

New York State Office of People with Developmental Disabilities – Gowanda Site – VCA Site No. V-00463-9

4 Industrial Place, Gowanda, NY

GROUNDWATER CHARACTERIZATION REPORT-MAY 2023 (Q2 2023)

Bergmann

Office:

280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135
www.bergmannpc.com
Issued: February 12, 2024
Revised: May 15, 2024

DASNY Project No.: 3136109999

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1 1.2	Scope of Work	4
2.0	GROUNDWATER SAMPLING OVERVIEW AND METHODS	6
2.1 2.2	Well Maintenance Activities	
3.0	LOCAL GROUNDWATER FLOW CHARACTERIZATION	7
4.0	LABORATORY ANALYSIS	8
4.1 4.2 4.3 4.4 4.5	Laboratory Analysis on Groundwater Samples Monitoring Well Groundwater Analysis Summary Sentry Well Groundwater Analysis Summary Recovery Well Groundwater Analysis Summary Quality Assurance and Quality Control Samples	8 9
5.0	REMEDIATION SYSTEM EFFICIENCY	12
5.1 5.2 5.3	Impact of the GTS Recovery Wells Extent of Impacted Groundwater Future Groundwater Monitoring and Analysis Activities	13

Tables

Table 1: Groundwater Elevations and Field Measurements – May 18 and 19, 2023

Table 2: May 2023 Analytical Results Summary

Table 3: Historic Groundwater Analytical Results Summary
Table 4: Percent Reduction in Total Groundwater VOCs

Table 5: Full Analytical Results Summary Table

Figures

Figure 1: May 2023 Groundwater Contour Map

Figure 2: May 2023 Distribution of Groundwater Analytical Results: Monitoring Wells
Figure 3: May 2023 Distribution of Groundwater Analytical Results: Recovery Wells

Charts

Chart 1: DR-1, DR-2, DR-3, DR-4, G-1, G-2 and G-3 Groundwater Volatile Organic Compound

Concentrations

Chart 2: DR-1, MW-1, and MW-11 Groundwater Volatile Organic Compound Concentrations

Chart 3: DR-2 and MW-12 Groundwater Volatile Organic Compound Concentrations

Chart 4: DR-3 and MW-14 Groundwater Volatile Organic Compound Concentrations

Chart 5: DR-4 and MW-15 Groundwater Volatile Organic Compound Concentrations

Chart 6: G-1 and MW-17 Groundwater Volatile Organic Compound Concentrations

Chart 7: G-2 and MW-7 Groundwater Volatile Organic Compound Concentrations

Chart 8: G-3 and MW-17 Groundwater Volatile Organic Compound Concentrations

Chart 9: Site-Wide Percent Reduction of VOC Concentrations

Chart 10: Recovery Well Percent Reduction of VOC Concentrations

Appendices

Appendix A: Laboratory Analytical Results Report - May 2023 Sampling Event

Appendix B: Field Forms

Appendix C: Laboratory NYS DOH ELAP Certification

Appendix D: Calibration Sheets

1.0 INTRODUCTION

Bergmann is submitting this groundwater characterization report for the second quarter 2023 sampling event, conducted on May 18th and 19th, 2023, on behalf of the Dormitory Authority of the State of New York (DASNY) and the New York State Office of People with Developmental Disabilities (OPWDD) for activities conducted at the former Gowanda Day Habilitation Center facility at 4 Industrial Place, Gowanda, NY. The OPWDD, as the volunteer, entered into a Voluntary Cleanup Agreement (VCA) with the New York State Department of Environmental Conservation (NYSDEC) to conduct investigations and implement remedial measures in accordance with VCA Site No. V-00463-9, effective August 16, 2001.

1.1 SCOPE OF WORK

This report documents the site-wide groundwater monitoring and laboratory analytical sampling event conducted on May 18th and May 19th, 2023. Field measurements, sampling procedures and laboratory analysis were conducted in accordance with the October 2006 Operations, Monitoring, and Maintenance (OM&M) Manual and as modified with NYSDEC approval. During this sampling event, groundwater from twenty-one (21) of twenty-one (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells were sampled for laboratory analysis.

The pervious groundwater sampling event was conducted in March 2023 and included analysis of groundwater samples from the (21) site-related groundwater monitoring wells and all seven (7) groundwater recovery wells.

1.2 SITE BACKGROUND

The Gowanda Day Habilitation site consists of a 5.94-acre parcel located at 4 Industrial Place, Gowanda, New York. The building, previously used by several manufacturing operations, was built in stages between circa 1948 and 1987 and was renovated in 1987-1988. Manufacturing operations occurred at the site between 1956 and 1987. New York State agencies occupied the building since 1982. New York State acquired the parcel in 1989. The building was most recently operated by the OPWDD, which at that time was known as the Western New York Developmental Disabilities Services Office, as a Day Habilitation Center for mental care clients. In April 2001, on-site operations ceased. The nature and extent of contamination at the Gowanda Day Habilitation Center was detailed as part of the 2003 Site Investigation and 2004 Supplemental Site Investigation Reports. Trichloroethene (TCE) was the most commonly detected compound. TCE degradation products cis-1,2, Dichloroethene (Cis-1,2-DCE), trans-1,2-Dichloroethene (Trans-1,2-DCE) and Vinyl Chloride (VC) were also detected. The source of these CVOCs were releases that occurred during the manufacturing operations that occurred at the facility.

Following Interim Remedial Measure (IRM) system installation, the Groundwater Treatment System (GTS) and the Soil Vapor Extraction System (SVES) was operated from 2005 to 2013 recovered 2-5 gallons per minute (gpm) of groundwater. The GTS portion consisted of seven (7) groundwater recovery wells (four dual phase recovery wells and three groundwater-only recovery wells), an air compressor, a network of controller-less pneumatic pumps and an air stripper treatment system to process recovered groundwater. Recovered groundwater was pumped to the equalization tank for settling of the sediment and transferred to the air stripper using a consistent flow rate. Air discharge from the air stripper was routed to the SVE for treatment prior to discharge. Groundwater was discharged to the village of Gowanda Sewage Treatment Plant (STP). Quarterly groundwater sampling with Operation and Maintenance of the remediation system has been ongoing since 2002.

In January 2014, the condition of the SVE and GTS was discussed with the NYSDEC representative, and it was agreed that these systems would be deactivated to allow for groundwater level recovery during the preparation

of an In-Situ Chemical Oxidation (ISCO) Remedial Action Plan (RAP) for the implementation of an ISCO treatment. Bergmann submitted an ISCO RAP for groundwater treatment to the NYSDEC to address the remaining contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment will remain on-site in the event that re-activation is required in the future. The SVES system was deactivated in 2013, and an ISCO treatment was implemented in May 2015 and a second round of injections in September 2015. An ISCO Report was prepared and submitted under a separate cover.

2.0 GROUNDWATER SAMPLING OVERVIEW AND METHODS

2.1 WELL MAINTENANCE ACTIVITIES

During the May 2023 site visit, all monitoring wells were accessible, and the integrity of the wells was not compromised. Repairs or maintenance to the network of groundwater monitoring wells or recovery wells has were not required. All protective casings and flush-mount curb boxes were found to be intact and secure. Exterior monitoring wells are secured with locking stick-up protective casings. The monitoring wells within the building are secured with flush-mount roadway covers. Well maintenance was not performed during the May 2023 sampling event.

2.2 GROUNDWATER FIELD MONITORING AND SAMPLING ACTIVITIES

Groundwater measurements and sampling activities were conducted in accordance with the October 2006 OM&M Manual. The depths to groundwater in groundwater monitoring wells are measured quarterly to monitor site-wide changes in the water table elevation and to allow for adjustment at recovery wells. Past operation of the recovery wells was intended to establish hydraulic containment of the impacted groundwater plume beneath the former Day Habilitation building and improve recovery and treatment of impacted groundwater.

Groundwater samples were collected from the twenty-one (21) site-related groundwater monitoring wells for laboratory analysis on May 18 and May 19, 2023. Depth to groundwater measurements were obtained from twenty-eight (28) wells (including recovery wells).

Groundwater samples were collected from monitoring wells after each well was gauged. Measurements of purged groundwater including turbidity, temperature, pH, oxygen, and conductivity were determined by analyzing a quantity of groundwater in a cup using a YSI Quatro prior to sampling. Groundwater samples were collected from monitoring and recovery wells using dedicated bailers, to allow for an accurate representation of groundwater without collecting sediment from within the wells. Sampling was performed based on discussion and direction from a telephone conversation with David Szymanski (NYSDEC project manager at the time) in January 2018 in which no noticeable changes in test results were noticed comparing bailing and slow purge methods. This was first noted in Q3 2018 and is also noted in the approved PRR dated 2019. A single duplicate sample and a field blank sample were collected and submitted for laboratory analysis.

The samples were transported from the project site via a chain-of-custody protocol to ALS Environmental, a NYSELAP certified laboratory located in Rochester, New York. The samples were then tested for Volatile Organic Compounds (VOCs), using EPA Method 8260. Analytical results for each individual monitoring well have been posted in Table 3 for comparative purposes from sampling events completed 2012 – 2023.

3.0 LOCAL GROUNDWATER FLOW CHARACTERIZATION

The Site potentiometric surface and groundwater flow direction was determined for May 2023 using water table elevations measured at each well. Groundwater elevations and well reference elevations were calculated using depth to water measurements obtained on May 18 and May 19, 2023. The well gauging values and groundwater elevations are provided in Table 1 – Groundwater Elevations and Field Measurements – May 2023.

The May 2023 potentiometric surface map shows a flow pattern similar to groundwater flow pattern observed historically since 2002. Groundwater at the Site is flowing generally in a northerly direction. Torrance Place is hydraulically down-gradient from the Day Habilitation Center building. It is noted that the residential properties along Torrance Place utilize municipal/public water. The May 2023 water table elevations range from 764.86 feet (ft) above mean sea level (AMSL) at MW-21, to 773.26 ft. AMSL at MW-9. The average table water elevation was 769.30 ft AMSL, which is a decrease from the average groundwater elevation of the previous sampling event in March of 2023 (769.87 ft AMSL).

The site-wide average groundwater elevation decreased by approximately 0.57 ft when compared to the previous sampling event from March 2023. This decrease in the elevation of groundwater appears to be seasonal.

Measured depth to water at all gauged monitoring and recovery wells is presented in Table 1 and May 2023 Groundwater Elevation Contours are presented on Figure 1 – May 2023 Groundwater Elevation Contour Map.

4.0 LABORATORY ANALYSIS

4.1 LABORATORY ANALYSIS ON GROUNDWATER SAMPLES

Laboratory analysis was completed on the groundwater samples from twenty-one (21) monitoring wells and seven (7) recovery wells collected May 18 and May 19, 2023. Samples were analyzed for VOCs via EPA Method 8260. Analysis was performed in accordance with the October 2006 OM&M Manual. The following chlorinated VOCs (CVOCS) were analyzed for:

- Trichloroethene (TCE)
- 1,1,1 Trichloroethane (TCA)
- Cis-1,2-Dichloroethene (Cis-DCE)
- Trans-1,2-Dichloroethene (Trans-1,2-DCE)
- Vinyl Chloride (VC)

CVOCs values, as present throughout this report, in the text, charts, and Tables 2, 3, and 4, are not representative of all CVOCs detected, but are the of the sum of detected concentration of TCE, Cis-DCE, Trans-1,2-DCE, VC, and TCA.

4.2 MONITORING WELL GROUNDWATER ANALYSIS SUMMARY

The May 2023 analytical results indicate detection of four (4) chlorinated VOCs in monitoring well samples: TCE, Cis-DCE, Trans-1,2-DCE, and VC. Chlorinated VOCs were detected in groundwater samples from eleven (11) of the twenty-one (21) monitoring wells sampled. Analytical results are summarized in Table 2 – May 2023 Analytical Results Summary, which compares detected VOCs and applicable NYSDEC Class GA Standards for each analyte. The complete laboratory analytical report is provided in Appendix A – Laboratory Analytical Results Report May 2023 Sampling Event. Table 3 – Historic Groundwater Analysis Results Summary includes the historical CVOC concentrations at each well since the groundwater monitoring of the wells began in 2002.

VOCs were not detected in groundwater from ten (10) of the sampled monitoring wells.

As depicted in Table 5, groundwater samples from eleven (11) monitoring wells had detectable chlorinated VOCs at concentrations above applicable Class GA Standards. The monitoring well with the highest total CVOCs detected at monitoring wells MW-1 (600 parts per billion (ppb), which is consistent with previously collected historical data.

Concentrations in nine (9) of the twenty-one (21) monitoring well groundwater samples increased when compared to the March 2023 sampling event while concentrations in two (2) of the twenty-one (21) monitoring well groundwater samples decreased. The concentrations of CVOCs in ten (10) monitoring wells remain unchanged. The current sampling analytical results indicate an average site-wide decrease in CVOCs of approximately 88.21% since the activation of the GTS in May 2005.

The area of highest concentration of CVOCs groundwater is in the area of monitoring wells MW-1 and MW-11, which is consistent with historical concentrations of CVOCs.

In monitoring wells located in the source area (MW-1, MW-6, MW-7, MW-11, MW-12, MW-14, MW-15, and MW-17) the analytical results show a contaminant reduction in CVOC concentrations by approximately 80.56% monitoring of these wells since 2002.

 The CVOC concentrations decreased at monitoring well MW-1 relative to the prior sampling event. The CVOC concentration at monitoring well MW-1 for the May 2023 sampling event was 600 ppb, a decrease from the March 2023 value of 449.00 ppb. Since activation of the GTS in May 2005 through subsequent deactivation of the GTS in 2013 to present, detected CVOCs at MW-1 have increased by 21.88%.

MAY (Q2) 2023 QUARTERLY SAMPLING REPORT

- Monitoring well MW-11 increased in CVOCs relative to the prior sampling event. The CVOC concentration at MW-11 for the May 2023 sampling event is 355 ppb, an increase from the March 2023 value of 304 ppb. Since activation of the GTS in May 2005 through subsequent deactivation of the GTS in 2013 to present, detected CVOCs at MW-11 have decreased by 92.36%.
- Monitoring well MW-12 increased in CVOCs relative to the prior sampling event. The CVOC concentration at MW-12 for the May 2023 sampling event is 221 ppb, an increase from the March 2023 value of 170 ppb. MW-12 is nearest to recovery well DR-2, in close proximity to the center of the building. Since activation of the GTS in May 2005 through subsequent deactivation of the GTS in 2013 to present, detected CVOCs at MW-12 have decreased by 98.25%.
- Monitoring well MW-13 had no change in CVOCs relative to the prior sampling event. The CVOC concentration at monitoring well MW-13 for the May 2023 sampling event was non-detect (ND), which was no change from the March 2023 sampling event, which was ND ppb. Since activation of the GTS in May 2005 through subsequent deactivation of the GTS in 2013 to present, detected CVOCs at MW-13 have decreased by 100%.
- Monitoring well MW-14 increased in CVOCs relative to the prior sampling event. The CVOC concentration at MW-14 for the May 2023 sampling event is 60.00 ppb, a decrease from the March 2023 value of 63.9 ppb. MW-14 is nearest to recovery well DR-3. Since activation of the GTS in May 2005 through subsequent deactivation of the GTS in 2013 to present, detected CVOCs at MW-14 have decreased by 80.95%.
- Monitoring well MW-15 increased in CVOCs relative to the prior sampling event. The CVOC concentration at MW-15 for the May 2023 sampling event was 6.9 ppb, an increase from the March 2023 sampling event, which was non-detect. MW-15 is nearest to recovery well DR-4. Since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present, the detected CVOCs at MW-15 have decreased by 99.05%.

Six (6) groundwater monitoring wells are located along the Site's north perimeter, down-gradient from the area of impacted groundwater (MW-5, MW-6, MW-7, MW-16, MW-17, and MW-21). The current analytical data exhibits an overall decrease in CVOCs at the sampled monitoring wells along the north perimeter, compared to the March 2023 sampling event.

Monitoring wells MW-18, MW-19R and MW-21 are located off-site along Torrance Place. These three (3) wells are considered to be beyond the historic radius of influence for the GTS. The current analytical results indicate a detection of 6.3 ppb for CVOCs for MW-18. Monitoring well MW-21 was added to the sampling list at the request of the NYSDEC beginning with the June 2015 sampling event. Well MW-19R had a CVOC concentration that was non-detect, and well MW-21 had a CVOC concentration of 5.80 ppb during the May 2023 sampling event.

Laboratory analytical reports are included in Appendix A. Monitoring well locations and concentrations of CVOCs are shown on Figure 2 – May 2023 Distribution of Groundwater Analytical Results: Monitoring Wells.

4.3 SENTRY WELL GROUNDWATER ANALYSIS SUMMARY

Sentry groundwater monitoring wells monitor a separate occurrence of contaminated groundwater at the Gowanda Electronics Site (NYSDEC Site 905025), immediately east of Industrial Place and east of the Day Habilitation Center property. The eastern sentry wells sampled for this event were MW-19R and MW-4. CVOCs were not detected in monitoring wells MW-19R and MW-4. Results for MW-20, a well situated on the eastern side of the site north of MW-4 and south of MW-19R, were non-detect.

The Gowanda Electronics CVOC plume may be migrating to an area near Industrial Place and CVOCs are intermittently detected in MW-19R. The Gowanda Electronics CVOC groundwater plume does not appear to

extend to the Day Habilitation Center property, based on consistent non-detect values at the eastern sentry wells. Conversely, impacted groundwater from the Day Habilitation Center does not appear to extend off-site to the east toward Industrial Place. A ISCO injection application was implemented for the Gowanda Electronics site in June 2014.

Laboratory analytical results are included in Appendix A. Sentry well locations and analytical results are shown on Figure 2.

4.4 RECOVERY WELL GROUNDWATER ANALYSIS SUMMARY

During the May 2023 sampling event, all of the seven (7) recovery wells were sampled.

The May 2023 analytical results indicate detection of CVOCs in all seven (7) recovery well samples that include: TCE, Cis-DCE, VC and Trans-1,2-DCE. CVOCs detected in the seven (7) recovery wells for which past data is available have decreased overall since activation of the GTS in May 2002. The average decrease in CVOCs for the current sampling event is 91.48% relative to concentrations prior to GTS activation in 2002. Relative percent decrease in CVOCs for all monitoring wells and recovery wells are shown on Table 4 – Percent Reductions in Total Groundwater CVOCs.

- The concentrations of CVOCs at recovery well DR-1 decreased from March 2023 to May 2023. The CVOC concentration at DR-1 for the May 2023 sampling event is 370.00 ppb, a decrease from the March 2023 value of 570.0 ppb. The current sampling event indicates a decrease in CVOCs at DR-1 of 95.38% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present. Recovery well DR-1 is located in the source area.
- The concentrations of CVOCs at recovery well DR-2 decreased from March 2023 to May 2023. The CVOC concentration at DR-2 for the May 2023 sampling event is 77.00 ppb, a decrease from the March 2023 value of 86.0 ppb. CVOCs at DR-2 have decreased by 95.71% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.
- The concentrations of CVOCs at recovery well DR-3 increased from March 2023 to May 2023. The CVOC concentration at DR-3 for the May 2023 sampling event is 53.00 ppb, an increase from the March 2023 value of 41.0 ppb. The decrease in CVOCs at DR-3 of 97.22% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.
- The concentrations of CVOCs at recovery well DR-4 decreased from March 2023 to May 2023. The CVOC concentration at DR-4 for the May 2023 sampling event is 14.00 ppb, a decrease from the March 2023 value of 15.00 ppb. The current sampling event indicates a decrease in CVOCs at DR-4 of 99.21% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.
- The concentrations of CVOCs at recovery well G-1 increased from March 2023 to May 2023. The CVOC concentration at G-1 for the May 2023 sampling event is 34.50 ppb, an increase from the March 2023 value of 33.50 ppb. The current sampling event indicates a decrease in CVOCs at G-1 of 93.85% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.
- The concentrations of CVOCs at Recovery well G-2 decreased from March 2023 to May 2023. The CVOC concentration at G-2 for the May 2023 sampling event is 24.00 ppb, a decrease from the March 2023 value of 30.0 ppb. The current sampling event indicates a decrease in CVOCs at G-2 of 93.77% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.
- The concentrations of CVOCs at recovery well G-3 increased from March 2023 to May 2023. The CVOC concentration at G-3 for the May 2023 sampling event is 138.00 ppb, an increase from the March 2023 value of 127.0 ppb. The current sampling event indicates an increase in CVOCs at G-3 of 65.76% since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.

Laboratory analytical results are included in Appendix A. Recovery well locations and analytical results are shown on Figure 3 – May 2023 Distribution of Groundwater Analytical Results: Recovery Wells.

4.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLES

The VOCs were not detected in the equipment blank or trip blank in May 2023.

A field duplicate (labeled as MW-X) was taken from MW-11. The results of this field duplicate were generally consistent with the results of the sample labeled MW-11 as shown in Tables 2 and 3.

Laboratory analytical results are included in Appendix A.

5.0 REMEDIATION SYSTEM EFFICIENCY

5.1 IMPACT OF THE GTS RECOVERY WELLS

Groundwater analytical charts for the seven (7) sampled recovery wells and the nearest relative monitoring well were created to illustrate the impact of the GTS on recovery wells at the Day Habilitation Center.

Chart 1 compares the sample results from the sampled groundwater recovery wells (DR-1, DR-2, DR-3, DR-4, G-1, G-2, G-3). The GTS operated from May 2005 to 2013. All seven (7) sampled groundwater recovery wells have demonstrated a general decrease in CVOC concentration since activation of the GTS in May 2005, through subsequent deactivation of the GTS in 2013 to present.

Chart 2 displays the relationship between monitoring wells MW-1, MW-11, and recovery well DR-1. The current CVOCs at MW-1 (600.00 ppb) show an increase from the March 2023 sampling event (449.00 ppb). The current CVOCs at MW-11 (355.00 ppb) show an increase from the March 2023 sampling event (304.0 ppb). The current CVOCs at DR-1 (370.00 ppb) shows a decrease from the March 2023 sampling event (570.0 ppb).

Chart 3 compares analytical results between recovery well DR-2 and MW-12. These wells are located north of the wells outlined in Chart 1 and represent the northern limit of the highest concentration within the source area. The current CVOCs at MW-12 (221.00 ppb) show an increase from the March 2023 sampling event (170.0 ppb). The current CVOCs at recovery well DR-2 (77.00 ppb) show a decrease from the March 2023 sampling event (86.0 ppb).

Chart 4 compares the relationship between wells DR-3 and MW-14 which are located in the central portion of the Gowanda Day Habilitation building. The current CVOCs at MW-14 (60.00 ppb) show a decrease from the March 2023 sampling event (63.90 ppb). The current CVOCs at recovery well DR-3 (53.00 ppb) show an increase from the March 2023 sampling event (41.0 ppb).

Chart 5 compares analytical results between recovery well DR-4 and MW-15. These wells are located at the center-north portion of the building. The current CVOCs at MW-15 (6.90 ppb) show an increase from the March 2023 sampling event (non-detect). The current CVOCs at recovery well DR-4 (14.0 ppb) show a decrease from the March 2023 sampling event (15.0 ppb).

Chart 6 compares analytical results between recovery well G-1 and monitoring well MW-17. The recovery well is located in the northern portion of the building and MW-17 is located along the northern property line. The current sampling event CVOCs at recovery well MW-17 (181.00 ppb) showed an increase from the March 2023 sampling event (7.30 ppb). The current CVOCs at recovery well G-1 (34.50 ppb) show an increase from the March 2023 sampling event (33.50 ppb).

