun 20	tion %Reduc 0 2002 t 14 Mar 20	tion %Reduction 2002 to 114 Dec 2013	%Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	%Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	Reduction %F 2002 to :	eduction % 1002 to ec 2010 \$	Reduction %Ri 2002 to 2 Sep 2010 Ju	duction %R 102 to 2 n 2010 Ja	eduction %Re 1002 to 20 an 2010 Ju	iduction %R 302 to 3 ul 2009 F	Reduction %F 2002 to S Feb 2009 S	teduction %Reduc 2002 to 2002 to 2002 to Jun 20	tion %Redu to 2002 008 Mar 2	%Reduction 2 to 2002 to Sep 2008 2007	%Reduction % 2002 to May 2007	% Reduction 002 to Oct 2006	%Reduction 2002 to Nov 2005
MW-1 [†]	47.32%	-20.95%	55.12%	-32.81%	-29.14%	-29.36%	-31.4%	9.11%	-40.76%	-40.6%	-54.9%	-44.5%	51.3%	-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2%	-91.4%	54.4% 4	1.0% 6	0.9% 45.39	% -28.99	6 -28.99	% -126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1%	26.6%	15.5%	-1.3%	15.8%	-44.2%	11.8%	-12.0% 8	8.2% -9	90.5% -92.89	6 -166.4%	-130.3%	-46.9%
MW-2	100%	100%	99%	100%	100%	100%	100%	98.78%	100%	100%	100%	100%	Not Sampled	Not Sampled N	lot Sampled	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	i Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not 5	Sampled No	ot Sampled	99.6% Not Sam	ipled 9	99.6% 99.69	ė 99.6%	99.6%	99.6%
MW-3	100%	91%	92%	100%	98%	100%	100%	98.13%	97.40%	100%	100%	100%	100%	100%	100.0%	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	i Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not S	Sampled No	ot Sampled No	Sampled Not Sam	ipled 9	99.3% 84.09	6 99.3%	99.3%	99.3%
MW-4	100%	100%	100%	100%	100%	100%	100%	100.0%	100%	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0% 10	0.0% 1	0.0% 100.0	100.09	6 100.09	% 100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4% 97	7.4% 9	97.4% 97.49	ė 97.4%	97.4%	97.4%
MW-5	89.29%	94%	89%	100%	96%	97%	96.64%	96.29%	93.57%	100%	100%	100%	100%	100%	100.0%	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not:	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not S	Sampled No	ot Sampled No	Sampled Not Sam	ipled 9	99.3% 75.69	6 99.3%	99.3%	63.4%
MW-6	76.60%	80.79%	80.00%	83.74%	80.44%	84.04%	75.59%	77.18%	78.66%	100%	-83.3%	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	76.4%	78.8% 8	0.0% 7	2.9% 72.99	% 76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	79.9%	73.6%	76.4%	81.3%	77.1%	78.4%	72.2% 69	9.7% 7	74.1% 57.99	ė 62.8%	57.4%	42.6%
MW-7	77.25%	78.95%	61,41%	100.00%	83.58%	99.74%	87.65%	91.33%	93.82%	80.0%	79.3%	100.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	71.1%	87.1% 10	0.0% 6	0.0% 57.89	% 93.6%	100.09	% 100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	87.1%	64.3%	74.6%	96.6%	52.7%	79.5%	22.7% 45	5.8% 5	56.3% 20.09	6 26.7%	6.7%	-1.3%
MW-8	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	Not Sampled N	lot Sampled	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	i Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not 5	Sampled No	t Sampled No	Sampled Not Sam	npled S	92.9% 92.99	// Not Sampled	92.9%	92.9%
MW-9	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	Not Sampled N	lot Sampled	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	i Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not S	Sampled No	ot Sampled No	Sampled Not Sam	ipled 9	97.6% 97.69	6 Not Sampled	97.6%	97.6%
MW-10	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	i Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not 5	Sampled No	ot Sampled No	Sampled Not Sam	npled 9	96.2% 96.29	 Not Sampled 	96.2%	96.2%
MW-11	91.67%	89.44%	88.24%	87.43%	72.57%	86.99%	84.95%	79.83%	77.21%	89.5%	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	90.4% 8	9.2% 9	0.3% 91.99	% 90.3%	84.7%	6 81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	87.3%	86.4%	83.5%	83.3%	86.5%	83.0%	90.6% 87	7.8% 7	78.0% 91.49	6 74.4%	44.0%	76.3%
MW-12	99.48%	99.48%	99.53%	99.34%	98.85%	99.08%	99.57%	99.57%	99.38%	99.6%	99.8%	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	99.6%	99.2% 9	9.1% 9	9.0% 98.49	% 98.4%	98.3%	6 98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	99.3%	99.2%	98.7%	98.1%	99.4%	97.8%	99.5% 98	8.7% 9	98.7% 98.49	a 96.6%	91.4%	62.2%
MW-13	99.70%	99.24%	99.57%	100.00%	99.14%	98.92%	99.33%	99.84%	99.56%	100%	100%	100%	100%	Not Sampled N	lot Sampled	lot Sampled	Not Sampled N	ot Sampled	Not Sampled N	lot Sampled 1	Not Sampled Not S	ampled Not	Sampled Not Sam	noled Not Sam	oled Not Sam	pled Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not 5	Sampled No	ot Sampled	100.0% Not Sam	noled 10	00.0% 99.49	6 100.0%	100.0%	100.0%
MW-14	73.21%	93.40%	79.87%	95.87%	94.22%	89.21%	89.52%	91.59%	91.78%	90.3%	92.9%	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	69.5%	83.5% 6	3.6% 7	8.4% 78.49	% 82.99	76.89	6 70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	92.3%	87.6%	79.3%	85.9%	87.1%	88.9%	94.3% 87	7.9% 5	90.7% 67.29	66.1%	6.7%	55.6%
MW-15	96.60%	99.64%	96,47%	100.00%	99.32%	99.60%	98.89%	98.89%	99.33%	100%	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	98.1%	98.9% 9	3.7% 5	5.6% 95.89	% 99.2%	100.09	% 99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	97.7%	91.5%	96.9%	98.3%	91.1%	99.3%	84.5% 89	9.4%	97.5% 79.59	6 91.7%	79.5%	62.9%
MW:16*	40.63%	62.32%	70.29%	65.79%	96.66%	98.07%	86.11%	38.42%	26.54%	19.9%	80.5%	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	74.6%	86.7% 10	0.0% 8	9.8% 81.69	% 59.0%	53.19	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%	81.0%	93.3%	99.7%	94.2%	42.1%	41.6%	57.4% 43	3.9% 7	77.5% 35.09	6 -57.9%	-34.7%	-72.1%
MW-17*	71.50%	78.56%	66.52%	63.58%	73.67%	98,40%	80.91%	66.17%	72.60%	78.4%	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	59.4%	Not Sampled 6	3.8% 6	1.0% 59.49	% 66.5%	83.5%	6 58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%	94.1%	61.4%	71.3%	97.7%	71.8%	99.5%	10.1% 26	6.0% 2	24.7% -11.59	6 4.1%	-24.8%	-24.2%
MW-18:*	96.02%	99.03%	95.52%	100.00%	99.42%	99.81%	62.50%	99.21%	99.29%	100%	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	100.0%	100.0% 10	0.0% 1	0.0% 100.0	196 100.09	6 100.09	% Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	88.7%	74.4%	82.7%	96.0%	-23.3%	91.8%	-50.0% 27	7.6% 6	64.8% -352.29	6 -178.0%	-146.5%	-135.8%
MW-19 R*	97.57%	96.43%	97.43%	100.00%	98.14%	98.64%	98.00%	95.71%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled N	lot Sampled	100.0%	100.0%	100.0%	100.0%	100.0%	100.0% 10	0.0% 1	0.0% 100.0	100.09	6 100.09	% 100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	73.3%	99.0%	99.0%	57.3%	99.0%	-36.7% -5	5.7%	99.0% -120.89	6 73.6%	-14.0%	-102.0%
MW-20**		100%	95%	100.00%	98%	99%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0% 10	0.0% 1	0.0% 100.0	196 100.09	6 100.09	% 100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4% 99	9.4% 9	99.4% 99.49	6 99.4%	99.4%	99.4%
MW-21**	95.61%	98.72%	95% 92.65%	97.48%	98.65%	94.61%	94.38%	95.80%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled N	lot Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	61.5% Not S	ampled Not	Sampled Not Sam	npled Not Sam	pled Not Sam	pled Not Sampled	Not Sampled	i Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled No	t Sampled No	Sampled No	ot Sampled Not	Sampled Not	Sampled Not 5	Sampled No	ot Sampled	67.5% Not Sam	npled S	96.7% -22.29	6 27.1%	94.0%	-13.7%
* Well installed 2003																																			-											
** Well Installed 2004																																														
Site-Wide reduction:	88.119	6 87.65%	88.44%	88.59%	88.48%	91.11%	86.8%	87.42%	83.6%	85.1%	78.0%	82.2%	84.2%	67.60%	62.1%	74.1%	68.7%	78.6%	66.2%	69.1%	87.7% 8	3.2% 8	5.2% 83.29	% 79.8%	80.3%	67.5%	81.8%	81.2%	71.3%	82.9%	80.7%	79.7%	72.2%	83.7%	86.9%	78.3%	81.4%	87.9%	61.1%	82.1%	56.0% 59	9.7% 7	78.5% 32.99	á 39.8%	43.4%	35.7%
Impacted Groundwater																																														
Plume Area Only	79 20%	6 74 9%	78.4%	74 84%	71./1%	75.61%	72 11%	78 21%	71 5%	74 6%	72 1%	67.6%	76.6%	51 40%	41 194	66.5%	69.6%	76.0%	58 1%	58.6%	84.6% 8	18% 7	7.3% 75.09	% 72.39	73.09	6 82.2%	73.2%	77.3%	62.5%	75.2%	73 1%	71.0%	84 1%	84 1%	83.0%	72.5%	72.4%	82 1%	85 294	70.8%	57.7% 8/	4.2%	53.7% 38.89	4 32.0%	16 3%	28.4%

Recovery Well	% Reduction 2002 to September 2021	% Reduction 2002 to Marc 2021	% Reduction h 2002 to November 202	% Reduction 2002 to July 20 2020	%Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	%Reduction 2002 to Oct 2019	%Reduction 2002 to Aug 2019	% Reduction 2002 to July 2019	% Reduction 2002 to Nov 2018	%Reduction 2002 to Aug 2018	%Reduction 2002 to May 2018	%Reduction 2002 to April 2018	% Reduction % 2002 to Nov 2017	Reduction 9 2002 to Aug 2017	Reduction 2002 to Nov 2016	Reduction %F 2002 to Sep 2016 J	Reduction %Re 2002 to 20 un 2016 No	eduction %Redi 002 to 2000 v 2015 Aug 2	uction %Re 2 to 20 2015 Jur	eduction %R 002 to 2 n 2015 M	eduction %F 002 to 2 ar 2015 N	Reduction %Reduction 2002 to 2002 lov 2014 Sep 2	uction %Reduction 2 to 2002 to 2014 Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	%Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction % 2002 to Dec 2012	6 Reduction	Reduction % 2002 to far 2012	Reduction %Rec 2002 to 200 Sep 2011 Jun	duction %Redu 22 to 2002 2011 Mar 2	tion %Reduce to 2002 111 Dec 20	tion %Reduc 0 2002 t 10 Sep 20	tion %Redu to 2002 10 Jun 2	uction %Redu 2 to 2002 2010 Jan 2	ction %Reduction to 2002 to 010 Jul 2009	% Reduction 2002 to Feb 2009	%Reduction 2002 to Sep 2008	%Reduction 2002 to Jun 2008	%Reduction 2002 to Mar 2008	% Reduction Feb 2005 to Sept 2007	%Reduction Feb 2005 to May 2007 %Reduction F 2005 to Oct 2	eb
DR-1	98.77%	6 93.93%	98.53%	88.64%	-113.39%	-95.95%	-59.16%	-81.03%	-219.50%	-128.5%	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	-58.7% 4	4.4% 72.	1% Not S	Sampled 9	96.2%	89.0% 90.4	4% 86.9%	77.0%	84.8%	99.1%	99.0%	99.5%	99.8% 9	91.6%	97.9%	98.1%	6.9% 9	5.6% 9	4.5%	99.2%	98.0% 95.19	96.89	91.0%	89.2%	93.4%	74.5%	86.2% 92.5	ತ%
DR-2	91.89%	6 92.80%	94.43%	94.21%	76.38%	74.91%	66.15%	65.04%	71.60%	60.7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9% 6	3.8% 66.	0% 4	7.0%	52.8%	70.5% 59.2	2% 58.0%	62.3%	45.0%	87.2%	85.4%	99.1%	88.5%	83.9%	89.7%	88.0% 8	6.6% 9	2.4% 8	9.3%	87.3%	90.6% 90.19	88.89	89.7%	85.8%	92.3%	85.6%	82.5% 72.1	.6%
DR-3	94.19%	6 95.48%	94.46%	95.73%	46.36%	55.61%	34.62%	33.77%	40.33%	52.1%	43.0%	17.8%	78%	68.5% No	ot Sampled	35.7%	-1.0%	59.3% 7	0.5% 50.	2% 4	5.6%	83.9%	-18.7% -37.	.7% 45.6%	41.6%	19.3%	95.8%	95.1%	97.2%	92.1%	98.3%	95.0%	95.4% 9	8.3% 9	3.0% 9	7.4%	94.6% 9	91.6% 91.59	88.79	94.9%	91.7%	88.4%	73.8%	87.6% 89.7	7%
DR-4	98.07%	6 98.19%	97.60%	98.31%	96.45%	96.23%	95.27%	94.58%	95.34%	95.7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7% 8	9.1% 87.	2% 9	11.7%	82.9%	81.8% 82.8	8% 88.8%	92.5%	90.8%	95.5%	97.9%	94.9%	93.1% 1	100.0%	89.2%	92.7%	4.3% 9	5.9% 8	8.9%	91.2% 9	95.4% 95.59	96.29	92.7%	97.7%	97.6%	87.7%	99.1% 51.	4%
G-1	90.48%	6 91.58%	81.52%	90.27%	81.27%	75.05%	65.14%	60.81%	74.90%	62.8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7% 6	0.0% 100	.0% 6	6.1%	27.3%	49.8% 47.7	7% 55.0%	61.3%	65.6%	87.3%	89.8%	90.3%	87.4%	88.0%	87.6%	89.8%	7.7% 9	1.0% 9	4.4%	80.1%	76.0% 69.99	76.79	77.9%	68.7%	65.8%	58.7%	71.8% 63.	1%
G-2	88.21%	6 83.28%	90.26%	85.97%	89.10%	93.37%	68.07%	68.24%	75.65%	91.2%	76.0%	82.4%	84%	100.0% No	ot Sampled N	Not Sampled	100.0% No	t Sampled Not	Sampled 90.	1% Not 5	Sampled i	83.1%	88.0% 86.9	9% 81.7%	95.1%	71.4%	79.0%	87.0%	65.7%	80.4%	89.1%	92.3%	83.0% 8	7.7% 8	3.5% 9	8.4%	97.8%	98.5% 85.49	40.09	92.6%	89.8%	79.0%	84.6%	54.5% 26.	4%
G-3	43.90%	6 55.90%	41.35%	41.69%	32.42%	16.74%	24.23%	24.23%	23.19%	96.3%	20.1%	Not Sampled	Not Sampled 1	Not Sampled No	ot Sampled	27.3%	-0.2%	-4.2% 3	15.0% 8.2	2% Not 5	Sampled Not	Sampled Not	t Sampled Not Sa	impled Not Sampled	79.7%	NA.	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	. N/	NA.	NA.	NA.	NA.	NA /	NA
Overall Reduction	86.50%	6 87.31	% 85.459	% 84.97%	44.08%	45.14%	42.05%	37.95%	23.07%	47.2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4% 6	0.4% 67.	7% 6	2.6%	87.7%	60.1% 54.9	9% 69.3%	72.8%	62.8%	90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1%	1.9% 9	3.2% 9	3.5%	91.7%	91.7% 87.99	81.29	89.8%	87.2%	86.1%	77.5%	80.3% 66.0	1%

*Sampling of recovery wells initiated in 2005 Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

TABLE 5

Samples Received by Alpha on 17-Sep-21																																					
LOCATION		NYS Groundwate		MW	1-2	MW-3	MW-4	MW-5	M	/W-6	MW-7	MW-8	MW-9	MW-1	0 M	IW-11	MW-12	MW-13	MW-14	MW-15	MW	/-16	MW-17	MW-18	MW-19R	MW-20	MW-21	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3	MW-X	FOLIP BLANK	TRIP BLANK
SAMPLING DATE	- 3	Standard Guidance	Linito 17-Sep-2	21 1	7-Sep-21	17-Sep-21	17-Sep-2	21 17-5	Sep-21	17-Sep-21	17-Sep-21	17-Sep-21	17-Sep-	21 17-	Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	16-Sep	-21 1	7-Sep-21	17-Sep-21	17-Sep-21	17-Sep-2	1 17-Sep-2	17-Sep-2	1 16-Sep-2	1 16-Sep-	-21 16-Sep-	-21 16-Sep-21	16-Sep-21	16-Sep-21	17-Sep-21	17-Sep-21	17-Sep-21	
		Value Value	L2150571	-01 Units L21	50571-02 Units	L2150571-03	Units L2150571-	04 Units L2150	571-05 Units L2	2150571-06 Unit	ts L2150571-07	Units L2150571-08	Jnits L2150571-	09 Units L2150	571-10 Units L2	2150571-11 Uni	s L2150571-12 U	Inits L2150571-13	Jnits L2150571-14	Units L2150571	1-15 Units L21:	50571-16 Units	L2150571-17 U	Inits L2150571-18	Units L2150571-1	9 Units L2150571-2	Units L2150571-2	1 Units L2150571-2	2 Units L2150571-	-23 Units L2150571-	-24 Units L2150571-25 U	Jnits L2150571-26 L	Inits L2150571-27 Uni	ts L2150571-28 U	nits L2150571-29 L	nits L2150571-30 Units	s L2150571-31 Units
SAMPLE QUALIFIER			D													D							D														
Lab Sample ID SAMPLE QUALIFIER PARAMETER	PRODUCT																																				
Methylene chloride	NYTCL-8260-R2	5.0 -	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/I <2.5	ug/l <2.5	ug/I <	2.5 ug/l	<5.0 ug	1 <2.5	ug/I <2.5	ug/I <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/I <2.5	ug/I <2.5	ug/I <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5 ug	/I <2.5 L	ug/I <2.5	ug/l <2.5 ug/l	1 <2.5 ug/l
1,1-Dichloroethane	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/I <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5 ug	/I <2.5 u	ıg/l <2.5	ug/I <2.5 ug/I	1 <2.5 ug/l
Chloroform	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/I <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5 ug	/I <2.5 t	ıg/l <2.5	ug/l <2.5 ug/l	(<2.5 ug/l
Carbon tetrachloride	NYTCL-8260-R2	5.0 -	ug/l <1.2	ug/l	<0.50 ug/l	< 0.50	ug/l <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	/I <0.50	ug/l <0.50	ug/l <0.50	ug/I <0).50 ug/l	<1.0 ug	/1 <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/I	<0.50 ug/l	<1.0 ι	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/I <0.50 ug	/I <0.50 u	ıg/l <0.50	ug/l <0.50 ug/l	i <0.50 ug/l
1,2-Dichloropropane	NYTCL-8260-R2	1 -	ug/l <2.5	ug/l	<1.0 ug/l	<1.0	ug/l <1.0	ug/I <	1.0 ug/l	<1.0 ug/	/1 <1.0	ug/l <1.0	ug/l <1.0	ug/I <	1.0 ug/l	<2.0 ug	/1 <1.0	ug/l <1.0	ug/l <1.0	ug/l <1.0	ug/I	<1.0 ug/l	<2.0 L	ug/l <1.0	ug/l <1.0	ug/I <1.0	ug/l <1.0	ug/l <1.0	ug/l <1.0	ug/l <1.0	ug/l <1.0	ug/l <1.0	ug/I <1.0 ug	/I <1.0 u	ug/I <1.0	ug/l <1.0 ug/l	(<1.0 ug/l
Dibromochloromethane	NYTCL-8260-R2	- 50	ug/l <1.2	ug/l	<0.50 ug/l	<0.50	ug/l <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	/I <0.50	ug/l <0.50	ug/l <0.50	ug/I <0).50 ug/l	<1.0 ug	/1 <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/I	<0.50 ug/l	<1.0 t	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/I <0.50 ug	/I <0.50 t	ug/l <0.50	ug/l <0.50 ug/l	i <0.50 ug/l
1,1,2-Trichloroethane	NYTCL-8260-R2	1 -	ug/l <3.8	ug/l	<1.5 ug/l	<1.5	ug/l <1.5	ug/l <	:1.5 ug/l	<1.5 ug/	/I <1.5	ug/l <1.5	ug/l <1.5	ug/I <	1.5 ug/l	<3.0 ug	/1 <1.5	ug/l <1.5	ug/l <1.0	ug/l <1.5	ug/I	<1.5 ug/l	<3.0 ι	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/l <1.5	ug/I <1.5 ug	/I <1.5 t	ıg/l <1.5	ug/l <1.5 ug/l	/ <1.5 ug/l
Tetrachloroethene	NYTCL-8260-R2	5 -	ug/l <1.2	ug/l	<0.50 ug/l	<0.50	ug/l <0.50	ug/I 0.	.19J ug/l	<0.50 ug/	/I <0.50	ug/l <0.50	ug/l <0.50	ug/1 <0).50 ug/l	<1.0 ug	/1 <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/l	<0.50 ug/l	<1.0 ι	ug/l <0.50	ug/l 0.43J	ug/l <0.50	ug/l <0.50	ug/l <0.5	ug/l <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/I <0.50 ug	/I <0.50 u	ıg/l <0.50	ug/l <0.50 ug/l	(<0.50 ug/l
Chlorobenzene	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5 ug	/I <2.5 L	ug/l <2.5	ug/l <2.5 ug/l	/ <2.5 ug/l
Trichlorofluoromethane	NYTCL-8260-R2	5 -	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/I <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5 ug	/I <2.5 t	ug/I <2.5	ug/l <2.5 ug/l	i <2.5 ug/l
1,2-Dichloroethane	NYTCL-8260-R2		ug/l <1.2	ug/l	<0.50 ug/l	< 0.50	ug/l <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	/1 <0.50	ug/l <0.50	ug/l <0.50	ug/I <().50 ug/l	<1.0 ug	/1 <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l	<0.50 ug/l	<1.0 t	ug/l <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/I <0.50 ug	/I <0.50 t	ıg/l <0.50	ug/l <0.50 ug/l	/ <0.50 ug/l
1,1,1-Trichloroethane	NYTCL-8260-R2	5.0 -	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5 ug	/I <2.5 u	ug/l <2.5	ug/l <2.5 ug/l	/l <2.5 ug/l
Bromodichloromethane	NYTCL-8260-R2	- 50	ug/l <1.2	ug/l	<0.50 ug/l	<0.50	ug/1 <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	/1 <0.50	ug/I <0.50	ug/l <0.50	ug/i <0).50 ug/l	<1.0 ug	1 <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/I	<0.50 ug/l	<1.0 L	ug/I <0.50	ug/l <0.50	ug/I <0.50	ug/1 <0.50	ug/l <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/l <0.50	ug/1 <0.50 ug	/I <0.50 t	ıg/l <0.50	ug/I <0.50 ug/I	<0.50 ug/l
trans-1,3-Dichloropropene	NYTCL-8260-R2	0.4 -	ug/l <1.2	ug/l	<0.50 ug/l	<0.50	ug/I <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	/1 <0.50	ug/I <0.50	ug/I <0.50	ug/l <0).50 ug/l	<1.0 ug	1 <0.50	ug/I <0.50	ug/I <0.50	ug/l <0.50	ug/l	<0.50 ug/l	<1.0 t	ug/I <0.50	ug/1 <0.50	ug/I <0.50	ug/l <0.50	ug/I <0.50	ug/I <0.50	ug/I <0.50	ug/I <0.50	ug/I <0.50	ug/1 <0.50 ug	/I <0.50 u	Jg/I <0.50	ug/I <0.50 ug/I	<0.50 ug/l
cis-1,3-Dichloropropene	NYTCL-8260-R2		ug/l <1.2	ug/l	<0.50 ug/l	<0.50	ug/l <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	/1 <0.50	ug/I <0.50	ug/l <0.50	ug/i <0	0.50 ug/l	<1.0 ug	ri <0.50	ug/I <0.50	ug/I <0.50	ug/l <0.50	ug/I	<0.50 ug/l	<1.0 L	ug/I <0.50	ug/l <0.50	ug/I <0.50	ug/1 <0.50	ug/l <0.50	ug/l <0.50	ug/I <0.50	ug/l <0.50	ug/I <0.50	ug/1 <0.50 ug	/I <0.50 t	ug/1 <0.50	ug/I <0.50 ug/I	<0.50 ug/l
Bromoform 1,1,2,2-Tetrachloroethane	NYTCL-8260-R2 NYTCL-8260-R2	- 50	ug/l <5.0	ug/l	<2.0 ug/l	<2.0	ug/l <2.0	ug/l <2	2.0 ug/l	<2.0 ug/	// <2.0	ug/l <2.0	ug/l <2.0	ug/l <	2.0 ug/l	<4.0 ug	// <2.0	ug/l <2.0	ug/I <2.0	ug/l <2.0	ug/l	<2.0 ug/l	<4.0 L	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <2.0 ug	/I <2.0 U	ug/l <2.0	ug/I <2.0 ug/I	<2.0 ug/l
	NYTCL-8260-R2	5 -	ug/l <1.2	ug/I	<0.50 ug/l	<0.50	ug/I <0.50	ug/I <0	0.50 ug/l	<0.50 ug/	// <0.50	ug/1 <0.50	ug/I <0.50	ug/i <	0.50 ug/l	<1.0 ug	0.50	ug/I <0.50	ug/I <0.50	ug/l <0.50	ug/I	<0.50 ug/l	<1.0 L	ug/i <0.50	ug/I <0.50	ug/i <0.50	ug/I <0.50	ug/i <0.50	ug/I <0.50	ug/i <0.50	ug/I <0.50	ug/I <0.50	ug/I <0.50 ug	// <0.50 (1g/1 <0.50	1g/1 <0.50 ug/1	<0.50 ug/l
Benzene	NYTCL-8260-R2		ug/l <1.2	ug/i	<0.50 ug/i	NU.50	ug/i <0.50	ug/i <u< th=""><th>J.50 ug/i</th><th><0.50 ug/</th><th>1 40.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/i <</th><th>7.50 ug/i</th><th><1.0 ug</th><th>1 40.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/i</th><th><0.50 ug/i</th><th><1.0 L</th><th>ug/i <0.50</th><th>ug/I <0.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/l <0.50</th><th>ug/i <0.50</th><th>ug/i <0.50</th><th>ug/i <0.50 ug</th><th>// 40.50 0</th><th>1g/1 <0.50</th><th>1g/1 <0.50 ug/1</th><th>40.50 ug/l</th></u<>	J.50 ug/i	<0.50 ug/	1 40.50	ug/i <0.50	ug/i <0.50	ug/i <	7.50 ug/i	<1.0 ug	1 40.50	ug/i <0.50	ug/i <0.50	ug/i <0.50	ug/i	<0.50 ug/i	<1.0 L	ug/i <0.50	ug/I <0.50	ug/i <0.50	ug/i <0.50	ug/i <0.50	ug/i <0.50	ug/l <0.50	ug/i <0.50	ug/i <0.50	ug/i <0.50 ug	// 40.50 0	1g/1 <0.50	1g/1 <0.50 ug/1	40.50 ug/l
Ethylbenzene	NYTCL-8260-R2		ug/l <6.2	ug/I	<2.5 Ug/I	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	// <2.5	ug/I <2.5	ug/I <2.5	ug/i <	2.5 ug/l	<5.0 ug	1 <2.5	ug/I <2.5	ug/I <2.5	ug/I <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/I <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ug/I <2.5	ug/I <2.5	ug/I <2.5	ug/I <2.5 ug	// <2.5	Jg/I <2.5	ug/I <2.5 ug/I	/I <2.5 ug/I
	NYTCL-8260-R2	5 -	ug/i <6.2	ug/i	*2.5 ug/l	1 2.5	ug/1 <2.5	ug/i <	2.5 ug/i	*2.5 ug/	1 2.5	ug/1 <2.5	ug/i <2.5	ug/i	2.5 ug/i	*5.0 ug	1 -2.5	ug/i <2.5	ug/1 <2.5	ug/I <2.5	ug/i	*2.5 ug/i	45.0 L	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/i <2.5	ug/i <2.5	ug/i <2.5 ug	// 12.5	1g/1 <2.5	ug/1 <2.5 ug/1	42.5 ug/l
Chloromethane Bromomethane	NYTCL-8260-R2	-	ug/I <6.2	ug/I	<2.5 ug/l	<2.5	ug/i <2.5	ug/i	2.5 ug/i	<2.5 ug/	// 2.5	ug/i <2.5	ug/i <2.5	ug/i	2.5 ug/l	<5.0 ug	1 <2.5	ug/i <2.5	ug/i <2.5	ug/i <2.5	ug/i	<2.5 ug/l	<5.0	ug/i <2.5	ug/i <2.5	ug/l <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/i <2.5	ug/i <2.5	ug/i <2.5 ug	// <2.5	1g/1 <2.5	ug/l <2.5 ug/l	4 c2.5 ug/l
Vinyl chloride	NYTCL-8260-R2		ug/l 0.721	ug/i	<2.0 ug/l	<1.0	ug/l <2.0	ug/i <	1.0 ug/l	-2.5 ug/	0 14	ug/i <2.5	ug/l <2.0	ug/i	2.5 ug/i	-0.0 ug	0.101	ug/i <2.5	ug/i ~2.5	ug/I <2.0	ug/i	0.201 49/1	0.961	ug/I 0.161	ug/l <2.0	ug/i -2.5	ug/I 0.42.I	ug/I 0.161	ug/I ~2.3	ug/I -2.5	ug/1 <2.5	ug/l 12.3	ug/1 \2.5 ug	// 0.601	19/1 <2.0	ug/l <2.0 ug/l	4 c1.0 ug/l
Chloroethane	NYTCL-8260-R2		ug/l <6.2	ug/I	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	// <2.5	ug/l <2.5	ug/l <2.5	ug/i <	2.5 ug/l	<5.0 ug	1 52.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/l c2.5	ug/1 <1.0	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l 2.2	ug/l <2.5	ug/l <2.5	ug/l c2.5	ug/1 0.000 ug	// 62.5	ig/l <2.5	ug/l <2.5 ug/l	1 c2.5 ug/l
1,1-Dichloroethene	NYTCL-8260-R2		ug/l <1.2	ug/I	<0.50 ug/l	<0.50	ug/1 <0.50	ug/1 <0	2.50 ug/l	<0.50 ug/	/ 0.221	ug/l <0.50	ug/l <0.50	ug/i <	2.5 ug/l	0.521 110	1 <0.50	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/i	<0.50 ug/l	<1.0	ug/I <2.5	ug/1 <2.5	ug/l <0.50	ug/1 <0.50	ug/l <0.50	ug/I 0.361	ug/l <0.50	ug/l <0.50	ug/l <0.50	ug/1 <0.50 ug	// 0.341 1	ig/l <0.50	ug/1 <2.5 ug/1	4 <0.50 ug/l
trans-1,2-Dichloroethene	NYTCL-8260-R2		ug/l 3.9.1	ug/l	<2.5 ug/l	S2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.50 ug/	// <2.5	ug/l <2.5	ug/l <2.5	ug/l <	2.5 ug/l	3.7.1 ug	0.761	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I 0.83.I	ug/I 0.89.I	ug/l 1.2.l	ug/l 0.76J	ug/l <2.5	ug/l <2.5	ug/l <2.5 ug	/ 14.1	10/1 <2.5	ug/l <2.5 ug/l	1 <2.5 ug/l
Trichloroethene	NYTCL-8260-R2		ug/l 300	ug/l	<0.50 ug/l	<0.50	ug/l <0.50	ug/l 1	1.5 ug/l	<0.50 ug/	/ 0.97	ug/l <0.50	ug/l <0.50	ug/l <	50 ug/l	94 10	1 18	ug/l 0.95	ug/l 9.4	ug/l 16	ug/l	0.26.1 μα/1	20 1	ug/l 0.77	ug/I 0.34.I	ug/l <0.50	ug/l 1.9	ug/l 78	ug/l 29	ug/l 22	ug/l 25	ug/l 4.1	ug/l 0.72 ug	// 24	ig/l <0.50	ug/I <0.50 ug/I	4 <0.50 ug/l
1.2-Dichlorobenzene	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/l <2.5	ua/l <2.5	ug/l <	2.5 ug/l	<5.0 ug	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 U	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5 ug	// <2.5	ug/l <2.5	ug/l <2.5 ug/l	/ <2.5 ug/l
1,3-Dichlorobenzene	NYTCL-8260-R2	3 -	ug/l <6.2	ug/I	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/l <2.5	ua/I <2.5	ug/I <	2.5 ug/l	<5.0 ug	1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ua/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5 ug	/I <2.5 U	ug/l <2.5	ug/I <2.5 ug/I	1 <2.5 ug/l
1,4-Dichlorobenzene	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	// <2.5	ug/l <2.5	ug/l <2.5	ug/l <	2.5 ug/l	<5.0 ug	/ <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5 uc	// <2.5	ug/l <2.5	ug/l <2.5 ug/l	1 <2.5 ug/l
Methyl tert butyl ether	NYTCL-8260-R2	- 10	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/l <2.5	ug/I <2.5	ug/I <	2.5 ug/l	<5.0 ug	1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/I <2.5	ug/I <2.5 ug	/I <2.5 L	Jg/I <2.5	ug/I <2.5 ug/I	1 <2.5 ug/l
p/m-Xylene	NYTCL-8260-R2	5 -	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/I <2.5	ug/l <2.5	ug/I <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/I <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5 ug	/I <2.5 t	ug/l <2.5	ug/I <2.5 ug/I	.1 <2.5 ug/l
o-Xylene	NYTCL-8260-R2	5 -	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/1 <2.5	ug/I <2.5	ug/l <2.5	ug/I <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/1 <2.5 ug	/I <2.5 U	ıg/l <2.5 □	ug/l <2.5 ug/l	(<2.5 ug/l
cis-1,2-Dichloroethene	NYTCL-8260-R2	5.0 -	ug/l 100	ug/I	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <2	2.5 ug/l	57 ug/	/ 100	ug/l <2.5	ug/l <2.5	ug/I <	2.5 ug/l	280 ug	1 47	ug/l <2.5	ug/I 73	ug/I 8.8	ug/l	22 ug/l	210 L	ug/l 5.4	ug/l <2.5	ug/l <2.5	ug/I 16	ug/l 19	ug/I 130	ug/I 60	ug/l 9.1	ug/l 47	ug/1 44 ug	/I 200 U	ug/l <2.5	ug/l <2.5 ug/l	i <2.5 ug/l
Styrene	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/l <2.5	ug/l <2.5	ug/I <	2.5 ug/l	<5.0 ug	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5 ug	/I <2.5 t	ıg/l <2.5	ug/I <2.5 ug/I	(<2.5 ug/l
Dichlorodifluoromethane	NYTCL-8260-R2	5 -	ug/l <12.	ug/l	<5.0 ug/l	<5.0	ug/l <5.0	ug/l <	5.0 ug/l	<5.0 ug/	/I <5.0	ug/l <5.0	ug/l <5.0	ug/l <	5.0 ug/l	<10. ug	/1 <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l	<5.0 ug/l	<10. t	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/I <5.0 ug	/I <5.0 t	ug/I <5.0	ug/l <5.0 ug/l	i <5.0 ug/l
Acetone	NYTCL-8260-R2	- 50	ug/l <12.	ug/l	2.6J ug/l	<5.0	ug/l <5.0	ug/l <	5.0 ug/l	1.6J ug/	/1 <5.0	ug/l <5.0	ug/l <5.0	ug/I <	5.0 ug/l	<10. ug	/1 <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/I	<5.0 ug/l	<10. L	ug/I <5.0	ug/l <5.0	ug/I <5.0	ug/l 1.8J	ug/l <5.0	ug/l <5.0	ug/l 2.1J	ug/l <5.0	ug/I <5.0	ug/I <5.0 ug	/I <5.0 t	ıg/l 2.7J	ug/l 2.8J ug/l	<5.0 ug/l
Carbon disulfide	NYTCL-8260-R2	- 60	ug/l <12.	ug/l	<5.0 ug/l	<5.0	ug/l <5.0	ug/l <	5.0 ug/l	<5.0 ug/	/1 <5.0	ug/I <5.0	ug/l 1.4J	ug/1 <	5.0 ug/l	<10. ug	/1 <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/l	<5.0 ug/l	<10. ι	ug/l <5.0	ug/I <5.0	ug/I <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <5.0 ug	/I <5.0 u	ug/l <5.0	ug/I <5.0 ug/I	/ <5.0 ug/l
2-Butanone	NYTCL-8260-R2	- 50	ug/l <12.	ug/l	<5.0 ug/l	<5.0	ug/l <5.0	ug/l <	5.0 ug/l	<5.0 ug/	/1 <5.0	ug/I <5.0	ug/l <5.0	ug/l <	5.0 ug/l	<10. ug	/1 <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/I	<5.0 ug/l	<10. L	ug/I <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/l <5.0	ug/I <5.0 ug	/I <5.0 u	ug/I <5.0	ug/I <5.0 ug/I	<5.0 ug/l
4-Methyl-2-pentanone	NYTCL-8260-R2		ug/l <12.	ug/l	<5.0 ug/l	<5.0	ug/l <5.0	ug/I <	5.0 ug/l	<5.0 ug/	/1 <5.0	ug/I <5.0	ug/l <5.0	ug/l <	5.0 ug/l	<10. ug	/1 <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l	<5.0 ug/l	<10. L	ug/l <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <5.0 ug	/I <5.0 u	ug/I <5.0	ug/l <5.0 ug/l	<5.0 ug/l
2-Hexanone	NYTCL-8260-R2	- 50	ug/l <12.	ug/l	<5.0 ug/l	<5.0	ug/l <5.0	ug/l <	5.0 ug/l	<5.0 ug/	/1 <5.0	ug/I <5.0	ug/I <5.0	ug/l <	5.0 ug/l	<10. ug	1 <5.0	ug/I <5.0	ug/I <5.0	ug/l <5.0	ug/I	<5.0 ug/l	<10. L	ug/I <5.0	ug/I <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/I <5.0	ug/1 <5.0 ug	/I <5.0 u	ug/1 <5.0	ug/I <5.0 ug/I	<5.0 ug/l
Bromochloromethane	NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/I <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/I <2.5	ug/l <2.5	ug/l <	2.5 ug/l	<5.0 ug	/1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/I <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/1 <2.5 ug	/I <2.5 t	ıg/l <2.5	ug/l <2.5 ug/l	<2.5 ug/l
1,2-Dibromoethane	NYTCL-8260-R2		ug/i <5.0	ug/I	<2.0 ug/l	<2.0	ug/l <2.0	ug/I <	2.0 ug/l	<2.0 ug/	// <2.0	ug/1 <2.0	ug/i <2.0	ug/1 <	2.0 ug/l	<4.0 ug	1 <2.0	ug/I <2.0	ug/1 <2.0	ug/l <2.0	ug/I	<2.0 ug/l	<4.0 L	ug/I <2.0	ug/I <2.0	ug/I <2.0	ug/1 <2.0	ug/l <2.0	ug/l <2.0	ug/I <2.0	ug/l <2.0	ug/I <2.0	ug/I <2.0 ug	/I <2.0 I	ıg/i <2.0	ug/I <2.0 ug/l	<2.0 ug/l
1,2-Dibromo-3-chloropropane	NYTCL-8260-R2	0.04 -	ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	/ <2.5	ug/I <2.5	ug/I <2.5	ug/l <	2.5 ug/l	<5.0 ug	1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/I <2.5	ug/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/1 <2.5 ug	/I <2.5 L	ug/l <2.5	ug/l <2.5 ug/l	<2.5 ug/l
Isopropylbenzene	NYTCL-8260-R2		ug/i <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/l <	2.5 ug/l	<2.5 ug/	(2.5	ug/1 <2.5	ug/i <2.5	ug/1 <	2.5 ug/l	<5.0 ug	<2.5	ug/i <2.5	ug/I <2.5	ug/l <2.5	ug/I	<2.5 ug/l	<5.0 L	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/1 <2.5	ug/l <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/I <2.5	ug/1 <2.5 ug	// <2.5	ıg/i <2.5	ug/I <2.5 ug/I	<2.5 ug/l
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NYTCL-8260-R2 NYTCL-8260-R2		ug/l <6.2	ug/l	<2.5 ug/l	<2.5	ug/l <2.5	ug/i <	2.5 ug/l	<2.5 ug/	(1) <2.5	ug/i <2.5	ug/I <2.5	ug/l <	2.5 ug/l	<5.0 ug	1 <2.5	ug/i <2.5	ug/I <2.5	ug/I <2.5	ug/l	<2.5 ug/l	<5.0 L	ug/i <2.5	ug/I <2.5	ug/1 <2.5	ug/1 <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5 ug	// <2.5	Jg/I <2.5	ug/I <2.5 ug/I	<2.5 ug/l
1,2,4-Trichlorobenzene Methyl Acetate	NYTCL-8260-R2 NYTCL-8260-R2		ug/l <6.2	ug/I	-2.5 ug/l	<2.5	ug/l <2.5	ug/i <	2.5 ug/l	<2.5 ug/	42.5	ug/l <2.5	ugn <2.5	ug/i <	2.5 ug/l	<5.0 ug	<2.5	ug/i <2.5	ug/i <2.5	ug/I <2.5	ug/i	-2.5 ug/l	<5.0 L	ug/i <2.5	ug/I <2.5	ug/1 <2.5	ug/l <2.5	ug/I <2.5	ug/I <2.5	ug/i <2.5	ug/I <2.5	ugn <2.5	ug/i <2.5 ug	// <2.5 U	ag/i <2.5	ugri <2.5 ug/l	<2.5 ug/l
	NYTCL-8260-R2	- -	ug/l <5.0	ug/I	<2.0 ug/l	<2.0	ug/l <2.0	ugn <	2.0 Ug/I	~2.0 Ug/	1	ug/i <2.0	ugn <2.0	ug/i <	2.0 ug/l	<4.0 ug	1 ~2.0	ug/l <2.0	ug/i <2.0	ug/i <2.0	ug/I	*2.0 Ug/I	*4.U L	ug/i <2.0	ug/i <2.0	ug/l <2.0	ug/i <2.0	ugn <2.0	ug/i <2.0	ug/i <2.0	ug/1 <2.0	ugn <2.0	ug/1 <2.0 Ug	// NZ.0 U	ig/i <2.0	ug/l <2.0 ug/l	1 ×2.0 ug/l
Cyclohexane	NYTCL-8260-R2 NYTCL-8260-R2		ug/i <25.	ug/l	<10. ug/l	<10.	ug/i <10.	ug/i <	10. ug/l	<10. ug/	/I <10.	ug/i <10.	ug/i <10	ug/i <	10. ug/l	<20. ug	1 <10.	ug/i <10.	ug/i <10.	ug/I <10.	ug/I	<10. ug/l	<20. L	ug/i <10.	ug/I <10.	ug/ <10.	ug/I <10.	ug/i <10	ug/I <10.	ugri <10.	ug/I <10.	ug/i <10.	ug/I <10. ug	// <10. U	Jg/I <10.	Jg/I <10. ug/I	<10. ug/l
1,4-Dioxane Freon-113	NYTCL-8260-R2	6	ug/l <620	ug/I	<250 Ug/I	-250	ug/i <250	ugn <2	25 49/1	~250 Ug/	// <250	ugn <250	ug/i <250	ug/i <	250 Ug/I	<500 Ug	1 <250	ug/i <250	ug/i <250	ug/i <250	ug/I	<250 Ug/I	<500 L	ug/i <250	ug/i <250	ug/i <250	ug/i <250	ugn <250	ug/i <250	ugn <250	ug/i <250	ugn <250	ug/i <250 ug	// <250 0	ign <250	ug/1 <250 Ug/1	4 c2.5 ug/l
	NYTCL-8260-R2	5 -	ug/i <6.2	ug/I	<2.5 ug/l	<2.5	ug/I <2.5	ugn <	2.5 ug/l	<2.5 ug/	// <2.5	ug/l <2.5	ug/I <2.5	ug/l <	2.5 Ug/I	<5.0 ug	1 <2.5	ug/i <2.5	ug/I <2.5	ug/I <2.5	ug/I	<2.5 ug/l	<3.0 L	ug/I <2.5	ug/i <2.5	ug/i <2.5	ug/I <2.5	ug/i <2.5	ug/i <2.5	ug/i <2.5	ug/I <2.5	ug/I <2.5	ug/i <2.5 ug	// <2.5	1g/I <2.5	ug/I <2.5 ug/I	/I <2.5 ug/I
Methyl cyclohexane	N1 10L-0200-R2	- -	ugn 125.	ug/l	~10. ug/l	-10.	ug/i 10.	ugn N	10. ug/I	~10. ug/	10.	ugrij <10.	ugn <10	ug// N	io. jug/ij	~zo. ug	11 -10.	ug/l <10.	ugrij <10.	ug/i <10.	ug/i	~10. ug/I	_ ~20. t	ugrij <10.	ug/i Kiti.	ugn <10.	ug/i < 10.	ugn Kit.	ugn <10.	ugn <10.	ug/i <10.	ugn 1 10.	ugn ~10. ug	// -10.	ag/i <10.	agrij ~10. ug/l	1 -10. ug/l

FIGURES

MW-21 765.56 **(** MW-19R 766.30 NORTHMW-18 767.24 MW-7 767.44 MW-16 G-3 769.22 MW-17 766.60 767.31 MW-6 767.60 MW-20 768.39 G-2 767.92 G-1 767.93 MW-15 768.08 770 MW-14 768.08 DR-3 768.08 MW-4 771.40 MW-12 771.70 MW-13 771.54 MW-8 771.43 DR-1 771.96 MW-3 771.98 MW-2 771.98 MW-9 772.81 120 FT MW-10 772.72 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS

NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

lote:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Number:

SEPTEMBER 2021

SEPTEMBER 2021 WATER LEVEL CONTOUR MAP

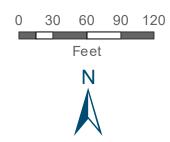
Drawing Number:

FIGURE 1

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY



BERGMANN

ARCHITECTS ENGINEERS PLANNERS

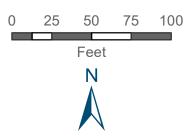
Figure 2

September 2021
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

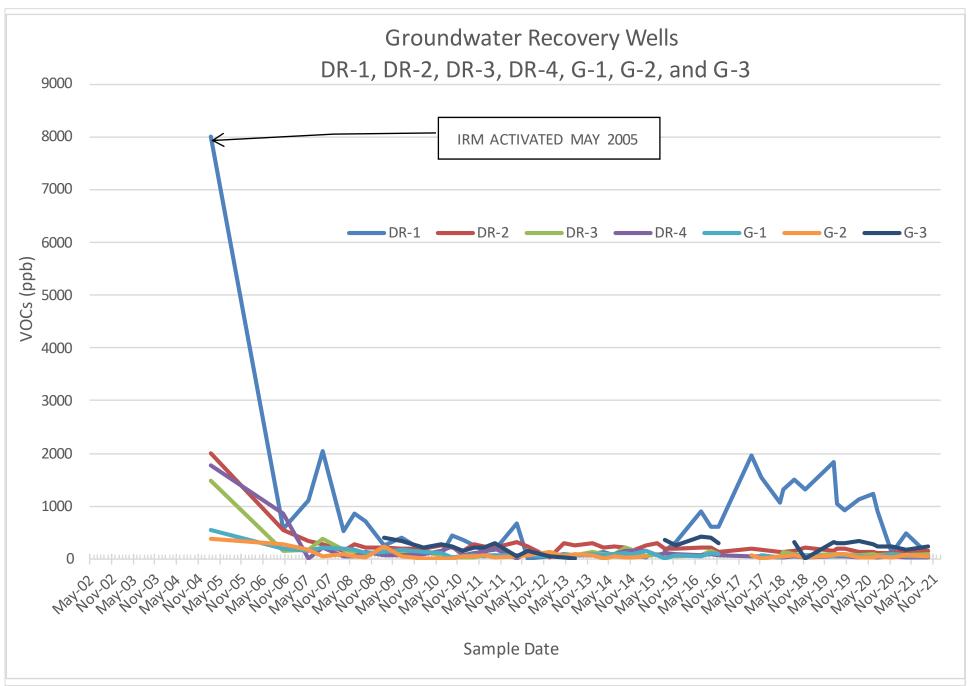
4 Industrial Place Gowanda, NY

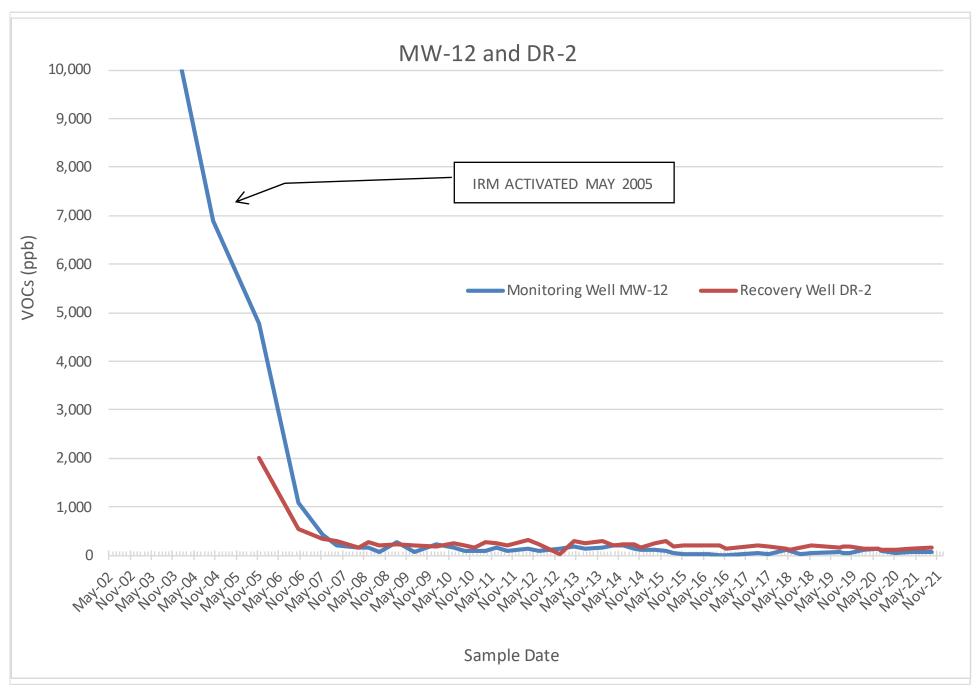


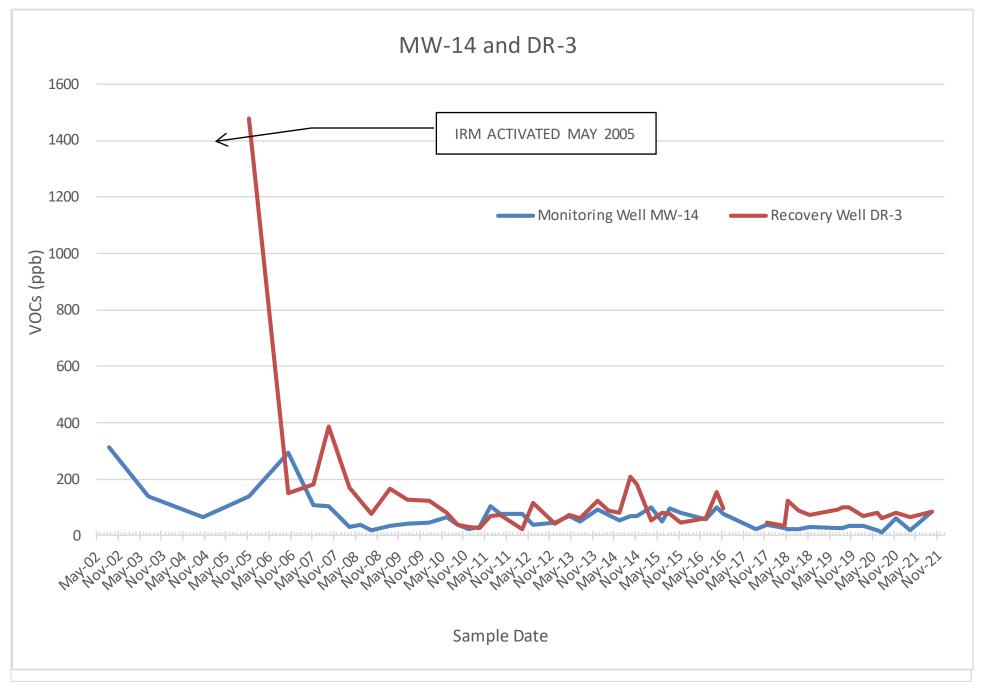
BERGMANN

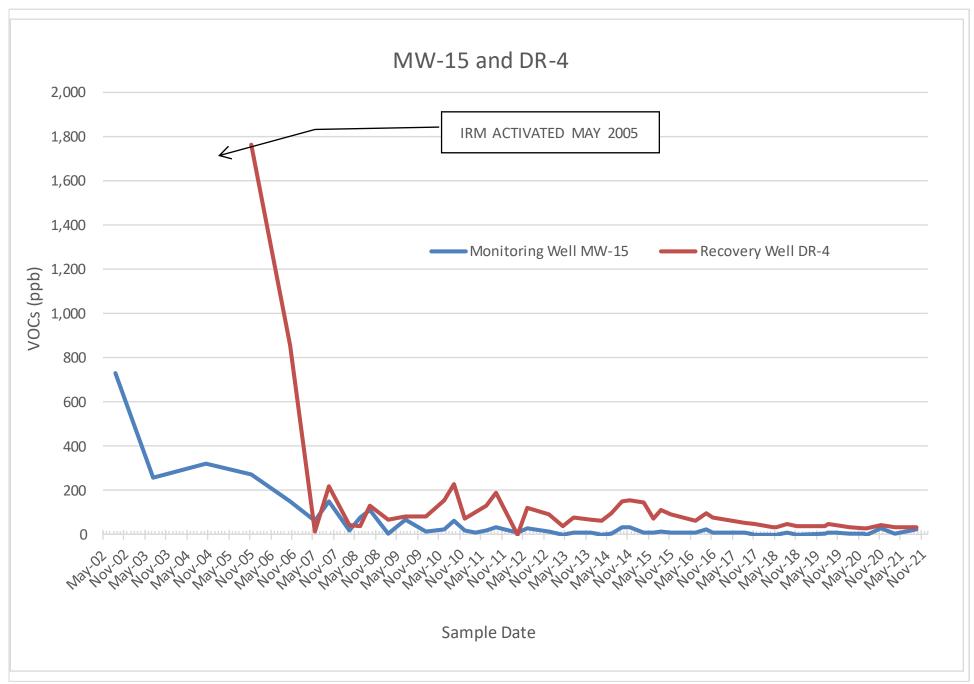
ADCHITECTS ENGINEEDS DIANNEDS

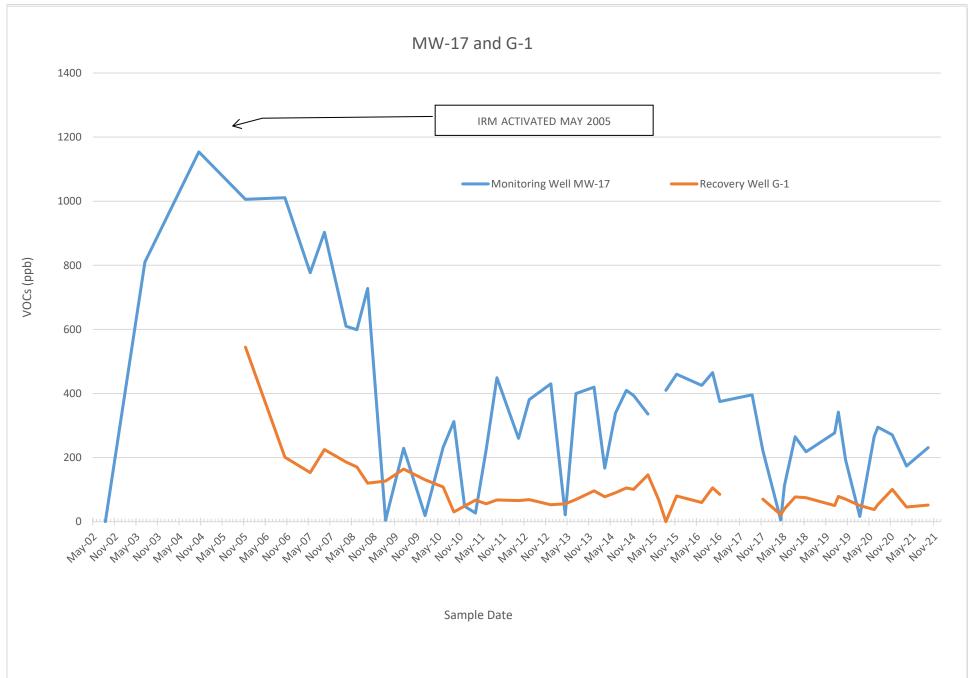
Figure 3

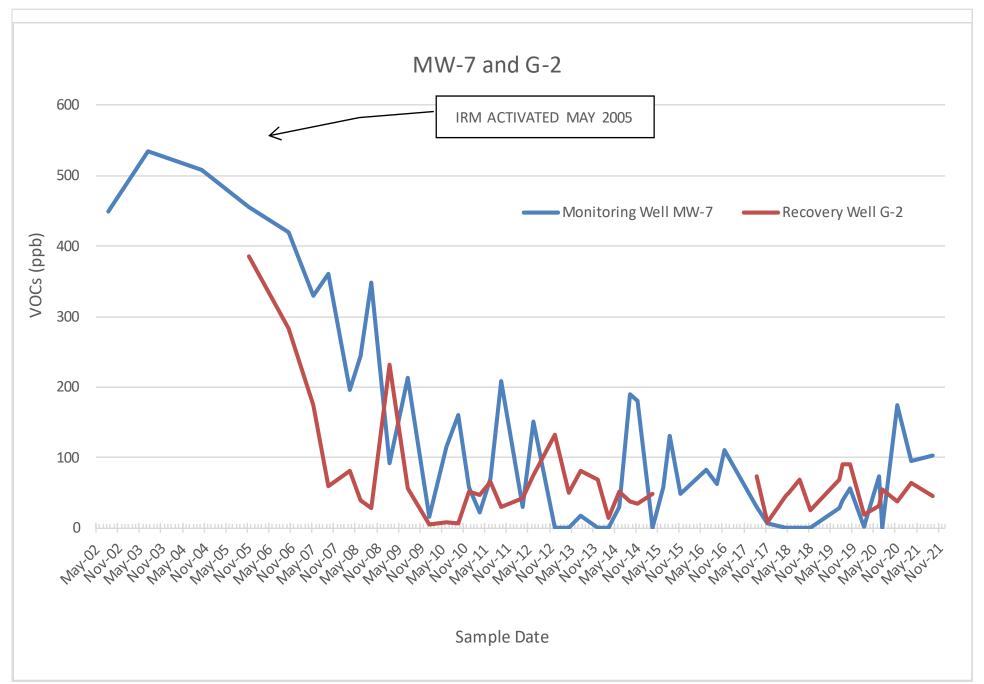

September 2021
Distribution of
Groundwater
Analytical Results:
Recovery Wells

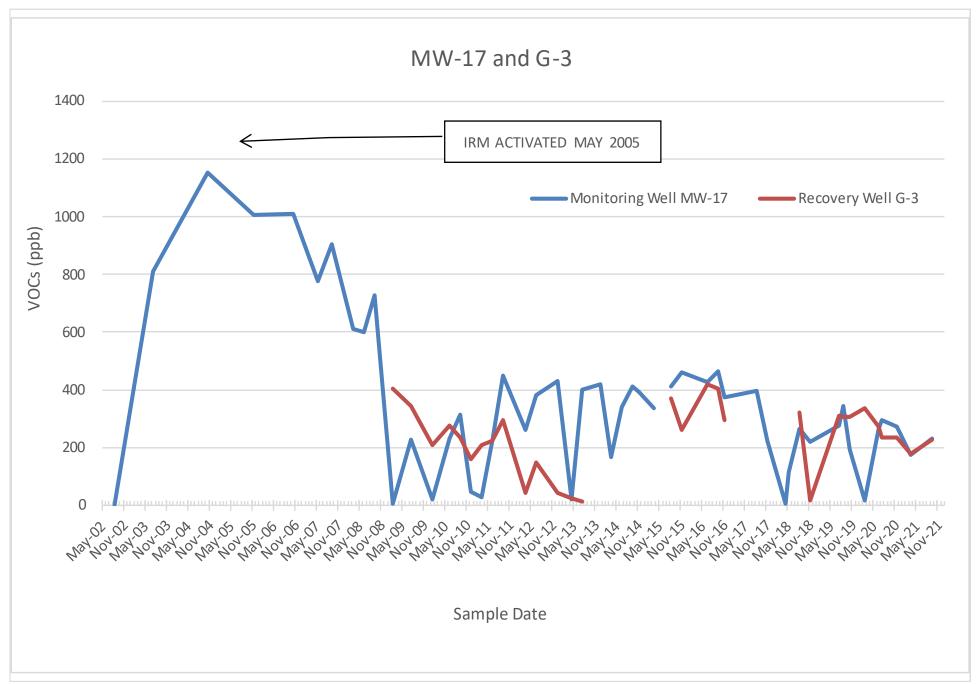

CHARTS











APPENDICES

APPENDIX A:

Laboratory Analytical Results Report -September **2021 Sampling Event**

ANALYTICAL REPORT

Lab Number: L2150571

Client: Bergmann Associates

280 E Broad Street Rochester, NY 14604

ATTN: Ariadna Cheremeteff

Phone: (585) 498-7950

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Report Date: 09/24/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571 **Report Date:** 09/24/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2150571-01	MW-1	WATER	GOWANDA, NY	09/17/21 07:10	09/17/21
L2150571-02	MW-2	WATER	GOWANDA, NY	09/17/21 06:55	09/17/21
L2150571-03	MW-3	WATER	GOWANDA, NY	09/17/21 06:31	09/17/21
L2150571-04	MW-4	WATER	GOWANDA, NY	09/17/21 08:55	09/17/21
L2150571-05	MW-5	WATER	GOWANDA, NY	09/17/21 09:24	09/17/21
L2150571-06	MW-6	WATER	GOWANDA, NY	09/17/21 10:48	09/17/21
L2150571-07	MW-7	WATER	GOWANDA, NY	09/17/21 11:02	09/17/21
L2150571-08	MW-8	WATER	GOWANDA, NY	09/17/21 08:07	09/17/21
L2150571-09	MW-9	WATER	GOWANDA, NY	09/17/21 08:30	09/17/21
L2150571-10	MW-10	WATER	GOWANDA, NY	09/17/21 07:35	09/17/21
L2150571-11	MW-11	WATER	GOWANDA, NY	09/16/21 14:05	09/17/21
L2150571-12	MW-12	WATER	GOWANDA, NY	09/16/21 13:23	09/17/21
L2150571-13	MW-13	WATER	GOWANDA, NY	09/16/21 13:25	09/17/21
L2150571-14	MW-14	WATER	GOWANDA, NY	09/16/21 12:40	09/17/21
L2150571-15	MW-15	WATER	GOWANDA, NY	09/16/21 11:58	09/17/21
L2150571-16	MW-16	WATER	GOWANDA, NY	09/17/21 11:20	09/17/21
L2150571-17	MW-17	WATER	GOWANDA, NY	09/17/21 10:30	09/17/21
L2150571-18	MW-18	WATER	GOWANDA, NY	09/17/21 11:45	09/17/21
L2150571-19	MW-19R	WATER	GOWANDA, NY	09/17/21 12:38	09/17/21
L2150571-20	MW-20	WATER	GOWANDA, NY	09/17/21 09:13	09/17/21
L2150571-21	MW-21	WATER	GOWANDA, NY	09/17/21 12:01	09/17/21
L2150571-22	DR-1	WATER	GOWANDA, NY	09/16/21 13:59	09/17/21
L2150571-23	DR-2	WATER	GOWANDA, NY	09/16/21 13:03	09/17/21
P2986594124	DR-3	WATER	GOWANDA, NY	09/16/21 14:34	09/17/21

Alpha			Sample	Serial_No Collection	:09242112:32
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L2150571-25	DR-4	WATER	GOWANDA, NY	09/16/21 12:28	09/17/21
L2150571-26	G-1	WATER	GOWANDA, NY	09/16/21 11:44	09/17/21
L2150571-27	G-2	WATER	GOWANDA, NY	09/16/21 11:20	09/17/21
L2150571-28	G-3	WATER	GOWANDA, NY	09/17/21 10:06	09/17/21
L2150571-29	EQUIPMENT BLANK	WATER	GOWANDA, NY	09/17/21 12:45	09/17/21
L2150571-30	MW-X	WATER	GOWANDA, NY	09/17/21 00:00	09/17/21
L2150571-31	TRIP BLANK	WATER	GOWANDA, NY	09/17/21 00:00	09/17/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 Report Date: 09/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571
Project Number: 14263.07 Report Date: 09/24/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2150571-06, -07, and -08: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/24/21

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 07:10

Report Date: 09/24/21

Lab ID: L2150571-01 D

Client ID: MW-1

Sample Location: GOWANDA, NY

Field Prep:

Date Received:

Lab Number:

09/17/21 Not Specified

L2150571

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 16:55

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	0.72	J	ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	3.9	J	ug/l	6.2	1.8	2.5
Trichloroethene	300		ug/l	1.2	0.44	2.5

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 07:10

Report Date:

Lab ID: L2150571-01 D

Client ID: MW-1 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5	
p/m-Xylene	ND		ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
Xylenes, Total	ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	100		ug/l	6.2	1.8	2.5	
1,2-Dichloroethene, Total	100	J	ug/l	6.2	1.8	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	ND		ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
Bromochloromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
Methyl Acetate	ND		ug/l	5.0	0.58	2.5	
Cyclohexane	ND		ug/l	25	0.68	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
Freon-113	ND		ug/l	6.2	1.8	2.5	
Methyl cyclohexane	ND		ug/l	25	0.99	2.5	

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: D Date Collected: 09/17/21 07:10 L2150571-01

Date Received: Client ID: 09/17/21 MW-1 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 06:55

Lab ID: L2150571-02 Date Collected:

Client ID: MW-2

Sample Location: GOWANDA, NY

Date Received: 09/17/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 17:19

Analyst: AJK

Volatile Organics by GC/MS - Westborough Methylene chloride					
Methylene chloride					
would be the second of the sec	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

L2150571-02

SAMPLE RESULTS

Date Collected: 09/17/21 06:55

Report Date:

Client ID: MW-2 Date Received: 09/17/21

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-02 09/17/21 06:55

Date Received: Client ID: 09/17/21 MW-2 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	108	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

GOWANDA, NY

Project Number: 14263.07

SAMPLE RESULTS

09/17/21 06:31

Lab Number:

Report Date:

Lab ID: Date Collected: L2150571-03

Client ID: MW-3 Date Received: 09/17/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/22/21 19:56

Analyst: MKS

Volatile Organics by GC/MS - Westborough Methylene chloride					
Methylene chloride					
would be the second of the sec	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 06:31

Report Date:

Lab ID: L2150571-03 Client ID: Date Received: 09/17/21 MW-3

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07 **Report Date:**

09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-03 09/17/21 06:31

Date Received: Client ID: 09/17/21 MW-3 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	92	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 09/17/21 08:55 L2150571-04

Client ID: MW-4

Date Received: 09/17/21 Field Prep: Sample Location: Not Specified GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/22/21 20:18

Analyst: MKS

Volatile Organics by GC/MS - Westborough Methylene chloride					
Methylene chloride					
would be the second of the sec	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 08:55

Report Date:

Lab ID: L2150571-04

Client ID: MW-4 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-04 09/17/21 08:55

Date Received: Client ID: 09/17/21 MW-4 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	98	70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-05

GOWANDA, NY

MW-5

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 09:24

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 20:39

Analyst: MKS

Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.19	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.5		ug/l	0.50	0.18	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-05

SAMPLE RESULTS

Date Collected: 09/17/21 09:24

Report Date:

Client ID: MW-5 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/17/21 09:24 L2150571-05

Date Received: Client ID: 09/17/21 MW-5 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	98	70-130	

L2150571

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

. 55/2 1/2 1

Report Date: 09/24/21

Lab Number:

Lab ID: L2150571-06

Client ID: MW-6

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 21:01

Analyst: MKS

Date Collected:	09/17/21 10:48
Date Received:	09/17/21
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	38		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/17/21 10:48 L2150571-06

Client ID: Date Received: 09/17/21 MW-6 Field Prep: Not Specified Sample Location: GOWANDA, NY

Sample Depth:

tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,5-Treon-113	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,3-Dichlorobenzene ND ug/l 2,5 0,70 1 1,4-Dichlorobenzene ND ug/l 2,5 0,70 1 1,4-Dichlorobene ND ug/l 2,5 0,70 1 1,4-Dichlorobene S7 ug/l 2,5 0,70 1 1,2-Dichlorobene S7 ug/l 2,5 0,70 1 1,2-Dichlorobene ND ug/l 5,0 1,5 1 1,2-Dichlorobene ND ug/l 5,0 1,5 1 1,2-Dichlorobene ND ug/l 5,0 1,0 1 1,2-Dichlorobene ND ug/l 2,5 0,70 1 1,2-Dichlorobene ND	Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene ND ug/l 2,5 0,70 1 1,4-Dichlorobenzene ND ug/l 2,5 0,70 1 1,4-Dichlorobene ND ug/l 2,5 0,70 1 1,4-Dichlorobene S7 ug/l 2,5 0,70 1 1,2-Dichlorobene S7 ug/l 2,5 0,70 1 1,2-Dichlorobene ND ug/l 5,0 1,5 1 1,2-Dichlorobene ND ug/l 5,0 1,5 1 1,2-Dichlorobene ND ug/l 5,0 1,0 1 1,2-Dichlorobene ND ug/l 2,5 0,70 1 1,2-Dichlorobene ND	1 2-Dichlorobenzene	ND		ua/l	2.5	0.70	1
Methy tarbuyl ether ND							
Methyl tert butyl ether ND ugl 2.5 0.70 1 pfm-Xylene ND ugl 2.5 0.70 1 o-Xylene ND ugl 2.5 0.70 1 o-Xylenes ND ugl 2.5 0.70 1 cis-1,2-Dichloroethene 57 ugl 2.5 0.70 1 1,2-Dichloroethene, Total 57 ugl 2.5 0.70 1 Styrene ND ugl 2.5 0.70 1 Dichlorodfluoromethane ND ugl 5.0 1.0 1 Acetone 1.6 J ugl 5.0 1.0 1 Carbon disulfide ND ugl 5.0 1.0 1 Carbon disulfide ND ugl 5.0 1.0 1 4-Methyl-2-pentanone ND ugl 5.0 1.0 1 4-Hostyl-2-pentanone ND ugl 2.5 0.70 1							
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total 57 ug/l 2.5 0.70 1 1.2-Dichloroethene, Total 57 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.6 J ug/l 5.0 1.0 1 Acetone 1.6 J ug/l 5.0 1.0 1 2-butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-butanone ND ug/l 5.0 1.0 1 2-butanone ND ug/l 5.0 1.0 1							
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 57 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 57 ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichloroedfluoromethane ND ug/l 5.0 1.0 1 Acatone 1.6 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butan							
Xylones, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 57 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 57 ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodfluoromethane ND ug/l 5.0 1.0 1 Acetone 1.6 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 0.70 1	· · · · · · · · · · · · · · · · · · ·						
ST							
1,2-Dichloroethene, Total 57 ug/l 2.5 0.70 1	<u> </u>						
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.6 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 <							
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.6 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1		ND			2.5	0.70	1
Acetone 1.6 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Dibromodrane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1	•	ND			5.0	1.0	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lett-Butylbenzene ND ug/l 2.5 0.70 1 lett-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	1.6	J		5.0	1.5	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 terr-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND			5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1	2-Butanone	ND			5.0	1.9	1
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 sopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1 Teon-113 ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND			5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 </td <td>Bromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Bromochloromethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 250 61. 1 1,5-Ereon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	ND		ug/l	10	0.27	1
-9-	1,4-Dioxane	ND		ug/l	250	61.	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-06 09/17/21 10:48

Date Received: Client ID: 09/17/21 MW-6 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	97	70-130	

L2150571

09/24/21

Not Specified

09/17/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2150571-07 Date Collected: 09/17/21 11:02

Client ID: MW-7

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 21:22

Analyst: MKS

Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	1.4		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.22	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.97		ug/l	0.50	0.18	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-07 Date Collected: 09/17/21 11:02

Client ID: Date Received: 09/17/21 MW-7 Field Prep: Not Specified

Sample Location: GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	100		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	100		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

L2150571-07

Date Collected: 09/17/21 11:02

Date Received: Client ID: 09/17/21 MW-7

Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	97	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-08

GOWANDA, NY

MW-8

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 08:07

Lab Number:

Report Date:

Date Received: 09/17/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/22/21 21:44

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

09/24/21

Report Date:

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

SAMPLE RESULTS

Lab ID: L2150571-08 Date Collected: 09/17/21 08:07

Client ID: MW-8 Date Received: 09/17/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-08 09/17/21 08:07

Date Received: Client ID: 09/17/21 MW-8 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	93	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 08:30

Lab Number:

Report Date:

Lab ID: L2150571-09

Client ID: MW-9

Sample Location: GOWANDA, NY

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 22:05

Analyst: MKS

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1-2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.18 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzere ND ug/l 0.50 0.18 1 Trichlorothane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14<	olatile Organics by GC/MS - Westbo	orough Lab						
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50<	Methylene chloride	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l	,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 <td>chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	chloroform	ND		ug/l	2.5	0.70	1	
Ditromochloromethane ND ug/l 0.50 0.15 1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16	,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 <td>ibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td> <td></td>	ibromochloromethane	ND		ug/l	0.50	0.15	1	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70	,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70	etrachloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	Chlorobenzene	ND		ug/l	2.5	0.70	1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	richlorofluoromethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romodichloromethane	ND		ug/l	0.50	0.19	1	
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	ans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	is-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romoform	ND		ug/l	2.0	0.65	1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	enzene	ND		ug/l	0.50	0.16	1	
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	oluene	ND		ug/l	2.5	0.70	1	
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	thylbenzene	ND		ug/l	2.5	0.70	1	
Vinyl chloride ND ug/l 1.0 0.07 1	chloromethane	ND		ug/l	2.5	0.70	1	
	romomethane	ND		ug/l	2.5	0.70	1	
	inyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	ans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene ND ug/l 0.50 0.18 1	richloroethene	ND		ug/l	0.50	0.18	1	

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

L2150571-09

SAMPLE RESULTS

Date Collected: 09/17/21 08:30

Report Date:

Client ID: Date Received: 09/17/21 MW-9

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	1.4	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-lsopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-09 09/17/21 08:30

Date Received: Client ID: 09/17/21 MW-9 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	99	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 07:35

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Sample Location:

n: GOWANDA, NY

MW-10

L2150571-10

Sample Depth:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 22:26

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-10

SAMPLE RESULTS

Date Collected: 09/17/21 07:35

Report Date:

Client ID: MW-10 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-10 09/17/21 07:35

Date Received: Client ID: 09/17/21 MW-10 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	98	70-130	

L2150571

09/24/21

Not Specified

09/17/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-11

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 14:05

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: D

Client ID: MW-11

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/23/21 01:37

Analyst: MKS

Methylene chloride	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborough Lab								
Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane ND ug/l 3.0 1.0 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.26 2 Bromodichloromethane ND ug/l 1.0 0.38 2 Bromodichloromethane ND ug/l 1.0 0.33 2 Bromoform ND ug/l 1.0 0.29 2	Methylene chloride	ND		ug/l	5.0	1.4	2		
ND	1,1-Dichloroethane	ND		ug/l	5.0	1.4	2		
1,2-Dichloropropane ND Ug/l 2.0 0.27 2 2 2 2 2 2 2 2 2	Chloroform	ND		ug/l	5.0	1.4	2		
ND	Carbon tetrachloride	ND		ug/l	1.0	0.27	2		
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	2.0	0.27	2		
Tetrachloroethene ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 Itrans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Itrans-1,3-Dichloropropene ND ug/l 1.0 0.29 2 I,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 I,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 I,1-1,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Itrans-1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 Itrans-1,3-Dichloropropene, Total ND ug/l 1.0 0.33 2 Itrans-1,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Itrans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Itrans-1,3-Dichloroethane ND ug/l 1.0 0.32 2 Itrans-1,3-Dichloroethane ND ug/l 5.0 1.4 2	Dibromochloromethane	ND		ug/l	1.0	0.30	2		
ND	1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2		
Trichlorofluoromethane	Tetrachloroethene	ND		ug/l	1.0	0.36	2		
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	5.0	1.4	2		
ND	Trichlorofluoromethane	ND		ug/l	5.0	1.4	2		
ND	1,2-Dichloroethane	ND		ug/l	1.0	0.26	2		
trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chlorotethane ND ug/l 5.0 1.4 2	1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2		
ND	Bromodichloromethane	ND		ug/l	1.0	0.38	2		
1,3-Dichloropropene, Total ND ug/l 1.0 0.29 2	trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2		
ND	cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2		
1,1,2,2-Tetrachloroethane	1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2		
ND	Bromoform	ND		ug/l	4.0	1.3	2		
Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 9.2 ug/l 5.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2		
Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 9.2 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane 0.52 J ug/l 5.0 1.4 2 trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	Benzene	ND		ug/l	1.0	0.32	2		
Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 9.2 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 0.52 J ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	Toluene	ND		ug/l	5.0	1.4	2		
ND ug/l 5.0 1.4 2	Ethylbenzene	ND		ug/l	5.0	1.4	2		
Vinyl chloride 9.2 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 0.52 J ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	Chloromethane	ND		ug/l	5.0	1.4	2		
Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 0.52 J ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	Bromomethane	ND		ug/l	5.0	1.4	2		
1,1-Dichloroethene 0.52 J ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	Vinyl chloride	9.2		ug/l	2.0	0.14	2		
trans-1,2-Dichloroethene 3.7 J ug/l 5.0 1.4 2	Chloroethane	ND		ug/l	5.0	1.4	2		
Ţ	1,1-Dichloroethene	0.52	J	ug/l	1.0	0.34	2		
Trichloroethene 94 ug/l 1.0 0.35 2	trans-1,2-Dichloroethene	3.7	J	ug/l	5.0	1.4	2		
	Trichloroethene	94		ug/l	1.0	0.35	2		

09/24/21

Report Date:

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

SAMPLE RESULTS

Lab ID: L2150571-11 D Date Collected: 09/16/21 14:05

Client ID: MW-11 Date Received: 09/17/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
Xylenes, Total	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	280		ug/l	5.0	1.4	2
1,2-Dichloroethene, Total	280	J	ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: D Date Collected: L2150571-11 09/16/21 14:05

Date Received: Client ID: 09/17/21 MW-11 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	93	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-12

GOWANDA, NY

MW-12

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 13:23

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 22:48

Analyst: MKS

Wethylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.13 1 1,1,2-Tichloroethane ND ug/l 0.50 0.15 1 1,1,2-Tichloroethane ND ug/l 0.50 0.15 1 1,1,2-Tichloroethane ND ug/l 0.50 0.18 1 1,1-1-Tichlorofluoromethane ND ug/l 0.50 0.18 1 1,1-1-Tichloroethane ND ug/l 0.50 0.13 1 1,1-1-Tichloroethane ND ug/l 0.50 0.13 1 1,1,1-Tichloroethane ND ug/l 0.50 0.13 1 1,1,1-Tichloroethane ND ug/l 0.50 <t< th=""><th></th></t<>									
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroptethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50	Volatile Organics by GC/MS - Westborough Lab								
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloromethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 <									
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 <td></td>									
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1 chlorobenzene ND ug/l 2.5 0.70 1 1 chlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l									
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l									
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50									
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.16 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 <td></td>									
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70									
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70									
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1									
Chloromethane ND ug/l 2.5 0.70 1									
Bromomethane ND ug/l 2.5 0.70 1									
Vinyl chloride 0.10 J ug/l 1.0 0.07 1									
Chloroethane ND ug/l 2.5 0.70 1									
1,1-Dichloroethene ND ug/l 0.50 0.17 1									
trans-1,2-Dichloroethene 0.76 J ug/l 2.5 0.70 1									
Trichloroethene 18 ug/l 0.50 0.18 1									

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-12

SAMPLE RESULTS

Date Collected: 09/16/21 13:23

Report Date:

Client ID: MW-12 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	 1
cis-1,2-Dichloroethene	47		ug/l	2.5	0.70	
1,2-Dichloroethene, Total	48	J	ug/l	2.5	0.70	
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	
Acetone	ND		ug/l	5.0	1.5	
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	 1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-12 09/16/21 13:23

Date Received: Client ID: 09/17/21 MW-12 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	93	70-130
Dibromofluoromethane	97	70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 09/16/21 13:25 L2150571-13

Client ID: Date Received: 09/17/21 MW-13 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/22/21 23:09

Analyst: MKS

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND 1,1-Dichloroethane ND Chloroform ND Carbon tetrachloride ND 1,2-Dichloropropane ND Dibromochloromethane ND 1,1,2-Trichloroethane ND Tetrachloroethene ND Chlorobenzene ND Trichlorofluoromethane ND 1,2-Dichloroethane ND	ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 0.50 0.13 1 ug/l 1.0 0.14 1 ug/l 0.50 0.15 1 ug/l 1.5 0.50 1 ug/l 0.50 0.18 1
1,1-Dichloroethane ND Chloroform ND Carbon tetrachloride ND 1,2-Dichloropropane ND Dibromochloromethane ND 1,1,2-Trichloroethane ND Tetrachloroethene ND Chlorobenzene ND Trichlorofluoromethane ND	ug/l 2.5 0.70 1 ug/l 2.5 0.70 1 ug/l 0.50 0.13 1 ug/l 1.0 0.14 1 ug/l 0.50 0.15 1 ug/l 1.5 0.50 1
ChloroformNDCarbon tetrachlorideND1,2-DichloropropaneNDDibromochloromethaneND1,1,2-TrichloroethaneNDTetrachloroetheneNDChlorobenzeneNDTrichlorofluoromethaneND	ug/l 2.5 0.70 1 ug/l 0.50 0.13 1 ug/l 1.0 0.14 1 ug/l 0.50 0.15 1 ug/l 1.5 0.50 1
Carbon tetrachloride ND 1,2-Dichloropropane ND Dibromochloromethane ND 1,1,2-Trichloroethane ND Tetrachloroethene ND Chlorobenzene ND Trichlorofluoromethane ND	ug/l 0.50 0.13 1 ug/l 1.0 0.14 1 ug/l 0.50 0.15 1 ug/l 1.5 0.50 1
1,2-Dichloropropane ND Dibromochloromethane ND 1,1,2-Trichloroethane ND Tetrachloroethene ND Chlorobenzene ND Trichlorofluoromethane ND	ug/l 1.0 0.14 1 ug/l 0.50 0.15 1 ug/l 1.5 0.50 1
Dibromochloromethane ND 1,1,2-Trichloroethane ND Tetrachloroethene ND Chlorobenzene ND Trichlorofluoromethane ND	ug/l 0.50 0.15 1 ug/l 1.5 0.50 1
1,1,2-TrichloroethaneNDTetrachloroetheneNDChlorobenzeneNDTrichlorofluoromethaneND	ug/l 1.5 0.50 1
Tetrachloroethene ND Chlorobenzene ND Trichlorofluoromethane ND	-9.
Chlorobenzene ND Trichlorofluoromethane ND	ua/l 0.50 0.18 1
Trichlorofluoromethane ND	ug/1 0.00 0.10
	ug/l 2.5 0.70 1
1.0 Diablemethers	ug/l 2.5 0.70 1
1,2-Dichloroethane ND	ug/l 0.50 0.13 1
1,1,1-Trichloroethane ND	ug/l 2.5 0.70 1
Bromodichloromethane ND	ug/l 0.50 0.19 1
trans-1,3-Dichloropropene ND	ug/l 0.50 0.16 1
cis-1,3-Dichloropropene ND	ug/l 0.50 0.14 1
1,3-Dichloropropene, Total ND	ug/l 0.50 0.14 1
Bromoform ND	ug/l 2.0 0.65 1
1,1,2,2-Tetrachloroethane ND	ug/l 0.50 0.17 1
Benzene ND	ug/l 0.50 0.16 1
Toluene ND	ug/l 2.5 0.70 1
Ethylbenzene ND	ug/l 2.5 0.70 1
Chloromethane ND	ug/l 2.5 0.70 1
Bromomethane ND	ug/l 2.5 0.70 1
Vinyl chloride ND	ug/l 1.0 0.07 1
Chloroethane ND	ug/l 2.5 0.70 1
1,1-Dichloroethene ND	ug/l 0.50 0.17 1
trans-1,2-Dichloroethene ND	
Trichloroethene 0.95	ug/l 2.5 0.70 1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: L2150571-13 09/16/21 13:25

Client ID: Date Received: 09/17/21 MW-13 Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-13 09/16/21 13:25

Date Received: Client ID: 09/17/21 MW-13 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	96	70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-14

GOWANDA, NY

MW-14

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 12:40

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 23:30

Analyst: MKS

Parameter	Result	Qualifier I	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.0		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	9.4		ug/l	0.50	0.18	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-14

SAMPLE RESULTS

Date Collected: 09/16/21 12:40

Report Date:

Client ID: MW-14 Date Received: 09/17/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	73		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	73		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-14 09/16/21 12:40

Date Received: Client ID: 09/17/21 MW-14 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	98	70-130	

L2150571

09/16/21 11:58

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Report Date: 09/24/21

Lab ID: L2150571-15

Lab ID: L2150571-15 Client ID: MW-15

Sample Location: GOWANDA, NY

Date Received: 09/17/21
Field Prep: Not Specified

Lab Number:

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 23:51

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	16		ug/l	0.50	0.18	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 Report Date:

SAMPLE RESULTS

Lab ID: L2150571-15 Date Collected: 09/16/21 11:58

Client ID: MW-15 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

F F						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	8.8		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	8.8		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-15 09/16/21 11:58

Date Received: Client ID: 09/17/21 MW-15 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	96	70-130	

L2150571

09/24/21

Not Specified

09/17/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2150571-16 Date Collected: 09/17/21 11:20

Client ID: MW-16

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 00:13

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.30	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.26	J	ug/l	0.50	0.18	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

L2150571-16

SAMPLE RESULTS

Date Collected: 09/17/21 11:20

Report Date:

Client ID: Date Received: 09/17/21 MW-16

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	22		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	22		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-16 09/17/21 11:20

Date Received: Client ID: 09/17/21 MW-16 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	97	70-130

L2150571

09/17/21

Not Specified

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 10:30

Report Date: 09/24/21

Lab Number:

Date Received:

Field Prep:

Lab ID: L2150571-17 D

Client ID: MW-17

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 01:58

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	ND		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
1,3-Dichloropropene, Total	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	ND		ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	0.86	J	ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2	
Trichloroethene	20		ug/l	1.0	0.35	2	

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-17

SAMPLE RESULTS

Date Collected: 09/17/21 10:30

Report Date:

Client ID: MW-17 Date Received: 09/17/21

D

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2	
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2	
p/m-Xylene	ND		ug/l	5.0	1.4	2	
o-Xylene	ND		ug/l	5.0	1.4	2	
Xylenes, Total	ND		ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene	210		ug/l	5.0	1.4	2	
1,2-Dichloroethene, Total	210		ug/l	5.0	1.4	2	
Styrene	ND		ug/l	5.0	1.4	2	
Dichlorodifluoromethane	ND		ug/l	10	2.0	2	
Acetone	ND		ug/l	10	2.9	2	
Carbon disulfide	ND		ug/l	10	2.0	2	
2-Butanone	ND		ug/l	10	3.9	2	
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2	
2-Hexanone	ND		ug/l	10	2.0	2	
Bromochloromethane	ND		ug/l	5.0	1.4	2	
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2	
n-Butylbenzene	ND		ug/l	5.0	1.4	2	
sec-Butylbenzene	ND		ug/l	5.0	1.4	2	
tert-Butylbenzene	ND		ug/l	5.0	1.4	2	
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2	
Isopropylbenzene	ND		ug/l	5.0	1.4	2	
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2	
Naphthalene	ND		ug/l	5.0	1.4	2	
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
Methyl Acetate	ND		ug/l	4.0	0.47	2	
Cyclohexane	ND		ug/l	20	0.54	2	
1,4-Dioxane	ND		ug/l	500	120	2	
Freon-113	ND		ug/l	5.0	1.4	2	
Methyl cyclohexane	ND		ug/l	20	0.79	2	

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 Report Date: 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-17 D Date Collected: 09/17/21 10:30

Client ID: MW-17 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	95	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 09/17/21 11:45 L2150571-18

Client ID: Date Received: 09/17/21 MW-18 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/23/21 00:34

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.16	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.77		ug/l	0.50	0.18	1

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-18 Date Collected: 09/17/21 11:45

Client ID: MW-18 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	5.4		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	5.4		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-18 09/17/21 11:45

Date Received: Client ID: 09/17/21 MW-18 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	96	70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-19

GOWANDA, NY

MW-19R

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 09/17/21 12:38

Date Received: 09/17/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/23/21 00:55

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	0.43	J	ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.34	J	ug/l	0.50	0.18	1	

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 12:38

Report Date:

L2150571-19 Client ID: Date Received: 09/17/21 MW-19R Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-19 09/17/21 12:38

Date Received: Client ID: 09/17/21 MW-19R Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	97	70-130	

L2150571

09/24/21

09/17/21 09:13

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab ID: L2150571-20 Date Collected:

Client ID: MW-20

Sample Location: GOWANDA, NY

Date Received: 09/17/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 01:16

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.35	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-20

SAMPLE RESULTS

Date Collected: 09/17/21 09:13

Report Date:

Client ID: MW-20 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/17/21 09:13 L2150571-20

Date Received: Client ID: 09/17/21 MW-20 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	93	70-130	

L2150571

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 12:01

Report Date: 09/24/21

Lab ID: L2150571-21

Client ID: MW-21

Sample Location: GOWANDA, NY

Date Received: 09/17/21
Field Prep: Not Specified

Lab Number:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 23:54

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.43	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.83	J	ug/l	2.5	0.70	1
Trichloroethene	1.9		ug/l	0.50	0.18	1

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-21 Date Collected: 09/17/21 12:01

Client ID: MW-21 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	16		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	17	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-21 09/17/21 12:01

Date Received: Client ID: 09/17/21 MW-21 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	106	70-130	

L2150571

09/17/21

Not Specified

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 13:59

Report Date: 09/24/21

Lab Number:

Date Received:

Field Prep:

Lab ID: L2150571-22

Client ID: DR-1

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 00:17

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.16	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.89	J	ug/l	2.5	0.70	1
Trichloroethene	78		ug/l	0.50	0.18	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 13:59

Report Date:

Lab ID: L2150571-22 Client ID: Date Received: 09/17/21 DR-1

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	 1
cis-1,2-Dichloroethene	19		ug/l	2.5	0.70	
1,2-Dichloroethene, Total	20	J	ug/l	2.5	0.70	
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	
Acetone	ND		ug/l	5.0	1.5	
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	 1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

SAMPLE RESULTS

Report Date:

5..... <u>--</u> ..<u>--</u> ..

Lab ID: L2150571-22 Date Collected: 09/16/21 13:59

Client ID: DR-1 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	105	70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-23

GOWANDA, NY

DR-2

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 13:03

Lab Number:

Report Date:

Date Received: 09/17/21

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 00:40

Analyst: NLK

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.2		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.36	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Trichloroethene	29		ug/l	0.50	0.18	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 13:03

Report Date:

Lab ID: L2150571-23 Client ID: Date Received: 09/17/21 DR-2

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	130		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	130	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 13:03

Report Date:

Lab ID: L2150571-23 Date Received: Client ID: 09/17/21 DR-2

Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	A Qualifier	cceptance Criteria
1,2-Dichloroethane-d4	116		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	106		70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 14:34

Lab Number:

Report Date:

Lab ID: L2150571-24 Date Coll

Client ID: DR-3

Sample Location: GOWANDA, NY

Date Received: 09/17/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 01:04

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.5		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.76	J	ug/l	2.5	0.70	1
Trichloroethene	22		ug/l	0.50	0.18	1

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-24 Date Collected: 09/16/21 14:34

Client ID: DR-3 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	60		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	61	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Report Date:

Lab ID: Date Collected: L2150571-24 09/16/21 14:34

Date Received: Client ID: 09/17/21 DR-3 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	106	70-130

L2150571

09/24/21

09/17/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 12:28

Lab Number:

Report Date:

Date Received:

Lab ID: L2150571-25

Client ID: DR-4

Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/23/21 01:27

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	25		ug/l	0.50	0.18	1

09/24/21

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Lab ID: L2150571-25 Date Collected: 09/16/21 12:28

Client ID: DR-4

Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	9.1		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	9.1		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: L2150571-25 09/16/21 12:28

Date Received: Client ID: 09/17/21 DR-4 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	107	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/16/21 11:44

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Lab ID: L2150571-26

Client ID: G-1

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 02:59

Analyst: NLK

Volatile Organics by GC/MS - Westborough	ND					
			ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.73	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	4.1		ug/l	0.50	0.18	1

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-26 Date Collected: 09/16/21 11:44

Client ID: G-1 Date Received: 09/17/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

A-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzane ND Ug/l 2,5 0,70 1	Volatile Organics by GC/MS - Wes	stborough Lab					
1,4-Dichlorobenzene ND	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert buryl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 co-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 47 ug/l 2.5 0.70 1 styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Acetone ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Elevationne ND<	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total 47 ug/l 2.5 0.70 1 1.2-Dichloroethene, Total 47 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-bersonne ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1-Buylbenzene	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
ND	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 47 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 47 ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-beanne ND ug/l 2.5 0.70 1 1-beanne ND ug/l 2.5 0.70 1 1-berth	p/m-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene	o-Xylene	ND		ug/l	2.5	0.70	1
1.2-Dichloroethene, Total 47 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butlanone ND ug/l 5.0 1.0 1 2-Bromochloromethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1-2-Dispropyltourene ND ug/l 2.5 0.70	Xylenes, Total	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1	cis-1,2-Dichloroethene	47		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 1 2 2 2 2 2 2 2 2	1,2-Dichloroethene, Total	47		ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1-2-Tirchlorobenzene ND ug/l 2.5 0.70 1 1-2-Tirchlorobenzene ND ug/l 2.5 0.70 1 1-2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1-2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1-3-5-Trimethylbenzene ND ug/l 2.5 0.70 1 1-3-4-Trinethylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 <	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 <	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lact-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
ND	Bromochloromethane	ND		ug/l	2.5	0.70	1
ND	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 250 61. 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,5-Dioxane ND ug/l 250 61. 1 1,5-Dioxane ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	ND		ug/l	10	0.27	1
	1,4-Dioxane	ND		ug/l	250	61.	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07

09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/16/21 11:44 L2150571-26

Date Received: Client ID: G-1 09/17/21 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	107	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2150571-27 Date Collected: 09/16/21 11:20

Client ID: G-2

Date Received: 09/17/21 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/23/21 01:50

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.68	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.72		ug/l	0.50	0.18	1

09/24/21

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Lab ID: L2150571-27 Date Collected: 09/16/21 11:20

Client ID: G-2

Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

A-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzane ND Ug/l 2,5 0,70 1	Volatile Organics by GC/MS - Wes	stborough Lab					
1,4-Dichlorobenzene ND Ug/l 2,5 0,70 1	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert buryl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 co-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 44 ug/l 2.5 0.70 1 styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Acetone ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Elevatorne ND </td <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total 44 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-bersonne ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1-Buylbenzene	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
ND	Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 44 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 44 ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-beanne ND ug/l 2.5 0.70 1 1-beanne ND ug/l 2.5 0.70 1 1-berth	p/m-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene	o-Xylene	ND		ug/l	2.5	0.70	1
1.2-Dichloroethene, Total 44 ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butlanone ND ug/l 5.0 1.0 1 2-Bromochloromethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1-2-Dispropyltourene ND ug/l 2.5 0.70	Xylenes, Total	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1	cis-1,2-Dichloroethene	44		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 1 2 2 2 2 2 2 2 2	1,2-Dichloroethene, Total	44		ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1-2-Tirchlorobenzene ND ug/l 2.5 0.70 1 1-2-Tirchlorobenzene ND ug/l 2.5 0.70 1 1-2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1-2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1-3-5-Trimethylbenzene ND ug/l 2.5 0.70 1 1-3-4-Trinethylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 <	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 <	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 <td< td=""><td>2-Hexanone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></td<>	2-Hexanone	ND		ug/l	5.0	1.0	1
ND	Bromochloromethane	ND		ug/l	2.5	0.70	1
ND	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 250 61. 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,5-Dioxane ND ug/l 250 61. 1 1,5-Dioxane ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	ND		ug/l	10	0.27	1
	1,4-Dioxane	ND		ug/l	250	61.	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 Report Date: 09/24/21

SAMPLE RESULTS

L2150571-27 Date Collected: 09/16/21 11:20

Client ID: G-2 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	105	70-130

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 10:06

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Lab ID: L2150571-28

Client ID: G-3

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 02:13

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.69	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.34	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1
Trichloroethene	24		ug/l	0.50	0.18	1

09/24/21

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

L2150571-28

SAMPLE RESULTS

Date Collected: 09/17/21 10:06

Report Date:

Client ID: G-3 Date Received: 09/17/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	200		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	200	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 Report Date:

SAMPLE RESULTS

RESULTS

Lab ID: L2150571-28 Date Collected: 09/17/21 10:06

Client ID: G-3 Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	107	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

L2150571-29

GOWANDA, NY

EQUIPMENT BLANK

Project Number: 14263.07

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 09/17/21 12:45

Date Received: 09/17/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/22/21 20:25

Analyst: NLK

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1-2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.18 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzere ND ug/l 0.50 0.18 1 Trichlorotethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.1	olatile Organics by GC/MS - Westbo	orough Lab						
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50<	Methylene chloride	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l	,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 <td>chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	chloroform	ND		ug/l	2.5	0.70	1	
Ditromochloromethane ND ug/l 0.50 0.15 1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16	,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 <td>ibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td> <td></td>	ibromochloromethane	ND		ug/l	0.50	0.15	1	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70	,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70	etrachloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	Chlorobenzene	ND		ug/l	2.5	0.70	1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	richlorofluoromethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romodichloromethane	ND		ug/l	0.50	0.19	1	
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	ans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	is-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romoform	ND		ug/l	2.0	0.65	1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	enzene	ND		ug/l	0.50	0.16	1	
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	oluene	ND		ug/l	2.5	0.70	1	
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	thylbenzene	ND		ug/l	2.5	0.70	1	
Vinyl chloride ND ug/l 1.0 0.07 1	chloromethane	ND		ug/l	2.5	0.70	1	
	romomethane	ND		ug/l	2.5	0.70	1	
	inyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	ans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene ND ug/l 0.50 0.18 1	richloroethene	ND		ug/l	0.50	0.18	1	

09/24/21

Report Date:

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

SAMPLE RESULTS

Lab ID: L2150571-29 Date Collected: 09/17/21 12:45

Client ID: EQUIPMENT BLANK Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07

SAMPLE RESULTS

Report Date: 09/24/21

Lab ID: Date Collected: L2150571-29 09/17/21 12:45

Date Received: Client ID: 09/17/21 **EQUIPMENT BLANK** Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	105	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 00:00

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Lab ID: L2150571-30
Client ID: MW-X

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/23/21 02:36

Analyst: NLK

Volatile Organics by GC/MS - Westborough Methylene chloride					
Methylene chloride					
would be the second of the sec	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07 **Report Date:** 09/24/21

SAMPLE RESULTS

Lab ID: L2150571-30 Date Collected: 09/17/21 00:00

Client ID: MW-X Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: Report Date: 14263.07 09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/17/21 00:00 L2150571-30

Date Received: Client ID: 09/17/21 MW-X Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	106	70-130	

L2150571

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

SAMPLE RESULTS

Date Collected: 09/17/21 00:00

Lab Number:

Report Date:

Date Received: 09/17/21
Field Prep: Not Specified

Lab ID: L2150571-31
Client ID: TRIP BLANK
Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/22/21 20:01

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	

09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571

Project Number: 14263.07

L2150571-31

SAMPLE RESULTS

Date Collected: 09/17/21 00:00

Report Date:

Client ID: TRIP BLANK Date Received: 09/17/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS -	Westborough Lab						
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571

Project Number: 14263.07 **Report Date:**

09/24/21

SAMPLE RESULTS

Lab ID: Date Collected: 09/17/21 00:00 L2150571-31

Date Received: Client ID: 09/17/21 TRIP BLANK Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	106		70-130	

Lab Number:

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07 **Report Date:** 09/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 09:29

Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG1549672-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Lab Number:

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: Report Date: 14263.07 09/24/21

Method Blank Analysis Batch Quality Control

Analytical Date: 09/22/21 09:29

1,8260C

Analyst: NLK

Analytical Method:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	01-02 Batch:	WG1549672-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

Lab Number:

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: Report Date: 14263.07 09/24/21

Method Blank Analysis Batch Quality Control

1,8260C

09/22/21 09:29

Analytical Date: Analyst: NLK

Analytical Method:

Parameter	Result	Qualifier U	nits	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	o for sample(s	s): 01-02	Batch: \	NG1549672-5
Methyl Acetate	ND	ι	ug/l	2.0	0.23
Cyclohexane	ND	l	ug/l	10	0.27
1,4-Dioxane	ND	l	ug/l	250	61.
Freon-113	ND	l	ug/l	2.5	0.70
Methyl cyclohexane	ND	l	ug/l	10	0.40

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	94		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	106		70-130

09/24/21

Lab Number:

Report Date:

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 18:51

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03-20 Batch:	WG1549904-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number:

Project Number: 14263.07 Report Date: 09/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 18:51

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03-20 Batch:	WG1549904-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

09/24/21

Lab Number:

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07 Report Date:

Method Blank Analysis
Batch Quality Control

Batch Quality Control

1,8260C

Analytical Date: 09/22/21 18:51 Analyst: LAC

Analytical Method:

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s):	03-20 Batch	n: WG1549904-5	
Methyl Acetate	ND	ug	/1 2.0	0.23	
Cyclohexane	ND	ug	/I 10	0.27	
1,4-Dioxane	ND	ug	/I 250	61.	
Freon-113	ND	ug,	/I 2.5	0.70	
Methyl cyclohexane	ND	ug	/I 10	0.40	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	106		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	97		70-130		
Dibromofluoromethane	97		70-130		

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number:

Project Number: 14263.07 Report Date: 09/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 19:15

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	o for sample(s):	21-31 Batch:	WG1549959-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITLITATION Q320 **Lab Number:**

Project Number: 14263.07 Report Date: 09/24/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 19:15

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 2	1-31 Batch:	WG1549959-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

Lab Number:

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07 **Report Date:** 09/24/21

Mathad Dlank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/22/21 19:15

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s):	21-31 Batch:	WG1549959-5	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

		Acceptance			
Surrogate	%Recovery 0	Qualifier	Criteria		
				_	
1,2-Dichloroethane-d4	114		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	102		70-130		
Dibromofluoromethane	106		70-130		

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch: W0	G1549672-3 WG1549672-4		
Methylene chloride	88		90	70-130	2	20
1,1-Dichloroethane	95		99	70-130	4	20
Chloroform	88		90	70-130	2	20
Carbon tetrachloride	83		87	63-132	5	20
1,2-Dichloropropane	100		100	70-130	0	20
Dibromochloromethane	95		99	63-130	4	20
1,1,2-Trichloroethane	98		100	70-130	2	20
Tetrachloroethene	94		96	70-130	2	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	68		71	62-150	4	20
1,2-Dichloroethane	92		96	70-130	4	20
1,1,1-Trichloroethane	85		87	67-130	2	20
Bromodichloromethane	90		91	67-130	1	20
trans-1,3-Dichloropropene	90		93	70-130	3	20
cis-1,3-Dichloropropene	88		91	70-130	3	20
Bromoform	94		100	54-136	6	20
1,1,2,2-Tetrachloroethane	97		110	67-130	13	20
Benzene	90		92	70-130	2	20
Toluene	96		96	70-130	0	20
Ethylbenzene	91		91	70-130	0	20
Chloromethane	98		100	64-130	2	20
Bromomethane	52		61	39-139	16	20
Vinyl chloride	79		82	55-140	4	20

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbo	rough Lab Associated	sample(s):	01-02 Batch: V	VG1549672-3	WG1549672-4				
Chloroethane	60		68		55-138	13		20	
1,1-Dichloroethene	86		88		61-145	2		20	
trans-1,2-Dichloroethene	90		93		70-130	3		20	
Trichloroethene	80		86		70-130	7		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	100		100		70-130	0		20	
Methyl tert butyl ether	88		96		63-130	9		20	
p/m-Xylene	95		95		70-130	0		20	
o-Xylene	100		100		70-130	0		20	
cis-1,2-Dichloroethene	92		96		70-130	4		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	74		76		36-147	3		20	
Acetone	130		140		58-148	7		20	
Carbon disulfide	82		85		51-130	4		20	
2-Butanone	120		120		63-138	0		20	
4-Methyl-2-pentanone	100		120		59-130	18		20	
2-Hexanone	100		120		57-130	18		20	
Bromochloromethane	100		100		70-130	0		20	
1,2-Dibromoethane	96		100		70-130	4		20	
n-Butylbenzene	94		92		53-136	2		20	
sec-Butylbenzene	98		95		70-130	3		20	
tert-Butylbenzene	96		95		70-130	1		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Report Date: 09/24/21

Lab Number:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	h Lab Associated s	sample(s): (01-02 Batch:	WG1549672-3	WG1549672-4			
1,2-Dibromo-3-chloropropane	95		110		41-144	15	20	
Isopropylbenzene	99		98		70-130	1	20	
p-Isopropyltoluene	99		96		70-130	3	20	
Naphthalene	100		120		70-130	18	20	
n-Propylbenzene	95		93		69-130	2	20	
1,2,3-Trichlorobenzene	110		110		70-130	0	20	
1,2,4-Trichlorobenzene	110		110		70-130	0	20	
1,3,5-Trimethylbenzene	100		99		64-130	1	20	
1,2,4-Trimethylbenzene	100		100		70-130	0	20	
Methyl Acetate	100		110		70-130	10	20	
Cyclohexane	100		99		70-130	1	20	
1,4-Dioxane	96		102		56-162	6	20	
Freon-113	83		85		70-130	2	20	
Methyl cyclohexane	86		84		70-130	2	20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qu	al Criteria
1,2-Dichloroethane-d4	98	101	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene Dibromofluoromethane	99	99	70-130
	93	94	70-130

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - V	Vestborough Lab Associated	sample(s):	03-20 Batch: V	VG1549904-3	WG1549904-4				
Methylene chloride	99		99		70-130	0		20	
1,1-Dichloroethane	110		100		70-130	10		20	
Chloroform	96		95		70-130	1		20	
Carbon tetrachloride	85		82		63-132	4		20	
1,2-Dichloropropane	100		110		70-130	10		20	
Dibromochloromethane	78		78		63-130	0		20	
1,1,2-Trichloroethane	98		94		70-130	4		20	
Tetrachloroethene	97		93		70-130	4		20	
Chlorobenzene	96		96		75-130	0		20	
Trichlorofluoromethane	95		98		62-150	3		20	
1,2-Dichloroethane	95		98		70-130	3		20	
1,1,1-Trichloroethane	92		90		67-130	2		20	
Bromodichloromethane	86		88		67-130	2		20	
trans-1,3-Dichloropropene	86		89		70-130	3		20	
cis-1,3-Dichloropropene	91		92		70-130	1		20	
Bromoform	70		71		54-136	1		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	100		100		70-130	0		20	
Toluene	98		97		70-130	1		20	
Ethylbenzene	100		100		70-130	0		20	
Chloromethane	110		110		64-130	0		20	
Bromomethane	90		88		39-139	2		20	
Vinyl chloride	130		120		55-140	8		20	

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
olatile Organics by GC/MS - Wes	tborough Lab Associated	sample(s):	03-20 Batch:	WG1549904-3	WG1549904-4		
Chloroethane	120		120		55-138	0	20
1,1-Dichloroethene	97		99		61-145	2	20
trans-1,2-Dichloroethene	100		99		70-130	1	20
Trichloroethene	100		98		70-130	2	20
1,2-Dichlorobenzene	95		96		70-130	1	20
1,3-Dichlorobenzene	99		94		70-130	5	20
1,4-Dichlorobenzene	100		97		70-130	3	20
Methyl tert butyl ether	92		93		63-130	1	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	97		92		70-130	5	20
Styrene	100		100		70-130	0	20
Dichlorodifluoromethane	110		100		36-147	10	20
Acetone	160	Q	160	Q	58-148	0	20
Carbon disulfide	110		100		51-130	10	20
2-Butanone	120		130		63-138	8	20
4-Methyl-2-pentanone	97		100		59-130	3	20
2-Hexanone	100		110		57-130	10	20
Bromochloromethane	93		91		70-130	2	20
1,2-Dibromoethane	88		90		70-130	2	20
n-Butylbenzene	100		100		53-136	0	20
sec-Butylbenzene	100		100		70-130	0	20
tert-Butylbenzene	97		96		70-130	1	20

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

arameter		LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS -	Westborough La	b Associated	sample(s):	03-20 Batch:	WG1549904-3	WG1549904-4				
1,2-Dibromo-3-chloropropane		75		72		41-144	4		20	
Isopropylbenzene		100		95		70-130	5		20	
p-Isopropyltoluene		98		97		70-130	1		20	
Naphthalene		87		88		70-130	1		20	
n-Propylbenzene		110		100		69-130	10		20	
1,2,3-Trichlorobenzene		92		95		70-130	3		20	
1,2,4-Trichlorobenzene		91		92		70-130	1		20	
1,3,5-Trimethylbenzene		99		97		64-130	2		20	
1,2,4-Trimethylbenzene	ĺ	98		96		70-130	2		20	
Methyl Acetate	ĺ	99		100		70-130	1		20	
Cyclohexane		110		110		70-130	0		20	
1,4-Dioxane		88		90		56-162	2		20	
Freon-113		100		110		70-130	10		20	
Methyl cyclohexane		100		100		70-130	0		20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	101	101	70-130
Toluene-d8	102	100	70-130
4-Bromofluorobenzene	98	96	70-130
Dibromofluoromethane	96	96	70-130

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
latile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	21-31 Batch:	WG1549959-3	WG1549959-4				
Methylene chloride	100		100		70-130	0		20	
1,1-Dichloroethane	100		100		70-130	0		20	
Chloroform	110		110		70-130	0		20	
Carbon tetrachloride	110		110		63-132	0		20	
1,2-Dichloropropane	100		98		70-130	2		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	100		98		70-130	2		20	
Tetrachloroethene	100		100		70-130	0		20	
Chlorobenzene	100		95		75-130	5		20	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	110		110		70-130	0		20	
1,1,1-Trichloroethane	120		110		67-130	9		20	
Bromodichloromethane	100		100		67-130	0		20	
trans-1,3-Dichloropropene	100		100		70-130	0		20	
cis-1,3-Dichloropropene	100		99		70-130	1		20	
Bromoform	100		100		54-136	0		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	100		100		70-130	0		20	
Toluene	94		92		70-130	2		20	
Ethylbenzene	100		97		70-130	3		20	
Chloromethane	99		97		64-130	2		20	
Bromomethane	65		80		39-139	21	Q	20	
Vinyl chloride	100		99		55-140	1		20	

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	21-31 Batch: W	G1549959-3	WG1549959-4			
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	100		100		61-145	0		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	100		98		70-130	2		20
1,3-Dichlorobenzene	99		98		70-130	1		20
1,4-Dichlorobenzene	98		98		70-130	0		20
Methyl tert butyl ether	99		98		63-130	1		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	100		99		36-147	1		20
Acetone	120		170	Q	58-148	34	Q	20
Carbon disulfide	95		95		51-130	0		20
2-Butanone	120		130		63-138	8		20
4-Methyl-2-pentanone	110		110		59-130	0		20
2-Hexanone	110		120		57-130	9		20
Bromochloromethane	120		110		70-130	9		20
1,2-Dibromoethane	110		110		70-130	0		20
n-Butylbenzene	100		100		53-136	0		20
sec-Butylbenzene	98		99		70-130	1		20
tert-Butylbenzene	100		100		70-130	0		20

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Lab Number: L2150571

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	21-31 Batch:	WG1549959-3	3 WG1549959-4			
1,2-Dibromo-3-chloropropane	110		120		41-144	9		20
Isopropylbenzene	100		99		70-130	1		20
p-Isopropyltoluene	100		100		70-130	0		20
Naphthalene	96		100		70-130	4		20
n-Propylbenzene	100		100		69-130	0		20
1,2,3-Trichlorobenzene	84		94		70-130	11		20
1,2,4-Trichlorobenzene	96		99		70-130	3		20
1,3,5-Trimethylbenzene	100		100		64-130	0		20
1,2,4-Trimethylbenzene	110		100		70-130	10		20
Methyl Acetate	110		110		70-130	0		20
Cyclohexane	100		100		70-130	0		20
1,4-Dioxane	188	Q	186	Q	56-162	1		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	100		99		70-130	1		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	114	113	70-130
Toluene-d8	96	96	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	108	108	70-130

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07 **Report Date:** 09/24/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2150571-01A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-01B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-01C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-02A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-02B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-02C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-03A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-03B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-03C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-04A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-04B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-04C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-05A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-05B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-05C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-06A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-06B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-06C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-07A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-07B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-07C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-08A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-08B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2150571

Report Date: 09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2150571-08C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-09A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-09B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-09C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-10A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-10B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-10C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-11A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-11B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-11C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-12A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-12B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-12C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-13A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-13B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-13C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-14A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-14B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-14C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-15A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-15B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-15C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-16A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-16B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-16C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-17A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-17B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-17C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2150571

Report Date: 09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2150571-18A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-18B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-18C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-19A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-19B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-19C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-20A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-20B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-20C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-21A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-21B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-21C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-22A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-22B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-22C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-23A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-23B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-23C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-24A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-24B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-24C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-25A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-25B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-25C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-26A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-26B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-26C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-27A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2150571

Report Date: 09/24/21

Project Name: GOWANDA DAY HABITLITATION Q320

Project Number: 14263.07

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2150571-27B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-27C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-28A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-28B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-28C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-29A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-29B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-29C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-30A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-30B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-30C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-31A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2150571-31B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: **GOWANDA DAY HABITLITATION Q320** L2150571 **Report Date: Project Number:** 14263.07 09/24/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples. - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

STLP

Project Name: GOWANDA DAY HABITLITATION Q320 **Lab Number:** L2150571 **Project Number:** 14263.07 **Report Date:** 09/24/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial p.H.: As it partoing to Sample Receipt & Container Information section of the report. Initial p.H. reflects p.H. of container determined up.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_main_section} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: GOWANDA DAY HABITLITATION Q320 **Lab Number:** L2150571 **Project Number:** 14263.07 **Report Date:** 09/24/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: GOWANDA DAY HABITLITATION Q320 Lab Number: L2150571
Project Number: 14263.07 Report Date: 09/24/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay		05	Page 1 o	e of 3	D	ate Rec'd in Lab	471	x/)		ALPHA JOB# 12/15/05 7	1
Westborough, MA 01581	Mansfield, MA 02048	Project Information	(E)	STEN	13 300		10 T 20 E	Deliver	ables		010	DE CONTRACTOR	Billing Information	100000
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	The second line of the second li		NAI	A MARILIE	TO: La	20		SP-A			N. D.	A STATE OF THE PARTY OF THE PAR	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: Gowa	MDA	DA	MAISIFL	MIDW G	12/1021		David State		ASI		Same as Client Info	a
		Project Location: Con	MAC	DA,	NY			1 🗀 ह	QuIS (1 Fil	e)	X EQ	JIS (4 File)	PO#	
Client Information		Project # 14263.0	7	'					Other					
Client: Beramen	Λ	(Use Project name as Pr						Regula	tory Requir	ement		STO BOOM	Disposal Site Informatio	n
Address: 280 E	3002 St #200	Project Manager: ARI	ADA	A CH	EREMETE	FF			IY TOGS		NY I	Part 375	Please identify below location	on of
Brahester, N	4 19604	ALPHAQuote #:	- 22						WQ Standard	ds	NY (CP-51	applicable disposal facilities	I.
Rabeater, N Phone: 585-23	2-5135	Turn-Around Time				AND DE			Y Restricted	Use	Othe	r	Disposal Facility:	
Fax:		Standard	120		Due Date:				Y Unrestricte	d Use			Пил Пих	į,
Email: A horaman	HORER MUNI	Rush (only if pre approved			# of Days:				IYC Sewer Di				Other:	
These samples have b		Parenty .	-		ii oi bays.					ounarge				7
Other project specific		the same of the sa						ANAL	1515				Sample Filtration	
	to JOBRIEN	e BERGMANN PA	C.U	em				-8.760					☐ Done ☐ Lab to do Preservation ☐ Lab to do	t a I
								ا ا					(Please Specify below	0
ALPHA Lab ID	1	werden transf	T	Coll	ection	Camala	I Committed	NYTC					(r rease opecity below,	· 1
(Lab Use Only)	Sa	mple ID	-	A100 -0.00		Sample Matrix	Sampler's Initials	王				1 1		
	AAL . I		0.1	Date	Time			-					Sample Specific Commen	ts e
50571-01	MW-I		91	17/11	07.10	GW	200	X						
03	MW-Z		1911	7/11	0655	GW	200	X						
03	MW-3		191	17/11	0631	GW	500	X						
04	MW-4		96	1/41	0895	GW	300	X	\neg		\neg			\neg
05	MW-5		al.	7/21	04714	GW	200	X	\neg	_	-	1-1-		-
06	MW-6		di	17/21	1048				\rightarrow	-	_	_		-
07				-		GW	200	X	\rightarrow	-				-
	Mw-7		91	7/11	1102	GW	70	X				-		
Of	MW-8		di	17/21	0807	GW	Jw	X						
09	Mw-9		911	7/21	0830	GW	TVO	X						
10	WW-lo		1911	7/1/1	0735	GW	200	X						
Preservative Code: A = None B = HCl	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N					tainer Type						Please print clearly, le and completely. Samp	
C = HNO ₃	V = Vial							HOLL		\neg	\neg		not be logged in and	
$D = H_2SO_4$	G = Glass B = Bacteria Cup					F	reservative	压					turnaround time clock	
E = NaOH F = MeOH	C = Cube	0.000		_				200	-	-	_		start until any ambigui	ities are
G = NaHSO. O = Other Relinquisited by. Date/Time							1	Receive	d By:	_	Dat	e/Time /50	resolved. BY EXECU	
$H = Na_2S_2O_3$ $E = Encore$ 9/16/2						1506 AM Gave Chause alpha HED THIS COC, TH			HAS READ AND AGE	70000				
K/E = Zn Ac/NaOH D = BOD Bottle / AAL Sture Storage 9/17/71						1650	5	_	_ A1		9/17/20	1650	TO BE BOUND BY A	1
0 = Other						100000000000000000000000000000000000000								
Form No: 01-25 HC (rev. 3)	0-Sept-2013)					10,0	11/11	11111	1116		P - 0/10	0010	(See reverse side.)	
nge 128 of 130				_			/			1		_		

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con Project Information Project Name:	/ay oper Ave, Suite 10	ABILITATIO		i 3	Deliverat	e Rec'd n Lab (oles P-A ulS (1 File)		ASP-B EQUIS (2 4 File)	ALPHA Job # 150571 Billing Information Same as Client Info
Client Information		Project # 14263.0					Oth	ner				ii.
Client: BERGMAN	N	(Use Project name as Pr	oject#)				Regulato	ry Requiren	nent	f Ven	A TO	Disposal Site Information
Address: 190 F BA	AD 55#200	Project Manager: ACA	abna lyb	PEMETEFF			=	TOGS Q Standards	=	NY Part 3 NY CP-51		Please identify below location of applicable disposal facilities.
Fax:	ALPHAQuote #: ne: 585 - 232 - 5135 Turn-Around Time Standar ail: ALPHAQuote #: Standar Standar					Brilly !	□ NY	Restricted Us Unrestricted C Sewer Disc	Jse	Other		Disposal Facility: NJ NY
				# of Days:			ANALYS		laige			Other:
				_		ANALYS	15		-	_	Sample Filtration	
	BRIDIC BERG	100.000					0928-7					Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials	NET W					Sample Specific Comments
50571-11	MW-11		9/16/21	1405	CON	Otto	X	+	\vdash	\neg	1	
13	MW-12		9/16/21	1323	GW		X	+ +	+	_	_	
13	MW-13		9/16/21	1325	GW	Or in	Ż	+ +	+			
	mw - 14		9/16/21	1240	GW	700	X	+	+	\dashv	-	
5	MW-15		9/16/21	11 58	GW	The	X		1 1	\dashv	+	
16	MW-16		9/17/21	111/0	GW	30	X		+			
17	MW-17	(-411	9/17/14	1030	GW	Tho	×	1	1 1	_	-	
18	mw-18		911714	1145	GW	Do	X					
19	MW-19R		9111121	1238	GW	500	Ž					
à	MW - 20		9/17/2	0913	GW	Dro	2	+	1 1	_	_	
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N	o: MA935	,	Con	tainer Type	G					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished I	Lucare	Date/ 9/17/21 9/17/21 9/17/21	Time 1506 1650 1650	4 1 4 1	Received	Storuge At C	9/17/	21.	me 506 1650 00(SC	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

Διрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	05	Page 3 o	f 3	- 1	Date Rec'	9	To the	12		ALPHA Job# 505	ורז
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		1 1 m	Tokki	NED TO F	Delive	rables		100	W		Billing Information	- / 1
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: GovA	ma Day	Hagilion	203	2-21		ASP-A		ПА	SP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	WANDA, A	N	- 00	COL	1 🗖	EQuIS (1 F	File)	П	QuIS (4	File)	PO#	
Client Information		Project # 14263	07				+ =	Other	355		10			
Client: BERLOMA	fring .	(Use Project name as P					Regul	atory Requ	iireme	ent	80 =	1	Disposal Site Information	6 11 5
Address: 280 FBI		Project Manager: APA		REMETER	-			NY TOGS			Y Part 3	75	Please identify below location	of
Rolleger. Ny		ALPHAQuote #:					1 🗖	AWQ Standa	ards		Y CP-51		applicable disposal facilities.	· OI
Phone: 585 -23	Z-S135	Turn-Around Time		100	514	STATE OF	П	NY Restricte	d Use		Other		Disposal Facility:	
Fax:		Standar	K b	Due Date:			Ī	NY Unrestric	ted Us	se			Пи Пич	
Email: ACHERPMEET	FABTREMONPLE	Bush (only if pre approved	t) 🗌	# of Days:				NYC Sewer					Other:	
These samples have b							ANAL						Sample Filtration	Т
Other project specific									Т	T			To .	- 0
SEMD ALSS T		BERLMANPLU	om				L-8260						Done Lab to do Preservation Lab to do	a I B
ALPHA Lab ID	Sec.	mple ID	Coll	ection	Sample	Sampler's	Nyrel						(Please Specify below)	t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	2						Sample Specific Comments	- 1
50571-21	AU ZI MW-Z	1	9/17/21	1051	Gw	Ro	Х			\forall		1		-
22	DR-I		9/16/21	1359	Gw	do	X			1 1				\neg
33	DB-7		9/16/21	1303	Bow	The	X		\vdash	\top				\top
24	DR-3		9/16/21	1434	GW	70	X			1		1		+
25	D8-4		9/16/21	1228	GW	The	X							+
35	6-1		9/16/21	1144	GIN	500	X			+				+
37	6.2		9/16/21	1120	GW	00	X	_		+	_			_
28	6-3		9117/21		CW	20	Ý.			+				_
79	EDWPMENT B	lance	9/17/2		GW	to	X							+
30 0	STRIP BLANK	MW-X	11111	100	Giv	500	X	1	1	1	_	+		+
Preservative Code: 31	Container Code P = Plastic	Westboro: Certification			GW	tainer Type	×			\Box	\top		Please print clearly, legi	
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification N	lo: MA015				6			\vdash	_	+	and completely. Sample not be logged in and	es can
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				F	reservative	麗			1 1			turnaround time clock w	
E = NaOH F = MeOH	C = Cube	Relinquished	Due	D-1-0									start until any ambiguitie	
G = NaHSO ₄	O = Other E = Encore	/// Refinquished	uy.	Date/	_	4 . 4 .	Receive				Date/Tin		resolved. BY EXECUTII THIS COC, THE CLIEN	
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	AUC	71 .	9/16/21	1506		reuse	Storag		9/17/	-	506	HAS READ AND AGRE	EES
O = Other		AAL Secure S	rorage	9/16/21	1650	26	1	mil	HL	9/11/2	1 /6	50	TO BE BOUND BY ALF	
Form No. 04 25 U.C. I.v. 24	Cont 2042)	56		9/17/21	1650	11111	111	11111	7	7/18	MM 9	0850	TERMS & CONDITION: (See reverse side.)	5.
Form No: 01-25 HC (rev. 30 age 130 of 130	J-Sept-2013)					/	/)_				1000.10.100.000.7	

FIELD FORMS

GROUNDWAT	ER SAM	PLING WORKSHEE	T						
SKOONDIIAI		LING WOMMONILL	<u></u>					7	
PROJECT NAM	ME:	Gowanda Q3 2021					▎ᆜ≺		
Project Number		14263.07	7						
Site Location:		Gowanda, New Yor						_	
Sample Date:		9/17/202				•			
Weather:		72 Degrees F				RFF	$\mathbf{G}\mathbf{M}$	ANN	J
Personnel:		Justin L. O'B	rien					RS PLANNER	
GROUNDWAT	ER SAMI	PLE POINT				ARCHITEC	IS ENGINEE	RS PLANNER	5
Well Number:		MW-1							
Location:									
Casing Diamete	er:	2"							
						Well Dia.	Volume/Fo	oot	
Depth to water,				6.2		1" =	0.041 gal/f	oot	
Depth to botton	n of the w	rell:	16.02				0.163 gal/f		
Length of water	r column	in well:	9.82				0.653 gal/f		
			•				1.469 gal/f		
						8" =	2.611 gal/f	oot	
Volume of water				1.6007					
		water column X ga	l/foot X 3):		4.80				
Actual volume				_	5				
Sampling Meth									
Sampling Equip	oment:	Bailer							
Well Recharge	40	N/A							
Required Analy		IN/A							
Required Arialy	313.								
FIELD PARAM	ETER M	EASUREMENTS							
			Accumu	lated Volu	ne Purged in G	allons			
Parameter:									
Turbidity	899	NTU							
Temperature	16	°C							
рН	7.22								
Conductivity	0.534	SPC ms/cm							
Oxygen	3.75	DO mg/L							
Salinity									
Time sample w	as collec	ted:	7:10						
COMMENTS									

GROUNDWAT	ER SAMI	PLING WORKSHEE	T							
			_						2	
PROJECT NAI		Gowanda Q3 2021	-						ノI	
Project Numbe		14263.07								
Site Location:		Gowanda, New Yor					_			
Sample Date:	-	9/17/202	21				\Box	RGI	M N I	NI NI
Weather: Personnel:	-	72 Degrees F Justin L. O'B	Prion				DE	RGI		NIN
Personner:	-	Justin L. OB	snen				ARCHITE	CTS ENGIN	IEERS PL	ANNERS
GROUNDWAT	ER SAME	LE POINT								
Well Number:		MW-2								
Location:									_	
Casing Diamete	er:	2"						_		_
Depth to water,	, below to	p of casing:		6.1				. Volume = 0.041 ga		-
Depth to botton	n of the w	ell:	17.15			_	2" =	= 0.163 ga	al/foot	
Length of water	r column i	n well:	11.05				4" =	= 0.653 ga	al/foot	
							6" =	= 1.469 ga	al/foot	
Volume of wate 3 Well volumes Actual volume Sampling Meth	s (= length purged pr	n water column X galior to sampling:	l/foot X 3):	1.80	5.5	5.40	•	= 2.611 ga _ _	al/TOOT	J
Sampling Equip		Bailer						_		
Camping Equip		Dalloi						_		
Well Recharge	d?	N/A						_		
Required Analy	_	. 4						_		
FIELD PARAM	IETER ME	EASUREMENTS						_		
			Accumula	ated Vol	ume Pui	rged in C	allons			
Parameter:										
Turbidity	551	NTU								
Temperature	15.1	°C								
рН	7.18									
Conductivity	0.468	SPC ms/cm								
Oxygen	3.69	DO mg/L								
Salinity										
Time sample w	as collect	ed:	6:55						- - -	

<u>GROUNDWAT</u>	ER SAM	PLING WORKSHEE	<u>T</u>						
PROJECT NAI		Gowanda Q3 2021						3	
Project Numbe	r:	14263.07							
Site Location:		Gowanda, New Yor	k			_			
Sample Date:		9/17/202	21			D E		4 4 1	
Weather:		72 Degrees F				BE	RGN	ΊΑΙ	$V \mid V$
Personnel:		Justin L. O'B	rien			ARCHITE	CTS ENGIN	EERS PL	ANNERS
GROUNDWAT	ER SAMI	PLE POINT							
Well Number:		MW-3							
Location:		IVIV O							
Casing Diamet	or.	2"						ı	
Casing Diamet	CI.					Well Dia	. Volume/	Foot	7
Donth to water	holow to	n of occina:		6.4			: 0.041 ga		-
Depth to water			46.20	0.4					
Depth to botton			16.30				0.163 ga		
Length of wate	r column	ın weii:	9.90				0.653 ga		
							1.469 ga		
		. "		4.0		8" =	2.611 ga	I/foot	
Volume of water				1.6					
		n water column X ga	l/foot X 3):		4.8		_		
		rior to sampling:		-	5		_		
Sampling Meth							_		
Sampling Equip	pment:	Bailer					_		
Well Recharge	d?	N/A					_		
Required Analy	/sis:						_		
							_		
FIELD PARAM	IETER MI	<u>EASUREMENTS</u>							
			Accumula	ted Volume	Purged in G	allons			
Parameter:									
Turbidity	1400	NTU							
Temperature	20	°C							
рН	7.04								
Conductivity	0.308								
Oxygen	4.78	DO mg/L							
Salinity		- J							1
					<u> </u>		<u> </u>		
Time sample w	as collec	ted:	6:31						
COMMENTS									
COMMENTS								i	
								i	

GROUNDWAT	ER SAMI	PLING WORKSHEE	T							
			_)	
PROJECT NAM		Gowanda Q3 2021						\perp		
Project Number		14263.07							-	
Site Location:	-	Gowanda, New York								
Sample Date:	-	9/17/202	21						<i>A</i> A I	LIKI
Weather:		72 Degrees F					BE	RGI	MAI	
Personnel:	-	Justin L. O'B	rien				ARCHITE	CTS ENGIN	IEERS PL	ANNERS
GROUNDWATI	ER SAME	PLE POINT								
Well Number:	<u>-</u>	MW-4								
Location:	-								-	
Casing Diamete	er:	2"				_			-	_
Depth to water,			_	7.03			1" =	Volume 0.041 ga	l/foot	-
Depth to bottom			15.78					: 0.163 ga		
Length of water	column i	n well:	8.75					: 0.653 ga		
								: 1.469 ga		
Volume of wate 3 Well volumes Actual volume p Sampling Metho	(= length ourged pr	n water column X galior to sampling:	l/foot X 3):	1.4263		4.2788		: 2.611 ga - -		_
Sampling Equip		Bailer						_		
	•							_		
Well Recharged	d?	N/A						_		
Required Analy	sis:							_		
FIELD PARAM	ETER ME	EASUREMENTS								
			Accumul	ated Vol	ume Pui	rged in Ga	llons			
Parameter:										
Turbidity	1374	NTU								
Temperature	20.7	°C								
рН	7.14									
Conductivity	0.58	SPC ms/cm								
Oxygen	3.26	DO mg/L								
Salinity										
Time sample water the comments	as collect	red:	8:55						- - -	

<u>GROUNDWAT</u>	<u>ER SAM</u>	PLING WORKSHEE	<u>T</u>						
PROJECT NAI	ME.	Gowanda Q3 2021					1 🗆	2	
Project Numbe		14263.07	7					ノI	
	Ί.								
Site Location:		Gowanda, New Yor				-			
Sample Date:		9/17/202	21			ρГ		A A	LIAIA
Weather:		72 Degrees F				BE	RGI	YI A	IIII
Personnel:		Justin L. O'B	Brien			ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-5							
Location:									
Casing Diamet	er:	2"						•	
Depth to water,	helow to	on of casing:		10.65			. Volume/ : 0.041 ga]
Depth to water			13.95	10.00			: 0.041 ga		
Length of wate			3.3				: 0.163 ga : 0.653 ga		
Lengin of wate	Column	III WEII.	3.3				: 0.055 ga : 1.469 ga		
							: 1.409 ga : 2.611 ga		
Volume of water	or in wall	casing, gallons:		0.54		0 =	2.011 ya	11/1001	
		n water column X ga	I/foot V 2):	0.54	 1.61				
		rior to sampling:	1/100t \(\lambda\) 3).		1.75		_		
Sampling Meth					1.75		_		
							_		
Sampling Equip	pment.	Bailer					_		
Mall Dacharge	40	NI/Λ					_		
Well Recharge		N/A					_		
Required Analy	/SIS:						_		
FIELD PARAM	IETER M	EASUREMENTS							
			Accumula	ted Volume	Puraed in G	allons			
Parameter:					Ĭ				
Turbidity	3446	NTU							
Temperature	19.6	°C							
рН	6.95								
Conductivity	0.491						1		
Oxygen	3.65								
Salinity	0.00								
Gammey	1			<u> </u>	L	<u> </u>	1	1	
Time sample w	as collec	ted:	9:24						
COMMENTS								-	
COMMENTS								-	
								-	
								_	
i i									

GROUNDWAT	FR SAM	PLING WORKSHEE	-T							
CROCINDINAL	LI SAM	LING WORKSHEE	<u>- 1</u>							
DDO IFOT WA		0)	
PROJECT NAM		Gowanda Q3 2021	7							
Project Numbe	r:	14263.07						1 -	ノ	
Site Location:		Gowanda, New Yor					<u>-</u>			
Sample Date:		9/17/202	21				D E			
Weather:		72 Degrees F	Sat a sa				BE	RGI	MAI	NN
Personnel:		Justin L. O'E	Brien				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAM	PLE POINT								
Well Number:		MW-6								
Location:										
Casing Diamete	er:	2"							•	=
							Well Dia.			_
Depth to water,			13.5					0.041 ga		
Depth to botton			22.88					0.163 ga		
Length of water	r column	in well:	9.38					0.653 ga		
								1.469 ga		
							8" =	2.611 ga	l/foot	j
Volume of water			.,,	1.53						
		n water column X ga	ıl/foot X 3):			4.59				
		rior to sampling:		_		4.75		•		
Sampling Meth								•		
Sampling Equip	oment:	Bailer						-		
Mall Daabanna	-10	Ν1/Λ								
Well Recharge		N/A								
Required Analy	/SIS:							-		
FIELD PARAM	IETER M	EASUREMENTS								
			Accumula	ated Vol	ume Pur	ged in G	allons			
Parameter:										
Turbidity	2174									
Temperature	18.5									
рН	7.2									
Conductivity	0.562	SPC ms/cm								
Oxygen	3.52	DO mg/L								
Salinity										
	.,		40.40							
Time sample w	as collec	ted:	10:48							
COMMENTS									•	
COMMENTS									•	
									•	
									•	

GROUNDWAT	ER SAM	PLING WORKSHEE	T					
<u> </u>		. L.IIO II OIII OIILL	<u>· · ·</u>			Г		1
PROJECT NAM	<u>ИЕ:</u>	Gowanda Q3 2021						
Project Numbe	r:	14263.07						l .
Site Location:		Gowanda, New Yor				L		, I
Sample Date:		9/17/202	21					
Weather:		72 Degrees F			F	RFR	GMA	NN
Personnel:		Justin L. O'B	rien				ENGINEERS	
GROUNDWAT	ER SAM	PLE POINT			Ŷ	KCHITECTS	ENGINEERS	PLANNERS
Well Number:		MW-7						
Location:								
Casing Diamete	er:	2"			_			
Depth to water,	below to	p of casing:	_	13.5	<u>\</u>		Volume/Fo 0.041 gal/fo	
Depth to botton	n of the w	/ell:	21.8				0.163 gal/fo	
Length of water	r column	in well:	8.3				0.653 gal/fo	
							1.469 gal/fo	
		. "			L	8" =	2.611 gal/fo	ot
Volume of water				1.4				
		n water column X ga	1/100t X 3):		4.06 4.25			
Sampling Meth		rior to sampling:			4.23			
Sampling Metri		Bailer						
Sampling Equip	Jillelit.	Dallel						
Well Recharge	d2	N/A						
Required Analy		14// \						
i toquirou / iriary	0.0.							
FIELD PARAM	ETER M	<u>EASUREMENTS</u>						
			Accumula	ted Volum	e Purged in Ga	llons		
Parameter:								
Turbidity	3545							
Temperature	19.2	°C						
рН	7.18							
Conductivity	0.519							
Oxygen	3.03	DO mg/L						
Salinity								
Time sample w	as collec	ted:	11:02					
COMMENTS								

GROUNDWAT	ER SAM	PLING WORKSHEE	T						
								$\overline{}$	
PROJECT NAI	ME:	Gowanda Q3 2021					1 :-	ベ 1	
Project Numbe	r:	14263.07					_ _	ノー	
Site Location:		Gowanda, New Yor				_			
Sample Date:		9/17/202	21						
Weather:		72 Degrees F				BE	RG	МΑ	NN
Personnel:		Justin L. O'B	rien				ECTS ENG		
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-8							
Location:		-							
Casing Diamete	er:	2"					T	_	7
Donth to water	h alaur ta	n of oppings		0.0			. Volume/		4
Depth to water,			47.05	9.9			0.041 gal		
Depth to botton			17.65 7.75				0.163 gal		
Length of water	Column	ın weii:	7.75				= 0.653 gal = 1.469 gal		
							= 1.469 gai = 2.611 gal		
Volume of water	er in well	casing gallons.		1.26		0 -	- 2.011 gai	71001	J
		n water column X gal	l/foot X 3): _	1120	3.79	9			
		rior to sampling:				<u> </u>	_		
Sampling Meth				_			_		
Sampling Equip		Bailer					_		
							_		
Well Recharge	d?	N/A							
Required Analy	/sis:						- -		
FIELD PARAM	IETER M	EASUREMENTS							
			Accumula	ated Volu	me Purged in (Gallons			
Parameter:						1			
Turbidity	3604								
Temperature	15.01	°C							
рН	6.04								
Conductivity	0.643								
Oxygen	6.04	DO mg/L							
Salinity									
Time sample w	as collec	ted:	8:07						
<u>COMMENTS</u>									

<u>GROUNDWA1</u>	TER SAM	PLING WORKSHEE	<u>:T</u>			
PROJECT NA		Gowanda Q3 2021				
Project Numbe	er:	14263.07				
Site Location:		Gowanda, New Yor	k			
Sample Date:		9/17/202	21			
Weather:		72 Degrees F				BERGMANN
Personnel:		Justin L. O'B	rien			ARCHITECTS ENGINEERS PLANNERS
GROUNDWAT	FR SAM					ARCHITECTS ENGINEERS PLANNERS
	<u> LIK OAIII</u>					
Well Number:		MW-9				
Location:						
Casing Diamet	er:	2"				
Depth to water	, below to	op of casing:		9.8		Well Dia. Volume/Foot 1" = 0.041 gal/foot
Depth to bottor	m of the v	vell:	20.96			2" = 0.163 gal/foot
Length of wate	r column	in well:	11.16			4" = 0.653 gal/foot
J						6" = 1.469 gal/foot
Volume of water	er in well	casing, gallons:		1.82		8" = 2.611 gal/foot
		h water column X gal	I/foot X 3)· _	1.02		5.5
		rior to sampling:	1/100t X 3).			5.5
Sampling Meth				-		J.J
Sampling Equi	pment:	Bailer				
Well Recharge	ed?	N/A				
Required Analy						
FIELD PARAM	METER M	<u>EASUREMENTS</u>				
			Accumula	ated Volu	ıme Purged	in Gallons
Parameter:						
Turbidity	2674.2	NTU				
Temperature	14.3	°C				
рН	7.08					
Conductivity	1.201					
Oxygen	3.39					
	3.33	DO IIIg/L				
Salinity						
Time sample w	vas collec	ted:	8:30			
COMMENTS						
COMMENTS						

GROUNDWAT	ER SAMI	PLING WORKSHEE	<u>: T</u>						
PROJECT NAI	ME:	Gowanda Q3 2021						3	
Project Numbe		14263.07	7					ノー	
Site Location:		Gowanda, New Yor							
Sample Date:	•	9/17/202				-			
Weather:		72 Degrees F	<u>- 1</u>				RGN	1 A N	A N
Personnel:	•	Justin L. O'E	Prion				K G I		N I N
Personnei.	-	Justin L. O E	onen			ARCHITEC	TS ENGIN	EERS PLA	NNERS
GROUNDWAT	ER SAME	PLE POINT							
Well Number:	_	MW-10							
Location:	•								
Casing Diamete	er:	2"						_	
Depth to water,	below to	o of casing:	7.3				. Volume/ : 0.041 ga]
Depth to botton			19.44				: 0.163 ga		
Length of water			12.14				: 0.653 ga		
Longin or water							: 1.469 ga		
							: 2.611 ga		
Volume of water	er in well d	asing gallons.		2.0				,	_
		water column X ga	I/foot X 3):		 5.94				
Actual volume					6		_		
Sampling Meth							_		
Sampling Equip		Bailer					_		
Camping Equip	omone.	Dalloi					_		
Well Recharge	42	N/A					_		
Required Analy	_	14/71					_		
r toquirou 7 tilaly							_		
FIELD PARAM	IETER ME	EASUREMENTS							
			Accumulate	d Volume Pu	urged in G	allons			
Parameter:									
Turbidity	3112	NTU							
Temperature	14.5	°C							
рН	7.36								
Conductivity	0.546	SPC ms/cm							
Oxygen	5.13	DO mg/L							
Salinity									
,			<u>.</u>	<u>.</u>			II.		II.
Time sample w	as collect	ed:	7:35						
COMMENTS								-	
								-	
								•	
								•	

<u>GROUNDWAT</u>	<u>ER SAMI</u>	PLING WORKSHEE	<u>T</u>							
PROJECT NAI	ME:	Gowanda Q3 2021							2	
Project Numbe		14263.07	,						ノー	
Site Location:		Gowanda, New Yor								
Sample Date:	-	9/16/202					_			
	-		<u> </u>				DE	RGI	$\Lambda \Lambda I$	NI NI
Weather:	-	66 Degrees F					$D \Box$	RGI	YI A I	N I N
Personnel:	-	Justin L. O'B	rien				ARCHITE	CTS ENGIN	IEERS PL	ANNERS
GROUNDWAT	ER SAMF	PLE POINT								
Well Number:		MW-11								
Location:	•		,							
Casing Diamete	er:	2"							-	
	-			C F				. Volume/ = 0.041 ga		
Depth to water,			45.40	6.5		-				
Depth to botton			15.48					0.163 ga		
Length of water	r column i	n weii:	8.98					= 0.653 ga		
								= 1.469 ga		
Volume of wate			_	1.4637		_		= 2.611 ga	il/foot	_
		n water column X ga	l/foot X 3):			4.3912	<u>-</u>	_		
Actual volume				_	4.5			_		
Sampling Meth		Hand bailing						_		
Sampling Equip	oment:	Bailer								
	_							_		
Well Recharge	d?	N/A								
Required Analy	/sis:									
FIELD PARAM	IETER ME	EASUREMENTS								
			Accumula	ated Vol	ume Pur	ged in C	allons			
Parameter:						Ĭ				
Turbidity	2580	NTU								
Temperature	15.6	°C								
рН	7.17						1			†
Conductivity	0.586	SPC ms/cm								
Oxygen	2.01	DO mg/L					1			
Salinity	2.01	DO Hig/L								
Salifity				<u> </u>		<u> </u>	<u> </u>			<u> </u>
Time sample w	as collect	ed:	14:05							
COMMENTS									-	
COMMENTS									-	
									-	
									-	

GROUNDWAT	FR SAM	PLING WORKSHEE	-T			
<u>ONO OND WAY</u>	<u> </u>	· Linto Workitonie	<u></u>			
DDO IECT NAI	MT.	Cowanda 02 2021				
PROJECT NAI Project Numbe		Gowanda Q3 2021 14263.07	7			
Site Location:	1.	Gowanda, New Yor				
Sample Date:		9/16/202				
Weather:		66 Degrees F	21			
Personnel:		Justin L. O'B	Prion			BERGMANN
reisonnei.		Justin L. O B	onen_			ARCHITECTS ENGINEERS PLANNERS
GROUNDWAT	ER SAM	PLE POINT				
Well Number:		MW-12				
Location:						
Casing Diamet	er:	2"				
						Well Dia. Volume/Foot
Depth to water				6.8		1" = 0.041 gal/foot
Depth to bottor			17.38			2" = 0.163 gal/foot
Length of wate	r column	in well:	10.58			4" = 0.653 gal/foot
						6" = 1.469 gal/foot
Valuma of water	or in woll	casing, gallons:		1.72		8" = 2.611 gal/foot
		h water column X ga	I/foot X 3): _	1.72	5.17	
		rior to sampling:	1/100t A 3).		5.25	
Sampling Meth				_	3.23	
Sampling Equip		Bailer				
Sampling Equi	pilielit.	Dallel				
Well Recharge	42	N/A				
Required Analy		14/1				
r toquirou / triary	70.0.					
FIELD PARAM	IETER M	<u>EASUREMENTS</u>				
	Ī		Accumula	ated Volu	ıme Purge	ed in Gallons
Parameter:						
Turbidity	543.7					
Temperature	16.8					
рН	7.08					
Conductivity	0.507	SPC ms/cm				
Oxygen	4	DO mg/L				
Salinity						
Time sample w	as collec	ted:	13:23			
<u>COMMENTS</u>						
1						

GROUNDWAT	TER SAM	PLING WORKSHEE	T							
C. CONDITAT			<u></u>							
									7	
PROJECT NA		Gowanda Q3 2021						1 :-	ベ し	
Project Numbe	er:	14263.07						▮┕	ノI	
Site Location:		Gowanda, New Yor					_			
Sample Date:		9/16/202	21							
Weather:		66 Degrees F					RF	RGI	$M \Delta I$	NN
Personnel:		Justin L. O'B	rien					CTS ENGII		
GROUNDWAT	ER SAMI	PLE POINT					7			
Well Number:		NAVA 42								
Location:		MW-13								
Casing Diamet	or:	2"							-	
Casing Diamet	ei.						Wall Dia	Volume	/East	1
Depth to water	holow to	n of casing:		6.85				: 0.041 ga		1
Depth to water			17.40	0.00		-		: 0.041 ga		
Length of wate			10.55					: 0.163 ga		
Length of wate	Column	iii weii.	10.55					: 0.055 ga : 1.469 ga		
								: 2.611 ga		
Volume of wate	er in well (casing, gallons:		1.7197				2.011 gc	11/1001	_
		n water column X ga	l/foot X 3)· _			_ 5.159)			
		ior to sampling:			5.25		•	_		
Sampling Meth				-	0.20			_		
Sampling Equi		Bailer						_		
3 - 4 - 4								_		
Well Recharge	d?	N/A						_		
Required Analy								_		
								_		
FIELD PARAM	<u>IETER MI</u>	<u>EASUREMENTS</u>								
			Accumul	ated Vol	ume Pu	rged in C	allons			
Parameter:										
Turbidity	820.74									
Temperature	16.8									
рН	6.97									
Conductivity	0.445	SPC ms/cm								
Oxygen	3.46	DO mg/L								
Salinity										
Time sample w	as collec	ted:	13:25							
									•	
<u>COMMENTS</u>									•	
									•	
									-	
Ī										

GROUNDWAT	TER SAM	PLING WORKSHEE	<u>T</u>							
	NAT.	Od- O2 2224							2	
PROJECT NA		Gowanda Q3 2021						11		
Project Number	er:	14263.07						_	-	
Site Location:		Gowanda, New York					_			
Sample Date:		9/16/202	1							
Weather:		66 Degrees F					BF	RGN	1 A N	NN
Personnel:		Justin L. O'B	rien					CTS ENGIN		
GROUNDWAT	TER SAM	PLE POINT					ARCHITE	JIS ENGIN	IEERS PL	ANNERS
Well Number:		MW-14								
Location:										
Casing Diamet	ter:	2"							=	
Depth to water Depth to botton Length of wate	r, below to m of the w	op of casing: vell:	10.35 18.15 7.80				1" = 2" = 4" = 6" =	Volume, 0.041 ga 0.163 ga 0.653 ga 1.469 ga	al/foot al/foot al/foot al/foot	
3 Well volume	s (= lengt purged p nodology:	casing, gallons: h water column X gal rior to sampling: Hand bailing Bailer	/foot X 3):	1.27	3.81	. —	8" =	: 2.611 ga - - - -	al/foot	J
Well Recharge		N/A						<u>-</u> -		
Required Analy	ysis:							_		
FIELD PARAM	<u>IETER M</u>	EASUREMENTS								
			Accumula	ted Vol	ume Pu	rged in C	allons			
Parameter:						Ĭ				
Turbidity	3142.90	NTU								
Temperature	15.7									
рН	7.13									
Conductivity	0.542									
	3.46									
Oxygen	3.40	DO Hig/L								-
Salinity										
Time sample v	vas collec	ted:	12:40						_	
COMMENTS									-	
									- -	