Chart 7 compares analytical results between recovery well G-2 and MW-7 which are located in the northeastern portion of the building. This area is at the apparent western perimeter of the plume. Recovery well G-2 had a CVOC concentration of 24.00 ppb, which shows a decrease from the March 2023 sampling event (30.0 ppb). The May 2023 CVOCs of MW-7 (50.00 ppb) show an increase from the March 2023 sampling event (22.0 ppb).

Chart 8 compares analytical results between recovery well G-3 which is located at the northeastern portion of the building and MW-17 which is located along the northern property boundary of the plume. This area is at the western perimeter of the plume. The May 2023 CVOCs at monitoring well MW-17 (181.00 ppb) showed an increase from the March 2023 sampling event (7.30 ppb). The current CVOCs at recovery well G-3 (138.00 ppb) show an increase from the March 2023 sampling event (127.0 ppb).

5.2 EXTENT OF IMPACTED GROUNDWATER

The bulk of the contaminant mass appears to be concentrated beneath the building in the source area, in the vicinity of monitoring well MW-1 and MW-11, extending north to recovery well DR-2. In May 2023, this area has had samples with the highest concentrations of impacted groundwater, consistent with prior sampling events. The concentration of CVOCs in the source area have been reduced as a result of historic cleanup activities.

When operating, the GTS maintained an area of hydraulic containment for recovery wells within the source area of the plume. The GTS was successful in hydraulically containing most of the contaminant plume on the property and minimizing further migration. The GTS was not operating during this monitoring period and overall sample results are similar to previous quarterly sampling results. Therefore, residual CVOCs in the plume have not migrated and appear to be stabilized when compared to sample results with the operation of the GTS during previous monitoring events.

Overall reduction of contaminants in the majority of the monitoring and recovery wells has occurred due to completed remediation at the Site when compared to pre-remediation levels during the past fifteen (15) years of sampling.

5.3 FUTURE GROUNDWATER MONITORING AND ANALYSIS ACTIVITIES

The condition of the SVE and GTS was discussed with the NYSDEC representative, and it was agreed upon that these remediation systems would be deactivated to allow for groundwater level recovery during the implementation of an ISCO groundwater treatment and subsequent sampling events. Bergmann performed an ISCO injection application in May (round 1) and September (round 2) 2015 to address the remaining residual contamination at the Site in lieu of costly repair of the SVE and GTS. The SVE and GTS equipment remains on site in the event that re-activation is required in the future. However, system components may need repair and/or replacement prior to re-activation. The next site-wide groundwater sampling and laboratory analysis event is scheduled for Q3 2023. Future groundwater sampling events will be conducted to track the effects of the ISCO injections on impacted groundwater and to evaluate seasonal changes in water table elevations. In addition, the evaluation of groundwater flow direction and movement of plume at the site will be monitored and recorded during future sampling events.

TABLES

Table 1 Groundwater Elevations and Field Measurements May 2023

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

		Monitoring Wells								
	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10
Casing Elevation*	778.23	778.08	778.38	778.43	778.61	781.10	780.94	781.33	782.61	780.02
Depth to Groundwater (btoc)	6.40	6.10	6.68	7.62	11.20	13.54	13.55	9.79	9.35	7.08
Groundwater Elevation	771.83	771.98	771.70	770.81	767.41	767.56	767.39	771.54	773.26	772.94
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	16.02	17.15	16.30	15.78	13.95	22.88	21.80	17.65	20.96	19.44
Bottom of Well Elevation	762.21	760.93	762.08	762.65	764.66	758.22	759.14	763.68	761.65	760.58
Thickness of Water Column	9.62	11.05	9.62	8.16	2.75	9.34	8.25	7.86	11.61	12.36
Minimum Purge Volume (gal)	1.57	1.80	1.57	1.33	0.45	1.52	1.3	1.28	1.89	2.0
3 Volumes	4.70	5.40	4.70	3.99	1.34	4.57	4.03	3.84	5.68	6.04
Actual volume purged	4.75	5.5	4.75	4.0	1.5	4.75	4.25	4.0	5.75	6.25
Comments	Flush = $-0.29'$	Flush = $-0.30'$	Flush = $-0.23'$	Flush = -0.34'	Flush = -0.24 '	Stickup=2.17	Stickup=2.17	Stickup=2.84	Stickup=2.05'	Stickup=2.56'

		Monitoring Wells									
	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19R	MW-20	MW-21
Casing Elevation	778.58	778.50	778.39	778.43	778.38	780.43	779.85	776.39	774.2	778.04	774.76
Depth to Groundwater (btoc)	6.48	6.80	7.48	10.84	10.42	13.19	13.43	9.68	8.3	10.18	9.9
Groundwater Elevation	772.10	771.70	770.91	767.59	767.96	767.24	766.42	766.71	765.9	767.86	764.86
Well Diameter	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"	2"
Product Thickness	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Well Depth (btoc)	15.48	17.38	17.40	18.15	19.80	23.26	25.18	25.0	17.67	14.75	15.82
Bottom of Well Elevation	763.10	761.12	760.99	760.28	758.58	757.17	754.67	751.39	756.53	763.29	758.94
Thickness of Water Column	9.00	10.58	9.92	7.31	9.38	10.07	11.75	15.32	9.35	4.57	5.92
Minimum Purge Volume (gal)	1.47	1.72	1.62	1.19	1.53	1.6	1.92	2.50	1.5	0.7	1.0
3 Volumes	4.40	5.17	4.85	3.57	4.59	4.92	5.75	7.49	4.57	2.23	2.89
Actual volume purged	4.50	5.25	5.00	3.75	4.75	5.00	5.75	7.75	4.75	2.25	3.00
Comments	Flush = $-0.23'$	Flush = $-0.35'$	Flush = -0.48 '	Flush = -0.39 '	Flush = -0.38	Stickup=2.26'	Stickup=1.18'	Flush =-0.26'	Flush ='0.36'	Flush=-0.43'	Flush =71'

		Recovery Wells						
	DR-1	DR-2	DR-3	DR-4	G-1	G-2	G-3	
Casing Elevation	779.66	779.93	779.78	779.64	779.83	779.72	779.42	
Depth to Groundwater (btoc)	7.68	7.45	11.89	11.80	12.02	11.92	10.39	
Groundwater Elevation	771.98	772.48	767.89	767.84	767.81	767.80	769.03	
Well Diameter	4"	4"	4"	4"	4"	4"	4"	
Product Thickness	ND	ND	ND	ND	ND	ND	ND	
Well Depth (btoc)	18.06	18.06	20.45	19.69	22.98	20.72	18.15	
Bottom of Well Elevation	761.6	761.87	759.33	759.95	756.85	759	761.27	
Thickness of Water Column	10.38	10.61	8.56	7.89	10.96	8.80	7.76	
Minimum Purge Volume (gal)	6.78	6.93	5.59	5.15	7.16	5.75	5.07	
3 Volumes	20.334	20.78	16.77	15.46	21.47	17.24	15.20	
Actual volume purged	20.5	21	17.0	15.50	21.5	17.25	15.25	
Comments	Stickup=0.85'	Stickup=1.06'	Stickup=0.95'	Stickup=0.84'	Stickup=1.03'	Stickup=0.86'	Vaulted well	

NOTES

btoc = Below top of casing (inner riser)

All measurements are in feet, referenced to Mean Sea Level

NS = Not Sampled

ND = No floating product encountered

Minimum purge volume = 3 X well volume, 0.163 gallon per foot in a 2" diameter well. 0.653 gallon per foot in a 4" diameter well.

Monitoring well MW-19 was removed and the area restored on July 23, 2003 immediately after the well was developed, purged of 3 volumes and sampled.

The borehole for MW-19 was backfilled with a cement-bentonite grout after the PVC screening and casing was successfully removed.

Wells MW-19R, MW-20 and MW-21 were installed in October 2004.

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-1

Sampling Events

Analyte	ın ppb	Mar 2023	May 2023	NYS Guidance Value
TCE		400.00	380.00	5.0
CIS		49.00	220.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	449.00	600.00	

Monitoring Well MW-2

Sampling Events

Analyte i	n ppb 'Mar 2(023 May 202	NYS Guidance	Value
TCE	ND	ND	5.0	
CIS	ND	ND	5.0	
TRANS	ND	ND	5.0	
VC	ND	ND	2.0	
TCA	ND	ND	5.0	
Tot	al VOCs ND	ND		

Monitoring Well MW-3

Sampling Events

Camping L	7 01110			
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-4

Sampling Events

Analyte in ppb	Mar 2023	May 2023	NYS Guidance Value
TCE	ND	ND	5.0
CIS	ND	ND	5.0
TRANS	ND	ND	5.0
VC	ND	ND	2.0
TCA	ND	ND	5.0
Total VOC:	s ND	ND	

Sample Date: 5/19/2023

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Monitoring Well MW-5

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
Т	otal VOCs	ND	ND	

Monitoring Well MW-6

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		34.00	34.00	5.0
TRANS		ND	ND	5.0
VC		28.00	25.00	2.0
TCA		ND	ND	5.0
	Total VOCs	62.00	59.00	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 5/19/2023

Sample Date: 5/19/2023

Sample Date: 5/19/2023

Page 1 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-7

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		22.00	50.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	22.00	50.00	

Monitoring Well MW-8

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS	·	ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-9

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-10

Sampling Events

Sampling Events						
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value		
TCE		ND	ND	5.0		
CIS		ND	ND	5.0		
TRANS		ND	ND	5.0		
VC		ND	ND	2.0		
TCA		ND	ND	5.0		
	Total VOCs	ND	ND			

Sample Date: 5/19/2023

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Monitoring Well MW-11

Sampling Events

Camping L				
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		230.00	220.00	5.0
CIS		74.00	120.00	5.0
TRANS		ND	9.30	5.0
VC		ND	5.70	2.0
TCA		ND	ND	5.0
	Total VOCs	304.00	355.00	

Monitoring Well MW-12

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE	FF	20.00	41.00	
				5.0
CIS		150.00	180.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	170.00	221.00	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 5/18/2023

Sample Date: 5/19/2023

Sample Date: 5/19/2023

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-13

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-14

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		7.9	8.00	5.0
CIS		56.0	52.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	63.9	60.00	

Monitoring Well MW-15

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	6.90	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	6.90	

Monitoring Well MW-16

Sampling Events

Sampling Evente						
Analyte in pp	b 'Mar 2023	'May 2023	NYS Guidance Value			
TCE	ND	ND	5.0			
CIS	23.00	33.00	5.0			
TRANS	ND	ND	5.0			
VC	ND	ND	2.0			
TCA	ND	ND	5.0			
Total VC	Cs 23.00	33.00				

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Sample Date: 5/19/2023

Monitoring Well MW-17

Sampling Events

<u> </u>				
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		7.30	11.00	5.0
CIS		ND	170.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	7.30	181.00	

Monitoring Well MW-18

Sampling Events

<u> </u>	Camping Evente					
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value		
TCE		ND	ND	5.0		
CIS		ND	6.30	5.0		
TRANS		ND	ND	5.0		
VC		ND	ND	2.0		
TCA		ND	ND	5.0		
	Total VOCs	ND	6.30			

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Monitoring Well MW-19R

Sample Date: 5/19/2023

Sampling Events

Analyte	in ppb	'Mar 2022	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-20

Sample Date: 5/18/2023

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

Monitoring Well MW-21

Sample Date: 5/19/2023

Sampling Events

Analyte	in ppb	'Mar 2023	'Mar 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		5.20	5.80	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	5.20	5.80	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Page 4 of 6

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well DR-1

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		470.00	270.00	5.0
CIS		100.00	100.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA	·	ND	ND	5.0
	Total VOCs	570.00	370.00	

Recovery Well DR-2

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		19.00	15.00	5.0
CIS		67.00	62.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	86.00	77.00	

Recovery Well DR-3

Sampling Events

<u> </u>				
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		19.00	18.00	5.0
CIS		22.00	35.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	41.00	53.00	

Recovery Well DR-4

Sampling Events

Ouriping L	. 7 01110			
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		15.00	14.00	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	15.00	14.00	

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Recovery Well G-1

Sampling Events

Sampling L	- Verito			
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		7.50	6.50	5.0
CIS		26.00	28.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	33.50	34.50	

Recovery Well G-2

Sampling Events

Ournpling E				
Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		30.00	24.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	30.00	24.00	

ND = Non-detect

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Sample Date: 5/18/2023

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

Recovery Well G-3 Sampling Events Sample Date: 5/18/2023

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		17.00	18.00	5.0
CIS		110.00	120.00	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	127.00	138.00	

Duplicate Blank (MW-11) Sample Date: 5/18/2023

Sampling Events

			NYS
			Guidance
Analyte	in ppb	'May 2023	Value
TCE		210.00	5.0
CIS		120.00	5.0
TRANS		9.00	5.0
VC		5.60	2.0
TCA		ND	5.0
	Total VOCs	344.60	

Equipment Blank Sample Date: 5/19/2023

Sampling Events

Analyte	in ppb	'Mar 2023	'May 2023	NYS Guidance Value
TCE		ND	ND	5.0
CIS		ND	ND	5.0
TRANS		ND	ND	5.0
VC		ND	ND	2.0
TCA		ND	ND	5.0
	Total VOCs	ND	ND	

ND = Non-detect Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

NS = Not Sampled. No analysis performed during this sampling event.

Results expressed as parts per billion (ppb).

Bold results exceed NYSDEC TOGS 1.1.1 Class GA, June 1998 re-issue (MTBE = April 2000 Addendum Guidance Value)

Table 3 Historic Groundwater Analysis Results Summary

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York VCA # V-00463-9

																		MONIT	DRING WE	LLS																			
	Total												Total	Total																									
	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Monitoring	May	Mar	Dec	Sep	Jun	Mar	Nov	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	Aug	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
Well Number	2023	2023	2022	2022	2022	2022	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013		2013	2012	2012	2012
	(ppb)	(dad)	(ppb)	(dad)	(nnh)	(nnh)	(nnh)	(nnh)	(dad)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(dad)	(ppb)	(nnh)	(dad)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(dad)	(nnh)	(ppb)	(nnh)	(dad)
MW-1	600.00	449.00	(ppb)	1 002 20	(PPD)	202.50	000.46	404.62	020 00	244.70	1 020 00	001.00	003.50	1 000 00	(PPD)	1 001 00	1 000 00	1 100 00	1 110 00	274.00	1.012.00	1 210 00	1 467 00	(ppu)	(ppu)	(PPD)	1 470 00	350.00	420.00	300.00	420.00	000.00	000.00	1 740 00	(990)	010.00	1 440 00	(ppb)	889.00
MW-2	ND	ND	009.00	ND	ND	302.39 ND	ND	404.62 ND	920.9U ND	0.29	ND	ND	993.50 ND	ND.	030.00	ND	1,000.00 ND	ND.00	1,110.00	NS	NS	NS	1,467.00	NS	NS	1,530.00	NC	33U.UU	430.00	NC.UU	420.00	990.00 NS	990.00	NS	NIC.	NC NC	NC NC	NS	NS
MW-3	ND	ND	0.33	1 14	1.04	0.25	ND	ND	1.31	1.14	ND	0.30	ND	ND	0.28	0.30	ND	ND	ND	ND	ND	ND	NO	NS	NS	NO	NO.	NO	NO	NO	NO.	NS	NO.	NO	NO	NO	NO	NS	NS.
MW-4	ND ND	ND ND	ND	ND	1.04 NS	0.25 ND	ND	ND ND	ND.	1.14 ND	ND	0.30 ND	ND	ND ND	0.28 ND	0.39 ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND
	ND ND	ND	0.69	ND 0.75	1.00	NU	1.20	1.50	ND 0.70	1.60	ND	0.51	0.42	0.47	0.52	0.90	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5 MW-6	59.00	62.00	100.00	184.00	89.00	92.21	112.00	95.00	78.00	81.20	66.00	79.41	64.80	99 10	92.64	86.63	81 OO	84.00	77.00	76.00	100.00	91.00	87.00	120.00	100.00	120.00	96.00	00.00	81 00	110.00	110.00	96.00	94.00	NS	99.00	NS OO OO	99.00	NS 70	85.70
	50.00		23.87	9.76	20.26	33.06	20.15					73.80	1.16	99.10	39.00	27.83	81.00 ND	84.00 ND	77.00 ND	76.00 ND		29.00		62.00				59.00		110.00	190.00	20.00	94.00 ND	130.00	19.00	93.00 ND	99.00 ND	86.70	
MW-7									94.74	173.67 ND											5.80					49.00	130.00	58.00		180,00					18.00	ND		151.56	
MW-8	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-9	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS_	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-11	355.00	304.00	291.40	350.00	200.10	420.60	495.40	386.90	490.70	546.50	584.00		604.50	699.30	937.40	1.059.00	489.30	282.00		1.160.00	470.00	525.00	646.00	445.00		1.060.00	630.00	444.00	500.00	451.00	375.00	450.00	710.00	880.00	510.00	570.00	790.00	498.00	617.00
MW-12	221.00	170.00	93.65	78.30	168.10	271.90	125.40	65.86	65.88	60.05	84.00	147.03	116.54	54.00	54.48	79.00	53.00	25.00	100.00	113.00	31.00	40.00	7.10	7.80	15.80	28.80	52.00	97.00	120.00	126.00	136.00	200.00	212.00	173.00	149.30	186.60	142.00	86.50	148.22
MW-13	ND	ND	2.06	0.96	2.06	5.11	1.83	0.95	2.40	1.34	ND	2.70	3.40	2.10	0.50	1.38	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-14	60.00	63.90	52.30	91.90	31.00	104.45	91.86	84.40	20.80	63.40	13.00	18.20	34.00	33.00	26.50	25.90	30.70	22.30	22.80	28.00	38.00	22.10	76.00	100.00	57.00	81.00	96.00	52.00	99.00	68.00	68.00	54.00	73.00	94.00	49.00	71.00	47.00	39.70	76.60
MW-15	6.90	ND	5.20	3.70	14.10	9.40	15.60	24.80	2.60	25.80	ND	5.00	2.90	7.60	8.10	4.90	ND	6.50	ND	ND	ND	7.40	11.00	23.80		9.90	14.00	8.10	9.80	32.00	31.00	6.10	ND	6.80	7.00	ND	12.90	26.26	6.25
MW-16	33.00	23.00	26.66	9.72	41.79	35.02	31.75	22.56	14.32	11.29	13.00	37.43	25.62	7.11	31.53	37.61	41.00	10.00	41.00	43.00	32.00	36.00	14.00	20.00	37.00	31.00	13.00	6.80	ND	5.20	9.40	21.00	24.00	20.00	8.40	24.00	18.00	4.36	12.20
MW-17	181.00	7.30	226.32	172.22	NS	85.32	85.27	230.86	173.60	271.20	295.00	266.20	16.20	193.01	342.00	277.00	218.00	265.00	112.50	5.10	222.00	396.00	375.00	465.00	425.00	460.00	410.00	NS	336.00	394.00	410.00	339.00	167.00	420.00	400.00	21.30	430.00	381.00	260.10
MW-18	6.30	ND	5.94	7.01	9.43	3.88	6.42	6.33	1.55	7.13	ND	2.27	0.73	1.60	3.10	2.80	ND	ND	ND	ND	6.30	ND	10.00	26.00	6.90	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	16.60	2.33
MW-19R	ND	ND	ND	0.22	0.32	0.30	0.29	0.34	0.50	0.36	ND	0.26	0.19	0.28	0.60	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.50	ND	ND
MW-20	ND	ND	ND	ND	ND	ND	ND	0.35	ND	0.88	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-21	5.80	5.20	16.35	25.48	6.35	7.76	15.27	19.16	5.60	32.04	11.00	5.90	23.50	24.49	18.33	NS	NS	NS	NS	NS	NS	NS	17.00	39.00	8.70	20.00	20.00	10.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-X (DUP)	344.60	567.00	281.30	215.80	1.20	109.45	6.50	ND	152.40	100.46	13.00	2.40	3.30	1,118.90	1,118.90	914.60	ND	ND	434.00	NS	490.00	DWS	1,705.00	879.00	550.00	1,720.00	410.00	360.00	407.00	300.00	400.00	870.00	990.00	1,850.00		186.80	1,450.00	521.00	913.00
EB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
																		RECO'	/ERY WEL	LS																			
	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
_	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs	VOCs
Recovery	May	Mar	Dec	Sep	Jun	Mar	Nov	Sep	Mar	Nov	July	June	Feb	Oct	Aug	July	Nov	August	May	April	Nov	Aug	Nov	Sep	Jun	Nov	Aug	Jun	Mar	Nov	Sep	Jun	Mar	Dec	Jul	Apr	Dec	Jun	Mar
Well Number	2023	2023	2022	2022	2022	2022	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2018	2018	2018	2018	2017	2017	2016	2016	2016	2015	2015	2015	2015	2014	2014	2014	2014	2013	2013	2013	2012	2012	2012
	(ppb)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(mmh)	(mmb)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(mmh)	(nnh)	(nnh)	(nnh)	(mmh)	(nnh)	(mmh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)	(nnh)
DR-1	370.00	670.00	940.40	225.90	341.00	662.50	598.60	98.05	485.30	117.90	909.00	1222.00	1122.60	912.60	1029.00	1832.00	1210.00	1510.00	1319.00	1070.00	1540.00	1970.00	617.00	610.00	910.00	210.00	160.00	NIC	21.70	63.00	55.00	75.00	122.00	87.00	73.00	92.00	43.00	20.20	673.00
DR-2	77.00		214.90		100 15	129 15	251.30		144 20	111.60	116.00	129.70	137.80	185.90	192 00	156.00	216.00	162.00	128.00	130.00	181.00	199.00	137.00			199.00	187.00	291.00	259.00			231.00	207.00			293.00			305.30
DR-3	53.00	41.00	69.30		85.71	75.20	94.88	05.40	66.77	81.73	63.00	81.80	67.70	99.70	101.00	91.00	73.00	87.00	125.00		48.00	NS	98.00	154.00		4E.00	76.00	92.00		181.00	210.00	83.00	89.00	122.00	62.00	72.00		116.96	
DR-3	14.00	15.00	28 10		24.40	29.00	34.60	24.10	31.90	42 34	29.90	30.50	32.40	40.60	46.60	40.00	27.20	48.00	21.20	34.00	46.00	62.00	79.00	95.00	63.00	94.00	140.00	03.00		156.00	149.00	96.00	04.00	123.00	70.00	13.00	90.00	110.95	24.90 ND
DR-4 G-1	34.50	33.50	28.10 53.85	31.25 87.50	44.40	47.21	34.60 53.68	34.10 51.83	31.90 45.82	100.60	29.90 53.00	37.60	50.10	70.00	46.60 78.70	50.40	74.60	48.00 77.00	40.00	22.00	70.00	73.50	79.00 85.00	105.60	59.70	94.00	110.00 ND	(1.00	147.00	101.00	105.00	96.00	79.00	06.00	79.00	37.00	90.00	122.60	65.58
G-1	24.00	30.00	53.85 44.58		67.69	47.21	52.67	51.83 45.40	64 38	37.46	54.00	37.60	30.10	70.00	90.00	69.00	25.00	68.00	50.00	46.00	8.50	73.50 NS	85.00 NS	105.60 ND	59.70 NC	80.30 NIS	29.00	00.00	49.00	34.00	37.00	52.00	14.00	69.00	91.00	50.00	122.00	75.30	41.90
													18.80	90.49					50.00									NS		34.00	37.00			68.00	81.00		132.20		
G-3	138.00	127.00	182.89	182.69	160.51	153.75	185.80	226.09	177.73	236.35	235.00	272.36	335.52	305.34	309.65	309.65	15.00	322.00	NS	NS	NS	NS	293.00	404.00	420.00	262.00	370.00	NS	NS	NS	NS	NS	82.00	NS	11.00	25.00	41.60	147.30	44.20

NS= This well not included in this samolino event.

ND = Nxt Detected, results less than Method Detection Limit.
Immacted north roorcev hire wells: MM-5, MM-6, MM-7, MW-16, MW-17, MW-21
All compounds are measured in parts per billion (roob).
VOC - Volatile Organic Compounds.
DUP - Dublicate Samole

8- Samole was broken in transit and not able to be analyzed
DWS-Different Well Samole than previously tested.

Total VOCs values are not the total VOCs detected, but the sum of TCE, CIS, TRANS, VC, and TCA detected.

Table 4 Percent Reductions in Total Groundwater VOC Gowanda Day Habilitation Center

Gowanda Day Habilitation Center 4 Industrial Place, Gowanda, New York

VCA #V-00453-9

	1 S.Reduction 1 S.Reduction 2002 is May 2002 is Out 2008 200 200 100 100 100 100 100 100 100 100
1	196.6% 130.3% de
March Marc	99.6% 99.6% 99
1	
1	
Secondary Seco	\$5.6% \$5.6% \$F
## SECONDAY	99.2% 99.2% 63
1	GB 17.65 G
1.	26.7% 6.7% -0.
1.	Not Samuel 10.8% 10
	Not Sampled 97.6% ST
	Not Samuled 95.2% 95
	76.6% 66.0% 76
1.	96.05 E.05 G
1	100.0% 100.0% 100
67	8575 575 30
97	8179 7839 G
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47.95 98.75 (2
HI COLOR WINDOWN	4.1% (04.8% (04
1001 B1	-175.0% -186.8% -13
100	73.6% (16.0% (16.0%)
1001 B1	m.c. m.c. m
	27.1% 96.0% 03
780.006720	
TRANSMAN BUY	200 0.0 20
	90.13% 60.83% 31.
1000 1000 1000 100 100 100 100 100 100	
PROFESSION Section Profession Profes	VIII 976 W

Place Awar - MONT, MONTS, MONT

D91 99.20% 30.20% <th>97.305 93.875 96.885 96.275</th> <th>95.70% 95.20% 96.30% 96.50%</th> <th>90,71% 90,81% 96,87% 96,87%</th> <th>82.02%</th> <th>91.77% SI.50 91.89% SI.50 91.19% SI.40</th> <th>5 95.076 5 95.076 5 97.076</th> <th>88.66% 96.21% 99.73%</th> <th>75.38% 76.38% 66.36%</th> <th>76.90% 66.3 76.90% 66.3 55.60% 36.6</th> <th>10% 41.00° 10% 61.00° 62% 33.70°</th> <th>1 71.60% 1 71.60%</th> <th>40.7% 80.7%</th> <th>70.0%</th> <th>15 -135.0% 5 75.7%</th> <th>70%</th> <th>0.E5</th> <th>30.8% 63.8%</th> <th>73.1% 60.</th> <th>70 6070</th> <th>64.65</th> <th>72.1%</th> <th>Nel Europied</th> <th>96.7% Bi-3%</th> <th>10.6%</th> <th>86.0%</th> <th>77.0%</th> <th>SCEN III</th> <th>1% 99.0%</th> <th>99.3%</th> <th>86.8%</th> <th>91.6%</th> <th>87.8%</th> <th>96.1% 96</th> <th>Ph 1647</th> <th>5 902</th> <th>% 99.3</th> <th>25 86.05</th> <th>96.7%</th> <th>86.8%</th> <th>91.0%</th> <th>89.2%</th> <th>0.6% N</th> <th>16 BG</th> <th>1 103</th>	97.305 93.875 96.885 96.275	95.70% 95.20% 96.30% 96.50%	90,71% 90,81% 96,87% 96,87%	82.02%	91.77% SI.50 91.89% SI.50 91.19% SI.40	5 95.076 5 95.076 5 97.076	88.66% 96.21% 99.73%	75.38% 76.38% 66.36%	76.90% 66.3 76.90% 66.3 55.60% 36.6	10% 41.00° 10% 61.00° 62% 33.70°	1 71.60% 1 71.60%	40.7% 80.7%	70.0%	15 -135.0% 5 75.7%	70%	0.E5	30.8% 63.8%	73.1% 60.	70 6070	64.65	72.1%	Nel Europied	96.7% Bi-3%	10.6%	86.0%	77.0%	SCEN III	1% 99.0%	99.3%	86.8%	91.6%	87.8%	96.1% 96	Ph 1647	5 902	% 99.3	25 86.05	96.7%	86.8%	91.0%	89.2%	0.6% N	16 BG	1 103
1992 96.905 96.775 96.275 96.	90.075 90.005 90.205	91.075 91.375 91.675	90.30% 96.87% 96.30%	82.025 82.025	91.89% NL 80 96.19% NL 60	5 54.0% 5 94.0%	96.21% 99.73%	76.38% 66.36%	76.97% 66.1 55.67% 36.6	12% 63.00° 62% 33.77°	h 71.60% h 60.33%	60.7% 82.7%	70.0%	79.7%	76%	43.8%																												
\$552 \$6415 \$1225 \$0.275 \$6.000 \$6.000 \$155. \$155	96,825 96,225	96.975	96,87% 96,36%	83.32% M.O.C.	96,19% 96.46	14.00	89.73%	46.36%	38.61% 36.60	EZTS 33.779																																		
DESCRIPTION	96,22%	98.62%	96,26%														Not Stampled	38.7% (1.	2% 18.3%	70.1%	80.2%	41.6%	63.0% (68.7%	07.7%	63.6%	41.6%	19.3% 98	EN 90.1%	87.2%	82.1%	98.3%	85.0%	20.4% 26	25 952	5 97.41	AN 967	EN 95.67	6 90.00	88.7%	96.9%	90.7%	SECT T	4% 877	4 85
0-1 93.605 93.605 93.105 93.60 0-2 93.775 93.275 84.675 94.97 0-3 93.785 94.675 94.675 94.77									96.23% 96.2	27% 94.585	h 99.36%	99.7%	96.6%	5 96.6%	96%	93.9%	93.9%	10.8% RE	Ph 10.7%	89.7%	87.2%	91.7%	\$2.0% \$1.8%	12.1%	BLES.	12.5%	90.8% SS	97.9%	96.9%	85.1%	100.0%	89.2%	92.7% 96	75 19.7	5 85.00	Ph 907	70 10.00	9 99.00	96.2%	92.7%	90.7%	eran r	7% 99.	A 80:
9.2 93.775 92.275 86.675 96.787 9.2 93.795 86.675 86.675 86.675				89.165	90.68% 90.58	Th #1.52%	90.27%	81.27%	79.00% 60.1	16% 60.875	h 74.90%	62.8%	61.7%	k 80.7%	80%	76.1%	74.1%	37.7% dr.	6% 10.7%	#12.09	133.0%	66.1%	27.3% 69.8%	47.7%	33.0%	61.3%	63.6% 87	25 23.8%	90.3%	87.6%	BE ON	87.6%	10.8% E7	7% 91.0	5 9647	A 102	75 75.07	6 93.9%	767%	77.8%	68.7%	SEE Y	CS 277	4 43
0.0 65.76% 65.67% M.62% M.67%	85.780	F7 67%	88 77%	86 775	H 1170 E3 28	Th 90.26%	83.87%	89.10%	90.37% 68.0	CFN 68.201	5 79.69%	91.2%	76.0%	12.6%	863	100.0%	Not Stampled 1940	Sampled 100	Oh Md Xanyle	ed Not Earspied	90.1%	Not Sampled	83.7% BE-0%	80.9%	81.7%	99.1%	71.4% 79	2% E7.0%	69.7%	80.6%	89.7%	PT 700	E3.00 E7	TO 80.00	30.41	470 971	ED 100 00	0 000	40.7%	27.6%	10 ES	rama a	en 14	
	36.67%	60.17%	61,83%	13.925	£3.90% MARC	E 61.30%	41.69%	32.62%	16.75% 36.2	23% 24.23%	h 23.19%	96.3%	20.1%	% Not Stampted	d Not Sampled	Not Sampled	Not Xampled	27.3% 0:	2% 42%	38.0%	8.2%	16d Sampled 2	of Europeal Not Europe	ed Not Earspied	Not Xampled	79.7%	76A 1	A NA	76A	765	101.	105	NA.	50 N	A N	NA.	10 10	A 55	NA.	NA.	30	70	55	6
Owall Reduction 91.68% 91.36% 85.30% 87.60%	RT 66%	88.30%	88.56%	85.99%	88.00% RT 31	5 83-05	86.87%	44.08%	65.16% 62.0	D8% 37.895	h 23.07%	67.2%	28.9%	h 37.2%	14.6%	40.4%	46.4%	46.3% 41.	25 60.6%	60.6%	67.7%	62.6%	67.7% 60.1%	34.9%	69.3%	72.8%	62.8% 90	PE 90.3%	80.7%	80.2%	91.8%	81.8%	90.1% 90	9% 83.2	b 93.81	A 90.7	76 81.79	A 87.8%	81.2%	89.8%	87.2%	A15 77	di 80.7	4 667

LE 5																																			
Received by ALS on 19-May-2	3																																		_
ON NG DATE		NYS Groundwater Standard Guidanc L	MW-1		MW-3 19-May-23		MW-5					MW-Q	MW-10	MW-11	MW-12	MW-13	MV	I-14 Mi I-May-23 1	F-15	MW-16	NV-17 MW-15	MW-19R	MW-20	MW-21	DR-1 15-May-23	DR-2	DR-3	DR-4	G-1	G-2			EQUIP. BLANK 19-May-23		
DATE a D		Standard Guidanc (nits 19-May-23	19-May-23	19-May-23	19-May	18-Mb	Asv-23 19	l-May-23	15-May-23	19-May-23		19-May-23	18-May-23	15-May		n-23 1		5-May-23	18-May-23	15-May-23 19-May-	23 19-May-3				18-May-23		18-May-23	15-May-23	15-May-23	18-May-23		19-May-23	16-May-23	
CALIFFE	_	THOSE 6 VEGS		i anara	Ti iron	1 invent	Ti inin	T I I I I I	11100	4 1100	1100	- p		anare.	1 inare	Ti inas	1 inem	i inin	II areas	110000	Tiran	1 invent) interes	I i incre	process pro-	- 111	nem jii	nn i	1000	inin	ion jin	n	1111	4 11100	-
PARAMETER	PRODUCT	7																																	PARAMETER
chloride	NYTCL-8260-8	50 -	of <25.00	ust <5.00	ual <5.00	(d) (5.0	0 us1 <51	1zu 00.5	<5.00 usil	<5.00 ual	<5.00 us	st <5.00 to	d1 <5.00	ust <5.00	us/1 <5.00) upl <5.	00 ust	<5.00 ust	<5.00 ust	<5.00 us/l	<5.00 upl <5.00	ust <5.00	ust <5.00	ust <5.00	us/1 <13.00 u	of <5.00 u	ra1 <5.00 to	45.00 Izu	ust <5.00 u	val <5.00	unit <5.00 us	ft <5.00 us	of <5.00 usf	<5.00 us	/l Methylene chloride
ethane	NYTCL-8260-I				ug1 <5.00																<5.00 ugit <5.00								ugt <5.00 u			ft <5.00 ug	at <5.00 ugt	<5.00 ug	(I 1,1-Dichloroethane
schloride	NYTC: 5250-1	7.0	el (25.00	ugt <5.00	ugi	101 60	0 ugi csi	5.00 031	<5.00 USI	4500 ugi	45.00 10	1 500	g1 C5.00	ug1 <5.00	1001 CS.00	J ugi co.	0 ugi	-5.00 ugt	45.00 Ug1	45.00 ugil	<5.00 ugil <5.00 <5.00 ugil <5.00	ugi 6.00	ugi	ug1 <5.00	ugii c13.00 u	ol 600 u	g1 c5.00 t	ugt 6.00 I	ug1 <5.00 u	agii <5.00	ugi 6300 ug	n c5.00 ug	31 CS.00 US1	<5.00 ug	// Codes Introductor
propane	NYTCL-8280-8	2 1 -	of <25.00	upf <5.00	up1 <5.00	up1 <5.0	0 up1 <5.1	5.00 ust	<5.00 upl	<5.00 up/	<5.00 us	of <5.00 to	of <5.00	ua1 <5.00	up/ <5.00	9 up1 <5.	tau 00	<5.00 ust	<5.00 us1	<5.00 up/l	<5.00 upl <5.00	up1 <5.00	ug1 <5.00	ual <5.00	up/1 <13.00 u	of <5.00 u	of <5.00 to	ust <5.00	up1 <5.00 u	93	up1 <5.00 up	f <5.00 up	of <5.00 upl	<5.00 up	// 1.2-Dichloropropane
																																			Dbromochloromethane
oethane	NYTCL-8260-8	1 .	ig1 <25.00	ugit <5.00	ugit <5.00	up1 <5.0	0 ugil <5.1	5.00 ugt	<5.00 ug8	<5.00 ug/	<5.00 up	st <5.00 to	c0.00	ugt <5.00	ug/1 <5.00) ugit <5.	00 ug1	<5.00 ugt	<5.00 ugt	<5.00 ug/l	<5.00 ugil <5.00	up1 <5.00	ugt <5.00	ug1 <5.00	ug/l <13.00 u	of <5.00 u	ig1 <5.00 to	45.00 I gu	ug1 <5.00 u	ogli <5.00	ugit <5.00 ug	ft <5.00 ug	31 <5.00 ug/	<5.00 ug	1,1,2-Trichloroethane
thene	NYTCL-8260-8	2 5 -	ig1 <25.00	ugt <5.00	ugl <5.00	up1 <5.0	0 ug1 <5.1	5.00 ugt	<5.00 ug/	<5.00 ug/	<5.00 up	at <5.00 i	g1 <5.00	ugt <5.00	ug/l <5.00) ugt <5.	00 ug1	<5.00 ugt	<5.00 ugt	<5.00 ug/l	<5.00 ugi <5.00 <5.00 ugi <5.00	up1 <5.00	ugt <5.00	ugt <5.00	ugit <13.00 u	of <5.00 u	g1 <5.00 u	ugt <5.00 i	ugt <5.00 u	45.00 lgs	upt <5.00 up	/I <5.00 ug	at <5.00 ugt	<5.00 ug	/I Tetrachloroethene
ne ometiane	NYTC: 5250-1	9 9	el (25.00	ugt <5.00	ugi	101 60	0 ugi csi	5.00 031	<5.00 USI	45.00 00	45.00 10	1 500	g1 C5.00	ug1 <5.00	1001 CS.00	J ugi co.	0 ugi	-5.00 ugt	45.00 Ug1	45.00 ugil	<5.00 ugil <5.00	ugi 6.00	ugi	ug1 <5.00	ugii c13.00 u	ol 600 u	g1 c5.00 t	ugt 6.00 I	ug1 <5.00 u	agii <5.00	ugi 6300 ug	n c5.00 ug	31 CS.00 US1	<5.00 ug	// Cristicolinatine
thane	NYTCL-8250-1	2 0.6	101 <25.00	upt <5.00	up1 <5.00	up1 <5.0	0 101 <51	5.00 Ug1	<5.00 Upl	<5.00 ugi	<5.00 us	1 45.00	91 <5.00	up1 <5.00	ug1 <5.00	9 upl <5	o lugi	<5.00 ust	<5.00 us1	<5.00 up/	<5.00 ugit <5.00	up1 <5.00	ust <5.00	up1 <5.00	up1 <13.00 u	of <5.00 u	g1 <5.00 U	ua1 <5.00	up1 <5.00 u	up/1 <5.00	up1 <5.00 up	1 <5.00 up	45.00 Upl	<5.00 up	fl 1.2-Dichloroethane
roethane	NYTCL-8280-8	2 5.0 -	of <25.00	usf <5.00	ug1 <5.00	up1 <5.0	0 ua1 <5.0	5.00 us1	<5.00 usi	<5.00 up/	<5.00 us	of <5.00 to	of <5.00	ua1 <5.00	up1 <5.00	9 upl <5.	tou oc	<5.00 ust	<5.00 us1	<5.00 up/	<5.00 upl <5.00	up1 <5.00	ug1 <5.00	ua1 <5.00	upf <13.00 u	of <5.00 u	of <5.00 u	us! <5.00 I	up1 <5.00 u	<u>5</u>	up1 <5.00 up	f <5.00 up	al <5.00 ual	<5.00 up	1.1.1-Trichloroethane
	NYTCL-8260-8	- 50	ig1 <25.00	ugit <5.00	ugit <5.00	up1 <5.0	0 ug1 <5.1	5.00 ugt	<5.00 ug8	<5.00 ug/	<5.00 up	st <5.00 to	g1 <5.00	ugt <5.00	ug/1 <5.00) ugit <5.	00 ug1	<5.00 ugt	<5.00 ug1	<5.00 ug/l	<5.00 ugit <5.00	ug1 <5.00	ugt <5.00	ug1 <5.00	ugit <13.00 u	of <5.00 u	g1 <5.00 t	45.00 I gu	ug1 <5.00 u	ugil <5.00	ugit <5.00 ug	fl <5.00 ug	31 <5.00 ug1	<5.00 ug	(I Bromodichloromethane
chloropropene	NYTCL-8260-8	2 0.4 -	of <25.00	ust <5.00	upl <5.00	up1 <5.0	0 ual <5/	5.00 ust	<5.00 usi	<5.00 ual	<5.00 us	at <5.00 p	ol <5.00	ual <5.00	up/ <5.00	9 upl <5.	tou 00	<5.00 uat	<5.00 usl	<5.00 up/l	5.00 uni 5.00 5.00 uni 5.00 5.00 uni 5.00 5.00 uni 5.00	up1 <5.00	ust <5.00	ual <5.00	up/ <13.00 u	of <5.00 u	ra1 <5.00 t	ual <5.00 i	ual <5.00 u	os/1 <5.00	upl <5.00 up	f <5.00 us	al <5.00 ual	<5.00 up	fi trans-1.3-Dichloropropene
enegoropene	NYTCL-8260-8	2	ol <25.00	ust <5.00	upl <5.00	up) < 5.0	0 usl <5/	5.00 Ual	<5.00 usi	<50 vol	<5.00 us	ol 600 i	ol <5.00	us1 <5.00	usl <5.00	9 vol <5.	00 up1	45.00 ust	<5.00 usl	<5.00 us/l	<5.00 uni <5.00	upl <5.00	ust <5.00	us1 <5.00	upl <13.00 u	ol <500 u	n1 <5.00 t	ust 6.00 i	ual <5.00 u	ost <5.00	upl <500 up	f <5.00 us	al <5.00 ual	<5.00 us	il cis-1.3-Dichloropropene