-									
<u>GROUNDWA1</u>	TER SAME	PLING WORKSHEE	<u>T</u>						
PROJECT NAI	ME.	Gowanda Q3 2021					□	2	
Project Numbe		14263.07	7					ノI	
Site Location:	-	Gowanda, New Yor				-			
Sample Date:	-	9/16/202	21			DE		Λ Λ	NINI
Weather:	-	66 Degrees F	\•			DE	RGI	M	IN IN
Personnel:	-	Justin L. O'B	rien			ARCHITE	CTS ENGI	NEERS P	LANNERS
GROUNDWAT	ER SAME	PLE POINT							
Well Number:		MW-15							
Location:	•								
Casing Diamet	er:	2"						-	
Depth to water	helow to	o of casing:		10.3			. Volume/ = 0.041 ga		
Depth to bottor			19.80	10.5			= 0.041 ga = 0.163 ga		
Length of wate			9.50				= 0.163 ga = 0.653 ga		
Length of wate	Columni	II WEII.	9.50				= 0.055 ga = 1.469 ga		
							= 1.409 ga = 2.611 ga		
Volume of water	ar in wall c	rasing gallons:		1.5485			- 2.011 ga	11/1001	
		n water column X ga	I/foot X 3)·	1.0400	4.65				
Actual volume			1/100t X 3).		4.75		_		
Sampling Meth					4.70		_		
Sampling Equip							_		
Camping Equi	pilicit.	Dalici					_		
Well Recharge	43						_		
Required Analy							_		
rtoquirou / trial)	, olo						_		
FIELD PARAM	IETER ME	EASUREMENTS							
	I		Accumul	ated Volum	ne Purged in G	allons			
Parameter:									
Turbidity	2824.7	NTU							
Temperature	15.5	°C							
рН	6.95								
Conductivity	0.538	SPC ms/cm							
Oxygen	4.02	DO mg/L							
Salinity									
			•	•	•	•	•	•	•
Time sample w	as collect	ed:	11:58						
COMMENTS								-	
COMMENTS								-	
								-	
								-	

GPOLINDIA/AT	ED CAME	LING WORKSHE	ET							
CACCINDIVAI	LIN SAIVIE	LING WORKSHE	<u>_ </u>							
									\neg	
PROJECT NAI	ME-	Gowanda Q3 2021							\mathcal{L}	
Project Numbe		14263.0						11		
Site Location:		Gowanda, New Yo						_		
Sample Date:	<u>-</u>	9/17/20					-			
Weather:	-	72 Degrees F	12 1				ρг		N A A	N I N I
Personnel:	-	Justin L. O'	Brian				BE	RG		NI VI
r ersornier.	-	Justin L. O	Diferi				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAMP	LE POINT								
Well Number:		MW-16								
Location:	-									
Casing Diamet	er:	2"							•	
Caomy Diamet	<u>.</u>	_					Well Dia.	Volume	Foot	1
Depth to water,	below tor	of casing:	13.12					0.041 ga		
Depth to botton			23.26			_		0.163 ga		
Length of water			10.14					0.653 ga		
Longin or water	i oolalliii ii	1 11011.						1.469 ga		
								2.611 ga		
Volume of water	er in well c	asing gallons.		1.6528				<u> </u>	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_
		water column X ga	al/foot X 3)	110020		4.9585				
Actual volume			a.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5		_		
Sampling Meth				-				_		
Sampling Equip								_		
Camping Equip	-	<u> </u>						_		
Well Recharge	d?	N/A						-		
Required Analy								_		
r toquirou / triary	<u>-</u>							_		
FIELD PARAM	IETER ME	ASUREMENTS								
	1									
Davamatar.			Accumul	ated vol	ume Pui	rged in G	allons	1	I	
Parameter:	2034	NTU								
Turbidity										
Temperature	18.2	°C								
pH	7.34	CDC								
Conductivity	0.657	SPC ms/cm								
Oxygen	3.72	DO mg/L								
Salinity										
			44.00							
Time sample w	as collecti	ea:	11:20							
									-	
COMMENTS										

GROUNDWAT	ER SAM	PLING WORKSHEE	<u>:T</u>							
	.a	O							$\supset $	
PROJECT NAI		Gowanda Q3 2021	7						ノ I	
Project Numbe	r:	14263.07								
Site Location:		Gowanda, New Yor					_			
Sample Date:		9/17/202	21				DE	DC	Μ Λ	NINI
Weather:		72 Degrees F	lui o o				DE	RG		IN IN
Personnel:		Justin L. O'B	nen				ARCHITI	ECTS ENGI	INEERS F	PLANNERS
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		MW-17								
Location:									_	
Casing Diamet	er:	2"							_	_
								. Volume		
Depth to water,			-	13.25		-		: 0.041 ga		
Depth to botton			25.18					: 0.163 ga		
Length of water	r column	in well:	11.93					0.653 ga		
								: 1.469 ga		
		. "		4 0 4 4 0			8" =	2.611 ga	al/foot	
Volume of water			l/f = = ()/ (0)	1.9446	F 0000	-				
		n water column X ga	1/100t X 3):		5.8338			_		
Actual volume					6			_		
Sampling Meth								_		
Sampling Equip	oment:	Bailer						_		
Mall Daabana	-10	NI/A						_		
Well Recharge		N/A						_		
Required Analy	/SIS.							_		
FIELD PARAM	IETER MI	EASUREMENTS								
			Accumu	lated Vol	umo Dur	rand in G	Pallone			
Parameter:			Accumu	atca voi	unic i ui	gea iii e		Τ		
Turbidity	3425	NTU	+							
Temperature	18.5	°C	+							
рН	7.19									
Conductivity	0.539	SPC ms/cm						1		+
Oxygen	2.05	DO mg/L								
Salinity	2.00	DO HIG/E						+		
Gaminty				<u> </u>		<u> </u>		1	Ţ	
Time sample w	as collec	ted:	10:30							
COMMENTS									_	
COMMENTS									-	
									-	
									-	

-										
GROUNDWAT	ER SAMI	PLING WORKSHEE	<u>T</u>						_	
		0							2	
PROJECT NAI		Gowanda Q3 2021						11		
Project Numbe		14263.07						_	7	
Site Location:	•	Gowanda, New Yor					•			
Sample Date:		9/17/202	21				D E			
Weather:		72 Degrees F					ВE	RGI	MAI	NN
Personnel:	•	Justin L. O'B	rien					CTS ENGI		
GROUNDWAT	ER SAME	PLE POINT								
Well Number:		MW-18								
Location:	•									
Casing Diamet	er:	2"								
Depth to water,			9.15				1" =	Volume/ 0.041 ga	l/foot	}
Depth to bottom of the well:			25.0					0.163 ga		
Length of water	r column i	n well:	15.9					0.653 ga		
								1.469 ga		
Volume of water	or in woll o	pacina gallone:		2.5836			8" =	2.611 ga	il/TOOt	
		rasırıg, galloris. n water column X gal	l/foot V 3)·	2.3030		7.75				
Actual volume			1/100t X 3).		7.75	7.75		-		
Sampling Meth				_	1.10			_		
Sampling Equip		Bailer						_		
Sampling Equip	pillelit.	Dallel						_		
Well Recharge	42							_		
Required Analy								_		
required / triary	, 313.							_		
FIELD PARAM	IETER ME	EASUREMENTS								
			Accumul	ated Volu	me Puro	ed in G	allons			
Parameter:										
Turbidity	760	NTU								
Temperature	17.9	°C								
рН	7.71									
Conductivity	0.632	SPC ms/cm								
Oxygen	9.33	DO mg/L								
Salinity		<u> </u>								
			•							
Time sample w	as collect	ted:	11:45							
COMMENTS									•	
COMMENTS									-	
									•	
									-	

GROUNDWAT	ER SAM	PLING WORKSHEE	<u>T</u>						
								ا ر	
DDO IECT NA	MT.	Cowanda O2 2024					1 :-	ベ 1	
PROJECT NAM		Gowanda Q3 2021 14263.07	,					ノI	
Project Numbe Site Location:	1.	Gowanda, New York							
Sample Date:		9/17/202				_			
Weather:		72 Degrees F	<u>. I</u>			RF	RG	ΜΔ	N N
Personnel:		Justin L. O'B	rion						
Personnei.		JUSIIII L. O B	ileli			ARCHITE	CTS ENGI	NEERS F	PLANNERS
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-19R							
Location:		-							
Casing Diamete	er:	2"						-	
J						Well Dia	. Volume	/Foot	
Depth to water,	, below to	p of casing:	7.9			1" =	0.041 ga	l/foot	
Depth to bottom of the well:			17.67			2" =	: 0.163 ga	l/foot	
Length of water	r column	in well:	9.77			4" =	0.653 ga	l/foot	
						6" =	: 1.469 ga	l/foot	
						8" =	: 2.611 ga	l/foot	
Volume of water				1.6					
		n water column X gal	/foot X 3):	4.	.8		_		
		rior to sampling:			5		_		
Sampling Meth	odology:	Hand bailing					_		
Sampling Equip	oment:	Bailer					_		
							_		
Well Recharge		N/A					_		
Required Analy	/sis:	-					_		
FIELD DADAM	ETED M	FACUDEMENTO							
FIELD PARAIN	IETEK IVI	<u>EASUREMENTS</u>							
		T	Accumulat	ed Volume P	urged in C	allons	1	•	
Parameter:	1501	.							
Turbidity	1504								
Temperature	19.2								
рН	7.5								
Conductivity	0.61								
Oxygen	6.4	DO mg/L							
Salinity									
Time sample w	vaa aallaa	tod:	12:38						
i ime sampie w	as collec	led:	12:38						
COMMENTS								-	
COMMENTS								-	
								=	
								-	

GROUNDWAT	ER SAM	PLING WORKSHEE	<u>:T</u>							
									-	
)	
PROJECT NAI		Gowanda Q3 2021						\perp		
Project Numbe	r:	14263.07						_	ノ	
Site Location:		Gowanda, New York								
Sample Date:		9/17/202	21					-		
Weather:		72 Degrees F					BE	RGI	MA	NN
Personnel:		Justin L. O'B	rien					CTS ENGII		
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		MW-20								
Location:		= 0								
Casing Diamete	er:	2"							-	
January 2 January	•	_					Well Dia	Volume	/Foot	7
Depth to water,	below to	p of casing:	9.65					0.041 ga		
Depth to bottom of the well:			14.75					0.163 ga		
Length of water column in well:			5.1					0.653 ga		
								1.469 ga		
								2.611 ga		
Volume of water	er in well o	casing, gallons:		0.8313				5-		
		n water column X gal	l/foot X 3):			2.4939				
		rior to sampling:	,		2.5			-		
Sampling Meth				-				-		
Sampling Equip		Bailer						-		
3 1 1								-		
Well Recharge	d?	N/A						_		
Required Analy								_		
, ,								_		
FIELD PARAM	IETER M	<u>EASUREMENTS</u>								
			Accumul	ated Volu	me Purge	ed in G	allons			
Parameter:										
Turbidity	2372	NTU								
Temperature	18.8									
рН	7.05									
Conductivity	0.884	SPC ms/cm								
Oxygen	3.59	DO mg/L								
Salinity										
				-						
Time sample w	as collec	ted:	9:13							
									_	
<u>COMMENTS</u>									_	
									_	
			•						_	
1										

<u>GROUNDWAT</u>	<u>ER SAM</u>	PLING WORKSHEE	<u>T</u>							
	MF.	Oawanda O2 2024							2	
PROJECT NAI		Gowanda Q3 2021	7							
Project Numbe	r:	14263.07		•						
Site Location:		Gowanda, New Yor					•			
Sample Date:		9/17/202	21							
Weather:		72 Degrees F					BE	RGI	MA	NN
Personnel:		Justin L. O'B	Brien	ì			ARCHITE	CTS ENGI	NEERS P	LANNERS
GROUNDWAT	ER SAM	PLE POINT								
Well Number:		MW-21								
Location:				•						
Casing Diamet	er:	2"							-	
		-		•			Well Dia	. Volume	/Foot	
Depth to water,	. below to	p of casing:		9.2				0.041 ga		
Depth to bottor			15.82					: 0.163 ga		
Length of wate		6.62					: 0.653 ga			
								: 1.469 ga		
								: 2.611 ga		
Volume of water	er in well	casing, gallons:		1.0791				<u> </u>	,	_
		n water column X gal	l/foot X 3)·			3.24				
		rior to sampling:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	3.25		_		
Sampling Meth				-		0.20		_		
Sampling Equip								_		
Sampling Equip	pilielit.	Dallel						_		
Well Recharge	43	N/A						_		
Required Analy		IN/A						_		
Required Arialy	/515.							_		
FIELD PARAM	IETER M	<u>EASUREMENTS</u>								
			Accumu	lated Vol	ume Purg	jed in G	allons			
Parameter:										
Turbidity	843									
Temperature	18.3	°C								
рН	7.2									
Conductivity	0.523	SPC ms/cm								
Oxygen	5.26	DO mg/L								
Salinity										
			•					- N		
Time sample w	as collec	ted:	12:01							
COMMENTS									<u>.</u>	
									_	
									_	
									-	

GROUNDW47	FR SAM	PLING WORKSHEE	T							
<u> </u>		O II OIII OIILL	<u></u>							
PROJECT NAI		Gowanda Q3 2021			,				う 1	
Project Numbe	r:	14263.07							ノ	
Site Location:		Gowanda, New Yor					•			
Sample Date:		9/16/202	21		i			D C I		
Weather:		66 Degrees F			i		BE	RGI	MA	NN
Personnel:		Justin L. O'B	Justin L. O'Brien					CTS ENGII		
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		DR-1								
Location:		DIX-1								
Casing Diamet	ωr·	4"							-	
Casing Diamet	Ci.	<u> </u>					Well Dia	. Volume	/Foot	1
Depth to water	helow to	n of casing.		7.7				= 0.041 ga		-
Depth to bottor			18.06	7.1		_		- 0.041 ga - 0.163 ga		
Length of wate			10.36					= 0.165 ga = 0.653 ga		
Longin or wate	i oolalliii	iii woii.	10.00					= 0.000 ga = 1.469 ga		
								= 2.611 ga		
Volume of water	er in well o	casing, gallons:		6.7651					11/1001	_
		n water column X gal	l/foot X 3):	0 00 .		20.295				
		rior to sampling:				20.3		_		
Sampling Meth								_		
Sampling Equip		Bailer						_		
9 - 4 - 4								_		
Well Recharge	d?	N/A						_		
Required Analy								_		
,								_		
FIELD PARAM	IETER M	<u>EASUREMENTS</u>								
			Accumu	lated Vo	ume Pu	rged in G	allons			
Parameter:						Ĭ				
Turbidity	657.72	NTU								
Temperature	16.8	°C								
рН	7.11									
Conductivity	0.53									
Oxygen	3.77	DO mg/L								
Salinity		ŭ								
-	•	•	•			•	•		•	•
Time sample w	as collec	ted:	13:59							
-										
COMMENTS									_	
									_	
									_	
									-	
1										

GROUNDWAT	FR SAM	PLING WORKSHEE	<u></u>					
CROCIADIVAI	LIX SAIN	LING WORKSHEE	<u> </u>					
PROJECT NAM	ME:	Gowanda Q3 2021					$\vdash \vdash \vdash \vdash$	
Project Numbe		14263.07	7					
Site Location:		Gowanda, New Yor	k					
Sample Date:		9/16/202	21					
Weather:		66 Degrees F				RFI	RGMA	NI NI
Personnel:		Justin L. O'B	rien					
GROUNDWAT	ER SAM	PLE POINT				ARCHITEC	TS ENGINEERS I	PLANNERS
Well Number:		DR-2						
Location:								
Casing Diamete	er:	4"						
							Volume/Foot	
Depth to water,				7.3			0.041 gal/foot	
Depth to botton			18.06				0.163 gal/foot	
Length of water	r column	in well:	10.76				0.653 gal/foot	
							1.469 gal/foot	
						8" =	2.611 gal/foot	
Volume of water				7.0263				
		n water column X ga	/foot X 3):		21			
		rior to sampling:		_	21.2	25		
Sampling Meth								
Sampling Equip	oment:	Bailer						
Wall Doobarga	40	N/A						
Well Recharge		IN/A						
Required Analy	/515.							
FIFI D PARAM	IFTER M	EASUREMENTS						
TILLD I ARAM		<u>LAGOREMENTO</u>						
		т	Accumu	lated Volu	me Purged in	Gallons		
Parameter:	802.03	NTU						
Turbidity								
Temperature	15.9							
pH	7.18							
Conductivity	0.532		_					
Oxygen	5.00	DO mg/L	_					
Salinity								
Time sample w	ممالمه	to di	12,02					
Time sample w	as collec	iea.	13:03					
COMMENTS								
COMMENTS								

GROUNDWAT	ER SAM	PLING WORKSHEE	T					
			_					
PROJECT NAI		Gowanda Q3 2021						\
Project Numbe	r:	14263.07						'
Site Location:		Gowanda, New Yor				_		
Sample Date:		9/16/202	21					
Weather:		66 Degrees F				BE	RGM	1ANN
Personnel:		Justin L. O'B	Brien					ERS PLANNERS
GROUNDWAT	ER SAM	PLE POINT						
Well Number:		DR-3						
Location:		-						
Casing Diamet	er:	4"						
							. Volume/Fo	
Depth to water			-	11.7			0.041 gal/fo	
Depth to bottor			20.45				0.163 gal/fo	
Length of wate	r column	in well:	8.75				0.653 gal/fo	
							: 1.469 gal/fo	
Volume of water	er in well	casing, gallons:		5.7		0 =	: 2.611 gal/fo	101
		h water column X ga	I/foot X 3)· -	0.7	17.141			
		rior to sampling:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		17.25		_	
Sampling Meth					17120		_	
Sampling Equip		Bailer					_	
	F						_	
Well Recharge	d?	N/A					_	
Required Analy							_	
FIELD PARAM	IETER M	EASUREMENTS					_	
	1		Accumul	ated Volui	ne Purged in G	allons		
Parameter:								
Turbidity	1087							
Temperature	15.5							
рН	7.09							
Conductivity	0.561	SPC ms/cm						
Oxygen	4.17	DO mg/L						
Salinity								
Time sample w	as collec	ted:	14:34					
COMMENTS								
I								

GROUNDWAT	TER SAME	PLING WORKSH	HEET							
PROJECT NAI		Gowanda Q3 20			-			1 -		
Project Numbe		14263						_	ノ	
Site Location:	_	Gowanda, New `					i			
Sample Date:	_	9/16/	2021		-			-		
Weather:	_	66 Degrees F	OID :		-		ВE	RGI	ΜΑΙ	NN
Personnel:	-	Justin L.	OBrien				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAMP	LE POINT								
Well Number: Location:	_	DR-4								
Casing Diamet	er.	4"							=	
Depth to water	-			11.7				. Volume : 0.041 ga]
Depth to bottor	n of the w	ell:	19.69			_	2" =	: 0.163 ga	l/foot	
Length of wate	r column ii	n well:	7.99		•			: 0.653 ga		
								: 1.469 ga		
Volume of water				5.22		- 4-0-	8" =	: 2.611 ga	l/foot]
		water column X	gal/foot X 3):			15.65		_		
Actual volume		or to sampling:				15.75		_		
Sampling Meth		Hand bailer						_		
Sampling Equip	pment.	nanu baller						_		
Well Recharge	43	N/A						_		
Required Analy	_	11/7						_		
	-	ASUREMENTS						_		
TILLD I ARAIV		ACONLINEINIO								
Donomotor:			Accumu	lated Vo	lume Pui	rged in G	allons	1	I	1
Parameter: Turbidity	880.05	NTU								
Temperature	15.7	°C								
	7.16									
pH Conductivity	0.557	SPC ms/cm	,							
Oxygen	5.02	DO mg/L	'							
Salinity	3.02	DO IIIg/L								
Gaininty										
Time sample w	as collect	ed:	12:28		_					
COMMENTS									_	
									•	
									-	
									-	

GROUNDWAT	TER SAM	PLING WORKSHE	ET						_
J. CONDITA		. LIIIO II OINIOIILI						7	
PROJECT NA	ME:	Gowanda Q3 2021						1	
Project Numbe		14263.07						1	
Site Location:		Gowanda, New Yor	rk					_1	
Sample Date:		9/16/202	21			· 			
Weather:		66 degrees F				BFF	?GM.	ANN	
Personnel:		Justin L. O'E	Brien					S PLANNERS	
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		G-1							
Location:									
Casing Diamet	er:	4"			i				
							Volume/Fo		
Depth to water			11.9				0.041 gal/fo		
Depth to bottor			22.98				0.163 gal/fo		
Length of wate	r column	in well:	11.08				0.653 gal/fo		
							1.469 gal/fo		
			_	7.0050		8" =	2.611 gal/fo	oot	
		casing, gallons:		7.2352	_ 04 700				
		h water column X ga	al/toot X 3):		21.706				
		rior to sampling:		-	21.75				
Sampling Meth									
Sampling Equi	pment:	Bailer							
Mall Daabassa	-10	NI/A							
Well Recharge		N/A							
Required Analy	ysis:								
EIELD BABAM	IETED M	EASUREMENTS							
FIELD PARAIN	ILIEK IVI	<u>EASUREMENTS</u>							
			Accumulat	ed Volume P	urged in G	allons		•	
Parameter:	070.44	NITI							
Turbidity	873.14								
Temperature	15.6								
pН	7.12								
Conductivity	0.548								
Oxygen	4.64	DO mg/L							
Salinity									
Time sample w	vas collec	ted:	11:44						
COMMENTS									
Ī									

GROUNDWAT	FR SAM	PLING WORKSHEE	-T				
CROONDWAI	LIC OAIII	I LING WORKSHEL	<u></u>				7
PROJECT NAI		Gowanda Q3 2021					
Project Numbe	r:	14263.07					
Site Location:		Gowanda, New Yor					_ I
Sample Date:		9/16/202	21		_		
Weather:		66 Degrees F				BERGM	ANN
Personnel:		Justin L. O'E	Brien			RCHITECTS ENGINEER	
GROUNDWAT	ER SAM	PLE POINT					
Well Number:		G-2					
Location:							
Casing Diamet	er:	4"			_		
Depth to water, Depth to bottor Length of wate	n of the w	/ell:	11.8 20.72 8.92		_	Well Dia. Volume/F 1" = 0.041 gal/1 2" = 0.163 gal/1 4" = 0.653 gal/1 6" = 1.469 gal/1 8" = 2.611 gal/1	foot foot foot foot
	s (= lengtl purged p odology:	n water column X ga rior to sampling:		5.8248			
Well Recharge Required Analy		N/A					
FIELD PARAM	IETER M	EASUREMENTS					
			Accumulat	ed Volume P	urged in Ga	allons	
Parameter:							
Turbidity	1679	NTU					
Temperature	17	°C					
рН	7.05						
Conductivity	0.522						
Oxygen	4.67	DO mg/L					
Salinity		- 5					
Time sample w	as collec	ted:	11:20				

GROUNDWAT	ER SAM	PLING WORKSHEE	<u> </u>					
S. COMBINAT	<u> </u>	O II OILICITLE	<u> </u>					
PROJECT NAM	<u>ИЕ:</u>	Gowanda Q3 2021				- I :-	ゔ ー	
Project Number		14263.07	7			_ _	ノー	
Site Location:		Gowanda, New Yor	k					
Sample Date:		9/17/202						
Weather:		72 Degrees F			F	BERGI	MAN	Ν
Personnel:		Justin L. O'E	Brien			RCHITECTS ENGI		
GROUNDWAT	ER SAM	PLE POINT	_					
Well Number:		G-3						
Location:								
Casing Diamete	er:	4"			T.			
					<u>\</u>	Well Dia. Volum		
Depth to water,			10.2			1" = 0.041		
Depth to botton			18.15			2" = 0.163		
Length of water	r column	in well:	7.95			4" = 0.653		
						6" = 1.469		
\				F 40	L	8" = 2.611	gai/foot	
Volume of water				5.19				
		n water column X ga	1/100t X 3):		15.57			
Actual volume					15.75			
Sampling Metho								
Sampling Equip	oment:	Bailer						
Mall Dacharga	40	N/A						
Well Recharge		N/A						
Required Analy	SIS.							
FIFI D PARAM	FTFR M	EASUREMENTS						
		<u> </u>						
Parameter:			Accumulat	ted Volume P	urged in Ga	llons		
Turbidity	803.6	NTU	+	+			-	
Temperature	18.3							
рН	7.52							
Conductivity	0.56							
	5.3							
Oxygen Salinity	5.5	DO HIG/L						
Sairiity								
Time sample w	as collec	ted:	10:06					
Time sample w	as conce	ica.	10.00					
COMMENTS								
<u>oommerto</u>								

NOVEMBER 2021 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

4 Industrial Place, Gowanda, NY

GROUNDWATER CHARACTERIZATION REPORT-NOVEMBER 2021 (Q4 2021)

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com Issued: February 25, 2022

Revised: July 5, 2022

DASNY Project No.: 3136109999

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of WorkSite Background	4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	6
2.1 2.2	Well Maintenance ActivitiesGroundwater Field Monitoring and Sampling Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	7
4.0	LABORATORY ANALYSIS	8
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis Summary Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	8 9
5.0	REMEDIATION SYSTEM EFFICIENCY	12
5.1 5.2	Impact of the GTS Recovery Wells Extent of Impacted Groundwater	12 13

Tables

Table 1: Groundwater Elevations and Field Measurements – November 2021

Table 2: November 2021 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary

Table 4: Percent Reduction in Total Groundwater VOCs

Table 5: Full Analytical Results Summary Table

Figures

Figure 1: November 2021 Groundwater Contour Map

Figure 2: November 2021 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3: November 2021 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations

G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Chart 6:

Appendix A: Laboratory Analytical Results Report - November 2021 Sampling Event

Appendix B: Field Forms

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the fourth quarter 2021 sampling event, conducted on November 18th and 19th, 2021, on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on November 18th and November 19th, 2021. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from all twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), all were sampled. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in September 2021 and included analysis of groundwater samples from all twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the SVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an In-Situ Chemical Oxidation (ISCO) Remedial Action Plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015 and a second round of injections in September 2015. An ISCO Report was prepared and submitted under a separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the November 2021 site visit, all monitoring wells were accessible, and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015 and removal of asphalt from several flush mount wells located on Torrance Place for sampling access. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the November 2021 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from twenty-one (21) of the twenty-one (21) site-related groundwater monitoring wells for laboratory analysis on November 18th and November 19th, 2021. Depth to groundwater measurements were obtained from 28 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged. Sample parameters including turbidity, temperature, pH, oxygen, and conductivity were monitored using a YSI Quatro prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. Sampling was performed based on discussion and direction from a telephone conversation with David Szymanski (NYSDEC project manager at the time) in January 2018 in which no noticeable changes in test results were noticed comparing bailing and slow purge methods. This was first noted in Q3 2018 and is also noted in the approved PRR dated 2019. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

Bergmann delivered the groundwater samples to Alpha Analytical's service center in Buffalo, NY. The samples were then transported by Alpha Analytical via a chain-of-custody protocol to their NYSELAP certified laboratory located in Westborough, Massachusetts. The samples were then tested for targeted chlorinated volatile organic compounds (VOCs) of concern, using EPA Method 8260C. Sample holding times were in compliance with analytical method requirements. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2012 – 2021.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for November 2021 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on November 18th and November 19th, 2021. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements – November 2021.

The November 2021 groundwater table map shows a flow pattern similar to groundwater flow pattern observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. It is noted that the residential properties along Torrance Place utilize municipal/public water. The November 2021 depths to groundwater range from 4.90 ft. below top of casing (btoc) at MW-2, to 12.95 ft. btoc at MW-7. The average depth to groundwater at the wells measured was 8.88 ft. btoc, which is a decrease from the average depth to water of the previous sampling event in September of 2021 (9.49).

The site-wide average depth to water table decreased by approximately 0.61 ft. when compared to the previous sampling event from September 2021. This decrease in depth to the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented in Table 1 and November 2021 Groundwater Contours are presented on Figure 1 – November 2021 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from twenty-one (21) monitoring wells and seven (7) recovery wells collected November 18th and November 19th, 2021. Samples were analyzed for VOCs via EPA Method 8260C. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-1,2-DCE)
- Vinyl Chloride (VC)

Total VOCs values, as present throughout this report, in the text, charts, and Tables 2, 3, and 4, are not representative of total VOCs detected, but are exclusively representative of the sum of TCE, CIS, TRANS, VC, and TCA detected.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The November 2021 analytical results indicate detection of four (4) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, VC and Trans-1,2-DCE. Chlorinated VOCs were detected in groundwater samples from fourteen (14) of the twenty-one (21) monitoring wells. Analytical results are summarized in Table 2 – November 2021 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical report is provided in Appendix A – Laboratory Analytical Results Report November 2021 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from seven (7) of the sampled monitoring wells.

Groundwater samples from eleven (11) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-1, with a value of 980.46 parts per billion (ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in eight (8) of the twenty-one (21) monitoring well groundwater samples increased when compared to the September 2021 sampling event while concentrations in seven (7) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in six (6) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 84.88% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 73.10% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the November 2021 sampling event was 980.46 parts per billion (ppb), an increase from the September 2021 value of 404.62 ppb. Since activation of the GTS, detected VOCs at MW-1 have increased by about 27.66%.

Monitoring well MW-11 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the November 2021 sampling event is 495.4 ppb, an increase from the September 2021 value of 386.9 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 89.34%.

Monitoring well MW-12 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the November 2021 sampling event is 125.4 ppb, an increase from the September 2021 value of 65.86 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 99%.

Monitoring well MW-13 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-13 for the November 2021 sampling event was 1.83 ppb, an increase from the September 2021 sampling event, which was 0.95 ppb. Since activation of the GTS, detected VOCs at MW-13 have decreased by about 99.42%.

Monitoring well MW-14 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the November 2021 sampling event is 91.86 ppb, an increase from the September 2021 value of 84.40 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 70.86%

Monitoring well MW-15 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the November 2021 sampling event was 15.6 ppb, a decrease from the September 2021 sampling event, which was 24.80 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased 97.86%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-16, MW-17 and MW-21. The current analytical results exhibit a decrease in targeted VOCs at the sampled monitoring wells along the north perimeter, compared to the September 2021 sampling event.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate a total VOC concentration of 6.42 ppb for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a re-sealing the Torrance Place road surface. These wells were uncovered after the July 2019 sampling event, and subsequent sampling events. Well MW-19R had a total VOC concentration of 0.29 ppb, and well MW-21 had a total VOC concentration of 15.27 ppb during the November 2021 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – November 2021 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event were MW-4 and MW-19R. The current results indicate non-detect (ND) levels for MW-4 and 0.29 ppb for MW-19R.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the November 2021 sampling event, all of the seven (7) recovery wells were sampled.

The November 2021 analytical results indicate detection of chlorinated VOCs in all seven (7) recovery well samples that include: TCE, Cis-DCE, VC and Trans-1,2-DCE. Total VOCs detected in the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in VOCs for the current sampling event is about 85.99% relative to concentrations prior to GTS activation in 2002. Relative percent increase in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the November 2021 sampling event is 598.6 ppb, an increase from the September 2021 value of 98.05 ppb. The current sampling event indicates a decrease in VOCs at DR-1 of 92.52% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the November 2021 sampling event is 251.3 ppb, an increase from the September 2021 value of 162.4 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 87.45% since activation of the GTS.

Recovery well DR-3 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the November 2021 sampling event is 94.88 ppb, an increase from the September 2021 value of 85.26 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 93.53% since activation of the GTS.

Recovery well DR-4 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the November 2021 sampling event is 34.6 ppb, an increase from the September 2021 value of 34.1 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 98.04% since activation of the GTS.

Recovery well G-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the November 2021 sampling event was 53.68 ppb, an increase from the September 2021 value of 51.83 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 90.14% since activation of the GTS.

Recovery well G-2 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the November 2021 sampling event was 52.67 ppb, an increase from the September 2021 value of 45.4 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 86.32% since activation of the GTS.

Recovery well G-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the November 2021 sampling event was 185.8 ppb, a decrease from the September 2021 value of 226.09 ppb. The current sampling event indicates a decrease in VOCs at G-3 of 53.90% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – November 2021 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected. The analytical results for this equipment blank were non-detect. A trip blank was supplied by the laboratory for the November 2021 sampling event, and was analyzed. A field duplicate (labeled as MW-X) was taken from MW-18.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM FEEICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center.

Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (980.46 ppb) show an increase from the September 2021 sampling event (404.62 ppb). The current total VOCs at MW-11 (495.4 ppb) shows an increase from the September 2021 sampling event (386.9 ppb). The current total VOCs at DR-1 (598.6 ppb) show an increase from the September 2021 sampling event (98.05 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (125.4 ppb) show an increase from the September 2021 sampling event (65.86 ppb). The current total VOCs at recovery well DR-2 (251.3 ppb) show an increase from the September 2021 sampling event (162.4 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (91.86 ppb) show an increase from the September 2021 sampling event (84.40 ppb). The current total VOCs at recovery well DR-3 (94.88 ppb) show an increase from the September 2021 sampling event (85.26 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (15.6 ppb) show a decrease from the September 2021 sampling event (24.80 ppb). The current total VOCs at recovery well DR-4 (34.6 ppb) show an increase from the September 2021 sampling event (34.1 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (85.27 ppb) show a decrease from the September 2021 sampling event (230.86 ppb). The current total VOCs at recovery well G-1 (53.68 ppb) show an increase from the September 2021 sampling event (51.83 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC concentration of 52.67 ppb, which shows an increase from the September 2021 sampling event (45.4 ppb). The November 2021 total VOCs of MW-7 (29.15 ppb) show a decrease from the September 2021 sampling event (102.37 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western

perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (85.27 ppb) show a decrease from the September 2021 sampling event (230.86 ppb). The current total VOCs at recovery well G-3 (185.8 ppb) show a decrease from the September 2021 sampling event (226.09 ppb).

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of historic cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the July 2019 and November 2018 sampling events due to being paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report. These two (2) monitoring wells have since been uncovered and began to be sampled again starting with the August 2019 sampling event. The full analytical results are summarized in Table 5.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred due to completed remediation at the Site when compared to pre-remediation levels during the past fifteen (15) years of sampling.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these remediation systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO injection application in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future. However, system components may need repair and/or replacement prior to re-activation.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for Q1 2022. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements November 2021

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	5.10	4.90	5.35	6.60	10.30	12.92	12.95	8.80	8.25	6.00
Groundwater Elevation	773.13	773.18	773.03	771.83	768.31	768.18	767.99	772.53	774.36	774.02
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.44
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.58
Thickness of Water Column	10.92	12.25	10.95	9.18	3.65	9.96	8.85	8.85	12.71	13.44
Minimum Purge Volume (gal)	1.78	2.00	1.78	1.50	0.59	1.62	1.4	1.44	2.07	2.2
3 Volumes	5.34	5.99	5.35	4.489	1.78	4.87	4.33	4.328	6.215	6.57
Actual volume purged	5.50			4.50	2.00		4.33	4.5	6.25	6.66
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = $-0.34'$	Flush = -0.24'	Stickup=2.17	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	5.50	6.30	6.60	10.30	10.25	12.60	12.80	8.60	7.35	9.30	9.4
Groundwater Elevation	773.08	772.20	771.79	768.13	768.13	767.83	767.05	767.79	766.85	768.74	765.36
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	9.98	11.08	10.80	7.85	9.55	10.66	12.38	16.40	10.32	5.45	6.42
Minimum Purge Volume (gal)	1.63	1.81	1.76	1.28	1.56	1.7	2.02	2.67	1.7	0.9	1.0
3 Volumes	4.88	5.42	5.28	3.84	4.67	5.21	6.05	8.02	5.05	2.67	3.14
Actual volume purged	5.00	5.50	5.30	4.00	4.75	5.25	6.25	8.25	5.25	2.75	3.25
Comments	Flush = $-0.23'$	Flush = -0.35 '	Flush = -0.48 '	Flush = $-0.39'$	Flush = -0.38	Stickup=2.26'	Stickup=1.18	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

•							
	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	6.70	6.60	11.33	11.25	11.50	11.42	9.75
Groundwater Elevation	772.96	773.33	768.45	768.39	768.33	768.30	769.67
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	11.36	11.46	9.12	8.44	11.48	9.30	8.40
Minimum Purge Volume (gal)	7.42	7.48	5.96	5.51	7.50	6.07	5.49
3 Volumes	22.254	22.45	17.87	16.53	22.49	18.22	16.46
Actual volume purged	20.33	22.50	18.0	16.75	22.50	18.25	16.50
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled.

The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Sample Date 11/18/2021

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		300.00	840.00	5.0
CIS		100.00	130.00	5.0
TRANS		3.9	10.0	5.0
VC		0.7	0.46	2.0
TCA		ND	ND	5.0
	Total VOCs	404.62	980.46	

Monitoring Well MW-2

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3

Sampling Events

eamping Ev	OTILO			
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-4

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		1.50	1.20	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1.50	1.20	

Monitoring Well MW-6

Sampling Events

Jamping L	- V C I I I S			
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		57.00	61.00	5.0
TRANS		ND	ND	5.0
VC		38.00	51.00	2.0
TCA		ND	ND	5.0
	Total VOCs	95.00	112.00	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 1 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		0.97	0.71	5.0
CIS		100.00	28.00	5.0
TRANS		ND	ND	5.0
VC		1.40	0.44	2.0
TCA		ND	ND	5.0
	Total VOCs	102.37	29.15	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-10

Sampling Events

Camping Evente					
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value	
TCE		ND	ND	5.0	
CIS		ND	ND	5.0	
TRANS		ND	ND	5.0	
VC		ND	ND	2.0	
TCA		ND	ND	5.0	
	Total VOCs	ND	ND		

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Monitoring Well MW-11

Sampling Events

Damping L	VCIIIG			
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		94.00	310.00	5.0
CIS		280.00	170.00	5.0
TRANS		3.70	9.4	5.0
VC		9.20	6.00	2.0
TCA		ND	ND	5.0
	Total VOCs	386.9	495.4	

Monitoring Well MW-12

Sampling Events

camping 2				
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		18.00	20.00	5.0
CIS		47.00	100.00	5.0
TRANS		0.76	1.10	5.0
VC		0.10	4.30	2.0
TCA	·	ND	ND	5.0
	Total VOCs	65.86	125.40	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/19/2021

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Page 2 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		0.95	0.91	5.0
CIS		ND	0.92	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	0.95	1.83	·

Monitoring Well MW-14

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		9.4	9.9	5.0
CIS		73.0	79.0	5.0
TRANS		ND	0.76	5.0
VC		2.0	2.2	2.0
TCA		ND	ND	5.0
	Total VOCs	84.40	91.86	

Monitoring Well MW-15

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		16.00	10.00	5.0
CIS		8.8	5.6	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	24.80	15.6	

Monitoring Well MW-16

Sampling Events

_camping L	· v or ito			
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		0.26	0.34	5.0
CIS		22.00	31.00	5.0
TRANS		ND	ND	5.0
VC		0.30	0.41	2.0
TCA		ND	ND	5.0
	Total VOCs	22.56	31.75	

Sample Date: 11/18/2021

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Monitoring Well MW-17

Sampling Events

<u> </u>				
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		20.00	13.00	5.0
CIS		210.00	72.00	5.0
TRANS		ND	ND	5.0
VC		0.86	0.27	2.0
TCA		ND	ND	5.0
	Total VOCs	230.86	85.27	

Monitoring Well MW-18

Sampling Events

Camping Evente					
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value	
TCE		0.77	1.20	5.0	
CIS		5.40	5.1	5.0	
TRANS		ND	ND	5.0	
VC		0.16	0.12	2.0	
TCA		ND	ND	5.0	
	Total VOCs	6.33	6.42		

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Page 3 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		0.34	0.29	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	0.34	0.29	

Monitoring Well MW-20

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		0.35	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	0.35	ND	

Monitoring Well MW-21

Sampling Events

eampling Ev				
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		1.9	1.4	5.0
CIS		16.0	13.0	5.0
TRANS		0.83	0.71	5.0
VC		0.43	0.16	2.0
TCA		ND	ND	5.0
	Total VOCs	19.16	15.27	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sampling Events

-				
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		78	450	5.0
CIS		19	130	5.0
TRANS		0.89	3.60	5.0
VC		0.16	15.00	2.0
TCA		ND	ND	5.0
	Total VOCs	98.05	598.60	

Recovery Well DR-2 Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		29.0	63.0	5.0
CIS		130	180	5.0
TRANS		1.2	1.6	5.0
VC		2.20	6.7	2.0
TCA		ND	ND	5.0
	Total VOCs	162.4	251.3	

Recovery Well DR-3 Sampling Events

F				
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		22	23	5.0
CIS		60	68	5.0
TRANS		0.76	0.98	5.0
VC		2.50	2.9	2.0
TCA		ND	ND	5.0
	Total VOCs	85.26	94.88	

Recovery Well DR-4

Sampling Events

Camping L	VCIIIO			
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		25	27	5.0
CIS		9.1	7.6	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	34.1	34.6	

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Recovery Well G-1

Sampling Events

	venis			
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		4.10	11.0	5.0
CIS		47	42	5.0
TRANS		ND	ND	5.0
VC		0.73	0.68	2.0
TCA		ND	ND	5.0
	Total VOCs	51.83	53.68	

Recovery Well G-2

Sampling Events

eamping E				
Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		0.72	0.74	5.0
CIS		44	51	5.0
TRANS		ND	ND	5.0
VC		0.68	0.93	2.0
TCA		ND	ND	5.0
	Total VOCs	45.40	52.67	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Sample Date: 11/18/2021

Page 5 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3
Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		24	24	5.0
CIS		200	160	5.0
TRANS		1.4	1.3	5.0
VC		0.69	0.50	2.0
TCA		ND	ND	5.0
	Total VOCs	226.09	185.80	

Duplicate Blank (MW-18)

Sampling Events

			NYS
			Guidance
Analyte	in ppb	Nov 2021	Value
TCE		1.3	5.0
CIS		4.9	5.0
TRANS		ND	5.0
VC		0.3	2.0
TCA		ND	5.0
	Total VOCs	6.5	

Equipment Blank

Sampling Events

Analyte	in ppb	Sep 2021	Nov 2021	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Sample Date: 11/19/2021

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

															MONIT	ORING W	ELLS																$\overline{}$
	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Monitoring	Nov	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	Aug	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
Well Number	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	980.46	404.62	928.9	344.7	1020.0	991.8	993.5	1009	698	1,081	1,080	1,190	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	ND	ND	0.29	ND	ND	ND	ND	0.28	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	ND	ND	1.31	1.14	ND	0.3	ND	ND	0.28	0.39	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	N-5 1.20 1.50 0.79 1.60 ND 0.51 0.42 0.47 0.52 0.9 ND ND ND ND ND ND ND ND ND NS																																
MW-6	W-5 120 1.50 0.79 1.60 ND 0.51 0.42 0.47 0.52 0.9 ND ND ND ND ND ND ND ND ND NS																																
MW-7	W-6 112.0 95.00 78.00 81.20 66.0 79.41 64.8 99.1 92.64 86.63 81 84 77 76 100 91 87 120 100 120 96 86 81 110 110 96 94 130 99 93 99 86.7 85.7 W-7 29.15 102.37 94.74 173.67 ND 73.89 1.16 55.58 39 27.83 ND ND ND ND ND 5.8 29 110 62 83 49 130 58 ND 180 190 29 ND ND 18 ND ND 151.56 30.5																																
MW-8	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND		ND						.,,			NS		NS	NS	NS		NS				
MW-9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	630	NS	NS	NS	NS	NS	NS	NS	NS 510	NS	NS	NS	NS
MW-11	495.4 125.4	386.9 65.86	490.7 65.88	546.5	584.0 84	1274	604.5 116.54	699.3 54	937.4	1.059	489.3 53	282	489	1.160	470 31	525	646	445 7.8	550 15.8	1.060 28.8	52	97	500 120	451 126	375 136	450 200	710	880 173	149.3	570 186.6	790 142	498 86.5	617 148.22
MW-12 MW-13	1.83	05.86	2.40	60.05 1.34	ND ND	2.7	3.4	2.1	54.48 0.50	1.38	ND ND	ND ND	ND.	ND ND	ND.	NS NS	NS	NS NS	15.8 NC	28.8 NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	148.22 NS
MW-14	91.86	84 40	20.80	63.4	13.0	18.2	34	33	26.5	25.9	30.7	22.3	22.8	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
MW-15	15.6	24.80	26	25.8	ND.	5.0	29	7.6	8.1	4.9	ND	6.5	ND	ND	ND.	7.1	11	23.8	11	9.0	1/1	8.1	0.8	32	31	61	ND.	6.8	7	ND	12.9	26.26	6.25
MW-16	31.75	22.56	14.32	11.29	13.0	37.43	25.62	7.11	31.53	37.61	41	10	//1	43	32	36	1/1	20.0	37	3.3	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
MW-17	85.27			271.2	295.0	266.2	16.2	193.01	342	277	218	265	112.5	5.1	222	396	375	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	6.42	6.33	1.55	7.13	ND	2.27	0.73	1.6	3.1	2.8	ND	ND	ND	ND	6.3	ND	10	26	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33
MW-19R	0.29	0.34	0.50	0.36	ND	0.26	0.19	0.28	0.6	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND
MW-20	ND	0.35	ND	0.88	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	15.27	19.16	5.60	32.04	11.0	5.9	23.5	24.49	18.33	NS	NS	NS	NS	NS	NS	NS	17	39	8.7	20	20	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-X (DUP)	6.5	ND	152.4	100.5	13.0	2.4	3.3	1118.9	1118.9	914.6	ND	ND	434	NS	490	DWS	1,705	879	550	1,720	410	360	407	300	400	870	990	1,850	540	186.8	1,450	521	913
EB	ND	ND	ND	ND	ND	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
															RECO	VERY WE	ELLS																

																V LIVI VVL																	
	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Recovery	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Well Number	Nov	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	August	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
Well Nulliber	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
	(daa)	(dqq)	(dqq)	(dqq)	(daa)	(daa)	(dgg)	(dgg)	(daa)	(dag)	(daa)	(dqq)	(dqq)	(daa)	(daa)	(dqq)	(daa)	(dqq)	(daa)	(dqq)	(dqq)	(dqq)	(dqq)	(dqq)	(dqq)	(daa)	(dqq)	(dqq)	(daa)	(daa)	(dqq)	(daa)	(dad)
DR-1	598.6	98.05	485.3	117.8	909.0	1222.0	1123.6	912.6	1038	1,832	1,310	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	251.3	162.4	144.2	111.6	116.0	129.7	137.8	185.9	192	156	216	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	94.88	85.26	66.77	81.73	63.0	81.8	67.7	99.7	101	91	73	87	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	34.6	34.1	31.9	42.34	29.9	30.5	32.4	40.6	46.6	40	37.2	48	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	53.68	51.83	45.82	100.60	53.0	37.6	50.1	70	78.7	50.4	74.6	77	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	52.67	45.4	64.38	37.46	54.0	30.9	18.8	90.49	90	69	25	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	185.8	226.09	177.73	236.35	235.0	272.36	335.52	305.34	309.65	309.65	15	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

NS= This well not included in this sampline event. Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected. ND = Not Detected, results less than Method Detection Limit. Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-7, MW-21 All compounds are measured in parts per billion (ppb). VOC - Volatile Oranic Compounds. DUP - Duclicate Sample EB - Equipment/Field Blank Sample EB - Equipment/Field Blank Sample DUS- Different Well Sample than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

e	Groundwater	Treatment	System	was	activated	in	May	2

The Groundwater Treatr	nent System was	activated in M	ay 2005																																												
Monitoring Well	% Reduction 2002 to November 2021	% Reduction 2002 to September 2021	% Reduction 2002 to March 2021	% Reduction 2002 to November 2020	% Reduction 2002 to July 2020	% Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	% Reduction 2002 to Oct 2019	% Reduction 2002 to Aug 2019	% Reduction 2002 to July 2019	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 9 2002 to Aug 2017	Reduction % I 2002 to Nov 2016 S	Reduction % 2002 to ep 2016	Reduction % 2002 to Jun 2016	Reduction % R 2002 to 2 Nov 2015 A	aduction %R 002 to 2 og 2015 Ju	eduction %R 002 to 2 n 2015 M	duction %R 02 to 2 r 2015 N	Reduction % Red 2002 to 2003 lov 2014 Sep 3	%Reduction 2002 to 2014 Jun 201	ion %Red 200 14 Mar	duction % Reduction 02 to 2002 to r 2014 Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	% Reduction % Re 2002 to 20 Sep 2011 Jun	duction %Re 02 to 20 1 2011 Ma	duction %Redu 02 to 2002 r 2011 Dec 2	% Reducti to 2002 to 010 Sep 201	on %Reducti 2002 to Jun 201	tion % Reduction 2002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction 2002 to Feb 2009	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008	Reduction % 0 102 to Sept 20 2007	Reduction 002 to May 2007 %F	Reduction 2 to Oct 2006	% Reduction 2002 to Nov 2005
MW-1 [†]	-27.66%	47.32%	-20.95%	55.12%	-32.81%	-29.14%	-29.36%	-31.4%	9.11%	-40.76%	-40.6%	-54.9%	-44.5%	51.3%	-39.90%	-57.6%	-48.0%	-9.1%	24.5%	-99.2%	91.4%	4.4%	4.0%	60.9% 45.	3% -28.9%	-28	8.9% -126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1%	26.6% 15.	.5% -1	1.3% 15.8	% -44.2	2% 11.8%	-12.0%	8.2%	-90.5%	-92.8%	-166.4%	-130.3%	-46.9%
MW-2	100%	100%	100%	99%	100%	100%	100%	100%	98.78%	100%	100%	100%	100%	Not Sampled	Not Sampled	Not Sampled N	ot Sampled No	t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	ampled Not Sampled	d Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	ed Not Sample	ed Not Sampled	99.6%	Not Sampled	99.6%	99.6%	99.6%	99.6%	99.6%
MW-3	100.00%	100%	91%	92%	100%	98%	100%	100%	98.13%	97.40%	100%	100%	100%	100%	100%	100.0% N	ot Sampled No	t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	ampled Not Sampled	d Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	ed Not Sample	ed Not Sampled	Not Sampled	Not Sampled	99.3%	84.0%	99.3%	99.3%	99.3%
MW-4	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	100%	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	00.0% 1	00.0% 1	0.0%	100.0% 100	0% 100.0%	6 100	0.0% 100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	97.4% 97.	4% 97	7.4% 97.4	% 97.4	1% 97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%
MW-5	91.43%	89.29%	94%	89%	100%	96%	97%	96.64%	96.29%	93.57%	100%	100%	100%	100%	100%	100.0% N	ot Sampled No	t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	ampled Not Sampled	d Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	ed Not Sample	ed Not Sampled	Not Sampled	Not Sampled	99.3%	75.6%	99.3%	99.3%	63.4%
MW-6	72.41%	76.60%	80.79%	80.00%	83.74%	80.44%	84.04%	75.59%	77.18%	78.66%	100%	-83.3%	15.4%	15.4%	-84.60%	15.4%	81.3%	70.4%	75.4%	70.4%	6.4%	8.8%	0.0%	72.9% 72.	9% 76.4% 3% 93.6%	76	3.8% 68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	79.9% 73.	6% 76	3.4% 81.3	% 77.1	1% 78.4%	72.2%	69.7%	74.1%	57.9%	62.8%	57.4%	42.6%
MW-7	93.52%	77.25%	78.95%	61.41%	100.00%	83.58%	99.74%	87.65%	91.33%	93.82%	80.0%	79.3%	100.0%	81.3%	98.70%	93.6%	75.6%	86.2%	81.6%	89.1%	1.1%	7.1% 1	0.0%	60.0% 57.	3% 93.6%	100	0.0% 100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	87.1% 64.	.3% 74	1.6% 96.6	% 52.7	°% 79.5%	22.7%	45.8%	56.3%	20.0%	26.7%	6.7%	-1.3%
MW-8	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	Not Sampled	Not Sampled N	ot Sampled No	t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	ampled Not Sampled	d Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	ed Not Sample	ed Not Sampled	Not Sampled	Not Sampled	92.9%	92.9% N	4ot Sampled	92.9%	92.9%
MW-9	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	Not Sampled	Not Sampled N	ot Sampled No	t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	iampled Not Sampled	Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	ed Not Sample	ed Not Sampled	Not Sampled	Not Sampled	97.6%	97.6% N	ot Sampled	97.6%	97.6%
MW-10	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100.0% N	ot Sampled No	t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	ampled Not Sampled	d Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	nd Not Sample	ed Not Sampled	Not Sampled	Not Sampled	96.2%	96.2% N	ot Sampled	96.2%	96.2%
MW-11	89.34%	91.67%	89.44%	88.24%	87.43%	72.57%	86.99%	84.95%	79.83%	77.21%	89.5%	93.9%	89.5%	75.0%	89.20%	99.1%	86.1%	90.4%	88.2%	77.2%	86.4%	0.4%	9.2%	90.3% 91.	9% 90.3%	84	1.7% 81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	87.3% 86.	4% 83	3.5% 83.3	% 86.5	5% 83.0%	90.6%	87.8%	78.0%	91.4%	74.4%	44.0%	76.3%
MW-12	99%	99.48%	99.48%	99.53%	99.34%	98.85%	99.08%	99.57%	99.57%	99.38%	99.6%	99.8%	99.2%	99.1%	99.80%	75.0%	99.9%	99.9%	99.9%	99.8%	9.6%	9.2%	9.1%	99.0% 98.	1% 98.4%	98	3.3% 98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	99.3% 99.	2% 98	3.7% 98.1	% 99.4	1% 97.8%	99.5%	98.7%	98.7%	98.4%	96.6%	91.4%	62.2%
MW-13	99.42%	99.70%	99.24%	99.57%	100.00%	99.14%	98.92%	99.33%	99.84%		100%		100%	100%	Not Sampled	Not Sampled N		t Sampled No	ot Sampled N	lot Sampled Not	Sampled Not	Sampled Not	Sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	iampled Not Sampled	d Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 5	Sampled Not Sar	npled Not Sampl	led Not Samp	pled Not Sample	d Not Sample	ed Not Sampled	100.0%	Not Sampled	100.0%	99.4%	100.0%	100.0%	100.0%
MW-14	70.86%	73.21%	93.40%	79.87%	95.87%	94.22%	89.21%	89.52%	91.59%	91.78%	90.3%	92.9%	92.8%	91.1%	87.90%	2.3%	75.9%	68.3%	81.9%	74.3%	9.5%	3.5%	8.6%	78.4% 78.	1% 82.9%	76	3.8% 70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	92.3% 87.	.6% 79	9.3% 85.9	% 87.1	1% 88.9%	94.3%	87.9%	90.7%	67.2%	66.1%	6.7%	55.6%
MW-15	97.86%	96.60%	99.64%	96.47%	100.00%	99.32%	99.60%	98.89%	98.89%	99.33%	100%	99.1%	100%	100%	100%	99.0%	98.5%	96.7%	98.5%	98.6%	8.1%	8.9%	8.7%	95.6% 95.	3% 99.2%	100	0.0% 99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	97.7% 91.	.5% 96	3.9% 98.3	% 91.1	1% 99.3%	84.5%	89.4%	97.5%	79.5%	91.7%	79.5%	62.9%
MW:16*	16.45%	40.63%	62.32%	70.29%	65.79%	96.66%	98.07%	86.11%	38.42%	26.54%	19.9%	80.5%	19.9%	2.3%	2.80%	2.3%	72.7%	60.9%	27.7%	39.5%	4.6%	6.7% 1	10.0%	89.8% 81.	3% 59.0%	53	3.1% 60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%	81.0% 93.	3% 99	94.2	% 42.1	% 41.6%	57.4%	43.9%	77.5%	35.0%	-57.9%	-34.7%	-72.1%
MW-17*	89.47%	71.50%	78.56%	66.52%	63.58%	73.67%	98.40%	80.91%	66.17%	72.60%	78.4%	73.8%	88.9%	99.5%	78*	2.3%	62.9%	54.0%	58.0%	54.5%	9.4% Not	Sampled (8.8%	61.0% 59.	1% 66.5%	83	3.5% 58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%	94.1% 61.	4% 71	1.3% 97.7	% 71.8	99.5%	10.1%	26.0%	24.7%	-11.5%	4.1%	-24.8%	-24.2%
MW-18:*	95.96%	96.02%	99.03%	95.52%	100.00%	99.42%	99.81%	62.50%	99.21%	99.29%	100%	100%	100%	100%	100%	100.0%	97.4%	93.4%	98.2%	100.0%	00.0% 1	00.0% 1	0.0%	100.0% 100	0% 100.0%	6 100	0.0% Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	88.7% 74.	4% 82	2.7% 96.0	% -23.3	91.8%	-50.0%	27.6%	64.8%	-352.2%	-178.0%	-146.5%	-135.8%
MW-19 R*	97.93%	97.57%	96.43%	97.43%	100.00%	98.14%	98.64%	98.00%	95.71%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	100.0%	100.0%	100.0%	100.0%	00.0% 1	00.0% 1	0.0%	100.0% 100	0% 100.0%	6 100	0.0% 100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0% 73.	.3% 99	9.0% 99.0	% 57.3	99.0%	-36.7%	-5.7%	99.0%	-120.8%	73.6%	-14.0%	-102.0%
MW-20**	100%	97.94%	100%	95%	100.00%	98%	99%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	100.0%	100.0%	100.0%	100.0%	00.0% 1	00.0% 1	0.0%	100.0% 100	0% 100.0%	6 100	0.0% 100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4% 99.	4% 99	9.4% 99.4	% 99.4	1% 99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
MW-21**	96.5%	95.61%	98.72%	92.65%	97.48%	98.65%	94.61%	94.38%	95.80%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled	34.6%	-50.0%	66.5%	23.1%	23.1%	1.5% Not	sampled Not	t Sampled Not Sa	mpled Not Samp	oled Not Sa	ampled Not Sampled	1 Not Sampled	Not Sampled	d Not Sampled	Not Sampled	Not Sampled	Not Sampled Not S	ampled Not 3	Sampled Not Sar	mpled Not Sampl	led Not Samp	pled Not Sample	d Not Sample	ed Not Sampled	67.5%	Not Sampled	96.7%	-22.2%	27.1%	94.0%	-13.7%
* Well installed 2003																										_											_							-	-		
** Well Installed 2004																		_								_								_			_							\rightarrow	_	\rightarrow	_
								00.00	07 400	00.00	05.40	70.00	00.00/	0.4.00/	07 000/	00.40/	74.40	00.70/	70.01/	00.00	0.40	2.20	0.00	05.00	200 000		07.50	04.00/	04.00	74.00/	00.01/	00.70															
Site-Wide reduction:	84.88%	88.11%	87.65%	88.44%	88.59%	88.48%	91.11%	86.8%	87.42%	83.6%	85.1%	78.0%	82.2%	84.2%	W00.10	02.1%	74.1%	08.7%	/8.0%	00.2%	99.176	7.7%	5.2%	80.2% 83.	79.8%	80	1.3% 67.5%	81.8%	81.2%	/1.3%	82.9%	80.7%	79.7%	72.2%	83.7%	86.9% 78.	3% 81	1.4% 87.9	r% 61.1	1% 82.1%	56.0%	59.7%	78.5%	32.9%	39.8%	43.4%	35.7%
Impacted Groundwater		-						_	_		+							_	_							-		_	+	_	_			_		_			+		-			\rightarrow	\rightarrow	\rightarrow	
Impacted Groundwater	70.400	70.000	74.00/	70.40/	74.040	74 440	75.040/	70.440	70.040	74 60	74.00	70.40	07.00	70.00	E4 400/	44.40	00.00	00.01/	70.01/	50 th	0.00	4.00	0.00	77.00	200 000	70	200	70.00/	77.00	00.50	75 017	70.40	74.00	04.40	0.1.40	00.00/ 70	F61 70	2.40/	00 00 0	70.00	E78 7001	04.00	60.70	00.01/	00.01/	10.00	00.41/
Prume Area Only:	/3.10%	/9.20%	/4.9%	/8.4%	/4.64%	/1.41%	75.61%	/ rz.11%	/8.21%	71.5%	/4.6%	/2.1%	07.6%	/0.6%	51.40%	41.1%	00.0%	09.0%	/0.0%	08.1%	670.0%	4.0%	J.87b	11.3% 75.	J% 72.3%	73	3.9% 82.2%	/3.2%	/7.3%	1 62.5%	/5.2%	/3.1%	/1.9%	04.1%	84.1%	83.0% 72.	.0% 72	(.4%) 82.1	7e] 65.2	c76 79.8%	57.7%	64.2%	53.7%	35.8%	3Z.U%	10.3%	∠8.4%

Plane Ass Chiy: 73.10% 73.20% 74.9% 78.40% 78.40% 74.64% 74.41% 75.61% 72.11% 73.21% 73.21% 74.95% 74.65% 7

Recovery Well	% Reduction 2002 to November 202	September	% Reduction 2002 to Marc 2021	n % Reduction ch 2002 to November 2020	% Reduction 2002 to July 2020	% Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	% Reduction 2002 to Oct 2019	% Reduction 2002 to Aug 2019	% Reduction 2002 to July 2019	n % Reduction 2002 to No 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 2002 to Nov 2017	% Reduction 2002 to Aug 2017	%Reduction % 2002 to Nov 2016	Reduction %F 2002 to Sep 2016 J	eduction %R 002 to 2 un 2016 No	eduction %Rec 1002 to 201 ov 2015 Aug	uction %Red 2 to 200 2015 Jun	duction % R 02 to 2 2015 M	Reduction % Red 2002 to 20 Mar 2015 Nov	oduction % 002 to v 2014	Reduction %Red 2002 to 200 Sep 2014 Jun	uction %Re 2 to 20 2014 Ma	duction %Re 102 to 20 r 2014 Dec	duction % Red 102 to 2000 c 2013 Jul 2	uction %Red 2 to 200 2013 Apr	luction % Reduct 12 to 2002 to 2013 Dec 201	ion %Reduc 2002 12 Jun 20	tion % Reduction to 2002 to 112 Mar 2012	% Reduction 2002 to Sep 2011	% Reduction 2002 to Jun 2011	%Reduction 2002 to Mar 2011	% Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 2002 to Jan 2010	% Reduction 7 2002 to Jul 2009	Reduction 5 2002 to Feb 2009	% Reduction 9 2002 to Sep 2008	% Reduction % 2002 to Jun 2008	Reduction 2002 to Mar 2008	Reduction % Reduction be 2005 to Feb 2005 ept 2007 May	105 to %Reduction Feb	b 6
DR-1	92.52%	98.77%	93.93%	98.53%	88.64%	-113.39%	-95.95%	-59.16%	-81.03%	-219.50%	-128.5%	-163.3%	-130.0%	-86.6%	-243.6%	-243.6%	-7.6%	-6.4%	58.7%	44.4% 72	.1% Not Sa	ampled	96.2% 89	9.0%	90.4% 86	9% 7	7.0% 8	4.8% 99.	1% 99.	.0% 99.5%	99.8	6 91.6%	97.99	% 98.1%	96.9%	95.69	94.5%	99.2%	98.0%	95.1%	96.8%	91.0%	89.2%	93.4%	74.5%	86.2% 92.8%	6
DR-2	87.45%	91.89%	92.80%	94.43%	94.21%	76.38%	74.91%	66.15%	65.04%	71.60%	60.7%	70.5%	76.7%	76%	63.8%	63.8%	75.1%	60.3%	60.9%	63.8% 66	.0% 47.	.0%	52.8% 70	0.5%	59.2% 58	0% 6	2.3% 4	5.0% 87.	2% 85.	.4% 99.1%	88.5	6 83.9%	89.79	% 88.0%	86.6%	92.49	89.3%	87.3%	90.6%	90.1%	88.8%	89.7%	85.8%	92.3%	85.6%	82.5% 72.6%	.6l
DR-3	93.53%	94.19%	95.48%	94.46%	95.73%	46.36%	55.61%	34.62%	33.77%	40.33%	52.1%	43.0%	17.8%	78%	68.5%	Not Sampled	35.7%	-1.0%	59.3%	70.5% 50	2% 45.	.6%	63.9% -1	18.7%	-37.7% 45	6% 4	1.6% 1	9.3% 95.	8% 95.	.1% 97.2%	92.1	6 98.3%	95.03	% 95.4%	98.3%	98.09	97.4%	94.6%	91.6%	91.5%	88.7%	94.9%	91.7%	88.4%	73.8%	87.6% 89.7%	á
DR-4	98.04%	98.07%	98.19%	97.60%	98.31%	96.45%	96.23%	95.27%	94.58%	95.34%	95.7%	94.4%	96.4%	96%	93.9%	93.9%	90.8%	88.9%	92.7%	89.1% 87	2% 91.	.7%	82.9% 81	11.8%	82.8% 88	8% 9	2.5% 9	0.8% 95.	5% 97.	.9% 94.9%	93.19	6 100.0%	89.23	6 92.7%	94.3%	95.9%	86.9%	91.2%	95.4%	95.5%	96.2%	92.7%	97.7%	97.6%	87.7%	99.1% 51.4%	6
G-1	90.14%	90.48%	91.58%	81.52%	90.27%	81.27%	75.05%	65.14%	60.81%	74.90%	62.8%	61.7%	80.1%	80%	74.1%	74.1%	57.7%	47.4%	92.7%	60.0% 10	1.0% 66.	:1%	27.3% 49	9.8%	47.7% 55	0% 6	1.3% 6	5.6% 87.	3% 89.	.8% 90.3%	87.49	6 88.0%	87.69	% 89.8%	87.7%	91.09	94.4%	80.1%	76.0%	69.9%	76.7%	77.9%	68.7%	65.8%	58.7%	71.8% 63.1%	6
G-2	86.32%	88.21%	83.28%	90.26%	85.97%	89.10%	93.37%	68.07%	68.24%	75.65%	91.2%	76.0%	82.4%	84%	100.0%	Not Sampled	Not Sampled	100.0% No	Sampled Not	Sampled 90	.1% Not Sa	ampled	83.1% 88	8.0%	86.9% 81	7% 9	5.1% 7	1.4% 79.	0% 87.	.0% 65.7%	80.4	6 89.1%	92.39	6 83.0%	87.7%	86.59	98.4%	97.8%	98.5%	85.4%	40.0%	92.6%	89.8%	79.0%	84.6%	54.5% 26.4%	6
G-3	53.90%	43.90%	55.90%	41.35%	41.69%	32.42%	16.74%	24.23%	24.23%	23.19%	96.3%	20.1%	Not Sampled	Not Sampled	Not Sampled	Not Sampled	27.3%	-0.2%	-4.2%	35.0% 8.	2% Not Sa	ampled Not	t Sampled Not S	Sampled N	lot Sampled Not S	impled 7	9.7%	NA N	A N	IA NA	NA.	NA.	N.	A NA	NA.	N/	NA NA	. NA	NA.	NA.	NA	NA.	NA	NA	NA	NA NA	ál .
																																															1
Overall Reduction	85.99%	86.50%	87.31%	85.45%	84.97%	44.08%	45.14%	42.05%	37.95%	23.07%	47.2%	28.9%	37.2%	54.6%	60.4%	40.4%	46.5%	41.3%	40.4%	60.4% 67	7% 62.	.6%	67.7% 60	0.1%	54.9% 69	3% 7	2.8% 6.	2.8% 90.	7% 92.	.3% 91.1%	90.2	6 91.8%	91.93	% 91.1%	91.9%	93.29	93.5%	91.7%	91.7%	87.9%	81.2%	89.8%	87.2%	86.1%	77.5%	80.3% 66.0%	6
																																															_1
*Sampling of recovery wells in	tiated in 2005			Total VOCs values	are not the total	VOCs detected, b	ut the sum of TO	CE, CIS, TRANS, 1	C, and TCA deter	ted.																																					-