rNonethana	NYTCL-0700-1	20	101 CZ-00	051 C5.00	und 45.00	US 60	0 001 03	5.00 051	-5.00 Usi	-5.00 so	45.00 UE	31 500 1	a1 C.00	051 25.00 051 25.00	001 C.00	2 upl c5	30 US1	-5.00 USI	-E 00 USE	25.00 US	25.00 GB 25.00	US1 -C.00	US1 -C.00	001 C5.00	ool (13.00 o	ol 0500 0	21 CS.00 C	001 C.00 I	051 C5.00 0	25 C5.00	und 0500 un	n <5.00 00	51 CS.00 US1	25.00 US	d 1 1 2 2 Televoldsmethers
C INTERNAL IN IN	NYTCL-8260-8																																		
	NYTCL-8260-I	2 5 -	of <25.00	upf 19,99	sol <5.00	sol <5.0	0 upl <5/	5.00 usl	<5.00 upl	<5.00 val	<5.00 us	of <5.00 to	of <5.00	upl <5.00	up/l <5.00) vol <5.	tol (o	<5.00 ual	<5.00 upl	<5.00 up/l	<5.00 upl <5.00	up1 <5.00	ual <5.00	upl <5.00	up/ <13.00 u	of <500 u	ol <5.00 u	(5.00 text	ual <5.00 u	ool <5.00	upl <5.00 up	f <5.00 up	of <5.00 up/	<5.00 up	
4	NYTCL-8260-8	2 5 .	of <25.00	ust <5.00	ual <5.00																<5.00 upl <5.00													<5.00 us	f Etryberzene
116	NYTCL-8260-8		ol <25.00	ust <5.00	ual <5.00	ust <5.0	0 us1 <5.1	5.00 ust	<5.00 usi	<5.0 ual	<5.00 us	d <5.00 i	d) <5.00	ust <5.00	us/1 <5.00) uat <5.	tau 00	<5.00 ust	<5.00 ust	<5.00 us/s	<5.00 ual <5.00 <5.00 ual <5.00	ust <5.00	ust <5.00	ust <5.00	us/1 <13.00 u	at <5.00 u	ma1 <5.00 to	ust <5.00 i	ust <5.00 u	us/1 <5.00	ual <5.00 ua	ft <5.00 us	at <5.00 ust	<5.00 us	il Chloromethane
ine	NYTCL-0200-1	2 20	101 (25.00	USI <5.00	uai <2.00	usi 6.0	0 001 051	5.00 051	25.00 051	<5.00 ua	42.00 III	31 63.00 1	a1 C.UU	US1 <5.00	USI 45.00	0 001 (5.	00 usi	C5.00 US1	<5.00 US1	<5.00 USI	<5.00 uni <5.00	US1 -6.00	US1 45.00	US1 <5.00	USI <13.00 U	at 4500 u	101 CS.00 U	ust cs.00 i	US1 <5.00 U	asi <5.00	uai - 600 ua	n <5.00 us	51 CS.00 US1	<5.00 US	A Bromomethane
	NYTCL-8290-1																																		// Chloroethane
oethene	NYTCL-8260-8	3 5 -	of <25.00	ust <5.00	up1 <5.00	up1 <5.0	0 up1 <5.0	5.00 ust	<5.00 usit	<5.00 upl	<5.00 us	of <5.00 to	of <5.00	uat <5.00	up/1 <5.00	9 up1 <5.	tou oc	<5.00 ust	<5.00 upt	<5.00 up/l	<5.00 upl <5.00	up1 <5.00	uat <5.00	upt <5.00	upf <13.00 u	of <5.00 u	of <5.00 to	up1 <5.00	uat <5.00 u	ooft <5.00	upf <5.00 up	f <5.00 up	at <5.00 upt	<5.00 up	1.1-Dichloroetherse
chloroethene	NYTCL-8260-8	2 5.0 -	igt <25.00	ugt <5.00	ug1 <5.00	ug1 <5.0	0 ug1 <5.1	5.00 ugt	<5.00 ug8	<5.00 ug/	<5.00 up	st <5.00 to	g1 <5.00	ugt 9.30	ugil <5.00) ugt <5.	00 ug1	<5.00 ugt	<5.00 ugt	<5.00 ug/l	<5.00 ugl <5.00 11.00 ugl <5.00	ug1 <5.00	ugt <5.00	ug1 <5.00	ugit <13.00 u	of <5.00 u	g1 <5.00 u	ugt <5.00 i	ugt <5.00 u	opt <5.00	ugit <5.00 ug	ft 9.00 ug	şt <5.00 ugt	<5.00 ug	fi trans-1,2-Dichloroethene
hene	NYTCL-8260-8	2 50 -	101 380.00	ugt <5.00	ugil <5.00	up1 <5.0	0 ug1 <5.1	5.00 ugt	<5.00 ug/l	<5.00 ug/	<5.00 up	of <5.00 is	g1 <5.00	ugi 220.00 E	ug/l 41.00	ugt <5.	tgu 00	5.00 ug/l	6.90 ug/l	<5.00 ug/l	11.00 ugl <5.00 <5.00 ugl <5.00	up1 <5.00	ugt <5.00	ugt <5.00	ugil 270.00 u	pl 15.00 u	g1 18.00 t	ugt 14.00 i	ugt 6.50 u	ug/1 <5.00	ugi 18.00 ug	1 210.00 E ug	at <5.00 ugt	<5.00 ug	/I Trichloroethene
obenzene	NYTCL-6200-1																				<5.00 ugi <5.00													<5.00 ug	1 2-Dichler berne
hanne	NYTCL-8290-1	2 3 .	of (25.00	upf <5.00	uni (5.00	unt 60	0 1001 651	500 001	<5.00 upl	<500 up	(500 U	1 (5.00	o1 <500	uo1 <5.00	upl <5.00	0 1001 (5	20 101	<5.00 upt	<5.00 upi	<5.00 upi	<5.00 ugit <5.00	up1 <5.00	unt <5.00	ug1 <5.00	und <13.00 u	of <500 u	ol (500)	unt <5.00	up1 <500 u	of c5.00	unt <500 un	d c500 up	of c5.00 upl	<500 up	1 14-Dichlorchennene
utyl ether	NYTCL-8260-8	2 - 10	of <25.00	upf <5.00	up1 <5.00	up1 <5.0	0 up1 <5.1	5.00 ust	<5.00 upl	<5.00 up/	<5.00 us	of <5.00 to	of <5.00	ua1 <5.00	up/ <5.00	9 up1 <5.	tau 00	<5.00 ust	<5.00 us1	<5.00 up/l	<5.00 upl <5.00	up1 <5.00	ug1 <5.00	ual <5.00	up/1 <13.00 u	of <5.00 u	of <5.00 to	ust <5.00	up1 <5.00 u	93	up1 <5.00 up	f <5.00 up	of <5.00 upl	<5.00 ug	/I Methyl tert butyl ether
		5 .	igt <25.00	ugt <5.00	ugit <5.00	ug1 <5.0	0 ug1 <5.1	5.00 ugt	<5.00 ug8	<5.00 ug/	<5.00 up	st <5.00 to	g1 <5.00	ugt <5.00	ugil <5.00) ugt <5.	00 ug1	<5.00 ugt	<5.00 ugt	<5.00 ug/l	<5.00 ugt <5.00	ug1 <5.00	ugt <5.00	ug1 <5.00	ugit <13.00 u	of <5.00 u	g1 <5.00 u	ugt <5.00 i	ugt <5.00 u	opt <5.00	ugit <5.00 ug	ft <5.00 ug	şt <5.00 ugt	<5.00 ug	fl p/m-Xylene
proethene	NYTCL-8260-8	5 -	ig1 <25.00	ugt <5.00	ug1 <5.00	ug1] <5.0	0 ug1 <5.i	5.00 ug/l	<5.00 ugl	<5.00 ug/	<5.00 up	d.00 i	g1] <5.00	ug1 <5.00	ugit <5.00	ugi	tgu 00	<5.00 ugt	<5.00 ug/l	<5.00 ug/l	<5.00 lugit <5.00 170.00 upl 6.30	up1 <5.00	ugt <5.00	ugt <5.00	ugil <13.00 u	gt <5.00 u	g1 <5.00 u	ug1 <5.00 i	ugt <5.00 u	ug/1 <5.00	ugil <5.00 ug	n <5.00 ug	31 <5.00 ug/	<5.00 ug	/I o-Xylene /I cis-1.2-Dichloroethene
orcernene	NYTCL-8260-I	W 20 -	101 220.00	ugs <5.00	ugi <5.00	up: <5.0	0 ugi <5.0	500 ugt	25.00 Upl	50.00 ug	<5.00 up	30 300 1	g1 <5.00	ugt 120.00	ugn 180.00	u ugi <5.	o uol	52.00 ugl	<5.00 ugl	23.99 ug/	170.00 ugl 6.30 <5.00 ugl <5.00	upi <5.00	ugs <5.00	US1 5.80	ugs 100.00 u	pt 62.00 U	g1 35.00 t	ugi <5.00 i	US1 25.00 U	g 24.00 mg 25.00	ugs 120.00 ug	1 120.00 ug	31 CS.00 Ug/	<5.00 ug	(I Shrene
romethane	NYTCL-8250-8	2 5 .	gt <25.00	upf <5.00	up1 <5.00	upt cs.o	0 ugi <5.	5.00 ug1	<5.00 upl	<5.0 up	<5.00 us	1 45.00	of <5.00	up1 <5.00	ug/1 <5.00	up1 <5	00 up1	<5.00 ugt	<5.00 up1	<5.00 up/	<5.00 ugit <5.00	up1 <5.00	ust <5.00	up1 <5.00	up1 <13.00 u	of <5.00 u	g1 <5.00 U	ua1 <5.00	up1 <5.00 u	of <5.00	up! <5.00 up	1 <5.00 up	of <5.00 upt	<5.00 up	// Dichlorodifluoromethane
	NYTCL-8260-8	- 50	g1 <50.00	ugt <10.00	ugt <10.00	ug1 <10.0	10 ug/1 <10.	0.00 ugt -	c10.00 upl	<10.00 ugt	<10.00 up	of <10.00 t	g1 <10.00	c0.00	ug/1 <10.00	0 ugit <10	co ugit	<10.00 ug/l	<10.00 ugt	<10.00 ug/l	<10.00 ugt <10.00	ugt <10.00	ugt <10.00	ugt <10.00	ugit <25.00 u	gt <10.00 u	g1 <10.00 L	1 00.01> Tgu	ugt <10.00 u	ug/l <10.00	ugit <10.00 ug	rt <10.00 ug	Tgu 00.01> Tg	<10.00 ug	Apetone 1
de	NYTCL-8260-8	- 60	of <50.00	upf <10.00	ugil <10.00	up1 <10.0	10 upl <10	0.00 ual -	c10.00 upf	<10.00 upl	<10.00 us	al <10.00 s	o1 <10.00	ual <10.00	up/ <10.00	0 upl <10	00 up1	<10.00 ua1	<10.00 up1	<10.00 up/l	<10.00 up/ <10.00	up1 <10.00	ual <10.00	ual <10.00	upl <25.00 u	of <10.00 u	rg1 <10.00 t	10.00 to	uaf <10.00 u	00.00 Pps	upf <10.00 up	ft <10.00 up	feu 00.01> Is	<10.00 up	Carbon dauffide
	NYTCL-8260-8	50	of <50.00	upf <10.00	upl <10.00	up1 <10.0	10 ugil <10	0.00 ust -	c10.00 upi	<10.00 upl	<10.00 up	off <10.00 p	oli <10.00	<10.00	voil <10.00	0 up1 <10	00 up1	<10.00 ual	<10.00 up1	<10.00 up/l	<10.00 upl <10.00	(10.00 to 1	upli <10.00	up1 <10.00	ooli <25.00 o	of <10.00 u	10.00 t	vol <10.00	upl <10.00 u	<10.00	unt <10.00 un	fi <10.00 up	teu 00.01> ife		
inbanone	NYTCL-8260-I																				<10.00 upl <10.00													<10.00 up	4 Methyl-2 pentanone
rethane	NYTCL-8260-I	50 50	of <25.00	unt <500	unt <500	uni <10.0	0 1001 <10	5.00 001	<5.00 upl	<500 upl	<500 us	1 (5.00	o1 <500	ust <500	upt <5.00	und <5	20 (01	<5.00 uni	<5.00 ust		<5.00 ual <5.00				uni <25.00 u	ot <500 u	o1 <500 t	uni <0.00 i	uot <500 u	on <5000	unt <10.00 un	4 (5.00 00	of (5.00 up)	<500 us	1 Remorbismenture
hane	NYTCL-8260-8	2 0,0006 -	101 <25.00	upf <5.00	upl <5.00	up1 <5.0	0 up1 <5/	5.00 ust	<5.00 upl	<5.00 upl	<5.00 us	1 <5.00	91 <5.00	up1 <5.00	up/ <5.00	yo1 <5.	00 up1	<5.00 ust	<5.00 usl	<5.00 up/l	<5.00 upl <5.00	up1 <5.00	ual <5.00	up1 <5.00	up/ <13.00 u	of <5.00 u	ol <2.00 t	up1 <5.00 I	up1 <5.00 u	vo/1 <5.00	vol <5.00 va	1 <5.00 up	of <5.00 upl	<5.00 up	1.2-Disromoethane
-chloropropane	NYTCL-8260-8	2 0.04 -	of <25.00	usf <5.00	up1 <5.00	up1 <5.0	0 ug1 <5.0	5.00 us1	<5.00 usf	<5.00 up1	<5.00 us	at <5.00 t	o1 <5.00	ua1 <5.00	upf <5.00	9 up1 <5.	o unt	<5.00 ust	<5.00 us1	<5.00 up/	<5.00 upl <5.00	up1 <5.00	uat <5.00	ust <5.00	upf <13.00 u	of <5.00 u	of <5.00 u	ust <5.00	ua1 <5.00 u	ost <5.00	upf <5.00 up	f <5.00 up	at <5.00 ust	<5.00 us	fl 1.2-Dibromo-3-chloropropane
ine	NYTCL-8260-8	3 5 .	of <25.00	ust <5.00	uat <5.00	ust cso	0 ust <5.1	5.00 ust	<5.00 usi	<5.00 ual	<5.00 us	d <5.00 i	d1 <5.00	ust <5.00	us/t <5.00) uat <5.	o ust	<5.00 ust	<5.00 ust	<5.00 us/l	<5.00 uat <5.00	ust <5.00	ust <5.00	ust <5.00	ust <13.00 u	of <5.00 u	o1 <5.00 L	d.00	ust <5.00 u	ost <5.00	uni <5.00 un	f <5.00 us	45.00 ust	<5.00 us	il biopropybenzene
oberzene	NYTCL-8260-8	5 .	at <25.00	ust <5.00	ual <5.00	us! <5.0	0 us1 <5.1	5.00 ust	<5.00 usl	<5.00 ual	<5.00 us	al <5.00 i	o1 <5.00	ust <5.00	ust <5.00) ual <5.	00 ust	<5.00 ust	<5.00 ust	<5.00 us/l	<5.00 upl <5.00 <5.00 upl <5.00	us1 <5.00	ust <5.00	ust <5.00	usi <13.00 u	al <5.00 u	ra1 <5.00 t	ust <5.00 i	ust <5.00 u	asi <5.00	ual <5.00 ua	ft <5.00 us	at <5.00 uat	<5.00 us	1.2.3-Trichlorobergene
obenzene	NYTCL-8260-I	4 3 .	est <25.00	ust <5.00	um <5.00	um <5.0	U usi <51	0.00 ust	<0.00 US	<0.00 ual	<0.00 us	1 41000	at <5.00	usi <5.00	usn <5.00	9 45	20 (81	-tom ust	-10.00 ust	<5.00 USI	<5.00 ual <5.00 <10.00 ual <10.00	usi <5.00	uan <5.00	ust <5.00	usn <13.00 u	at 40.00 u	101 CS.00 E	usi <5.00 i	uan <5.00 u	est <5.00	uon <5.00 uo	n <5.00 us	at <0.00 usl	<0.00 us	Market Assistance
64			101 <50.00	upt <10.00	up1 <10.00	up1 <10.0	0 ual <10	0.00 US1	c10.00 usi	<10.0 upl	<10.00 US	1 <10.00	g1 <10.00	ust <10.00	up/1 <10.00	0 upl <10	co usi	<10.00 Ua1	<10.00 Us1	<10.00 up/	<10.00 unit <10.00	up1 <10.00	uat <10.00	us1 <10.00	upil <25.00 u	of <10.00 U	101 <10.00 U	ua1 <10.00	up1 <10.00 u	vol. <10.00	up1 <10.00 Us	1 <10.00 us	1 <10.00 US1	<10.00 us	// Cyclohesane
	NYTCL-8280-8	2	of <500.00	upf <100.00	up1 <100.00	up1 <100.0	00 ug1 <100	00.00 us1 <	100.00 usf	<100.00 up/	<100.00 us	of <100.00 t	of <100.00	va1 <100.00	up/ <100.0	00 upt <10	.00 up1 +	100.00 ust	teu 00.001	<100.00 up/	<100.00 upl <100.0	0 up1 <100.00	uat <100.00	ua1 <100.00	upf <250.00 u	of <100.00 u	of <100.00 u	ust <100.00 r	up1 <100.00 u	00,000> 100	up1 <100.00 up	ft <100.00 up	at <100.00 uat	<100.00 up	/I 1.4-Diggsine
	NYTCL-8260-8	5 .	of <25.00	ugt <5.00	ugit <5.00	upt <5.0	0 ugit <5.1	5.00 ugt	<5.00 upl	<5.00 ug/	<5.00 up	of <5.00 is	g1 <5.00	ugt <5.00	ug/t <5.00	ugt <5.	to ust	<5.00 ugt	<5.00 ugt	<5.00 ug/t	<5.00 ugit <5.00	upt <5.00	ugit <5.00	ugt <5.00	ugit <13.00 u	of <5.00 u	g1 <5.00 L	ugt <5.00 i	ugt <5.00 u	ug/t <5.00	ugit <5.00 ug	ft <5.00 ug	at <5.00 upt	<5.00 ug	f Freon-113
hexare	NYTCL-8260-8	9	ig1 <50.00	ugit <10.00	ugit <10.00	ug1 <10.0	10 ug/t <10.	0.00 ugt -	c10.00 ugf	<10.00 ug/	<10.00 up	of <10.00 t	g1 <10.00	c10.00	ug/l <10.00	0 ugit <10	co ugt	<10.00 ug/t	<10.00 ugt	<10.00 ugft	<10.00 ugit <10.00	ugit <10.00	ugit <10.00	ugt <10.00	ug/1 <25.00 u	gf <10.00 u	g1 <10.00 L	ugt <10.00 i	ugt <10.00 u	ug/l <10.00	ugit <10.00 ug	/1 <10.00 ug	tgu 00.01> tç	<10.00 ug	(I Methyl cyclohexane

FIGURES

(NORTHMW-16 767.24 G-2 767.80 768 120 FT MW-10 772.94 SCALE BAR 1" = 60'

DASNY Gowanda Day Habilitation Center

4 Industrial Place Gowanda, New York

Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C.

280 East Broad Street Suite 200 Rochester, NY 14604

office: 585.232.5135 fax: 585.232.4652

www.bergmannpc.com

REVISIONS

NO. DATE DESCRIPTION REV. CK'D

Copyright © Bergmann Associates, Architects, Engineers, Landscape Architects & Surveyors, D.P.C

loto:

Unauthorized alteration or addition to this drawing is a violation of the New York State Education Law Article 145, Section 7209.

Project Number: 14263.12

> MAY 2023 WATER LEVEL CONTOUR MAP

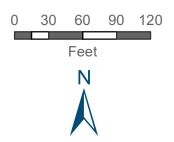
Drawing Number:

FIGURE 1

DASNY

Gowanda Day Habilitation Center

4 Industrial Place Gowanda, NY



BERGMANN

ARCHITECTS ENGINEERS PLANNERS

Figure 2

May 2023
Distribution of
Groundwater
Analytical Results:
Monitoring Wells

DASNY

Gowanda Day Habilitation Center

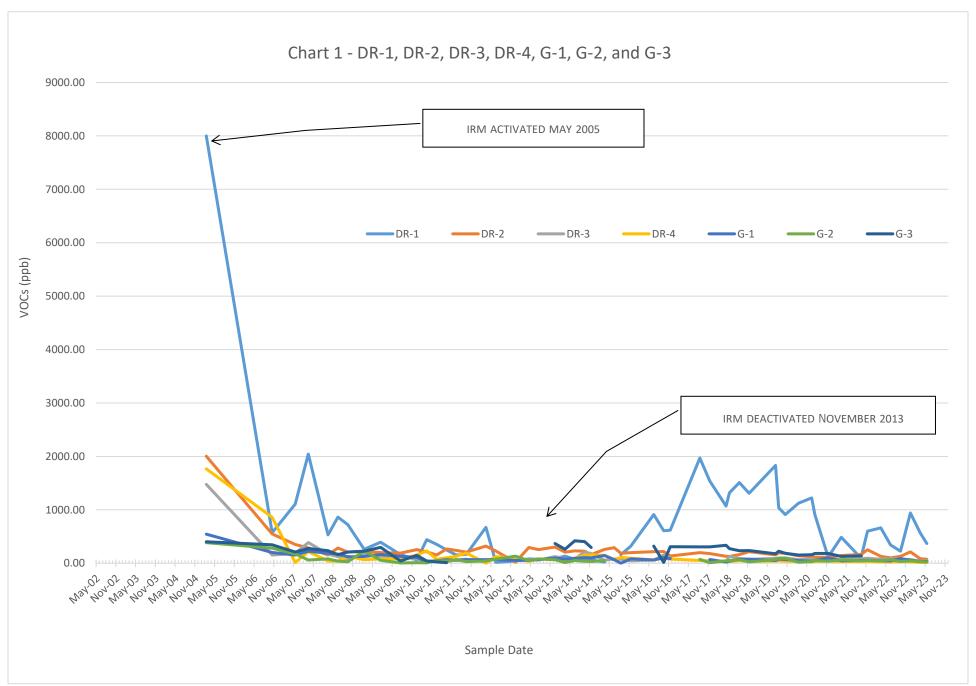
4 Industrial Place Gowanda, NY

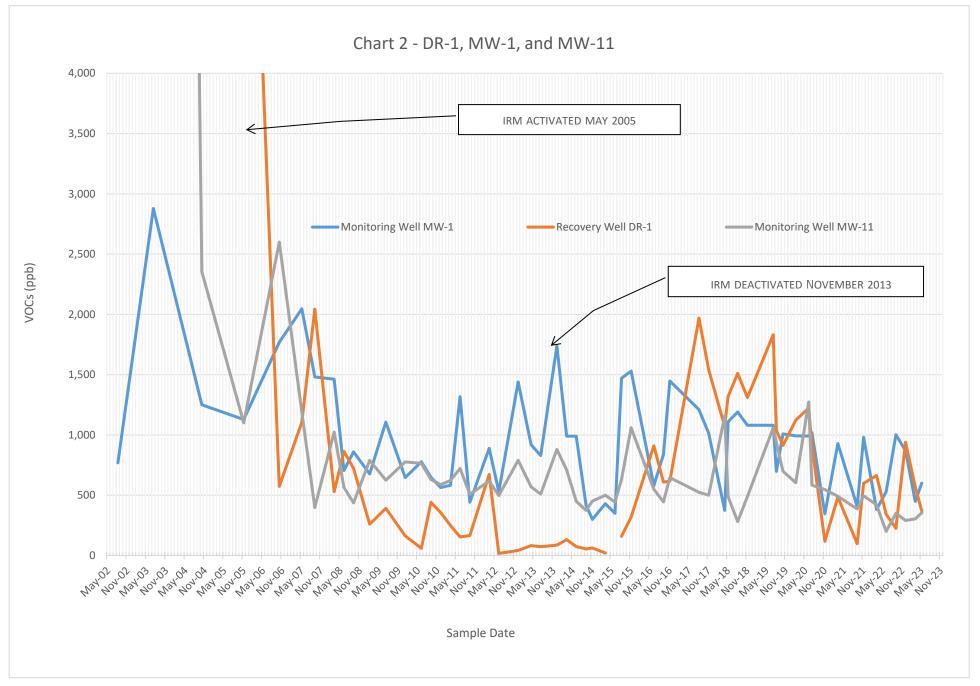


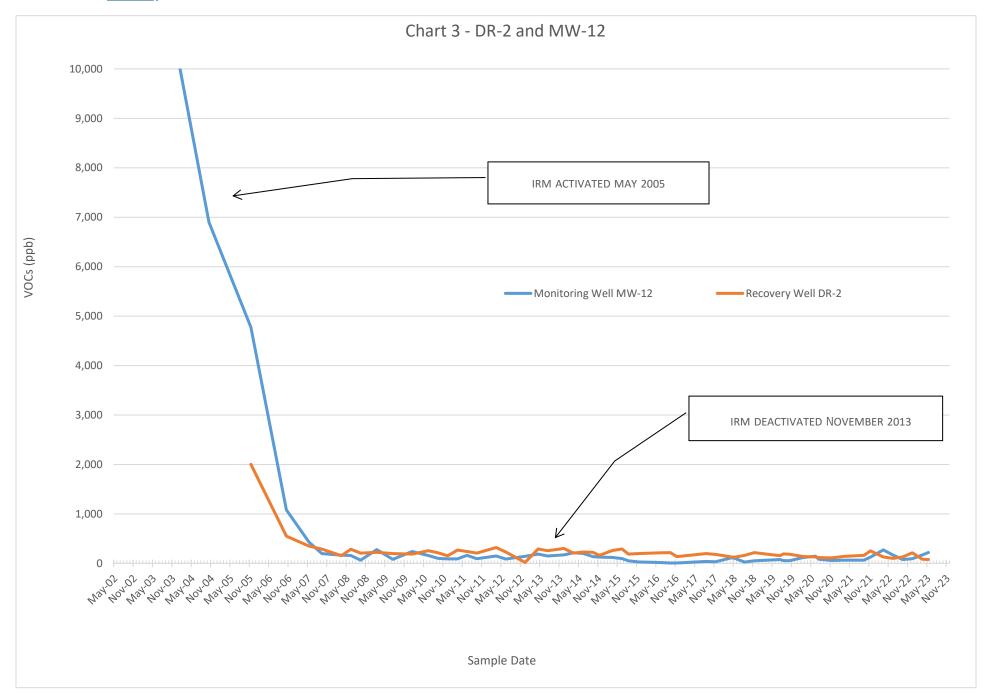
BERGMANN

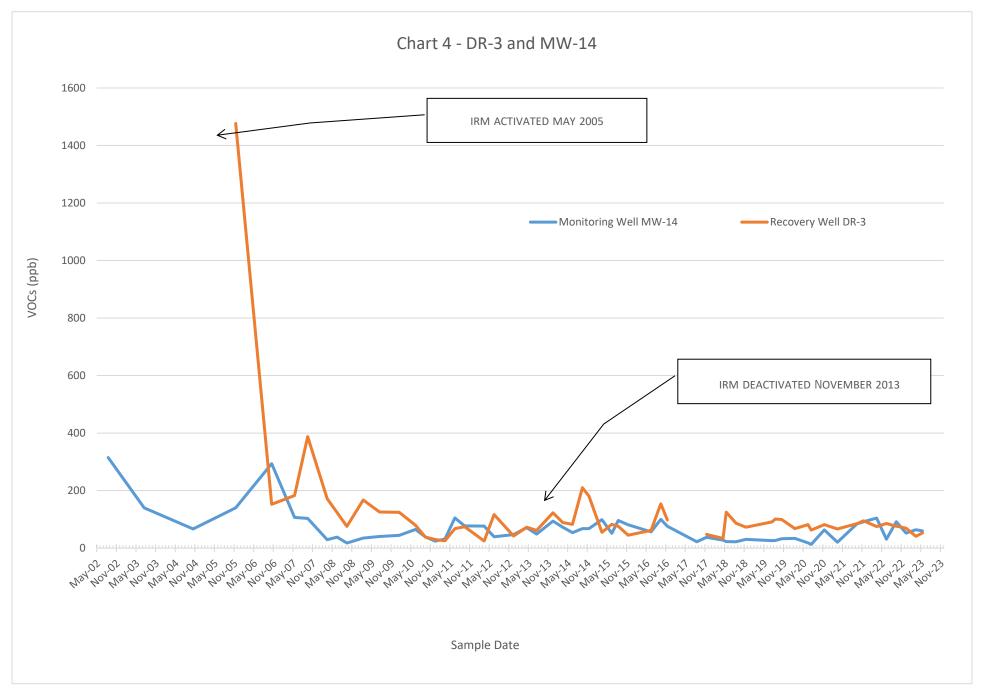
ADCHITECTS ENGINEEDS DIANNEDS

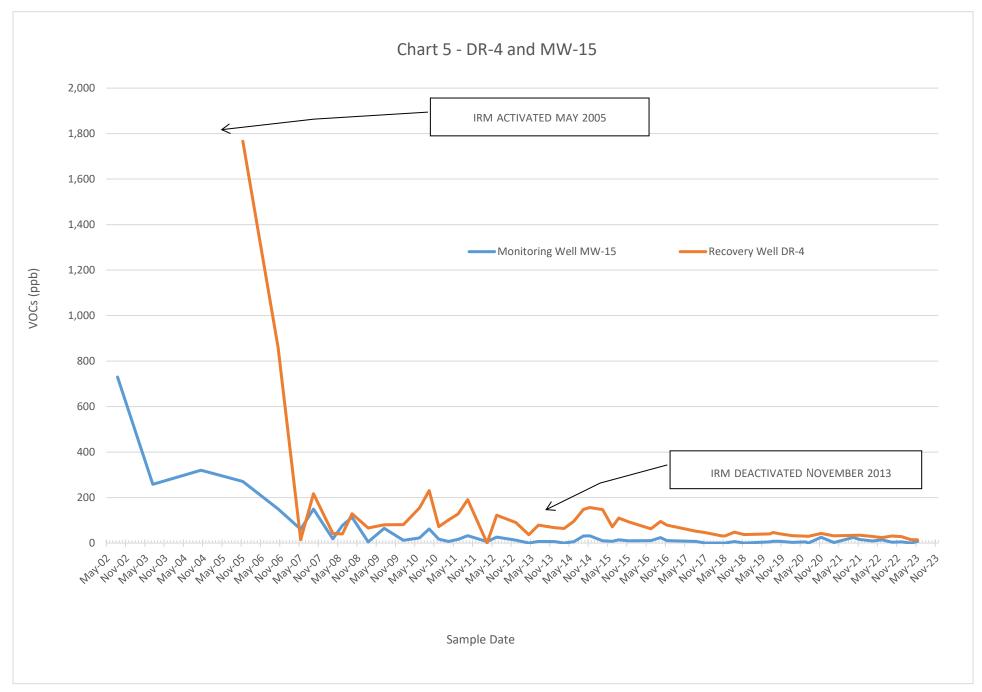
Figure 3

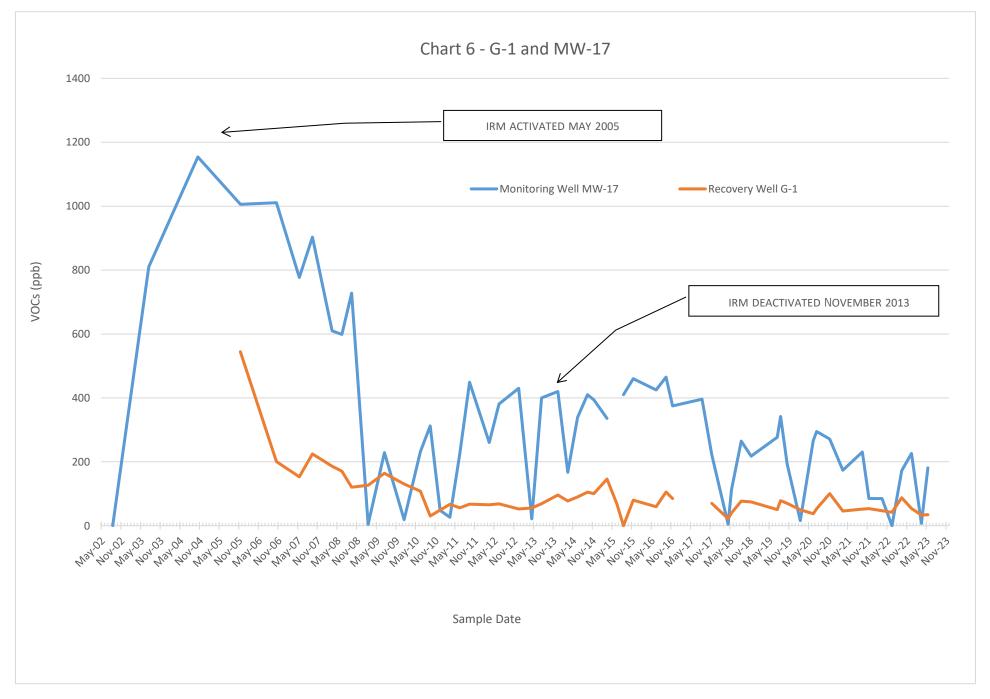

May 2023
Distribution of
Groundwater
Analytical Results:
Recovery Wells

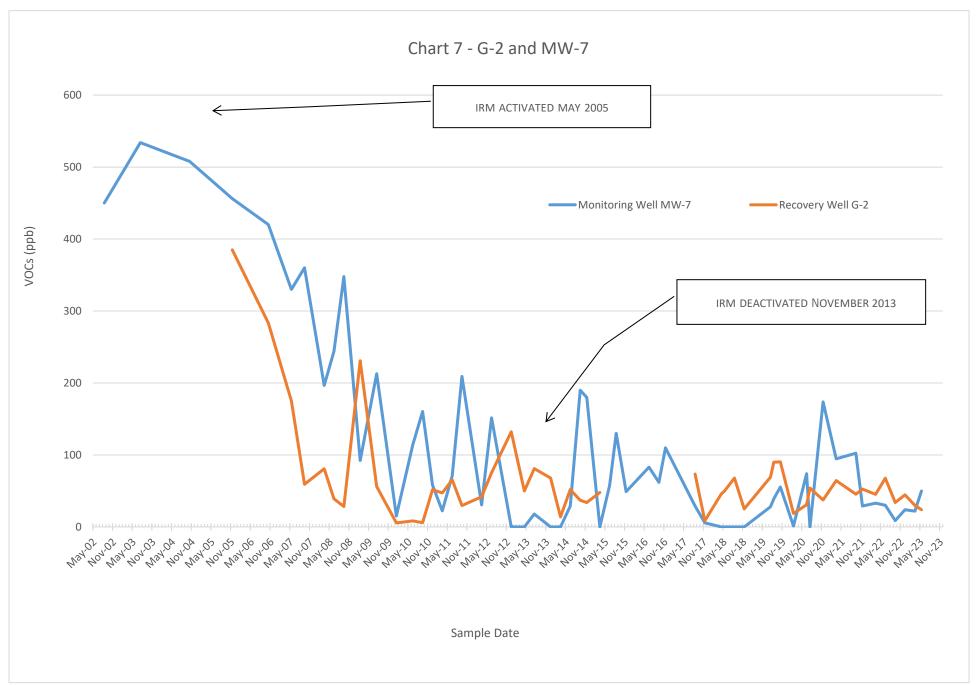


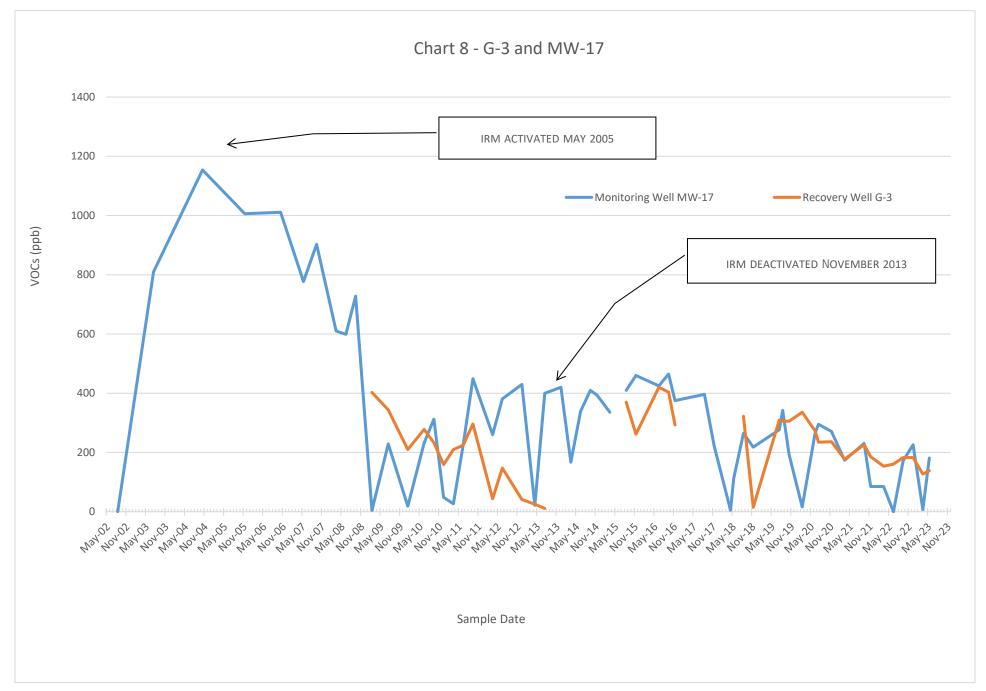

CHARTS











APPENDICES

Service Request No:R2304484

Ariadna Cheremeteff Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Q2 Gowanda 2023

Dear Ariadna,

Enclosed are the results of the sample(s) submitted to our laboratory May 19, 2023 For your reference, these analyses have been assigned our service request number **R2304484**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7476. You may also contact me via email at Chris.Leavy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Christopher Leavy Project Manager

ADDRESS

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Bergmann Associates, Incorporated Service Request: R2304484

Project: Q2 Gowanda 2023 Date Received: 05/19/2023

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twenty water samples were received for analysis at ALS Environmental on 05/19/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

Method 8260C, 05/31/2023: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-1		Lab	ID: R2304	484-001						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	220			25	ug/L	8260C				
Trichloroethene (TCE)	380			25	ug/L	8260C				
CLIENT ID: MW-6		Lab	ID: R2304	484-006						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	34			5.0	ug/L	8260C				
Vinyl Chloride	25			5.0	ug/L	8260C				
CLIENT ID: MW-7		Lab	ID: R2304	484-007						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	50			5.0	ug/L	8260C				
CLIENT ID: MW-11		Lab	ID: R2304	484-011						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	120			5.0	ug/L	8260C				
cis-1,2-Dichloroethene	32	D		13	ug/L	8260C				
trans-1,2-Dichloroethene	9.3			5.0	ug/L	8260C				
Trichloroethene (TCE)	220	Е		5.0	ug/L	8260C				
Trichloroethene (TCE)	150	D		13	ug/L	8260C				
Vinyl Chloride	5.7			5.0	ug/L	8260C				
CLIENT ID: MW-12	Lab ID: R2304484-012									
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	180			5.0	ug/L	8260C				
Trichloroethene (TCE)	41			5.0	ug/L	8260C				
CLIENT ID: MW-14		Lab	ID: R2304	484-014						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	52			5.0	ug/L	8260C				
Trichloroethene (TCE)	8.0			5.0	ug/L	8260C				
CLIENT ID: MW-16			ID: R2304	484-016						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	33			5.0	ug/L	8260C				
CLIENT ID: MW-17		Lab	ID: R2304	484-017						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	170			5.0	ug/L	8260C				
Trichloroethene (TCE)	11			5.0	ug/L	8260C				
CLIENT ID: MW-18		Lab	ID: R2304	484-018						
Analyte	Results	Flag	MDL	MRL	Units	Method				
cis-1,2-Dichloroethene	6.3			5.0	ug/L	8260C				

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-2		Lab ID: R2304484-002										
Analyte	Results	Flag	MDL	MRL	Units	Method						
Toluene	10			5.0	ug/L	8260C						
CLIENT ID: MW-15		Lab ID: R2304484-015										
Analyte	Results	Flag	MDL	MRL	Units	Method						
Trichloroethene (TCE)	6.9			5.0	ug/L	8260C						

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Client:

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2304484-001	MW-1	5/19/2023	0657
R2304484-002	MW-2	5/19/2023	0640
R2304484-003	MW-3	5/19/2023	0620
R2304484-004	MW-4	5/19/2023	0910
R2304484-005	MW-5	5/18/2023	1525
R2304484-006	MW-6	5/18/2023	1510
R2304484-007	MW-7	5/18/2023	0823
R2304484-008	MW-8	5/19/2023	0740
R2304484-009	MW-9	5/19/2023	0835
R2304484-010	MW-10	5/19/2023	8080
R2304484-011	MW-11	5/18/2023	1253
R2304484-012	MW-12	5/18/2023	1315
R2304484-013	MW-13	5/18/2023	1328
R2304484-014	MW-14	5/18/2023	1341
R2304484-015	MW-15	5/18/2023	1005
R2304484-016	MW-16	5/18/2023	0840
R2304484-017	MW-17	5/18/2023	1453
R2304484-018	MW-18	5/19/2023	1018
R2304484-019	MW-19R	5/19/2023	0940
R2304484-020	MW-20	5/18/2023	1540

A
(ALS)

Λ		Chain of	Custody / An	alyt	ical Reques	t Fo	rm						6	82	89			SR#:				
ALS	1565 Jefferson Road, Buildir	ng 300, Suit	e 360 • Roch	este	er, NY 14623	3 • +	1 58	35 28	38 5	380	• al	sglo	bal.	com				Page	1		of 1	1
	Report To:		AREAS <u>MUST</u> BE (CLIENT / SAME		PLETED BY THE	Pr	eserv	ative														None
mpany: (e gmonn	Project Name: Q	2 Gasanto		M23				<u>-</u>						 				+	+	┥	HCI
ntact	noth L. O'Baten	Project Number:	.6312	<u> </u>	, (U)				8260 624 524 TCLP	• TCLP	Δ.				ab Filter	1						HNO3
<u></u>	GENEN & BERGMANNEL. LOM		263 K-00	39.	67-23	GW			•52	625 •	• TCLP			Below	/ In-Lab							H2SO4
one: (~	7-743-1412	Sampler's Signature:	No~		رد ی	ww sw	ers		624	•	809		TCLP	.t 8e	Field						- 1	NAOH
dress:	80 F Brood St. # 200	Email CC:	7000			ow s	Containers		(<u>R</u>)	8270	•	<u>∞</u>	•	Select	• •							Zn Acet.
	hester, MILLBOY	Email CC:				L			- 1		8081	• 608	- 8151		Dissofved							MeOH
INOL	LEVACY 1. IIN On 1	State Samples Col		A. CT.	Other:	"	r of	č	9	S	es	8082	des	Total							- 1	NaHSQ4
Lab ID	Sample Col	(Circle or Write lection Info:	··· —			ž	nbe	MS/MSD?	GC/MS VOA	GC/MS SVOA	Pesticides		Herbicides	Metals,	etals,	İ			Ī			Other
(ALS)	Sample ID:		Date)	Time	Matrix	Number	MS	gc/	CC/	Pes	PCBs	Her	Me	Me						├	Notes:
	MW-1		5] 19]		0657	Civ	-		X										\Box			
	MW-2		5/19/1	3	0640	(1)			X													
	Mw-3		51911:	3	0620	66	ß		X													
	mv-4		5/19/2	.3	0910	GW			κ											\prod		
	m-5		5/18/7		1525	GW	3		\sim													
	mw-6		5118/2	\$	15/0	GW			×								i					
	mw-7		5/18/2		0823	SW			Ŋ													
	my-8		5/14 2		0740	CM	3		N										\perp	\perp		
	mu -9		5/19/1		0835	w	3		<u>N</u>													
	MW-10		15/19	<i>1</i> 3	0808	(Ju	3	<u>'</u>	70										\perp			
pecial In	structions / Comments:		, ,,		Turnaroun				ts	R	epor	t Rec	quire	ment	ts	Meta	ls: RC	RA 8⊕PP	13 • TA	L 23•T(CLP+Oth	er (List)
					Rush (Surc	ability	•			 -	_Tier I	II/Cat	A -Res	ults/Q	(C	VOA,	/svo/	Repo	rt Lis	t: TCL (• BTEX •	TCLP •
					"Please Check w	,					-		B - Da					THM • O				
					Standard	(10 Bu	siness	Days)		Valida						PO #:	nvoid	e To: (□ Sa	ime a	ıs Rep	ort To) 🖔
					Date Required:					EDD:						Comp	anv:				· ·	
	4, ,,,,	1					Γ			EDD 1	ype:					Conta	•					
		ved By:	Relinguished By:		Received By	y:		Relin	quishe	ed By:			Receiv				-					<u> </u>
	nature Back						 								Bergm	ann Ast	448	34 , Incorpo	reted	5		<u> </u>
Printed	/	/1 ~	· • · · ·												~~~		711575					
	npany (324/10) 2 228 5 19	22			Dog 9 a C 7	16								 ',		<u> </u>					<u>ii (11) </u>	
Date	Time 5/14/2012 1368 5/14	23 1326			Page 8 of 7	0						L							<u></u>			

Date/Time 5/4/2012 228

Distribution: White - Lab Gopy; Yellow - Return to Originator

A
(ALS)

Chain of Custody / Analytical Request Form

SR#:		
<u></u>	7	 ,

(ALS)	1565 Jefferson Road	, Building 300, S	uite 360 • Rocheste	er, NY 1462.	3 ● +	T 25	35 Zi	88 5	38U	 aı 	sgio	bai.e	com			[ا	Page	4	01	ſ	
	Report To:	ALL SHAD	ED AREAS <u>MUST</u> BE COM CLIENT / SAMPLER	PLETED BY THE	Pr	eserv	ative													0. No	ne
Сотрапу:	eyman	Project Name:	22 Coursing 25	v13				CLP	а,					Filter					1	1. HCI	
	stin L. O'Bajen	Project Number	14263,12					GC/MS VOA - 8269, 624 - 524 - TCLP	• TCLP	LP				ا م						2. HN	
	BINEMO BELAMBUNA	ALS Quote #:	R-0034-62-23	3	GW			1•52	625	• TCLP		اہ	Below	I / In-Lal				i		3. H25	SO4
Phone:	on-743-1414	Sampler's Signe			sw	ners		€ 27		608		TCLP	ğ t	- Field						 4. NA	ЮН
Address:	OE Brook 13 # 70	Email CC:	1		DW S	Containers			- 8270	•	809	8151	Select	ved						5. Zn .	Acet.
/)	Jester MY, 14604	Email CC:			L NA			A- (- 8081	•	' '	Fotal -	Dissolved						6. Me	•OH
		State Sampl (Circle o		, Other:	ן [er of	MS/MSD?	S VC	GC/MS SVOA	Pesticides	PCBs - 8082	Herbicides	5							 7. Nal	HSO4
Lab ID	San	nple Collection Ir	nformation:		֓֞֟֞֟֓֓֓֓֓֓֟֓֓֓֓֓֓֟֟֓֓֓֓֓֓֓֓֟֟֓֓֓֟֓֓֓֟֟֓֓֓֟֓֓֟֓֓֟֓֟	뎥	₹	اقحا	Ξ	tici	-SS	ا <u>خ</u> زا	ള	ā				ı		8. Oth	ner
(ALS)	Sampl	le ID:	Date	Time	Matrix	Number	MS	gc/	gc/	Pes	PCE	Her	Metals,	Metals,		1		.			otes:
!	Mw-11		5/18/23	1253	دما	3		Х													
	mw-12		5/18/23	1315	ري	3		X		,											
	Mw - 13		5/14/23	1378	(%)	_		N													
	mu - 14		5 18/23	1341	(AP			X													
	mo -15		5/18/23	1005	(31)			X											1		
	m - 16		5/18/23	0846	CVS	3		X													
	PW - 17		5/18/23	1453	(2) E	3		X													
	mw - 18		5/19/23	1018	(20	3		7													
	mn-1912		5/19/23	0940	as	3		×													
	MW-20		5/18/73	1540	W	3		خ													
Special Ins	ructions / Comments:		1	Turnarour	nd Re	quire	men	ts	R	epor	t Rec	quire	ment	s	Meta	ls: RCF	RA 8•PP	13+TAL 7	23•TCLP	Other (Li	ist)
			I	Rush (Surc			y)			_Tler l	II/Cat	A -Res	ults/Q	,c	VOA	/CV/OA	. Dana				
				*Please Check w			,			77	N. 10-4	0 0-					THM • C		ICF • RI	EX • TCLP	•
				X Standard	(10 Bu	sines	Days))	Valida			B - Da w/. D			lı	nvoic	e To:	(🗆 San	ne as i	Report	To)
				Date Required:					EDD	Ø	Yes _	N	0		PO #:						••
	·								EDD T	уре:	E	ani,	Ż		Comp	any:					
	Belinquished By:	Received By:	Relinquished By:	Received B	у:		Relin	quishe	ed By:			Receiv	ed By:		Conta	ct:					6
Signa	iture (Mer	Body An							'					/ F	23	04	484	,	5		
Printed N	ame Dhatin L. Steven	Bilyk				<u> </u>			·:					· Be	rgmanr Gowar	1 Associ	lates, inc	corporate		i 1 1 (11)	
Com	pany Brymann	Aus																			<u> </u>
Date/	1-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	5/19/23 1328		Page 9 of 7	76	<u></u>															
Distribution: W	nite - Lab Copy, Yellow - Return to Originator	*																	e	2012 hv	ALS Group

Cooler Receipt and Preservation Check Form

_	- -		
ſ	R2304484	5	
	Bergmann Associates, Inco Q2 Gowands 2023	rporated	
			_

,								11111	<u> </u>	<u> </u>	
Project/Cli	ent	Begna-		Fold	der Number_			 •			,
Cooler receiv	ved on 5	119	by:	<u></u>	COURIER	ALS	UPS FE	DEX VE	LOCITY	CKIEN	D
1 Were C	ustody seals or	outside of coole	r?	Y A	5a Perc	hlorate	samples hav	e required l	neadspace?	Y	N NA
1 1	•	rly completed (in		1)? Ø N		VOA via	ls, Alk,or Su	ılfide have		つし .	/ 🕅 NA
3 Did all b	ottles arrive in	good condition	(unbroke	n)? (Y) N	6 Whe	re did th	e bottles orig	ginate?	ALS/RC	00	CLIENT
4 Circle:	Wet ite Dry	Ice Gel packs	prese	nt? 🕙 N	7 Soil	VOA rea	eived as:	Bulk	Encore :	5035set	t VFA
8. Temperatu	re Readings	Date: 5	14 T	ime: 134	5 ID	IR#12	AR#14	Fro	m: Tempī	Bilayak .	Sample Bott
Observed T	emp (°C)	18.1	<u> </u>			<u>, , , , , , , , , , , , , , , , , , , </u>	\mathcal{L}	,			
Within 0-6°		Y &	, ,	Y N	YN	Y	N ,	YN	YN	i	YN
If <0°C, we	re samples froz			Y N	ΥN	Y		Y N	ΥN		YN
If out of	Temperature.	note packing/ic	e conditi	ion:	Ice me	Ited A	oorly Packe	d describe	d below)	Sa	me Day Rule
		un Samples:					-	<i></i>			
·				by R			3 <i>5</i> 5				
	s held in storag	crage location:	pu	by <u>po</u>	on Str	at 2		in 18 hours	of samplir	, ₄₂	Y N
Joseph Sampi	es placed ili se	orage rocation.		_			Widt	111 46 110013			
			. Dete	5/22/2	7 7	13:5	- 3	by: M	N	نظنطيي:	: نستند بندارکاندا
9.	eakdown/rrese Were all bottle	ervation Check** labels complete	∵Date: ′ie anah	sis preserv	Time:		ZESP NO	_Uy. <u>/U(*</u>			
		bels and tags agr				~~	ES NO				
		ontainers used for				. ~	ES NO				
		s acceptable (no			ing)?		ES NO	(N/A)			
		metals filtered in assettes / Tubes			SY/N Cani		ssurized	Tedlar®	Bags Inflate	d $\widehat{\mathcal{M}}$	TAS
pH	Lot of test	Reagent	Preserve		eceived	Ехр	1		Lot A		Final
F	paper	<u>.</u>	Yes	No			Adjusted	Adde	d		pН
≥12		NaOH		·							
≤2		HNO ₃							· ·		
≤2	 	H ₂ SO ₄	 		·	+					
5-9	·	NaHSO ₄ For 608pest	 -	No=N	otify for 3day	+		·			
Residual		For CN,			ontact PM to add	 					
Chlorine		Phenol, 625,]		O ₃ (625, 608,						
(-)	<u> </u>	608pest, 522		.CN), a	scorbic (phenol).	·					
L	<u>L</u>	Na ₂ S ₂ O ₃			·	 	4+1/O4 a and	166d Not to	be tested befo		<u>. </u>
		ZnAcetate HCl	**	** 20.0	0.01003	0/	Otherwise, al	I bottles of al	l samples with		al preservatives
		nci	<u> </u>	1220	180153	0/25	are checked (not just repre	sentatives).		
Bottle lot	numbers:	20522-3	АVН	, ·	•						·
		es/ Other Comm		:				·		 ;	
	· · · · · · · · · · · · · · · · · · ·			: : ·			,				
	\ce	in by o	ملر					•			•
			(•
	-			•						,	
	•			!					_		
				ů.					ŀ	IPROD	BULK
									<u> </u>	ITR	FLDT
				•				•	<u> </u>	UB :	HGFB'
			UII	•					LA	LS -	LL3541
	econdary re	· —	M								
PC Seco	ondary Revie	ew:		- .	*significant	air bubl	oles: VOA >	5-6 mm :	WC >1 in.	diamete	er .
DAINTD 4 34	·	C		. .	•			01.02.00	33		·