Samples Received by Alpha on 19-Nov-21																																				
LOCATION		NYS	Groundwater	MW-1	MW	-2	MIN/-3	MW-4	MW-5	MW-E	6	MW-7	MW-8	MW.q	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW	.17	MW-18	MW-10P	MW-20	MW-21	DR-1	DR-2	DR-3	DP-4	G-1	G-2	G.3	MW-Y	EQUIP. BLANK
SAMPLING DATE		Standard	Guidance 116	ito 18-Nov-21	1 1	8-Nov-21	18-Nov-21	19-Nov-21	1 19-Nov	-21 19	9-Nov-21	19-Nov-21	18-Nov-21	18-Nov-21	18-Nov-21	18-Nov-21	18-Nov-21	18-Nov	-21 18-No	w-21 18-Nov-2	18-Nov	v-21 1	9-Nov-21	19-Nov-21	19-Nov-21	19-Nov-	21 19-N	ov-21 18-Nov-21	18-Nov-21	18-N	ov-21 18-Nov-21 75-24 Units L2164375-25 U	18-Nov-21	18-Nov-21	19-Nov-21	19-Nov-21	19-Nov-21
Lab Sample ID		Value	Value	L2164375-0	01 Units L21	64375-02 Un	its L2164375-03	Units L2164375-0	4 Units L2164375	5-05 Units L2164	4375-06 Units	L2164375-07 Unit	L2164375-08 L	nits L2164375-09	Jnits L2164375-10	Units L2164375-11	Units L2164375-12	Units L2164375	-13 Units L216437	'5-14 Units L2164375-1	Units L2164375	5-16 Units L21	64375-17 Units	s L2164375-18 L	Jnits L2164375-19	Units L2164375-	20 Units L21643	75-21 Units L2164375-22 L	nits L2164375-23	Units L21643	75-24 Units L2164375-25 L	nits L2164375-26 Ur	nits L2164375-27	Units L2164375-28	Units L2164375-30 Un	nits L2164375-29 Units
SAMPLE QUALIFIER PARAMETER		_		D												D												D								
	PRODUCT																																			
Methylene chloride	NYTCL-8260-R		- ug	3/1 <12.	ug/l	<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <					ug/l <2.5				ug/l <2.5									5 ug/l <6.2			5 ug/l <2.5 I	ig/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	a/l <2.5 ug/l
1,1-Dichloroethane	NYTCL-8260-R NYTCL-8260-R		- uç	3/I <12.	ug/I	<2.5 Ug	g/I <2.5	ug/I <2.5	ug/I <2.5		<2.5 ug/		<2.5				ug/l <2.5			ug/l <2.5				<2.5		ug/l <2.5	ug/1 <2.		ug/l <2.5		5 ug/l <2.5			ug/I <2.5	ug/l <2.5 ug	y/I <2.5 ug/I
Chloroform	NYTCL-8260-R			yl <12. yl <2.5		<2.5 ug	g/I <2.5 n/I <0.50	ug/l <2.5 ug/l <0.50		ug/l <	<2.5 ug/				ug/l <2.5 ug/l <0.50					0 ug/l <2.5 0 ug/l <0.50			<2.5 ug/			ug/i <2.5	ug/1 <2.	5 ug/l <6.2 i0 ug/l <1.2	ug/I <2.5		5 ug/l <2.5 i	ig/l <2.5 u		ug/i <2.5	ug/i <2.5 ug	ig/i <2.5 ug/i
Carbon tetrachloride 1,2-Dichloropropane	NYTCL-8260-R			y/ <2.5 y/ <5.0		<1.0 uc	g/I <0.50 g/I <1.0				<1.0 ug/	<0.50 ug/								0 ug/l <0.50			<1.0 ug/		ug/i <0.50				Jg/I <0.50 Jg/I <1.0		0 ug/l <0.50	Ig/I <0.50 U	Ig/I <0.50	ug/I <0.50	ug/i <0.50 us	y/I <0.50 Ug/I
Dibromochloromethane	NYTCL-8260-R			yl <2.5		<0.50 uc	g/I <0.50	ug/l <0.50	ug/l <0.50		<0.50 ug/	<0.50 ug/	<0.50	ug/l <0.50		ug/l <1.2				0 ug/l <0.50			<0.50 ug/			ug/l <0.50			ug/l <0.50		50 ug/l <0.50	ig/1 <0.50 U	ig/1 <0.50	ug/1 <0.50	ug/l <0.50 ug	ig/1 <0.50 ug/l
1,1,2-Trichloroethane	NYTCL-8260-R		- uc	yl <7.5	ug/l	<1.5 uc	g/l <1.5		ug/l <1.5			<1.5 ug/								i ug/l <1.5									ug/I <1.5		5 ug/l <1.5		ig/I <1.5	ug/l <1.5	ug/l <1.5 ug	a/l <1.5 ug/l
Tetrachloroethene	NYTCL-8260-R		- ug	y/I <2.5		<0.50 ug	g/I <0.50	ug/I <0.50	ug/l <0.50		<0.50 ug/	<0.50 ug/	<0.50			ug/l <1.2	ug/l <0.50			0 ug/l <0.50			<0.5 ug/		ug/l 0.25J	ug/l <0.50			Jg/I <0.50	ug/l <0.	50 ug/l <0.50 l	ig/l <0.50 u	ıg/l <0.50	ug/I <0.50	ug/l <0.50 ug	ıg/l <0.50 ug/l
Chlorobenzene	NYTCL-8260-R	2 5	- ug	y/I <12.	ug/l	<2.5 ug	g/I <2.5	ug/I <2.5	ug/l <2.5	ug/I <	<2.5 ug/	<2.5 ug/	<2.5	Jg/l <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	Jg/l <2.5	ug/l <2	5 ug/l <2.5	ig/l <2.5 u	ıg/I <2.5	ug/l <2.5	ug/l <2.5 ug	ıg/l <2.5 ug/l
Trichlorofluoromethane	NYTCL-8260-R			g/l <12.	ug/l	<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <	<2.5 ug/	<2.5 ug/	<2.5	ıg/l <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/	<2.5	ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	ug/l <2.5	ug/l <2	5 ug/l <2.5	ıg/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	ıg/l <2.5 ug/l
1,2-Dichloroethane	NYTCL-8260-R		- ug	y/I <2.5	ug/l	<0.50 ug	g/l <0.50	ug/l <0.50	ug/l <0.50	l ug/l <	<0.50 ug/	<0.50 ug/	<0.50	ıg/l <0.50	ug/l <0.50	ug/l <1.2	ug/l <0.50	ug/1 <0.50	ug/l <0.50	0 ug/l <0.50	ug/l <0.50) ug/l	<0.50 ug/	< 0.50	ug/l <0.50	ug/l <0.50	ug/l <0.5	i0 ug/l <1.2	ıg/l <0.50	ug/l <0.	50 ug/l <0.50 I	ıg/I <0.50 u	ıg/I <0.50	ug/l <0.50	ug/l <0.50 ug	g/l <0.50 ug/l
1,1,1-Trichloroethane	NYTCL-8260-R		- ug	g/l <12.		<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <	<2.5 ug/	<2.5 ug/		ıg/l <2.5	ug/l <2.5					s ug/l <2.5			<2.5 ug/				ug/l <2.		ug/l <2.5	ug/l <2	5 ug/l <2.5 i	ig/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	a/l <2.5 ug/l
Bromodichloromethane	NYTCL-8260-R			yl <2.5	ug/l	<0.50 ug	g/I <0.50	ug/I <0.50	ug/l <0.50	ug/l <	<0.50 ug/	<0.50 ug/			ug/l <0.50					0 ug/l <0.50							ug/l <0.5	0 ug/l <1.2	ug/I <0.50	ug/l <0.	50 ug/I <0.50 I	ig/1 <0.50 u	ig/I <0.50	ug/1 <0.50	ug/l <0.50 ug	ıg/l <0.50 ug/l
trans-1,3-Dichloropropene	NYTCL-8260-R NYTCL-8260-R		u,	yl <2.5	ug/I	<0.50 ug	g/l <0.50	ug/I <0.50	ug/I <0.50		c0.50 ug/	<0.50 ug/	<0.50	ug/l <0.50	ug/l <0.50		ug/l <0.50	ug/l <0.50		0 ug/l <0.50	ug/l <0.50			1 40.00	ug/l <0.50	ug/l <0.50	ug/l <0.5	10 Ugn 11.2	ug/I <0.50	ug/l <0.		ig/1 <0.50 u	ig/I <0.50	ug/1 <0.50	ug/I <0.50 ug	ig/l <0.50 ug/l
cis-1,3-Dichloropropene	NYTCL-8260-R			yl <2.5 yl <10.		<0.50 ug	g/I <0.50 n/I <2.0	ug/I <0.50	ugri <0.50		<0.50 ug/	<0.50 ug/	<0.50	ıg/l <0.50 ıg/l <2.0						0 ug/l <0.50 0 ug/l <2.0	ug/I <0.50		<0.50 ug/		ug/l <0.50	ug/l <0.50 ug/l <2.0		i0 ug/l <1.2 0 ug/l <5.0	1g/1 <0.50 1g/1 <2.0		50 ug/l <0.50 t	1g/l <0.50 u	ig/l <0.50	ug/1 <0.50	ugn <0.50 ug	ig/l <0.50 ug/l
1,1,2,2-Tetrachloroethane	NYTCL-8260-R		50 Uş	yl <10.	ug/i	<2.0 UC	g/I <2.0	ug/1 <2.0	ug/I <2.0	ug/i <	<2.0 ug/	<2.0 ug/	<2.0 I			ug/i <5.0					ug/I <2.0	ug/i	<2.0 ug/	1 <0.50	ug/1 <2.0	ug/I <2.0	ug/i <2.	0 ug/l <5.0	19/1 <2.0	ug/I <2	0 ug/l <2.0 l	1g/1 <2.0 U	Ig/I <2.0	ug/I <2.0	ug/i <2.0 ug	3/1 <2.0 ug/l
Benzene	NYTCL-8260-R		- uç	yl <2.5	ug/l	<0.50 uc	g/l <0.50	ug/l <0.50	ug/l <0.50	ug/ <	:0.50 ug/	<0.50 ug/	<0.50	ug/1 <0.50	ug/l <0.50	ug/l <1.2	ug/l <0.50	ug/1 <0.50	ug/l <0.50	0 ug/l <0.50 0 ug/l <0.50	ug/l <0.50) ug/l	c0.50 ug/	1 <0.50	ug/1 <0.50	ug/l <0.50	ug/l <0.5	i0 ug/l <1.2	ug/l <0.50	ug/l <0.	50 ug/l <0.50	ig/1 <0.50 U	ig/I <0.50	ug/1 <0.50	ug/l <0.50 us	ig/1 <0.50 ug/l
Toluene	NYTCL-8260-R		- 10	s/l <12	ug/l	<2.5 UC	n/l <2.5	un/l <2.5	ug/l <2.5	ug/l s			<2.5		ug/l <2.5		ug/l <2.5		ug/l <2.5		un/l <2.5	ug/l	<2.5 ug/	1 <2.5	ug/l <2.5	un/l <2.5	un/l <2	5 ug/l <6.2	In/l <2.5	ug/l <2	5 ug/l <2.5 u	IO/I <2.5 II	in/l <2.5	ug/l <2.5	ug/l <2.5 ug	o/l <2.5 ug/l
Ethylbenzene	NYTCL-8260-R	2 5	- uc	a/l <12.	ug/l	<2.5 uc	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <	<2.5 ug/				ug/l <2.5		ug/l <2.5			ug/I <2.5	ug/l <2.5	ug/l	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.		JQ/I <2.5	ug/l <2	5 ug/l <2.5	ig/l <2.5 u	ig/l <2.5	ug/l <2.5	ug/l <2.5 ug	ig/l <2.5 ug/l
Chloromethane	NYTCL-8260-R	2 -	- ug	ş/l <12.	ug/I	<2.5 uc	g/I <2.5	ug/I <2.5	ug/I <2.5	ug/I <	<2.5 ug/	<2.5 ug/	<2.5	ıg/l <2.5			ug/l <2.5	ug/1 <2.5		ug/I <2.5	ug/l <2.5		<2.5 ug/			ug/l <2.5	ug/l <2.	5 ug/l <6.2	Jg/I <2.5	ug/l <2	5 ug/l <2.5 I	ig/l <2.5 u	ig/l <2.5	ug/I <2.5	ug/l <2.5 ug	.g/l <2.5 ug/l
Bromomethane	NYTCL-8260-R	2 5	- ug	y/l <12.	ug/l	<2.5 ug	g/l <2.5	ug/l <2.5			<2.5 ug/				ug/l <2.5		ug/l <2.5			ug/I <2.5		ug/l	<2.5 ug/	1 <2.5			ug/l <2.		Jg/l <2.5	ug/l <2		ig/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	g/I <2.5 ug/I
Vinyl chloride	NYTCL-8260-R		- ug	g/I 0.46J	ug/l	<1.0 ug	g/l <1.0	ug/l <1.0	ug/l <1.0	ug/l	51 ug/	0.44J ug/	<1.0		ug/l <1.0				ug/l 2.2		ug/l 0.41J				ug/l <1.0	ug/l <1.0	ug/l 0.16	iJ ug/l 15	ug/l 6.7	ug/l 2.	9 ug/l <1.0	ıg/l 0.68J u	ig/l 0.93J	ug/I 0.50J	ug/l 0.30J ug	g/l <1.0 ug/l
Chloroethane	NYTCL-8260-R	2 5	- us	y/l <12.			g/l <2.5	ug/l <2.5			<2.5 ug/			Jg/l <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5			ug/l <2.5			<2.5 ug/			ug/l <2.5	ug/l <2.	5 ug/l <6.2	Jg/l <2.5	ug/l <2	5 ug/l <2.5	ıg/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	ıg/l <2.5 ug/l
1,1-Dichloroethene	NYTCL-8260-R	2 5		yl <2.5		<0.50 ug	g/l <0.50	ug/I <0.50			<0.50 ug/					ug/l <1.2	ug/l 0.17J		ug/l 0.19.					1 <0.50				i0 ug/l <1.2	ug/I 0.43J	ug/l 0.1	7J ug/I <0.50 I	ıg/l <0.50 u	ıg/I <0.50	ug/l 0.24J	ug/l <0.50 ug	ıg/l <0.50 ug/l
trans-1,2-Dichloroethene	NYTCL-8260-R NYTCL-8260-R			y/I 10J	ug/l	<2.5 ug	g/I <2.5	ug/l <2.5	ug/l <2.5	ug/I <	<2.5 ug/	<2.5 ug/					ug/l 1.1J		ug/l 0.76.				<2.5 ug/				ug/l 0.7		ıg/l 1.6J	ug/l 0.9	BJ ug/l <2.5	ig/l <2.5 u	ig/l <2.5	ug/l 1.3J	ug/l <2.5 ug	الار <2.5 ug/l
Trichloroethene 1,2-Dichlorobenzene	NYTCL-8260-R			3/1 840 3/1 <12.	ug/I	<0.50 ug	g/I <0.50	ug/1 <0.50	ug/I 1.2	ug/1 <	<2.5 ug/	0.71 ug/	<0.50	1g/1 <0.50	ug/l <0.50 ug/l <2.5		ug/l 20 ug/l <2.5			ug/l 10 ug/l <2.5	ug/I 0.34J		<2.5 ug/	1 1.2	ug/l 0.29J ug/l <2.5	ug/I <0.50	ug/l 1.4		Jg/l 63	ug/I 2	5 ug/l 2/ l	ig/i 11 U	ig/l 0.74	ug/I 24	ug/l 1.3 ug	1g/l <0.50 ug/l
1.3-Dichlorobenzene	NYTCL-8260-R			a/l <12.		-2.5 UC	g/i <2.5	ug/1 <2.5	ug/l <2.5	ug/i	<2.5 ug/	-2.5 ug/	<2.5	19/1 <2.5						ug/l <2.5			<2.5 ug/			ug/l <2.5	ug/l <2.		19/1 <2.5	ug/l <2	5 ug/l <2.5	ig/1 <2.5 U	19/1 -2.5	ug/1 <2.5	ug/i <2.5 us	g/1 <2.5 ug/l
1,4-Dichlorobenzene	NYTCL-8260-R			yl <12.		<2.5 uc	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <	<2.5 ug/	<2.5 ug/	<2.5				ug/l <2.5			ug/1 <2.5						ug/l <2.5			ug/l <2.5	ug/1 <2	5 ug/l <2.5	1g/1 <2.5 U	10/1 <2.5	ug/l <2.5	ug/l <2.5 us	1g/1 <2.5 ug/l
Methyl tert butyl ether	NYTCL-8260-R		10 10	yl <12	ug/l	<2.5 UC	0/1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <	<2.5 ug/	<2.5 ug/	<2.5	10/1 <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/l <2.5	ug/l <2.5	ugil <2.5	ug/l <2.5	ug/i	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/ <2.	5 ug/l <6.2	10/1 <2.5	ug/l <2	5 ug/l <2.5	Ig/I <2.5 U	in/l <2.5	ug/l <2.5	ug/l <2.5 us	o/l <2.5 ug/l
p/m-Xylene	NYTCL-8260-R		- ug	ı√l <12.	ug/I	<2.5 ug	g/I <2.5	ug/l <2.5	ug/l <2.5	ug/I <	<2.5 ug/	<2.5 ug/	<2.5	Jg/l <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	Jg/l <2.5	ug/l <2	5 ug/l <2.5 I	ig/l <2.5 u	ıg/I <2.5	ug/l <2.5	ug/l <2.5 ug	ıg/l <2.5 ug/l
o-Xylene	NYTCL-8260-R	2 5	- ug	g/l <12.	ug/I	<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/I <	<2.5 ug/	<2.5 ug/	<2.5	ıg/l <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/1 <2.5	ug/l <2.5	ug/I <2.5	ug/l <2.5	ug/l	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	ug/l <2.5	ug/l <2	5 ug/l <2.5 I	ig/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	g/I <2.5 ug/I
cis-1,2-Dichloroethene	NYTCL-8260-R		- us	y/ 130	ug/I	<2.5 up	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/I	61 ug/	28 ug/	<2.5	Jg/l <2.5	ug/l <2.5	ug/l 170	ug/l 100	ug/I 0.92J	ug/l 79	ug/I 5.6	ug/l 31	ug/I	72 ug/	5.1	ug/l <2.5	ug/l <2.5	ug/l 13	ug/l 130	Jg/I 180	ug/l 68	ug/I 7.6	ıg/l 42 u	ıg/I 51	ug/l 160	ug/l 4.9 us	g/I <2.5 ug/I
Styrene	NYTCL-8260-R			3/I <12.		<2.5 ug	g/l <2.5	ug/l <2.5			<2.5 ug/			ıg/l <2.5			ug/l <2.5			i ug/l <2.5			<2.5 ug/			ug/l <2.5			ug/I <2.5	ug/l <2		ıg/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	g/l <2.5 ug/l
Dichlorodifluoromethane	NYTCL-8260-R		- ug	y/l <25.	ug/l	<5.0 ug	g/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <	<5.0 ug/	<5.0 ug/	<5.0	ıg/l <5.0	ug/l <5.0	ug/l <12.	ug/l <5.0	ug/1 <5.0		ug/I <5.0	ug/l <5.0	ug/l	<5.0 ug/	<5.0	ug/l <5.0	ug/l <5.0	ug/l <5.	0 ug/l <12.	ug/l <5.0	ug/l <5	0 ug/l <5.0	ıg/l <5.0 u	ıg/l <5.0	ug/l <5.0	ug/l <5.0 ug	a/l <5.0 ug/l
Acetone	NYTCL-8260-R		50 ug	y/I <25.	ug/l	<5.0 ug	g/l 1.5J	ug/I <5.0	ug/l 3.4J	ug/I 2	2.0J ug/	<5.0 ug/	<5.0	ıg/l <5.0	ug/l <5.0	ug/l <12.	ug/l <5.0	ug/1 <5.0	ug/l <5.0		ug/l <5.0	ug/l	<5.0 ug/	1 <5.0	ug/l <5.0	ug/l <5.0	ug/l <5.	0 ug/l <12.	ıg/l <5.0	ug/l <5	0 ug/l <5.0 i	ig/I <5.0 u	ig/l <5.0	ug/l <5.0	ug/l <5.0 ug	الار <5.0 ug/l
Carbon disulfide	NYTCL-8260-R NYTCL-8260-R		60 ug	yı <25.	ug/I	<5.0 ug	g/l <5.0	ug/l <5.0	ug/l <5.0	ug/I <	<5.0 ug/	<5.0 ug/	<5.0	ıg/l <5.0	ug/l <5.0	ug/l <12.	ug/l <5.0	ug/I <5.0	ug/l <5.0	ug/l <5.0	ug/I 1.0J	ug/l	<5.0 ug/	<5.0	ug/l <5.0	ug/l <5.0	ug/1 <5.	0 ug/l <12.	ug/I <5.0	ug/l <5	0 ug/l <5.0	ig/l <5.0 u	ig/l <5.0	ug/i <5.0	ug/i <5.0 Ug	3/1 <5.0 ug/l
2-Butanone	NYTCL-8260-R		50 U	3/1 <25. 3/1 <25.	ug/I	<5.0 uc	g/I <5.0	ug/I <5.0 ug/I <5.0	ug/I <5.0	ug/I <	<5.0 ug/	<5.0 Ug/	<5.0	10/1 <5.0 10/1 <5.0	ug/l <5.0 ug/l <5.0	ug/I <12. ug/I <12.	ug/l <5.0	ug/1 <5.0	ug/I <5.0	0 ug/l <5.0 0 ug/l <5.0	ug/I <5.0	ug/I	<5.0 ug/	1 <5.0	ug/1 <5.0 ug/1 <5.0	ug/I <5.0	ug/l <5.	0 ug/l <12. 0 ug/l <12.	JQ/I <5.0 JQ/I <5.0	ug/I <5	0 ug/l <5.0 l	1g/1 <5.0 U	ig/I <5.0	ug/I <5.0	ug/l <5.0 ug	ig/I <5.0 ug/I
4-Methyl-2-pentanone 2-Hexanone	NYTCL-8260-R		50 U	yl <25.	ug/i	<5.0 ug	g/I <5.0	ug/1 <5.0	ug/I <5.0	ug/i <	<5.0 ug/	<5.0 ug/	<5.0	1g/1 <5.0	ug/i <5.0	ug/I <12.	ug/i <5.0		ug/l <5.0		ug/I <5.0	ug/i	<5.0 ug/	1 <5.0	ug/i <5.0	ug/I <5.0	ug/i <5.	0 ug/l <12.	1g/1 <5.0	ug/i <5	0 ug/l <5.0 l	1g/1 <5.0 U	ig/i <5.0	ug/i <5.0	ug/i <5.0 ug	yr <5.0 ug/r
Bromochloromethane	NYTCL-8260-R		- 110	yl <12	ug/l	<2.5 uc	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l s	<2.5 ug/	<2.5 ug/	<2.5	10/1 <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/1 <2.5		ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2	5 ug/l <6.2	JQ/I <2.5	ug/l <2	5 ug/l <2.5	ig/1 <2.5 u	ig/l <2.5	ug/l <2.5	ug/l <2.5 us	n/l <2.5 ug/l
1,2-Dibromoethane	NYTCL-8260-R		- u	a/I <10.	ug/l	<2.0 uc	g/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <	<2.0 ug/	<2.0 ug/	<2.0	ig/1 <2.0	ug/l <2.0		ug/l <2.0		ug/l <2.0		ug/l <2.0	ug/I	<2.0 ug/	1 <2.0		ug/l <2.0	ug/l <2.	0 ug/l <5.0	ug/l <2.0	ug/1 <2	0 ug/l <2.0	ig/l <2.0 u		ug/l <2.0	ug/l <2.0 ug	\(\frac{1}{2.0}
1,2-Dibromo-3-chloropropane	NYTCL-8260-R	2 0.04	- uc	a/l <12.	ug/l	<2.5 uc	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <	<2.5 ug/	<2.5 ug/	<2.5	ug/l <2.5			ug/l <2.5			ug/l <2.5	ug/l <2.5			1 <2.5		ug/l <2.5	ug/l <2.	5 ug/l <6.2	JQ/I <2.5	ug/l <2	5 ug/l <2.5	ig/l <2.5 u	ig/l <2.5	ug/l <2.5	ug/l <2.5 ug	a/l <2.5 ua/l
Isopropylbenzene	NYTCL-8260-R	2 5		3/I <12.	ug/l	<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <	<2.5 ug/	<2.5 ug/	<2.5	ıg/l <2.5	ug/l <2.5	ug/l <6.2	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/	<2.5	ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	ug/l <2.5	ug/l <2	5 ug/l <2.5	ıg/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	g/l <2.5 ug/l
1.2.3-Trichlorobenzene	NYTCL-8260-R	2 5	- ug	yl <12.	ug/l	<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5		<2.5 ug/	<2.5 ug/	<2.5	ıg/l <2.5	ug/l <2.5		ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.5	ug/l	<2.5 ug/	1 <2.5	ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	ug/l <2.5	ug/l <2	5 ug/l <2.5	ig/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	g/l <2.5 ug/l
1,2,4-Trichlorobenzene	NYTCL-8260-R			3/I <12.		<2.5 ug	g/l <2.5	ug/l <2.5	ug/l <2.5		<2.5 ug/	<2.5 ug/	<2.5	ıg/l <2.5	ug/l <2.5	ug/l <6.2		ug/l <2.5		ug/l <2.5			<2.5 ug/		ug/l <2.5	ug/l <2.5	ug/l <2.	5 ug/l <6.2	ug/l <2.5	ug/l <2	5 ug/l <2.5 I	ıg/l <2.5 u	ıg/l <2.5	ug/l <2.5	ug/l <2.5 ug	g/l <2.5 ug/l
Methyl Acetate	NYTCL-8260-R			y/l <10.		<2.0 ug	g/l <2.0	ug/l <2.0	ug/l <2.0	ug/l <	<2.0 ug/	<2.0 ug/	<2.0	ıg/l <2.0	ug/l <2.0	ug/l <5.0	ug/l <2.0	ug/l <2.0	ug/l <2.0	ug/I <2.0			<2.0 ug/				ug/l <2.		ug/l <2.0	ug/l <2		ıg/l <2.0 u	ıg/l <2.0	ug/l <2.0	ug/l <2.0 ug	a/l <2.0 ug/l
Cyclohexane	NYTCL-8260-R			y/l <50.		<10. ug	g/l <10.	ug/l <10.	ug/l <10.	ug/l <	<10. ug/	<10. ug/	<10.					ug/l <10.	ug/l <10.	. ug/l <10.		ug/I	<10. ug/	1 <10.			ug/l <10). ug/l <25.	ug/l <10.). ug/l <10. I	ıg/l <10. u		ug/l <10.	ug/l <10. ug	a/l <10. ug/l
1,4-Dioxane	NYTCL-8260-R		- ug	yl <1200		<250 ug	g/l <250	ug/l <250	ug/l <250	ug/I <	<250 ug/	<250 ug/	<250	ıg/l <250	ug/l <250	ug/l <620	ug/l <250	ug/l <250			ug/l <250	ug/l	<250 ug/		ug/l <250	ug/l <250	ug/l <25	- 100	ug/l <250	ug/l <25	0 ug/l <250	ig/l <250 u	ig/l <250	ug/l <250	ug/l <250 ug	ig/l <250 ug/l
Freon-113	NYTCL-8260-R NYTCL-8260-R		- ug	g/I <12.		<2.5 ug	g/I <2.5	ug/1 <2.5	ug/I <2.5	ug/1 <	<2.0 ug/	<2.5 ug/	<2.5	19/1 <2.5	ug/l <2.5	ug/i <6.2	ug/l <2.5	ug/I <2.5	ug/l <2.5		ug/I <2.5	ug/I	<2.5 ug/	1 <2.5	ug/i <2.5	ug/I <2.5	ug/1 <2.	5 ug/l <6.2). ug/l <25.	ag/1 <2.5	ug/I <2	5 Ug/I <2.5 I	ig/l <2.5 u	ig/l <2.5	ug/l <2.5	ug/l <2.5 ug	ig/l <2.5 ug/l
Methyl cyclohexane	INT ICL-0260-R	- 1	- u	yl <50.	pr ru.q	NIU. UÇ	g/l <10.	ug/l <10.	ug/II <10.	ug/1 <	<10. ug/	<10. ug/	<10.	ıg/l <10	ug/l <10.	ug/l <25.	ug/l <10.	ug/II <10.	ug/i <10.	. ug/l <10.	ug/r <10.	ug/i	<10. ug/	l <10.	ug/l <10.	ug/I <10.	ug/1 <10	l. ug/l <25.	ıg/l 0.44J	ug/I <1). ug/l <10.	igrij <10. U	grij <10.	ugri <10.	ugn <10. U	gri <10. Ug/l

FIGURES

MW-21 765.36 **(** MW-19R 766.85 NORTHMW-18 767.79 MW-16 767.83 G-3 769.67 MW-17 767.05 MW-6 MW-20 768.74 768.18 MW-7 767.99 G-2 768.30 MW-15 768.13 G-1 768.33 MW-14 768.13 MW-4 771.83 MW-8 772.53 MW-3 773.03 **⊕** MW−2 773.18 MW-9 774.36 120 FT MW-10 774.02 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS DESCRIPTION

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manage J. O'BRIEN Checked By: J. O'BRIEN Drawn By: C. WOOD Date Issued: 02/23/2022 Scale: 1" = 60'

14263.07

NOVEMBER 2021 WATER LEVEL CONTOUR MAP

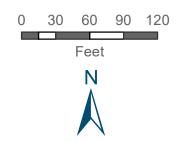
Drawing Number:

FIGURE 1

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY



BERGMANN

ARCHITECTS ENGINEERS PLANNERS

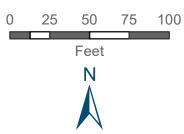
Figure 2

November 2021
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

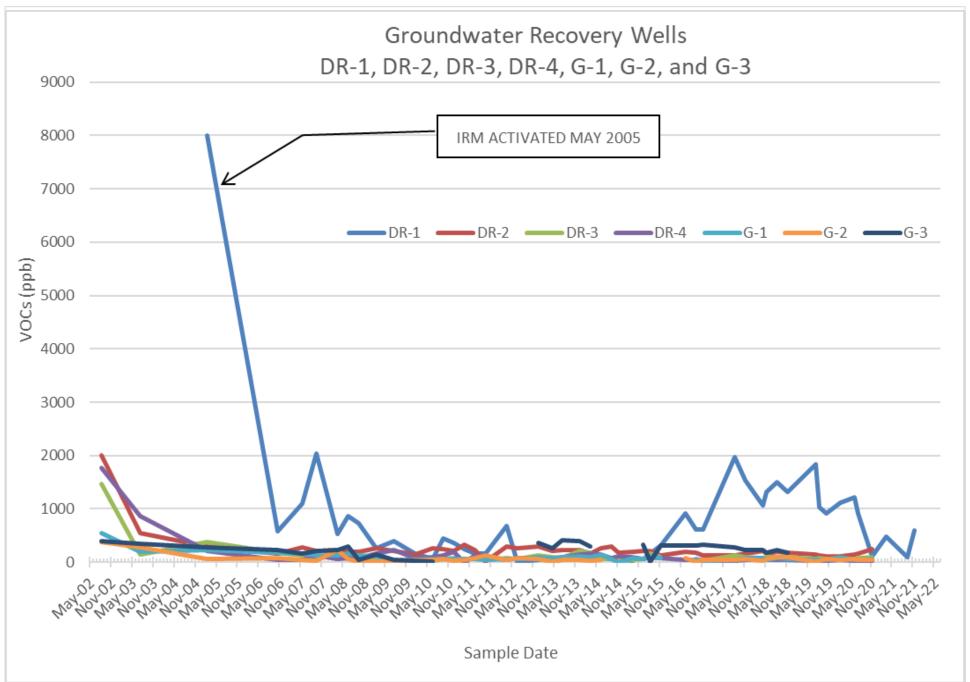
4 Industrial Place Gowanda, NY

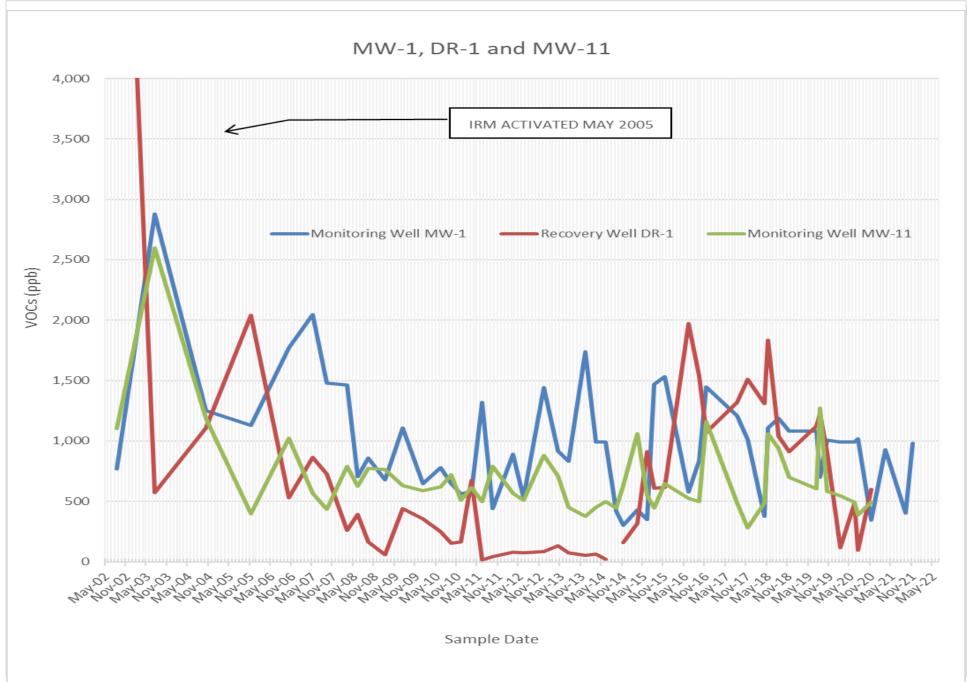


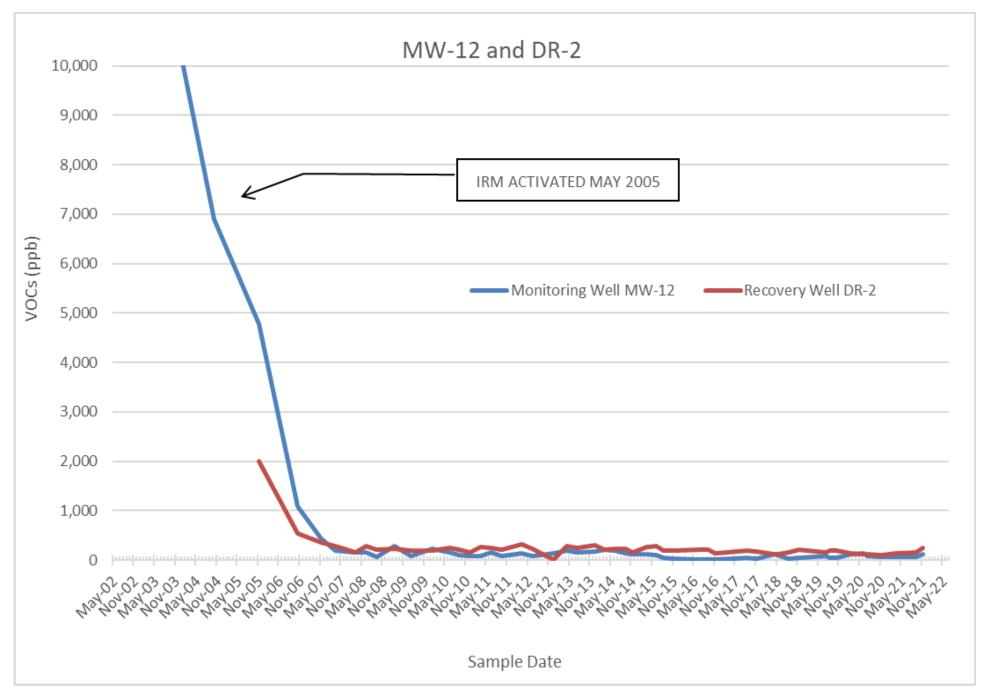
BERGMANN

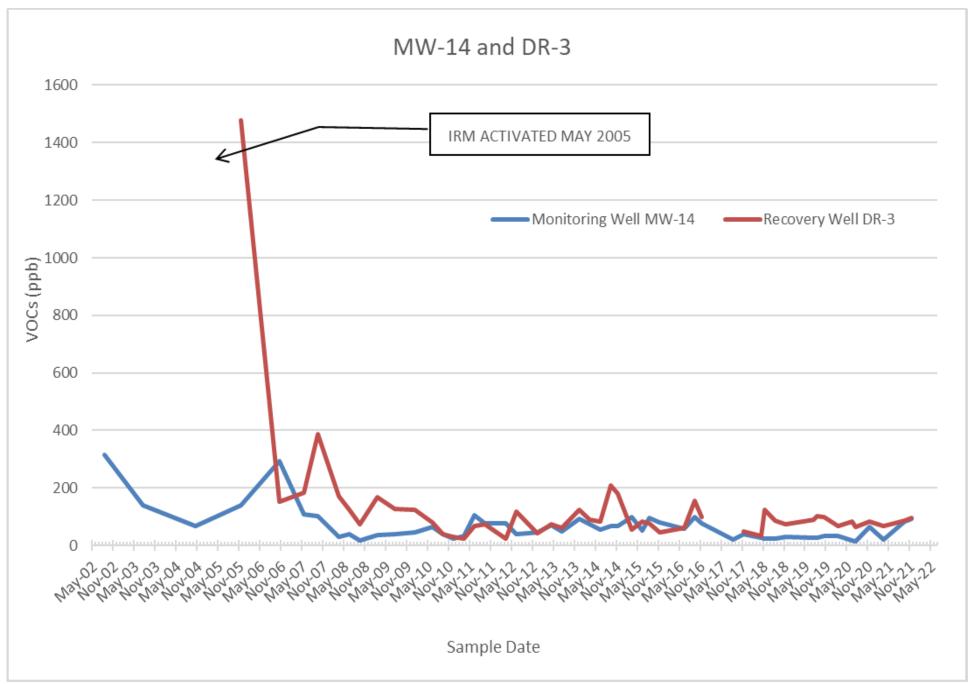
ADCHITECTS ENGINEEDS DIANNEDS

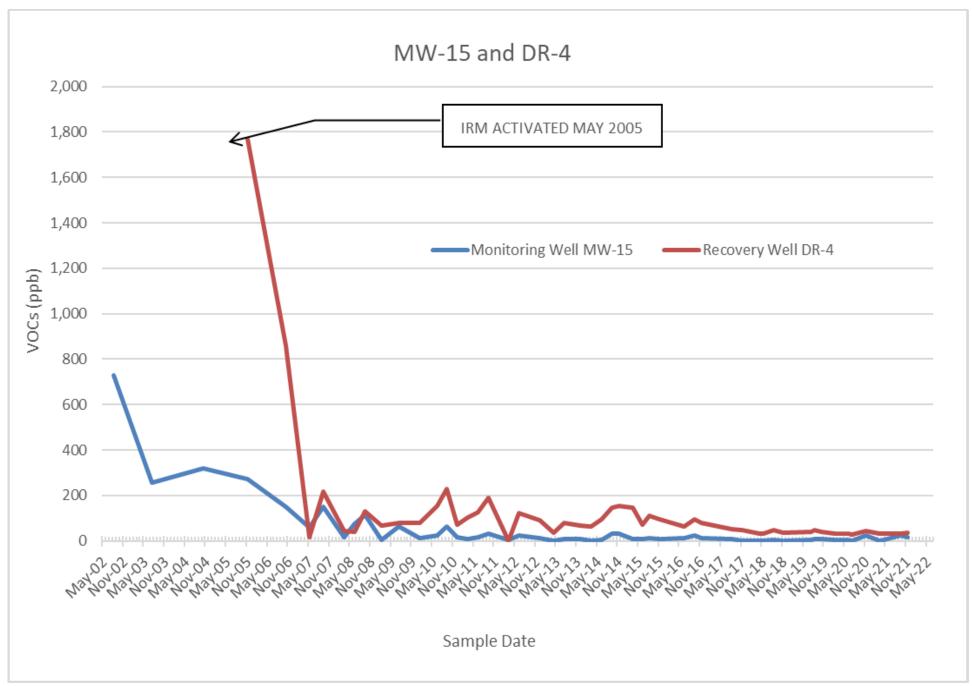
Figure 3

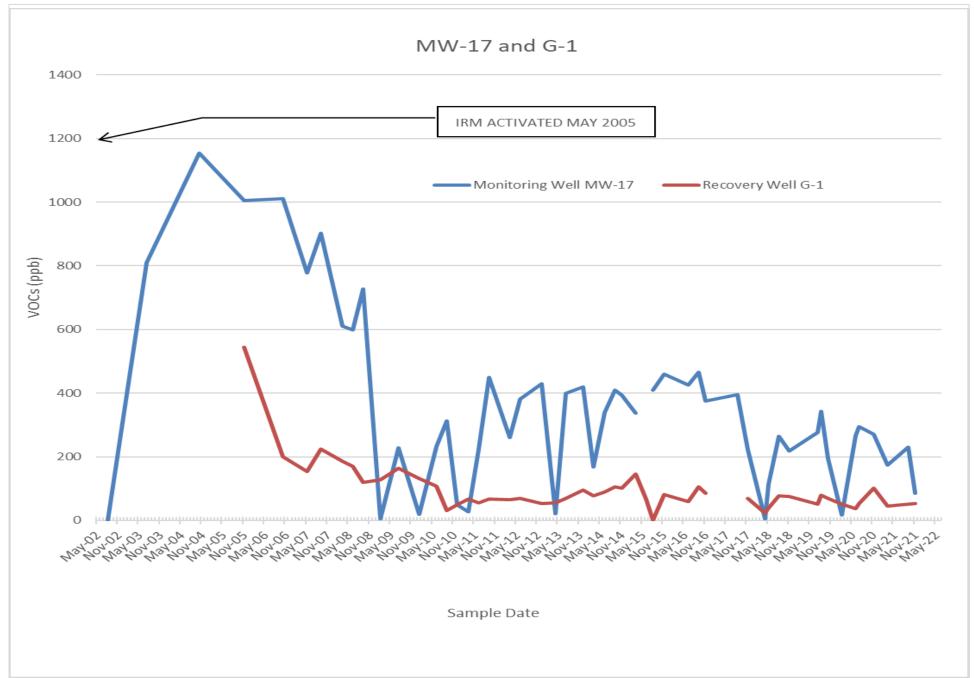

November 2021
Distribution of
Groundwater
Analytical Results:
Recovery Wells

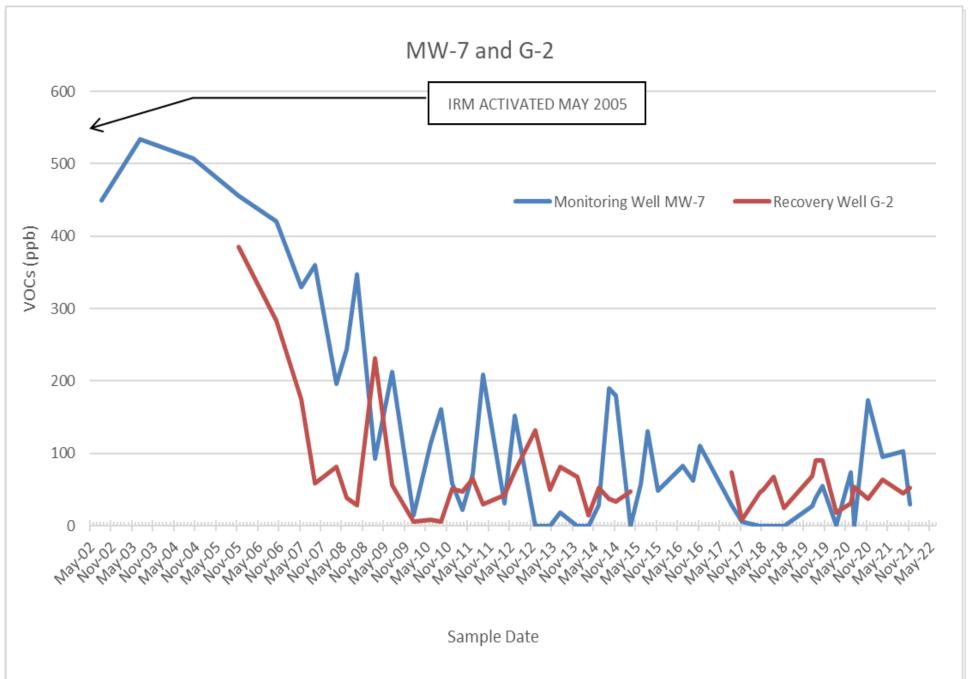


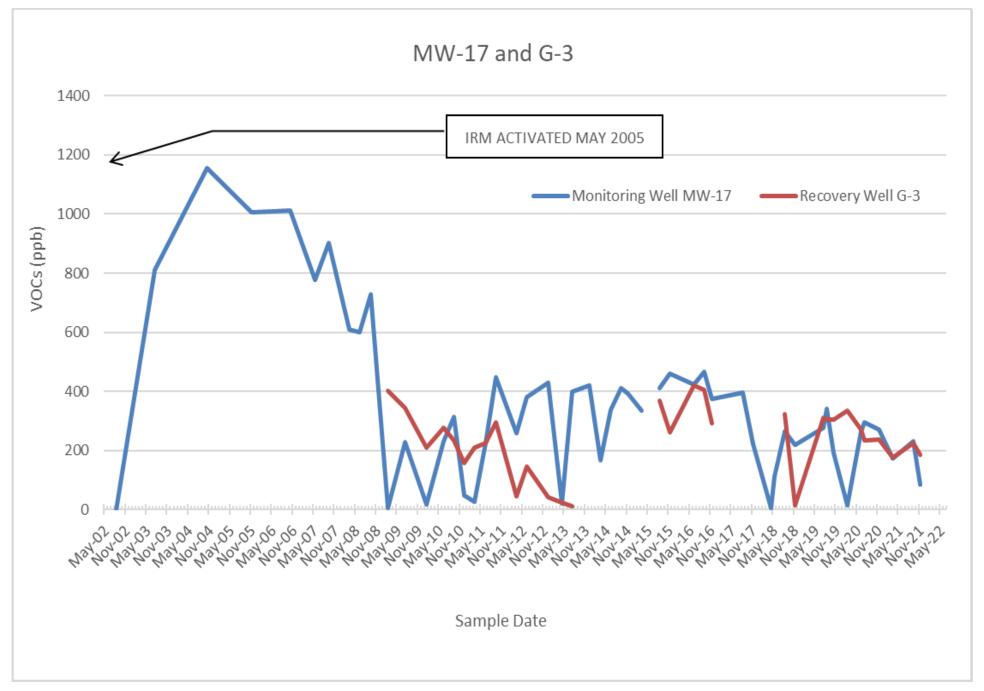

CHARTS











APPENDICES

APPENDIX A:

Laboratory Analytical Results Report - November 2021 Sampling Event

ANALYTICAL REPORT

Lab Number: L2164375

Client: Bergmann Associates

280 E Broad Street Rochester, NY 14604

ATTN: Ariadna Cheremeteff

Phone: (585) 498-7950

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Report Date: 12/07/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375 **Report Date:** 12/07/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2164375-01	MW-1	WATER	GOWANDA, NY	11/18/21 14:20	11/19/21
L2164375-02	MW-2	WATER	GOWANDA, NY	11/18/21 14:45	11/19/21
L2164375-03	MW-3	WATER	GOWANDA, NY	11/18/21 14:00	11/19/21
L2164375-04	MW-4	WATER	GOWANDA, NY	11/19/21 07:46	11/19/21
L2164375-05	MW-5	WATER	GOWANDA, NY	11/19/21 08:12	11/19/21
L2164375-06	MW-6	WATER	GOWANDA, NY	11/19/21 11:24	11/19/21
L2164375-07	MW-7	WATER	GOWANDA, NY	11/19/21 09:58	11/19/21
L2164375-08	MW-8	WATER	GOWANDA, NY	11/18/21 15:38	11/19/21
L2164375-09	MW-9	WATER	GOWANDA, NY	11/18/21 16:01	11/19/21
L2164375-10	MW-10	WATER	GOWANDA, NY	11/18/21 15:22	11/19/21
L2164375-11	MW-11	WATER	GOWANDA, NY	11/18/21 13:07	11/19/21
L2164375-12	MW-12	WATER	GOWANDA, NY	11/18/21 12:27	11/19/21
L2164375-13	MW-13	WATER	GOWANDA, NY	11/18/21 12:45	11/19/21
L2164375-14	MW-14	WATER	GOWANDA, NY	11/18/21 11:02	11/19/21
L2164375-15	MW-15	WATER	GOWANDA, NY	11/18/21 10:15	11/19/21
L2164375-16	MW-16	WATER	GOWANDA, NY	11/18/21 16:22	11/19/21
L2164375-17	MW-17	WATER	GOWANDA, NY	11/19/21 11:05	11/19/21
L2164375-18	MW-18	WATER	GOWANDA, NY	11/19/21 09:36	11/19/21
L2164375-19	MW-19R	WATER	GOWANDA, NY	11/19/21 08:45	11/19/21
L2164375-20	MW-20	WATER	GOWANDA, NY	11/19/21 08:01	11/19/21
L2164375-21	MW-21	WATER	GOWANDA, NY	11/19/21 09:04	11/19/21
L2164375-22	DR-1	WATER	GOWANDA, NY	11/18/21 13:36	11/19/21
L2164375-23	DR-2	WATER	GOWANDA, NY	11/18/21 12:10	11/19/21
P2984395124	DR-3	WATER	GOWANDA, NY	11/18/21 11:35	11/19/21

Alpha			Sample	Serial_No Collection	:12072107:52
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L2164375-25	DR-4	WATER	GOWANDA, NY	11/18/21 10:46	11/19/21
L2164375-26	G-1	WATER	GOWANDA, NY	11/18/21 09:56	11/19/21
L2164375-27	G-2	WATER	GOWANDA, NY	11/18/21 09:20	11/19/21
L2164375-28	G-3	WATER	GOWANDA, NY	11/19/21 10:42	11/19/21
L2164375-29	EQUIPMENT BLANK	WATER	GOWANDA, NY	11/19/21 11:30	11/19/21
L2164375-30	MW-X	WATER	GOWANDA, NY	11/19/21 00:00	11/19/21
L2164375-31	TRIP BLANK	WATER	GOWANDA, NY	11/19/21 00:00	11/19/21

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08 Report Date: 12/07/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08 Report Date: 12/07/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2164375-01: The collection date and time on the chain of custody was 18-NOV-21 14:45; however, the collection date/time on the container label was 18-NOV-21 14:20. At the client's request, the collection date/time is reported as 18-NOV-21 14:20.

L2164375-02: The collection date and time on the chain of custody was 18-NOV-21 14:20; however, the collection date/time on the container label was 18-NOV-21 14:45. At the client's request, the collection date/time is reported as 18-NOV-21 14:45.

Volatile Organics

L2164375-01D, -11D, and -22D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2164375-06: The sample was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

The WG1577775-4 LCSD recovery, associated with L2164375-04, -06, -07, -10 through -17, and -22D through -27, is above the individual acceptance criteria for acetone (160%), but within the overall method allowances. The results of the associated samples are reported; however, all positive detects for these compounds are considered to have a potentially high bias.

The WG1577775-3/-4 LCS/LCSD RPD, associated with L2164375-04, -06, -07, -10 through -17, and -22D through -27, is above the acceptance criteria for 2-hexanone (21%).

The WG1578292-3 LCS recovery, associated with L2164375-18 through -21, -28, and -29, is below the individual acceptance criteria for methyl acetate (68%), but within the overall method allowances. The results of the associated samples are reported; however, all results for these compounds are considered to have a potentially low bias.

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08 Report Date: 12/07/21

Case Narrative (continued)

The WG1578292-3/-4 LCS/LCSD RPD, associated with L2164375-18 through -21, -28, and -29, is above the acceptance criteria for acetone (21%).

The WG1578855-4 LCSD recoveries, associated with L2164375-05 and -30, are outside the acceptance criteria for individual target compounds, but within the overall method allowances. The results of the associated samples are reported; however, all results are considered to have a potentially high bias for acetone (150%) and 2-butanone (140%).

The WG1578855-3/-4 LCS/LCSD RPD, associated with L2164375-05 and -30, is above the acceptance criteria for acetone (22%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/07/21

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 14:20

Lab ID: L2164375-01 D

Client ID: MW-1

Sample Location: GOWANDA, NY

Field Prep:

Date Received:

Lab Number:

Report Date:

11/19/21 Not Specified

L2164375

12/07/21

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 19:47

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	ND		ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	ND		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
1,3-Dichloropropene, Total	ND		ug/l	2.5	0.72	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	ND		ug/l	2.5	0.80	5	
Toluene	ND		ug/l	12	3.5	5	
Ethylbenzene	ND		ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	0.46	J	ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	10	J	ug/l	12	3.5	5	
Trichloroethene	840		ug/l	2.5	0.88	5	

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 14:20

Report Date:

Lab ID: L2164375-01 D

Client ID: Date Received: 11/19/21 MW-1

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
Xylenes, Total	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	130		ug/l	12	3.5	5
1,2-Dichloroethene, Total	140	J	ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	ND		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
n-Butylbenzene	ND		ug/l	12	3.5	5
sec-Butylbenzene	ND		ug/l	12	3.5	5
tert-Butylbenzene	ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	ND		ug/l	12	3.5	5
p-Isopropyltoluene	ND		ug/l	12	3.5	5
Naphthalene	ND		ug/l	12	3.5	5
n-Propylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	ND		ug/l	12	3.5	5
1,2,4-Trimethylbenzene	ND		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	ND		ug/l	50	1.4	5
1,4-Dioxane	ND		ug/l	1200	300	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	ND		ug/l	50	2.0	5

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: D Date Collected: 11/18/21 14:20 L2164375-01

Date Received: Client ID: 11/19/21 MW-1 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	106	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-02

GOWANDA, NY

MW-2

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 14:45

Report Date:

Lab Number:

Date Received: 11/19/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 19:27

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: L2164375-02 11/18/21 14:45

Client ID: MW-2 Date Received: 11/19/21 Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 14:45 L2164375-02

Date Received: Client ID: 11/19/21 MW-2 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	112	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 14:00

Lab Number:

Report Date:

L2164375-03

Client ID: Date Received: 11/19/21 MW-3 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 19:07

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

L2164375-03

SAMPLE RESULTS

Date Collected: 11/18/21 14:00

Report Date:

Client ID: MW-3 Date Received: 11/19/21

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 14:00 L2164375-03

Date Received: Client ID: 11/19/21 MW-3 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	110	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2164375-04 Date Collected: 11/19/21 07:46

Client ID: MW-4

Date Received: 11/19/21 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 20:25

Analyst: PD

Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 Dibromochloromethane ND ug/l 0.50 0.15 1 Tetrachloroethane ND ug/l 0.50 0.16 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.13 1 Trichloroethane ND ug/l 0.50 0.19 1 Trichloroethane ND ug/l 0.50 0.10 1 Trichloroethane ND ug/l 0.50 0.14 1 Trichloroethane ND ug/l 0.50 0.14 1 Trichloroethane ND ug/l 0.50 0.14 1 Trichloroethane ND ug/l 0.50 0.17 1 Tetrachloroethane ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.10 1 Toluene ND ug/l 0.50 0.10 1 Toluene ND ug/l 0.50 0.70 1 Tetrylbenzene ND ug/l 0.50 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborough Lab								
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzane ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l 0	Methylene chloride	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloropropane ND ug/l 1.0 0.14 1 1 1,1	Chloroform	ND		ug/l	2.5	0.70	1		
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,1,2-Trichloroethane ND Ug/l 1.5 0.50 1	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70	Dibromochloromethane	ND		ug/l	0.50	0.15	1		
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 <	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.17 1 Toluenethane ND ug/l 0.50 0.17 1	Tetrachloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	Chlorobenzene	ND		ug/l	2.5	0.70	1		
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Winyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.19</td> <td>1</td>	Bromodichloromethane	ND		ug/l	0.50	0.19	1		
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Bromoform	ND		ug/l	2.0	0.65	1		
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 trans-1,2-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Benzene	ND		ug/l	0.50	0.16	1		
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Toluene	ND		ug/l	2.5	0.70	1		
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Ethylbenzene	ND		ug/l	2.5	0.70	1		
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Chloromethane	ND		ug/l	2.5	0.70	1		
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Bromomethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Vinyl chloride	ND		ug/l	1.0	0.07	1		
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1		
U	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
Trichloroethene ND ug/l 0.50 0.18 1	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
	Trichloroethene	ND		ug/l	0.50	0.18	1		

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 07:46

Report Date:

Lab ID: L2164375-04 Client ID: Date Received: 11/19/21 MW-4

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 07:46 L2164375-04

Date Received: Client ID: 11/19/21 MW-4 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	116	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 08:12

Lab ID: L2164375-05

Client ID: MW-5

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/02/21 21:52

Analyst: PD

Methylene chloride	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborough Lab								
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1-Chlorobenzene ND ug/l 0.50 0.18 1 1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l <td< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></td<>	Methylene chloride	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofuthane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloropropane ND ug/l 1.0 0.14 1 1 1,1 1,1 1,1 1,1 1,1 1,1 1,2 1,1 1,1 1,2 1,1 1,1 1,2 1,1	Chloroform	ND		ug/l	2.5	0.70	1		
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,1,2-Trichloroethane ND Ug/l 1.5 0.50 1	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70	Dibromochloromethane	ND		ug/l	0.50	0.15	1		
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 <	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Trichlorofluoromethane	Tetrachloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1<	Chlorobenzene	ND		ug/l	2.5	0.70	1		
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Winyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Toluene ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.19</td> <td>1</td>	Bromodichloromethane	ND		ug/l	0.50	0.19	1		
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Bromoform	ND		ug/l	2.0	0.65	1		
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Benzene	ND		ug/l	0.50	0.16	1		
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Toluene	ND		ug/l	2.5	0.70	1		
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Ethylbenzene	ND		ug/l	2.5	0.70	1		
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Chloromethane	ND		ug/l	2.5	0.70	1		
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Bromomethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Vinyl chloride	ND		ug/l	1.0	0.07	1		
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1		
<u> </u>	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
Trichloroethene 1.2 ug/l 0.50 0.18 1	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
	Trichloroethene	1.2		ug/l	0.50	0.18	1		

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 08:12

Report Date:

Lab ID: L2164375-05 Client ID: Date Received: 11/19/21 MW-5

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westboroug	Volatile Organics by GC/MS - Westborough Lab								
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
Xylenes, Total	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	3.4	J	ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
n-Butylbenzene	ND		ug/l	2.5	0.70	1			
sec-Butylbenzene	ND		ug/l	2.5	0.70	1			
tert-Butylbenzene	ND		ug/l	2.5	0.70	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1			
Naphthalene	ND		ug/l	2.5	0.70	1			
n-Propylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 08:12 L2164375-05

Date Received: Client ID: 11/19/21 MW-5 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	116	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 11:24

Lab Number:

Report Date:

Lab ID: L2164375-06

Client ID: MW-6

Sample Location: GOWANDA, NY Date Received: 11/19/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 20:48

Analyst: PD

Volatile Organics by GC/MS - Westborough L Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND ND	ug/l ug/l	2.5	0.70	1
1,1-Dichloroethane Chloroform	ND ND			0.70	1
Chloroform	ND	ug/l			•
			2.5	0.70	1
Carbon tetrachloride	ND	ug/l	2.5	0.70	1
		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	51	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 11:24

Report Date:

Lab ID: L2164375-06 Client ID: Date Received: 11/19/21 MW-6

Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

rr -						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	61		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	61		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.0	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 11:24 L2164375-06

Date Received: Client ID: 11/19/21 MW-6 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	115	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 09:58

Lab ID: L2164375-07

Client ID: MW-7

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 21:11

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.44	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	0.71		ug/l	0.50	0.18	1		

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: L2164375-07 Date Collected: 11/19/21 09:58

Client ID: Date Received: 11/19/21 MW-7 Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	28		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	28		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 09:58 L2164375-07

Date Received: Client ID: 11/19/21 MW-7 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	114	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

11/18/21 15:38

Lab Number:

Report Date:

Lab ID: L2164375-08 Date Collected:

Client ID: MW-8

Date Received: 11/19/21 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 18:47

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: L2164375-08 11/18/21 15:38

Client ID: Date Received: 11/19/21 MW-8

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 15:38 L2164375-08

Date Received: Client ID: 11/19/21 MW-8 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	108	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 16:01

Lab Number:

Report Date:

Date Received: 11/19/21 Field Prep: Not Specified

Sample Location:

Lab ID:

Client ID:

GOWANDA, NY

L2164375-09

MW-9

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 18:27

Analyst: PD

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1-2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.18 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzere ND ug/l 0.50 0.18 1 Trichlorotethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.1	olatile Organics by GC/MS - Westbo	orough Lab						
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50<	Methylene chloride	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l	,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 <td>chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	chloroform	ND		ug/l	2.5	0.70	1	
Ditromochloromethane ND ug/l 0.50 0.15 1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16	,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 <td>ibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td> <td></td>	ibromochloromethane	ND		ug/l	0.50	0.15	1	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70	,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70	etrachloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	Chlorobenzene	ND		ug/l	2.5	0.70	1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	richlorofluoromethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romodichloromethane	ND		ug/l	0.50	0.19	1	
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	ans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	is-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romoform	ND		ug/l	2.0	0.65	1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	enzene	ND		ug/l	0.50	0.16	1	
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	oluene	ND		ug/l	2.5	0.70	1	
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	thylbenzene	ND		ug/l	2.5	0.70	1	
Vinyl chloride ND ug/l 1.0 0.07 1	chloromethane	ND		ug/l	2.5	0.70	1	
	romomethane	ND		ug/l	2.5	0.70	1	
	inyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	ans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene ND ug/l 0.50 0.18 1	richloroethene	ND		ug/l	0.50	0.18	1	

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08

L2164375-09

MW-9

SAMPLE RESULTS

Date Collected: 11/18/21 16:01

Date Received: 11/19/21

Report Date:

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

F F						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 16:01 L2164375-09

Date Received: Client ID: 11/19/21 MW-9 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	109	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-10

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 15:22

Lab Number:

Report Date:

Client ID: Date Received: 11/19/21 MW-10 Field Prep: Sample Location: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 21:34

PD Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 15:22

Report Date:

Lab ID: L2164375-10

Client ID: MW-10 Date Received: 11/19/21 GOWANDA, NY Field Prep: Sample Location: Not Specified

Sample Depth:

MDL Result Qualifier Units RL **Dilution Factor Parameter** Volatile Organics by GC/MS - Westborough Lab 1,2-Dichlorobenzene ND 2.5 0.70 1 ug/l 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND 2.5 0.70 1 ug/l p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 ND 1 Acetone ug/l 5.0 1.5 Carbon disulfide ND 5.0 1.0 1 ug/l ND 2-Butanone ug/l 5.0 1.9 1 ND 4-Methyl-2-pentanone 5.0 1.0 1 ug/l ND 5.0 1.0 1 2-Hexanone ug/l Bromochloromethane ND ug/l 2.5 0.70 1 ND 2.0 1 1,2-Dibromoethane 0.65 ug/l n-Butylbenzene ND 2.5 0.70 1 ug/l sec-Butylbenzene ND 2.5 0.70 1 ug/l ND 2.5 tert-Butylbenzene 0.70 1 ug/l 1,2-Dibromo-3-chloropropane ND 2.5 0.70 1 ug/l ND 1 Isopropylbenzene 2.5 0.70 ug/l p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND 2.5 0.70 1 ug/l ND 2.5 1 n-Propylbenzene 0.70 ug/l 1,2,3-Trichlorobenzene ND 2.5 0.70 1 ug/l 1,2,4-Trichlorobenzene ND 2.5 0.70 1 ug/l ND 1,3,5-Trimethylbenzene 2.5 0.70 1 ug/l 1,2,4-Trimethylbenzene ND 2.5 0.70 1 ug/l ND Methyl Acetate ug/l 2.0 0.23 1 Cyclohexane ND 10 0.27 1 ug/l 1,4-Dioxane ND 250 61. 1 ug/l Freon-113 ND 2.5 0.70 1 ug/l ND 10 0.40 1 Methyl cyclohexane ug/l

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 15:22 L2164375-10

Date Received: Client ID: 11/19/21 MW-10 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	116	70-130	

L2164375

12/07/21

Not Specified

11/19/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 13:07

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2164375-11 D
Client ID: MW-11

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 02:11

Analyst: PD

Volatile Organics by GC/MS - Westboroug Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND	ug/l ug/l ug/l ug/l	6.2 6.2 6.2	1.8 1.8 1.8	2.5 2.5	
1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND	ug/l ug/l	6.2	1.8	2.5	
Chloroform Carbon tetrachloride	ND ND ND	ug/l				
Carbon tetrachloride	ND ND	-	6.2	1.8		
	ND	ua/l			2.5	
1,2-Dichloropropane		- 3	1.2	0.34	2.5	
	ND	ug/l	2.5	0.34	2.5	
Dibromochloromethane		ug/l	1.2	0.37	2.5	
1,1,2-Trichloroethane	ND	ug/l	3.8	1.2	2.5	
Tetrachloroethene	ND	ug/l	1.2	0.45	2.5	
Chlorobenzene	ND	ug/l	6.2	1.8	2.5	
Trichlorofluoromethane	ND	ug/l	6.2	1.8	2.5	
1,2-Dichloroethane	ND	ug/l	1.2	0.33	2.5	
1,1,1-Trichloroethane	ND	ug/l	6.2	1.8	2.5	
Bromodichloromethane	ND	ug/l	1.2	0.48	2.5	
trans-1,3-Dichloropropene	ND	ug/l	1.2	0.41	2.5	
cis-1,3-Dichloropropene	ND	ug/l	1.2	0.36	2.5	
1,3-Dichloropropene, Total	ND	ug/l	1.2	0.36	2.5	
Bromoform	ND	ug/l	5.0	1.6	2.5	
1,1,2,2-Tetrachloroethane	ND	ug/l	1.2	0.42	2.5	
Benzene	ND	ug/l	1.2	0.40	2.5	
Toluene	ND	ug/l	6.2	1.8	2.5	
Ethylbenzene	ND	ug/l	6.2	1.8	2.5	
Chloromethane	ND	ug/l	6.2	1.8	2.5	
Bromomethane	ND	ug/l	6.2	1.8	2.5	
Vinyl chloride	6.0	ug/l	2.5	0.18	2.5	
Chloroethane	ND	ug/l	6.2	1.8	2.5	
1,1-Dichloroethene	ND	ug/l	1.2	0.42	2.5	
trans-1,2-Dichloroethene	9.4	ug/l	6.2	1.8	2.5	
Trichloroethene	310	ug/l	1.2	0.44	2.5	

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 13:07

Lab ID: L2164375-11 D
Client ID: MW-11

Date Received: 11/19/21

Report Date:

Sample Location: GOWANDA, NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
1,2-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5
1,3-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5
Methyl tert butyl ether	ND	ug/l	6.2	1.8	2.5
p/m-Xylene	ND	ug/l	6.2	1.8	2.5
o-Xylene	ND	ug/l	6.2	1.8	2.5
Xylenes, Total	ND	ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene	170	ug/l	6.2	1.8	2.5
1,2-Dichloroethene, Total	180	ug/l	6.2	1.8	2.5
Styrene	ND	ug/l	6.2	1.8	2.5
Dichlorodifluoromethane	ND	ug/l	12	2.5	2.5
Acetone	ND	ug/l	12	3.6	2.5
Carbon disulfide	ND	ug/l	12	2.5	2.5
2-Butanone	ND	ug/l	12	4.8	2.5
4-Methyl-2-pentanone	ND	ug/l	12	2.5	2.5
2-Hexanone	ND	ug/l	12	2.5	2.5
Bromochloromethane	ND	ug/l	6.2	1.8	2.5
1,2-Dibromoethane	ND	ug/l	5.0	1.6	2.5
n-Butylbenzene	ND	ug/l	6.2	1.8	2.5
sec-Butylbenzene	ND	ug/l	6.2	1.8	2.5
tert-Butylbenzene	ND	ug/l	6.2	1.8	2.5
1,2-Dibromo-3-chloropropane	ND	ug/l	6.2	1.8	2.5
Isopropylbenzene	ND	ug/l	6.2	1.8	2.5
p-Isopropyltoluene	ND	ug/l	6.2	1.8	2.5
Naphthalene	ND	ug/l	6.2	1.8	2.5
n-Propylbenzene	ND	ug/l	6.2	1.8	2.5
1,2,3-Trichlorobenzene	ND	ug/l	6.2	1.8	2.5
1,2,4-Trichlorobenzene	ND	ug/l	6.2	1.8	2.5
1,3,5-Trimethylbenzene	ND	ug/l	6.2	1.8	2.5
1,2,4-Trimethylbenzene	ND	ug/l	6.2	1.8	2.5
Methyl Acetate	ND	ug/l	5.0	0.58	2.5
Cyclohexane	ND	ug/l	25	0.68	2.5
1,4-Dioxane	ND	ug/l	620	150	2.5
Freon-113	ND	ug/l	6.2	1.8	2.5
Methyl cyclohexane	ND	ug/l	25	0.99	2.5

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: D Date Collected: 11/18/21 13:07 L2164375-11

Date Received: Client ID: 11/19/21 MW-11 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	113	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 12:27

Lab ID: L2164375-12

Client ID: MW-12

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 21:57

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	4.3		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.17	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1
Trichloroethene	20		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

L2164375-12

SAMPLE RESULTS

Date Collected: 11/18/21 12:27

Report Date:

Client ID: Date Received: 11/19/21 MW-12

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	100		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	100	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 12:27 L2164375-12

Date Received: Client ID: 11/19/21 MW-12 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	116	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 11/18/21 12:45 L2164375-13

Client ID: MW-13

Date Received: 11/19/21 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 11/30/21 22:21

Analyst: PD

Volatile Organics by GC/MS - Westborough Methylene chloride	Lab _{ND}				
Methylene chloride	ND				
		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	0.91	ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 12:45

Report Date:

Lab ID: L2164375-13 Client ID: Date Received: 11/19/21 MW-13

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.92	J	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	0.92	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 12:45 L2164375-13

Date Received: Client ID: 11/19/21 MW-13 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	118	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-14

GOWANDA, NY

MW-14

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 11:02

AMPLE RESULTS

Lab Number:

Report Date:

Date Received: 11/19/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 22:44

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	2.2		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	0.19	J	ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	0.76	J	ug/l	2.5	0.70	1				
Trichloroethene	9.9		ug/l	0.50	0.18	1				

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 11:02

Report Date:

Lab ID: L2164375-14 Client ID: Date Received: 11/19/21 MW-14

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	79		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	80	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 11:02 L2164375-14

Date Received: Client ID: 11/19/21 MW-14 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	118	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 10:15

 Lab ID:
 L2164375-15
 Date of the part of the p

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 23:07

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by GC/MS - We	Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1					
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1					
Chloroform	ND		ug/l	2.5	0.70	1					
Carbon tetrachloride	ND		ug/l	0.50	0.13	1					
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1					
Dibromochloromethane	ND		ug/l	0.50	0.15	1					
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1					
Tetrachloroethene	ND		ug/l	0.50	0.18	1					
Chlorobenzene	ND		ug/l	2.5	0.70	1					
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1					
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1					
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1					
Bromodichloromethane	ND		ug/l	0.50	0.19	1					
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1					
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1					
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1					
Bromoform	ND		ug/l	2.0	0.65	1					
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1					
Benzene	ND		ug/l	0.50	0.16	1					
Toluene	ND		ug/l	2.5	0.70	1					
Ethylbenzene	ND		ug/l	2.5	0.70	1					
Chloromethane	ND		ug/l	2.5	0.70	1					
Bromomethane	ND		ug/l	2.5	0.70	1					
Vinyl chloride	ND		ug/l	1.0	0.07	1					
Chloroethane	ND		ug/l	2.5	0.70	1					
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1					
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1					
Trichloroethene	10		ug/l	0.50	0.18	1					

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 10:15

Report Date:

L2164375-15 Client ID: Date Received: 11/19/21 MW-15

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	5.6		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	5.6		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08

12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 10:15 L2164375-15

Date Received: Client ID: 11/19/21 MW-15 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	117	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 16:22

Lab ID: L2164375-16 Date Collected:

Client ID: MW-16

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 23:30

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.41	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.34	J	ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

L2164375-16

SAMPLE RESULTS

Date Collected: 11/18/21 16:22

Report Date:

Client ID: Date Received: 11/19/21 MW-16

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westboroug	Volatile Organics by GC/MS - Westborough Lab							
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1		
p/m-Xylene	ND		ug/l	2.5	0.70	1		
o-Xylene	ND		ug/l	2.5	0.70	1		
Xylenes, Total	ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene	31		ug/l	2.5	0.70	1		
1,2-Dichloroethene, Total	31		ug/l	2.5	0.70	1		
Styrene	ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1		
Acetone	ND		ug/l	5.0	1.5	1		
Carbon disulfide	1.0	J	ug/l	5.0	1.0	1		
2-Butanone	ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1		
2-Hexanone	ND		ug/l	5.0	1.0	1		
Bromochloromethane	ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1		
n-Butylbenzene	ND		ug/l	2.5	0.70	1		
sec-Butylbenzene	ND		ug/l	2.5	0.70	1		
tert-Butylbenzene	ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene	ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1		
Naphthalene	ND		ug/l	2.5	0.70	1		
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
Methyl Acetate	ND		ug/l	2.0	0.23	1		
Cyclohexane	ND		ug/l	10	0.27	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
Freon-113	ND		ug/l	2.5	0.70	1		
Methyl cyclohexane	ND		ug/l	10	0.40	1		

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 16:22 L2164375-16

Date Received: Client ID: 11/19/21 MW-16 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	118	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 11:05

Lab Number:

Report Date:

Lab ID: L2164375-17

Client ID: MW-17

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 11/30/21 23:53

Analyst: PD

Volatile Organics by GC/MS - Westboroug								
Totalio Organico Dy Comic Trocksoroug	Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	0.27	J	ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	13		ug/l	0.50	0.18	1		

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08

L2164375-17

MW-17

SAMPLE RESULTS

Date Collected: 11/19/21 11:05

Date Received: 11/19/21

Report Date:

GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	72		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	72		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 11:05 L2164375-17

Date Received: Client ID: 11/19/21 MW-17 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	118	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-18

GOWANDA, NY

MW-18

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 09:36

EE 11200210

Lab Number:

Report Date:

Date Received: 11/19/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 11:24

Analyst: PD

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane	ND ND ND		ug/l	2.5		
1,1-Dichloroethane	ND		ug/l	25		
				2.0	0.70	1
	ND		ug/l	2.5	0.70	1
Chloroform			ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.12	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.2		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

L2164375-18

SAMPLE RESULTS

Date Collected: 11/19/21 09:36

Report Date:

Client ID: Date Received: 11/19/21 MW-18 Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	5.1		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	5.1		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 09:36 L2164375-18

Date Received: Client ID: 11/19/21 MW-18 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	92	70-130
Dibromofluoromethane	112	70-130

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 08:45

Lab Number:

Report Date:

L2164375-19

Client ID: Date Received: 11/19/21 MW-19R Field Prep: Sample Location: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/01/21 11:44

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	0.25	J	ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	0.29	J	ug/l	0.50	0.18	1		

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 08:45

Report Date:

Lab ID: L2164375-19 Client ID: MW-19R Date Received: 11/19/21

Sample Location: Field Prep: Not Specified GOWANDA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 08:45 L2164375-19

Date Received: Client ID: 11/19/21 MW-19R Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	108	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 11/19/21 08:01 L2164375-20

Client ID: Date Received: 11/19/21 MW-20 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/01/21 12:04

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,1-2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Trichloroethane ND ug/l 0.50 0.18 1 1,1-1-Trichloroethane ND ug/l 0.50 0.18 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzere ND ug/l 0.50 0.18 1 Trichlorotethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.1	olatile Organics by GC/MS - Westbo	orough Lab						
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene, Total ND ug/l 0.50<	Methylene chloride	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l	,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroftuoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 <td>chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	chloroform	ND		ug/l	2.5	0.70	1	
Ditromochloromethane ND ug/l 0.50 0.15 1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16	,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 <td>ibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td> <td></td>	ibromochloromethane	ND		ug/l	0.50	0.15	1	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70	,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70	etrachloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	Chlorobenzene	ND		ug/l	2.5	0.70	1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	richlorofluoromethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1	,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romodichloromethane	ND		ug/l	0.50	0.19	1	
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	ans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	is-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	romoform	ND		ug/l	2.0	0.65	1	
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	enzene	ND		ug/l	0.50	0.16	1	
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	oluene	ND		ug/l	2.5	0.70	1	
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1	thylbenzene	ND		ug/l	2.5	0.70	1	
Vinyl chloride ND ug/l 1.0 0.07 1	chloromethane	ND		ug/l	2.5	0.70	1	
	romomethane	ND		ug/l	2.5	0.70	1	
	inyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	ans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene ND ug/l 0.50 0.18 1	richloroethene	ND		ug/l	0.50	0.18	1	

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08

L2164375-20

GOWANDA, NY

MW-20

SAMPLE RESULTS

Date Collected: 11/19/21 08:01

Date Received: 11/19/21

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 08:01 L2164375-20

Date Received: Client ID: 11/19/21 MW-20 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	114	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-21

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 09:04

Lab Number:

Report Date:

SAMIFLE RESOLTS

Client ID: MW-21 Date Received: 11/19/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 12:25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.16	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	0.71	J	ug/l	2.5	0.70	1	
Trichloroethene	1.4		ug/l	0.50	0.18	1	

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

L2164375-21

SAMPLE RESULTS

Date Collected: 11/19/21 09:04

Report Date:

Client ID: Date Received: 11/19/21 MW-21

Sample Location: Field Prep: Not Specified GOWANDA, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	13		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	14	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 09:04 L2164375-21

Date Received: Client ID: 11/19/21 MW-21 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	109	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 13:36

Lab ID: L2164375-22 D

Client ID: DR-1

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 03:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	15		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	3.6	J	ug/l	6.2	1.8	2.5
Trichloroethene	450		ug/l	1.2	0.44	2.5

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 13:36

Report Date:

Lab ID: L2164375-22 D Client ID: Date Received: DR-1

11/19/21 Sample Location: Field Prep: Not Specified GOWANDA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5
p/m-Xylene	ND		ug/l	6.2	1.8	2.5
o-Xylene	ND		ug/l	6.2	1.8	2.5
Xylenes, Total	ND		ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene	130		ug/l	6.2	1.8	2.5
1,2-Dichloroethene, Total	130	J	ug/l	6.2	1.8	2.5
Styrene	ND		ug/l	6.2	1.8	2.5
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5
Acetone	ND		ug/l	12	3.6	2.5
Carbon disulfide	ND		ug/l	12	2.5	2.5
2-Butanone	ND		ug/l	12	4.8	2.5
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5
2-Hexanone	ND		ug/l	12	2.5	2.5
Bromochloromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5
Naphthalene	ND		ug/l	6.2	1.8	2.5
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5
Methyl Acetate	ND		ug/l	5.0	0.58	2.5
Cyclohexane	ND		ug/l	25	0.68	2.5
1,4-Dioxane	ND		ug/l	620	150	2.5
Freon-113	ND		ug/l	6.2	1.8	2.5
Methyl cyclohexane	ND		ug/l	25	0.99	2.5

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 Report Date: 12/07/21

SAMPLE RESULTS

Lab ID: D Date Collected: 11/18/21 13:36 L2164375-22

Date Received: Client ID: 11/19/21 DR-1 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	111	70-130	

L2164375

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Report Date: 12/07/21

Lab Number:

Lab ID: L2164375-23 Date Collected: 11/18/21 12:10

Client ID: DR-2 Date Received: 11/19/21
Sample Location: GOWANDA, NY Field Prep: Not Specified

,

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 00:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	6.7		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.43	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.6	J	ug/l	2.5	0.70	1
Trichloroethene	63		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 12:10

Report Date:

Lab ID: L2164375-23 Client ID: Date Received: 11/19/21 DR-2

Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	180		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	180	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.44	J	ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 12:10 L2164375-23

Date Received: Client ID: 11/19/21 DR-2 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	117	70-130	

L2164375

11/19/21

Not Specified

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 11:35

Report Date: 12/07/21

Lab Number:

Date Received:

Field Prep:

Lab ID: L2164375-24

Client ID: DR-3

Sample Location: GOWANDA, NY

WANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 00:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbe	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.9		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.17	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.98	J	ug/l	2.5	0.70	1
Trichloroethene	23		ug/l	0.50	0.18	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: L2164375-24 Date Collected: 11/18/21 11:35

Client ID: Date Received: 11/19/21 DR-3 Sample Location: GOWANDA, NY Field Prep: Not Specified