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF_routine rev 6.doc

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations1

NELAP States	
Florida ID # E87674	
New Hampshire ID # 2941	
New York ID # 10145	
Pennsylvania ID# 68-786	
Virginia #460167	

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Service Request: R2304484

Sample Name: MW-1

Lab Code: R2304484-001

Sample Matrix: Water

Date Collected: 05/19/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Date Collected: 05/19/23

Sample Name: MW-2

Lab Code:

R2304484-002

Sample Matrix: Water

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-3

Lab Code:

R2304484-003

Sample Matrix:

Date Collected: 05/19/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

MW-4

Water

Lab Code:

R2304484-004

Sample Matrix:

Water

Date Collected: 05/19/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By KRUEST

Sample Name:

MW-5

Lab Code:

R2304484-005

Sample Matrix: Water

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 6/5/2023 4:24:03 PM

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Service Request: R2304484

Sample Name: MW-6

Lab Code: R2304484-006

Sample Matrix: Water

Date Collected: 05/18/23 **Date Received:** 05/19/23

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-7 Date Collected: 05/18/23

Lab Code: R2304484-007 **Date Received:** 05/19/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-8 Date Collected: 05/19/23

Lab Code: R2304484-008 **Date Received:** 05/19/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-9 Date Collected: 05/19/23

Lab Code: R2304484-009 Date Received: 05/19/23
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: MW-10 Date Collected: 05/19/23

Lab Code:R2304484-010Date Received: 05/19/23Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By 8260C KRUEST

Printed 6/5/2023 4:24:03 PM Superset Reference:23-0000664717 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 Service Request: R2304484

Sample Name: MW-11

Lab Code: R2304484-011

Sample Matrix: Water **Date Collected:** 05/18/23 **Date Received:** 05/19/23

Analysis Method

8260C

Analyzed By Extracted/Digested By

KRUEST

Sample Name: MW-11

Lab Code:

R2304484-011.R01

Water

Sample Matrix:

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-12

Lab Code:

R2304484-012

Sample Matrix: Water **Date Collected:** 05/18/23 **Date Received:** 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

Lab Code:

Sample Matrix:

R2304484-013

Water

MW-13

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-14

Lab Code:

R2304484-014

Sample Matrix: Water **Date Collected:** 05/18/23 **Date Received:** 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 6/5/2023 4:24:03 PM

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Service Request: R2304484

Sample Name: MW-15

Lab Code: R2304484-015

Sample Matrix: Water

Date Collected: 05/18/23 **Date Received:** 05/19/23

Analysis Method

8260C

Extracted/Digested By Analyzed By

KRUEST

Sample Name: MW-16 Date Col

Lab Code: R2304484-016

Sample Matrix: Water

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-17

Lab Code:

R2304484-017

Sample Matrix: Water

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-18

Lab Code:

R2304484-018

Sample Matrix:

Water

Date Collected: 05/19/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-19R

Lab Code:

R2304484-019

Sample Matrix:

Water

Date Collected: 05/19/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 6/5/2023 4:24:03 PM

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Name: MW-20 Date Collected: 05/18/23

Lab Code:R2304484-020Date Received: 05/19/23Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	
	<u> </u>

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation			
,	Method			
6010C	3050B			
6020A	3050B			
6010C TCLP (1311)	3005A/3010A			
extract				
6010 SPLP (1312) extract	3005A/3010A			
7199	3060A			
300.0 Anions/ 350.1/	DI extraction			
353.2/ SM 2320B/ SM				
5210B/ 9056A Anions				
For analytical methods not listed, the preparation				
method is the same as the analytical method				
reference.				

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R2304484 **Date Collected:** 05/19/23 06:57 **Project:** Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-1 Units: ug/L Lab Code: R2304484-001 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	25 U	25	5	05/31/23 06:12	
1,1,2,2-Tetrachloroethane	25 U	25	5	05/31/23 06:12	
1,1,2-Trichloroethane	25 U	25	5	05/31/23 06:12	
1,1,2-Trichloro-1,2,2-trifluoroethane	25 U	25	5	05/31/23 06:12	
1,1-Dichloroethane (1,1-DCA)	25 U	25	5	05/31/23 06:12	
1,1-Dichloroethene (1,1-DCE)	25 U	25	5	05/31/23 06:12	
1,2,3-Trichlorobenzene	25 U	25	5	05/31/23 06:12	
1,2,4-Trichlorobenzene	25 U	25	5	05/31/23 06:12	
1,2-Dibromo-3-chloropropane (DBCP)	25 U	25	5	05/31/23 06:12	
1,2-Dibromoethane	25 U	25	5	05/31/23 06:12	
1,2-Dichlorobenzene	25 U	25	5	05/31/23 06:12	
1,2-Dichloroethane	25 U	25	5	05/31/23 06:12	
1,2-Dichloropropane	25 U	25	5	05/31/23 06:12	
1,3-Dichlorobenzene	25 U	25	5	05/31/23 06:12	
1,4-Dichlorobenzene	25 U	25	5	05/31/23 06:12	
1,4-Dioxane	500 U	500	5	05/31/23 06:12	
2-Butanone (MEK)	50 U	50	5	05/31/23 06:12	
2-Hexanone	50 U	50	5	05/31/23 06:12	
4-Methyl-2-pentanone	50 U	50	5	05/31/23 06:12	
Acetone	50 U	50	5	05/31/23 06:12	
Benzene	25 U	25	5	05/31/23 06:12	
Bromochloromethane	25 U	25	5	05/31/23 06:12	
Bromodichloromethane	25 U	25	5	05/31/23 06:12	
Bromoform	25 U	25	5	05/31/23 06:12	
Bromomethane	25 U	25	5	05/31/23 06:12	
Carbon Disulfide	50 U	50	5	05/31/23 06:12	
Carbon Tetrachloride	25 U	25	5	05/31/23 06:12	
Chlorobenzene	25 U	25	5	05/31/23 06:12	
Chloroethane	25 U	25	5	05/31/23 06:12	
Chloroform	25 U	25	5	05/31/23 06:12	
Chloromethane	25 U	25	5	05/31/23 06:12	
Cyclohexane	50 U	50	5	05/31/23 06:12	
Dibromochloromethane	25 U	25	5	05/31/23 06:12	
Dichlorodifluoromethane (CFC 12)	25 U	25	5	05/31/23 06:12	
Dichloromethane	25 U	25	5	05/31/23 06:12	
Ethylbenzene	25 U	25	5	05/31/23 06:12	
Isopropylbenzene (Cumene)	25 U	25	5	05/31/23 06:12	
Methyl Acetate	50 U	50	5	05/31/23 06:12	
Methyl tert-Butyl Ether	25 U	25	5	05/31/23 06:12	
Methylcyclohexane	50 U	50	5	05/31/23 06:12	
Styrene	25 U	25	5	05/31/23 06:12	
Tetrachloroethene (PCE)	25 U	25	5	05/31/23 06:12	
Toluene	25 U	25	5	05/31/23 06:12	

Printed 6/5/2023 4:24:04 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 06:57

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-1
 Units: ug/L

 Lab Code:
 R2304484-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	380	25	5	05/31/23 06:12	
Trichlorofluoromethane (CFC 11)	25 U	25	5	05/31/23 06:12	
Vinyl Chloride	25 U	25	5	05/31/23 06:12	
cis-1,2-Dichloroethene	220	25	5	05/31/23 06:12	
cis-1,3-Dichloropropene	25 U	25	5	05/31/23 06:12	
m,p-Xylenes	25 U	25	5	05/31/23 06:12	
o-Xylene	25 U	25	5	05/31/23 06:12	
trans-1,2-Dichloroethene	25 U	25	5	05/31/23 06:12	
trans-1,3-Dichloropropene	25 U	25	5	05/31/23 06:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	05/31/23 06:12	
Dibromofluoromethane	102	80 - 116	05/31/23 06:12	
Toluene-d8	103	87 - 121	05/31/23 06:12	

Analytical Report

Client: Bergmann Associates, Incorporated Project: Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 06:40

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-2
 Units: ug/L

 Lab Code:
 R2304484-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 01:12	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 01:12	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 01:12	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 01:12	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 01:12	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 01:12	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 01:12	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 01:12	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 01:12	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 01:12	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:12	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 01:12	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 01:12	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:12	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:12	
1,4-Dioxane	100 U	100	1	05/31/23 01:12	
2-Butanone (MEK)	10 U	10	1	05/31/23 01:12	
2-Hexanone	10 U	10	1	05/31/23 01:12	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 01:12	
Acetone	10 U	10	1	05/31/23 01:12	
Benzene	5.0 U	5.0	1	05/31/23 01:12	
Bromochloromethane	5.0 U	5.0	1	05/31/23 01:12	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 01:12	
Bromoform	5.0 U	5.0	1	05/31/23 01:12	
Bromomethane	5.0 U	5.0	1	05/31/23 01:12	
Carbon Disulfide	10 U	10	1	05/31/23 01:12	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 01:12	
Chlorobenzene	5.0 U	5.0	1	05/31/23 01:12	
Chloroethane	5.0 U	5.0	1	05/31/23 01:12	
Chloroform	5.0 U	5.0	1	05/31/23 01:12	
Chloromethane	5.0 U	5.0	1	05/31/23 01:12	
Cyclohexane	10 U	10	1	05/31/23 01:12	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 01:12	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 01:12	
Dichloromethane (CFC 12)	5.0 U	5.0	1	05/31/23 01:12	
Ethylbenzene	5.0 U	5.0	1	05/31/23 01:12	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 01:12	
Methyl Acetate	10 U	10	1	05/31/23 01:12	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 01:12	
Methylcyclohexane	10 U 5.0 U	10	1	05/31/23 01:12	
Styrene (DCF)		5.0	1	05/31/23 01:12	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 01:12	
Toluene	10	5.0	1	05/31/23 01:12	

Printed 6/5/2023 4:24:04 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 06:40

Sample Matrix: Water Date Received: 05/19/23 13:28

Sample Name: MW-2 Units: ug/L

Lab Code: R2304484-002 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 01:12	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 01:12	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 01:12	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 01:12	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 01:12	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 01:12	
o-Xylene	5.0 U	5.0	1	05/31/23 01:12	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 01:12	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 01:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	05/31/23 01:12	
Dibromofluoromethane	102	80 - 116	05/31/23 01:12	
Toluene-d8	103	87 - 121	05/31/23 01:12	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 06:20

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-3
 Units: ug/L

 Lab Code:
 R2304484-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 01:35	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 01:35	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 01:35	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 01:35	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 01:35	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 01:35	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 01:35	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 01:35	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 01:35	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 01:35	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:35	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 01:35	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 01:35	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:35	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:35	
1,4-Dioxane	100 U	100	1	05/31/23 01:35	
2-Butanone (MEK)	10 U	10	1	05/31/23 01:35	
2-Hexanone	10 U	10	1	05/31/23 01:35	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 01:35	
Acetone	10 U	10	1	05/31/23 01:35	
Benzene	5.0 U	5.0	1	05/31/23 01:35	
Bromochloromethane	5.0 U	5.0	1	05/31/23 01:35	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 01:35	
Bromoform	5.0 U	5.0	1	05/31/23 01:35	
Bromomethane	5.0 U	5.0	1	05/31/23 01:35	
Carbon Disulfide	10 U	10	1	05/31/23 01:35	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 01:35	
Chlorobenzene	5.0 U	5.0	1	05/31/23 01:35	
Chloroethane	5.0 U	5.0	1	05/31/23 01:35	
Chloroform	5.0 U	5.0	1	05/31/23 01:35	
Chloromethane	5.0 U	5.0	1	05/31/23 01:35	
Cyclohexane	3.0 U 10 U	10	1		
		5.0		05/31/23 01:35	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 01:35	
Dichlorodifluoromethane (CFC 12)	5.0 U		1	05/31/23 01:35	
Dichloromethane	5.0 U	5.0	1	05/31/23 01:35	
Ethylbenzene	5.0 U	5.0	1	05/31/23 01:35	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 01:35	
Methyl Acetate	10 U	10	1	05/31/23 01:35	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 01:35	
Methylcyclohexane	10 U	10	1	05/31/23 01:35	
Styrene	5.0 U	5.0	1	05/31/23 01:35	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 01:35	
Toluene	5.0 U	5.0	1	05/31/23 01:35	

Printed 6/5/2023 4:24:05 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/19/23 06:20 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-3 Units: ug/L Lab Code:

R2304484-003 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 01:35	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 01:35	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 01:35	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 01:35	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 01:35	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 01:35	
o-Xylene	5.0 U	5.0	1	05/31/23 01:35	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 01:35	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 01:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	05/31/23 01:35	
Dibromofluoromethane	96	80 - 116	05/31/23 01:35	
Toluene-d8	99	87 - 121	05/31/23 01:35	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Date Collected: 05/19/23 09:10 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-4 Units: ug/L Lab Code: R2304484-004

Basis: NA

Service Request: R2304484

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 13:51	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 13:51	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 13:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 13:51	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 13:51	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 13:51	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 13:51	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 13:51	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 13:51	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 13:51	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 13:51	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 13:51	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 13:51	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 13:51	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 13:51	
1,4-Dioxane	100 U	100	1	05/31/23 13:51	
2-Butanone (MEK)	10 U	10	1	05/31/23 13:51	
2-Hexanone	10 U	10	1	05/31/23 13:51	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 13:51	
Acetone	10 U	10	1	05/31/23 13:51	
Benzene	5.0 U	5.0	1	05/31/23 13:51	
Bromochloromethane	5.0 U	5.0	1	05/31/23 13:51	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 13:51	
Bromoform	5.0 U	5.0	1	05/31/23 13:51	
Bromomethane	5.0 U	5.0	1	05/31/23 13:51	
Carbon Disulfide	10 U	10	1	05/31/23 13:51	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 13:51	
Chlorobenzene	5.0 U	5.0	1	05/31/23 13:51	
Chloroethane	5.0 U	5.0	1	05/31/23 13:51	
Chloroform	5.0 U	5.0	1	05/31/23 13:51	
Chloromethane	5.0 U	5.0	1	05/31/23 13:51	
Cyclohexane	3.0 U 10 U	10	1		
Dibromochloromethane	5.0 U	5.0		05/31/23 13:51 05/31/23 13:51	
		5.0	1 1		
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0		05/31/23 13:51	
Dichloromethane	5.0 U		1	05/31/23 13:51	
Ethylbenzene	5.0 U	5.0	1	05/31/23 13:51	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 13:51	
Methyl Acetate	10 U	10	1	05/31/23 13:51	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 13:51	
Methylcyclohexane	10 U	10	1	05/31/23 13:51	
Styrene	5.0 U	5.0	1	05/31/23 13:51	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 13:51	
Toluene	5.0 U	5.0	1	05/31/23 13:51	

Printed 6/5/2023 4:24:05 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/19/23 09:10 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

MW-4 **Sample Name:** Units: ug/L Lab Code: R2304484-004

Basis: NA

Service Request: R2304484

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 13:51	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 13:51	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 13:51	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 13:51	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 13:51	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 13:51	
o-Xylene	5.0 U	5.0	1	05/31/23 13:51	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 13:51	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 13:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	05/31/23 13:51	
Dibromofluoromethane	94	80 - 116	05/31/23 13:51	
Toluene-d8	97	87 - 121	05/31/23 13:51	

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 15:25 **Project:** Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-5 Units: ug/L Lab Code: R2304484-005 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 01:58	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 01:58	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 01:58	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 01:58	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 01:58	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 01:58	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 01:58	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 01:58	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 01:58	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 01:58	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:58	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 01:58	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 01:58	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:58	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 01:58	
1,4-Dioxane	100 U	100	1	05/31/23 01:58	
2-Butanone (MEK)	10 U	10	1	05/31/23 01:58	
2-Hexanone	10 U	10	1	05/31/23 01:58	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 01:58	
Acetone	10 U	10	1	05/31/23 01:58	
Benzene	5.0 U	5.0	1	05/31/23 01:58	
Bromochloromethane	5.0 U	5.0	1	05/31/23 01:58	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 01:58	
Bromoform	5.0 U	5.0	1	05/31/23 01:58	
Bromomethane	5.0 U	5.0	1	05/31/23 01:58	
Carbon Disulfide	10 U	10	1	05/31/23 01:58	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 01:58	
Chlorobenzene	5.0 U	5.0	1	05/31/23 01:58	
	5.0 U		1		
Chloroethane		5.0		05/31/23 01:58	
Chloroform	5.0 U 5.0 U	5.0 5.0	1	05/31/23 01:58	
Chloromethane			1	05/31/23 01:58	
Cyclohexane	10 U	10	1	05/31/23 01:58	
Dibromochloromethane (GPG 12)	5.0 U	5.0	1	05/31/23 01:58	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 01:58	
Dichloromethane	5.0 U	5.0	1	05/31/23 01:58	
Ethylbenzene	5.0 U	5.0	1	05/31/23 01:58	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 01:58	
Methyl Acetate	10 U	10	1	05/31/23 01:58	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 01:58	
Methylcyclohexane	10 U	10	1	05/31/23 01:58	
Styrene	5.0 U	5.0	1	05/31/23 01:58	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 01:58	
Toluene	5.0 U	5.0	1	05/31/23 01:58	

Printed 6/5/2023 4:24:05 PM

Superset Reference:23-0000664717 rev 00

Service Request: R2304484

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 15:25

Sample Matrix: Water Date Received: 05/19/23 13:28

Sample Name: MW-5 Units: ug/L

Lab Code: R2304484-005 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 01:58	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 01:58	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 01:58	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 01:58	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 01:58	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 01:58	
o-Xylene	5.0 U	5.0	1	05/31/23 01:58	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 01:58	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 01:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	05/31/23 01:58	
Dibromofluoromethane	95	80 - 116	05/31/23 01:58	
Toluene-d8	98	87 - 121	05/31/23 01:58	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Q2 Gowanda 2023/14263.12

Water

Date Collected: 05/18/23 15:10 **Date Received:** 05/19/23 13:28

Units: ug/L

Service Request: R2304484

Sample Name: MW-6

Sample Matrix:

Lab Code: R2304484-006 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 02:21	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 02:21	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 02:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 02:21	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 02:21	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 02:21	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 02:21	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 02:21	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 02:21	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 02:21	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 02:21	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 02:21	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 02:21	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 02:21	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 02:21	
1,4-Dioxane	100 U	100	1	05/31/23 02:21	
2-Butanone (MEK)	10 U	10	1	05/31/23 02:21	
2-Hexanone	10 U	10	1	05/31/23 02:21	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 02:21	
Acetone	10 U	10	1	05/31/23 02:21	
Benzene	5.0 U	5.0	1	05/31/23 02:21	
Bromochloromethane	5.0 U	5.0	1	05/31/23 02:21	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 02:21	
Bromoform	5.0 U	5.0	1	05/31/23 02:21	
Bromomethane	5.0 U	5.0	1	05/31/23 02:21	
Carbon Disulfide	10 U	10	1	05/31/23 02:21	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 02:21	
Chlorobenzene	5.0 U	5.0	1	05/31/23 02:21	
Chloroethane	5.0 U	5.0	1	05/31/23 02:21	
Chloroform	5.0 U	5.0	1	05/31/23 02:21	
Chloromethane	5.0 U	5.0	1	05/31/23 02:21	
Cyclohexane	10 U	10	1	05/31/23 02:21	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 02:21	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 02:21	
Dichloromethane (SF S 12)	5.0 U	5.0	1	05/31/23 02:21	
Ethylbenzene	5.0 U	5.0	1	05/31/23 02:21	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 02:21	
Methyl Acetate	10 U	10	1	05/31/23 02:21	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 02:21	
Methylcyclohexane	10 U	10	1	05/31/23 02:21	
Styrene	5.0 U	5.0	1	05/31/23 02:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 02:21	
Toluene	5.0 U	5.0	1	05/31/23 02:21	
TOTALCITE	3.0 0	5.0	1	03/31/43 04.41	

Printed 6/5/2023 4:24:06 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 15:10 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-6 Units: ug/L

Lab Code: R2304484-006 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 02:21	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 02:21	
Vinyl Chloride	25	5.0	1	05/31/23 02:21	
cis-1,2-Dichloroethene	34	5.0	1	05/31/23 02:21	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 02:21	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 02:21	
o-Xylene	5.0 U	5.0	1	05/31/23 02:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 02:21	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 02:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	05/31/23 02:21	
Dibromofluoromethane	102	80 - 116	05/31/23 02:21	
Toluene-d8	102	87 - 121	05/31/23 02:21	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 08:23

Sample Matrix: Water

Units: ug/L

Service Request: R2304484

Date Received: 05/19/23 13:28

Sample Name: MW-7

Lab Code: R2304484-007 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 02:44	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 02:44	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 02:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 02:44	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 02:44	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 02:44	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 02:44	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 02:44	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 02:44	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 02:44	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 02:44	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 02:44	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 02:44	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 02:44	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 02:44	
1,4-Dioxane	100 U	100	1	05/31/23 02:44	
2-Butanone (MEK)	10 U	100	1	05/31/23 02:44	
2-Hexanone	10 U	10	1	05/31/23 02:44	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 02:44	
Acetone	10 U	10	1	05/31/23 02:44	
Benzene	5.0 U	5.0	1	05/31/23 02:44	
Bromochloromethane	5.0 U	5.0	1	05/31/23 02:44	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 02:44	
Bromoform	5.0 U	5.0	1	05/31/23 02:44	
Bromomethane	5.0 U	5.0	1	05/31/23 02:44	
Carbon Disulfide	10 U	10	1	05/31/23 02:44	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 02:44	
Chlorobenzene	5.0 U	5.0	1	05/31/23 02:44	
Chloroethane	5.0 U	5.0	1	05/31/23 02:44	
Chloroform	5.0 U	5.0	1	05/31/23 02:44	
Chloromethane	5.0 U	5.0	1	05/31/23 02:44	
Cyclohexane	10 U	10	1	05/31/23 02:44	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 02:44	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 02:44	
Dichloromethane	5.0 U	5.0	1	05/31/23 02:44	
Ethylbenzene	5.0 U	5.0	1	05/31/23 02:44	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 02:44	
Methyl Acetate	10 U	10	1	05/31/23 02:44	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 02:44	
Methylcyclohexane	10 U	10	1	05/31/23 02:44	
Styrene	5.0 U	5.0	1	05/31/23 02:44	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 02:44	
Toluene	5.0 U	5.0	1	05/31/23 02:44	

Printed 6/5/2023 4:24:06 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 08:23 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

MW-7 **Sample Name:** Units: ug/L Lab Code:

R2304484-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 02:44	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 02:44	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 02:44	
cis-1,2-Dichloroethene	50	5.0	1	05/31/23 02:44	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 02:44	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 02:44	
o-Xylene	5.0 U	5.0	1	05/31/23 02:44	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 02:44	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 02:44	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	05/31/23 02:44	
Dibromofluoromethane	97	80 - 116	05/31/23 02:44	
Toluene-d8	98	87 - 121	05/31/23 02:44	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 07:40

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-8
 Units: ug/L

 Lab Code:
 R2304484-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 14:14	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 14:14	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 14:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 14:14	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 14:14	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 14:14	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 14:14	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 14:14	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 14:14	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 14:14	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 14:14	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 14:14	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 14:14	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 14:14	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 14:14	
1,4-Dioxane	100 U	100	1	05/31/23 14:14	
2-Butanone (MEK)	10 U	10	1	05/31/23 14:14	
2-Hexanone	10 U	10	1	05/31/23 14:14	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 14:14	
Acetone	10 U	10	1	05/31/23 14:14	
Benzene	5.0 U	5.0	1	05/31/23 14:14	
Bromochloromethane	5.0 U	5.0	1	05/31/23 14:14	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 14:14	
Bromoform	5.0 U	5.0	1	05/31/23 14:14	
Bromomethane	5.0 U	5.0	1	05/31/23 14:14	
Carbon Disulfide	10 U	10	1	05/31/23 14:14	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 14:14	
Chlorobenzene	5.0 U	5.0	1	05/31/23 14:14	
Chloroethane	5.0 U	5.0	1	05/31/23 14:14	
Chloroform	5.0 U	5.0	1	05/31/23 14:14	
Chloromethane	5.0 U	5.0	1	05/31/23 14:14	
Cyclohexane	10 U	10	1		
		5.0		05/31/23 14:14	
Dibromochloromethane	5.0 U		1	05/31/23 14:14	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 14:14	
Dichloromethane Fil. II	5.0 U	5.0	1	05/31/23 14:14	
Ethylbenzene	5.0 U	5.0	1	05/31/23 14:14	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 14:14	
Methyl Acetate	10 U	10	1	05/31/23 14:14	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 14:14	
Methylcyclohexane	10 U	10	1	05/31/23 14:14	
Styrene	5.0 U	5.0	1	05/31/23 14:14	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 14:14	
Toluene	5.0 U	5.0	1	05/31/23 14:14	

Printed 6/5/2023 4:24:06 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Service Request: R2304484 **Date Collected:** 05/19/23 07:40 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

MW-8 **Sample Name:** Units: ug/L

Lab Code: R2304484-008 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 14:14	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 14:14	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 14:14	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 14:14	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 14:14	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 14:14	
o-Xylene	5.0 U	5.0	1	05/31/23 14:14	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 14:14	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 14:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	05/31/23 14:14	
Dibromofluoromethane	96	80 - 116	05/31/23 14:14	
Toluene-d8	99	87 - 121	05/31/23 14:14	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

R2304484-009

MW-9

Q2 Gowanda 2023/14263.12

Date Collected: 05/19/23 08:35 **Date Received:** 05/19/23 13:28

Basis: NA

Service Request: R2304484

Sample Matrix: Water

Sample Name:

Lab Code:

Units: ug/L

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 14:37	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 14:37	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 14:37	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 14:37	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 14:37	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 14:37	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 14:37	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 14:37	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 14:37	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 14:37	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 14:37	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 14:37	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 14:37	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 14:37	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 14:37	
1,4-Dioxane	100 U	100	1	05/31/23 14:37	
2-Butanone (MEK)	10 U	10	1	05/31/23 14:37	
2-Hexanone	10 U	10	1	05/31/23 14:37	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 14:37	
Acetone	10 U	10	1	05/31/23 14:37	
Benzene	5.0 U	5.0	1	05/31/23 14:37	
Bromochloromethane	5.0 U	5.0	1	05/31/23 14:37	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 14:37	
Bromoform	5.0 U	5.0	1	05/31/23 14:37	
Bromomethane	5.0 U	5.0	1	05/31/23 14:37	
Carbon Disulfide	10 U	10	1	05/31/23 14:37	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 14:37	
Chlorobenzene	5.0 U	5.0	1	05/31/23 14:37	
Chloroethane	5.0 U	5.0	1	05/31/23 14:37	
Chloroform	5.0 U	5.0	1	05/31/23 14:37	
Chloromethane	5.0 U	5.0	1	05/31/23 14:37	
Cyclohexane	10 U	10	1	05/31/23 14:37	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 14:37	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 14:37	
Dichloromethane	5.0 U	5.0	1	05/31/23 14:37	
Ethylbenzene	5.0 U	5.0	1	05/31/23 14:37	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 14:37	
Methyl Acetate	10 U	10	1	05/31/23 14:37	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 14:37	
Methylcyclohexane	10 U	10	1	05/31/23 14:37	
Styrene	5.0 U	5.0	1	05/31/23 14:37	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 14:37	
Toluene	5.0 U	5.0	1	05/31/23 14:37	

Printed 6/5/2023 4:24:07 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 08:35

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-9
 Units: ug/L

 Lab Code:
 R2304484-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 14:37	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 14:37	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 14:37	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 14:37	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 14:37	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 14:37	
o-Xylene	5.0 U	5.0	1	05/31/23 14:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 14:37	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 14:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/31/23 14:37	
Dibromofluoromethane	98	80 - 116	05/31/23 14:37	
Toluene-d8	99	87 - 121	05/31/23 14:37	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:** Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 08:08

Sample Matrix: Water

Date Received: 05/19/23 13:28

Units: ug/L

Basis: NA

Service Request: R2304484

 Sample Name:
 MW-10

 Lab Code:
 R2304484-010

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 15:00	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 15:00	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 15:00	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 15:00	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 15:00	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 15:00	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 15:00	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 15:00	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 15:00	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 15:00	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:00	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 15:00	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 15:00	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:00	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:00	
1,4-Dioxane	100 U	100	1	05/31/23 15:00	
2-Butanone (MEK)	10 U	10	1	05/31/23 15:00	
2-Hexanone	10 U	10	1	05/31/23 15:00	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 15:00	
Acetone	10 U	10	1	05/31/23 15:00	
Benzene	5.0 U	5.0	1	05/31/23 15:00	
Bromochloromethane	5.0 U	5.0	1	05/31/23 15:00	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 15:00	
Bromoform	5.0 U	5.0	1	05/31/23 15:00	
Bromomethane	5.0 U	5.0	1	05/31/23 15:00	
Carbon Disulfide	10 U	10	1	05/31/23 15:00	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 15:00	
Chlorobenzene	5.0 U	5.0	1	05/31/23 15:00	
Chloroethane	5.0 U	5.0	1	05/31/23 15:00	
Chloroform	5.0 U	5.0	1	05/31/23 15:00	
Chloromethane	5.0 U	5.0	1	05/31/23 15:00	
Cyclohexane	10 U	10	1	05/31/23 15:00	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 15:00	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 15:00	
Dichloromethane	5.0 U	5.0	1	05/31/23 15:00	
Ethylbenzene	5.0 U	5.0	1	05/31/23 15:00	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 15:00	
Methyl Acetate	10 U	10	1	05/31/23 15:00	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 15:00	
Methylcyclohexane	10 U	10	1	05/31/23 15:00	
Styrene	5.0 U	5.0	1	05/31/23 15:00	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 15:00	
Toluene	5.0 U	5.0	1	05/31/23 15:00	

Printed 6/5/2023 4:24:07 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 08:08

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R2304484-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 15:00	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 15:00	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 15:00	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 15:00	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 15:00	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 15:00	
o-Xylene	5.0 U	5.0	1	05/31/23 15:00	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 15:00	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 15:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	05/31/23 15:00	
Dibromofluoromethane	94	80 - 116	05/31/23 15:00	
Toluene-d8	97	87 - 121	05/31/23 15:00	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 12:53

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-11
 Units: ug/L

 Lab Code:
 R2304484-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 16:09	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 16:09	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 16:09	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 16:09	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 16:09	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 16:09	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 16:09	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 16:09	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 16:09	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 16:09	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 16:09	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 16:09	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 16:09	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 16:09	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 16:09	
1,4-Dioxane	100 U	100	1	05/31/23 16:09	
2-Butanone (MEK)	10 U	10	1	05/31/23 16:09	
2-Hexanone	10 U	10	1	05/31/23 16:09	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 16:09	
Acetone	10 U	10	1	05/31/23 16:09	
Benzene	5.0 U	5.0	1	05/31/23 16:09	
Bromochloromethane	5.0 U	5.0	1	05/31/23 16:09	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 16:09	
Bromoform	5.0 U	5.0	1	05/31/23 16:09	
Bromomethane	5.0 U	5.0	1	05/31/23 16:09	
Carbon Disulfide	10 U	10	1	05/31/23 16:09	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 16:09	
Chlorobenzene	5.0 U	5.0	1	05/31/23 16:09	
Chloroethane	5.0 U	5.0	1	05/31/23 16:09	
Chloroform	5.0 U	5.0	1	05/31/23 16:09	
Chloromethane	5.0 U	5.0	1	05/31/23 16:09	
Cyclohexane	10 U	10	1	05/31/23 16:09	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 16:09	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 16:09	
Dichloromethane (CFC 12)	5.0 U	5.0	1	05/31/23 16:09	
Ethylbenzene	5.0 U	5.0	1	05/31/23 16:09	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 16:09	
Methyl Acetate	10 U	10	1	05/31/23 16:09	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 16:09	
Methylcyclohexane	10 U	10	1	05/31/23 16:09	
Styrene	5.0 U	5.0	1	05/31/23 16:09	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 16:09	
· ,					
Toluene	5.0 U	5.0	1	05/31/23 16:09	

Printed 6/5/2023 4:24:08 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R2304484 **Date Collected:** 05/18/23 12:53 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-11 Units: ug/L Lab Code: R2304484-011 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	220 E	5.0	1	05/31/23 16:09	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 16:09	
Vinyl Chloride	5.7	5.0	1	05/31/23 16:09	
cis-1,2-Dichloroethene	120	5.0	1	05/31/23 16:09	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 16:09	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 16:09	
o-Xylene	5.0 U	5.0	1	05/31/23 16:09	
trans-1,2-Dichloroethene	9.3	5.0	1	05/31/23 16:09	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 16:09	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	05/31/23 16:09	
Dibromofluoromethane	95	80 - 116	05/31/23 16:09	
Toluene-d8	97	87 - 121	05/31/23 16:09	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R2304484 **Date Collected:** 05/18/23 12:53 **Project:** Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-11 Units: ug/L Lab Code: R2304484-011 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

1,1,1-Trichloroethane (TCA) 13 U 13 U 13 U 2.5 05/31/23 05:49 1,1,2,2-Tetrachloroethane 13 U 13 U 2.5 05/31/23 05:49 1,1,2-Trichloroethane 13 U 13 U 2.5 05/31/23 05:49 1,1,2-Trichloro-1,2,2-trifluoroethane 13 U 13 U 2.5 05/31/23 05:49 1,1-Dichloroethane (1,1-DCA) 13 U 13 U 2.5 05/31/23 05:49 1,1-Dichloroethene (1,1-DCE) 13 U 13 U 2.5 05/31/23 05:49 1,2,3-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13	Q
1,1,2-Trichloroethane 13 U 13 2.5 05/31/23 05:49 1,1,2-Trichloro-1,2,2-trifluoroethane 13 U 13 2.5 05/31/23 05:49 1,1-Dichloroethane (1,1-DCA) 13 U 13 2.5 05/31/23 05:49 1,1-Dichloroethene (1,1-DCE) 13 U 13 2.5 05/31/23 05:49 1,2,3-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 <	
1,1,2-Trichloro-1,2,2-trifluoroethane 13 U 13 2.5 05/31/23 05:49 1,1-Dichloroethane (1,1-DCA) 13 U 13 2.5 05/31/23 05:49 1,1-Dichloroethene (1,1-DCE) 13 U 13 2.5 05/31/23 05:49 1,2,3-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloroethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,1-Dichloroethane (1,1-DCA) 13 U 13 U 2.5 05/31/23 05:49 1,1-Dichloroethene (1,1-DCE) 13 U 13 U 2.5 05/31/23 05:49 1,2,3-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,5-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,1-Dichloroethene (1,1-DCE) 13 U 13 2.5 05/31/23 05:49 1,2,3-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,1-Dichloroethene (1,1-DCE) 13 U 13 2.5 05/31/23 05:49 1,2,3-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2,4-Trichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2-Dibromo-3-chloropropane (DBCP) 13 U 13 2.5 05/31/23 05:49 1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloroethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2-Dibromoethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloroethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,2-Dichloroethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2-Dichloroethane 13 U 13 2.5 05/31/23 05:49 1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,2-Dichloropropane 13 U 13 2.5 05/31/23 05:49 1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,3-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 05:49	
1,T-DIOAGIC 250 C.5 05/51/25 05.47	
2-Butanone (MEK) 25 U 25 2.5 05/31/23 05:49	
2-Hexanone 25 U 25 2.5 05/31/23 05:49	
4-Methyl-2-pentanone 25 U 25 2.5 05/31/23 05:49	
Acetone 25 U 25 2.5 05/31/23 05:49	
Benzene 13 U 13 2.5 05/31/23 05:49	
Bromochloromethane 13 U 13 2.5 05/31/23 05:49	
Bromodichloromethane 13 U 13 2.5 05/31/23 05:49	
Bromoform 13 U 13 2.5 05/31/23 05:49	
Bromomethane 13 U 13 2.5 05/31/23 05:49	
Carbon Disulfide 25 U 25 2.5 05/31/23 05:49	
Carbon Tetrachloride 13 U 13 2.5 05/31/23 05:49	
Chlorobenzene 13 U 13 2.5 05/31/23 05:49	
Chloroethane 13 U 13 2.5 05/31/23 05:49	
Chloroform 13 U 13 2.5 05/31/23 05:49	
Chloromethane 13 U 13 2.5 05/31/23 05:49	
Cyclohexane 25 U 25 2.5 05/31/23 05:49	
Dibromochloromethane 13 U 13 2.5 05/31/23 05:49	
Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 05:49	
Dichloromethane 13 U 13 2.5 05/31/23 05:49	
Ethylbenzene 13 U 13 2.5 05/31/23 05:49	
Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 05:49	
Methyl Acetate 25 U 25 2.5 05/31/23 05:49	
Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 05:49	
Methylcyclohexane 25 U 25 2.5 05/31/23 05:49	
Styrene 13 U 13 2.5 05/31/23 05:49	
Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 05:49	
Toluene 13 U 13 2.5 05/31/23 05:49	

Printed 6/5/2023 4:24:08 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 12:53

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-11
 Units: ug/L

 Lab Code:
 R2304484-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	150 D	13	2.5	05/31/23 05:49	
Trichlorofluoromethane (CFC 11)	13 U	13	2.5	05/31/23 05:49	
Vinyl Chloride	13 U	13	2.5	05/31/23 05:49	
cis-1,2-Dichloroethene	32 D	13	2.5	05/31/23 05:49	
cis-1,3-Dichloropropene	13 U	13	2.5	05/31/23 05:49	
m,p-Xylenes	13 U	13	2.5	05/31/23 05:49	
o-Xylene	13 U	13	2.5	05/31/23 05:49	
trans-1,2-Dichloroethene	13 U	13	2.5	05/31/23 05:49	
trans-1,3-Dichloropropene	13 U	13	2.5	05/31/23 05:49	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	05/31/23 05:49	
Dibromofluoromethane	96	80 - 116	05/31/23 05:49	
Toluene-d8	96	87 - 121	05/31/23 05:49	

Analytical Report

Client: Bergmann Associates, Incorporated Project: Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 13:15

Sample Matrix: Water

Date Received: 05/19/23 13:28

Units: ug/L

Service Request: R2304484

Sample Name: MW-12

Lab Code: R2304484-012 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 03:07	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 03:07	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 03:07	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 03:07	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 03:07	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 03:07	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 03:07	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 03:07	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 03:07	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 03:07	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:07	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 03:07	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 03:07	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:07	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:07	
1,4-Dioxane	100 U	100	1	05/31/23 03:07	
2-Butanone (MEK)	10 U	100	1	05/31/23 03:07	
2-Hexanone	10 U	10	1	05/31/23 03:07	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 03:07	
Acetone	10 U	10	1	05/31/23 03:07	
Benzene	5.0 U	5.0	1	05/31/23 03:07	
Bromochloromethane	5.0 U	5.0	1	05/31/23 03:07	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 03:07	
			_		
Bromoform	5.0 U	5.0	1	05/31/23 03:07	
Bromomethane	5.0 U	5.0	1	05/31/23 03:07	
Carbon Disulfide	10 U	10	1	05/31/23 03:07	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 03:07	
Chlorobenzene	5.0 U	5.0	1	05/31/23 03:07	
Chloroethane	5.0 U	5.0	1	05/31/23 03:07	
Chloroform	5.0 U	5.0	1	05/31/23 03:07	
Chloromethane	5.0 U	5.0	1	05/31/23 03:07	
Cyclohexane	10 U	10	1	05/31/23 03:07	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 03:07	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 03:07	
Dichloromethane	5.0 U	5.0	1	05/31/23 03:07	
Ethylbenzene	5.0 U	5.0	1	05/31/23 03:07	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 03:07	
Methyl Acetate	10 U	10	1	05/31/23 03:07	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 03:07	
Methylcyclohexane	10 U	10	1	05/31/23 03:07	
Styrene	5.0 U	5.0	1	05/31/23 03:07	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 03:07	
Toluene	5.0 U	5.0	1	05/31/23 03:07	

Printed 6/5/2023 4:24:08 PM

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Service Request: R2304484 **Date Collected:** 05/18/23 13:15 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-12 Units: ug/L Lab Code: R2304484-012 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	41	5.0	1	05/31/23 03:07	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 03:07	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 03:07	
cis-1,2-Dichloroethene	180	5.0	1	05/31/23 03:07	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 03:07	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 03:07	
o-Xylene	5.0 U	5.0	1	05/31/23 03:07	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 03:07	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 03:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	05/31/23 03:07	
Dibromofluoromethane	102	80 - 116	05/31/23 03:07	
Toluene-d8	105	87 - 121	05/31/23 03:07	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 13:28

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R2304484-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 03:30	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 03:30	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 03:30	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 03:30	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 03:30	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 03:30	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 03:30	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 03:30	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 03:30	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 03:30	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:30	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 03:30	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 03:30	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:30	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:30	
1,4-Dioxane	100 U	100	1	05/31/23 03:30	
2-Butanone (MEK)	10 U	10	1	05/31/23 03:30	
2-Hexanone	10 U	10	1	05/31/23 03:30	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 03:30	
Acetone	10 U	10	1	05/31/23 03:30	
Benzene	5.0 U	5.0	1	05/31/23 03:30	
Bromochloromethane	5.0 U	5.0	1	05/31/23 03:30	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 03:30	
Bromoform	5.0 U	5.0	1	05/31/23 03:30	
Bromomethane	5.0 U	5.0	1	05/31/23 03:30	
Carbon Disulfide	10 U	10	1	05/31/23 03:30	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 03:30	
Chlorobenzene	5.0 U	5.0	1	05/31/23 03:30	
Chloroethane	5.0 U	5.0	1	05/31/23 03:30	
Chloroform	5.0 U	5.0	1	05/31/23 03:30	
Chloromethane	5.0 U	5.0	1	05/31/23 03:30	
Cyclohexane	10 U	10	1		
		5.0		05/31/23 03:30	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 03:30	
Dichlorodifluoromethane (CFC 12)	5.0 U		1	05/31/23 03:30	
Dichloromethane	5.0 U	5.0	1	05/31/23 03:30	
Ethylbenzene	5.0 U	5.0	1	05/31/23 03:30	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 03:30	
Methyl Acetate	10 U	10	1	05/31/23 03:30	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 03:30	
Methylcyclohexane	10 U	10	1	05/31/23 03:30	
Styrene	5.0 U	5.0	1	05/31/23 03:30	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 03:30	
Toluene	5.0 U	5.0	1	05/31/23 03:30	

Printed 6/5/2023 4:24:09 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 13:28

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-13
 Units: ug/L

 Lab Code:
 R2304484-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 03:30	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 03:30	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 03:30	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 03:30	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 03:30	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 03:30	
o-Xylene	5.0 U	5.0	1	05/31/23 03:30	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 03:30	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 03:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/31/23 03:30	
Dibromofluoromethane	102	80 - 116	05/31/23 03:30	
Toluene-d8	104	87 - 121	05/31/23 03:30	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:** Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 13:41

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-14
 Units: ug/L

 Lab Code:
 R2304484-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 03:53	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 03:53	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 03:53	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 03:53	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 03:53	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 03:53	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 03:53	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 03:53	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 03:53	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 03:53	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:53	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 03:53	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 03:53	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:53	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 03:53	
1,4-Dioxane	100 U	100	1	05/31/23 03:53	
2-Butanone (MEK)	10 U	10	1	05/31/23 03:53	
2-Hexanone	10 U	10	1	05/31/23 03:53	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 03:53	
Acetone	10 U	10	1	05/31/23 03:53	
Benzene	5.0 U	5.0	1	05/31/23 03:53	
Bromochloromethane	5.0 U	5.0	1	05/31/23 03:53	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 03:53	
Bromoform	5.0 U	5.0	1	05/31/23 03:53	
Bromomethane	5.0 U	5.0	1	05/31/23 03:53	
Carbon Disulfide	10 U	10	1	05/31/23 03:53	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 03:53	
Chlorobenzene	5.0 U	5.0	1	05/31/23 03:53	
Chloroethane	5.0 U	5.0	1	05/31/23 03:53	
Chloroform	5.0 U	5.0	1	05/31/23 03:53	
Chloromethane	5.0 U	5.0	1	05/31/23 03:53	
Cyclohexane	10 U	10	1	05/31/23 03:53	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 03:53	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 03:53	
Dichloromethane	5.0 U	5.0	1	05/31/23 03:53	
Ethylbenzene	5.0 U	5.0	1	05/31/23 03:53	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 03:53	
Methyl Acetate	10 U	10	1	05/31/23 03:53	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 03:53	
Methylcyclohexane	10 U	10	1	05/31/23 03:53	
Styrene	5.0 U	5.0	1	05/31/23 03:53	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 03:53	
Toluene	5.0 U	5.0	1	05/31/23 03:53	

Printed 6/5/2023 4:24:09 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R2304484 **Date Collected:** 05/18/23 13:41 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

MW-14 **Sample Name:** Units: ug/L Lab Code: R2304484-014 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	8.0	5.0	1	05/31/23 03:53	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 03:53	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 03:53	
cis-1,2-Dichloroethene	52	5.0	1	05/31/23 03:53	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 03:53	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 03:53	
o-Xylene	5.0 U	5.0	1	05/31/23 03:53	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 03:53	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 03:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	05/31/23 03:53	
Dibromofluoromethane	100	80 - 116	05/31/23 03:53	
Toluene-d8	102	87 - 121	05/31/23 03:53	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 10:05