1.4-Dichlorobenzene ND ugh 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene ND ugh 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab					
1.3-Dichlorobenzene ND ugrl 2.5 0.70 1 1.4-Dichlorobenzene 88 ugrl 2.5 0.70 1 1.2-Dichlorobenzene 88 ugrl 2.5 0.70 1 1.2-Dichlorobenzene ND ugrl 3.0 1.0 1 1.2-Dichlorobenzene ND ugrl 3.0 0.70 1 1.2-Dichlorobenzene ND ugrl	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl terb tuvly ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 cylyenes, Total ND ug/l 2.5 0.70 1 cylyenes, Total ND ug/l 2.5 0.70 1 1.2-Dichloroethene, Total 68 ug/l 2.5 0.70 1 1.2-Dichloroethene, Total 68 ug/l 2.5 0.70 1 Sylyene ND ug/l 2.5 0.70 1 Dichloroethene, Total ND ug/l 2.5 0.70 1 Acetone ND ug/l 2.5 0.70 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1	1,3-Dichlorobenzene	ND			2.5	0.70	1
Methyl teht buyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 xylene ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 68 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 69 J ug/l 2.5 0.70 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifloromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.9 1 Carbon disulfide ND ug/l 5.0 1.9 1 Carbon disulfide ND ug/l 5.0 1.9 1 Valuenone ND ug/l 5.0 1.0 1 E-bustone ND ug/l 2.0 0.65 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
o-Xylene ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene, Total 69 J ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 69 J ug/l 2.5 0.70 1 Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acatone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	Methyl tert butyl ether	ND			2.5	0.70	1
Xylenes, Total ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 68 ug/l 2.5 0.70 1 1,2-Dichloroethene, Total 69 J ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 2.5 0.70 1 2-Butanone ND ug/l 2.5 0.70 1 2-Butanone ND ug/l 2.5 0.70 1 1,2-Dibromosthane ND ug/l 2.5 0.70 1 <t< td=""><td>p/m-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	p/m-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene 68	o-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total 69	Xylenes, Total	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1_2-Dibromoethane ND ug/l 2.5 0.70 1 <td< td=""><td>cis-1,2-Dichloroethene</td><td>68</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></td<>	cis-1,2-Dichloroethene	68		ug/l	2.5	0.70	1
Dicklorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 Bromochloromethane ND ug/l 2.5 0.70 1 1-2-Dibromethane ND ug/l 2.5 0.70 1 1-	1,2-Dichloroethene, Total	69	J	ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Trinchlorobenzene ND ug/l 2.5 0.70 1 1-2-Trinchlorobenzene ND ug/l 2.5 0.70 1 1-2-4-Trinchlorobenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lasorpotylbenzene ND ug/l 2.5 0.70 1 lasorpotylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 6.0 1.9 1 4-Methyl-2-pentanone ND ug/l 6.0 1.0 1 2-Hexanone ND ug/l 6.0 1.0 1 2-Hexanone ND ug/l 6.0 1.0 1 Bromochloromethane ND ug/l 6.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-C-Butylbenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70	Bromochloromethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 250 61. 1 1,4-Dioxane ND ug/l 250 61. 1 1,5-Ereon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane ND ug/l 250 61. 1 Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
Freon-113 ND ug/l 2.5 0.70 1	Cyclohexane	ND		ug/l	10	0.27	1
	1,4-Dioxane	ND		ug/l	250	61.	1
Methyl cyclohexane ND un/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 11:35 L2164375-24

Date Received: Client ID: 11/19/21 DR-3 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	117	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-25

GOWANDA, NY

DR-4

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 10:46

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 01:02

Volatile Organics by GC/MS - Westborough La Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND	ug/l ug/l	2.5 2.5	0.70	1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND				1
Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND	ug/l	2.5		
Carbon tetrachloride 1,2-Dichloropropane				0.70	1
1,2-Dichloropropane	ND	ug/l	2.5	0.70	1
· · · ·		ug/l	0.50	0.13	1
Dibromochloromothano	ND	ug/l	1.0	0.14	1
Dibiomocniorometrarie	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	27	ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 10:46

Report Date:

Lab ID: L2164375-25 Client ID: Date Received: 11/19/21 DR-4

Sample Location: Field Prep: Not Specified GOWANDA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.6		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	7.6		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 10:46 L2164375-25

Date Received: Client ID: 11/19/21 DR-4 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	116	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-26

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 09:56

Lab Number:

Report Date:

5/1111 EE 1(E55E15

Client ID: G-1 Date Received: 11/19/21
Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 01:25

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Chloroform ND ug/l 0.50 0.13 1 L2-Dichloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.19 1 1,3-Dichloropropene	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.13 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Trichloroethane ND ug/l 0.50 0.18 1 1,12-Dichloroethane ND ug/l 0.50 0.18 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloropropene ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50	Volatile Organics by GC/MS - Westb	orough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorotluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.14 1 Bromodichloromethane ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND ug/l 1,0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorothane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene, Total ND ug/l 2.0 0.65 1 Bromoferm ND ug/l 2.0	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromotorm ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 2.5	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td>	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 <	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 2.5	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 1 1 1 1 1 1 1 1	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethene ND ug/l 2.5 0.70 1 Chloroethene ND ug/l 2.5 0.70 1 Chloroethene ND ug/l 0.50 0.17 1	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride 0.68 J ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Vinyl chloride	0.68	J	ug/l	1.0	0.07	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	Chloroethane	ND		ug/l	2.5	0.70	1
	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
Triphlarsethana 0.50 0.40 4	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Tricritoroeuriene 11 ug/l 0.50 0.18 1	Trichloroethene	11		ug/l	0.50	0.18	1

12/07/21

Report Date:

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Lab ID: L2164375-26 Date Collected: 11/18/21 09:56

Client ID: Date Received: 11/19/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	42		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	42		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 Report Date: 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 09:56 L2164375-26

Date Received: Client ID: 11/19/21 G-1 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	116	70-130	

L2164375

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/18/21 09:20

Report Date: 12/07/21

Lab ID: L2164375-27

Client ID: G-2

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 01:48

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.93	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.74		ug/l	0.50	0.18	1

12/07/21

Report Date:

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08

L2164375-27

SAMPLE RESULTS

Date Collected: 11/18/21 09:20

Client ID: G-2 Date Received: 11/19/21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	51		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	51		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: Report Date: 14263.08 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/18/21 09:20 L2164375-27

Date Received: Client ID: G-2 11/19/21 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	115	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 10:42

Lab ID: L2164375-28 Date Co

Client ID: G-3

Sample Location: GOWANDA, NY

Date Received: 11/19/21
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.50	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.24	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.3	J	ug/l	2.5	0.70	1
Trichloroethene	24		ug/l	0.50	0.18	1

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 10:42

Report Date:

Lab ID: L2164375-28 Date Collecte

Client ID: G-3 Date Received: 11/19/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	 1
Xylenes, Total	ND		ug/l	2.5	0.70	 1
cis-1,2-Dichloroethene	160		ug/l	2.5	0.70	 1
1,2-Dichloroethene, Total	160	J	ug/l	2.5	0.70	 1
Styrene	ND		ug/l	2.5	0.70	 1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	 1
Acetone	ND		ug/l	5.0	1.5	
Carbon disulfide	ND		ug/l	5.0	1.0	 1
2-Butanone	ND		ug/l	5.0	1.9	 1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	 1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 Report Date: 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 10:42 L2164375-28

Date Received: Client ID: 11/19/21 G-3 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	111	70-130	

L2164375

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

SAMPLE RESULTS

Report Date: 12/07/21

Lab Number:

Lab ID: L2164375-29 Date Collected: 11/19/21 11:30

Client ID: EQUIPMENT BLANK Date Received: 11/19/21 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/01/21 13:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

12/07/21

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 11:30

Report Date:

Lab ID: L2164375-29 Client ID: Date Received: 11/19/21 **EQUIPMENT BLANK** Sample Location: GOWANDA, NY

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 11:30 L2164375-29

Date Received: Client ID: 11/19/21 **EQUIPMENT BLANK** Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	113	70-130	

L2164375

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

L2164375-30

GOWANDA, NY

MW-X

Project Number: 14263.08

SAMPLE RESULTS

Date Collected: 11/19/21 00:00

Lab Number:

Report Date:

Date Received: 11/19/21
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/02/21 22:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.30	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.3		ug/l	0.50	0.18	1

12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08

L2164375-30

GOWANDA, NY

MW-X

SAMPLE RESULTS

Date Collected: 11/19/21 00:00

Date Received: 11/19/21

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.9		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	4.9		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: **GOWANDA DAY HABITATION Q4 2021** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

SAMPLE RESULTS

Lab ID: Date Collected: 11/19/21 00:00 L2164375-30

Date Received: Client ID: 11/19/21 MW-X Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	115	70-130	

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 **Report Date:** 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/30/21 19:38

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - /G1577775-5	Westborough Lab	o for sample(s):	04,06-07,10-17	22-27 Batch:	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/30/21 19:38

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - WG1577775-5	Westborough Lab	for sample(s):	04,06-07,10-17,22-2	27 Batch:
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/30/21 19:38

Analyst: LAC

Parameter	Result Q	ualifier Units	RL	MDL
Volatile Organics by GC/MS - West WG1577775-5	borough Lab fo	r sample(s): (04,06-07,10-17,22-2	?7 Batch:
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

	Acceptance
%Recovery Qu	alifier Criteria
112	70-130
99	70-130
95	70-130
114	70-130
	112 99 95

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/30/21 18:06

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03,08-09	Batch: WG1577802	2-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/30/21 18:06

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	01-03,08-09	Batch: WG1577802-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 11/30/21 18:06

Parameter	Result	Qualifier U	nits	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s	s): 01-03,0	08-09 Batch	: WG1577802-5
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	106		70-130
Toluene-d8	94		70-130
4-Bromofluorobenzene	91		70-130
Dibromofluoromethane	110		70-130

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/01/21 08:43

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s):	18-21,28-29	Batch: WG1578292-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/01/21 08:43

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	18-21,28-29	Batch: WG1578292-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/01/21 08:43

Analyst: PD

Volatile Organics by GC/MS - Westborough Lab for sample(s): 18-21,28-29 Batch: WG1578292-5 Methyl Acetate ND ug/l 2.0 0.23	ameter	Result Qua	lifier Units	RL	MDL
Methyl Acetate ND ug/l 2.0 0.23	tile Organics by GC/MS - West	borough Lab for s	sample(s): 18-2	1,28-29 Bato	ch: WG1578292-5
	ethyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane ND ug/l 10 0.27	vclohexane	ND	ug/l	10	0.27
1,4-Dioxane ND ug/l 250 61.	4-Dioxane	ND	ug/l	250	61.
Freon-113 ND ug/l 2.5 0.70	eon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane ND ug/l 10 0.40	ethyl cyclohexane	ND	ug/l	10	0.40

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	107		70-130	

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/21 18:23

arameter	Result Q	ualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab fo	or sample(s): 05,30	Batch:	WG1578855-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/21 18:23

Volatile Organics by GC/MS - Westborough Lab for sample(s): 05,30 Batch: WG1578855-5 1,3-Dichlorobenzene ND ug/l 2.5 0.70 1,4-Dichlorobenzene ND ug/l 2.5 0.70 Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylenes, Total ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l	
1,4-Dichlorobenzene ND ug/l 2.5 0.70 Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 <td></td>	
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70	
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 <td></td>	
o-Xylene ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70	
Dichlorodiffluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
1,2-Dibromoethane ND ug/l 2.0 0.65 n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
n-Butylbenzene ND ug/l 2.5 0.70 sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
sec-Butylbenzene ND ug/l 2.5 0.70 tert-Butylbenzene ND ug/l 2.5 0.70	
tert-Butylbenzene ND ug/l 2.5 0.70	
<u> </u>	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	
Isopropylbenzene ND ug/l 2.5 0.70	
p-Isopropyltoluene ND ug/l 2.5 0.70	
Naphthalene ND ug/l 2.5 0.70	
n-Propylbenzene ND ug/l 2.5 0.70	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70	
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70	

Project Name: GOWANDA DAY HABITATION Q4 2021 **Lab Number:** L2164375

Project Number: 14263.08 Report Date: 12/07/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/02/21 18:23

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	for sample(s): 05,30) Batch:	WG1578855-5	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	_
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	114		70-130	

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

arameter		LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS	- Westborough La	ab Associated	sample(s):	04,06-07,10-17,22-27	Batch:	WG1577775-3	WG1577775-	4	
Methylene chloride		100		100		70-130	0	20	
1,1-Dichloroethane		120		120		70-130	0	20	
Chloroform		100		100		70-130	0	20	
Carbon tetrachloride		92		91		63-132	1	20	
1,2-Dichloropropane		110		120		70-130	9	20	
Dibromochloromethane		93		99		63-130	6	20	
1,1,2-Trichloroethane		94		100		70-130	6	20	
Tetrachloroethene		100		100		70-130	0	20	
Chlorobenzene		110		110		75-130	0	20	
Trichlorofluoromethane		110		110		62-150	0	20	
1,2-Dichloroethane		110		110		70-130	0	20	
1,1,1-Trichloroethane		97		96		67-130	1	20	
Bromodichloromethane		95		96		67-130	1	20	
trans-1,3-Dichloropropene		84		89		70-130	6	20	
cis-1,3-Dichloropropene		90		94		70-130	4	20	
Bromoform		83		91		54-136	9	20	
1,1,2,2-Tetrachloroethane		94		100		67-130	6	20	
Benzene		100		100		70-130	0	20	
Toluene		100		100		70-130	0	20	
Ethylbenzene		100		100		70-130	0	20	
Chloromethane		140	Q	130		64-130	7	20	
Bromomethane		60		60		39-139	0	20	
Vinyl chloride		130		120		55-140	8	20	

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - 1	Westborough Lab Associated	sample(s):	04,06-07,10-17,22-2	27 Batch:	WG1577775-3	WG1577775-	4		
Chloroethane	120		120		55-138	0		20	
1,1-Dichloroethene	110		110		61-145	0		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	100		98		70-130	2		20	
1,2-Dichlorobenzene	97		99		70-130	2		20	
1,3-Dichlorobenzene	100		98		70-130	2		20	
1,4-Dichlorobenzene	98		98		70-130	0		20	
Methyl tert butyl ether	87		98		63-130	12		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	105		100		70-130	5		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Styrene	105		105		70-130	0		20	
Dichlorodifluoromethane	100		98		36-147	2		20	
Acetone	140		160	Q	58-148	13		20	
Carbon disulfide	110		110		51-130	0		20	
2-Butanone	110		130		63-138	17		20	
4-Methyl-2-pentanone	84		100		59-130	17		20	
2-Hexanone	97		120		57-130	21	Q	20	
Bromochloromethane	110		110		70-130	0		20	
1,2-Dibromoethane	92		98		70-130	6		20	
n-Butylbenzene	100		99		53-136	1		20	
sec-Butylbenzene	100		99		70-130	1		20	
tert-Butylbenzene	98		97		70-130	1		20	

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

L2164375 Report Date: 12/07/21

Lab Number:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	04,06-07,10-17,22-27	Batch:	WG1577775-3	WG1577775-4	1	
1,2-Dibromo-3-chloropropane	80		91		41-144	13	20	
Isopropylbenzene	100		99		70-130	1	20	
p-Isopropyltoluene	97		96		70-130	1	20	
Naphthalene	77		91		70-130	17	20	
n-Propylbenzene	100		100		69-130	0	20	
1,2,3-Trichlorobenzene	83		94		70-130	12	20	
1,2,4-Trichlorobenzene	86		92		70-130	7	20	
1,3,5-Trimethylbenzene	95		94		64-130	1	20	
1,2,4-Trimethylbenzene	95		95		70-130	0	20	
Methyl Acetate	100		120		70-130	18	20	
Cyclohexane	130		130		70-130	0	20	
1,4-Dioxane	78		88		56-162	12	20	
Freon-113	110		110		70-130	0	20	
Methyl cyclohexane	96		98		70-130	2	20	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	109	112	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	96	95	70-130
Dibromofluoromethane	107	109	70-130

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough I	Lab Associated sample(s)	: 01-03,08-09 Batc	h: WG1577802-3 WG1577	802-4	
Methylene chloride	100	100	70-130	0	20
1,1-Dichloroethane	100	100	70-130	0	20
Chloroform	100	100	70-130	0	20
Carbon tetrachloride	100	100	63-132	0	20
1,2-Dichloropropane	97	100	70-130	3	20
Dibromochloromethane	100	110	63-130	10	20
1,1,2-Trichloroethane	93	94	70-130	1	20
Tetrachloroethene	110	110	70-130	0	20
Chlorobenzene	99	99	75-130	0	20
Trichlorofluoromethane	110	120	62-150	9	20
1,2-Dichloroethane	100	99	70-130	1	20
1,1,1-Trichloroethane	100	100	67-130	0	20
Bromodichloromethane	100	100	67-130	0	20
trans-1,3-Dichloropropene	85	87	70-130	2	20
cis-1,3-Dichloropropene	95	95	70-130	0	20
Bromoform	99	100	54-136	1	20
1,1,2,2-Tetrachloroethane	86	86	67-130	0	20
Benzene	100	100	70-130	0	20
Toluene	97	98	70-130	1	20
Ethylbenzene	100	100	70-130	0	20
Chloromethane	110	110	64-130	0	20
Bromomethane	110	110	39-139	0	20
Vinyl chloride	100	98	55-140	2	20

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,08-09 Bate	ch: WG1577802-3 WG157	7802-4	
Chloroethane	110		120	55-138	9	20
1,1-Dichloroethene	100		100	61-145	0	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	88		98	63-130	11	20
p/m-Xylene	105		110	70-130	5	20
o-Xylene	105		105	70-130	0	20
cis-1,2-Dichloroethene	100		100	70-130	0	20
Styrene	110		110	70-130	0	20
Dichlorodifluoromethane	110		120	36-147	9	20
Acetone	130		140	58-148	7	20
Carbon disulfide	100		100	51-130	0	20
2-Butanone	83		100	63-138	19	20
4-Methyl-2-pentanone	67		79	59-130	16	20
2-Hexanone	76		90	57-130	17	20
Bromochloromethane	110		110	70-130	0	20
1,2-Dibromoethane	90		96	70-130	6	20
n-Butylbenzene	92		92	53-136	0	20
sec-Butylbenzene	99		97	70-130	2	20
tert-Butylbenzene	100		99	70-130	1	20

L2164375

Lab Control Sample Analysis Batch Quality Control

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number:

Project Number: 14263.08 Report Date: 12/07/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Rec Qual Lin	overy nits RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03,08-09 Bat	ch: WG1577802-3	WG1577802-4		
1,2-Dibromo-3-chloropropane	92		94	41-1	44 2		20
Isopropylbenzene	99		98	70-1	30 1		20
p-Isopropyltoluene	99		97	70-1	30 2		20
Naphthalene	87		92	70-1	30 6		20
n-Propylbenzene	96		94	69-1	30 2		20
1,2,3-Trichlorobenzene	93		99	70-1	30 6		20
1,2,4-Trichlorobenzene	99		98	70-1	30 1		20
1,3,5-Trimethylbenzene	100		98	64-1	30 2		20
1,2,4-Trimethylbenzene	100		100	70-1	30 0		20
Methyl Acetate	75		88	70-1	30 16		20
Cyclohexane	89		97	70-1	30 9		20
1,4-Dioxane	104		112	56-1	62 7		20
Freon-113	110		120	70-1	30 9		20
Methyl cyclohexane	87		96	70-1	30 10		20

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	101	103	70-130
Toluene-d8	98	98	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	104	105	70-130

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 18-21,28-29 Batch: WG1578292-3 WG1578292-4 Methylene chloride 99 100 70-130 1 1,1-Dichloroethane 100 110 70-130 10 Chloroform 100 110 70-130 10 Carbon tetrachloride 100 110 63-132 10 1,2-Dichloropropane 95 100 70-130 5 Dibromochloromethane 96 100 63-132 4 1,1,2-Tichloroethane 87 94 70-130 8 Tetrachloroethane 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 89 110 67-130 11 Bromodichloromethane 100 100 67-130 0	arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
1,1-Dichloroethane 100 110 70-130 10 Chloroform 100 110 70-130 10 Carbon tetrachloride 100 110 63-132 10 1,2-Dichloropropane 95 100 70-130 5 Dibromochloromethane 96 100 63-130 4 1,1,2-Trichloroethane 87 94 70-130 8 Tetrachloroethane 110 120 70-130 8 Tetrachloroethane 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 <	olatile Organics by GC/MS - Westbo	rough Lab Associated sample(s):	18-21,28-29 Batch:	WG1578292-3 WG1578	292-4	
Chloroform 100 110 70-130 10 Carbon tetrachloride 100 110 63-132 10 1,2-Dichloropropane 95 100 70-130 5 Dibromochloromethane 96 100 63-130 4 1,1,2-Trichloroethane 87 94 70-130 8 Tetrachloroethane 87 94 70-130 9 Chlorobenzene 97 100 75-130 3 Trichloroftluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 11 Bromodichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110	Methylene chloride	99	100	70-130	1	20
Carbon tetrachloride 100 110 63-132 10 1,2-Dichloropropane 95 100 70-130 5 Dibromochloromethane 96 100 63-130 4 1,1,2-Trichloroethane 87 94 70-130 8 Tetrachloroethane 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1-1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 trans-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110<	1,1-Dichloroethane	100	110	70-130	10	20
1,2-Dichloropropane 95 100 70-130 5 Dibromochloromethane 96 100 63-130 4 1,1,2-Trichloroethane 87 94 70-130 8 Tetrachloroethane 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 4 Ethylbenzene 99 100 70-130 4 Ethylbenzene 99 100 70-130 <td>Chloroform</td> <td>100</td> <td>110</td> <td>70-130</td> <td>10</td> <td>20</td>	Chloroform	100	110	70-130	10	20
Dibromochloromethane 96 100 63-130 4 1,1,2-Trichloroethane 87 94 70-130 8 Tetrachloroethane 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 1 Ethylbenzene 99 100 70-130	Carbon tetrachloride	100	110	63-132	10	20
1,1,2-Trichloroethane 87 94 70-130 8 Tetrachloroethane 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130	1,2-Dichloropropane	95	100	70-130	5	20
Tetrachloroethene 110 120 70-130 9 Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139	Dibromochloromethane	96	100	63-130	4	20
Chlorobenzene 97 100 75-130 3 Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 12 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	1,1,2-Trichloroethane	87	94	70-130	8	20
Trichlorofluoromethane 120 120 62-150 0 1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Tetrachloroethene	110	120	70-130	9	20
1,2-Dichloroethane 89 100 70-130 12 1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Chlorobenzene	97	100	75-130	3	20
1,1,1-Trichloroethane 99 110 67-130 11 Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Trichlorofluoromethane	120	120	62-150	0	20
Bromodichloromethane 100 100 67-130 0 trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	1,2-Dichloroethane	89	100	70-130	12	20
trans-1,3-Dichloropropene 82 90 70-130 9 cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	1,1,1-Trichloroethane	99	110	67-130	11	20
cis-1,3-Dichloropropene 92 98 70-130 6 Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Bromodichloromethane	100	100	67-130	0	20
Bromoform 98 110 54-136 12 1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	trans-1,3-Dichloropropene	82	90	70-130	9	20
1,1,2,2-Tetrachloroethane 87 96 67-130 10 Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	cis-1,3-Dichloropropene	92	98	70-130	6	20
Benzene 98 110 70-130 12 Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Bromoform	98	110	54-136	12	20
Toluene 96 100 70-130 4 Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	1,1,2,2-Tetrachloroethane	87	96	67-130	10	20
Ethylbenzene 99 100 70-130 1 Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Benzene	98	110	70-130	12	20
Chloromethane 110 120 64-130 9 Bromomethane 100 100 39-139 0	Toluene	96	100	70-130	4	20
Bromomethane 100 100 39-139 0	Ethylbenzene	99	100	70-130	1	20
	Chloromethane	110	120	64-130	9	20
Virul ablatida 100 110 55 140 10	Bromomethane	100	100	39-139	0	20
Viriyi ciliofide	Vinyl chloride	100	110	55-140	10	20

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Rec Qual Lin	overy nits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	18-21,28-29 Bat	tch: WG1578292-3	WG157829	2-4		
Chloroethane	120		130	55-1	138	8		20
1,1-Dichloroethene	100		100	61-1	145	0		20
trans-1,2-Dichloroethene	100		110	70-1	130	10		20
Trichloroethene	94		100	70-1	130	6		20
1,2-Dichlorobenzene	97		100	70-1	130	3		20
1,3-Dichlorobenzene	100		100	70-1	130	0		20
1,4-Dichlorobenzene	100		100	70-1	130	0		20
Methyl tert butyl ether	80		93	63-1	130	15		20
p/m-Xylene	110		110	70-1	130	0		20
o-Xylene	105		110	70-1	130	5		20
cis-1,2-Dichloroethene	100		110	70-1	130	10		20
Styrene	110		115	70-1	130	4		20
Dichlorodifluoromethane	120		120	36-1	147	0		20
Acetone	79		98	58-1	148	21	Q	20
Carbon disulfide	100		110	51 -1	130	10		20
2-Butanone	67		75	63-1	138	11		20
4-Methyl-2-pentanone	61		72	59-1	130	17		20
2-Hexanone	66		74	57-1	130	11		20
Bromochloromethane	100		110	70-1	130	10		20
1,2-Dibromoethane	92		94	70-1	130	2		20
n-Butylbenzene	94		100	53-1	136	6		20
sec-Butylbenzene	100		110	70-1	130	10		20
tert-Butylbenzene	100		110	70-1	130	10		20

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	18-21,28-29 Bat	ch: WG15782	92-3 WG1578	3292-4		
1,2-Dibromo-3-chloropropane	88		97		41-144	10		20
Isopropylbenzene	100		110		70-130	10		20
p-Isopropyltoluene	98		100		70-130	2		20
Naphthalene	82		89		70-130	8		20
n-Propylbenzene	97		100		69-130	3		20
1,2,3-Trichlorobenzene	91		97		70-130	6		20
1,2,4-Trichlorobenzene	99		100		70-130	1		20
1,3,5-Trimethylbenzene	99		110		64-130	11		20
1,2,4-Trimethylbenzene	99		100		70-130	1		20
Methyl Acetate	68	Q	80		70-130	16		20
Cyclohexane	92		100		70-130	8		20
1,4-Dioxane	102		108		56-162	6		20
Freon-113	110		120		70-130	9		20
Methyl cyclohexane	90		100		70-130	11		20

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	101	101	70-130
Toluene-d8	98	97	70-130
4-Bromofluorobenzene	95	91	70-130
Dibromofluoromethane	108	102	70-130

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05,30 Batch:	WG1578855-3	WG1578855-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	120		110		70-130	9	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	94		93		63-132	1	20	
1,2-Dichloropropane	120		120		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	100		100		70-130	0	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	110		100		75-130	10	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	97		96		67-130	1	20	
Bromodichloromethane	96		94		67-130	2	20	
trans-1,3-Dichloropropene	90		91		70-130	1	20	
cis-1,3-Dichloropropene	94		93		70-130	1	20	
Bromoform	89		92		54-136	3	20	
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	120		120		64-130	0	20	
Bromomethane	53		52		39-139	2	20	
Vinyl chloride	120		120		55-140	0	20	

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number: L2164375

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	05,30 Batch: \	WG1578855-3	WG1578855-4			
Chloroethane	120		110		55-138	9	ı	20
1,1-Dichloroethene	110		110		61-145	0		20
trans-1,2-Dichloroethene	100		99		70-130	1		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	100		100		70-130	0		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	98		100		63-130	2		20
p/m-Xylene	105		100		70-130	5		20
o-Xylene	105		100		70-130	5		20
cis-1,2-Dichloroethene	100		99		70-130	1		20
Styrene	105		105		70-130	0		20
Dichlorodifluoromethane	95		92		36-147	3		20
Acetone	120		150	Q	58-148	22	Q	20
Carbon disulfide	110		110		51-130	0		20
2-Butanone	120		140	Q	63-138	15		20
4-Methyl-2-pentanone	100		110		59-130	10		20
2-Hexanone	110		120		57-130	9		20
Bromochloromethane	110		100		70-130	10		20
1,2-Dibromoethane	100		100		70-130	0		20
n-Butylbenzene	100		100		53-136	0		20
sec-Butylbenzene	100		100		70-130	0		20
tert-Butylbenzene	100		98		70-130	2		20

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Lab Number:

L2164375

Report Date:

12/07/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborou	ugh Lab Associated s	ample(s): 0	5,30 Batch:	WG1578855-3	WG1578855-4			
1,2-Dibromo-3-chloropropane	91		95		41-144	4		20
Isopropylbenzene	100		100		70-130	0		20
p-Isopropyltoluene	99		97		70-130	2		20
Naphthalene	98		100		70-130	2		20
n-Propylbenzene	110		100		69-130	10		20
1,2,3-Trichlorobenzene	100		98		70-130	2		20
1,2,4-Trichlorobenzene	95		96		70-130	1		20
1,3,5-Trimethylbenzene	97		96		64-130	1		20
1,2,4-Trimethylbenzene	96		96		70-130	0		20
Methyl Acetate	120		130		70-130	8		20
Cyclohexane	130		130		70-130	0		20
1,4-Dioxane	118		114		56-162	3		20
Freon-113	110		110		70-130	0		20
Methyl cyclohexane	100		98		70-130	2		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	109	111	70-130
Toluene-d8	105	104	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	104	104	70-130

Serial_No:12072107:52 *Lab Number:* L2164375

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08 Report Date: 12/07/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2164375-01A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-01B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-01C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-02A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-02B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-02C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-03A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-03B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-03C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-04A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-04B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-04C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-05A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-05B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-05C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-06A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-06B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-06C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-07A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-07B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-07C	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-08A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
	L2164375-08B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2164375

Report Date: 12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2164375-08C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-09A	Vial HCI preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-09B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-09C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-10A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-10B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-10C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-11A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-11B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-11C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-12A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-12B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-12C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-13A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-13B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-13C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-14A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-14B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-14C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-15A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-15B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-15C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-16A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-16B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-16C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-17A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-17B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-17C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2164375

Report Date: 12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2164375-18A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-18B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-18C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-19A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-19B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-19C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-20A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-20B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-20C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-21A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-21B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-21C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-22A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-22B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-22C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-23A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-23B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-23C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-24A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-24B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-24C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-25A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-25B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-25C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-26A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-26B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-26C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2164375-27A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2164375

Report Date: 12/07/21

Project Name: GOWANDA DAY HABITATION Q4 2021

Project Number: 14263.08

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2164375-27B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-27C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-28A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-28B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-28C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-29A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-29B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-29C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-30A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-30B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-30C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)	
L2164375-31A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		ARCHIVE()	
L2164375-31B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		ARCHIVE()	

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08 Report Date: 12/07/21

GLOSSARY

Acronyms

DL

EDL

LOD

MS

Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when
those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments
from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (Dob report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08 Report Date: 12/07/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:GOWANDA DAY HABITATION Q4 2021Lab Number:L2164375Project Number:14263.08Report Date:12/07/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: GOWANDA DAY HABITATION Q4 2021 Lab Number: L2164375

Project Number: 14263.08 Report Date: 12/07/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	NEW YORK CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker I	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 10			13	D	ate Rec'o		20	121		ALPHA Job# L2\64375	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	AND THE		13 18318	-	Deliver	ables	THE REAL PROPERTY.		1000		Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: ()	anna Dau	H. balabout	04	707.1	ППА	SP-A	2-		ASP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Ga	12 0	414	0/1 (3/1 (201		QuIS (1 F	ile)	-	EQuIS (4	L File)	PO#	
Client Information	MESING DIVINOS	Project # 1 4 Z 63.0	Daron,	101			- =	Other	no,	13.	-Quio (-	riicj	ro.	
Client: Bosama			1977				No. of Concession, Name of Street, or other Designation, Name of Street, Name					_		-
CHEIII. DOSAMA	NN	(Use Project name as P	roject#)	1.11			AND RESIDENCE	tory Requ	iremen			Silver in	Disposal Site Information	
Address: Z80 E.	Brown St # 200	Project Manager: Act	ABARA Ch	evereteff			NY TOGS NY Part 375				75	Please identify below location of		
Phone: 585-232	14604	ALPHAQuote #:					AWQ Standards NY CP-51					applicable disposal facilities.		
Phone: 585-232	-5135	Turn-Around Time					NY Restricted Use Other						Disposal Facility:	****
Fax:		Standard	d X	Due Date:			NY Unrestricted Use						□ NJ □ NY	
Email: Acherenetel	to Beyrown or con	Rush (only if pre approved	0	# of Days:			I I	YC Sewer I	Dischare	ie			Other:	
These samples have t	peen previously analyze	ad by Alpha					ANALY	-	and on the last					Ŧ
	c requirements/comm						ANALI	313		_		_	Sample Filtration	0
	o Jobanewer	Part Part I					92.8						Preservation	t a l
r lease specify metal.	JOI TAL.						1'.							В
							131		ll			1	(Please Specify below)	t
ALPHA Lab ID	Sample ID Co			ection	Sample Samp		NYTC							t
(Lab Use Only)		inple ib	Date	Time	Matrix	Initials	2				- 1		Sample Specific Comments	1
64375-01	MW-1		11/18/21	1445	64	Tho	X		\vdash					
-02	MW-2		11/18/21	1420	600		X		\vdash	-	-			_
-03	mw-3		11/18/21	1400	GW	10	X		\vdash	-	_	_		=
-04	mw -4					700		_	\vdash	-	-	+-		_
			11/19/21	0746	GW	To	*		\vdash	_		_		
-05	MW-5		4/19/21		6W	100	X			_				
-06	mw-6		1/19/21	1124	GW	ort	X							
-07	MW-7		11/19/21	0958	GW	Two	X							
-08	nw-8		11/18/21	1538	GW	Tho	X							
-09	nwa		11/18 121		GW	500	X							
-10	10 W-10			1522	GW	To	X	\neg		\neg		1		_
Preservative Code:	Cantaines Code	Westboro: Certification N		1000	Geo	100	/	_			_	+		_
A = None B = HCl	F = Flastic			- 1	Con	tainer Type	6						Please print clearly, legibly	
C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification N	0: MAU15	- 1				_	\vdash	-	_	-	and completely. Samples ca not be logged in and	ın
$D = H_2SO_4$	G = Glass			1.0	Р	reservative	HU-						turnaround time clock will no	ot
E = NaOH	B = Bacteria Cup												start until any ambiguities ar	
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished B	By:	, Date/1	Γime		Received	By:		1	Date/Tim	ne	resolved. BY EXECUTING	
H = Na ₂ S ₂ O ₃	E = Encore	hra		11/19/202	1245	600	mI	Chule	MAC	11/19	1/21 1	2:45	THIS COC, THE CLIENT	
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	frough Flory (AAL) 11/19/21 12 45 lyli									0:50	TIMO NEMU MINU MUNEES		
Form No: 01-25 HC (rev. 30	0-Sept-2013)) (E)							(See reverse side.)	

ALPHA	NEW YORK CHAIN OF CUSTODY Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 1			05	Page Z o			ate Rec		1/2	ALPHA Job# L2\64375				
Westborough, MA 01581 8 Walkup Dr.							Delive	rables		No.	1		Billing Information		
TEL: 508-898-9220 TEL: 508-822-9300 Project Name: (75-30-50-50-50-50-50-50-50-50-50-50-50-50-50					Mahaltohina DU 7022					ASP-B			Same as Client	Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: (novombon NY					15	File)	EQuIS (4 File)			PO#			
The second section is a second							-	Other		M	Lucin	5 (41.110)	100		
110000									Carrie and	10/01	W	and the same	The same of the sa	errence of the	
Address: 2007 A	(Use Project name as Project #)							atory Req	uireme	0,000	Disposal Site Informa	ation			
Address. USU E. B	Address: 280 E Bons St # Zoo Project Manager: AMADNA Cres					renetlet					NY Pa	17450000000	Please identify below to	La company to the last of the last	
Roberter, NY 141001 ALPHAQuote #:									dards		NY CP	-51	applicable disposal facili	ties.	1100
Phone: 585-131	-5135	Turn-Around Time				3316		NY Restrict	ed Use		Other		Disposal Facility:		
Fax:		Standard	d XV	Due Date:				NY Unrestri	cted Us	е		□ NJ □	NY		
Email: Acherenetel	Je Bergrown a Con	Rush (only if pre approved	n' [# of Days:			NYC Sewer Discharge						Other:		
These samples have b	peen previously analyze	ed by Alpha					ANALYSIS						Sample Filtration		
Other project specific	c requirements/comm	ents:							T					-	0
SEND also	to TIBRIETOR	eignown Ph. com					1			ΙI			☐ Done ☐ Lab to do		t a
		0					8			ΙI			Preservation		ă
Please specify Metals	s or TAI						378			ΙI			Lab to do		
							100		1	ΙI				E	1
								=	1	ΙI			(Please Specify bel	ow)	ů
Samola ID			Colle	ollection Sample Sampler's			13		1						a
(Lab Use Only)			Date	Time	Matrix	Initials	2		1				Sample Specific Comm	nents	2
64375-11	mW-11		11/18/21	1307	(212)	Jus .	1								
-12	mw-12		11/18/121	1227	Gw	To	V			\vdash		\neg			_
-13	mw-13			1245	6W	Tw	5	\rightarrow	_	\vdash		_			-
-14	mw-14		1//	1102	GW		1	_	+	\vdash	-	-		_	_
-15						The	X	_	-		_	_			_
	MW-15		11/18/21	_	6W	200	X	_	-	\vdash	_				_
-16	mw-lh		1/18/21	1622,	GW	200	X								
77	MW-17		11/19/21		GN	The	X								
-18	MW-18		11/19 /21	0936	612	Ju Ju	X								Ī
-19	inwigh		11/19 /21	0845	GWZ	TW	×								
-20	MW 70		11/19/71	0801	(2W)	The	X								_
Preservative Code:	Container Code	Westboro: Certification N	o: MA935		7-34	-		\neg	$\overline{}$					0 00	-
A = None B = HCl	P = Plastic A = Amber Glass	Mansfield: Certification N			Container Typ		6			ll			Please print clearly, legibly and completely. Samples can		
	V = Vial	manancia. Certification is	0. MAU 13				-	_	+	\vdash		-	not be logged in ar	COLUMN TO COLUMN	n
$D = H_2SO_4$	G = Glass				P	reservative	Ha						turnaround time clo		t
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	# 90/1911-00/1000-00-00-00-00-00-00-00-00-00-00-00-00					11 7		_	\perp			start until any ambi		
G = NaHSO ₄	O = Other	Relinquished I	By:				Receive	d By:		Date/Time			resolved. BY EXEC		
$H = Na_2S_2O_3$	E = Encore	(Neo-		11/19/2021	19/2011 1245 Brade			eloy(ARY	11/19/21 12:45			THIS COC, THE C		
VE - ENTROUTED	D - DOD Ballia							3-1		11/20/21 00:50			HAS READ AND A TO BE BOUND BY		
D = Other 7004 (1810) 11/11/12 12:43						1							TERMS & CONDIT		
Form No: 01-25 HC (rev. 30	0-Sept-2013)												(See reverse side.))	
400 - (404													1		

Διρна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	05	Page 3 o		Date Rec'd in Lab (1/20/2/						ALPHA Job# L 2164375		
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Delive	rables	No. of Lot		THE REAL PROPERTY.	Billing Information	-	
	8 Walkup Dr. 320 Forbes Blvd TEL: 508-898-9220 TEL: 508-898-9193 FAX: 508-898-9193 FAX: 508-822-3288 FAX: 508-822-3288						THE COLUMN	ASP-A	No. of Street,	☐ ASP-B			Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288									EQuIS (4 File)			-3.00	
228000002-0000-0000-0	The second second	Project Location: Connaison, NY						EQuIS (1	File)	ZKI I	EQuIS	(4 File)	PO#	
Glient Information Project # 19763.08								Other		22				
Client: Bergmann	(Use Project name as Project #)						Regul	atory Req	uireme	nt		Disposal Site Information		
Address:788 EBono	more Sire + #700 Project Manager: ASUADNA (Leverletelt							NY TOGS			NY Part	375	Please identify below location of	
Roberta, NY 14boy ALPHAQuote #:								AWQ Standards NY CP-51					applicable disposal facilities.	
Phone: 585 -732 - 7135 Turn-Around Time								NY Restricted Use Other					Disposal Facility:	
Fax:	77	Standard	4KJ b	Due Date:			1 🗆	NY Unrestri	cted Use	e			□ NJ □ NY	
Email: Acherentet	too Roman was in			# of Days:			NYC Sewer Discharge						Other:	
These samples have b			7 []	# Of Days.										T
							ANALYSIS					Sample Filtration	0	
Other project specific requirements/comments: SET AGE TORIEN ELEGYMANNIL LON Please specify Metals or TAL.							On 8-						□ Done □ Lab to do Preservation □ Lab to do	tal Bo
							121						(Please Specify below)	t
ALPHA Lab ID Sample ID			Collection Sample Sampler's				臣			1 1		-		t
(Lab Use Only)		inpio ib	Date	Time	Matrix	Initials	2				_		Sample Specific Comments	e
64375-21	MW-LI		11/19/21	D 9n4	6W	700	20		1					
-22	DR-1		11/18/21		GW	70	8		1	\Box		\neg		
-23	De-2		11/18/21		GW	70	2		+	\vdash	_			
Transfer of the same of the sa	DR-3		11/18/21	1135		70		_	+	-	-	_		-
	DR-Y				Go	-	8	_	+-	-	-	-		
	-Aj		11/18/21	1046	GW	200	Ø		-	\vdash	_			
-26	G-1		11/18/21	09:56	GW	Tho	X							
-27	6-2		11/18/21	0920	GW	The	X							
-28	6-3		11/19/21	1047_	Gw	To	X							
-29	Eauprent Bla	nk	11/19/21	1130	GW	Tro	X							
-30	MW-X		11/-/21	-	6W	tro	X		+	\vdash	\neg			
Preservative Code:	Container Code 177218	Westboro: Certification N							+		_	_		-
V - 140116	r = riastic				Cor	フゆ tainer Type	,		1	1 1			Please print clearly, legibly	
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification N			6		-	\vdash	_	_	and completely. Samples can			
D = H ₂ SO ₄	G = Glass				F	reservative	44						not be logged in and turnaround time clock will n	not
	B = Bacteria Cup					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1194						start until any ambiguities a	
F = MeOH	C = Cube	Relinguished	Date/	. Date/Time			Received By:			Date/T	ime	resolved. BY EXECUTING		
O Harrison	O = Other E = Encore	1,00					m FCOULARD			,		THIS COC, THE CLIENT		
1 - Na20203	D = BOD Bottle	77770	1 1 1					Inc,	11/19/21 12:45			HAS READ AND AGREES		
O = Other	The same of the sa	1 goodyn Floy (FAD) 11/19/121 12:45 Olylin						Norse. III				0.50	TO BE BOUND BY ALPHA TERMS & CONDITIONS.	Y'S
Form No: 01-25 HC (rev. 30)-Sept-2013)		90								_		(See reverse side.)	

FIELD FORMS

GROUNDWAT	ER SAMPL	ING WORKSHEE	T							
								\Box		
PROJECT NAI		owanda Q4 2021								
Project Numbe		14263.07						▎┕	/	
Site Location:	<u>G</u>	owanda, New Yor								
Sample Date:		11/18/202	21						4 4 4	
Weather:	48	8 Degrees F					BEI	RGN	1 A I	NN
Personnel:		Justin L. O'E	Brien				ARCHITEC	TS ENGIN	EERS PLA	NNERS
GROUNDWAT	ER SAMPL	E POINT								
Well Number:	M	IW-1								
Location:									_	
Casing Diamete	er: <u>2</u> '	1								,
Depth to water,	helow ton (of casing:		5.1		-		Volume/ 0.041 ga		-
Depth to botton			16.02	0.1		-		: 0.163 ga		
Length of water			10.92					: 0.653 ga		
Longin of Water	· colamin iii		10.02					: 1.469 ga		
								2.611 ga		
Volume of water	er in well cas	sing, gallons:		1.78		L				4
3 Well volumes	s (= length w	vater column X gal	l/foot X 3):			5.34				
Actual volume				_	,	5.5		- '		
Sampling Meth								_		
Sampling Equip	oment: <u>B</u>	ailer						_		
								_		
Well Recharge		/A						_		
Required Analy	/SIS:							_		
FIELD PARAM	ETER MEA	ASUREMENTS								
			Accumul	ated Volu	ıme Pur	rged in Ga	llons			
Parameter:										
Turbidity	1086.6	NTU								
Temperature	11.5	°C								
рН	6.82									
Conductivity	0.633	SPC ms/cm								
Oxygen	5.04	DO mg/L								
Salinity										
Time sample w	as collected	d:	14:20							
<u>COMMENTS</u>										
									-	

GROUNDWAT	ER SAMF	PLING WORKSHEE	<u>T</u>							
		0 1 0 1 0 0 0 0 1							2	
PROJECT NAI		Gowanda Q4 2021	_						ノー	
Project Numbe		14263.07		•						
Site Location:	=	Gowanda, New Yor					=			
Sample Date:	-	11/18/202	21				DE		A A N	INI
Weather:	-	48 Degrees F						RUI	1 A P	N I N
Personnel:	-	Justin L. O'E	Brien				ARCHITEC	TS ENGIN	IEERS PLA	NNERS
GROUNDWAT	ER SAME	PLE POINT								
Well Number:	_	MW-2		<u>.</u>						
Location:	-	0.11							_	
Casing Diamete	er:	2"		•				T		1
Depth to water, Depth to botton			17.15	4.9			1" =	0.041 ga 0.163 ga	ıl/foot	
Length of water	r column iı	n well:	12.25				4" =	0.653 ga	ıl/foot	
							6" =	1.469 ga	ıl/foot	
Volume of wate 3 Well volumes		asing, gallons: water column X ga	l/foot X 3):	2.00		5.99		2.611 ga	ıl/foot	
Actual volume	purged pri	or to sampling:			6			=		
Sampling Meth	odology:	Hand bailing		•				=		
Sampling Equip		Bailer						•		
	-							-		
Well Recharge	d?	N/A						- -		
Required Analy	/sis:							- -		
FIELD PARAM	IETER ME	ASUREMENTS								
			Accumu	lated Vol	ume Purg	ged in G	allons			
Parameter:										
Turbidity	490.29	NTU								
Temperature	10.7	°C								
рH	6.83									
Conductivity	0.22	SPC ms/cm								
Oxygen	5.66	DO mg/L								
Salinity										
Time sample w	as collect	ed:	14:45							
<u>COMMENTS</u>									_	
									-	
									-	

GROUNDWAT	ER SAM	PLING WORKSHEE	T							
			_					Ì⊑	2	
PROJECT NAI		Gowanda Q4 2021							ノー	
Project Numbe		14263.07		•						
Site Location:		Gowanda, New Yor					•			
Sample Date:	•	11/18/202	21				$D \square$		1A	INI
Weather:		48 Degrees F						KGI	YI A I	N I N
Personnel:		Justin L. O'E	Brien	•			ARCHITEC	TS ENGIN	EERS PLA	NNERS
GROUNDWAT	ER SAME	PLE POINT								
Well Number:		MW-3								
Location:		0.11							_	
Casing Diamete	er:	2"						I		,
Depth to water,				5.35			1" =	Volume 0.041 ga	ıl/foot	
Depth to botton			16.30				2" =	0.163 ga	ıl/foot	
Length of water	r column i	n well:	10.95					0.653 ga		
								: 1.469 ga : 2.611 ga		
Volume of water				1.8			<u> </u>	2.011 gc	1171001	1
		water column X ga	l/foot X 3):		-	5.35		_		
Actual volume				-		5.5		_		
Sampling Meth								_		
Sampling Equip	oment:	Bailer						_		
Well Recharge		N/A						-		
Required Analy	sis:							_		
FIELD PARAM	IETER ME	EASUREMENTS								
			Accumu	lated Vol	ıme Purç	ged in G	allons			
Parameter:										
Turbidity	976.24	NTU								
Temperature	12.6	°C								
рН	6.64									
Conductivity	0.072	SPC ms/cm								
Oxygen	6.17	DO mg/L								
Salinity										
Time sample w	as collect	ed:	14:00							
<u>COMMENTS</u>									- -	
									_	
									_	

GROUNDWAT	ER SAME	PLING WORKSHEE	<u>T</u>							
			_					_		
)	
PROJECT NAI	ME:	Gowanda Q4 2021								
Project Numbe	r:	14263.07	7					_	ノ	
Site Location:	-	Gowanda, New Yor	k	•						
Sample Date:	-	11/19/202	21							
Weather:	•	45 Degrees F					BF	RGI	1 A N	$ \mathbf{N} $
Personnel:	•	Justin L. O'E	Brien					CTS ENGIN		
GROUNDWAT	ER SAMF	PLE POINT		_						
Well Number:		MW-4								
Location:	-	IVI V V - -1		•						
	or:	2"							-	
Casing Diamet	eı.			-			Wall Dia	. Volume/	/East	1
Depth to water,	holow to	of casing:		6.6						
	•	-	45.70			-		0.041 ga		
Depth to botton			15.78					0.163 ga		
Length of water	r column i	n weii:	9.18					0.653 ga		
								1.469 ga		
Values a of water	مالميييما م	ممنامه مماامه		4 4000			8 =	: 2.611 ga	1/1001	
Volume of water			1/5 ()/ O)-	1.4963		4 400				
		water column X gal	/foot X 3):			4.489		_		
Actual volume						4.5	1	_		
Sampling Meth								_		
Sampling Equip	oment:	Bailer						_		
								_		
Well Recharge		N/A						_		
Required Analy	/sis:							_		
EIEI D BABAM	IETED ME	ASUREMENTS								
TILLD FARAIM	ILILK WIL	ASUNLIVILIVIS								
	ļ		Accumu	lated Vol	ume Pur	ged in G	allons	1	1	1
Parameter:	100.50	NITTI I	_							
Turbidity	168.56	NTU								
Temperature	16.8	°C								
рН	6.72									
Conductivity	0.001	SPC ms/cm								
Oxygen	8.46	DO mg/L								
Salinity										
			•	•			•	•	•	•
Time sample w	as collect	ed:	7:46							
<u>COMMENTS</u>										
									_	
									_	
									-	
11										

GROUNDWAT	TER SAME	PLING WORKSHEE	<u>T</u>							
								_		
PROJECT NAI	ME:	Gowanda Q4 2021								
Project Numbe	r:	14263.07	7		•			_	ノ	
Site Location:	-	Gowanda, New Yor	k							
Sample Date:	-	11/19/202	21							
Weather:	-	45 Degrees F			•		BF	RGI	M A I	NN
Personnel:	-	Justin L. O'B	rien		•			CTS ENGIN		
GROUNDWAT	ER SAMF	PLE POINT		_						
Well Number:		MW-5								
Location:	-	IVIVV-J		•						
	or:	2"							•	
Casing Diamet	ei. -			•			Wall Dia	. Volume/	East	1
Depth to water,	helow tor	of casing.		10.3				: 0.041 ga		-
Depth to botton			13.95			-		: 0.041 ga : 0.163 ga		
Length of water			3.65							
Length of water	Columni	ı weii.	3.03		•			: 0.653 ga : 1.469 ga		
								: 1.469 ga : 2.611 ga		
Volume of water	ar in wall a	ooina gollono:		0.59			0 =	2.011 ya	1/1001]
			/foot V 2):	0.59		1 70				
		water column X gal	/100t A 3).			1.78		_		
Actual volume						2.0		_		
Sampling Meth								_		
Sampling Equip	oment:	Bailer						_		
Mall Daalaana	-10	N 1 / A						_		
Well Recharge		N/A						_		
Required Analy	/SIS:							_		
FIELD PARAM	IETER ME	ASUREMENTS								
	<u> </u>		Accumu	lated Vo	ume Pur	ged in G	allons			
Parameter:						Ĭ				
Turbidity	1670.5	NTU								
Temperature	11.8	°C								
рН	6.67									
Conductivity	0.01	SPC ms/cm								
Oxygen	4.83	DO mg/L								
Salinity	7.00	DO HIG/L								
Samily	l l									<u>l</u>
Time sample w	raa aallaat	ad.	0.10							
Time Sample w	as collecti	au.	8:12		•					
COMMENTS									-	
COMMENTS									•	
									_	
									-	

R SAMPL	ING WORKSHEE	T			
		_			
<u> </u>		_			
_					
<u>G</u>	•				
45		21		DE	DC M A NINI
40		Prion		BE	RGMANN
	JUSTITE. OE	onen		ARCHIT	ECTS ENGINEERS PLANNERS
R SAMPL	E POINT				
<u>M</u> '	W-6	_			
: <u>2"</u>				W 11 D'	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
of the well	:	12.92 22.88 9.96			a. Volume/Foot = 0.041 gal/foot = 0.163 gal/foot = 0.653 gal/foot = 1.469 gal/foot
= length w irged prior dology: <u>Ha</u>	ater column X gal to sampling: and bailing	//foot X 3):	1.62	4.87 5.0	= 2.611 gal/foot
s:					- -
		Accumulate	ed Volume Pu	urged in Gallons	
2233.9	NTU				
3.8	°C				
7.78					
0.005	SPC ms/cm				
71.7	DO mg/L				
s collected	:	11:24			
	E: Go Go A5 R SAMPL E elow top coof the well: column in wire deprior dology: Hanent: Banent: Banen	E: Gowanda Q4 2021 14263.07 Gowanda, New Yor 11/19/202 45 Degrees F Justin L. O'E R SAMPLE POINT MW-6 : 2" below top of casing: of the well: column in well: in well casing, gallons: = length water column X gallong and prior to sampling: dology: Hand bailing hent: Bailer N/A S: TER MEASUREMENTS 2233.9 NTU 3.8 °C 7.78 0.005 SPC ms/cm	14263.07	E: Gowanda Q4 2021	E: Gowanda Q4 2021

GROUNDWAT	ER SAMPL	ING WORKSHEE	T						
			_						
PROJECT NAM		owanda Q4 2021	_						
Project Numbe		14263.07						'	
Site Location:	<u>G</u>	owanda, New Yor							
Sample Date:	4	11/19/202	21			5			
Weather: Personnel:	4	5 Degrees F Justin L. O'B	Prion			BEH	RGM	IAN	Ν
Personnei.	_	Justin L. O E	onen			ARCHITEC	TS ENGINE	ERS PLAN	NERS
GROUNDWAT	ER SAMPL	E POINT							
Well Number:	M	IW-7							
Location:	_							-	
Casing Diamete	er: <u>2</u>					Wall Dia	. Waliuma	/Caat	1
Depth to water,	helow ton	of casing.		12.95					
Depth to botton			21.8	12.00			= 0.041 ga = 0.163 ga		
Length of water			8.85				= 0.653 ga		
							= 1.469 ga		
Volume of wate	er in well ca	sing gallons:		1.4		8" =	= 2.611 ga	l/foot	
		vater column X gal	/foot X 3):			4.33			
Actual volume			,			4.33	_		
Sampling Meth	odology: H	and bailing							
Sampling Equip	oment: B	ailer					_		
		1/4							
Well Recharged Required Analy		/A					_		
Intequired Arialy							_		
FIELD PARAM	ETER MEA	ASUREMENTS							
			Accumula	ated Volui	ne Purge	d in Gallons			
Parameter:									
Turbidity	3415	NTU							
Temperature	8.3	°C							
pΗ	7.67								
Conductivity	0.011	SPC ms/cm							
Oxygen	8.92	DO mg/L							
Salinity									
Time sample w	as collected	d:	9:58						
COMMENTS								-	
								-	
								-	

GROUNDWAT	ER SAMPL	ING WORKSHEE	<u>T</u>						
			_						
							ΙГ		
PROJECT NAM		owanda Q4 2021					-15	ゴ 1	
Project Numbe		14263.07					_ _	ノー	
Site Location:	<u>G</u>	lowanda, New Yor				_			
Sample Date:		11/18/202	21						
Weather:	4	8 Degrees F				RF	RG	ΜΔ	NN
Personnel:		Justin L. O'E	Brien				ECTS ENG		
GROUNDWAT	ER SAMPL	<u>E POINT</u>				ARGIIII	2010 2110		ZANNENS
Well Number:	N	1W-8							
Location:	<u></u>	•							
Casing Diamete	er: 2	II .							
	<u> </u>					Well Dia	. Volume/	Foot	
Depth to water,	below top	of casing:		8.8			0.041 ga		
Depth to botton			17.65	0.0			: 0.163 ga		
Length of water			8.85				: 0.653 ga		
							: 1.469 ga		
							: 2.611 ga		
Volume of water	er in well ca	sing, gallons:		1.44					ı
		vater column X gal	I/foot X 3):		4.328				
Actual volume			,		4.5		_		
Sampling Meth		. •					_		
Sampling Equip		ailer							
							_		
Well Recharge	d? N	I/A					_		
Required Analy							_		
∥ ' '							_		
FIELD PARAM	ETER MEA	ASUREMENTS							
			Accumula	ted Volum	e Purged in G	allons			
Parameter:									
Turbidity	4493.3	NTU							
Temperature	11.2	°C							
рН	7.02								
Conductivity	0.938	SPC ms/cm							
Oxygen	5.17	DO mg/L							
Salinity									
				•	•				
Time sample w	as collected	d:	15:38						
<u>COMMENTS</u>									

GROUNDWAT	ER SAME	PLING WORKSHEE	<u>T</u>							
PROJECT NAI		Gowanda Q4 2021								
Project Numbe		14263.0								
Site Location:	-	Gowanda, New Yor					<u>.</u>			
Sample Date:	-	11/18/202	21				D E E	^	4 A N	
Weather:	_	48 Degrees F					BEF	くらり	1 A N	IN
Personnel:	-	Justin L. O'E	Brien				ARCHITECT			
GROUNDWAT	ER SAME	PLE POINT								
Well Number:	-	MW-9								
Location:	-								_	
Casing Diamete	er:	2"						T		1
Depth to water,	below tor	o of casing:		8.25				Volume : 0.041 ga		
Depth to botton			20.96	0.20		•		: 0.163 ga		
Length of water			12.71				4" =	: 0.653 ga	l/foot	
Longin of water	i oolallii ii	1 11011.	12.71					: 1.469 ga		
								: 2.611 ga		
Volume of water	er in well c	asing gallons.		2.07				gc	,	
		water column X ga	l/foot X 3)·	2.01		6.215				
Actual volume			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			6.25		_		
Sampling Meth				•		0.20		_		
Sampling Equip		Bailer						_		
Camping Equip	·	Ballot						_		
Well Recharge	d? -	N/A						_		
Required Analy								-		
FIELD PARAM	IETER ME	EASUREMENTS								
			Accumu	lated Vol	ume Pur	ged in G	allons			
Parameter:										
Turbidity	3531.6	NTU								
Temperature	10.2	°C								
рH	6.92									
Conductivity	1.47	SPC ms/cm								
Oxygen	41.2	DO mg/L								
Salinity		<u> </u>								
Time sample w	as collect	ed:	16:01							
									_	
COMMENTS									_	
									-	
									-	

GROUNDWAT	TER SAMP	LING WORKSHEE	<u>T</u>							
PROJECT NAI	ME:	Gowanda Q4 2021							Š I	
Project Numbe		14263.07	7		_				ノ	
Site Location:		Gowanda, New Yor								
Sample Date:	_	11/18/202					-			
Weather:	_	48 Degrees F			=		BE	3CN	ΙΔΝ	JN
Personnel:	-	Justin L. O'B	rien		_					
	-		TICH .				ARCHITEC	TS ENGIN	EERS PLA	NNERS
GROUNDWAT	ER SAMP	LE POINT								
Well Number:	<u> </u>	MW-10								
Location:	_								_	
Casing Diamet	er:	2"						Is a		,
Donth to water	h a lavu tam	of againm	•					Volume/		
Depth to water			6.			_		0.041 ga		
Depth to botton			19.44		_			0.163 ga		
Length of wate	r column ir	ı weii:	13.44		_			0.653 ga		
								1.469 ga 2.611 ga		
Volume of water	or in wall o	ocina gollone:		2.2			0 =	2.611 ga	11/1001	
		water column X gal	/foot V 2)·	2.2		- 6.57				
Actual volume			/100t A 3).			6.66		_		
						0.00		=		
Sampling Meth								-		
Sampling Equip	oment. <u>I</u>	Bailer						-		
Mall Backarga	ا - ا	N/A						_		
Well Recharge		IV/A						=		
Required Analy	/SIS							-		
FIELD PARAM	IETER ME	ASUREMENTS								
	1		Accumu	lated Vo	lume Pur	raed in G	allons			
Parameter:			T T	iatoa ro	<u> </u>	l god iii o	1			
Turbidity	4052.6	NTU	+							
Temperature	10.2	°C	+							
pH	6.76									
Conductivity	0.614	SPC ms/cm	+ -							
	5.17		+							
Oxygen	5.17	DO mg/L	+							
Salinity										
Time sample w	ias collecto	ad:	15:22							
I illie sample w	as conecie	su.	13.22		=					
COMMENTS									=	
OOMINIERTO									-	
									-	
									-	
I										

GROUNDWAT	TER SAME	PLING WORKSHEE	<u>T</u>							
)	
PROJECT NAI	<u>ME:</u>	Gowanda Q4 2021								
Project Numbe	r:	14263.07	7					_	ノ	
Site Location:	_	Gowanda, New Yorl	k							
Sample Date:	_	11/18/202	21							
Weather:	_	48 Degrees F					BE	RGI	1 A N	NN
Personnel:	-	Justin L. O'B	rien					CTS ENGIN		
GROUNDWAT	ER SAME	PLE POINT								
Well Number:		MW-11								
Location:	-			•						
Casing Diamet	er:	2"							•	
	=			-			Well Dia	. Volume/	Foot	1
Depth to water,	, below top	o of casing:		<u>5.5</u>				0.041 ga		1
Depth to bottor			<u>15.48</u>					: 0.163 ga		
Length of wate			9.98					: 0.653 ga		
Ĭ								: 1.469 ga		
							8" =	: 2.611 ga	l/foot	
Volume of water	er in well c	asing, gallons:		1.6267		'				
3 Well volumes	s (= length	water column X gal	/foot X 3):			4.8802				
Actual volume	purged pri	or to sampling:	•		5.0			_		
Sampling Meth	odology:	Hand bailing		-				_		
Sampling Equip		Bailer						_		
	-							-		
Well Recharge	d? -	N/A						_		
Required Analy								_		
FIFI D PARAM	IETER ME	ASUREMENTS						_		
TILLD I AIKAW		ACCINENTO								
Dovernotor:			Accumu	lated Volu	ıme Pur	ged in G	alions	1		1
Parameter: Turbidity	3242.6	NTU								
		°C								
Temperature	14.0	<u> </u>								
pН	7.16	000 /								
Conductivity	0.687	SPC ms/cm								
Oxygen	2.49	DO mg/L								
Salinity										
Time a second	ا الحم مور	٠ ما.	40.07							
Time sample w	as collect	ea:	13:07							
COMMENTS									-	
COMMENTS									-	
									-	
									-	

GROUNDWAT	TER SAMP	LING WORKSHEE	<i>T</i>			
<u> </u>	LIX OAIIII	LING WORKSILL	<u></u>			
PROJECT NAI	ME- (Gowanda Q4 2021				🖳
Project Numbe		14263.07	7			
Site Location:						
		Gowanda, New Yor				
Sample Date:	_	11/18/202	<u> </u>			DEDCMANIN
Weather:	<u>(</u>	66 Degrees F				BERGMANN
Personnel:	_	Justin L. O'B	rien			ARCHITECTS ENGINEERS PLANNERS
GROUNDWAT	ER SAMP	LE POINT				
Well Number:	N	ИW-12				
Location:	_					
Casing Diamet	er: 2	2"				
	<u>-</u>					Well Dia. Volume/Foot
Depth to water,	helow ton	of casing.		6.3		1" = 0.041 gal/foot
Depth to botton			17.38	0.0		2" = 0.163 gal/foot
Length of wate			11.08			4" = 0.653 gal/foot
Length of water	Coldinii	i WCII.	11.00			6" = 1.469 gal/foot
						8" = 2.611 gal/foot
Volume of wate	ar in well ca	asing gallons.		1.81		0 = 2.011 gai/100t
		water column X gal	/foot X 3):	1.01	5.42	
Actual volume			/100t X 3).		5.5	
Sampling Meth				_	5.5	
		Bailer				
Sampling Equip	pilielit. <u>I</u>	Dallel				
Mall Dacharga	40 <u>r</u>	N/A				
Well Recharge		N/A				
Required Analy	/818.					
EIELD DADAM	ICTOD ME	ACLIDEMENTS				
FIELD PARAM	ICIEK WE	<u>ASUREMENTS</u>				
			Accumula	ted Volu	ne Purged	in Gallons
Parameter:						
Turbidity	126.78	NTU				
Temperature	13.3	°C				
рН	7.67					
Conductivity	0.004	SPC ms/cm				
Oxygen	8.34	DO mg/L				
Salinity						
					•	
Time sample w	as collecte	ed:	12:27			
'						
COMMENTS						

GROUNDWAT	TER SAME	PLING WORKSHEE	<u></u>							
									$\overline{}$	
PROJECT NA		Gowanda Q4 2021							ゴ	
Project Numbe		14263.0		•				_	ノー	
Site Location:	_	Gowanda, New Yor					_			
Sample Date:	_	11/18/202	21							
Weather:	_	48 Degrees F					BF	RGI	IAM	NN
Personnel:	-	Justin L. O'E	Brien	•				CTS ENGII		ANNERS
GROUNDWAT	ER SAME	PLE POINT								
Well Number:	-	MW-13								
Location:	_	0"							_	
Casing Diamet	er:	2"					Mall Dia	Nolumo	/Fast	1
Depth to water Depth to bottor Length of wate	n of the we	ell:	17.40 10.80	6.6			1" = 2" = 4" =	0.041 ga 0.163 ga 0.653 ga 1.469 ga	al/foot al/foot al/foot	
Volume of wate 3 Well volumes Actual volume Sampling Meth Sampling Equi	s (= length purged pri lodology: _	water column X ga or to sampling:	l/foot X 3):	1.7604	5.33	5.2812	8" =	2.611 ga - - -		
Well Recharge	d? _	N/A						-		
Required Analy	_	14/74						=		
	-	ASUREMENTS						-		
			Accumu	lated Volu	ıme Purg	ed in G	allons			
Parameter:										
Turbidity	1977.98	NTU								
Temperature	14.8	°C								
рН	7.12									
Conductivity	0.249	SPC ms/cm								
Oxygen	5.08	DO mg/L								
Salinity										
Time sample w	vas collect	ed:	12:45						-	
					_				= -	

GROUNDWAT	ER SAMP	LING WORKSHEE	T							
			_							
PROJECT NAI		Gowanda Q4 2021								
Project Numbe		14263.07						-	-	
Site Location:	_	Gowanda, New Yorl								
Sample Date:	_	11/18/202	21					-	4 4 4	
Weather:	<u>,</u>	48 Degrees F					BE	RGN	1 A P	NN
Personnel:	_	Justin L. O'B	srien					TS ENGIN		
GROUNDWAT	ER SAMP	LE POINT								
Well Number:	<u>_l</u>	MW-14								
Location:	_	- "							•	
Casing Diamete	er: <u>2</u>	2"				F.		I		1
Depth to water, Depth to botton Length of water	n of the we	ell:	10.3 18.15 7.85				1" = 2" = 4" = 6" =	Volume/ : 0.041 ga : 0.163 ga : 0.653 ga : 1.469 ga : 2.611 ga	l/foot l/foot l/foot l/foot	
Actual volume Sampling Meth Sampling Equip	s (= length purged pricodology: _l oment: _l	water column X gal or to sampling: Hand bailing Bailer	/foot X 3):	1.28	3.84 4			- - - -	W. Cock	1
Well Recharge Required Analy		N/A						-		
	-	<u>ASUREMENTS</u>						_		
			Accumula	ated Vol	ume Pui	rged in Ga	llons			
Parameter:										
Turbidity	355.72	NTU								
Temperature	12.9	°C								
рН	7.47									
Conductivity	0.001	SPC ms/cm								
Oxygen	8.22	DO mg/L								
Salinity		-								
Time sample w	as collecte	ed:	11:02							
									<u>-</u>	
									•	

GROUNDWAT	ER SAME	PLING WORKSHEE	T							
PROJECT NAI	ME:	Gowanda Q4 2021						1 :-	う し	
Project Numbe		14263.07	7						ノー	
Site Location:	_	Gowanda, New Yor								
Sample Date:	-	11/18/202					-			
Weather:	-	48 Degrees F	- I				RF	RGI		N N
Personnel:	-	Justin L. O'E	Prion				DL	NOI	'1	414
r ersonner.	-	JUSTIT L. O L	nicii	•			ARCHITE	CTS ENGII	NEERS PL	ANNERS
GROUNDWAT	ER SAME	PLE POINT								
Well Number:	_	MW-15		_						
Location:	·-			-						
Casing Diamet	er:	2"								
	•			•			Well Dia	Volume/	Foot	
Depth to water,	, below top	o of casing:		10.25			1" =	: 0.041 ga	l/foot	
Depth to botton	n of the w	ell:	19.80			•	2" =	0.163 ga	l/foot	
Length of water			9.55					0.653 ga		
								: 1.469 ga		
								: 2.611 ga		
Volume of water	er in well c	asing, gallons:		1.5567						
		water column X gal	l/foot X 3):			4.67				
Actual volume			,			4.75		_		
Sampling Meth				•				_		
Sampling Equip		Bailer						_		
Camping Equip		Dalloi						_		
Well Recharge	42							_		
Required Analy								_		
Intequired Arialy	, SIS.							_		
FIELD PARAM	IETER ME	EASUREMENTS								
			Accumu	lated Vol	ume Pur	ged in G	allons			
Parameter:										
Turbidity	3226.3	NTU								
Temperature	13.4	°C								
рН	7.07									
Conductivity	0.598	SPC ms/cm	1							
Oxygen	2.57	DO mg/L								
Salinity	2.01	DO mg/L								
Sallility										
Time a committee v	مه مماله م	a d.	40.45							
Time sample w	as collect	ea:	10:15							
COMMENTO									•	
COMMENTS									<u>-</u>	
									_	

GROUNDWAT	ER SAMP	LING WORKSHEE	T					
								
PROJECT NAI	MF.	Gowanda Q4 2021				- ! !-	イ I	
Project Numbe		14263.07	7				ノI	
Site Location:		Gowanda, New Yor						
Sample Date:	-	11/18/202						
Weather:	-	48 Degrees F			P	BERG	ΜΔΙ	N N
Personnel:	_	Justin L. O'E	Brien					
GROUNDWAT	ER SAMP	LE POINT			AK	CHITECTS ENGI	NEERS PL	ANNERS
Well Number:		MW-16						
Location:	<u>-</u>	10						
Casing Diamete	er:	2"						
	<u>-</u>				Well	l Dia. Volume/	Foot	
Depth to water,	below top	of casing:	12.6			1" = 0.041 ga		
Depth to botton			23.26		-	2" = 0.163 ga		
Length of water			10.66			4" = 0.653 ga	l/foot	
			'			6" = 1.469 ga		
						8" = 2.611 ga	l/foot	
Volume of water				1.7376				
		water column X gal	l/foot X 3):		5.2127			
Actual volume					5.25			
Sampling Meth								
Sampling Equip	oment: _	Bailer						
Well Recharge	42 _	N/A						
Required Analy		IN/A						
Trequired Arialy								
FIELD PARAM	ETER ME	ASUREMENTS						
			Accumula	ted Volume Pu	rged in Gallon	S		
Parameter:					Ī			
Turbidity	3060.5	NTU						
Temperature	11.9	°C						
рН	7.13							
Conductivity	0.659	SPC ms/cm						
Oxygen	4.18	DO mg/L						
Salinity								
						•		
Time sample w	as collecte	ed:	16:22					
							•	
COMMENTS								
							•	

GROUNDWAT	ER SAME	PLING WORKSHEE	T							
			_							
PROJECT NAM	ME:	Gowanda Q4 2021								
Project Numbe		14263.07	7						ノー	
Site Location:		Gowanda, New Yor		1						
Sample Date:	-	11/19/202					-			
Weather:	-	72 Degrees F					RF	RG	ΜΔ	N N
Personnel:	-	Justin L. O'B	Brien							
Crooring.	-	OUSTITE: O'E	71011	•			ARCHITE	ECTS ENG	INEERS PL	ANNERS
GROUNDWAT	ER SAMP	PLE POINT								
Well Number:	_	MW-17								
Location:	_								_	
Casing Diamete	er:	2"		•				T		-
Depth to water,	holow tor	of casing:		12.8				Volume 0.041 ga		
			25.19			•				
Depth to botton			25.18					0.163 ga		
Length of water	column II	i weii:	12.38					0.653 ga		
								1.469 ga		
Values a of water	م الميير ما س	ممنام مماامه		0.0470			8 =	2.611 ga	11/1001	1
Volume of water			/fact V 2).	2.0179	C 0500	•				
		water column X gal	/100t X 3):		6.0538			_		
Actual volume				-	6.25			_		
Sampling Meth										
Sampling Equip	oment:	Bailer						_		
								_		
Well Recharge		N/A						_		
Required Analy	'sis:							_		
FIELD PARAM	ETER ME	ASUREMENTS								
			Acquest	lated Vol	umo Dur	and in C	allana			
Parameter	ı		Accumu	lateu voi	uille Fui	geu iii G	alions I	I	1	1
Parameter:	60.85	NTU								
Turbidity										
Temperature	9.1	°C	-							
pΗ	7.16									
Conductivity	0.505	SPC ms/cm								
Oxygen	8.85	DO mg/L								
Salinity										
			44.05							
Time sample w	as collect	ea:	11:05							
COMMENTS									_	
COMMENTS									=	
									-	
									=	

GROUNDWAT	ER SAME	PLING WORKSHE	<u>ET</u>					
PROJECT NAM		Gowanda Q4 2021						
Project Number		14263.0						
Site Location:	-	Gowanda, New You						
Sample Date:	-	11/19/20	21			ьг		NINI
Weather:		48 Degrees F				BE	RGMA	N N
Personnel:	-	Justin L. O'E	<u> Brien</u>			ARCHITE	CTS ENGINEERS P	LANNERS
GROUNDWAT	ER SAME	PLE POINT						
Well Number:		MW-18						
Location:	-							
Casing Diamete	er:	2"						_
							Volume/Foot	
Depth to water,			8.6				0.041 gal/foot	
Depth to botton			25.0			2" =	0.163 gal/foot	
Length of water	r column i	n well:	16.4				0.653 gal/foot	
							1.469 gal/foot	
Values a of water	مالميين ما س	asing gallage.		0.0700		8" =	: 2.611 gal/foot	
Volume of wate			-1/foot V 2).	2.6732		0.00		
		water column X ga	11/100t A 3).		0.25	8.02	=	
Actual volume				_	8.25		_	
Sampling Methors Sampling Equipment		Bailer					-	
Sampling Equip	Jillelit.	Dallel					-	
Well Recharge	43						-	
Required Analy							_	
Trequired / trially							-	
FIELD PARAM	ETER ME	ASUREMENTS						
			Accumul	ated Volu	me Purgeo	d in Gallons		
Parameter:								
Turbidity	3948	NTU						
Temperature	9.9	°C						
рН	7.17							
Conductivity	0.73	SPC ms/cm						
Oxygen	5.53	DO mg/L						
Salinity								
Time sample w			9:36					
	MW-X co	llected from this we	ell					
COMMENTS								

GROUNDWAT	ER SAMF	PLING WORKSHEE	<u>T</u>							
			_						2	
PROJECT NAM		Gowanda Q4 2021								
Project Number		14263.07								
Site Location:	-	Gowanda, New Yor					_			
Sample Date:	-	11/19/202	21				DE		A A A	NINI
Weather:	-	45 Degrees F					DE	RGI		
Personnel:	-	Justin L. O'B	Brien				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWATI	ER SAMF	PLE POINT								
Well Number:	_	MW-19R								
Location:	-								•	
Casing Diamete	er:	2"					NA 11 B1	Tv		,
Danth to water	h = l = 4 =	a familia m	7.05					Volume/		
Depth to water,			7.35_					0.041 ga		
Depth to bottom Length of water			17.67 10.32					: 0.163 ga : 0.653 ga		
Lengin or water	Columni	ii weii.	10.32				6" -	: 0.055 ga : 1.469 ga	l/foot	
								: 1.409 ga : 2.611 ga		
Volume of wate	r in well c	asing, gallons:		1.7				- <u>2.011 ga</u>	1/1001	1
		water column X gal	/foot X 3):		5.05					
Actual volume p			,		5.25			_		
Sampling Metho								_		
Sampling Equip		Bailer						_		
	•									
Well Recharged	1?	N/A						_		
Required Analys	sis:							_ _		
FIELD PARAM	ETER ME	EASUREMENTS								
			Accumula	ated Volu	m <mark>e Pur</mark> g	ged in C	allons			
Parameter:										
Turbidity	1319.7	NTU								
Temperature	10	°C								
рН	7.15									
Conductivity	0.003	SPC ms/cm								
Oxygen	7.8	DO mg/L								
Salinity										
Time sample wa	as collect	ed:	8:45							
COMMENTS									•	
									•	
-									•	
-									•	

GROUNDWAT	TER SAMP	LING WORKSHEE	<u>T</u>							
								1 —	.	
DDO IEOT NA		2						\sqcup	2	
PROJECT NAI		30wanda Q4 2021	7							
Project Numbe Site Location:		14263.07								
		Gowanda, New Yor 11/19/202					_			
Sample Date:	_		<u> </u>				ρг			
Weather:	_4	5 Degrees F) wi =				BE	RGI	YI A I	N IN
Personnel:	_	Justin L. O'E	srien				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAMP	LE POINT								
Well Number:	N	ЛW-20								
Location:										
Casing Diamet	er: <u>2</u>) II -							•	_
								Volume/		
Depth to water,	, below top	of casing:	9.3					0.041 ga		
Depth to bottor			14.75					0.163 ga		
Length of wate	r column in	well:	5.45					0.653 ga		
								1.469 ga		
							8" =	2.611 ga	l/foot	
Volume of water			-	0.8884						
		water column X ga	l/foot X 3):			2.6651		_		
Actual volume					2.75			_		
Sampling Meth								_		
Sampling Equip	pment: <u>E</u>	Bailer						_		
	_							_		
Well Recharge		I/A						_		
Required Analy	/sis: _							_		
FIELD PARAM	IETER ME	ASUREMENTS								
			Accumul	ated Volu	me Purg	ged in G	allons			
Parameter:										
Turbidity	2283.3	NTU								
Temperature	14.4	°C								
рН	6.55									
Conductivity	0.992	SPC ms/cm								
Oxygen	4.56	DO mg/L								
Salinity										
	•			•	•		•	•	•	
Time sample w	as collecte	d:	8:01							
•										
COMMENTS										

GROUNDWAT	ER SAM	PLING WORKSHEE	<u>T</u>							
			_						\supset	
PROJECT NAM		Gowanda Q4 2021						11		
Project Numbe		14263.07		•				_		
Site Location:		Gowanda, New Yor					-			
Sample Date:	-	11/19/202	21				ь			
Weather:		45 Degrees F					BE	RGI	MAI	$N \mid N \mid$
Personnel:		Justin L. O'E	Brien				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAME	PLE POINT								
Well Number:		MW-21								
Location:	-								_	
Casing Diamete	er:	2"		•			s.	T		1
Depth to water,			45.00	9.4			1" =	Volume/ 0.041 ga	ıl/foot	
Depth to botton			15.82				=	0.163 ga	11/100t	
Length of water	r column i	n weii:	6.42				4"=	0.653 ga	1/1001	
								1.469 ga		
Valuma of water	مالمسام	ooina aollono.		1 0465			8"=	: 2.611 ga	11/1001	
Volume of water			1/foot V 2\;	1.0465		. 211				
		water column X ga	1/100t A 3).			3.14		_		
Actual volume						3.25		_		
Sampling Meth								_		
Sampling Equip	oment:	Bailer						_		
Well Recharge		N/A						- -		
Required Analy	'SIS:							_		
FIELD PARAM	ETER ME	EASUREMENTS								
			Accumu	lated Vol	ume Pur	ged in G	allons			
Parameter:										
Turbidity	1216.6	NTU								
Temperature	11.5	°C								
рH	6.79									
Conductivity	0.014	SPC ms/cm								
Oxygen	3.78	DO mg/L								
Salinity										
Time sample w	as collect	ed:	9:04							
001111515									=.	
COMMENTS									-	
									-	
									-	

GROUNDWAT	ER SAMI	PLING WORKSHEE	T							
									7	
PROJECT NAI	ME:	Gowanda Q4 2021						1 :	\prec \Box	
Project Numbe		14263.07	7						ノー	
Site Location:		Gowanda, New Yor		•						
Sample Date:		11/18/202					_			
Weather:	,	48 Degrees F	- '				DE	RGI	$\mathbf{M} \mathbf{A} \mathbf{B}$	N N
Personnel:		Justin L. O'B	rion				DE	K G I	11 / 1	AIA
r ersonner.	!	JUSTIT L. O'L	nicii	-			ARCHITE	CTS ENGIN	NEERS PL	ANNERS
GROUNDWAT	ER SAM	PLE POINT								
Well Number:		DR-1								
Location:	'			•						
Casing Diamet	er:	4"							-	
	·			-				. Volume/		
Depth to water,				6.7		_		0.041 ga		
Depth to botton	n of the w	ell:	18.06	•			2" =	0.163 ga	l/foot	
Length of water	r column i	n well:	11.36				4" =	0.653 ga	l/foot	
								: 1.469 ga		
							8" =	: 2.611 ga	l/foot	
Volume of water				7.4181		_				
		water column X gal	/foot X 3):			22.254		_		
Actual volume	purged pr	ior to sampling:				22.33	ı	<u>-</u>		
Sampling Meth	odology:	Hand bailing						='		
Sampling Equip		Bailer						_		
	•							_		
Well Recharge	d?	N/A						_		
Required Analy								_		
	•							_		
FIELD PARAM	IETER ME	EASUREMENTS								
			Accumu	lated Vol	ume Pur	ged in G	allons			
Parameter:										
Turbidity	3311.2	NTU								
Temperature	13.7	°C								
рН	7.22									
Conductivity	0.594	SPC ms/cm								
Oxygen	4.24	DO mg/L								
Salinity	1.21	DO mg/L	+							
Gaminy										
Time sample w	vas collect	ed:	13:36							
Time sample w	as concor	cu.	10.00							
COMMENTS									•	
COMMITTO									-	
									-	
									•	
IL										

GROUNDWAT	ER SAMPL	ING WORKSHEE	Τ						
								\	
PROJECT NA	ME: G	owanda Q4 2021						くし	
Project Numbe		14263.07	7					ノー	
Site Location:		owanda, New Yor							
Sample Date:		11/18/202				-			
Weather:	48	8 Degrees F				DEI		1 A N	LAL
Personnel:		Justin L. O'B	Brien				RGN		N I N
l Grootmion	_	Odotiii E. O E	711011			ARCHITEC	TS ENGIN	EERS PLA	ANNERS
GROUNDWAT	ER SAMPL	E POINT							
Well Number:	D	R-2							
Location:	<u></u>	11-2							
Casing Diamete	er: 4'	1							
Dasing Diamet	CI. <u>+</u>					Well Dia.	Volume/I	Foot	
Depth to water,	holow ton	of casing:		6.6			0.041 gal		
Depth to botton	•	•	18.06	0.0			0.041 gal		
Length of water			11.46				0.653 gal		
Lengin or water	Columnin	well.	11.40				1.469 gal		
							2.611 gal		
Volume of water	or in wall car	eina gallone:		7.4834		0 -	Z.011 yal	/1001	
		vater column X gal	I/foot Y 3):	7.4034	22.45				
Actual volume			1/100t A 3).		22.43		•		
Sampling Meth					22.5		•		
Sampling Requir		ailer					•		
Sampling Equip	onient. <u>b</u>	allel					·		
Well Recharge	43 <u>N</u> I	/A					•		
Required Analy		/A					•		
Required Arialy									
FIELD PARAM	ETED MEA	CHDEMENTS							
FILLD FARAIN	LILK WILF	NOOKLIVILIA I O							
			Accumul	ated Volum	ne Purged in G	allons			
Parameter:									
Turbidity	925.1	NTU							
Temperature	13.7	°C							
рН	7.17								
Conductivity	0.213	SPC ms/cm							
Oxygen	4.58	DO mg/L							
Salinity									
	•			•	•	•			
Time sample w	as collected	d:	12:10						
COMMENTS									

GROUNDWAT	TER SAMP	LING WORKSHEE	T						
PROJECT NA	ME: (Gowanda Q4 2021					1 :-	\prec \sqcup	
Project Number		14263.07	7				_	ノI	
Site Location:		Gowanda, New Yor							
Sample Date:	_	11/18/202				-			
Weather:		18 Degrees F				RF	RG	ΜΔ	N N
Personnel:	_	Justin L. O'E	Brien						
	-					ARCHIT	ECTS ENGI	NEERS P	LANNERS
GROUNDWAT	IER SAMP	LE POINT							
Well Number:	[DR-3							
Location:	_								
Casing Diamet	ter:	1"							
	_					Well Dia	. Volume/	Foot	1
Depth to water	. below top	of casing:		11.33			0.041 gal		1
Depth to botton	•	-	20.45				: 0.163 gal		
Length of water			9.12				: 0.653 gal		
			0112				: 1.469 gal		
							: 2.611 gal		
Volume of wat	er in well ca	asing gallons:		6.0			ga.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	j
		water column X gal	l/foot X 3)· _	0.0	17.866				
Actual volume					18		_		
Sampling Meth							_		
Sampling Equi		Bailer					_		
Camping Equi	<u> </u>	Janoi					_		
Well Recharge	-42 <u>T</u>	N/A					_		
Required Analy		4// \					_		
rtoquirou / triai.	_						_		
FIFI D PARAM	IFTER ME	ASUREMENTS							
I IEEE I ARAI		AGGREMENTO							
			Accumul	ated Volur	ne Purged in G	allons	1		I
Parameter:	1040.05	NITTI							
Turbidity	`640.65	NTU							
Temperature	13.7	°C							
рН	7.15								
Conductivity	0.631	SPC ms/cm							
Oxygen	5.04	DO mg/L							
Salinity									
Time sample v	vas collecte	ed:	11:35						
COMMENTS									
II									

GROUNDWAT	TER SAMPL	ING WORKSHEE	ΞT							
<u> </u>		THE THE TRANSPILL								
									\	
PROJECT NA	ME: G	owanda Q4 2021							くし	
Project Numbe		14263.0	7						ノー	
Site Location:		owanda, New Yor								
Sample Date:	<u></u>	11/18/202					_			
Weather:	48	B Degrees F	<u> </u>				DE	RGI	4 A N	N N
Personnel:	<u>-10</u>	Justin L. O'E	Rrian				DE	K G I	11 / 1	AIA
Croomic.		JUSTIT L. O L	JIICH				ARCHITE	CTS ENGIN	NEERS PL	ANNERS
GROUNDWAT	ER SAMPL	E POINT								
Well Number:	D	R-4								
Location:	<u>D</u>	114								
Casing Diamet	er: 4"								•	
Casing Diamet	.cı. <u>4</u>						Wall Dia	. Volume/	Foot	1
Depth to water	holow top o	of casing:		11.25				= 0.041 ga		
Depth to bottor			19.69	11.23		_		- 0.041 ga - 0.163 ga		
Length of wate			8.44					- 0.163 ga - 0.653 ga		
Lengin or wate	i coluitiii iii v	well.	0.44					= 0.055 ga = 1.469 ga		
								= 1.409 ga = 2.611 ga		
Volume of water	ar in well cas	sing gallone:		5.51			0 -	- 2.011 ya	1/1001	1
		ater column X ga	I/foot X 3)	0.01		_ 16.53				
Actual volume			1/100t X 3).			16.75		_		
Sampling Meth		to sampling.		·		10.73	'	_		
Sampling Equi		and bailer						_		
	ритент. <u>п</u>	ariu baller						_		
Well Recharge	ed? N	/Δ						_		
Required Analy								_		
Trequired Arialy								_		
FIELD PARAN	IETER MEA	SURFMENTS								
I ILLD I AKAN		OOKLINEITO								
			Accumu	lated Vol	ume Pur	ged in G	allons			
Parameter:										
Turbidity	2463.6	NTU								
Temperature	13.4	°C								
рН	7.14									
Conductivity	0.38	SPC ms/cm								
Oxygen	4.37	DO mg/L								
Salinity										
			•							
Time sample w	vas collected	l :	10:46							
· '										
COMMENTS	•								•	
									•	
	-								•	
									•	

Ш

GROUNDWAT	ER SAMPL	ING WORKSHEE	ΞT						
								\	
PROJECT NAM	ME: G	owanda Q4 2021					<u> </u>		
Project Number		14263.07)	
Site Location:		owanda, New Yor	·k						
Sample Date:		11/18/20:							
Weather:	48	B degrees F				BEI	RGM	1 A N	INI
Personnel:	<u> </u>	Justin L. O'E	Brien						
l Grootinion		Odotiii E. O E	211011			ARCHITEC	TS ENGINE	ERS PLA	NNERS
GROUNDWAT	ER SAMPL	E POINT							
Well Number:	G	-1							
Location:									
Casing Diamete	er: 4"	1							
						Well Dia	. Volume/I	Foot	1
Depth to water,	below top o	of casing:	11.5				0.041 gal		1
Depth to botton			22.98				: 0.163 gal		
Length of water			11.48				: 0.653 gal		
							: 1.469 gal		
							: 2.611 gal		
Volume of water	er in well cas	sing, gallons:		7.4964					1
		ater column X ga	I/foot X 3): _		22.48	9			
Actual volume			.,,.		22.		_		
Sampling Meth				-			_		
Sampling Equip		ailer					_		
Camping Equip	<u> </u>	anoi					_		
Well Recharge	d? N	/Α					_		
Required Analy							_		
r toquirou / triary							_		
FIELD PARAM	FTFR MFA	SURFMENTS							
112221744744									
			Accumul	ated Volume	Purged in (Gallons			
Parameter:						1			
Turbidity	579.1	NTU					1		
Temperature	12.8	°C	1				† †		
рН	7.29		+ +				+ +		
Conductivity	0	SPC ms/cm							
Oxygen	42.7	DO mg/L					+ +		
Salinity	42.7	DO IIIg/L	+ +		-	+	+ +		
Sallfilly									
Time a communic	ومع مماله معم	1.	0.50						
Time sample w	as collected	1.	9:56						
COMMENTS									
COMMENTS									

Ш

GROUNDWAT	ER SAMPL	LING WORKSHEE	<u>T</u>			
			_			
PROJECT NAI	<u>ME:</u>	Gowanda Q4 2021				
Project Numbe		14263.07				
Site Location:	G	Sowanda, New Yor				_1
Sample Date:	_	11/18/202	21			
Weather:	4	8 Degrees F			BERGM	ANN
Personnel:		Justin L. O'E	Brien	<u> </u>	ARCHITECTS ENGINEE	
GROUNDWAT	ER SAMPL	E POINT			ANGIII ZOTO ZNOMZZ	NO TEXNITENS
Well Number:	<u>G</u>	G-2				
Location:	-					
Casing Diamet	er: <u>4</u>	"				
					Well Dia. Volume/I	
Depth to water,			11.42		1" = 0.041 gal	
Depth to botton			20.72		2" = 0.163 gal	
Length of water	r column in	well:	9.30		4" = 0.653 gal	
					6" = 1.469 gal	
			_		8" = 2.611 gal	/foot
Volume of water				5.0729		
		vater column X ga	I/foot X 3):		18.219	
Actual volume					18.25	
Sampling Meth						
Sampling Equip	pment: <u>B</u>	sailer				
		1/4				
Well Recharge		I/A				
Required Analy	/SIS:					
FIELD DADAM	ETED ME	NOUDEMENTO				
FIELD PARAM	IETER MEA	ASUREMENTS				
			Accumulat	ed Volume Pu	rged in Gallons	
Parameter:						
Turbidity	352.09	NTU				
Temperature	11.7	°C				
рН	7.56					
Conductivity	0	SPC ms/cm				
Oxygen	7.81	DO mg/L				
Salinity						
				<u> </u>	1	
Time sample w	as collecte	d:	9:20			
00141451170						
COMMENTS						

GROUNDWAT	ER SAMPL	ING WORKSHE	ET					
			_					
PROJECT NA		owanda Q4 2021						
Project Numbe		14263.0						
Site Location:	<u>G</u>	owanda, New Yo						
Sample Date:		11/18/20	21					
Weather:	<u>45</u>	Degrees F			BERGMANN			
Personnel:		Justin L. O'l	Brien		ARCHITECTS ENGINEERS PLANNERS			
GROUNDWAT	ER SAMPL	E POINT						
Well Number: Location:	<u>G</u>	-3						
	or: 4"	1						
Casing Diameter: 4" Depth to water, below top of casing: 9.75 Depth to bottom of the well: 18.15 Length of water column in well: 8.4				Well Dia. Volume/Foot 1" = 0.041 gal/foot 2" = 0.163 gal/foot 4" = 0.653 gal/foot 6" = 1.469 gal/foot 8" = 2.611 gal/foot				
Volume of wate 3 Well volumes Actual volume Sampling Meth Sampling Equi	s (= length w purged prior odology: <u>H</u> :	ater column X ga to sampling:	al/foot X 3):	5.49	16.46 16.50			
Well Recharge Required Analy FIELD PARAM	/sis:	SUDEMENTS						
I ILLD I ANAI		SOKEWENTS						
			Accumulate	<u>ed Volume Pu</u>	urged in Gallons			
Parameter:	1000.0	NITTI I						
Turbidity	1082.8	NTU						
Temperature	11	°C						
pΗ	7.56	000 /						
Conductivity	0.602	SPC ms/cm						
Oxygen Salinity	6.63	DO mg/L						
Gaminey	<u> </u>		<u> </u>	l				
Time sample w	as collected	d:	10:42					
COMMENTS								
il								

MARCH 2022 GROUNDWATER CHARACTERIZATION REPORT

New York State Office of People with Developmental Disabilities – Gowanda Site

4 Industrial Place, Gowanda, NY

GROUNDWATER CHARACTERIZATION REPORT-MARCH 2022 (Q1 2022)

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135 www.bergmannpc.com Issued: April 25, 2022 Revised: July 8, 2022

DASNY Project No.: 3136109999

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of WorkSite Background	4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	
2.1 2.2	Well Maintenance Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	7
4.0	LABORATORY ANALYSIS	8
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples	8 9
5.0	REMEDIATION SYSTEM EFFICIENCY	12
5.1 5.2	Impact of the GTS Recovery Wells Extent of Impacted Groundwater	12

Tables

Table 1: Groundwater Elevations and Field Measurements – March 2022

Table 2: March 2022 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary
Table 4: Percent Reduction in Total Groundwater VOCs

Table 5: Full Analytical Results Summary Table

Figures

Figure 1: March 2022 Groundwater Contour Map

Figure 2: March 2022 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3: March 2022 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, MW-1 and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 2: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations
Chart 3: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations
Chart 4: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations
Chart 5: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations
Chart 6: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations
Chart 7: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - March 2022 Sampling Event

Appendix B: Field Forms

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the fourth quarter 2022 sampling event, conducted on March 24th and 25th, 2022, on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on March 24th and March 25th, 2022. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from all twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis. Of the eight (8) monitoring wells determined by the NYSDEC and Bergmann personnel in 2008 to be outside the area of impact by the Groundwater Treatment System (GTS), all were sampled. Monitoring well MW-21 was added to the well sampling plan permanently by NYSDEC to monitor groundwater migration off-site.

The prior groundwater sampling event was conducted in November 2021 and included analysis of groundwater samples from all twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) were activated on May 10, 2005, recovering 2-5 gallons per minute (gpm) of groundwater. An additional groundwater recovery well, designated G-3, was installed outside the building and adjacent to MW-17 in November 2008. The GTS portion consists of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the SVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP).

In January 2008, the building was decommissioned. The GTS was winterized with the addition of heat tape and insulation to conveyance lines and the installation of an independently operated suspended heater in the treatment area for the GTS and SVES (former Machine Shop). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

During January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed that these systems would be inactivated to allow for groundwater level recovery during the preparation of an In-Situ Chemical Oxidation (ISCO) Remedial Action Plan (RAP) and implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on site in the event that re-activation is required in the future. The ISCO was implemented in May 2015 and a second round of injections in September 2015. An ISCO Report was prepared and submitted under a separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the March 2022 site visit, all monitoring wells were accessible, and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has not been required since June 2007, with the exception of the redevelopment activities performed on August 19, 2015 and removal of asphalt from several flush mount wells located on Torrance Place for sampling access. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the March 2022 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured on a regular basis to track site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater. Groundwater samples were collected from twenty-one (21) of the twenty-one (21) site-related groundwater monitoring wells for laboratory analysis on March 24th and March 25th, 2022. Depth to groundwater measurements were obtained from 28 wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged. Sample parameters including turbidity, temperature, pH, oxygen, and conductivity were monitored using a YSI Quatro prior to sampling. Groundwater samples were collected from recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. Sampling was performed based on discussion and direction from a telephone conversation with David Szymanski (NYSDEC project manager at the time) in January 2018 in which no noticeable changes in test results were noticed comparing bailing and slow purge methods. This was first noted in Q3 2018 and is also noted in the approved PRR dated 2019. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

Bergmann delivered the groundwater samples to Alpha Analytical's courier at the Site in Gowanda, NY. The samples were then transported by Alpha Analytical via a chain-of-custody protocol to their NYSELAP certified laboratory located in Westborough, Massachusetts. The samples were then tested for targeted chlorinated Volatile Organic Compounds (VOCs) of concern, using EPA Method 8260C. All samples except MW-6 were analyzed were in compliance with analytical method requirements. Sample MW-6 had a pH greater than 2, and was analyzed past the 7-day holding time, instead of the usual 14-day holding time. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2012 – 2022.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site water table potentiometric surface pattern and groundwater flow direction was determined for March 2022 using elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water values obtained on March 24th and March 25th, 2022. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements – March 2022.

The March 2022 groundwater table map shows a flow pattern similar to groundwater flow pattern observed historically since 2002. Groundwater at the Site is flowing in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. It is noted that the residential properties along Torrance Place utilize municipal/public water. The March 2022 depths to groundwater range from 5.30 ft. below top of casing (btoc) at MW-2, to 13.20 ft. btoc at MW-6. The average depth to groundwater at the wells measured was 9.11 ft. btoc, which is an increase from the average depth to water of the previous sampling event in November of 2021 (8.88).

The site-wide average depth to water table increased by approximately 0.23 ft. when compared to the previous sampling event from November 2021. This decrease in depth to the water table is inferred as seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented in Table 1 and March 2022 Groundwater Contours are presented on Figure 1 – March 2022 Groundwater Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from twenty-one (21) monitoring wells and seven (7) recovery wells collected March 24th and March 25th, 2022. Samples were analyzed for VOCs via EPA Method 8260C. Analysis was performed in accordance with the October 2006 OM&M Manual. The following halogenated VOCs were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-1,2-DCE)
- Vinyl Chloride (VC)

Total VOCs values, as present throughout this report, in the text, charts, and Tables 2, 3, and 4, are not representative of total VOCs detected, but are exclusively representative of the sum of TCE, CIS, TRANS, VC, and TCA detected.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The March 2022 analytical results indicate detection of four (4) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, VC and Trans-1,2-DCE. Chlorinated VOCs were detected in groundwater samples from fifteen (15) of the twenty-one (21) monitoring wells. Analytical results are summarized in Table 2 – March 2022 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical report is provided in Appendix A – Laboratory Analytical Results Report March 2022 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical total VOC concentrations at each well since sampling of the monitoring wells began in 2002.

VOCs were not detected in groundwater from six (6) of the sampled monitoring wells.

Groundwater samples from ten (10) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total VOCs, MW-11, with a value of 420.6 parts per billion (ppb), is located in the area of historically greatest impacted groundwater.

Concentrations in seven (7) of the twenty-one (21) monitoring well groundwater samples increased when compared to the November 2021 sampling event while concentrations in eight (8) of the twenty-one (21) monitoring well groundwater samples decreased. Concentrations in six (6) groundwater samples from monitoring wells had no change. The current sampling analytical results indicate an average site-wide decrease in total VOCs of approximately 88.47% since activation of the GTS in May 2005.

The area of highest impacted groundwater exists at the area centered between monitoring wells MW-1 and MW-11, which has historically indicated the highest levels of VOCs and is inferred as the source area of impacted groundwater. In the area where the plume of impacted groundwater is inferred (monitoring wells MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the current laboratory analysis shows a contaminant reduction in VOC concentrations by an average of approximately 83.00% since groundwater monitoring of these wells began in 2002.

Monitoring well MW-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-1 for the March 2022 sampling event was 382.59 parts per billion (ppb), a decrease from the November 2021 value of 980.46 ppb. Since activation of the GTS, detected VOCs at MW-1 have decreased by about 50.18%.

Monitoring well MW-11 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-11 for the March 2022 sampling event is 420.6 ppb, a decrease from the November 2021 value of 495.4 ppb. Since activation of the GTS in May 2005, detected VOCs at MW-11 have decreased by 90.95%.

Monitoring well MW-12 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-12 for the March 2022 sampling event is 271.9 ppb, an increase from the November 2021 value of 125.4 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005, detected VOCs at MW-12 have decreased by about 97.85%.

Monitoring well MW-13 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at monitoring well MW-13 for the March 2022 sampling event was 5.11 ppb, an increase from the November 2021 sampling event, which was 1.83 ppb. Since activation of the GTS, detected VOCs at MW-13 have decreased by about 98.38%.

Monitoring well MW-14 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-14 for the March 2022 sampling event is 104.45 ppb, an increase from the November 2021 value of 91.86 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 detected VOCs at MW-14 have decreased by about 66.86%

Monitoring well MW-15 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at MW-15 for the March 2022 sampling event was 9.4 ppb, a decrease from the November 2021 sampling event, which was 15.6 ppb. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, the detected VOCs at MW-15 have decreased 98.71%.

Six (6) groundwater monitoring wells are located along the subject property's north perimeter, down-gradient from the area of impacted groundwater. The north perimeter monitoring wells consist of wells MW-5, MW-6, MW-16, MW-17 and MW-21. The current analytical results exhibit a decrease in targeted VOCs at the sampled monitoring wells along the north perimeter, compared to the November 2021 sampling event.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the radius of influence for the Day Habilitation groundwater treatment system. The current results indicate a total VOC concentration of 3.88 ppb for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. It was first noted that during the August 2017 sampling event, wells MW-19R and MW-21 were not sampled because they were inaccessible. It was observed that the wells were likely paved over by a re-sealing the Torrance Place road surface. These wells were uncovered after the July 2019 sampling event, and subsequent sampling events. Well MW-19R had a total VOC concentration of 0.30 ppb, and well MW-21 had a total VOC concentration of 7.76 ppb during the March 2022 sampling event.

Laboratory analytical results are included in Appendix A. Monitoring well locations and distribution of analytical results are shown on Figure 2 – March 2022 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event were MW-4 and MW-19R. The current results indicate non-detect (ND) levels for MW-4 and 0.30 ppb for MW-19R.

The Gowanda Electronics impacted groundwater plume may be migrating to an area near Industrial Place and has intermittently impacted MW-19R. The Gowanda Electronics impacted groundwater plume does not appear

to extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. According to Mr. Chris Sanson, an Environmental Scientist for Groundwater & Environmental Services, Inc. (GES), an ISCO injection application was implemented for the Gowanda Electronics site in March 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the March 2022 sampling event, all of the seven (7) recovery wells were sampled.

The March 2022 analytical results indicate detection of chlorinated VOCs in all seven (7) recovery well samples that include: TCE, Cis-DCE, VC and Trans-1,2-DCE. Total VOCs detected in the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in VOCs for the current sampling event is about 88.56% relative to concentrations prior to GTS activation in 2002. Relative percent increase in total VOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater VOCs.

Recovery well DR-1 increased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-1 for the March 2022 sampling event is 663.50 ppb, an increase from the November 2021 value of 598.6 ppb. The current sampling event indicates a decrease in VOCs at DR-1 of 91.71% since activation of the GTS. Recovery well DR-1 is located closest to MW-1 in an area of historically highest concentrations.

Recovery well DR-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-2 for the March 2022 sampling event is 129.15 ppb, a decrease from the November 2021 value of 251.3 ppb. The current sampling event indicates a decrease in VOCs at DR-2 of about 93.55% since activation of the GTS.

Recovery well DR-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-3 for the March 2022 sampling event is 75.20 ppb, a decrease from the November 2021 value of 94.88 ppb. The current sampling event indicates a decrease in VOCs at DR-3 of about 94.87% since activation of the GTS.

Recovery well DR-4 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at DR-4 for the March 2022 sampling event is 29.0 ppb, a decrease from the November 2021 value of 34.6 ppb. The current sampling event indicates a decrease in VOCs at DR-4 of about 98.36% since activation of the GTS.

Recovery well G-1 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-1 for the March 2022 sampling event was 47.21 ppb, a decrease from the November 2021 value of 53.68 ppb. The current sampling event indicates a decrease in VOCs at G-1 of 91.33% since activation of the GTS.

Recovery well G-2 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-2 for the March 2022 sampling event was 45.35 ppb, a decrease from the November 2021 value of 52.67 ppb. The current sampling event indicates a decrease in VOCs at G-2 of 88.22% since activation of the GTS.

Recovery well G-3 decreased in targeted chlorinated VOCs relative to the prior sampling event. The total VOC concentration at G-3 for the March 2022 sampling event was 153.75 ppb, a decrease from the November 2021

value of 185.8 ppb. The current sampling event indicates a decrease in VOCs at G-3 of 61.85% since activation of the GTS.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – March 2022 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

An equipment blank was collected. The analytical results for this equipment blank were non-detect. A trip blank was supplied by the laboratory for the March 2022 sampling event, and was analyzed. A field duplicate (labeled as MW-X) was taken from MW-14.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater control charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center.

Chart 1 presents a summary of the sampled groundwater recovery wells. Since activation of the GTS in May 2005, all seven (7) sampled groundwater recovery wells have demonstrated a general decrease in VOC concentration.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11 and recovery well DR-1. The current total VOCs at MW-1 (382.59 ppb) show a decrease from the November 2021 sampling event (980.46 ppb). The current total VOCs at MW-11 (420.6 ppb) shows a decrease from the November 2021 sampling event (495.4 ppb). The current total VOCs at DR-1 (663.50 ppb) show an increase from the November 2021 sampling event (598.6 ppb).

Chart 3 compares laboratory results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the impacted area. The current total VOCs at MW-12 (271.9 ppb) show an increase from the November 2021 sampling event (125.4 ppb). The current total VOCs at recovery well DR-2 (129.15 ppb) show a decrease from the November 2021 sampling event (251.3 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current total VOCs at MW-14 (104.45 ppb) show an increase from the November 2021 sampling event (91.86 ppb). The current total VOCs at recovery well DR-3 (75.20 ppb) show a decrease from the November 2021 sampling event (94.88 ppb).

Chart 5 compares laboratory results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current total VOCs at MW-15 (9.4 ppb) show a decrease from the November 2021 sampling event (15.6 ppb). The current total VOCs at recovery well DR-4 (29.0 ppb) show a decrease from the November 2021 sampling event (34.6 ppb).

Chart 6 compares laboratory results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current total VOCs at recovery well MW-17 (85.32 ppb) show a decrease from the November 2021 sampling event (85.27 ppb). The current total VOCs at recovery well G-1 (47.21 ppb) show a decrease from the November 2021 sampling event (53.68 ppb).

Chart 7 compares laboratory results between recovery well G-2 and MW-7 which are located at the northeastern portion of the building. This area is at the apparent western perimeter of the area of impacted groundwater. Recovery well G-2 had a total VOC concentration of 45.35 ppb, which shows a decrease from the November 2021 sampling event (52.67 ppb). The March 2022 total VOCs of MW-7 (33.06 ppb) show an increase from the November 2021 sampling event (29.15 ppb).

Chart 8 compares laboratory results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary. This area is at the western perimeter of the apparent area of impacted groundwater. The current total VOCs at monitoring well MW-17 (85.32 ppb) show a decrease from the November 2021 sampling event (85.27 ppb). The current total VOCs at recovery well G-3 (153.75 ppb) show a decrease from the November 2021 sampling event (185.8 ppb).

5.2 EXTENT OF IMPACTED GROUNDWATER

The area of highest impacted groundwater is consistent with prior sampling events. The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. Concentration of VOCs in the source area have been reduced as a result of historic cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of impacted groundwater. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual VOCs in the plume have not migrated and appear to be stabilized when compared to sample results with operation of the GTS during previous monitoring events.

VOCs were not sampled at MW-19R and MW-21 during the July 2019 and November 2018 sampling events due to being paved over and inaccessible, as first reported by Bergmann in the August 2017 Sampling Report. These two (2) monitoring wells have since been uncovered and began to be sampled again starting with the August 2019 sampling event. The full analytical results are summarized in Table 5.

The redevelopment of wells was performed in fall 2015 to remove sediment from wells at the Site after the ISCO injections. Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred due to completed remediation at the Site when compared to pre-remediation levels during the past fifteen (15) years of sampling.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative and it was agreed upon that these remediation systems would be inactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO injection application in May (round 1) and September (round 2) 2015 to address remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future. However, system components may need repair and/or replacement prior to re-activation.

The next site-wide groundwater sampling and laboratory analysis event is scheduled for Q2 2022. Future sampling and analytical events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow pattern and movement of residual impacted groundwater at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements March 2022

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

i de la companya de										
	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	5.65	5.30	5.85	6.95	10.70	13.20	13.15	9.05	8.35	6.12
Groundwater Elevation	772.58	772.78	772.53	771.48	767.91	767.90	767.79	772.28	774.26	773.90
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.44
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.58
Thickness of Water Column	10.37	11.85	10.45	8.83	3.25	9.68	8.65	8.60	12.61	13.32
Minimum Purge Volume (gal)	1.69	1.93	1.70	1.44	0.53	1.58	1.4	1.40	2.06	2.2
3 Volumes	5.07	5.79	5.11	4.318	1.59	4.73	4.23	4.205	6.166	6.51
Actual volume purged	5.25	6.00	5.3	4.33	1.75	4.75	4.25	4.25	6.25	6.66
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = -0.34 '	Flush = -0.24 '	Stickup=2.17'	Stickup=2.17'	Stickup=2.84'	Stickup=2.05'	Stickup=2.56'

	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	5.70	6.50	6.95	10.48	10.45	12.80	12.98	9.05	7.8	9.60	7.9
Groundwater Elevation	772.88	772.00	771.44	767.95	767.93	767.63	766.87	767.34	766.4	768.44	766.86
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	9.78	10.88	10.45	7.67	9.35	10.46	12.20	15.95	9.87	5.15	7.92
Minimum Purge Volume (gal)	1.59	1.77	1.70	1.25	1.52	1.7	1.99	2.60	1.6	0.8	1.3
3 Volumes	4.78	5.32	5.11	3.75	4.57	5.11	5.97	7.80	4.83	2.52	3.87
Actual volume purged	5.00	5.33	5.25	3.75	4.75	5.25	6.00	8.00	5.00	2.75	4.00
Comments	Flush = $-0.23'$	Flush = -0.35 '	Flush = -0.48 '	Flush = -0.39 '	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42
Depth to Groundwater (btoc)	6.95	6.75	11.52	11.42	11.63	11.6	10.70
Groundwater Elevation	772.71	773.18	768.26	768.22	768.20	768.12	768.72
Well Diameter	4"	4"	4"	4"	4"	4"	4"
Product Thickness	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27
Thickness of Water Column	11.11	11.31	8.93	8.27	11.35	9.12	7.45
Minimum Purge Volume (gal)	7.25	7.39	5.83	5.40	7.41	5.96	4.86
3 Volumes	21.764	22.16	17.49	16.20	22.23	17.87	14.59
Actual volume purged	22.00	22.25	17.5	16.25	22.50	18.00	14.75
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well

NOTES

btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled. The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Sample Date 3/25/2022

Sample Date: 3/25/2022

Sample Date: 3/25/2022

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		840.00	320.00	5.0
CIS		130.00	58.00	5.0
TRANS		10.0	4.2	5.0
VC		0.46	0.39	2.0
TCA		ND	ND	5.0
	Total VOCs	980.46	382.59	

Monitoring Well MW-2

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-3

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	0.25	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	0.25	

Monitoring Well MW-4

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Sample Date: 3/25/2022

Sample Date: 3/25/2022

Sample Date: 3/25/2022

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		1.20	0.60	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	1.20	0.60	

Monitoring Well MW-6

Sampling Events

eampling Evente			
Analyte in p	pb Nov 2021	Mar 2022	NYS Guidance Value
TCE	ND	0.21	5.0
CIS	61.00	47.00	5.0
TRANS	ND	ND	5.0
VC	51.00	45.00	2.0
TCA	ND	ND	5.0
Total V	/OCs 112.00	92.21	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		0.71	0.51	5.0
CIS		28.00	32.00	5.0
TRANS		ND	ND	5.0
VC		0.44	0.55	2.0
TCA		ND	ND	5.0
	Total VOCs	29.15	33.06	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-10

Sampling Events

Camping Evente					
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value	
TCE		ND	ND	5.0	
CIS		ND	ND	5.0	
TRANS		ND	ND	5.0	
VC		ND	ND	2.0	
TCA		ND	ND	5.0	
	Total VOCs	ND	ND		

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Monitoring Well MW-11

Sampling Events

Cumping L				
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		310.00	320.00	5.0
CIS		170.00	90.00	5.0
TRANS		9.40	8.3	5.0
VC		6.00	2.30	2.0
TCA		ND	ND	5.0
	Total VOCs	495.4	420.6	

Monitoring Well MW-12

Sampling Events

<u>oamping</u> L				
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		20.00	21.00	5.0
CIS		100.00	240.00	5.0
TRANS		1.10	2.20	5.0
VC		4.30	8.70	2.0
TCA		ND	ND	5.0
	Total VOCs	125.40	271.90	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 3/24/2022

Sample Date: 3/25/2022

Sample Date: 3/24/2022

Page 2 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		0.91	0.99	5.0
CIS		0.92	4.00	5.0
TRANS		ND	ND	5.0
VC		ND	0.12	2.0
TCA		ND	ND	5.0
	Total VOCs	1.83	5.11	

Monitoring Well MW-14

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		9.9	9.1	5.0
CIS		79.0	92.0	5.0
TRANS		0.8	0.85	5.0
VC		2.2	2.5	2.0
TCA		ND	ND	5.0
	Total VOCs	91.86	104.45	

Monitoring Well MW-15

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		10.00	5.90	5.0
CIS		5.6	3.5	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	15.60	9.4	

Monitoring Well MW-16

Sampling Events

Camping L	VCIIIO			
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		0.34	0.30	5.0
CIS		31.00	34.00	5.0
TRANS		ND	ND	5.0
VC		0.41	0.72	2.0
TCA		ND	ND	5.0
	Total VOCs	31.75	35.02	

Sample Date: 3/24/2022

Sample Date: 3/25/2022

Sample Date: 3/25/2022

Monitoring Well MW-17

Sampling Events

eamping L				
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		13.00	11.00	5.0
CIS		72.00	74.00	5.0
TRANS		ND	ND	5.0
VC		0.27	0.32	2.0
TCA		ND	ND	5.0
	Total VOCs	85.27	85.32	

Monitoring Well MW-18

Sampling Events

	Sampling Events					
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value		
TCE		1.20	0.68	5.0		
CIS		5.10	3.2	5.0		
TRANS		ND	ND	5.0		
VC		0.12	ND	2.0		
TCA		ND	ND	5.0		
	Total VOCs	6.42	3.88			

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Page 3 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		0.29	0.30	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	0.29	0.30	

Monitoring Well MW-20

Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-21

Sampling Events

eampling Ev				
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		1.4	1.2	5.0
CIS		13.0	6.4	5.0
TRANS		0.71	ND	5.0
VC		0.16	0.16	2.0
TCA		ND	ND	5.0
	Total VOCs	15.27	7.76	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 3/25/2022

Sample Date: 3/25/2022

Sample Date: 3/25/2022

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1 Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		450	510	5.0
CIS		130	130	5.0
TRANS		3.60	3.50	5.0
VC		15.00	20.00	2.0
TCA		ND	ND	5.0
	Total VOCs	598.60	663.50	

Recovery Well DR-2 Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		63.0	24.0	5.0
CIS		180	100	5.0
TRANS		1.6	0.95	5.0
VC		6.7	4.2	2.0
TCA		ND	ND	5.0
	Total VOCs	251.3	129.15	

Recovery Well DR-3 Sampling Events

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		23	25	5.0
CIS		68	48	5.0
TRANS		0.98	1.20	5.0
VC		2.9	1.0	2.0
TCA		ND	ND	5.0
	Total VOCs	94.88	75.20	

Recovery Well DR-4

Sampling Events

_oamping L	210110			
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		27	22	5.0
CIS		7.6	7.0	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	34.6	29.0	

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Recovery Well G-1

Sampling Events

- Camping L				
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		11.0	8.6	5.0
CIS		42	38	5.0
TRANS		ND	ND	5.0
VC		0.68	0.61	2.0
TCA	·	ND	ND	5.0
	Total VOCs	53.68	47.21	

Recovery Well G-2

Sampling Events

Cumping L				
Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		0.74	0.52	5.0
CIS		51	44.0	5.0
TRANS		ND	ND	5.0
VC		0.93	0.83	2.0
TCA	·	ND	ND	5.0
	Total VOCs	52.67	45.35	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Sample Date: 3/24/2022

Page 5 of 6

24

ND

185.80

ND

153.75

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

in ppb

Total VOCs

Recovery Well G-3 Sampling Events

Analyte

TCE

CIS

VC

TCA

TRANS

NYS Guidance Value Nov 2021 Mar 2022 5.0 22 160 130 5.0 1.2 5.0 1.3 0.55 0.50 2.0

Duplicate Blank (MW-14)

Sampling Events

Sample Date: 3/25/2022

5.0

Sample Date: 3/25/2022

			NYS
			Guidance
Analyte	in ppb	Mar 2022	Value
TCE		13	5.0
CIS		96	5.0
TRANS		ND	5.0
VC		0.45	2.0
TCA		ND	5.0
	Total VOCs	109.45	

Equipment Blank

Sampling Events

Sample Date: 3/25/2022

Analyte	in ppb	Nov 2021	Mar 2022	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

															МО	NITORING	3 WELLS	3																
	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Monitoring	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Well Number	Mar	Nov	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	Aug	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
well Number	2022	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	382.59	980.46	404.62	928.9	344.7	1020.0	991.8	993.5	1009	698	1,081	1,080	1,190	1,110	374	1013	1,210	1,467	838	580	1,530	1,470	350	430	300	420	990	990	1,740	830	910	1,440	528	889
MW-2	ND	ND	ND	ND	0.29	ND	ND	ND	ND	0.28	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	0.25	ND	ND	1.31	1.14	ND	0.3	ND	ND	0.28	0.39	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	0.60	1.20	1.50	0.79	1.60	ND	0.51	0.42	0.47	0.52	0.9	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-6	92.21	112.0	95.00	78.00	81.20	66.0	79.41	64.8	99.1	92.64	86.63	81	84	77	76	100	91	87	120	100	120	96	86	81	110	110	96	94	130	99	93	99	86.7	85.7
MW-7	33.06		102.37	94.74	173.67	ND	73.89	1.16	55.58	39	27.83	ND	ND	ND	ND	5.8	29	110	62	83	49	130	58	ND	180	190	29	ND	ND	18	ND	ND	151.56	30.5
MW-8	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-11	420.6	495.4	386.9	490.7	546.5	584.0	1274	604.5	699.3	937.4	1.059	489.3	282	489	1.160	470	525	646	445	550	1.060	630	444	500	451	375	450	710	880	510	570	790	498	617
MW-12	271.90	125.4	65.86	65.88	60.05	84	147.03	116.54	54	54.48	79	53	25	100	113	31	40	7.1	7.8	15.8	28.8	52	97	120	126	136	200	212	173	149.3	186.6	142	86.5	148.22
MW-13	5.11	1.83	0.95	2.40	1.34	ND	2.7	3.4	2.1	0.50	1.38	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-14	104.45	91.86	84.40	20.80	63.4	13.0	18.2	34	33	26.5	25.9	30.7	22.3	22.8	28	38	22.1	76	100	57	81	96	52	99	68	68	54	73	94	49	71	47	39.7	76.6
MW-15	9.4	15.6	24.80	2.6	25.8	ND	5.0	2.9	7.6	8.1	4.9	ND	6.5	ND	ND	ND	7.4	11	23.8	11	9.9	14	8.1	9.8	32	31	6.1	ND	6.8	7	ND	12.9	26.26	6.25
MW-16	35.02	31.75	22.56	14.32	11.29	13.0	37.43	25.62	7.11	31.53	37.61	41	10	41	43	32	36	14	20	37	31	13	6.8	ND	5.2	9.4	21	24	20	8.4	24	18	4.36	12.2
MW-17	85.32	85.27	230.86	173.6	271.2	295.0	266.2	16.2	193.01	342	277	218	265	112.5	5.1	222	396	3/5	465	425	460	410	NS	336	394	410	339	167	420	400	21.3	430	381	260.1
MW-18	3.88	6.42	6.33	1.55	7.13	ND	2.27	0.73	1.6	3.1	2.8	ND	ND	ND	ND	6.3	ND	10	20	6.9	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.6	2.33
MW-19R	0.30	0.29	0.34	0.50	0.36	ND	0.26	0.19	0.28	0.6	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND
MW-20	ND 7.70	ND 45.07	0.35	ND	0.88	ND	ND	ND 00.5	ND	ND 10.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND	ND	ND 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	7.76	15.27	19.16	5.60	32.04	11.0	5.9	23.5		18.33	NS	NS	NS	NS	NS	NS	NS	1 705	870	550	1.720	20	360	NS 407	NS	NS	NS	NS	NS	NS 540	NS	NS 4.450	NS 504	NS
MW-X (DUP)	109.45 ND	6.5 ND	ND	152.4	100.5	13.0	2.4 NS	3.3 NS	1118.9	1118.9	914.6 ND	ND ND	ND ND	434 ND	NS ND	490	DWS	1,705	879 ND	550 ND	1,720 ND	410 ND	360	407 ND	300 ND	400 ND	870 ND	990 ND	1,850	540	186.8	1,450 ND	521	913
EB	ND	L ND	ND	L ND	I ND	I ND	I NS	I NS	l ND	ND	ND	ND	ND	ND		COVERY	ND	LIND	L ND	L ND	L ND	LND	L ND	LND	LND	L ND	L ND	ND	L ND	ND	I ND	L ND	ND	ND

	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Recovery	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Well Number	Mar	Nov	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	August	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
Well Rulliber	2021	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
	(daa)	(daa)	(dqq)	(dqq)	(dqq)	(dqq)	(dqq)	(dqq)	(daa)	(dqq)	(daa)	(dqq)	(daa)	(dqq)	(dqq)	(daa)	(daa)	(daa)	(dag)	(daa)	(dag)	(dgg)	(dqq)	(dag)	(dqq)	(dag)	(dqq)	(daa)	(daa)	(dqq)	(dag)	(dag)	(daa)	(dqq)
DR-1	663.50	598.6	98.05	485.3	117.8	909.0	1222.0	1123.6	912.6	1038	1,832	1,310	1,510	1,319	1,070	1540	1,970	617	610	910	319	160	NS	21.7	63	55	75	132	87	73	82	43	29.38	673
DR-2	129.15	251.3	162.4	144.2	111.6	116.0	129.7	137.8	185.9	192	156	216	162	128	130	181	199	137	218	215	199	187	291	259	162	224	231	207	302	256	293	19	229.9	305.3
DR-3	75.20	94.88	85.26	66.77	81.73	63.0	81.8	67.7	99.7	101	91	73	87	125.4	34	48	NS	98	154	62	45	76	83	55	181	210	83	89	123	62	73	42	116.96	24.9
DR-4	29.0	34.6	34.1	31.9	42.34	29.9	30.5	32.4	40.6	46.6	40	37.2	48	31.2	31.6	46	52	79	95	63	94	110	71	147	156	148	96	64	68	79	37	90	122.6	ND
G-1	47.21	53.68	51.83	45.82	100.60	53.0	37.6	50.1	70	78.7	50.4	74.6	77	40	22	70	73.5	85	105.6	59.7	80.3	ND	68	146	101	105	90	78	96.2	69.1	55.8	52.6	68.55	65.58
G-2	45.35	52.67	45.4	64.38	37.46	54.0	30.9	18.8	90.49	90	69	25	68	50	46	8.5	NS	NS	ND	NS	NS	28	NS	48	34	37	52	14	68	81	50	132.2	75.3	41.9
G-3	153.75	185.8	226.09	177.73	236.35	235.0	272.36	335.52	305.34	309.65	309.65	15	322	NS	NS	NS	NS	293	404	420	262	370	NS	NS	NS	NS	NS	82	NS	11	25	41.6	147.3	44.2

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS= This well not included in this samolina event. Total VOC ND = Not Detected, results less than Method Detection Limit. Impacted north property line wells: MW-5, MW-6, MW-7, MW-16, MW-17, MW-21 All compounds are measured in parts per billion (ppb). VOC - Volatite Orannic Compounds. DUP - Duplicate Sample EB - Equipment/Field Blank Sample EB - Equipment/Field Blank Sample WS- Different Well Samoled than previosuly tested.

Table 4 Percent Reductions in Total Groundwater VOCs Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

The Groundwater Treat	nent System was	activated in M	May 2005																																													
Monitoring Well	% Reduction 2002 to March 2022		% Reduction 2002 to September 2021	% Reduction 2002 to March 2021	% Reduction 2002 to November 2020	% Reduction 2002 to July 2020	% Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	% Reductio 2002 to Oc 2019	% Reduction 2002 to Aug 2019	% Reductio 2002 to Jul 2019	n %Reduction y 2002 to No 2018	% Reduction 2002 to Aug 2018	% Reduction 2002 to May 2018	% Reduction 2002 to April 2018	% Reduction 9 2002 to Nov 2017	Reduction %F 2002 to 2 Aug 2017 N	duction % Red 102 to 200 v 2016 Sep	to 200 2016 Jun	to 2002 1016 Nov 2	tion % Reduc to 2002 t 115 Aug 20	tion % Reduct 2002 to 2015 Jun 201	on % Reduction 2002 to 5 Mar 2015	% Reduction 2002 to Nov 2014	n % Reduction 2002 to Sep 2014	% Reduction 2002 to Jun 2014	% Reduction 2002 to Mar 2014	% Reduction 2002 to Dec 2013	% Reduction 2002 to Jul 2013	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction % 2002 to Jun 2012	Reduction 2002 to Mar 2012	Reduction %I 2002 to Sep 2011	Reduction % R 2002 to 2 lun 2011 M	eduction % Re 002 to 20 ar 2011 Dec	duction % Re 02 to 20 : 2010 Sep	duction %Re 02 to 20 2010 Jun	duction % Redu 02 to 2002 a 2010 Jan 2	ction % Reduction 2002 010 Jul 20	tion % Reducti to 2002 to 19 Feb 2005	% Reduction 2002 to Sep 2008	% Reduction 2002 to Jun 2008	% Reduction 2002 to Mar 2008	6 Reduction 1002 to Sept 2007		% Reduction 2002 to Oct 2006	% Reduction 2002 to Nov 2005
MW-1 [†]	50.18%	-27.66%	47.32%	-20.95%	55.12%	-32.81%	-29.14%	-29.36%	-31.4%	9.11%	-40.76%	-40.6%	-54.9%	-44.5%	51.3%	-39.90%	-57.6%	18.0% +9.	1% 24.	% -99.2	6 -91.4	% 54.4%	44.0%	60.9%	45.3%	-28.9%	-28.9%	-126.6%	-8.1%	-19.5%	-87.5%	31.3%	-15.8%	42.4%	-71.6%	24.1%	26.6%	15.5%	-1.3%	15.8% -4	4.2% 11.	-12.0	6 8.2%	-90.5%	-92.8%	-166.4%	-130.3%	-46.9%
MW-2	100%	100%	100%	100%	99%	100%	100%	100%	100%	98.78%	100%	100%	100%	100%	Not Sampled	Not Sampled 1	ot Sampled No	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled 1	Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not S	iampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed 99.6	6 Not Sampled	99.6%	99.6%	99.6%	99.6%	99.6%				
MW-3	98.33%	100.00%	100%	91%	92%	100%	98%	100%	100%	98.13%	97.40%	100%	100%	100%	100%	100%	100.0% Na	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled 1	Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not S	ampled Not S	ampled Not 5	Sampled Not Sar	noled Not San	pled Not Sampl	ed Not Sample	d Not Sampled	99.3%	84.0%	99.3%	99.3%	99.3%				
MW-4	100%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	100%	100%	100%	100%	100%	100%	100.0%	00.0% 100	.0% 100	0% 100.0	% 100.0	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.00%	100.0%	100.0%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4%	97.4% 9	7.4% 97.	1% 97.4	6 97.4%	97.4%	97.4%	97.4%	97.4%	97.4%
MW-5	95.71%	91.43%	89.29%	94%	89%	100%	96%	97%	96.64%	96.29%	93.57%	100%	100%	100%	100%	100%	100.0% Na	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not S	iampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed Not Sample	d Not Sampled	99.3%	75.6%	99.3%	99.3%	63.4%						
MW-6	77.29%	72.41%	76.60%	80.79%	80.00%	83.74%	80.44%	84.04%	75.59%	77.18%	78.66%	100%	-83.3%	15.4%	15.4%	-84.60%	15.4%	1.3% 70.	4% 75.	1% 70.4	6 76.49	% 78.8%	80.0%	72.9%	72.9%	76.4%	76.8%	68.0%	75.6%	77.1%	75.6%	78.6%	78.9%	75.1%	80.5%	82.0%	79.9%	73.6%	76.4%	81.3% 7	7.1% 78.	1% 72.2	69.7%	74.1%	57.9%	62.8%	57.4%	42.6%
MW-7	92.65%	93.52%	77.25%	78.95%	61.41%	100.00%	83.58%	99.74%	87.65%	91.33%	93.82%	80.0%	79.3%	100.0%	81.3%	98.70%	93.6%	5.6% 86.	2% 81.	3% 89.1	6 71.19	% 87.1%	100.0%	60.0%	57.8%	93.6%	100.0%	100.0%	96.0%	100.0%	100.0%	66.3%	93.2%	53.5%	84.2%	95.0%	87.1%	64.3%	74.6%	96.6% 5	2.7% 79.	5% 22.7	6 45.8%	56.3%	20.0%	26.7%	6.7%	-1.3%
MW-8	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	Not Sampled 1	ot Sampled No	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled 1	Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not S	iampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed Not Sample	d Not Sampled	92.9%	92.9% N	Not Sampled	92.9%	92.9%				
MW-9	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	Not Sampled 1	ot Sampled No	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled 1	Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not 9	iampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed Not Sample	d Not Sampled	97.6%	97.6% N	Not Sampled	97.6%	97.6%				
MW-10	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100.0% Na	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled 1	Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not S	ampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed Not Sample	d Not Sampled	96.2%	96.2% N	Not Sampled	96.2%	96.2%				
MW-11	90.95%	89.34%	91.67%	89.44%	88.24%	87.43%	72.57%	86.99%	84.95%	79.83%	77.21%	89.5%	93.9%	89.5%	75.0%	89.20%	99.1%	6.1% 90.	4% 88.	2% 77.2	6 86.49	% 90.4%	89.2%	90.3%	91.9%	90.3%	84.7%	81.1%	89.0%	87.7%	83.0%	89.3%	86.7%	89.1%	84.5%	86.6%	87.3%	86.4%	83.5%	83.3% 8	6.5% 83.	90.6	6 87.8%	78.0%	91.4%	74.4%	44.0%	76.3%
MW-12	97.85%	99%	99.48%	99.48%	99.53%	99.34%	98.85%	99.08%	99.57%	99.57%	99.38%	99.6%	99.8%	99.2%	99.1%	99.80%	75.0%	9.9% 99.	9% 99.	99.8	6 99.65	% 99.2%	99.1%	99.0%	98.4%	98.4%	98.3%	98.6%	98.8%	98.5%	98.9%	99.3%	98.8%	99.3%	98.7%	99.3%	99.3%	99.2%	98.7%	98.1% 9	9.4% 97.	99.5	6 98.7%	98.7%	98.4%	96.6%	91.4%	62.2%
MW-13	98.38%	99.42%	99.70%	99.24%	99.57%	100.00%	99.14%	98.92%	99.33%	99.84%	99.56%	100%	100%	100%	100%	Not Sampled 1	ot Sampled No	Sampled Not Sa	mpled Not Sa	mpled Not San	pled Not Sam	npled Not Samp	led Not Sample	ed Not Sample	d Not Sampled	Not Sampled I	Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not 9	ampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed 100.0	6 Not Sampled	100.0%	99.4%	100.0%	100.0%	100.0%				
MW-14	66.86%	70.86%	73.21%	93.40%	79.87%	95.87%	94.22%	89.21%	89.52%	91.59%	91.78%	90.3%	92.9%	92.8%	91.1%	87.90%	2.3%	5.9% 68.	3% 81.	3% 74.3	6 69.59	% 83.5%	68.6%	78.4%	78.4%	82.9%	76.8%	70.2%	84.4%	77.5%	85.1%	87.4%	75.7%	75.5%	66.7%	89.9%	92.3%	87.6%	79.3%	85.9% 8	7.1% 88.	96 94.3	6 87.9%	90.7%	67.2%	66.1%	6.7%	55.6%
MW-15	98.71%	97.86%	96.60%	99.64%	96.47%	100.00%	99.32%	99.60%	98.89%	98.89%	99.33%	100%	99.1%	100%	100%	100%	99.0%	8.5% 96.	7% 98.	5% 98.6	6 98.19	% 98.9%	98.7%	95.6%	95.8%	99.2%	100.0%	99.1%	99.0%	100.0%	98.2%	96.4%	99.1%	95.6%	97.8%	99.1%	97.7%	91.5%	96.9%	98.3%	1.1% 99.	84.5	6 89.4%	97.5%	79.5%	91.7%	79.5%	62.9%
MW:16*	7.84%	16.45%	40.63%	62.32%	70.29%	65.79%	96.66%	98.07%	86.11%	38.42%	26.54%	19.9%	80.5%	19.9%	2.3%	2.80%	2.3%	2.7% 60.	9% 27.	P% 39.5	6 74.69	% 86.7%	100.0%	89.8%	81.6%	59.0%	53.1%	60.9%	77.9%	36.8%	52.6%	88.5%	67.9%	84.0%	39.2%	23.9%	81.0%	93.3%	99.7%	94.2% 4	2.1% 41.	% 57.4	6 43.9%	77.5%	35.0%	-57.9%	-34.7%	-72.1%
MW-17*	89.47%	89.47%	71.50%	78.56%	66.52%	63.58%	73.67%	98.40%	80.91%	66.17%	72.60%	78.4%	73.8%	88.9%	99.5%	78*	2.3%	2.9% 54.	0% 58.	3% 54.5	6 59.49	% Not Samp	led 66.8%	61.0%	59.4%	66.5%	83.5%	58.5%	50.6%	97.4%	46.9%	53.0%	67.9%	44.6%	72.2%	96.7%	94.1%	61.4%	71.3%	97.7% 7	1.8% 99.	5% 10.1	6 26.0%	24.7%	-11.5%	4.1%	-24.8%	-24.2%
MW-18:*	97.56%	95.96%	96.02%	99.03%	95.52%	100.00%	99.42%	99.81%	62.50%	99.21%	99.29%	100%	100%	100%	100%	100%	100.0%	7.4% 93.	4% 98.	2% 100.0	% 100.0	100.09	100.0%	100.0%	100.0%	100.0%	100.0%	Not Sampled	100.0%	100.0%	100.0%	89.6%	98.5%	81.9%	91.3%	96.0%	88.7%	74.4%	82.7%	96.0% -2	3.3% 91.	-50.0	% 27.6%	64.8%	-352.2%	-178.0%	-146.5%	-135.8%
MW-19 R*	97.9%	97.93%	97.57%	96.43%	97.43%	100.00%	98.14%	98.64%	98.00%	95.71%	Not Sample	nd Not Sample	nd Not Sampled	Not Sampled	Not Sampled	Not Sampled 1	ot Sampled	00.0% 100	.0% 100	0% 100.0	% 100.0	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	75.0%	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%	73.3%	99.0%	99.0% 5	7.3% 99.	% -36.7	% -5.7%	99.0%	-120.8%	73.6%	-14.0%	-102.0%
MW-20**	100%	100%	97.94%	100%	95%	100.00%	98%	99%	100%	100%	100%	100%	100%	100%	100%	100%	100.0%	00.0% 100	.0% 100	0% 100.0	% 100.0	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4%	99.4% 9	9.4% 99.	1% 99.4	6 99.4%	99.4%	99.4%	99.4%	99.4%	99.4%
MW-21**	98.2%	96.5%	95.61%	98.72%	92.65%	97.48%	98.65%	94.61%	94.38%	95.80%	Not Sample	nd Not Sample	nd Not Sampled	Not Sampled	Not Sampled	Not Sampled 1	ot Sampled	4.6% -50	0% 66.	5% 23.1	6 23.19	% 61.5%	Not Sample	ed Not Sample	d Not Sampled	Not Sampled N	lot Sampled	Not Sampled No	t Sampled Not	Sampled Not S	ampled Not S	ampled Not 5	Sampled Not Sar	npled Not San	pled Not Sampl	ed 67.5	6 Not Sampled	96.7%	-22.2%	27.1%	94.0%	-13.7%						
* Well installed 2003																																																
** Well Installed 2004	_		_					+	_		+								_	_				_	_	_							_						_	_	_	+				\rightarrow	$\overline{}$	
Site-Wide reduction:	88.47%	84.88%	88 11%	87 65%	88.44%	99 509/	99.499/	04.449/	96 9%	87.42%	93.6%	85.1%	78.0%	82.2%	84 2%	67 60%	62 1%	4 194 88	7% 78	86.2	60 19	N 97 7%	88.2%	85.2%	83.2%	70.8%	80.3%	87.5%	81 8%	81.2%	71 3%	82 0%	80.7%	70.79	70.00	02.79/	96.00	70.25/	91.49	97.00	1.10/ 02	W 50 0	v 60.79	70.59	22.00	20.00/	49.40	26.70
alle-wide reduction:	08.4/76	04.88%	06.11%	07.00%	00.44%	00.09%	08.48%	91.11%	00.070	37.4270	63.076	60.176	70.0%	02.270	U-4.270	07.0076	UL. 170	4.170 00.	70.	00.2	09.11	N 01.170	00.270	00.270	U3.270	1 3.070	00.379	07.076	01.070	01.270	11.079	UK. U /0	UU.7 10	19.7%	12.2%	03.7%	00.976	10.370	01.470	07.070 0	1.170 82.	20.0	09.7%	78.0%	34.9%	39.6%	43.4%	30.7%
Innerted Constitutes		_	_				_													_	_	_	_		_											_			_	_	_	_	_		-	-	$\overline{}$	
Plume Area Only	83.00%	73 10%	70 20%	74 0%	78.4%	74 64%	71 / 194	75 61%	72 11%	78 21%	71 6%	74.6%	72 1%	67.6%	76.6%	51 40%	41 194	6 5% 60	894 76	94 59.1	6 58 61	N 84 6%	80.8%	77 2%	75.0%	72.3%	73.0%	82.2%	73 2%	77.3%	62.5%	75.2%	73 1%	71.9%	64 1%	84 194	83.0%	72.6%	72.4%	82.1% 6	5 294 70	67.7	64 2%	53.7%	38.8%	32.0%	16 3%	28.4%

Residence Companies (1997) (19

Recovery Well	% Reductio 2002 to Man 2022	on % Reduction rch 2002 to November 20	% Reduction 2002 to September 2021	% Reduction 2002 to March 2021	% Reduction 2002 to November 202	% Reduction 2002 to July 2020	% Reduction 2002 to Jun 2020	% Reduction 2002 to Feb 2020	%Reduction 2002 to Oct 2019	% Reduction 2002 to Aug 2019	% Reduction 2002 to July 2019	% Reduction 2002 to Nov 2018	% Reduction 2002 to Aug 2018	% Reduction % 2002 to May 2018	Reduction % Reduction 2002 to 2002 pril 2018 Nov 2	tion %Reduction 2002 to 2017 Aug 2017	% Reduction 2002 to Nov 2016	% Reduction % F 2002 to : Sep 2016 J	teduction %R 2002 to 2 un 2016 N		Reduction %R 2002 to 2 Jug 2015 Ju	teduction % Reduction 2002 to 2002 un 2015 Mar 20		% Reduction 2002 to Sep 2014	% Reduction % 2002 to Jun 2014	Reduction % Re 2002 to 20 Mar 2014 Dec	duction % Reduct 02 to 2002 to 2013 Jul 201	% Reduction 2002 to Apr 2013	% Reduction 2002 to Dec 2012	% Reduction 2002 to Jun 2012	% Reduction 2002 to Mar 2012	%Reduction %F 2002 to Sep 2011 J	Reduction % Reduction 2002 to 2002 un 2011 Mar 20	to % Reduction 2002 to Dec 2010	% Reduction 2002 to Sep 2010	% Reduction 2002 to Jun 2010	% Reduction 12002 to Jan 2010	% Reduction 2002 to Jul 2009	% Reduction	luction % Rec 32 to 20 2008 Ju	duction % Redu 102 to 2002 n 2008 Mar 2	to e	duction %Rec 2005 to Feb 2 at 2007 May	duction 2005 to % Reduction Feb y 2007 2005 to Oct 2006
DR-1	91,71%	92.52%	98.77%	93.93%	98.53%	88.64%	-113.39%	-95.95%	-59.16%	-81.03%	-219.50%	-128.5%	-163.3%	-130.0%	-86.6% -243.0	-243.6%	-7.6%	-6.4%	-58.7%	44.4%	72.1% Not	t Sampled 96.2	6 89.0%	90.4%	86.9%	77.0% 8	1.8% 99.1%	99.0%	99.5%	99.8%	91.6%	97.9%	98.1%	6.9% 95.	6% 94.59	6 99.2%	98.0%	95.1%	96.8%	91.0%	89.2%	93.4%	74.5%	86.2% 92.8%
DR-2	93.55%	87.45%	91.89%	92.80%	94.43%	94.21%	76.38%	74.91%	66.15%	65.04%	71.60%	60.7%	70.5%	76.7%	76% 63.8	% 63.8%	75.1%	60.3%	60.9%	63.8%	66.0%	47.0% 52.89	6 70.5%	59.2%	58.0%	62.3% 4	5.0% 87.2%	85.4%	99.1%	88.5%	83.9%	89.7%	88.0% 8	6.6% 92.	4% 89.39	6 87.3%	90.6%	90.1%	88.8%	89.7%	85.8%	92.3%	85.6%	82.5% 72.6%
DR-3	94.87%	93.53%	94,19%	95.48%	94.46%	95.73%	46.36%	55.61%	34.62%	33.77%	40.33%	52.1%	43.0%	17.8%	78% 68.5	% Not Sampled	35.7%	-1.0%	59.3%	70.5%	50.2%	45.6% 63.9	6 -18.7%	-37.7%	45.6%	41.6% 1	95.8%	95.1%	97.2%	92.1%	98.3%	95.0%	95.4% 9	8.3% 98.	0% 97.49	6 94.6%	91.6%	91.5%	88.7%	94.9%	91.7%	88.4%	73.8%	87.6% 89.7%
DR-4	98.36%	98.04%	98.07%	98.19%	97.60%	98.31%	96.45%	96.23%	95.27%	94.58%	95.34%	95.7%	94.4%	96.4%	96% 93.9	% 93.9%	90.8%	88.9%	92.7%	89.1%	87.2%	91.7% 82.9	6 81.8%	82.8%	88.8%	92.5% 9	0.8% 95.5%	97.9%	94.9%	93.1%	100.0%	89.2%	92.7%	4.3% 95.	9% 86.99	6 91.2%	95.4%	95.5%	96.2%	92.7%	97.7%	97.6%	87.7%	99.1% 51.4%
G-1	91.33%	90.14%	90.48%	91.58%	81.52%	90.27%	81.27%	75.05%	65.14%	60.81%	74.90%	62.8%	61.7%	80.1%	80% 74.1	% 74.1%	57.7%	47.4%	92.7%	60.0%	100.0%	66.1% 27.39	6 49.8%	47.7%	55.0%	61.3% 6	5.6% 87.3%	89.8%	90.3%	87.4%	88.0%	87.6%	89.8% 8	37.7% 91.	0% 94.49	6 80.1%	76.0%	69.9%	76.7%	77.9%	68.7%	65.8%	58.7%	71.8% 63.1%
G-2	88.22%	86.32%	88.21%	83.28%	90.26%	85.97%	89.10%	93.37%	68.07%	68.24%	75.65%	91.2%	76.0%	82.4%	84% 100.0	% Not Sampled	Not Sampled	100.0% Na	Sampled Not	t Sampled	90.1% Not	t Sampled 83.1 st	6 88.0%	86.9%	81.7%	95.1% 7	1.4% 79.0%	87.0%	65.7%	80.4%	89.1%	92.3%	83.0% 8	7.7% 86.	5% 98.49	6 97.8%	98.5%	85.4%	40.0%	92.6%	89.8%	79.0%	84.6%	54.5% 26.4%
G-3	61.85%	53.90%	43.90%	55.90%	41.35%	41.69%	32.42%	16.74%	24.23%	24.23%	23.19%	96.3%	20.1%	Not Sampled N	t Sampled Not San	pled Not Sampled	27.3%	-0.2%	-4.2%	35.0%	8.2% Not	t Sampled Not Sam	pled Not Sample	ed Not Sampled	Not Sampled	79.7%	NA NA	NA.	NA.	NA NA	NA	NA.	NA	NA	NA NA	A NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA NA
Overall Reduction	88.56%	85.99%	86.50%	87.31%	85.45%	84.97%	44.08%	45.14%	42.05%	37.95%	23.07%	47.2%	28.9%	37.2%	54.6% 60.4	% 40.4%	46.5%	41.3%	40.4%	60.4%	67.7%	62.6% 67.79	60.1%	54.9%	69.3%	72.8% 6:	2.8% 90.7%	92.3%	91.1%	90.2%	91.8%	91.9%	91.1% 9	1.9% 93.	2% 93.59	6 91.7%	91.7%	87.9%	81.2%	89.8%	87.2%	86.1%	77.5%	80.3% 66.0%

"Sampling of recovery wells initiated in 2005 Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

0 1 0 1 11 11 05 11 00												
Samples Received by Alpha on 25-Mar-22	NVS Groundwater MMM 1	IMMA 2			MAY 0 MAY 10 MAY 11	1 NAVA 12 NAVA 12 NAVA	14	MM/ 17 MM/ 10 MM/ 10D	MW 20 MW 21 DP 1			LC 3 MM/ V FOLUD BLANK
SAMPLING DATE	Standard Guidance 25-Mar-22	25-Mar-22 25-Mar-22		ar-22 24-Mar-22 25-Mar-22	24-Mar-22 24-Mar-22 24-	Mar-22 24-Mar-22 24-Mar-22 3	14	25-Mar-22 25-Mar-22 25-Mar-22		DR-2 DR-3 DR-4 22 24-Mar-22 24-Mar-22 24	Mar-22 24-Mar-22 24-Mar-22	2 25-Mar-22 25-Mar-22 25-Mar-22
SAMPLING DATE Lab Sample ID	Value Value Units L2215692-01	1 Units I 2215692-02 Units I 2215692-03 Units	L 2215692-04 Units 2215692-05 Units 221569	12-06 Units I 2215692-07 Units I 2215692-08 Units I	2215692-09 Units 2215692-10 Units 2215	692-11 Units I 2215692-12 Units I 2215692-13 Units I 22	5692-14 Inits 2215692-15 Inits 2215692-16 Ur	nits 2215692-17 I Inits 2215692-18 I Inits 2215692-19 I I	nits 2215692-20 Units 2215692-21 Units 2215692-2	2 Inits 2215692-23 Inits 2215692-24 Inits 2215	692-25 Units 1 2215692-26 Units 1 2215692-27	Linits 2215692-28 Linits 2215692-30 Linits 2215692-29 Linits
SAMPLE QUALIFIER	Value Value E2210002 01	1 01110 EEE 10002 02 01110 EEE 10002 00 01110	222 10002 04 01110 222 10002 00 011110 222 1000	2 00 011110 22210002 07 011110 22210002 00 011110 2		002 11 011110 E2210002 12 011110 E2210002 10 011110 E22	0002 11 011110 01110 01110	11110 LZZ 1000Z 17 O11110 LZZ 1000Z 10 O11110 LZZ 1000Z 10 O	1110 LEE 10002 20 OTHIO LEE 10002 21 OTHIO LEE 10002 2	2 01110 222 10002 20 01110 222 10002 21 01110 222 10	502 20 011110 E22 10002 20 011110 E22 10002 21	Onto C2210002 20 Onto C2210002 00 Onto C2210002 20 Onto
PARAMETER	PRODUCT											
Methylene chloride	NYTCL-8260-R2 5.0 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
1,1-Dichloroethane	NYTCL-8260-R2 5.0 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ug/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Chloroform	NYTCL-8260-R2 7.0 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l
Carbon tetrachloride	NYTCL-8260-R2 5.0 - ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ıg/l <0.5 ug/l <0.50 ug/l <0.50 ι	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
1,2-Dichloropropane	NYTCL-8260-R2 1 - ug/l <2.5	ug/l <1.0 ug/l <1.0 ug/l	<1.0 ug/l <1.0 ug/l <1.0) ug/l <1.0 ug/l <1.0 ug/l <1.0 ug/l	<1.0 ug/l <1.0 ug/l <2	2.5 ug/l <2.0 ug/l <1.0 ug/l	<1.0	ug/l <1.0 ug/l <1.0 ug/l <1.0 ι	g/l <1.0 ug/l <1.0 ug/l <4.0	ug/l <1.0 ug/l <1.0 ug/l <	.0 ug/l <1.0 ug/l <1.0	ug/l <1.0 ug/l <1.0 ug/l <1.0 ug/l
Dibromochloromethane	NYTCL-8260-R2 - 50 ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ig/l <0.50 ug/l <0.50 ug/l <0.50 t	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
1,1,2-Trichloroethane Tetrachloroethene	NYTCL-8260-R2 1 - ug/l <3.8 NYTCL-8260-R2 5 - ug/l <1.2	Ug/I	<1.5	0 ug/l <1.5 ug/l <1.5 ug/l <1.5 ug/l	<1.5	3.8	<1.5	1g/1 <1.5	g/I <1.5	Ug/I	.5	ug/l <1.5 ug/l <1.5 ug/l <1.5 ug/l <1.5 ug/l
Chlorobenzene	NYTCL-8260-R2 5 - ug/l <6.2	ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	6.2 ug/l <5.0 ug/l <0.50 ug/l	$\frac{0.50}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$ $\frac{100}{100}$	$\frac{19}{1}$ <0.5 $\frac{19}{1}$ <0.50 $\frac{19}{1}$ 0.253 $\frac{1}{1}$	$\frac{g}{1} = \frac{10}{25}$ $\frac{1}{10}$ $\frac{1}{10}$	ug/l	25 ug/l <2.5 ug/l <2.5	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
Trichlorofluoromethane	NYTCL-8260-R2 5 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	$\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{2.5}}$	$\frac{10}{10}$ $\frac{1}{10}$	$\frac{g}{1}$ <2.5 $\frac{g}{1}$ <2.5 $\frac{g}{1}$ <10.	ug/l <2.5 ug/l <2.5 ug/l <	$\frac{2.5}{2.5} = \frac{100}{100} = $	$\frac{dg/l}{ ug/l } < 2.5 \qquad \frac{dg/l}{ vg/l } < 2.5 \qquad dg$
1,2-Dichloroethane	NYTCL-8260-R2 0.6 - ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ug/l <0.50 ug/l <0.50 ug/l <0.50 u	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l <0.50 ug/l <0.50 ug/l <0.50	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
1,1,1-Trichloroethane	NYTCL-8260-R2 5.0 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 u	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Bromodichloromethane	NYTCL-8260-R2 - 50 ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ug/l <0.50 ug/l <0.50 ug/l <0.50 l	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l <0.50 ug/l <0.50 ug/l <0	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
trans-1,3-Dichloropropene	NYTCL-8260-R2 0.4 - ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ıg/l <0.50 ug/l <0.50 ug/l <0.50 t	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l <0.50 ug/l <0.50 ug/l <0	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
cis-1,3-Dichloropropene	NYTCL-8260-R2 ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ug/l <0.50 ug/l <0.50 ug/l <0.50 l	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l <0.50 ug/l <0.50 ug/l <0	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
Bromoform	NYTCL-8260-R2 - 50 ug/l <5.0	ug/l <2.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <2.0	0 ug/l <2.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <5	5.0 ug/l <4.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <2.0 u	ug/l <2.0 ug/l <2.0 ug/l <2.0 t	g/l <2.0 ug/l <2.0 ug/l <8.0	ug/l <2.0 ug/l <2.0 ug/l <	2.0 ug/l <2.0 ug/l <2.0	ug/l <2.0 ug/l <2.0 ug/l <2.0 ug/l
1,1,2,2-Tetrachloroethane	NYTCL-8260-R2 5 - ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l <1.0 ug/l <0.50 ug/l	0.50 ug/l <0.50 ug/l <0.50 u	ig/l <0.50 ug/l <0.50 ug/l <0.50 l	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l	.50 ug/l <0.50 ug/l <0.50	ug/l <0.50 ug/l <0.50 ug/l <0.50 ug/l
Benzene	NYTCL-8260-R2 1 - ug/l <1.2 NYTCL-8260-R2 5 - ug/l <6.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50	0 ug/l <0.50 ug/l <0.50 ug/l = 1.50 ug/l =	<0.50	1.2	0.50	1g/l <0.50	g/l <0.50	Ug/I	.50	Ug/I <0.50 Ug/I <0.50 Ug/I <0.50 Ug/I
Ethylbenzene	NYTCL-8260-R2 5 - ug/l <6.2	ug/1	<2.5 ug/l <2.5 ug/l <2.5 cg/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 $ ug/l <2.5$ $ ug/l <2.5$ $ ug/l <2.5$ $ ug/l <2.5$	ug/i <2.5 ug/i <2.5 ug/i <2.5 ug/i <2.5 ug/i	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Chloromethane	NYTCL-8260-R2 ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	< 2.5 ug/l < 2.	$\frac{1}{2}$ $\frac{1}$	$\frac{g}{1}$ <2.5 $\frac{g}{1}$ <2.5 $\frac{g}{1}$ <10.	ug/l	$\frac{1.0}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$	$\frac{dg/l}{dg/l}$ <2.5 $\frac{dg/l}{dg/l}$ <2.5 $\frac{dg/l}{dg/l}$ <2.5 $\frac{dg/l}{dg/l}$
Bromomethane	NYTCL-8260-R2 5 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l <2.5 u	$\frac{g}{g} = \frac{1}{2.5} = \frac{1}{2$	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Vinyl chloride	NYTCL-8260-R2 2.0 - ug/l 0.39J	ug/l <1.0 ug/l <1.0 ug/l	<1.0 ug/l <1.0 ug/l 45	ug/l 0.55J ug/l <1.0 ug/l	<1.0 ug/l <1.0 ug/l 2.	.3J ug/l 8.7 ug/l 0.12J ug/l	2.5 ug/l <1.0 ug/l 0.72J u	ıg/l 0.32J ug/l <1.0 ug/l <1.0 u	g/l <1.0 ug/l 0.16J ug/l 20	ug/l 4.2 ug/l 1.0 ug/l <	.0 ug/l 0.61J ug/l 0.83J	ug/l 0.55J ug/l 0.45J ug/l <1.0 ug/l
Chloroethane	NYTCL-8260-R2 5 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
1,1-Dichloroethene	NYTCL-8260-R2 5 - ug/l <1.2	ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <0.5	0 ug/l <0.50 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l <1	1.2 ug/l 0.61J ug/l <0.50 ug/l	.21J ug/l <0.50 ug/l <0.50 u	ıg/l <0.50 ug/l <0.50 ug/l <0.50 l	g/l <0.50 ug/l <0.50 ug/l <2.0	ug/l 0.21J ug/l <0.50 ug/l <0	.50 ug/l <0.50 ug/l <0.50	ug/l 0.32J ug/l <0.50 ug/l <0.50 ug/l
trans-1,2-Dichloroethene	NYTCL-8260-R2 5.0 - ug/l 4.2J	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l 8	3.3 ug/l 2.2J ug/l <2.5 ug/l	.85J ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l 3.5J	ug/l 0.95J ug/l 1.2J ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l 1.2J ug/l <2.5 ug/l <2.5 ug/l
Trichloroethene	NYTCL-8260-R2 5.0 - ug/l 320	ug/l <0.50 ug/l 0.25J ug/l	<0.50 ug/l 0.60 ug/l 0.21	J ug/l 0.51 ug/l <0.50 ug/l	<0.50 ug/l <0.50 ug/l 3 2	20 ug/l 21 ug/l 0.99 ug/l	9.1 ug/l 5.9 ug/l 0.30J u	ug/l 11 ug/l 0.68 ug/l 0.30J u	g/l <0.50 ug/l 1.2 ug/l 510	ug/l 24 ug/l 25 ug/l 1	2 ug/l 8.6 ug/l 0.52	ug/l 22 ug/l 13.0 ug/l <0.50 ug/l
1,2-Dichlorobenzene	NYTCL-8260-R2 3 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ug/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
1,3-Dichlorobenzene	NYTCL-8260-R2 3 - ug/l <6.2	Ug/I <2.5 Ug/I <2.5 Ug/I	<2.5 Ug/I <2.5 Ug/I <2.5	5	<2.5	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	$\frac{ g }{ g }$ <2.5 $\frac{ g }{ g }$ <2.5 $\frac{ g }{ g }$	g/l <2.5	Ug/I <2.5 Ug/I <2.5 Ug/I <	2.5 Ug/I <2.5 Ug/I <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
1,4-Dichlorobenzene Methyl tert butyl ether	NYTCL-8260-R2 3 - ug/l <6.2 NYTCL-8260-R2 - 10 ug/l <6.2	ug/1 <2.5 ug/1 <2.5 ug/1	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	$\frac{1}{2}$ $\frac{1}$	$\frac{19}{1}$ <2.5 $\frac{19}{1}$ <2.5 $\frac{19}{1}$ <2.5 $\frac{19}{1}$ <2.5 $\frac{19}{1}$	$\frac{g}{1}$ <2.5 $\frac{g}{1}$ <2.5 $\frac{g}{1}$ <10.	ug/1	$\frac{1.5}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$ $\frac{100}{100}$ $\frac{1}{2.5}$	ug/1 <2.5 ug/1 <2.5 ug/1 <2.5 ug/1 <2.5 ug/1
p/m-Xylene	NYTCL-8260-R2 5 - ug/l 2.0J	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	$\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{2.5}}$ $\frac{1}{\sqrt{3}}$	$\frac{1}{10}$	$\frac{g}{1}$ <2.5 $\frac{g}{1}$ <2.5 $\frac{g}{1}$ <10.	ug/l <2.5 ug/l <2.5 ug/l <	$\frac{2.5}{2.5} = \frac{100}{100} = $	$\frac{dg/l}{dg/l}$ <2.5 $\frac{dg/l}{dg/l}$ <2.5 $\frac{dg/l}{dg/l}$ <2.5 $\frac{dg/l}{dg/l}$
o-Xvlene	NYTCL-8260-R2 5 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	Ig/I <2.5 ug/I <2.5 ug/I <2.5 ug/I <2.5 ug/I	$\frac{g}{g}$ $\frac{1}{\sqrt{2.5}}$ $\frac{1}{2.$	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
cis-1,2-Dichloroethene	NYTCL-8260-R2 5.0 - ug/l 58	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l 47	ug/l 32 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l 9	90 ug/l 240 ug/l 4.0 ug/l	92 ug/l 3.5 ug/l 34 u	ıg/l 74 ug/l 3.2 ug/l <2.5 u	g/l <2.5 ug/l 6.4 ug/l 130	ug/l 100 ug/l 48 ug/l 7	.0 ug/l 38 ug/l 44	ug/l 130 ug/l 96 ug/l <2.5 ug/l
Styrene	NYTCL-8260-R2 5.0 - ug/l 58 NYTCL-8260-R2 5 - ug/l <6.2	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Dichlorodifluoromethane	NYTCL-8260-R2 5 - ug/l <12.	ug/l <5.0 ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0) ug/l <5.0 ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <1	12. ug/l <10. ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0 u	ıg/l <5.0 ug/l <5.0 ug/l <5.0 ι	g/l <5.0 ug/l <5.0 ug/l <20.	ug/l <5.0 ug/l <5.0 ug/l <	5.0 ug/l <5.0 ug/l <5.0	ug/l <5.0
Acetone	NYTCL-8260-R2 - 50 ug/l <12.	ug/l 2.4J ug/l <5.0 ug/l	2.1J ug/l 2.2J ug/l 2.3.	J ug/l <5.0 ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <1	12. ug/l <10. ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0 u	ıg/l <5.0 ug/l <5.0 ug/l <5.0 ι	g/l <5.0 ug/l <5.0 ug/l <20.	ug/l <5.0 ug/l <5.0 ug/l <	5.0 ug/l <5.0 ug/l <5.0	ug/l <5.0 ug/l <5.0 ug/l <5.0 ug/l
Carbon disulfide	NYTCL-8260-R2 - 60 ug/l <12.	ug/l <5.0 ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0	0 ug/l 1.4J ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <1	12. ug/l <10. ug/l <5.0 ug/l	1.3J ug/l <5.0 ug/l 1.9J u	ug/l 1.0J ug/l <5.0 ug/l <5.0 ι	g/l <5.0 ug/l <5.0 ug/l <20.	ug/l <5.0 ug/l <5.0 ug/l <	5.0 ug/l <5.0 ug/l <5.0	ug/l <5.0 ug/l 1.5J ug/l <5.0 ug/l
2-Butanone	NYTCL-8260-R2 - 50 ug/l <12.	ug/l <5.0 ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0) ug/l <5.0 ug/l <5.0 ug/l >	<5.0 ug/l <5.0 ug/l <1	12. ug/l <10. ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0 u	Ig/l <5.0 ug/l <5.0 ug/l <5.0 t	g/l <5.0 ug/l <5.0 ug/l <20.	ug/l	5.0 ug/l <5.0 ug/l <5.0	ug/l <5.0 ug/l <5.0 ug/l <5.0 ug/l
4-Methyl-2-pentanone	NYTCL-8260-R2 ug/l <12.	ug/l <5.0 ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0	0 ug/l <5.0 ug/l <5.0 ug/l = 5.0 ug/l	<5.0 ug/l <5.0 ug/l <1	12. ug/l <10. ug/l <5.0 ug/l	<5.0 ug/l <5.0 ug/l <5.0 u	ıg/l <5.0 ug/l <5.0 ug/l <5.0 t	g/l <5.0 ug/l <5.0 ug/l <20.	Ug/I	5.0	ug/l
Bromochloromethane	NYTCL-8260-R2 - 50 ug/l <12.	ug/l	<5.0 ug/l <5.0 ug/l <5.0 <2.5 ug/l <2.5 ug/l <2.6	5 ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l	<0.0	6.2 ug/l <5.0 ug/l <5.0 ug/l	$\frac{1}{2}$ $\frac{1}$	$\frac{19}{1}$ < 2.5 $\frac{19}{1}$ < 2.5 $\frac{19}{1}$ < 2.5 $\frac{19}{1}$	$\frac{g}{l}$ $\frac{1}{\sqrt{3.0}}$ $\frac{1}{3.$	ug/l	25 ug/l <25 ug/l <25	ug/l
1 2-Dibromoethane	NYTCL-8260-R2 5.0 - ug/l <6.2.	ug/l <2.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <2.0) ug/l <2.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <6	5.0 ug/l <4.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <2.0 u	$\frac{1}{2}$ $\frac{1}$	$\frac{g}{1}$ <2.5 $\frac{g}{1}$ <2.0 $\frac{g}{1}$ <2.0 $\frac{g}{1}$ <8.0	ug/l	$\frac{1.00}{2.00} \frac{100}{100} \frac{1}{100} \frac{1}{100$	ug/l <2.0 ug/l <2.0 ug/l <2.0 ug/l
1.2-Dibromo-3-chloropropane	NYTCL-8260-R2 0.04 - ug/l <6.2.	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6		<2.5	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ug/l <2.5 u	$\frac{1}{2.5}$ $\frac{1}$	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Isopropylbenzene	NYTCL-8260-R2 5 - ug/l <6.2.	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5	ıg/l <2.5 ug/l <2.5 ug/l <2.5 u	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
2-Hexanone Bromochloromethane 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Isopropylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NYTCL-8260-R2 5 - ug/l <6.2.	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 l	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
1,2,4-Trichlorobenzene	NYTCL-8260-R2 5 - ug/l <6.2.	ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	5 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6	6.2 ug/l <5.0 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5 u	ıg/l <2.5 ug/l <2.5 ug/l <2.5 ι	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <	2.5 ug/l <2.5 ug/l <2.5	ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l
Methyl Acetate		ug/l <2.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <2.0) ug/l <2.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <5	5.0 ug/l <4.0 ug/l <2.0 ug/l	<2.0 ug/l <2.0 ug/l <2.0 u	ıg/l <2.0 ug/l <2.0 ug/l <2.0 l	g/l <2.0 ug/l <2.0 ug/l <8.0	ug/l <2.0 ug/l <2.0 ug/l <	2.0 ug/l <2.0 ug/l <2.0	ug/l <2.0 ug/l <2.0 ug/l <2.0 ug/l
Cyclohexane	NYTCL-8260-R2 - ug/l <5.0	ug/l <10. ug/l <10. ug/l	<10. ug/l <10. ug/l <10	. ug/l <10. ug/l <10. ug/l	<10 ug/l <10. ug/l <2	25. ug/l <20. ug/l <10. ug/l	<10. ug/l <10. ug/l <10. u	ug/l <10. ug/l <10. ug/l <10. l	g/l <10. ug/l <10. ug/l <40.	ug/l <10. ug/l <10. ug/l <	0. ug/l <10. ug/l <10.	ug/l <10.
1,4-Dioxane	NYTCL-8260-R2 - ug/l <620	ug/l <250 ug/l <250 ug/l	<250 ug/l <250 ug/l <250	0 ug/l <250 ug/l <250 ug/l	<250 ug/l <250 ug/l <6		250 ug/l <250 ug/l <250 u	ug/l <250 ug/l <250 ug/l <250 u	g/l <250 ug/l <250 ug/l <1000	ug/l <250 ug/l <250 ug/l <	50 ug/l <250 ug/l <250	ug/l <250 ug/l <250 ug/l <250 ug/l
Freon-113		ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <2.5	0 ug/l <2.5 ug/l <2.5 ug/l	<2.5 ug/l <2.5 ug/l <6			ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l <2.5 ug/l <10. ug/l <10. ug/l <10.	g/l <2.5 ug/l <2.5 ug/l <10.	ug/l <2.5 ug/l <2.5 ug/l <		ug/l <2.5
Methyl cyclohexane	NYTCL-8260-R2 ug/l <25.	ug/l <10. ug/l <10. ug/l	<10. ug/l <10. ug/l <10	. ug/l <10. ug/l <10. ug/l	<10 ug/l <10. ug/l <2	zo. ug/i <zu. <10.="" i="" th="" ug="" ="" <=""><th><10.</th><th>ւց/l <10. ug/l <10. ug/l <10. լ</th><th>g/l <10. ug/l <10. ug/l <40.</th><th> ug/l <10. ug/l <10. ug/l <</th><th>0. ug/l <10. ug/l <10.</th><th>ug/i <10. ug/i <10. ug/i <10. ug/i</th></zu.>	<10.	ւց/l <10. ug/l <10. ug/l <10. լ	g/l <10. ug/l <10. ug/l <40.	ug/l <10. ug/l <10. ug/l <	0. ug/l <10. ug/l <10.	ug/i <10. ug/i <10. ug/i <10. ug/i

FIGURES

(MW-19R 766.40 MW-18 767.34 MW-16 767.63 MW-7 767.79 G-3 768.72 MW-17 766.87 MW-6 MW-20 768.44 768 767.90 MW-15 767.93 G-2 768.12 G-1 768.20 DR-4 768.22 DR-3 768.26 MW-4 771.48 772 DR-1 772.71 MW-3 772.53 MW-2 772.78 MW-9 774.26 120 FT MW-10 773.90 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

REVISIONS DESCRIPTION

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Manage J. O'BRIEN Checked By: J. O'BRIEN Drawn By: C. WOOD Date Issued: 04/25/2022 Scale: 1" = 60'

Project Number: 14263.07

MARCH 2022 WATER LEVEL CONTOUR MAP

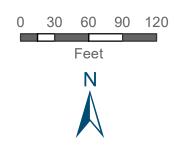
Drawing Number:

FIGURE 1

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY



BERGMANN

ARCHITECTS ENGINEERS PLANNERS

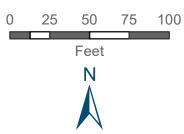
Figure 2

March 2022
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

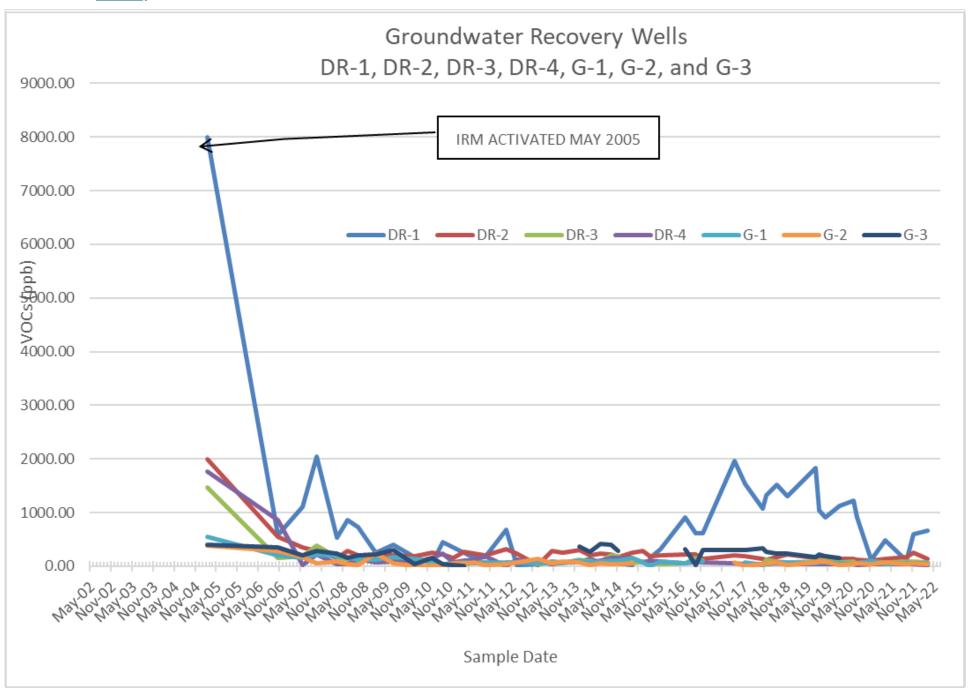
4 Industrial Place Gowanda, NY

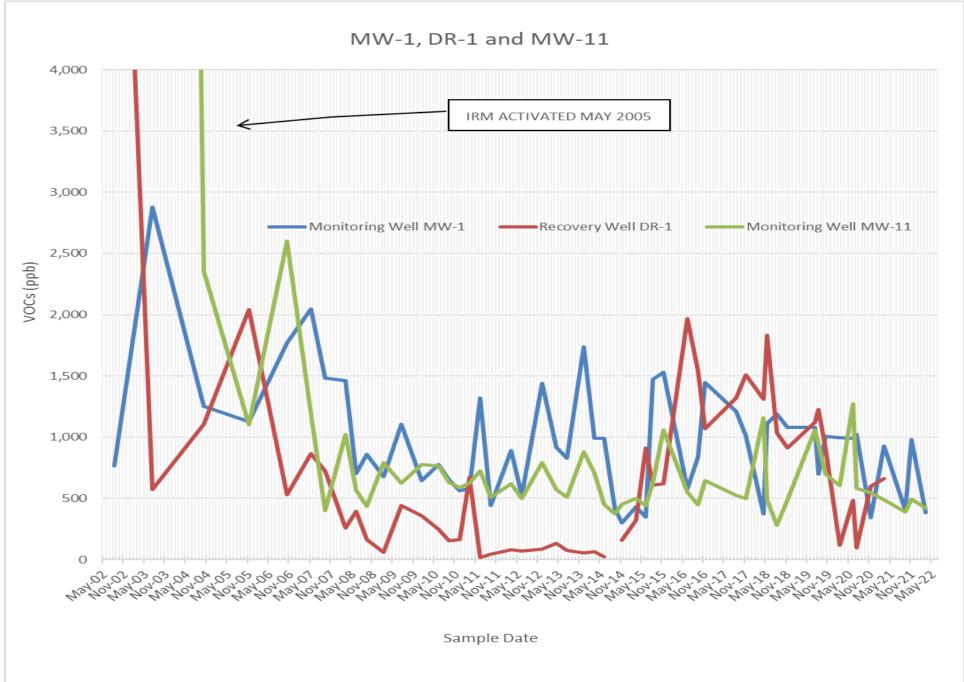


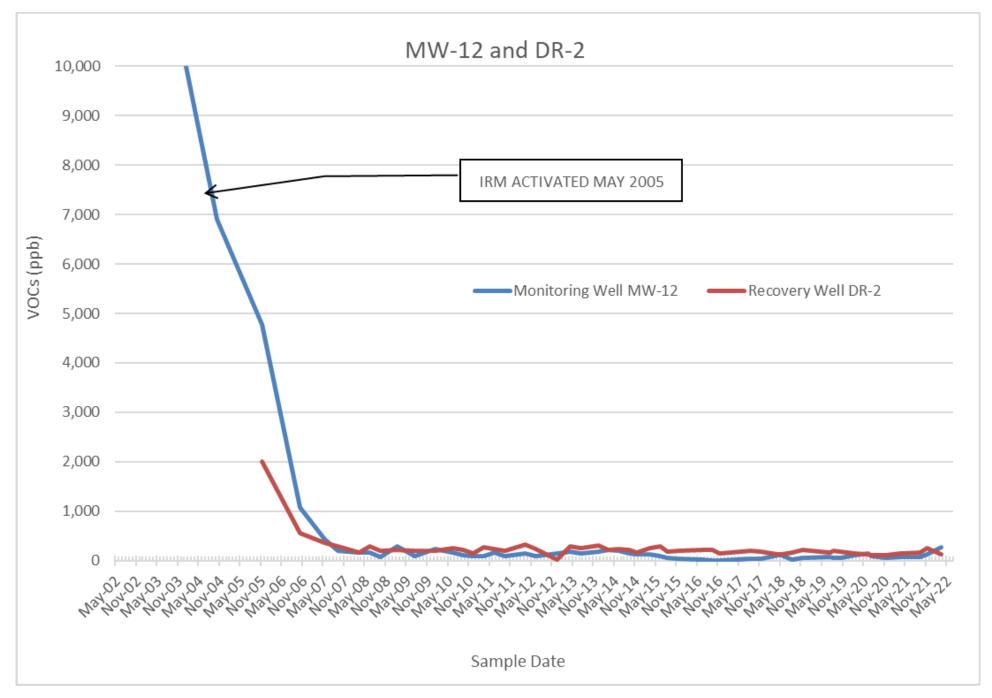
BERGMANN

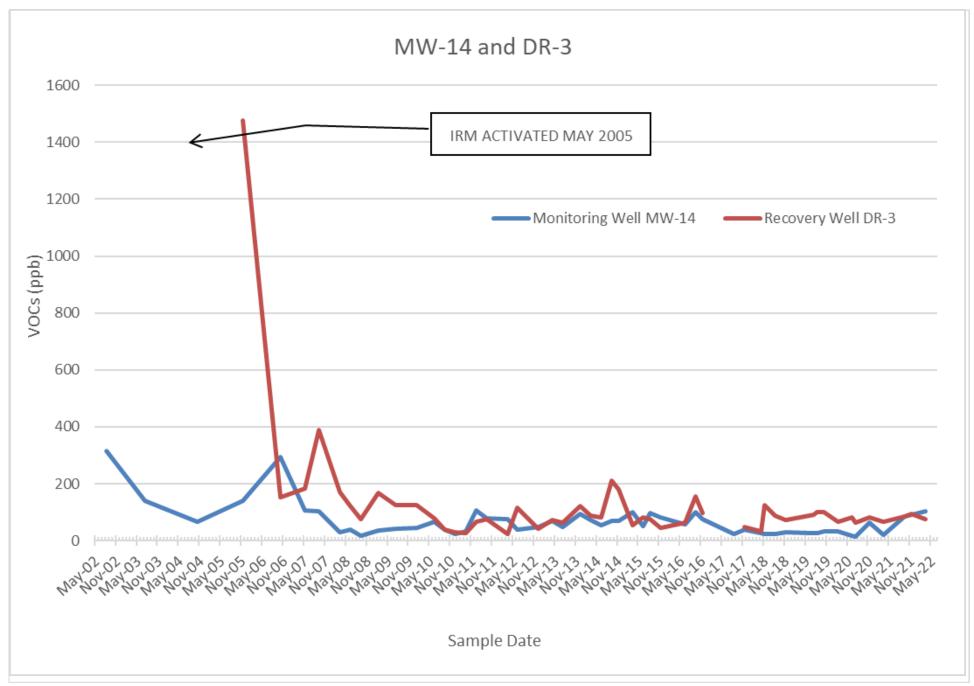
ADCHITECTS ENGINEEDS DIANNEDS

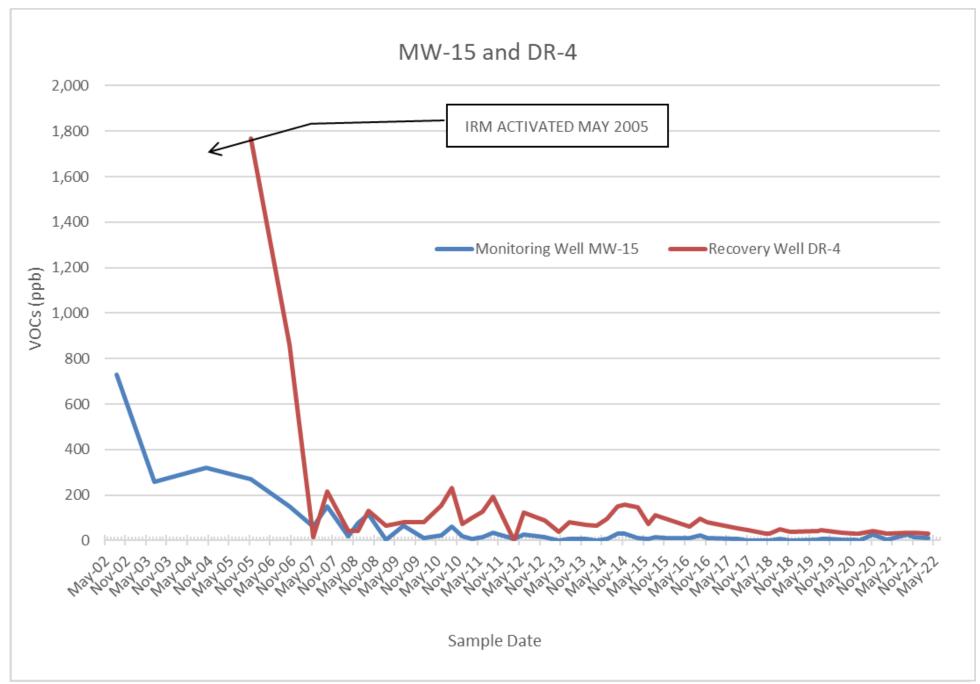
Figure 3

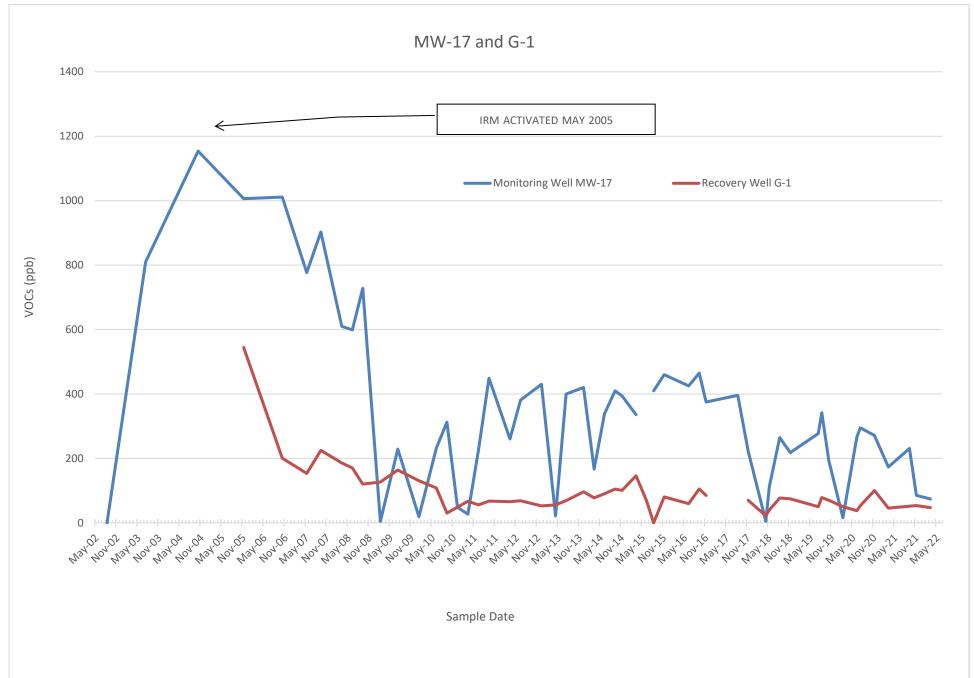

March 2022
Distribution of
Groundwater
Analytical Results:
Recovery Wells

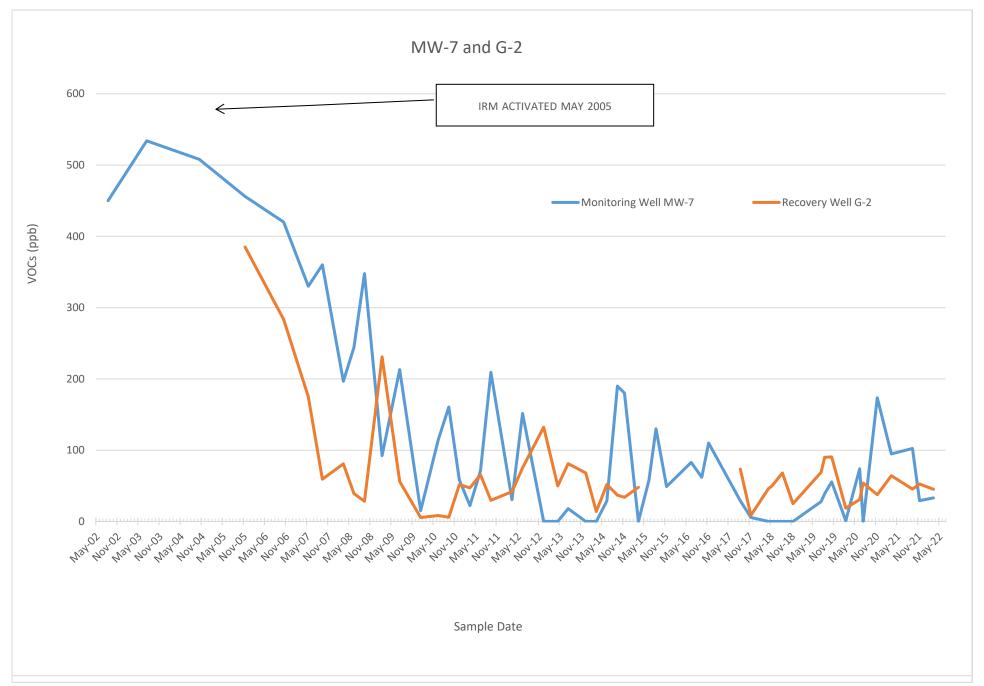


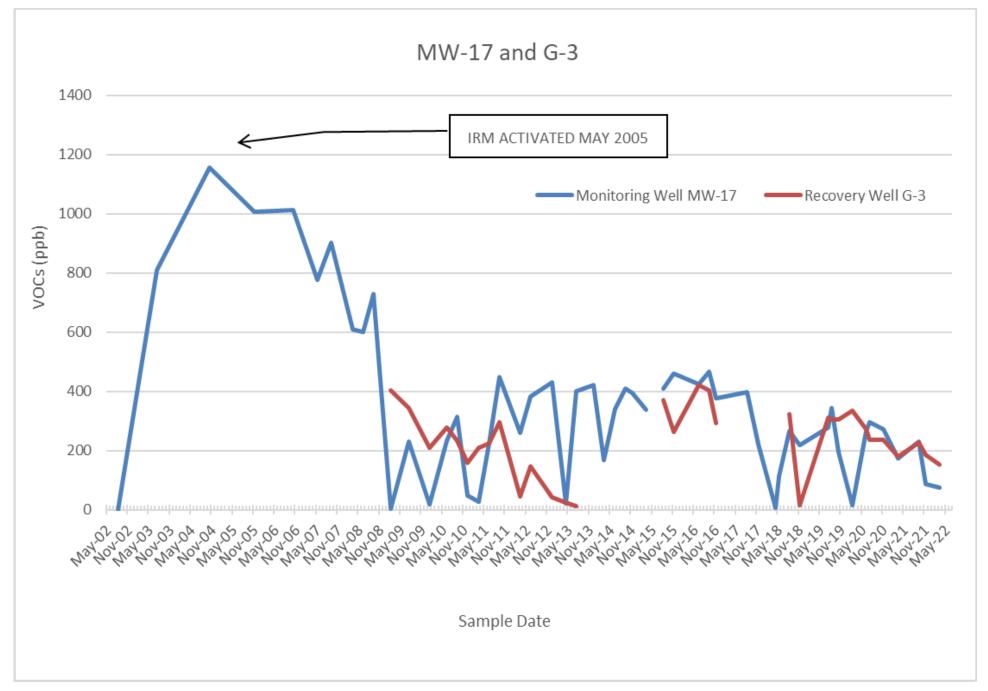

CHARTS











APPENDICES

APPENDIX A:

Laboratory Analytical Results Report - March 2022 Sampling Event

ANALYTICAL REPORT

Lab Number: L2215692

Client: Bergmann Associates

280 E Broad Street Rochester, NY 14604

ATTN: Ariadna Cheremeteff

Phone: (585) 498-7950

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified Report Date: 04/07/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

 Lab Number:
 L2215692

 Report Date:
 04/07/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2215692-01	MW-1	WATER	GOWANDA, NY	03/25/22 07:20	03/25/22
L2215692-02	MW-2	WATER	GOWANDA, NY	03/25/22 07:40	03/25/22
L2215692-03	MW-3	WATER	GOWANDA, NY	03/25/22 07:58	03/25/22
L2215692-04	MW-4	WATER	GOWANDA, NY	03/25/22 08:40	03/25/22
L2215692-05	MW-5	WATER	GOWANDA, NY	03/25/22 09:05	03/25/22
L2215692-06	MW-6	WATER	GOWANDA, NY	03/25/22 10:26	03/25/22
L2215692-07	MW-7	WATER	GOWANDA, NY	03/24/22 14:55	03/25/22
L2215692-08	MW-8	WATER	GOWANDA, NY	03/25/22 08:15	03/25/22
L2215692-09	MW-9	WATER	GOWANDA, NY	03/24/22 15:50	03/25/22
L2215692-10	MW-10	WATER	GOWANDA, NY	03/24/22 16:16	03/25/22
L2215692-11	MW-11	WATER	GOWANDA, NY	03/24/22 13:30	03/25/22
L2215692-12	MW-12	WATER	GOWANDA, NY	03/24/22 12:50	03/25/22
L2215692-13	MW-13	WATER	GOWANDA, NY	03/24/22 13:07	03/25/22
L2215692-14	MW-14	WATER	GOWANDA, NY	03/24/22 12:00	03/25/22
L2215692-15	MW-15	WATER	GOWANDA, NY	03/24/22 11:15	03/25/22
L2215692-16	MW-16	WATER	GOWANDA, NY	03/24/22 15:20	03/25/22
L2215692-17	MW-17	WATER	GOWANDA, NY	03/25/22 10:00	03/25/22
L2215692-18	MW-18	WATER	GOWANDA, NY	03/25/22 11:50	03/25/22
L2215692-19	MW-19R	WATER	GOWANDA, NY	03/25/22 11:30	03/25/22
L2215692-20	MW-20	WATER	GOWANDA, NY	03/25/22 10:47	03/25/22
L2215692-21	MW-21	WATER	GOWANDA, NY	03/25/22 12:10	03/25/22
L2215692-22	DR-1	WATER	GOWANDA, NY	03/24/22 13:55	03/25/22
L2215692-23	DR-2	WATER	GOWANDA, NY	03/24/22 12:35	03/25/22
P2295695124	DR-3	WATER	GOWANDA, NY	03/24/22 14:21	03/25/22

Alpha			Sample	Serial_No Collection	No:04072219:51	
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date	
L2215692-25	DR-4	WATER	GOWANDA, NY	03/24/22 11:45	03/25/22	
L2215692-26	G-1	WATER	GOWANDA, NY	03/24/22 11:00	03/25/22	
L2215692-27	G-2	WATER	GOWANDA, NY	03/24/22 10:30	03/25/22	
L2215692-28	G-3	WATER	GOWANDA, NY	03/25/22 09:37	03/25/22	
L2215692-29	EQUIPMENT BLANK	WATER	GOWANDA, NY	03/25/22 12:17	03/25/22	
L2215692-30	MWX	WATER	GOWANDA, NY	03/25/22 00:00	03/25/22	
L2215692-31	TRIP BLANK	WATER	GOWANDA, NY	03/25/22 00:00	03/25/22	

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692
Project Number: Not Specified Report Date: 04/07/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:GOWANDA DAY HABITATION Q1 2022Lab Number:L2215692Project Number:Not SpecifiedReport Date:04/07/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2215692-24: The collection date and time on the chain of custody was 24-MAR-22 14:23; however, the collection date/time on the container label was 24-MAR-22 14:21. At the client's request, the collection date/time is reported as 24-MAR-22 14:21.

Volatile Organics

L2215692-06: The sample was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

Date: 04/07/22

ORGANICS

VOLATILES

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 07:20

Report Date: 04/07/22

Lab Number:

Lab ID: L2215692-01 D

Client ID: MW-1

Sample Location: GOWANDA, NY

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 11:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	0.39	J	ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	4.2	J	ug/l	6.2	1.8	2.5
Trichloroethene	320		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

04/07/22

Dilution Factor

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Qualifier

Units

03/25/22 07:20

RL

Report Date:

MDL

Lab ID: D Date Collected: L2215692-01

Result

Date Received: Client ID: 03/25/22 MW-1 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter

i didilicici	Nosun	Qualifici	Omis			Dilation i actor	
Volatile Organics by GC/MS - West	borough Lab						
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5	
p/m-Xylene	2.0	J	ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	58		ug/l	6.2	1.8	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	ND		ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
Bromochloromethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl Acetate	ND		ug/l	5.0	0.58	2.5	
Cyclohexane	ND		ug/l	25	0.68	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
Freon-113	ND		ug/l	6.2	1.8	2.5	
Methyl cyclohexane	ND		ug/l	25	0.99	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	110	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 07:40

Lab Number:

Report Date:

Date Received: 03/25/22
Field Prep: Not Specified

Lab ID: L2215692-02

Client ID: MW-2

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified Report Date:

SAMPLE RESULTS

Lab ID: L2215692-02 Date Collected: 03/25/22 07:40

Client ID: MW-2 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.4	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	114	70-130	

L2215692

04/07/22

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 07:58

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2215692-03

Client ID: MW-3

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 11:53

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.25	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/25/22 07:58 L2215692-03

Date Received: Client ID: 03/25/22 MW-3 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	111	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

L2215692-04

GOWANDA, NY

MW-4

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 08:40

-- 11-00-10

Lab Number:

Report Date:

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 12:16

Volatile Organics by GC/MS - Westborough Methylene chloride	n Lab				
Mathylana ahlarida					
Metrylerie Chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 08:40

Report Date:

Lab ID: L2215692-04 Date C

Client ID: MW-4 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	112	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

L2215692-05

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 09:05

PLE RESULTS

Lab Number:

Report Date:

Client ID: MW-5 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 12:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.60		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 09:05 L2215692-05

Date Received: Client ID: 03/25/22 MW-5

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	114	70-130	

L2215692

03/25/22 10:26

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 04/07/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

5/..... <u>--</u> 1.<u>-</u> 0

Lab ID: L2215692-06
Client ID: MW-6

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 13:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	45		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.21	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

03/25/22 10:26

Report Date:

Lab ID: Date Collected: L2215692-06

Date Received: 03/25/22 Client ID: MW-6 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	47		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	112	70-130	

L2215692

03/25/22

Not Specified

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Date Received:

Field Prep:

Report Date: 04/07/22

Lab ID: Date Collected: 03/24/22 14:55 L2215692-07

Client ID: MW-7

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water 1,8260C Analytical Method: Analytical Date: 04/02/22 19:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.55	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.51		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/24/22 14:55 L2215692-07

Date Received: Client ID: 03/25/22 MW-7 Not Specified

Sample Location: Field Prep: GOWANDA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	32		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	1.4	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	125	70-130	

L2215692

04/07/22

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

03/25/22 08:15

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: Date Collected: L2215692-08

Client ID: MW-8

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/04/22 13:26

Volatile Organics by GC/MS - Westborough Methylene chloride	n Lab				
Mathylana ahlarida					
Metrylerie Chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/25/22 08:15 L2215692-08

Date Received: Client ID: 03/25/22 MW-8 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	119		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	114		70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 15:50

Lab Number:

Report Date:

Date Collected: 03/24/22 15:5

Date Received: 03/25/22

Field Prep: Not Specified

Lab ID: L2215692-09
Client ID: MW-9

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/22 19:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/24/22 15:50 L2215692-09

Date Received: Client ID: 03/25/22 MW-9 Field Prep: Not Specified

Sample Location: GOWANDA, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	119		70-130	

03/24/22 16:16

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2215692

Report Date: 04/07/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2215692-10

Client ID: MW-10

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/22 20:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2215692-10 Date Collected: 03/24/22 16:16

Client ID: MW-10 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	83	70-130	
Dibromofluoromethane	123	70-130	

L2215692

03/24/22 13:30

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 04/07/22

Lab ID: D L2215692-11

Client ID: MW-11

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/22 23:46

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 6.2 1.8 2.5 1,1-Dichloroethane ND ug/l 6.2 1.8 2.5 Chloroform ND ug/l 6.2 1.8 2.5 Carbon tetrachloride ND ug/l 1.2 0.34 2.5 Carbon tetrachloride ND ug/l 1.2 0.34 2.5 L2-Dichloropropane ND ug/l 1.2 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorotethane ND ug/l 6.2 1.8 2.5 L2-Dichloroethane ND ug/l 6.2 1.8 2.5 1,1-1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane<	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 6.2 1.8 2.5 Chloroform ND ug/l 6.2 1.8 2.5 Carbon tetrachloride ND ug/l 1.2 0.34 2.5 1,2-Dichloropropane ND ug/l 1.2 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 Dibromochloromethane ND ug/l 3.8 1.2 2.5 Tetrachloroethane ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Lj-Dichloroethane ND ug/l 6.2 1.8 2.5 <th>Volatile Organics by GC/MS - Westbo</th> <th>orough Lab</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Volatile Organics by GC/MS - Westbo	orough Lab					
1,1-Dichloroethane ND ugh 6.2 1.8 2.5 Chloroform ND ugh 6.2 1.8 2.5 Carbon tetrachloride ND ugh 1.2 0.34 2.5 1,2-Dichloropropane ND ugh 1.2 0.34 2.5 Dibromochloromethane ND ugh 1.2 0.34 2.5 1,1,2-Trichloroethane ND ugh 1.2 0.45 2.5 Tetrachloroethane ND ugh 1.2 0.45 2.5 Chlorobenzene ND ugh 6.2 1.8 2.5 Trichlorofluoromethane ND ugh 6.2 1.8 2.5 1,1,1-Trichloroethane ND ugh 6.2 1.8 2.5 1,1,1-Trichloroethane ND ugh 6.2 1.8 2.5 1,1,1-Trichloroethane ND ugh 1.2 0.41 2.5 1,1,1-Trichloroethane ND ugh 1.2 0	Methylene chloride	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride ND ug/l 1.2 0.34 2.5 1,2-Dichloropropane ND ug/l 2.5 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1-2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethene ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 1.2 0.33 2.5 Til,1-Trichloroethane ND ug/l 1.2 0.33 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloromethane ND ug/l 1.2 0.41 2.5 sis-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 Bromoflorm ND ug/l 1.2	1,1-Dichloroethane	ND			6.2	1.8	2.5
1,2-Dichloropropane ND Ug/l 2.5 0.34 2.5 2,5 1,1,2-Trichloroethane ND Ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND Ug/l 3.8 1.2 2.5 1,1,2-Trichloroethane ND Ug/l 1.2 0.45 2.5 1,1,2-Trichloroethane ND Ug/l 1.2 0.45 2.5 1,1,2-Trichloroethane ND Ug/l 6.2 1.8 2.5 1,1,1-Trichlorothane ND Ug/l 6.2 1.8 2.5 1,2-Dichloropthane ND Ug/l 6.2 1.8 2.5 1,1,1-Trichlorothane ND Ug/l 6.2 1.8 2.5 1,1,1-Trichlorothane ND Ug/l 1.2 0.48 2.5 1,1,1-Trichloropthane ND Ug/l 1.2 0.44 2.5 1,1,2-Tetrachloroptopene ND Ug/l 1.2 0.41 2.5 1,1,2-Tetrachloroptopene ND Ug/l 1.2 0.41 2.5 1,1,2-Tetrachloropthane ND Ug/l 1.2 0.42 2.5 1,1,2-Tetrachloropthane ND Ug/l 1.2 0.42 2.5 1,1,2-Tetrachloropthane ND Ug/l 1.2 0.40 2.5 1,1,2-Tetrachloropthane ND Ug/l 1.2 0.40 2.5 1,1,2-Tetrachloropthane ND Ug/l 6.2 1.8 2.5 1,1,1-Tolchoropthane ND Ug/l 6.2 1.8 2.5 1,1-Dichloropthane ND Ug/l 6.2 1.8 2.5 1	Chloroform	ND		ug/l	6.2	1.8	2.5
Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethene ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromoform ND ug/l 1.2 0.48 2.5 Bromoform ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5	Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethene ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Bromoform ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8	1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Tetrachloroethene ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloropropene ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8	Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8	1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromofichloropropene ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Bromoform ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5	Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
1,2-Dichloroethane ND	Chlorobenzene	ND		ug/l	6.2	1.8	2.5
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 Chloroethene ND ug/l 6.2 1.8 2	1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 Chloroethene ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 <t< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>6.2</td><td>1.8</td><td>2.5</td></t<>	1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 Chloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5<	Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5 <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.2</td> <td>0.41</td> <td>2.5</td>	trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Bromoform	ND		ug/l	5.0	1.6	2.5
Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Benzene	ND		ug/l	1.2	0.40	2.5
Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Toluene	ND		ug/l	6.2	1.8	2.5
Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Vinyl chloride 2.3 J ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Chloromethane	ND		ug/l	6.2	1.8	2.5
Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Bromomethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Vinyl chloride	2.3	J	ug/l	2.5	0.18	2.5
trans-1,2-Dichloroethene 8.3 ug/l 6.2 1.8 2.5 Trichloroethene 320 ug/l 1.2 0.44 2.5	Chloroethane	ND		ug/l	6.2	1.8	2.5
Trichloroethene 320 ug/l 1.2 0.44 2.5	1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
-8-	trans-1,2-Dichloroethene	8.3		ug/l	6.2	1.8	2.5
1.2 Dichlorobonzono ND	Trichloroethene	320		ug/l	1.2	0.44	2.5
1,2-DIGITIOTOUGIZETIE ND UG/I 0.2 1.8 2.5	1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

L2215692-11

SAMPLE RESULTS

D Date Collected: 03/24/22 13:30

Report Date:

Client ID: MW-11 Date Received: 03/25/22

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5
p/m-Xylene	ND		ug/l	6.2	1.8	2.5
o-Xylene	ND		ug/l	6.2	1.8	2.5
cis-1,2-Dichloroethene	90		ug/l	6.2	1.8	2.5
Styrene	ND		ug/l	6.2	1.8	2.5
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5
Acetone	ND		ug/l	12	3.6	2.5
Carbon disulfide	ND		ug/l	12	2.5	2.5
2-Butanone	ND		ug/l	12	4.8	2.5
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5
2-Hexanone	ND		ug/l	12	2.5	2.5
Bromochloromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5
Methyl Acetate	ND		ug/l	5.0	0.58	2.5
Cyclohexane	ND		ug/l	25	0.68	2.5
1,4-Dioxane	ND		ug/l	620	150	2.5
Freon-113	ND		ug/l	6.2	1.8	2.5
Methyl cyclohexane	ND		ug/l	25	0.99	2.5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	117	70-130	

L2215692

03/25/22

Not Specified

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

03/24/22 12:50

Report Date: 04/07/22

Lab Number:

Date Received:

Field Prep:

Lab ID: D Date Collected: L2215692-12

Client ID: MW-12

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/03/22 00:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	ND		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	ND		ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	8.7		ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	0.61	J	ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	2.2	J	ug/l	5.0	1.4	2	
Trichloroethene	21		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

D Date Collected: 03/24/22 12:50 L2215692-12

Date Received: Client ID: 03/25/22 MW-12

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	240		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	119	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 13:07

Lab Number:

Report Date:

L2215692-13

Client ID: Date Received: 03/25/22 MW-13 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/22 20:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.12	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.99		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

04/07/22

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: 03/24/22 13:07 L2215692-13 Date Received: Client ID: 03/25/22 MW-13

Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.0		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	122	70-130	

L2215692

03/24/22 12:00

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 04/07/22

Lab ID: L2215692-14 Client ID: MW-14

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/22 20:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	2.5		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.21	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.85	J	ug/l	2.5	0.70	1
Trichloroethene	9.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

L2215692-14

SAMPLE RESULTS

Date Collected: 03/24/22 12:00

Report Date:

Date Received: Client ID: 03/25/22 MW-14

Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	92		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	1.3	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	117	70-130	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2215692

Report Date: 04/07/22

Lab ID: Date Collected: 03/24/22 11:15 L2215692-15

Client ID: Date Received: 03/25/22 MW-15 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/22 21:18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	5.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/24/22 11:15 L2215692-15

Date Received: 03/25/22 Client ID: MW-15 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.5		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	120	70-130	

L2215692

03/24/22 15:20

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Report Date:

Lab Number:

Date Collected:

Date Received:

Field Prep:

04/07/22

Lab ID: L2215692-16

Client ID: MW-16

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water 1,8260C Analytical Method: Analytical Date: 04/04/22 13:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.72	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.30	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2215692-16 Date Collected: 03/24/22 15:20

Client ID: MW-16 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	34		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	1.9	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	114	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

L2215692-17

GOWANDA, NY

MW-17

Project Number: Not Specified

SAMPLE RESULTS

0 1/01/22

Report Date: 04/07/22

Lab Number:

report bate.

Date Collected: 03/25/22 10:00

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 14:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.32	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	11		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: 03/25/22 10:00 L2215692-17 Date Received: 03/25/22 Client ID: MW-17

Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	74		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	1.0	J	ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	112	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

L2215692-18

GOWANDA, NY

MW-18

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 11:50

Lab Number:

Report Date:

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 14:36

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.68		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2215692-18 Date Collected: 03/25/22 11:50

Client ID: MW-18 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.2		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	115	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date: 04/07/22

Lab ID: Date Collected: 03/25/22 11:30 L2215692-19

Client ID: Date Received: 03/25/22 MW-19R Field Prep: Sample Location: Not Specified GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/04/22 15:00

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.25	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.30	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Dilution Factor

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

L2215692-19

SAMPLE RESULTS

Date Collected: 03/25/22 11:30

MDL

Report Date:

RL

Date Received: Client ID: 03/25/22 MW-19R

Sample Location: Field Prep: GOWANDA, NY Not Specified

Qualifier

Units

Result

Sample Depth:

Parameter

Lab ID:

i arameter	Nosun	Qualifici	Office			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	123	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	108	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

RESULTS

Lab Number:

Report Date: 04/07/22

Lab ID: L2215692-20 Date Collected: 03/25/22 10:47

Client ID: MW-20 Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 15:23

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/25/22 10:47 L2215692-20

Date Received: 03/25/22 Client ID: MW-20

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	123	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	114	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 04/07/22

Lab Number:

Lab ID: Date Collected: 03/25/22 12:10 L2215692-21

Client ID: Date Received: 03/25/22 MW-21 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/04/22 13:12

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.16	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.2		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/25/22 12:10 L2215692-21

Date Received: Client ID: 03/25/22 MW-21

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	6.4		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	123		70-130	
Toluene-d8	110		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	105		70-130	

L2215692

03/25/22

Not Specified

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 13:55

Report Date: 04/07/22

Lab Number:

Date Received:

Field Prep:

Lab ID: L2215692-22 D

Client ID: DR-1

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/03/22 00:35

Analyst: MV

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 10 2.8 4 1,1-Dichloroethane ND ug/l 10 2.8 4 Chloroform ND ug/l 10 2.8 4 Chloroform ND ug/l 2.0 0.54 4 1,2-Dichloropropane ND ug/l 4.0 0.55 4 Dibromochloromethane ND ug/l 6.0 2.0 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Chlorobenzene ND ug/l 10 2.8 4 Trichloroethane ND ug/l 10 2.8 4 Trichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 10 2.8 4 Chloroform ND ug/l 10 2.8 4 Carbon tetrachloride ND ug/l 2.0 0.54 4 1,2-Dichloropropane ND ug/l 4.0 0.55 4 Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 1,1,2-Trichloroethane ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 2.0 0.72 4 Trichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.66 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66	Volatile Organics by GC/MS - Westk	orough Lab					
Chloroform ND ug/l 10 2.8 4 Carbon tetrachloride ND ug/l 2.0 0.54 4 1,2-Dichloropropane ND ug/l 4.0 0.55 4 Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Tetrachloroethane ND ug/l 10 2.8 4 Chlorobenzene ND ug/l 10 2.8 4 Chlorobenzene ND ug/l 10 2.8 4 Chlorobenzene ND ug/l 10 2.8 4 1,1-17richlorothane ND ug/l 2.0 0.53 4 1,1-17richloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.66 4 Bromodorm ND ug/l 2.0 0.67 4	Methylene chloride	ND		ug/l	10	2.8	4
Carbon tetrachloride ND ug/l 2.0 0.54 4 1,2-Dichloropropane ND ug/l 4.0 0.55 4 Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Tetrachloroethane ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichlorothane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.53 4 Bromodorm ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.67 4 Bromoform ND ug/l 2.0 0.67 4	1,1-Dichloroethane	ND		ug/l	10	2.8	4
1,2-Dichloropropane ND ug/l 4.0 0.55 4 Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Tetrachloroethane ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1-Trichloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.53 4 Bromofichloropropene ND ug/l 2.0 0.66 4 vias-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 2.0 0.64 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.64 <td>Chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>10</td> <td>2.8</td> <td>4</td>	Chloroform	ND		ug/l	10	2.8	4
Dibromochloromethane ND ug/l 2.0 0.60 4 1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Tetrachloroethane ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.53 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 eis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 <	Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,1,2-Trichloroethane ND ug/l 6.0 2.0 4 Tetrachloroethene ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 2.0 0.53 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 2.0 0.58 4 Bromoform ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4	1,2-Dichloropropane	ND		ug/l	4.0	0.55	4
Tetrachloroethene ND ug/l 2.0 0.72 4 Chlorobenzene ND ug/l 10 2.8 4 Trichloroftuoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4	Dibromochloromethane	ND		ug/l	2.0	0.60	4
Chlorobenzene ND ug/l 10 2.8 4 Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.67 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Chloroethane ND ug/l 4.0 0.28 4	1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Trichlorofluoromethane ND ug/l 10 2.8 4 1,2-Dichloroethane ND ug/l 2.0 0.53 4 1,1,1-Trichloroethane ND ug/l 10 2.8 4 Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 <t< td=""><td>Tetrachloroethene</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td>0.72</td><td>4</td></t<>	Tetrachloroethene	ND		ug/l	2.0	0.72	4
1,2-Dichloroethane ND	Chlorobenzene	ND		ug/l	10	2.8	4
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	10	2.8	4
Bromodichloromethane ND ug/l 2.0 0.77 4 trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 Chloroethene ND ug/l 2.0 0.68 4 Chloroethene ND ug/l 2.0 0.68 4 1,1-Dich	1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
trans-1,3-Dichloropropene ND ug/l 2.0 0.66 4 cis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.67 4 Toluene ND ug/l 2.0 0.64 4 Ethylbenzene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Chlorodethane ND ug/l 10 2.8 4 Toluene ND ug/l 10 2.8 4 Chlorotethane ND ug/l 10 2.8 4 Toluene ND ug/l 10 2.8 4	1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
cis-1,3-Dichloropropene ND ug/l 2.0 0.58 4 Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Bromodichloromethane	ND		ug/l	2.0	0.77	4
Bromoform ND ug/l 8.0 2.6 4 1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
1,1,2,2-Tetrachloroethane ND ug/l 2.0 0.67 4 Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Promomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Benzene ND ug/l 2.0 0.64 4 Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Bromoform	ND		ug/l	8.0	2.6	4
Toluene ND ug/l 10 2.8 4 Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Ethylbenzene ND ug/l 10 2.8 4 Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Benzene	ND		ug/l	2.0	0.64	4
Chloromethane ND ug/l 10 2.8 4 Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Toluene	ND		ug/l	10	2.8	4
Bromomethane ND ug/l 10 2.8 4 Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Ethylbenzene	ND		ug/l	10	2.8	4
Vinyl chloride 20 ug/l 4.0 0.28 4 Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Chloromethane	ND		ug/l	10	2.8	4
Chloroethane ND ug/l 10 2.8 4 1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Bromomethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene ND ug/l 2.0 0.68 4 trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Vinyl chloride	20		ug/l	4.0	0.28	4
trans-1,2-Dichloroethene 3.5 J ug/l 10 2.8 4	Chloroethane	ND		ug/l	10	2.8	4
· · · · · · · · · · · · · · · · · · ·	1,1-Dichloroethene	ND		ug/l	2.0	0.68	4
Trichloroethene 510 ug/l 2.0 0.70 4	trans-1,2-Dichloroethene	3.5	J	ug/l	10	2.8	4
	Trichloroethene	510		ug/l	2.0	0.70	4
1,2-Dichlorobenzene ND ug/l 10 2.8 4	1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

04/07/22

Report Date:

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: D Date Collected: 03/24/22 13:55 L2215692-22

Date Received: Client ID: 03/25/22 DR-1

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	ND		ug/l	10	2.8	4
o-Xylene	ND		ug/l	10	2.8	4
cis-1,2-Dichloroethene	130		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	ND		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	ND		ug/l	10	2.8	4
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	ND		ug/l	40	1.1	4
1,4-Dioxane	ND		ug/l	1000	240	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	ND		ug/l	40	1.6	4

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	116	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 12:35

Lab Number:

Report Date:

Lab ID: L2215692-23

Client ID: DR-2

Sample Location: GOWANDA, NY

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/22 21:43

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	4.2		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.21	J	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	0.95	J	ug/l	2.5	0.70	1	
Trichloroethene	24		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2215692-23 Date Collected: 03/24/22 12:35

Client ID: DR-2 Date Received: 03/25/22

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	100		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	118	70-130	

L2215692

04/07/22

03/24/22 14:21

Not Specified

03/25/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

2.5

2.5

2.5

1.0

2.5

0.50

2.5

0.50

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

J

0.70

0.70

0.70

0.07

0.70

0.17

0.70

0.18

0.70

Lab ID: L2215692-24

Client ID: DR-3

Sample Location: GOWANDA, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/22 22:08

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1

ND

ND

ND

1.0

ND

ND

1.2

25

ND

1

1

1

1

1

1

1

1

1

Ethylbenzene

Chloromethane

Bromomethane

Vinyl chloride

Chloroethane

Trichloroethene

1,1-Dichloroethene

1,2-Dichlorobenzene

trans-1,2-Dichloroethene

04/07/22

Dilution Factor

Report Date:

MDL

RL

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/24/22 14:21 L2215692-24

Date Received: Client ID: 03/25/22 DR-3

Sample Location: GOWANDA, NY Field Prep: Not Specified

Qualifier

Units

Result

Sample Depth:

Parameter

i arameter	Nosun	Quanner	Oilito			Dilation Lactor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	48		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	121		70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 11:45

Lab Number:

Report Date:

L2215692-25

Client ID: Date Received: 03/25/22 DR-4 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/02/22 22:32

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	22		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Report Date:

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2215692-25 Date Collected: 03/24/22 11:45

Client ID: DR-4 Date Received: 03/25/22

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.0		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	123	70-130	

L2215692

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

L2215692-26

GOWANDA, NY

G-1

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 11:00

LE REGULTO

Lab Number:

Report Date:

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/22 22:57

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.61	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	8.6		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: Lab Number: **GOWANDA DAY HABITATION Q1 2022** L2215692

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 11:00

Report Date:

Lab ID: L2215692-26

Client ID: Date Received: 03/25/22 G-1 Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	38		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	124	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

L2215692-27

GOWANDA, NY

G-2

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 03/24/22 10:30

Report Date: 04/07/22

Lab Number:

Date Received: 03/25/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/02/22 23:21

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.83	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.52		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Dilution Factor

Report Date:

MDL

RL

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/24/22 10:30 L2215692-27

Client ID: G-2

Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Qualifier

Units

Result

Sample Depth:

Parameter

i arameter	Nosun	Qualifici	Office			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	44		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	122	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 04/07/22

Lab Number:

Lab ID: L2215692-28 Date Collected: 03/25/22 09:37

Client ID: G-3 Date Received: 03/25/22

Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/04/22 13:39

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.55	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.32	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.2	J	ug/l	2.5	0.70	1
Trichloroethene	22		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Dilution Factor

Report Date:

MDL

RL

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2215692-28 Date Collected: 03/25/22 09:37

Client ID: G-3 Date Received: 03/25/22

Result

Sample Location: GOWANDA, NY Field Prep: Not Specified

Qualifier

Units

Sample Depth:

Parameter

i arameter	resuit	Qualifici	Oillis			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	130		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	103	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date: 04/07/22

Lab ID: L2215692-29 Date Collected: 03/25/22 12:17

Client ID: Date Received: 03/25/22 **EQUIPMENT BLANK** Field Prep: Sample Location: Not Specified GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/04/22 14:32

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

L2215692-29

SAMPLE RESULTS

Date Collected: 03/25/22 12:17

Report Date:

Date Received: Client ID: **EQUIPMENT BLANK** 03/25/22 Sample Location: Field Prep: GOWANDA, NY Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	104	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date: 04/07/22

Lab ID: Date Collected: 03/25/22 00:00 L2215692-30

Client ID: Date Received: 03/25/22 MWX Field Prep: Sample Location: GOWANDA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/04/22 14:05

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.45	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	13		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Dilution Factor

Report Date:

MDL

RL

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 03/25/22 00:00 L2215692-30

Qualifier

Units

Date Received: 03/25/22 Client ID: MWX

Sample Location: GOWANDA, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

i arameter	resuit	Qualifici	Onico			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	96		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	1.5	J	ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	105	70-130	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2215692

Report Date: 04/07/22

Lab ID: L2215692-31 Client ID: TRIP BLANK

Sample Location:

GOWANDA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/04/22 14:58

Analyst: AJK

Date Collected:	03/25/22 00:00
Date Received:	03/25/22
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692

Project Number: Not Specified

L2215692-31

SAMPLE RESULTS

Date Collected: 03/25/22 00:00

Report Date:

Client ID: TRIP BLANK Date Received: 03/25/22 Sample Location: GOWANDA, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	ND		ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	112	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	106	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number:

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/22 16:48

Analyst: PD

Methylene chloride ND ug/l 2.5 0.70 1,1-Dichloroethane ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.13 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1,1-1-Trichloroethane ND ug/l 0.50 0.16 cis-1,3-Dichloroethane ND ug/l	Parameter	Result	Qualifier Units	RL	MDL	
1,1-Dichloroethane ND	olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	07,09-15,22-27	Batch:	WG1623461-5
Chloroform ND ug/l 2.5 0.70 Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l <td>Methylene chloride</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>)</td>	Methylene chloride	ND	ug/l	2.5	0.70)
Carbon tetrachloride ND ug/l 0.50 0.13 1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethane ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,2-Dichloropropethane ND ug/l 0.50 0.13 1,1,1-Trichloropropethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene <td< td=""><td>1,1-Dichloroethane</td><td>ND</td><td>ug/l</td><td>2.5</td><td>0.70</td><td>)</td></td<>	1,1-Dichloroethane	ND	ug/l	2.5	0.70)
1,2-Dichloropropane ND ug/l 1.0 0.14 Dibromochloromethane ND ug/l 0.50 0.15 1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoformethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Chloromethane ND ug/	Chloroform	ND	ug/l	2.5	0.70)
Dibromochloromethane ND	Carbon tetrachloride	ND	ug/l	0.50	0.13	3
1,1,2-Trichloroethane ND ug/l 1.5 0.50 Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5	1,2-Dichloropropane	ND	ug/l	1.0	0.14	<u> </u>
Tetrachloroethene ND ug/l 0.50 0.18 Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.14 Bromoform ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0	Dibromochloromethane	ND	ug/l	0.50	0.15	5
Chlorobenzene ND ug/l 2.5 0.70 Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 0.50 0.19 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>ug/l</td> <td>1.5</td> <td>0.50</td> <td>)</td>	1,1,2-Trichloroethane	ND	ug/l	1.5	0.50)
Trichlorofluoromethane ND ug/l 2.5 0.70 1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.5	Tetrachloroethene	ND	ug/l	0.50	0.18	3
1,2-Dichloroethane ND ug/l 0.50 0.13 1,1,1-Trichloroethane ND ug/l 2.5 0.70 Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5	Chlorobenzene	ND	ug/l	2.5	0.70)
1,1,1-Trichloroethane	Trichlorofluoromethane	ND	ug/l	2.5	0.70)
Bromodichloromethane ND ug/l 0.50 0.19 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 2.5 0.70 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 <td< td=""><td>1,2-Dichloroethane</td><td>ND</td><td>ug/l</td><td>0.50</td><td>0.13</td><td>3</td></td<>	1,2-Dichloroethane	ND	ug/l	0.50	0.13	3
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	1,1,1-Trichloroethane	ND	ug/l	2.5	0.70)
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Bromodichloromethane	ND	ug/l	0.50	0.19)
Bromoform ND ug/l 2.0 0.65 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	3
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Benzene ND ug/l 0.50 0.16 Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Bromoform	ND	ug/l	2.0	0.65	j
Toluene ND ug/l 2.5 0.70 Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	•
Ethylbenzene ND ug/l 2.5 0.70 Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Benzene	ND	ug/l	0.50	0.16	3
Chloromethane ND ug/l 2.5 0.70 Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Toluene	ND	ug/l	2.5	0.70)
Bromomethane ND ug/l 2.5 0.70 Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Ethylbenzene	ND	ug/l	2.5	0.70)
Vinyl chloride ND ug/l 1.0 0.07 Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Chloromethane	ND	ug/l	2.5	0.70)
Chloroethane ND ug/l 2.5 0.70 1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Bromomethane	ND	ug/l	2.5	0.70)
1,1-Dichloroethene ND ug/l 0.50 0.17 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Vinyl chloride	ND	ug/l	1.0	0.07	•
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	Chloroethane	ND	ug/l	2.5	0.70)
Trichloroethene ND ug/l 0.50 0.18 1,2-Dichlorobenzene ND ug/l 2.5 0.70	1,1-Dichloroethene	ND	ug/l	0.50	0.17	•
1,2-Dichlorobenzene ND ug/l 2.5 0.70	trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70)
	Trichloroethene	ND	ug/l	0.50	0.18	3
1,3-Dichlorobenzene ND ug/l 2.5 0.70	1,2-Dichlorobenzene	ND	ug/l	2.5	0.70)
	1,3-Dichlorobenzene	ND	ug/l	2.5	0.70)

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number:

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/22 16:48

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	07,09-15,22-27	Batch:	WG1623461-5
1,4-Dichlorobenzene	ND	ug/	l 2.5	0.70)
Methyl tert butyl ether	ND	ug/	1 2.5	0.70)
p/m-Xylene	ND	ug/	1 2.5	0.70	1
o-Xylene	ND	ug/	l 2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/	l 2.5	0.70	
Styrene	ND	ug/	l 2.5	0.70	1
Dichlorodifluoromethane	ND	ug/	J 5.0	1.0	
Acetone	ND	ug/	J 5.0	1.5	
Carbon disulfide	ND	ug/	J 5.0	1.0	
2-Butanone	ND	ug/	J 5.0	1.9	
4-Methyl-2-pentanone	ND	ug/	J 5.0	1.0	
2-Hexanone	ND	ug/	J 5.0	1.0	
Bromochloromethane	ND	ug/	1 2.5	0.70	
1,2-Dibromoethane	ND	ug/	1 2.0	0.65	i
1,2-Dibromo-3-chloropropane	ND	ug/	l 2.5	0.70	
Isopropylbenzene	ND	ug/	l 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	l 2.5	0.70)
Methyl Acetate	ND	ug/	l 2.0	0.23	<u> </u>
Cyclohexane	ND	ug/	l 10	0.27	•
1,4-Dioxane	ND	ug/	I 250	61.	
Freon-113	ND	ug/	l 2.5	0.70	
Methyl cyclohexane	ND	ug/	l 10	0.40	1

Project Name: GOWANDA DAY HABITATION Q1 2022 **Lab Number:** L2215692

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/02/22 16:48

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 07,09-15,22-27 Batch: WG1623461-5

		Acceptance	
Surrogate	%Recovery C	Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	119	70-130	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number:

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/04/22 10:07

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	21,28-31 Batch	n: WG1623492-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number:

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/04/22 10:07

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - West	borough Lab	for sample(s):	21,28-31	Batch: WG162349	2-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Name: GOWANDA DAY HABITATION Q1 2022 **Lab Number:** L2215692

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/04/22 10:07

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 21,28-31 Batch: WG1623492-5

		Acceptance		
Surrogate	%Recovery Qu	alifier Criteria		
		_		
1,2-Dichloroethane-d4	120	70-130		
Toluene-d8	110	70-130		
4-Bromofluorobenzene	110	70-130		
Dibromofluoromethane	105	70-130		

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number:

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/04/22 09:11

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS -	Westborough Lab	o for sample(s):	01-06,08,16-20	Batch:	WG1623618-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022 **Lab Number:**

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/04/22 09:11

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - Westb	orough Lab	for sample(s):	01-06,08,16-20	Batch:	WG1623618-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Name: GOWANDA DAY HABITATION Q1 2022 **Lab Number:** L2215692

Project Number: Not Specified Report Date: 04/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/04/22 09:11

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06,08,16-20 Batch: WG1623618-5

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
4.0 Dishlaredharada	440		70.400
1,2-Dichloroethane-d4	116		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	103		70-130
Dibromofluoromethane	110		70-130

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Lab Number: L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits	ery RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	07,09-15,22-27	Batch:	WG1623461-3	WG1623461-4			
Methylene chloride	110		110		70-130	0		20	
1,1-Dichloroethane	120		110		70-130	9		20	
Chloroform	110		100		70-130	10		20	
Carbon tetrachloride	120		120		63-132	0		20	
1,2-Dichloropropane	110		110		70-130	0		20	
Dibromochloromethane	110		110		63-130	0		20	
1,1,2-Trichloroethane	97		98		70-130	1		20	
Tetrachloroethene	110		110		70-130	0		20	
Chlorobenzene	110		110		75-130	0		20	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	110		110		70-130	0		20	
1,1,1-Trichloroethane	110		100		67-130	10		20	
Bromodichloromethane	110		100		67-130	10		20	
trans-1,3-Dichloropropene	84		84		70-130	0		20	
cis-1,3-Dichloropropene	100		99		70-130	1		20	
Bromoform	94		96		54-136	2		20	
1,1,2,2-Tetrachloroethane	98		98		67-130	0		20	
Benzene	110		110		70-130	0		20	
Toluene	100		100		70-130	0		20	
Ethylbenzene	100		100		70-130	0		20	
Chloromethane	100		99		64-130	1		20	
Bromomethane	170	Q	170	C	39-139	0		20	
Vinyl chloride	130		120		55-140	8		20	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Lab Number: L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	ery RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	07,09-15,22-27	Batch:	WG1623461-3	WG1623461-4			
Chloroethane	180	Q	170	Q	55-138	6		20	
1,1-Dichloroethene	110		100		61-145	10		20	
trans-1,2-Dichloroethene	120		110		70-130	9		20	
Trichloroethene	110		100		70-130	10		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	100		100		70-130	0		20	
Methyl tert butyl ether	90		90		63-130	0		20	
p/m-Xylene	110		105		70-130	5		20	
o-Xylene	105		105		70-130	0		20	
cis-1,2-Dichloroethene	110		110		70-130	0		20	
Styrene	105		105		70-130	0		20	
Dichlorodifluoromethane	74		70		36-147	6		20	
Acetone	130		120		58-148	8		20	
Carbon disulfide	110		100		51-130	10		20	
2-Butanone	93		92		63-138	1		20	
4-Methyl-2-pentanone	81		81		59-130	0		20	
2-Hexanone	68		70		57-130	3		20	
Bromochloromethane	120		110		70-130	9		20	
1,2-Dibromoethane	94		96		70-130	2		20	
1,2-Dibromo-3-chloropropane	94		94		41-144	0		20	
Isopropylbenzene	96		96		70-130	0		20	
1,2,3-Trichlorobenzene	93		94		70-130	1		20	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified Lab Number:

L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recover Limits	y RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	07,09-15,22-27	Batch: W	G1623461-3	WG1623461-4			
1,2,4-Trichlorobenzene	95		97		70-130	2		20	
Methyl Acetate	110		110		70-130	0		20	
Cyclohexane	120		120		70-130	0		20	
1,4-Dioxane	88		90		56-162	2		20	
Freon-113	110		110		70-130	0		20	
Methyl cyclohexane	95		94		70-130	1		20	

_	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	_
1,2-Dichloroethane-d4	105	106	70-130	
Toluene-d8	101	102	70-130	
4-Bromofluorobenzene	88	88	70-130	
Dibromofluoromethane	105	105	70-130	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Lab Number: L2215692

rameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
latile Organics by GC/MS - V	Vestborough Lab Associated	sample(s):	21,28-31 Ba	tch: WG1623	492-3 WG162349	92-4			
Methylene chloride	99		110		70-130	11		20	
1,1-Dichloroethane	110		120		70-130	9		20	
Chloroform	95		110		70-130	15		20	
Carbon tetrachloride	96		110		63-132	14		20	
1,2-Dichloropropane	99		110		70-130	11		20	
Dibromochloromethane	91		100		63-130	9		20	
1,1,2-Trichloroethane	110		120		70-130	9		20	
Tetrachloroethene	95		100		70-130	5		20	
Chlorobenzene	99		110		75-130	11		20	
Trichlorofluoromethane	100		130		62-150	26	Q	20	
1,2-Dichloroethane	100		120		70-130	18		20	
1,1,1-Trichloroethane	100		110		67-130	10		20	
Bromodichloromethane	99		110		67-130	11		20	
trans-1,3-Dichloropropene	98		110		70-130	12		20	
cis-1,3-Dichloropropene	94		100		70-130	6		20	
Bromoform	90		99		54-136	10		20	
1,1,2,2-Tetrachloroethane	110		130		67-130	17		20	
Benzene	100		110		70-130	10		20	
Toluene	110		120		70-130	9		20	
Ethylbenzene	100		120		70-130	18		20	
Chloromethane	130		150	Q	64-130	14		20	
Bromomethane	150	Q	180	Q	39-139	18		20	
Vinyl chloride	120		150	Q	55-140	22	Q	20	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Lab Number: L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	21,28-31 Bat	tch: WG16234	192-3 WG162349	2-4		
Chloroethane	140	Q	170	Q	55-138	19		20
1,1-Dichloroethene	100		120		61-145	18		20
trans-1,2-Dichloroethene	100		110		70-130	10		20
Trichloroethene	95		110		70-130	15		20
1,2-Dichlorobenzene	100		120		70-130	18		20
1,3-Dichlorobenzene	100		120		70-130	18		20
1,4-Dichlorobenzene	110		120		70-130	9		20
Methyl tert butyl ether	79		94		63-130	17		20
p/m-Xylene	105		115		70-130	9		20
o-Xylene	105		120		70-130	13		20
cis-1,2-Dichloroethene	99		110		70-130	11		20
Styrene	105		120		70-130	13		20
Dichlorodifluoromethane	140		170	Q	36-147	19		20
Acetone	82		92		58-148	11		20
Carbon disulfide	110		120		51-130	9		20
2-Butanone	74		98		63-138	28	Q	20
4-Methyl-2-pentanone	90		110		59-130	20		20
2-Hexanone	82		110		57-130	29	Q	20
Bromochloromethane	90		100		70-130	11		20
1,2-Dibromoethane	95		110		70-130	15		20
1,2-Dibromo-3-chloropropane	92		100		41-144	8		20
Isopropylbenzene	100		120		70-130	18		20
1,2,3-Trichlorobenzene	88		110		70-130	22	Q	20

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified Lab Number: L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	21,28-31 Batch:	WG162349	2-3 WG1623492	2-4			
1,2,4-Trichlorobenzene	92		100		70-130	8		20	
Methyl Acetate	86		110		70-130	24	Q	20	
Cyclohexane	100		120		70-130	18		20	
1,4-Dioxane	80		102		56-162	24	Q	20	
Freon-113	110		120		70-130	9		20	
Methyl cyclohexane	100		120		70-130	18		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	117	115	70-130
Toluene-d8	108	109	70-130
4-Bromofluorobenzene	106	106	70-130
Dibromofluoromethane	100	100	70-130

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Lab Number: L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	•	PD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06,08,16-20	Batch:	WG1623618-3	WG162361	8-4			
Methylene chloride	100		100		70-130		0		20	
1,1-Dichloroethane	110		110		70-130		0		20	
Chloroform	110		110		70-130		0		20	
Carbon tetrachloride	130		130		63-132		0		20	
1,2-Dichloropropane	100		100		70-130		0		20	
Dibromochloromethane	110		110		63-130		0		20	
1,1,2-Trichloroethane	96		110		70-130		14		20	
Tetrachloroethene	110		110		70-130		0		20	
Chlorobenzene	100		100		75-130		0		20	
Trichlorofluoromethane	150		140		62-150		7		20	
1,2-Dichloroethane	110		120		70-130		9		20	
1,1,1-Trichloroethane	120		120		67-130		0		20	
Bromodichloromethane	120		110		67-130		9		20	
trans-1,3-Dichloropropene	110		110		70-130		0		20	
cis-1,3-Dichloropropene	96		99		70-130		3		20	
Bromoform	98		110		54-136		12		20	
1,1,2,2-Tetrachloroethane	93		100		67-130		7		20	
Benzene	100		100		70-130		0		20	
Toluene	110		110		70-130		0		20	
Ethylbenzene	110		110		70-130		0		20	
Chloromethane	97		100		64-130		3		20	
Bromomethane	120		100		39-139		18		20	
Vinyl chloride	130		110		55-140		17		20	

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Lab Number: L2215692

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits	ery RPL) (Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	_ab Associated	sample(s):	01-06,08,16-20	Batch:	WG1623618-3	WG1623618-	1		
Chloroethane	130		120		55-138	8			20
1,1-Dichloroethene	120		110		61-145	9			20
trans-1,2-Dichloroethene	110		110		70-130	0			20
Trichloroethene	99		100		70-130	1			20
1,2-Dichlorobenzene	100		100		70-130	0			20
1,3-Dichlorobenzene	100		110		70-130	10			20
1,4-Dichlorobenzene	100		100		70-130	0			20
Methyl tert butyl ether	110		120		63-130	9			20
p/m-Xylene	110		110		70-130	0			20
o-Xylene	110		110		70-130	0			20
cis-1,2-Dichloroethene	100		110		70-130	10			20
Styrene	105		105		70-130	0			20
Dichlorodifluoromethane	110		120		36-147	9			20
Acetone	80		96		58-148	18			20
Carbon disulfide	120		93		51-130	25		Q	20
2-Butanone	87		93		63-138	7			20
4-Methyl-2-pentanone	83		100		59-130	19			20
2-Hexanone	89		100		57-130	12			20
Bromochloromethane	110		110		70-130	0			20
1,2-Dibromoethane	97		100		70-130	3			20
1,2-Dibromo-3-chloropropane	86		95		41-144	10			20
Isopropylbenzene	110		110		70-130	0			20
1,2,3-Trichlorobenzene	99		110		70-130	11			20

Project Name: GOWANDA DAY HABITATION Q1 2022

Not Specified

Project Number:

Lab Number:

L2215692

Report Date:

04/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06,08,16-20	Batch: \	WG1623618-3	WG1623618-4			
1,2,4-Trichlorobenzene	100		110		70-130	10		20	
Methyl Acetate	90		100		70-130	11		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	84		104		56-162	21	Q	20	
Freon-113	130		110		70-130	17		20	
Methyl cyclohexane	110		100		70-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	113	117	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	103	105	70-130
Dibromofluoromethane	108	108	70-130

Serial_No:04072219:51 *Lab Number:* L2215692

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified Report Date: 04/07/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2215692-01A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-01B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-01C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-02A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-02B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-02C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-03A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-03B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-03C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-04A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-04B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-04C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-05A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-05B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-05C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-06A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-06B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-06C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-07A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-07B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-07C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-08A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
	L2215692-08B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2215692

Report Date: 04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Container Information			Initial	Final	- 1			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2215692-08C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-09A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-09B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-09C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-10A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-10B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-10C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-11A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-11B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-11C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-12A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-12B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-12C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-13A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-13B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-13C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-14A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-14B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-14C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-15A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-15B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-15C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-16A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-16B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-16C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-17A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-17B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-17C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2215692

Report Date: 04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Container Information			Initial	Final				Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2215692-18A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-18B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-18C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-19A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-19B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-19C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-20A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-20B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-20C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-21A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-21B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-21C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-22A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-22B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-22C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-23A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-23B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-23C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-24A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-24B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-24C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-25A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-25B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-25C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-26A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-26B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-26C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-27A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2215692

Report Date: 04/07/22

Project Name: GOWANDA DAY HABITATION Q1 2022

Project Number: Not Specified

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2215692-27B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-27C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-28A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-28B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-28C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-29A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-29B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-29C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-30A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-30B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-30C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-31A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2215692-31B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692
Project Number: Not Specified Report Date: 04/07/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: GOWANDA DAY HABITATION Q1 2022 Lab Number: L2215692
Project Number: Not Specified Report Date: 04/07/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:GOWANDA DAY HABITATION Q1 2022Lab Number:L2215692Project Number:Not SpecifiedReport Date:04/07/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:GOWANDA DAY HABITATION Q1 2022Lab Number:L2215692Project Number:Not SpecifiedReport Date:04/07/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way		Page			CARLINA	'd 31	26	(22	ALPHA Job# L221569	2
8 Walkup Dr.	320 Forbes Blvd	Project Information		الجالات			Delive			500 100	100 000 0	Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	MAA DAW	Habilida	in al	2022		ASP-A			SP-B	Same as Client Info	
		Project Location:	ArAA, NY	***				EQuIS (1	File)	XE	QuIS (4 File)	PO#	
Client Information		Project #	, .					Other					
Client: BERGMAN	IN .	(Use Project name as P	roject #)				Regul	atory Req	uiremer	t		Disposal Site Information	
Address: 280 E. C	002# 12 fron	Project Manager: ARA	Homa Cheren	well			П	NY TOGS		Пи	Y Part 375	Please identify below location	
Robester, N	4 14604	ALPHAQuote #:		2 -411-			1 =	AWQ Stand	fards	_	Y CP-51	applicable disposal facilities.	n oi
Phone: 585 -231	-5135	Turn-Around Time	14.00	A Contract	THE STATE OF	53000	ī	NY Restrict	ed Use	По	ther	Disposal Facility:	
Fax:		Standard	d [X]	Due Date:			=	NY Unrestri				□ NJ □ NY	
	to hours and	Rush (only if pre approved		# of Days:				NYC Sewer					
These samples have be			7	# OI Days.				-	Dischar	ye .		Other:	- 1
Other project specific		and the second s					ANAL	YSIS	-			Sample Filtration	_
send also	to Joshieve	o Bergmanupe. co	m				260					Done Lab to do Preservation	t a l
Please specify Metals	or TAL.						00		1 1			Lab to do	В
							1					(Please Specify below)	0
ALPHA Lab ID		2702	Collec	tion	Sample	Sampler's	NYA		1 1			(rease specify below)	1
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	3					Sample Specific Comments	- 0
15692-01	Mu-1		2/25/12	0720	GW		-	_	+-	-		Sample Specific Comments	s e
-02	MW-2					Tho	X	_	+	_	-		_
-03				0740	GW	Tho	X	_	+	_	\rightarrow		
-04	MW-3			6758	GW	ort	X	_	-	_			
	MW-4			0840	GW	200	X		\perp		\perp		
705	MW-5		315/22	9:05	GW	300	X						
-06	Mb-6		3/15/12	10:16	GW	DVO	X						
-07	MW-7			14.55	GW	Tw	x						
708	MW-8		345/2	0815	GW	Tho	×						
-09	MN-9		3/24/22	1550	GW	720	X						$\neg \neg$
-00	mW-10		3/24/22	1616	Wa	Tho	X						
	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N	lo: MA935	1.0		ainer Type	6		П			Please print clearly, leg and completely. Sampl	
	V = Vial						11-1	\neg	\vdash	\neg		not be logged in and	
TO 1. 10 TO 19 TO 27 TO	G = Glass B = Bacteria Cup				P	reservative	Hay					turnaround time clock	
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C = Cube	/ Polinguished	D	5.4.5					-			start until any ambiguit	
- 11011004	O = Other	Relinquished		Date/		-/	Receive	ed By:	_	1 1	ate/Time	resolved. BY EXECUT THIS COC, THE CLIEN	
H = Na ₂ S ₂ O ₃ E = Encore 3/15/11 120						no	700	HIL	-57	25/2	2 /230	HAS READ AND AGR	
K/E = Zn Ac/NaOH O = Other	1 Sper Am 3/340 V								3/2	10	0015	TO BE BOUND BY AL TERMS & CONDITION	PHA'S
Form No: 01-25 HC (rev. 30	-Sept-2013)											(See reverse side.)	25.0

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	05	Pag 2 o	of Y	Dat	e Rec'd n Lab 3	261	(22	ALPHA Job# L 22(569	2
8 Walkup Dr.	320 Forbes Blvd	Project Information	A TOTAL ST				Deliverat	oles	77.	MIST ST	Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: (1 travac	Day Halo	hababin	Al 1mz	☐ AS	P-A		ASP-B	Same as Client Info	
FAX: 300-030-9183	FAX: 508-822-3288		י בסיסבי	W	100	21 0004		ulS (1 File)	Dr.	EQuIS (4 File)	PO#	
Client Information	BULL SERE	Project #	1	4			T Ott		P	2400 (4110)		
Client: Beryaga	٠, ۵	(Use Project name as P	Project #)				SAME IN COLUMN TWO	ry Requirem	ant	100 BIG.	Disposal Site Information	11 15
Address: 285 F	Brookst #200			and other			CONTRACTOR OF THE PARTY OF THE	TOGS	and State of	NY Part 375	Laurence and the second	
Roberton N		ALPHAQuote #:	HOW DON	Program	_		1 =		lane of		Please identify below location applicable disposal facilities.	of
Phone: 585-237		Turn-Around Time	WEDN BEST	1200	DED MESS	1.00		Q Standards		NY CP-51		*********
Fax:	317/	Standar	. 🔽		AN EUR	MALE BY	= =	Restricted Use		Other	Disposal Facility:	
The second secon	Mag.	Rush (only if pre approved		Due Date				Unrestricted U			□ NJ □ NY	
			7	# of Days				Sewer Disch	arge		Other:	
	been previously analyze						ANALYS	IS			Sample Filtration	T
	ABOT Hala	problymaina	z.cem				0978-TLL/N				☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	t a l
ALPHA Lab ID	So.	mple ID	Colle	ection	Sample	Sampler's			1 1			i
(Lab Use Only)	Sai	inple ID	Date	Time	Matrix	Initials	2	1 1	1 1		Sample Specific Comments	
15692-11	MM-11		3/2/12	13/30	GW	Tho	X		+	-		8
-(2	MW-12		324/22	1250	600		2	_	+			+
-13	MW-13		3/29/22	13:07		Tho	X		+	-		+
-14	mw-14		3/24/22	12:00	GW	700		+	+			+
-15	mv-15		41		Civ	700	X		+			
The second second			3/24/22	11:15	CM	SUC	-		\vdash			
-16	mu-lis			15:20	GW	TP	X		\vdash	-		\perp
77	Mn-17		3/20/m		GW	20	7					
78	Mb-18		3/25/22		GIN	out	X					
-19	MW-19R		3/25/20		GW	Tho	X					
-20	Ms-20		3/25/22	1047	600	970	X					
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N				ntainer Type					Please print clearly, leg and completely. Sample not be logged in and turnaround time clock w	es can
E = NaOH F = MeOH	B = Bacteria Cup C = Cube						1.02		\perp		start until any ambiguiti	
r = meOn G = NaHSO₄	O = Other	Relinquished	By:	Date/	Time	1	Received E	By:	1	Date/Time	resolved. BY EXECUTI	NG
H = Na ₂ S ₂ O ₃	E = Encore	we,-	,	3/25/22	1230	Lan	1 Ar	7- 36	5/00	1230	THIS COC, THE CLIEN	
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Say Art	R.	3/24/22	1340	RE	-W		2612		HAS READ AND AGRE TO BE BOUND BY ALE TERMS & CONDITION	PHA'S
Form No: 01-25 HC (rev. 3	30-Sept-2013)										(See reverse side.)	Z.L.

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 0	Way	05	Page 3 o	00	- 0	ate Rec'd in Lab	3/20	3(2	2	ALPHA Job# L22(569	2
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	200	ATE TO	100	35, 10	Delive	-	STATE		NAME OF TAXABLE PARTY.	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	and Da	1 Hubeltra	Dan 121	2012	The state of the last	ASP-A		ASP-	В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	20-100	NV	10/11 (31	MLL	+=	EQuIS (1 File	, I		S (4 File)	PO#	
Client Information	C. FELLOWIAN	Project #	VISION IN	1				Other	, –	Locus	0 (4 1 110)	ro#	
Client: Benjanan	۵	(Use Project name as f	Project #\				September 1	tory Require	mont	67-17	The state of	Discount Site I-5	
Address: 280 = 2	wal It # 20	Project Manager: AQ		Molan			CONTRACTOR OF THE PERSON NAMED IN	WORK THE RESERVE	ment	LOV D		Disposal Site Information	
Brodneske N		ALPHAQuote #:	BOYCH CIEC	Libera.			1 =	IY TOGS	님	NY Pa		Please identify below location	of
Phone: 585-232 -	1 11/1602	Samuel and the same			District Name of Street,	1000000	=	WQ Standard	=	NY CP	2-51	applicable disposal facilities.	
	-515 (Turn-Around Time			THE REAL PROPERTY.		=	IY Restricted I		Other		Disposal Facility:	
Fax:	tran	Standa	rd 🗀	Due Date	50		☐ b	IY Unrestricted	Use			NJ NY	
Email: Helperonent	VER Brownig	Rush (only if pre approve	ed) [# of Days	:			IYC Sewer Dis	charge			Other:	
These samples have be Other project specific							ANAL	/SIS			V. =0.	Sample Filtration	T o
Please specify Metals		es & Berilmanin	pion				092872HN					Done Lab to do Preservation Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	ま		- 1				t
(Lab Use Only)		mpie 10	Date	Time	Matrix	Initials	~					Sample Specific Comments	
15692-21	MW-ZI		3/25/22	12:10	600	20	7						- Ilbid
-22	DR-1		3/24/22	13:55	1000	Oro	X						+
-23	DR-2		3/27/22	12:35	GW	Tho	X	\rightarrow					+
-29	DR -3		3/22/12	14:23	(3/2)		5	+	_				+
-25	DR-4		3/21/11	11:45	an	200	1	+	+				+
726	12-1		3/27/12	11:00			1	+	_				+
-27	6-2		3/21/22	16:30	GW	ot	5	+	+-		_		+
-28	6-3		3/25/22	9:37	GW	000	X		_	-			+
729	Earipment	Alaka			GW	Dro	X	-	_				_
-30		Olivor	3/15/20	12:17	GW	apo	X/						
	Container Code		3/15/12		GW	Tho	Δ						
A = None	P = Plastic	Westboro: Certification I			Con	tainer Type	0					Please print clearly, legi	bly
	A = Amber Glass V = Vial	Mansfield: Certification I	No: MA015		053463		G					and completely. Sample	
	G = Glass				p	reservative	rlei					not be logged in and	***
E = NaOH E	B = Bacteria Cup					1696140046	Hal					turnaround time clock w start until any ambiguitie	
	C = Cube O = Other	/ Relinquished	By:	Date/	Time	1	Receive	d By:	1.	Date/	Time	resolved. BY EXECUTION	
H = Na ₁ S ₂ O ₂ E	E = Encore	/ne~i		3/25/12	1230	Sta	7. 17 - 11 7 - 1	me	3/25	-	1230	THIS COC, THE CLIEN	
K/E = Zn Ac/NaOH	D = BOD Bottle	I am to	Mc 3	65/20	1340	RICE	-la		310614	Fa	25	HAS READ AND AGRE TO BE BOUND BY ALF	
7 - 01101		. 00		,								TERMS & CONDITION:	
Form No: 01-25 HC (rev. 30-	-Sept-2013)											(See reverse side.)	

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-622-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name:	oper Ave, Suite 105	Pag 4 c	of 4	Delive	Date Rec in Lab erables ASP-A			(22 ASP-B		ALPHA Job # L 2 2 (5 6 9 2 Billing Information Same as Client Info	
Client Information		Project Location:	MANA, MY			1 1	EQuIS (1) Other	File)	4	EQuIS (4	File)	PO#	
Client: Bey MAN	N	(Use Project name as Pro	oject#)	AND -		SECTION S.	latory Requ	uiremer	nt	4920		Disposal Site Information	
Phone: 585 - 232 Fax: Email: Acheronex	47 14664 -5134 Lefter Beyman	Project Manager: ALPA ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	Due Di	ate;	34/8		NY TOGS AWQ Stand NY Restricte NY Unrestrict NYC Sewer	lards ed Use cled Use		NY Part 375 NY CP-51 Other	5	Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:	
	samples have been previously analyzed by Alpha project specific requirements/comments:									- //		Sample Filtration	
	a Josane	ners:	i. em			0928-7						Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Collection Date Time	Sample Matrix	Sampler's Initials	NYTCL							
1 5 692-31	TRIP BLANK		Date Time	w	Timodio		_	+	-	_	+-	Sample Specific Comments e	
				- w		1		\vdash	\rightarrow		+		
											+		
						\square							
							_	\vdash	_		-		
				_	-	\vdash		\vdash	_	+	-		
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic	Westboro: Certification No Mansfield: Certification No	F10111107-57E		ntainer Type Preservative	0						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are	
G = NaHSO ₄ (H = Na ₂ S ₂ O ₃ (O = Other E = Encore D = BOD Bottle	Relinquished B	3/17/12 91 3/25/60		S	Receive	ed By:	3/	3/25 36/2		230	resolved. BY EXECUTING	

FIELD FORMS

GROUNDWATER SAMPLING WORKSHEET	
)
PROJECT NAME: Gowanda Q1 2022	()
Project Number: 14263.07	ノ
Site Location: Gowanda, New York	
Sample Date: 3/25/2022	
Weather: 40 Degrees F BERGM	$1 \Delta N N$
Personnel: Justin L. O'Brien	
GROUNDWATER SAMPLE POINT	ERS PLANNERS
ON OND WATER OANN EET ONT	
Well Number: MW-1	
Location:	
Casing Diameter: 2"	
Well Dia. Volume/F	Foot
Depth to water, below top of casing: 5.65 $1" = 0.041 \text{ gal}$	/foot
Depth to bottom of the well: 16.02 2" = 0.163 gal	/foot
Length of water column in well: 10.37 4" = 0.653 galarian	/foot
6" = 1.469 gal	/foot
8" = 2.611 gal	/foot
Volume of water in well casing, gallons: 1.6903	
3 Well volumes (= length water column X gal/foot X 3): 5.07	
Actual volume purged prior to sampling: 5.25	
Sampling Methodology: Hand bailing	
Sampling Equipment: Bailer	
pounding Equipmont. Dunor	
Camping Equipment. Dailor	
Well Recharged? N/A	
Well Recharged? N/A	
Well Recharged? Required Analysis:	
Well Recharged? Required Analysis:	
Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons	
Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter:	
Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity 718.23 NTU	
N/A N/A N/A N/A N/A N/A N/A N/A N/A	
N/A N/A	
N/A	
N/A N/A N/A N/A N/A N/A N/A N/A N/A	
N/A	
N/A	
N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Well Recharged? N/A	
N/A	
Well Recharged? N/A	
Well Recharged? N/A	
Well Recharged? N/A	
Well Recharged? N/A	
Well Recharged? N/A	

GROUNDWAT	TER SAM	PLING WORKSHEE	T							
			_						2	
PROJECT NAI		Gowanda Q1 2022								
Project Numbe	er:	14263.07						_		
Site Location:		Gowanda, New Yor					_			
Sample Date:		3/25/202	22				ρГ		<i>A</i> A I	LIKI
Weather:		40 Degrees F					BE	RGN	M A I	$V \mid V$
Personnel:		Justin L. O'B	rien				ARCHITE	CTS ENGIN	EERS PL	ANNERS
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		MW-2								
Location:									•	
Casing Diamet	er:	2"								_
Depth to water, Depth to bottor			17.15	5.3		_	1" =	i. Volume/ = 0.041 ga = 0.163 ga	l/foot	-
Length of wate			11.85					= 0.165 ga = 0.653 ga		
Length of water	Coldiniii	iii weii.	11.00					= 0.055 ga = 1.469 ga		
								= 1.405 ga = 2.611 ga		
Volume of water	er in well (casing gallons:		1.93				- 2.011 ga	1/1001	_
		n water column X gal	l/foot X 3):			5.79)			
		ior to sampling:			6			_		
Sampling Meth				-				_		
Sampling Equip		Bailer								
	•							_		
Well Recharge	d?	N/A						_		
Required Analy	/sis:							_		
FIELD PARAM	IETER M	EASUREMENTS								
			Accumula	ated Volu	ıme Pur	rged in G	allons			
Parameter:										
Turbidity	662.25	NTU								
Temperature	7.1	°C								
рН	7.12									
Conductivity	0.457	SPC ms/cm								
Oxygen	6.23	DO mg/L								
Salinity										
Time sample w	ias collac	ted:	7:40							
Time Sample W	ras conco	icu.								
COMMENTS										
									•	

<u> </u>									
<u>GROUNDWA1</u>	TER SAM	PLING WORKSHEE	<u>:T</u>						
PROJECT NA	ME:	Gowanda Q1 2022						3	
Project Number		14263.07	7				_	7	
Site Location:	,ı.	Gowanda, New Yor						_	
Sample Date:		3/25/202				-			
			22			RF	RGN	ΛΔ Ι	N N
Weather:		40 Degrees F							
Personnel:		Justin L. O'E	rien			ARCHITE	CTS ENGIN	EERS PL	ANNERS
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-3							
Location:									
Casing Diamet	er:	2"							
January 2 marries		<u>-</u>				Well Dia	. Volume/	Foot	
Depth to water	below to	n of casing.		5.85			0.041 ga		_
Depth to bottor			16.30	0.00			- 0.041 ga - 0.163 ga		
Length of wate			10.45				- 0.103 ga - 0.653 ga		
Lengin or wate	Column	III Well.	10.45						
							1.469 ga		
Values a of west	الميد ما ي	accina mallama.		4.7		8 =	2.611 ga	1/1001	
		casing, gallons:		1.7					
		h water column X ga	1/100t X 3):		5.11		_		
		rior to sampling:			5.25		_		
Sampling Meth							_		
Sampling Equi	pment:	Bailer					_		
							<u>_</u>		
Well Recharge	d?	N/A							
Required Analy	ysis:						_		
FIFI D PARAN	IFTER M	EASUREMENTS					_		
		<u> </u>							
_		1	Accumula	<u>ited Volume</u>	Purged in G	allons	1	ı	
Parameter:									
Turbidity	842.35								
Temperature	7.9								
рН	7.01								
Conductivity	0.34	SPC ms/cm							
Oxygen	3.14	DO mg/L							
Salinity		J							
- ´		1	<u> </u>		<u> </u>				
Time sample w	vas collec	ted:	7:58						
COMMENTS								•	
COMMENTS								<u>.</u>	
								- 1	
								•	

1									
<u>GROUNDWA1</u>	<u> TER SAM</u>	PLING WORKSHEE	<u>T</u>						
PROJECT NAI	ME.	Gowanda Q1 2022					∟ا	2	
Project Numbe		14263.07	7					ノー	
Site Location:	ii.								
		Gowanda, New Yor				_			
Sample Date:		3/25/202	22			$D\Gamma$		A A P	LIKI
Weather:		40 Degrees F				BE	RGI	MAI	$V \mid V$
Personnel:		Justin L. O'B	Brien			ARCHITE	CTS ENGIN	EERS PL	ANNERS
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-4							
Location:									
Casing Diamet	er:	2"						•	
January 2 manner		_	,			Well Dia	. Volume/	Foot	7
Depth to water	helow to	n of casing:		6.95			0.041 ga		1
Depth to bottor			15.78	0.00			- 0.041 ga - 0.163 ga		
Length of wate			8.83				- 0.103 ga - 0.653 ga		
Length of wate	Column	iii weii.	0.03				= 0.055 ga = 1.469 ga		
		casing, gallons:	_	1.4393		0 =	= 2.611 ga	11/1001	_
		n water column X ga	I/foot X 3):		4.3179		_		
		rior to sampling:			4.33		<u>_</u>		
Sampling Meth	odology:	Hand bailing							
Sampling Equip	pment:	Bailer					_		
							_		
Well Recharge	d?	N/A					_		
Required Analy							_		
	, 5151						=		
FIELD PARAM	IETER M	EASUREMENTS							
			Accumul	ated Volum	ne Purged in G	allons			
Parameter:									
Turbidity	1384.7	NTU							
Temperature	7.8	°C							
рН	7.09								
Conductivity	0.008								
Oxygen	7.3								
Salinity			+						
Gammey	<u> </u>								<u>l</u>
Time sample w	as collec	ted:	9:36						
00141451:70								-	
COMMENTS									

GROUNDWAT	<u> TER SAMPL</u>	ING WORKSHEE	<u>:T</u>				_		
PROJECT NAI	MF: G	owanda Q1 2022					⊏	2	
Project Numbe		14263.07	7					ノー	
Site Location:		owanda, New Yor							
	<u> </u>					_			
Sample Date:	4.0	3/25/202	22			DE		A A 1	LIKI
Weather:	40	Degrees F				BE	RGI	MAI	$N \mid N$
Personnel:		Justin L. O'B	rien			ARCHITE	CTS ENGIN	NEERS PL	ANNERS
GROUNDWAT	ER SAMPL	E POINT							
Well Number:	M	W-5							
Location:								_	
Casing Diamet	er: 2"							='	
Depth to water Depth to bottor Length of wate	n of the well	:	13.95 3.25	10.7		1" = 2" = 4" =	Volume/ 0.041 ga 0.163 ga 0.653 ga 1.469 ga	l/foot l/foot l/foot]
Volume of wate 3 Well volumes Actual volume Sampling Meth Sampling Equi	s (= length w purged prior nodology: <u>Ha</u>	vater column X gal to sampling: and bailing		0.53	1.59 1.75	8" =	2.611 ga		J
							_		
Well Recharge		A					_		
Required Analy	/SIS:						_		
FIELD PARAM	METER MEA	<u>SUREMENTS</u>							
			Accumula	ted Volur	ne Purged in C	Sallons			
Parameter:									
Turbidity	418.05	NTU							
Temperature	8.2	°C							
рН	7.05		+			1	+		
11/-		CDC malam							
Conductivity	0.315	SPC ms/cm							
Oxygen	226.4	DO mg/L							
Salinity									
Time sample w	vas collected	l:	9:05						
								•	

GROUNDWAT	FR SAM	PLING WORKSHEE	- T					
CHOCHDINAI		LING HOMIGIEL	<u></u>			- 1		
PROJECT NAI	ME:	Gowanda Q1 2022						
Project Numbe		14263.07	7					
Site Location:		Gowanda, New Yor	·k					
Sample Date:		3/25/202				-		
Weather:		40 Degrees F				RFF	RGMA	NN
Personnel:		Justin L. O'E	Brien					
GROUNDWAT	ER SAM	PLE POINT				ARCHITECT	S ENGINEERS	PLANNERS
Well Number:		MW-6						
Location:		Oll						
Casing Diamete	er:	2"				Well Die IV	aluma/Faat	
Danth to water	h alau ta	n of occine	40.0				olume/Foot	
Depth to water,			13.2				.041 gal/foot	
Depth to botton			22.88				.163 gal/foot	
Length of water	Column	in weii:	9.68				.653 gal/foot .469 gal/foot	
							.469 gal/100t .611 gal/foot	
Volume of water	or in woll	cacina gallone:		1.58		0 = 2.	.611 gai/100t	
		n water column X ga	I/foot X 3): —	1.50	4.73			
		rior to sampling:	11/100t A 3).		4.75			
Sampling Meth					4.73	_		
Sampling Equip		Bailer				_		
Sampling Equip	Jilielit.	Dallel				_		
Well Recharge	43	N/A						
Required Analy		11/71						
required / trially	313.							
FIELD PARAM	ETER M	EASUREMENTS						
			Accumula	ted Volume	Purged in G	allons		
Parameter:								
Turbidity	2047	NTU						
Temperature	10.6	°C						
рН	7.17							
Conductivity	0.343							
Oxygen	4.56							
Salinity	1100	20 mg/2						
Gaminty	<u> </u>			I I	<u> </u>	<u> </u>	<u> </u>	
Time sample w	as collec	ted:	10:26					
COMMENTS								

GROUNDWAT	ER SAM	PLING WORKSHEE	<u>:T</u>						
PROJECT NAI	ME.	Gowanda Q1 2022							
Project Numbe		14263.07	7)	
Site Location:									
	-	Gowanda, New Yor							
Sample Date:	-	3/24/202	22						
Weather:	-	51 Degrees F				BEF	${\sf RGM}$	IAN	IN
Personnel:	-	Justin L. O'B	rien				S ENGINE		
GROUNDWAT	ER SAME	PLE POINT							
Well Number:	_	MW-7							
Location:	_							_	
Casing Diamete	er:	2"						•	
	•						. Volume/		
Depth to water,				13.15			: 0.041 ga		
Depth to botton			21.8				: 0.163 ga		
Length of water	r column i	n well:	8.65			4" =	: 0.653 ga	l/foot	
						6" =	: 1.469 ga	l/foot	
						8" =	: 2.611 ga	l/foot	
Volume of water				1.4					
		water column X ga	l/foot X 3):		4.23		_		
Actual volume					4.25		_		
Sampling Meth		Hand bailing					_		
Sampling Equip	oment:	Bailer					_		
							_		
Well Recharge	_	N/A					_		
Required Analy	/sis:						_		
FIELD PARAM	IETER ME	EASUREMENTS							
			Accumula	ted Volume	Purged in G	allons			
Parameter:			Accumula	tea volume	l diged iii e	4110113			
Turbidity	3605	NTU							
Temperature	42.8	°C					1		
рН	68.9								
Conductivity	0.562	SPC ms/cm							
Oxygen	3.96	DO mg/L					1		
Salinity	0.00	201119/2							
Gaminty							<u> </u>		
Time sample w	as collect	ed:	14:55						
COMMENTS								•	
<u> </u>								•	
								•	
								•	

I										
<u>GROUNDWA</u>	TER SAM	PLING WORKSHEE	<u>:T</u>							
									\neg 1	
PROJECT NA	ME:	Gowanda Q1 2022						11 5-	\prec 1	
Project Number		14263.07	,					1 L	ノヿ	
Site Location:		Gowanda, New Yor								
Sample Date:		3/25/202								
Weather:		40 Degrees F					RE	RG	МΛ	NI NI
Personnel:		Justin L. O'B	rien							
GROUNDWAT	ΓER SAM	PLE POINT					ARCHIT	ECTS ENG	INEERS I	PLANNERS
Well Number:		MW-8								
Location:									-	
Casing Diame	ter:	2"	_			Ī				-
								Volume		
Depth to water			_	9.05				0.041 ga		
Depth to botto			17.65					0.163 ga		
Length of water	er column	in well:	8.60					0.653 ga		
								1.469 ga		
							8" =	2.611 ga	ıl/foot	
		casing, gallons:		1.40						
		h water column X ga	l/foot X 3):		_	4.205		_		
		rior to sampling:		_		4.25		_		
Sampling Meth								_		
Sampling Equi	ipment:	Bailer						_		
								_		
Well Recharge		N/A						_		
Required Anal	ysis:							_		
FIELD PARAM	METER M	EASUREMENTS								
	T		Accumula	ated Vol	ume Puro	ged in G	allons			
Parameter:						900				
Turbidity	2153.43	NTU								
Temperature	8.7	°C								
рН	7.03									
Conductivity	0.823									
Oxygen	10.44	DO mg/L								
Salinity		J								
j		•	<u> </u>		<u> </u>			1		I.
Time sample v	was collec	ted:	8:15							
									-	
COMMENTS									-	
									_	
									_	

-									
<u>GROUNDWA</u>	TER SAM	PLING WORKSHEE	<u>T</u>						
PROJECT NA	ME.	Gowanda Q1 2022							
Project Number		14263.07	,				▮╚	<i>)</i>	
Site Location:	₽1.								
		Gowanda, New Yor							
Sample Date:		3/24/202	22					4 A N	LAI
Weather:		51 Degrees F					RGM	IAI	N I N
Personnel:		Justin L. O'B	rien			ARCHITEC	TS ENGINE	ERS PLA	NNERS
GROUNDWA ⁻	TER SAMI	PLE POINT							
Well Number:		MW-9							
Location:									
Casing Diame	ter:	2"							
						Well Dia	. Volume/	Foot	7
Depth to wate	r, below to	p of casing:		8.35			0.041 ga		1
Depth to botto			20.96				= 0.163 ga		
Length of water			12.61				= 0.653 ga		
Longin or wait	or oorannii		12.01				= 1.469 ga		
							: 2.611 ga		
Volume of wat	ter in well (casing, gallons:		2.06			- 2.011 ga	11/1001	
		n water column X ga	I/foot X 3):	2.00	6.166				
		rior to sampling:	1/100t X 3).		6.25		_		
					0.25		_		
Sampling Met							_		
Sampling Equ	ipment:	Bailer					_		
\	10	N1/A					_		
Well Recharge		N/A					_		
Required Anal	iysis:						_		
FIELD PARA	METER M	EASUREMENTS							
			Accumula	ted Volume	Purged in G	allons			
Parameter:				I		-			
Turbidity	3315.3	NTU							
Temperature	11.5	°C							
рН	7.03								
Conductivity	2.35	SPC ms/cm							
Oxygen	62,7	DO mg/L							
Salinity	02,1	DO mg/L							
Sallfilly									
Time sample \	was collec	ted:	15:50						
00141451:33								-	
COMMENTS								•	

<u>GROUNDWA1</u>	ER SAM	PLING WORKSHE	<u>= T</u>					_	
)	
PROJECT NAI	ME:	Gowanda Q1 2022						۱ (
Project Numbe	r:	14263.0	7					'	
Site Location:		Gowanda, New Yor	·k						
Sample Date:		3/24/20							
Weather:		51 Degrees F				RF	RGM	1 A N	JN
Personnel:		Justin L. O'E	Rrian						
i ersonner.		Justiii L. O L	DITET!			ARCHITEC	TS ENGINE	ERS PLA	NNERS
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-10							
Location:									
Casing Diamet	or.	2"							
Casing Diamet	GI.				1	Wall Dia	Volume/I	Eggt	1
Donth to water	holow to	n of occina:	6.12				0.041 gal		4
Depth to water									
Depth to bottor			19.44				0.163 gal		
Length of wate	r column	ın well:	13.32				0.653 gal		
							1.469 gal		
						8" =	2.611 gal	/foot	
		casing, gallons:		2.2					
		n water column X ga	Il/foot X 3):		6.51		_		
Actual volume	purged p	rior to sampling:			6.66		_		
Sampling Meth	odology:	Hand bailing					=		
Sampling Equip	pment:	Bailer					_		
							=		
Well Recharge	d?	N/A					_		
Required Analy							-		
i toquilou / iilai)	, 0.0.						_		
FIELD PARAM	IETER M	EASUREMENTS							
	1		A 1 -	. () / -	- D				
Doromotor:		I	Accumula	itea volume	Purged in G	alions	1		
Parameter:	355.52	NTU							
Turbidity									
Temperature	19.1	°C							
рН	7.99								
Conductivity	0.005								
Oxygen	9.66	DO mg/L							
Salinity									
-	•		•	•					
Time sample w	as collec	ted:	16:16						
COMMENTS									
II									

<u>GROUNDWAT</u>	<u>'ER SAM</u>	PLING WORKSHEE	<u>T</u>							
PROJECT NAI	ME-	Gowanda Q1 2022						⊏	2	
Project Numbe		14263.07	7						ノー	
Site Location:	1.	Gowanda, New Yor								
		-					_			
Sample Date:		3/24/202	22				DE		A A 1	LIKI
Weather:		51 Degrees F					D C	RGI	YI A I	$V \mid V$
Personnel:		Justin L. O'B	rien				ARCHITE	CTS ENGIN	IEERS PL	ANNERS
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		MW-11								
Location:										
Casing Diamet	er:	2"							-	
				<i>-</i>				. Volume/]
Depth to water,			45.40	5.7				0.041 ga		
Depth to bottor			15.48					0.163 ga		
Length of wate	r column	in well:	9.78					0.653 ga		
								: 1.469 ga		
	s (= length	casing, gallons: n water column X gal ior to sampling:	//foot X 3): _	1.5941	5	4.7824		: 2.611 ga -	II/TOOT	_
Sampling Meth	odology:	Hand bailing		-				_		
Sampling Equip		Bailer						_		
								_		
Well Recharge	d?	N/A						_		
Required Analy								_		
		EASUREMENTS						_		
			Accumula	ated Vol	ıme Pur	ged in G	allons			
Parameter:										
Turbidity	2354.8	NTU								
Temperature	9.7	°C								
pН	87.01		i i							
Conductivity	0.64	SPC ms/cm								
Oxygen	9.52	DO mg/L								
Salinity	0.02									
Gaminy								<u> </u>		1
Time sample w	as collec	ted:	13:30							
COMMENTS									-	
001111111111111111111111111111111111111									•	
									•	
									-	

							
<u>GROUNDWAT</u>	ER SAM	PLING WORKSHEE	<u> </u>				· <u> </u>
PROJECT NAI	ME:	Gowanda Q1 2022					
Project Numbe		14263.07	,				
Site Location:	•	Gowanda, New York	k				
Sample Date:	•	3/24/202					
Weather:	•	51 Degrees F			RF	RGMANN	
Personnel:	•	Justin L. O'B	rien				
GROUNDWAT	ER SAMI	PLE POINT	_		ARCHITE	CTS ENGINEERS PLANNER	5
Well Number:		MW-12					
Location:							
Casing Diamet	er:	2"					
Depth to water, Depth to bottor Length of wate	n of the w	rell:	17.38 10.88	6.5	- 1" 2" 4" 6"	a. Volume/Foot = 0.041 gal/foot = 0.163 gal/foot = 0.653 gal/foot = 1.469 gal/foot	
	s (= length purged pr nodology: pment:	n water column X gal rior to sampling:	//foot X 3):	1.77 5.32 5.33	<u> </u>	= 2.611 gal/foot	
Required Analy						_	
FIELD PARAM	IETER MI	EASUREMENTS					
			Accumulat	ed Volume Pu	rged in Gallons		
Parameter:							
Turbidity	126.78	NTU					
Temperature	13.3	°C					
pН	7.67						
Conductivity	0.004	SPC ms/cm					
Oxygen	8.34	DO mg/L					
Salinity		J					
Time sample w	as collect	ted:	12:50				
<u> </u>							

GROUNDWAT	TER SAM	PLING WORKSHEE	T							
CROCINDIVA	LIX SAIN	I LING WORKSHEE	<u></u>							
									5	
PROJECT NA	ME:	Gowanda Q1 2022						1 !	イ し	
Project Number		14263.07	,						ノI	
Site Location:		Gowanda, New Yor								
Sample Date:		3/24/202					_			
Weather:		51 Degrees F					RE	RGI	$M \Lambda I$	NIN
Personnel:		Justin L. O'B	rien							
ODOLINDWAT		DI E DOINT					ARCHITE	CTS ENGII	NEERS PL	ANNERS
GROUNDWAT	EK SAMI	PLE POINT								
Well Number:		MW-13								
Location:									_	
Casing Diamet	ter:	2"							-	_
								. Volume		
Depth to water			_	6.95		_		: 0.041 ga		
Depth to bottor			17.40			_		: 0.163 ga		
Length of wate	r column	in well:	10.45					: 0.653 ga		
								: 1.469 ga		
							8" =	: 2.611 ga	l/foot	
		casing, gallons:	-	1.7034						
		h water column X ga	l/foot X 3):			5.1101		_		
		rior to sampling:			5.25			_		
Sampling Meth								_		
Sampling Equi	pment:	Bailer						_		
W !! D !	10	- N1/A						_		
Well Recharge		N/A						_		
Required Analy	ysis:							_		
FIELD DADAN	ACTED NA	FACUDEMENTS								
FIELD PARAM	ILIER IVI	<u>EASUREMENTS</u>								
			Accumul	ated Vol	ume Pu	rged in G	allons			
Parameter:										
Turbidity	2116.82									
Temperature	11.6									
рН	6.98									
Conductivity	0.521	SPC ms/cm								
Oxygen	4.51	DO mg/L								
Salinity										
				•				•		
Time sample v	vas collec	ted:	13:07							
									_	
<u>COMMENTS</u>									- -	
									_	
									_	
			<u></u>							
ĬĪ.										

GROUNDWATER SAN	<u> 1PLING WORKSHEET</u>						
						5 l	
PROJECT NAME:	Gowanda Q1 2022				- I !	\prec 1	
Project Number:	14263.07					ノI	
Site Location:	Gowanda, New York						
Sample Date:	3/24/2021						
Weather:					EDC	N A N	LAL
	51 Degrees F	ion			BERG		NIN
Personnel:	Justin L. O'Bri	<u>ien</u>		AF	RCHITECTS ENGI	NEERS PLA	NNERS
GROUNDWATER SAM	IPLE POINT						
Well Number:	MW-14						
Location:							
Casing Diameter:	2"					_	
_				We	ell Dia. Volume		
Depth to water, below to	op of casing:	10.48			1" = 0.041 g	al/foot	
Depth to bottom of the	well:	18.15			2'' = 0.163 g	al/foot	
Length of water column		7.67			4'' = 0.653 g		
J 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					6" = 1.469 g		
					8" = 2.611 g		
Volume of water in well	casing, gallons:		1.25	<u> </u>			•
3 Well volumes (= lengt	th water column X gal/t	foot X 3):	3.7	<u>′5</u>			
Actual volume purged p		,	3.7				
Sampling Methodology:				-			
Sampling Equipment:							
	Ballot						
Well Recharged?	N/A						
Required Analysis:	IN/A						
intequired Arialysis.							
FIELD PARAMETER N	<u>IEASUREMENTS</u>						
		Accumulate	ed Volume P	urged in Gallo	ons		
Parameter:							
Turbidity 2835.88	NTU						
Temperature 12	°C						
pH 7.05	5						
Conductivity 0.606							
Oxygen 6.46	DO mg/L						
Salinity	Ĭ						
		40.00					
Time sample was collec	cted:	12:00					
COMMENTS						_	
COMMINICIATO						_	
						_	
						_	
d .							

-									
<u>GROUNDWA1</u>	TER SAM	<u>PLING WORKSHEE</u>	<u>T</u>						
PROJECT NAI	ME:	Gowanda Q1 2022						Š I	
Project Numbe		14263.07	7					ノ L	
Site Location:		Gowanda, New Yor							
Sample Date:		3/24/202							
Weather:		51 Degrees F	- !			RE	RGM	1 A I	NI NI
Personnel:		Justin L. O'B	rion			DL	KUI		IAIA
reisonnei.		JUSTIII L. O B	onen			ARCHITI	ECTS ENGINE	EERS PL	ANNERS
GROUNDWAT	ER SAMI	PLE POINT							
Well Number:		MW-15							
Location:									
Casing Diamet	er:	2"							
							. Volume/F		
Depth to water	, below to	p of casing:		10.45		1" =	= 0.041 gal/	foot	
Depth to bottor	n of the w	rell:	19.80			2" =	= 0.163 gal/	foot	
Length of wate	r column	in well:	9.35			4" =	= 0.653 gal/	foot	
J							= 1.469 gal/		
						8" =	= 2.611 gal/	foot	
Volume of water	er in well o	casing, gallons:		1.5241		·			
		n water column X ga	l/foot X 3):			.57			
		rior to sampling:	,			.75	_		
Sampling Meth				_			_		
Sampling Equip							_		
Camping Equi	pilicit.	Dalici					_		
Well Recharge	43						_		
Required Analy							_		
intequired Arialy	/SIS.						_		
FIELD PARAM	IETER MI	EASUREMENTS							
	<u> </u>		Accumu	lated Volu	me Purged i	n Gallons			
Parameter:						1			
Turbidity	2316.5	NTU							
Temperature	11.7	°C							
pН	6.96								†
Conductivity	0.51	SPC ms/cm							
Oxygen	5.21	DO mg/L		+					
Salinity	0.21	DO IIIg/L							
Gairinty									
Time sample w	as collec	ted:	11:15						
COMMENTS									

-										
GROUNDWAT	ER SAM	PLING WORKSHEE	<u>:T</u>							
									_ I	
									_)	
PROJECT NAI		Gowanda Q1 2022								
Project Numbe	r:	14263.07							ノー	
Site Location:		Gowanda, New Yor					ı			
Sample Date:		3/24/202	22							
Weather:		48 Degrees F					BF	RG	МΑ	NN
Personnel:		Justin L. O'E	Brien					ECTS ENGI		
GROUNDWAT	ER SAM	PLE POINT					ARGIIII		WEEKS !	ZANNENS
Well Number:		MW-16								
Location:		10100-10								
	or:	2"							-	
Casing Diamet	er:						Mall Dia	Valuma	/Caat	_
Danilla (aa (a.a.	la allassa (a		40.0					Volume		_
Depth to water,			12.8			_		0.041 ga		
Depth to bottor			23.26					0.163 ga		
Length of wate	r column	in well:	10.46					0.653 ga		
								: 1.469 ga		
							8" =	: 2.611 ga	al/foot	
Volume of water				1.705		<u> </u>				
		n water column X ga	I/foot X 3):			5.1149		_		
		ior to sampling:		_		5.25		_		
Sampling Meth								_		
Sampling Equip	oment:	Bailer						<u></u>		
								_		
Well Recharge	d?	N/A						_		
Required Analy	/sis:							- _		
FIELD PARAM	IETER M	EASUREMENTS								
	I	·	Accumula	atod Vol	umo Duu	rand in G	allone			
Parameter:			Accumula	aleu voi	uiile Fui	geu iii G	alions			
Turbidity	2408.9	NTU								
Temperature	13.4	°C								
рН	6.98									
Conductivity	8.678		-					<u> </u>		
•	4.97	DO mg/L								
Oxygen	4.97	DO HIg/L								
Salinity										
Time sample w	as collec	ted:	15:20							
COMMENTS										
									_	
									=	

le-										
<u>GROUNDWAT</u>	<u> ER SAMP</u>	LING WORKSHEE	<u>T</u>							
PROJECT NAI	ME: C	Sowanda Q1 2022						1 🗀	$2 \mid$	
Project Numbe		14263.07	7						ノI	
Site Location:		Gowanda, New Yor								
		,					-			
Sample Date:	-	3/25/202	22				DE	RG	М	NI NI
Weather:	<u>4</u>	0 Degrees F	ud a la				DE	K G		IJII
Personnel:	_	Justin L. O'B	rien				ARCHITE	CTS ENGI	NEERS P	LANNERS
GROUNDWAT	ER SAMPI	LE POINT								
Well Number:	<u>N</u>	/W-17								
Location:	_									
Casing Diamet	er: <u>2</u>									_
Depth to water, Depth to bottor Length of wate	n of the we	II:	25.18 12.2	12.98		-	2" = 4" = 6" =	0.041 ga 0.163 ga 0.653 ga 1.469 ga 2.611 ga	ll/foot ll/foot ll/foot ll/foot	_
Volume of wate 3 Well volumes Actual volume Sampling Meth Sampling Equip	s (= length purged pric lodology: <u></u>	water column X gal or to sampling: land bailing	l/foot X 3):	1.9886	5.9658 6			- - -		-
Well Recharge	d? N	I/A						_		
Required Analy								-		
FIELD PARAM		ASUREMENTS						-		
			Accumu	lated Vol	ume Pui	rged in G	allons			
Parameter:										
Turbidity	1819.1	NTU								
Temperature	8.5	°C	1							
ρΗ	7.03									
Conductivity	0.324	SPC ms/cm								
Oxygen	7.56	DO mg/L								
Salinity	1.00	2 0g, 2	+							
Time sample w	voo collecte	d.	10:00			ļ	ı		<u>I</u>	Į.
Time Sample w	as collecte	u.	10.00							
COMMENTS									-	
COMMENTS	-								•	

<u>GROUNDWAT</u>	ER SAM	PLING WORKSHEE	<u>: T</u>							
									5	
PROJECT NAI	MF.	Gowanda Q1 2022						1 :	ベ し	
Project Numbe		14263.07	,						ノI	
Site Location:		Gowanda, New Yorl								
Sample Date:		3/25/202					_			
Weather:		40 Degrees F					RF	RGI	MAI	N N
Personnel:		Justin L. O'B	rion							
r ersonner.		JUSTIII E. O B	ileli				ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		MW-18								
Location:									_	
Casing Diamet	er:	2"							•	
_							Well Dia	. Volume/	Foot	
Depth to water.	, below to	p of casing:	9.05				1" =	0.041 ga	l/foot	
Depth to bottor			25.0				2" =	0.163 ga	l/foot	
Length of wate			16.0					0.653 ga		
								1.469 ga		
								2.611 ga		
Volume of water	er in well o	casing gallons:		2.5999					,	_
		n water column X gal	/foot X 3)·			7.80				
		ior to sampling:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8	7.00		_		
Sampling Meth				_				-		
								_		
Sampling Equip	pment.	Bailer						_		
Mall Daabanna	40							_		
Well Recharge								_		
Required Analy	/SIS:							_		
FIELD PARAM	IETER MI	EASUREMENTS								
	T									
Dovernator			Accumu	lated Vol	ıme Purç	ged in G	iallons	1	I	1
Parameter:	3624.8	NTU								
Turbidity										
Temperature	10.3	°C								
pН	7.03									
Conductivity	0.91	SPC ms/cm								
Oxygen	6.28	DO mg/L								
Salinity										
Time sample w			11:50							
	MW-X co	ollected from this wel	I							
COMMENTS										
									•	
	1								•	

1									
GROUNDWAT	ER SAM	PLING WORKSHEE	<u>T</u>						
								7	
		0 1 04 0000					1 !	ペ 1	
PROJECT NAI		Gowanda Q1 2022	-					ノI	
Project Numbe	r:	14263.07							
Site Location:		Gowanda, New Yor				-			
Sample Date:		3/25/202	22			DE	RG	МΛ	NINI
Weather:		40 Degrees F				DE	K G		VI VI
Personnel:		Justin L. O'B	<u>srien</u>			ARCHITE	CTS ENGI	NEERS I	PLANNERS
GROUNDWAT	ER SAMI	PLE POINT							
Well Number:		MW-19R							
Location:									
Casing Diamet	er:	2"						-	
	• • • • • • • • • • • • • • • • • • • •					Well Dia	Volume	/Foot	\neg
Depth to water,	. below to	p of casing:	7.8				0.041 ga		
Depth to bottor			17.67		_		: 0.163 ga		
Length of wate			9.87				: 0.653 ga		
							: 1.469 ga		
							: 2.611 ga		
Volume of water	er in well o	casing, gallons:		1.6			5-		
		n water column X ga	I/foot X 3):	4.83	3				
		rior to sampling:	,		5		_		
Sampling Meth							_		
Sampling Equip		Bailer					-		
							_		
Well Recharge	d?	N/A					_		
Required Analy							_		
							_		
FIELD PARAM	IETER M	EASUREMENTS							
			Accumulate	ed Volume Pu	rged in G	allons			
Parameter:									
Turbidity	1241.7	NTU							
Temperature	9.2	°C							
рН	7.12								
Conductivity	0.146	SPC ms/cm							
Oxygen	6.7	DO mg/L							
Salinity		,							
	•			•			•	•	•
Time sample w	as collec	ted:	11:30						
			•					_	
<u>COMMENTS</u>								<u>-</u>	
								_	
								<u>-</u>	

GROUNDWAT	ER SAM	PLING WORKSHEE	<u>T</u>							
								1 -	\neg \Box	
PROJECT NAI	ME-	Gowanda Q2 2022						1 !	ス I	
Project Numbe		14263.07	,						ノI	
Site Location:		Gowanda, New Yorl								
Sample Date:		3/25/202					•			
Weather:		40 Degrees F	· _					RGI	Λ	NI NI
Personnel:		Justin L. O'B	rien				DL	K G I	11	IN IN
0.0010		0.00 21.0.2					ARCHITE	CTS ENGII	NEERS P	LANNERS
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		MW-20								
Location:										
Casing Diamet	er:	2"							=	
Ŭ							Well Dia	Volume	/Foot	
Depth to water,	, below to	p of casing:	9.6				1" =	0.041 ga	l/foot	
Depth to botton	n of the w	rell:	14.75			•		0.163 ga		
Length of water			5.15					0.653 ga		
Ŭ			-					: 1.469 ga		
								2.611 ga		
Volume of water	er in well o	casing, gallons:		0.8395						
		n water column X gal	/foot X 3):			2.5184				
		ior to sampling:	,		2.75			_		
Sampling Meth				_				_		
Sampling Equip		Bailer						_		
								_		
Well Recharge	d?	N/A						_		
Required Analy								_		
								_		
FIELD PARAM	IETER MI	EASUREMENTS								
			Accumu	lated Volu	ıme Pur	ged in G	allons		ı	
Parameter:										
Turbidity	1312.2	NTU								
Temperature	8.5	°C								
рН	7.35									
Conductivity	0.861	SPC ms/cm								
Oxygen	6.89	DO mg/L								
Salinity										
Time sample w	as collec	ted:	10:47							
Time sample w	as conce	ica.	10.47							
COMMENTS									-	
<u> </u>	-								-	
									-	
									-	

GROUNDWAT	<u>ER SAMI</u>	PLING WORKSHEE	<u>T</u>						
DDO IECT NAI	M	Cowanda O4 2022						2	
PROJECT NAI		Gowanda Q1 2022	7						
Project Numbe		14263.07							
Site Location:		Gowanda, New Yor				_			
Sample Date:		3/25/202	21			ρг		A A	NINI
Weather:		40 Degrees F				BE	RGI	MA	N
Personnel:	•	Justin L. O'B	orien			ARCHITE	CTS ENGI	NEERS PL	ANNERS
GROUNDWAT	ER SAME	PLE POINT							
Well Number:		MW-21							
Location:	•								
Casing Diamet	er:	2"							<u></u>
_	•						. Volume/		
Depth to water,	, below to	p of casing:		7.9		1" =	: 0.041 ga	l/foot	
Depth to bottor	n of the w	ell:	15.82				: 0.163 ga		
Length of wate	r column i	n well:	7.92				: 0.653 ga		
							: 1.469 ga		
						8" =	: 2.611 ga	l/foot	
Volume of water				1.291					
		n water column X ga	l/foot X 3):		3.87		_		
Actual volume					4		_		
Sampling Meth		Hand bailing					_		
Sampling Equip	pment:	Bailer					_		
							_		
Well Recharge		N/A					_		
Required Analy	/sis:						_		
FIELD PARAM	IETER ME	EASUREMENTS							
		-	Accumula	ated Volum	ne Purged in G	allone			
Parameter:			Accumula	ated Voidi	lic i diged iii e				
Turbidity	1203.6	NTU	1						
Temperature	11.2	°C							
рН	7.06								
Conductivity	0.031	SPC ms/cm							
Oxygen	4.03	DO mg/L							
Salinity	1.00	DO mg/L							
Gaminty					<u> </u>				
Time sample w	as collect	ed:	12:10						
COMMENTS								i	
COMMENTS								•	
								•	
								•	

GROUNDWA7	TER SAM	PLING WORKSHEE	<u></u>							
CHOCHDIA	_n yanı	. L.IIO II OIMOIILL	<u> </u>							
									7	
PROJECT NA	<u>ME:</u>	Gowanda Q1 2022						1 :-	六 L	
Project Numbe	er:	14263.07	7						ノI	
Site Location:		Gowanda, New Yor	k							
Sample Date:		3/24/202	22							
Weather:		51 Degrees F					BF	RGI	MA	NN
Personnel:		Justin L. O'B	Brien					CTS ENGI		
GROUNDWAT	ER SAMI	PLE POINT								
Well Number:		DR-1								
Location:									_	
Casing Diamet	er:	4"				i	= .	T		_
								. Volume		
Depth to water				6.95		_		= 0.041 ga		
Depth to bottor			18.06					= 0.163 ga		
Length of wate	r column	in well:	11.11					= 0.653 ga		
								= 1.469 ga		
\/=\=====		!		7.05.40			8" =	= 2.611 ga	al/foot	
		casing, gallons:	L/f = = (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.2548		- 04 704				
		h water column X ga	1/100t X 3):			21.764		_		
		rior to sampling:				22		_		
Sampling Meth								_		
Sampling Equi	pment:	Bailer						_		
Mall Dacharge	40	N/A						_		
Well Recharge		IV/A						_		
Required Analy	/515.							_		
FIFI D PARAM	IFTER MI	EASUREMENTS								
I ILLED I AIKAII		<u>LAOONLINILITIO</u>								
			Accumu	lated Vo	ume Pui	rged in G	allons			
Parameter:										
Turbidity	1993.2									
Temperature	9									
рН	7.01									
Conductivity	0.618	SPC ms/cm								
Oxygen	4.34	DO mg/L								
Salinity		_								
,	•		•			•		•		•
Time sample w	as collec	ted:	13:55							
-										
COMMENTS									_	
									_	
									_	
									_	
I										

<u>GROUNDWA1</u>	ER SAM	PLING WORKSHEE	<u>.T</u>						
PROJECT NAI	ME.	Gowanda Q1 2022						2	
Project Numbe		14263.07	7				11		
Site Location:	1.						_	7	
		Gowanda, New Yor				_			
Sample Date:		3/24/202							
Weather:		51 Degrees F				BE	RGI	MAI	NN
Personnel:		Justin L. O'B	rien				CTS ENGIN		
GROUNDWAT	ER SAMI	PLE POINT							
Well Number:		DR-2							
Location:								-	
Casing Diamet	er:	4"						-	_
							. Volume]
Depth to water			·	6.75			= 0.041 ga		
Depth to bottor			18.06				= 0.163 ga		
Length of wate	r column i	in well:	11.31				= 0.653 ga		
							= 1.469 ga		
Volume of wate				7.3854		-	= 2.611 ga	l/foot	
		n water column X ga	l/foot X 3):		22.1		_		
		ior to sampling:		_	22.2	5	_		
Sampling Meth							_		
Sampling Equip	pment:	Bailer					_		
							_		
Well Recharge		N/A					_		
Required Analy	/sis:						_		
FIELD PARAM	IETER MI	EASUREMENTS							
			Accumu	lated Volu	me Purged in	Gallone			
Parameter:			Accumu	ialeu voiu		Janons			
Turbidity	430.37	NTU							
Temperature	11.2	°C							
pH	7.08						+		
Conductivity	0.607	SPC ms/cm							
Oxygen	6.73	DO mg/L							
Salinity	0.73	DO Hig/L	+				+		
Sallfilly									
Time sample w	as collect	ted:	12:35						
COMMENTS								-	
								•	
								•	
								-	

GROUNDWAT	ER SAM	PLING WORKSHEE	T					
								1
PROJECT NAM		Gowanda Q1 2022	_					
Project Numbe	r:	14263.07						
Site Location:		Gowanda, New Yor						•
Sample Date:		3/24/202	22					
Weather:		51 Degrees F				BE	RGMA	NN
Personnel:		Justin L. O'B	rien			ARCHIT	ECTS ENGINEERS	PLANNERS
GROUNDWAT	ER SAM	PLE POINT						
Well Number:		DR-3						
Location:								
Casing Diamete	er:	4"						
Ü						Well Dia.	Volume/Foot	
Depth to water,	below to	p of casing:		11.52		1" =	0.041 gal/foot	
Depth to botton	n of the w	vell:	20.45			2" =	0.163 gal/foot	
Length of water	r column	in well:	8.93			4" =	0.653 gal/foot	
						6" =	1.469 gal/foot	
						8" =	2.611 gal/foot	
Volume of water			-	5.8				
		n water column X ga	l/foot X 3):		17.4		_	
		rior to sampling:		_	1	7.5	=	
Sampling Meth							_	
Sampling Equip	oment:	Bailer					_	
	10	A1/A					=	
Well Recharge		N/A					_	
Required Analy	/SIS:	-					_	
FIELD PARAM	IETER M	<u>EASUREMENTS</u>						
			Accumu	lated Volu	ıme Purged i	n Gallons		
Parameter:								
Turbidity	637.2	NTU						
Temperature	11.7	°C						
рН	6.41							
Conductivity	0.076	SPC ms/cm						
Oxygen	3.87	DO mg/L	1					
Salinity		j						
Time sample w	as collec	ted:	14:23					
COMMENTO								
COMMENTS								

<u>GROUNDWA1</u>	ER SAM	PLING WORKSHEE	<u>T</u>						
DDO IECT MAI	ME.	Cowanda O1 2022							
PROJECT NAI		Gowanda Q1 2022	7						
Project Numbe	r:	14263.07					_	7	
Site Location:		Gowanda, New York				•			
Sample Date:		3/24/202	22						
Weather:		51 Degrees F				BE	RGI	MA	NN
Personnel:		Justin L. O'B	rien				CTS ENGI		
GROUNDWAT	ER SAMI	PLE POINT							
Well Number:		DR-4							
Location:									
Casing Diamet	er:	4"						-	
Ŭ						Well Dia	. Volume/	/Foot	1
Depth to water	, below to	p of casing:		11.42		1" =	0.041 ga	l/foot	1
Depth to bottor			19.69				: 0.163 ga		
Length of wate			8.27				: 0.653 ga		
J			-				: 1.469 ga		
							: 2.611 ga		
Volume of water	er in well o	casing, gallons:		5.40					
3 Well volumes	s (= lengtl	n water column X gal	I/foot X 3):		16.20				
Actual volume	purged pr	rior to sampling:	,		16.25		_		
Sampling Meth		, 0					_		
Sampling Equip		Hand bailer					_		
	ı						_		
Well Recharge	d?	N/A					_		
Required Analy							_		
		EASUREMENTS					_		
TILLD FARAIV		LASOKLWIENTS		. 11/	<u> </u>				
D 1		T	Accumula	<u>tea volume</u>	Purged in G	allons	1	r	1
Parameter:	4 450 5	NITH					-		
Turbidity	1450.5								
Temperature	12	°C							
pН	7.12								
Conductivity	0.667	SPC ms/cm							
Oxygen	5.47	DO mg/L							
Salinity									
Time sample w	as collec	ted:	11:45						
COMMENTS								-	
COMMENTS								-	
								-	
								=	
i									

GROUNDWAT	FR SAM	PLING WORKSHEE	-T					
CROONDWAI	LIX OAIII	LING WORKSHEE	<u> </u>					
PROJECT NAM	ΛE:	Gowanda Q1 2022					$\sqsubseteq \prec$	
Project Number		14263.07						
Site Location:	•	Gowanda, New Yor	k					
Sample Date:		3/24/202						
Weather:		51 degrees F				RED	GMAN	J NI
Personnel:		Justin L. O'E	Brien					
						ARCHITECTS E	ENGINEERS PLA	NNERS
GROUNDWAT	ER SAMI	PLE POINT						
Well Number:		G-1						
Location:		<u> </u>						
Casing Diamete	er.	4"						
Daoing Diamot	J1.					Well Dia. Vo	lume/Foot	
Depth to water,	below to	n of casing:	11.63				041 gal/foot	_
Depth to bottom			22.98				63 gal/foot	
Length of water			11.35				553 gal/foot	
Longar or water	COIGITIII		11.00				69 gal/foot	
							311 gal/foot	
Volume of wate	er in well o	casing, gallons:		7.4116	!		ga.,	
		n water column X ga			22.235			
Actual volume			.,		22.5			
Sampling Methor				-				
Sampling Equip		Bailer						
Well Recharged	d?	N/A				_		
Required Analy		,,, .						
FIELD PARAM	ETER MI	EASUREMENTS						
			A	tod Volume F	Durand in C	allana		
Parameter:			Accumula	ted Volume F	urgea in G	alions		
Turbidity	258.77	NTU						
Temperature	11.8	°C						
рН	7.03							
Conductivity	0.616	SPC ms/cm						
Oxygen	50.4	DO mg/L	+					
Salinity	30.4	DO Hig/L						
Sairilly								
Time sample w	as collec	tad:	11:00					
Time sample w	as collec	ieu.	11.00					
COMMENTS								
COMMENTS								
-								
-								

GROUNDWAT	ER SAMI	PLING WORKSHEE	T			
<u>Ortoonib (17) (17)</u>		LIITO ITOTATOTILE	<u>· -</u>			
PROJECT NAM	ΛE:	Gowanda Q1 2022				$1 \mapsto 1$
Project Number		14263.07	7			
Site Location:		Gowanda, New Yor	k			
Sample Date: 3/24/2021						
Weather:		51 Degrees F			RF	ERGMANN
Personnel:	•	Justin L. O'B	rien			
GROUNDWAT	ER SAMF	PLE POINT			ARCHI	ITECTS ENGINEERS PLANNERS
Well Number:		G-2				
Location:						
Casing Diamete	er:	4"				
	•				Well	I Dia. Volume/Foot
Depth to water,			11.6			1" = 0.041 gal/foot
Depth to bottom	n of the w	ell:	20.72		_	2" = 0.163 gal/foot
Length of water	column i	n well:	9.12			4" = 0.653 gal/foot
						6" = 1.469 gal/foot
						8" = 2.611 gal/foot
Volume of wate				9554	_	
		ı water column X gal	l/foot X 3):		17.866	
Actual volume p					18	
Sampling Methor						
Sampling Equip	oment:	Bailer				
Well Recharged	_	N/A				
Required Analy	sis:					
FIELD DADAM	CTCD M	ACUDEMENTS				
FIELD PARAIN	EIER WIE	EASUREMENTS				
			Accumulate	d Volume Pu	irged in Gallon	ns
Parameter:	466.81	NTU				-
Turbidity		°C				
Temperature	11.4	<u> </u>				
pH Conductivity	7.01	CDC ma/am				
Conductivity	0.281	SPC ms/cm				
Oxygen	46.9	DO mg/L				
Salinity						
T:	114		40.00			
Time sample w	as collect	ea:	10:30			
COMMENTS						
COMMENTS						
-						

GROUNDWAT	FR SAM	PLING WORKSHEE	T						
<u> </u>									
PROJECT NAM		Gowanda Q1 2022							
Project Numbe	r:	14263.07	7					'	
Site Location:		Gowanda, New Yor	k					_	
Sample Date:		3/25/202	21						
Weather:		40 Degrees F				3ER	GM	AN	1 N
Personnel:		Justin L. O'B	Brien			RCHITECTS			
GROUNDWAT	ER SAMI	PLE POINT							
Well Number:		G-3							
Location:									
Casing Diamete	er:	4"			_				<u>_</u>
Depth to water, Depth to botton Length of water	n of the w	rell:	10.7 18.15 7.45		_	2" = 4" = 6" =	Volume/l 0.041 gal 0.163 gal 0.653 gal 1.469 gal 2.611 gal	/foot /foot /foot /foot]
	s (= lengtl purged pr odology:	n water column X ga rior to sampling:	I/foot X 3):	4.86	14.59 14.75			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J
Well Recharge Required Analy	d?	N/A							
FIELD PARAM	IETER M	EASUREMENTS							
			Accumulat	ed Volume Pu	urged in Ga	allons			
Parameter:			Addamalat			1			
Turbidity	1034	NTU							
Temperature	1.5	°C							
рН	7.07								
Conductivity	0.561	SPC ms/cm							+
Oxygen	7.23	DO mg/L							
Salinity	7.20	DO Hig/L							+
Time sample w	as collec	ted:	9:37						

APPENDIX B:

IC/EC CHECKLIST

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

2/22/2022

Stephen Van Hoose Director Of Capital Services NYS OPWDD 44 Holland Ave. Albany, NY 12229 stephen.e.vanhoose@opwdd.ny.gov

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Gowanda Day Habilitation Center

Site No.: V00463

Site Address: 4 Industrial Place

Gowanda, NY 14070

Dear Stephen Van Hoose:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **May 06, 2022**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Megan Kuczka, the Project Manager, at 716-842-2175 or megan.kuczka@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave

Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

NYS OPWDD - Conrad Gerstenberger - conrad.c.gerstenberger@opwdd.ny.gov

ec: w/ enclosures

Megan Kuczka, Project Manager

Andrea Caprio, Hazardous Waste Remediation Supervisor, Region 9

Bergmann PC - Stephen DeMeo - sdemeo@BERGMANNPC.com

Bergmann PC - Ariadna Cheremeteff - acheremeteff@bergmannpc.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	V00463	Site Details		Box 1					
Sit	Site Name Gowanda Day Habilitation Center									
Cit _y	e Address: - y/Town: Go unty: Cattara e Acreage:	augus	Zip Code: 14070							
Re	porting Perio	od: April 06, 2021 to	April 06, 2022							
					YES	NO				
1.	Is the infor	mation above correc	pt?		X					
	If NO, inclu	ide handwritten abov	ve or on a separate sheet.							
2.		or all of the site prop nendment during thi	perty been sold, subdivided, merged, s Reporting Period?	or undergone a		$\overline{\mathbb{X}}$				
3.		peen any change of RR 375-1.11(d))?	use at the site during this Reporting I	Period		X				
4.	•	ederal, state, and/or e property during this	local permits (e.g., building, discharges Reporting Period?	ge) been issued		X				
			tions 2 thru 4, include documentat n previously submitted with this ce							
5.	Is the site of	currently undergoing	development?			X				
					Box 2					
					YES	NO				
6.		ent site use consiste al and Industrial	nt with the use(s) listed below?		X					
7.	Are all ICs	in place and function	ning as designed?	X						
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
AC	Corrective M	leasures Work Plan	must be submitted along with this fo	orm to address t	hese iss	ues.				
 Sig	nature of Ow	vner, Remedial Party	or Designated Representative	 Date						

SITE NO. V00463 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

16.027-2-11 NYS OPWDD

Ground Water Use Restriction Soil Management Plan Building Use Restriction O&M Plan

Site is deed restricted with an SMP (2/22/2008). There is use restriction for industrial and commercial, excluding, medical and day care services. Further restriction is that a sub-slab vapor mitigation system is required before occupancy.

Box 4

Description of Engineering Controls

None Required

Not Applicable/No EC's

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements						
1.	I certify by checking "YES" below that:						
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;						
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted						
	engineering practices; and the information presented is accurate and compete. YES NO						
	$oxed{\mathbb{Z}}$						
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:						
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;						
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;						
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;						
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and						
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.						
	YES NO						
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
	Signature of Owner, Remedial Party or Designated Representative Date						

IC CERTIFICATIONS SITE NO. V00463

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Mufuta Tshimanga		at <u>280 E Bro</u>	oad St #	200, Rocl	hester,	<u>NY</u> , 14604	
print nan	ne	print	business ad	dress			
am certifying as	Owners R	epresentative		(Owner	r or Remedia	ıl Party)	
for the Site named in the Site Details Section of this form. 5/6/2022							
Signature of Owner,		ty, or Designated Repre	esentative	5/6/20 Date	<u> </u>		
		ty, or Designated Repre	esentative				

Enclosure 3 Periodic Review Report (PRR) General Guidance

I. Executive Summary: (1/2-page or less)

- A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
- B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.

C. Compliance

- 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
- 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.

D. Recommendations

- 1. recommend whether any changes to the SMP are needed
- 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
- 3. recommend whether the requirements for discontinuing site management have been met.

II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.

B. IC/EC Certification

1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.