Sample Matrix: Water

Date Received: 05/19/23 13:28

Units: ug/L

Service Request: R2304484

Sample Name: MW-15

Lab Code: R2304484-015 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 04:16	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 04:16	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 04:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 04:16	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 04:16	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 04:16	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 04:16	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 04:16	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 04:16	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 04:16	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 04:16	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 04:16	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 04:16	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 04:16	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 04:16	
1,4-Dioxane	100 U	100	1	05/31/23 04:16	
2-Butanone (MEK)	10 U	10	1	05/31/23 04:16	
2-Hexanone	10 U	10	1	05/31/23 04:16	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 04:16	
Acetone	10 U	10	1	05/31/23 04:16	
Benzene	5.0 U	5.0	1	05/31/23 04:16	
Bromochloromethane	5.0 U	5.0	1	05/31/23 04:16	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 04:16	
Bromoform	5.0 U	5.0	1	05/31/23 04:16	
Bromomethane	5.0 U	5.0	1	05/31/23 04:16	
Carbon Disulfide	10 U	10	1	05/31/23 04:16	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 04:16	
Chlorobenzene	5.0 U	5.0	1	05/31/23 04:16	
Chloroethane	5.0 U	5.0	1	05/31/23 04:16	
Chloroform	5.0 U	5.0	1	05/31/23 04:16	
Chloromethane	5.0 U	5.0	1	05/31/23 04:16	
	10 U	10	1		
Cyclohexane		5.0		05/31/23 04:16	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 04:16	
Dichlorodifluoromethane (CFC 12)	5.0 U		1	05/31/23 04:16	
Dichloromethane	5.0 U	5.0	1	05/31/23 04:16	
Ethylbenzene	5.0 U	5.0	1	05/31/23 04:16	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 04:16	
Methyl Acetate	10 U	10	1	05/31/23 04:16	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 04:16	
Methylcyclohexane	10 U	10	1	05/31/23 04:16	
Styrene	5.0 U	5.0	1	05/31/23 04:16	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 04:16	
Toluene	5.0 U	5.0	1	05/31/23 04:16	

Printed 6/5/2023 4:24:09 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 10:05 **Project:** Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: MW-15 Units: ug/L

Lab Code: R2304484-015 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	6.9	5.0	1	05/31/23 04:16	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 04:16	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 04:16	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 04:16	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 04:16	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 04:16	
o-Xylene	5.0 U	5.0	1	05/31/23 04:16	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 04:16	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 04:16	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/31/23 04:16	
Dibromofluoromethane	101	80 - 116	05/31/23 04:16	
Toluene-d8	103	87 - 121	05/31/23 04:16	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 08:40

Sample Matrix: Water

Date Received: 05/19/23 13:28

Service Request: R2304484

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R2304484-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 04:40	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 04:40	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 04:40	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 04:40	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 04:40	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 04:40	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 04:40	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 04:40	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 04:40	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 04:40	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 04:40	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 04:40	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 04:40	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 04:40	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 04:40	
1,4-Dioxane	100 U	100	1	05/31/23 04:40	
2-Butanone (MEK)	10 U	10	1	05/31/23 04:40	
2-Hexanone	10 U	10	1	05/31/23 04:40	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 04:40	
Acetone	10 U	10	1	05/31/23 04:40	
Benzene	5.0 U	5.0	1	05/31/23 04:40	
Bromochloromethane	5.0 U	5.0	1	05/31/23 04:40	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 04:40	
Bromoform	5.0 U	5.0	1	05/31/23 04:40	
Bromomethane	5.0 U	5.0	1	05/31/23 04:40	
Carbon Disulfide	10 U	10	1	05/31/23 04:40	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 04:40	
Chlorobenzene	5.0 U	5.0	1	05/31/23 04:40	
Chloroethane	5.0 U	5.0	1	05/31/23 04:40	
Chloroform	5.0 U	5.0	1	05/31/23 04:40	
Chloromethane	5.0 U	5.0	1	05/31/23 04:40	
Cyclohexane	10 U	10	1	05/31/23 04:40	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 04:40	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 04:40	
Dichloromethane	5.0 U	5.0	1	05/31/23 04:40	
Ethylbenzene	5.0 U	5.0	1	05/31/23 04:40	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 04:40	
Methyl Acetate	10 U	10	1	05/31/23 04:40	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 04:40	
Methylcyclohexane	10 U	10	1	05/31/23 04:40	
Styrene	5.0 U	5.0	1	05/31/23 04:40	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 04:40	
Toluene	5.0 U	5.0	1	05/31/23 04:40	

Printed 6/5/2023 4:24:10 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 08:40

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R2304484-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 04:40	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 04:40	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 04:40	
cis-1,2-Dichloroethene	33	5.0	1	05/31/23 04:40	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 04:40	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 04:40	
o-Xylene	5.0 U	5.0	1	05/31/23 04:40	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 04:40	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 04:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	05/31/23 04:40	
Dibromofluoromethane	95	80 - 116	05/31/23 04:40	
Toluene-d8	98	87 - 121	05/31/23 04:40	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 14:53

Sample Matrix: Water

Date Received: 05/19/23 13:28

Service Request: R2304484

 Sample Name:
 MW-17
 Units: ug/L

 Lab Code:
 R2304484-017
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 05:03	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 05:03	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 05:03	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 05:03	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 05:03	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 05:03	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 05:03	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 05:03	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 05:03	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 05:03	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 05:03	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 05:03	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 05:03	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 05:03	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 05:03	
1,4-Dioxane	100 U	100	1	05/31/23 05:03	
2-Butanone (MEK)	10 U	10	1	05/31/23 05:03	
2-Hexanone	10 U	10	1	05/31/23 05:03	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 05:03	
Acetone	10 U	10	1	05/31/23 05:03	
Benzene	5.0 U	5.0	1	05/31/23 05:03	
Bromochloromethane	5.0 U	5.0	1	05/31/23 05:03	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 05:03	
Bromoform	5.0 U	5.0	1	05/31/23 05:03	
	5.0 U	5.0	1	05/31/23 05:03	
Bromomethane Carbon Disulfide	10 U	10	1	05/31/23 05:03	
Carbon Tetrachloride		5.0			
	5.0 U	5.0 5.0	1 1	05/31/23 05:03	
Chlorobenzene	5.0 U		_	05/31/23 05:03	
Chloroethane	5.0 U	5.0	1	05/31/23 05:03	
Chloroform	5.0 U	5.0	1	05/31/23 05:03	
Chloromethane	5.0 U		1	05/31/23 05:03	
Cyclohexane	10 U	10	1	05/31/23 05:03	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 05:03	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 05:03	
Dichloromethane	5.0 U	5.0	1	05/31/23 05:03	
Ethylbenzene	5.0 U	5.0	1	05/31/23 05:03	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 05:03	
Methyl Acetate	10 U	10	1	05/31/23 05:03	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 05:03	
Methylcyclohexane	10 U	10	1	05/31/23 05:03	
Styrene	5.0 U	5.0	1	05/31/23 05:03	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 05:03	
Toluene	5.0 U	5.0	1	05/31/23 05:03	

Printed 6/5/2023 4:24:10 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 14:53

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-17
 Units: ug/L

 Lab Code:
 R2304484-017
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	11	5.0	1	05/31/23 05:03	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 05:03	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 05:03	
cis-1,2-Dichloroethene	170	5.0	1	05/31/23 05:03	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 05:03	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 05:03	
o-Xylene	5.0 U	5.0	1	05/31/23 05:03	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 05:03	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 05:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	05/31/23 05:03	
Dibromofluoromethane	96	80 - 116	05/31/23 05:03	
Toluene-d8	99	87 - 121	05/31/23 05:03	

Analytical Report

Client: Bergmann Associates, Incorporated Project: Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 10:18

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-18
 Units: ug/L

 Lab Code:
 R2304484-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 15:23	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 15:23	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 15:23	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 15:23	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 15:23	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 15:23	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 15:23	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 15:23	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 15:23	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 15:23	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:23	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 15:23	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 15:23	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:23	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:23	
1,4-Dioxane	100 U	100	1	05/31/23 15:23	
2-Butanone (MEK)	10 U	10	1	05/31/23 15:23	
2-Hexanone	10 U	10	1	05/31/23 15:23	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 15:23	
Acetone	10 U	10	1	05/31/23 15:23	
Benzene	5.0 U	5.0	1	05/31/23 15:23	
Bromochloromethane	5.0 U	5.0	1	05/31/23 15:23	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 15:23	
			_		
Bromoform	5.0 U	5.0	1	05/31/23 15:23	
Bromomethane	5.0 U	5.0	1	05/31/23 15:23	
Carbon Disulfide	10 U	10	1	05/31/23 15:23	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 15:23	
Chlorobenzene	5.0 U	5.0	1	05/31/23 15:23	
Chloroethane	5.0 U	5.0	1	05/31/23 15:23	
Chloroform	5.0 U	5.0	1	05/31/23 15:23	
Chloromethane	5.0 U	5.0	1	05/31/23 15:23	
Cyclohexane	10 U	10	1	05/31/23 15:23	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 15:23	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 15:23	
Dichloromethane	5.0 U	5.0	1	05/31/23 15:23	
Ethylbenzene	5.0 U	5.0	1	05/31/23 15:23	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 15:23	
Methyl Acetate	10 U	10	1	05/31/23 15:23	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 15:23	
Methylcyclohexane	10 U	10	1	05/31/23 15:23	
Styrene	5.0 U	5.0	1	05/31/23 15:23	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 15:23	
Toluene	5.0 U	5.0	1	05/31/23 15:23	

Printed 6/5/2023 4:24:10 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/19/23 10:18 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

MW-18 **Sample Name:** Units: ug/L Lab Code: R2304484-018 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 15:23	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 15:23	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 15:23	
cis-1,2-Dichloroethene	6.3	5.0	1	05/31/23 15:23	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 15:23	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 15:23	
o-Xylene	5.0 U	5.0	1	05/31/23 15:23	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 15:23	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 15:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/31/23 15:23	
Dibromofluoromethane	95	80 - 116	05/31/23 15:23	
Toluene-d8	97	87 - 121	05/31/23 15:23	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Q2 Gowanda 2023/14263.12

Water

Date Collected: 05/19/23 09:40 **Date Received:** 05/19/23 13:28

Service Request: R2304484

Sample Name: MW-19R R2304484-019 Lab Code:

Sample Matrix:

Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 15:46	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 15:46	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 15:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 15:46	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 15:46	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 15:46	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 15:46	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 15:46	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 15:46	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 15:46	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:46	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 15:46	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 15:46	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:46	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 15:46	
1,4-Dioxane	100 U	100	1	05/31/23 15:46	
2-Butanone (MEK)	10 U	10	1	05/31/23 15:46	
2-Hexanone	10 U	10	1	05/31/23 15:46	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 15:46	
Acetone	10 U	10	1	05/31/23 15:46	
Benzene	5.0 U	5.0	1	05/31/23 15:46	
Bromochloromethane	5.0 U	5.0	1	05/31/23 15:46	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 15:46	
Bromoform	5.0 U	5.0	1	05/31/23 15:46	
Bromomethane	5.0 U	5.0	1	05/31/23 15:46	
Carbon Disulfide	10 U	10	1	05/31/23 15:46	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 15:46	
Chlorobenzene	5.0 U	5.0	1	05/31/23 15:46	
Chloroethane	5.0 U	5.0	1	05/31/23 15:46	
Chloroform	5.0 U	5.0	1	05/31/23 15:46	
Chloromethane	5.0 U	5.0	1	05/31/23 15:46	
Cyclohexane	10 U	10	1	05/31/23 15:46	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 15:46	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 15:46	
Dichloromethane	5.0 U	5.0	1	05/31/23 15:46	
Ethylbenzene	5.0 U	5.0	1	05/31/23 15:46	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 15:46	
Methyl Acetate	10 U	10	1	05/31/23 15:46	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 15:46	
Methylcyclohexane	10 U	10	1	05/31/23 15:46	
Styrene	5.0 U	5.0	1	05/31/23 15:46	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 15:46	
Toluene	5.0 U	5.0	1	05/31/23 15:46	

Printed 6/5/2023 4:24:11 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 09:40

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-19R
 Units: ug/L

 Lab Code:
 R2304484-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 15:46	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 15:46	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 15:46	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 15:46	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 15:46	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 15:46	
o-Xylene	5.0 U	5.0	1	05/31/23 15:46	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 15:46	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 15:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	05/31/23 15:46	_
Dibromofluoromethane	105	80 - 116	05/31/23 15:46	
Toluene-d8	105	87 - 121	05/31/23 15:46	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 15:40

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-20
 Units: ug/L

 Lab Code:
 R2304484-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 05:26	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 05:26	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 05:26	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 05:26	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 05:26	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 05:26	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 05:26	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 05:26	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 05:26	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 05:26	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 05:26	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 05:26	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 05:26	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 05:26	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 05:26	
1,4-Dioxane	100 U	100	1	05/31/23 05:26	
2-Butanone (MEK)	10 U	10	1	05/31/23 05:26	
2-Hexanone	10 U	10	1	05/31/23 05:26	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 05:26	
Acetone	10 U	10	1	05/31/23 05:26	
Benzene	5.0 U	5.0	1	05/31/23 05:26	
Bromochloromethane	5.0 U	5.0	1	05/31/23 05:26	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 05:26	
Bromoform	5.0 U	5.0	1	05/31/23 05:26	
Bromomethane	5.0 U	5.0	1	05/31/23 05:26	
Carbon Disulfide	10 U	10	1	05/31/23 05:26	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 05:26	
Chlorobenzene	5.0 U	5.0	1	05/31/23 05:26	
Chloroethane	5.0 U	5.0	1	05/31/23 05:26	
Chloroform	5.0 U	5.0	1	05/31/23 05:26	
Chloromethane	5.0 U	5.0	1	05/31/23 05:26	
	3.0 U 10 U	10	1		
Cyclohexane		5.0		05/31/23 05:26	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 05:26	
Dichlorodifluoromethane (CFC 12)	5.0 U		1	05/31/23 05:26	
Dichloromethane	5.0 U	5.0	1	05/31/23 05:26	
Ethylbenzene	5.0 U	5.0	1	05/31/23 05:26	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 05:26	
Methyl Acetate	10 U	10	1	05/31/23 05:26	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 05:26	
Methylcyclohexane	10 U	10	1	05/31/23 05:26	
Styrene	5.0 U	5.0	1	05/31/23 05:26	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 05:26	
Toluene	5.0 U	5.0	1	05/31/23 05:26	

Printed 6/5/2023 4:24:11 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 15:40

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-20
 Units: ug/L

 Lab Code:
 R2304484-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 05:26	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 05:26	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 05:26	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 05:26	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 05:26	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 05:26	
o-Xylene	5.0 U	5.0	1	05/31/23 05:26	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 05:26	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 05:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	05/31/23 05:26	
Dibromofluoromethane	94	80 - 116	05/31/23 05:26	
Toluene-d8	92	87 - 121	05/31/23 05:26	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Bergmann Associates, Incorporated Service Request: R2304484

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C **Extraction Method:** EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	80 - 116	87 - 121
MW-1	R2304484-001	107	102	103
MW-2	R2304484-002	107	102	103
MW-3	R2304484-003	103	96	99
MW-4	R2304484-004	96	94	97
MW-5	R2304484-005	103	95	98
MW-6	R2304484-006	100	102	102
MW-7	R2304484-007	100	97	98
MW-8	R2304484-008	105	96	99
MW-9	R2304484-009	104	98	99
MW-10	R2304484-010	98	94	97
MW-11	R2304484-011	96	95	97
MW-11 DL	R2304484-011	100	96	96
MW-12	R2304484-012	108	102	105
MW-13	R2304484-013	104	102	104
MW-14	R2304484-014	105	100	102
MW-15	R2304484-015	104	101	103
MW-16	R2304484-016	101	95	98
MW-17	R2304484-017	107	96	99
MW-18	R2304484-018	102	95	97
MW-19R	R2304484-019	108	105	105
MW-20	R2304484-020	97	94	92
Lab Control Sample	RQ2306660-03	113	103	104
Method Blank	RQ2306660-04	101	95	98
Lab Control Sample	RQ2306700-03	100	97	97
Method Blank	RQ2306700-04	104	95	99
MW-19R MS	RQ2306700-05	111	103	104
MW-19R DMS	RQ2306700-06	102	96	97

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Service Request: R2304484

Date Collected: 05/19/23

 Date Received:
 05/19/23

 Date Analyzed:
 05/31/23

Date Extracted: NA

Duplicate Matrix Spike

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

 Sample Name:
 MW-19R
 Units:
 ug/L

 Lab Code:
 R2304484-019
 Basis:
 NA

Matrix Spike

Analysis Method: 8260C **Prep Method:** EPA 5030C

		RQ2306	5700-05		RQ	2306700-06	_			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec		RPD	Limit
1,1,1-Trichloroethane (TCA)	5.0 U	50.7	50.0	101	51.7	50.0	103	74-127	2	30
1,1,2,2-Tetrachloroethane	5.0 U	46.8	50.0	94	51.3	50.0	103	72-122	9	30
1,1,2-Trichloroethane	5.0 U	48.5	50.0	97	50.8	50.0	102	82-121	5	30
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	51.2	50.0	102	51.5	50.0	103	50-147	<1	30
1,1-Dichloroethane (1,1-DCA)	5.0 U	56.9	50.0	114	56.6	50.0	113	74-132	<1	30
1,1-Dichloroethene (1,1-DCE)	5.0 U	54.5	50.0	109	55.2	50.0	110	71-118	1	30
1,2,3-Trichlorobenzene	5.0 U	25.4	50.0	51 *	27.2	50.0	54 *	59-129	7	30
1,2,4-Trichlorobenzene	5.0 U	25.0	50.0	50 *	26.3	50.0	53 *	69-122	5	30
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	42.0	50.0	84	47.2	50.0	94	37-150	12	30
1,2-Dibromoethane	5.0 U	47.7	50.0	95	49.8	50.0	100	67-127	4	30
1,2-Dichlorobenzene	5.0 U	38.1	50.0	76 *	39.9	50.0	80	77-120	5	30
1,2-Dichloroethane	5.0 U	50.2	50.0	100	50.9	50.0	102	68-130	1	30
1,2-Dichloropropane	5.0 U	51.5	50.0	103	52.7	50.0	105	79-124	2	30
1,3-Dichlorobenzene	5.0 U	36.6	50.0	73 *	38.7	50.0	77 *	83-121	6	30
1,4-Dichlorobenzene	5.0 U	36.9	50.0	74 *	38.8	50.0	78 *	82-120	5	30
1,4-Dioxane	100 U	981	1000	98	1070	1000	107	44-154	9	30
2-Butanone (MEK)	10 U	47.5	50.0	95	49.9	50.0	100	61-137	5	30
2-Hexanone	10 U	51.0	50.0	102	55.2	50.0	110	56-132	8	30
4-Methyl-2-pentanone	10 U	53.2	50.0	106	56.5	50.0	113	60-141	6	30
Acetone	10 U	43.9	50.0	88	46.1	50.0	92	35-183	5	30
Benzene	5.0 U	51.9	50.0	104	53.4	50.0	107	76-129	3	30
Bromochloromethane	5.0 U	53.2	50.0	106	53.9	50.0	108	80-122	1	30
Bromodichloromethane	5.0 U	48.4	50.0	97	49.6	50.0	99	78-133	3	30
Bromoform	5.0 U	46.2	50.0	92	48.7	50.0	97	58-133	5	30
Bromomethane	5.0 U	57.6	50.0	115	59.5	50.0	119	10-184	3	30
Carbon Disulfide	10 U	54.8	50.0	110	54.2	50.0	108	59-140	1	30
Carbon Tetrachloride	5.0 U	49.0	50.0	98	50.3	50.0	101	65-135	3	30
Chlorobenzene	5.0 U	45.3	50.0	91	47.1	50.0	94	76-125	4	30
Chloroethane	5.0 U	52.5	50.0	105	52.1	50.0	104	48-146	<1	30
Chloroform	5.0 U	51.9	50.0	104	52.7	50.0	105	75-130	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

61.0

45.0

46.9

5.0 U

10 U

5.0 U

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

50.0

50.0

50.0

122

90

94

61.7

44.5

49.6

50.0

50.0

50.0

123

89

99

Dibromochloromethane

Chloromethane

Cyclohexane

55-160

52-145

72-128

1

1

6

30

30

30

QA/QC Report

Client: Bergmann Associates, Incorporated **Project:**

Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Service Request:**

R2304484

Date Collected:

05/19/23

Date Received:

05/19/23

Date Analyzed: **Date Extracted:**

05/31/23 NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: MW-19R

Units: ug/L **Basis:** NA

Lab Code: **Analysis Method:** R2304484-019

Prep Method:

8260C EPA 5030C

Matrix Spike

Duplicate Matrix Spike

		RQ2306	5700-05		RQ	2306700-06				
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Dichlorodifluoromethane (CFC 12)	5.0 U	46.1	50.0	92	47.0	50.0	94	49-154	2	30
Dichloromethane	5.0 U	53.1	50.0	106	54.8	50.0	110	73-122	3	30
Ethylbenzene	5.0 U	44.9	50.0	90	46.7	50.0	93	72-134	4	30
Isopropylbenzene (Cumene)	5.0 U	40.7	50.0	81	42.3	50.0	85	77-128	4	30
Methyl Acetate	10 U	40.2	50.0	80	41.5	50.0	83	26-121	3	30
Methyl tert-Butyl Ether	5.0 U	52.2	50.0	104	52.9	50.0	106	75-119	1	30
Methylcyclohexane	10 U	34.7	50.0	69	34.7	50.0	69	45-146	<1	30
Styrene	5.0 U	47.0	50.0	94	48.9	50.0	98	74-136	4	30
Tetrachloroethene (PCE)	5.0 U	41.2	50.0	82	42.3	50.0	85	72-125	3	30
Toluene	5.0 U	48.3	50.0	97	49.5	50.0	99	79-119	3	30
Trichloroethene (TCE)	5.0 U	47.6	50.0	95	48.1	50.0	96	74-122	<1	30
Trichlorofluoromethane (CFC 11)	5.0 U	55.4	50.0	111	55.6	50.0	111	71-136	<1	30
Vinyl Chloride	5.0 U	51.4	50.0	103	51.4	50.0	103	74-159	<1	30
cis-1,2-Dichloroethene	5.0 U	53.5	50.0	107	53.0	50.0	106	77-127	<1	30
cis-1,3-Dichloropropene	5.0 U	53.2	50.0	106	54.8	50.0	110	52-134	3	30
m,p-Xylenes	5.0 U	87.3	100	87	91.3	100	91	80-126	4	30
o-Xylene	5.0 U	45.8	50.0	92	47.4	50.0	95	79-123	3	30
trans-1,2-Dichloroethene	5.0 U	52.9	50.0	106	53.9	50.0	108	73-118	2	30
trans-1,3-Dichloropropene	5.0 U	52.3	50.0	105	54.7	50.0	109	71-133	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304484

Project: Q2 Gowanda 2023/14263.12 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2306660-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 22:31	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 22:31	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 22:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 22:31	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 22:31	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 22:31	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 22:31	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 22:31	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 22:31	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 22:31	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 22:31	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 22:31	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 22:31	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 22:31	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 22:31	
1,4-Dioxane	100 U	100	1	05/30/23 22:31	
2-Butanone (MEK)	10 U	10	1	05/30/23 22:31	
2-Hexanone	10 U	10	1	05/30/23 22:31	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 22:31	
Acetone	10 U	10	1	05/30/23 22:31	
Benzene	5.0 U	5.0	1	05/30/23 22:31	
Bromochloromethane	5.0 U	5.0	1	05/30/23 22:31	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 22:31	
			_		
Bromoform	5.0 U	5.0	1	05/30/23 22:31	
Bromomethane	5.0 U	5.0	1	05/30/23 22:31	
Carbon Disulfide	10 U	10	1	05/30/23 22:31	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 22:31	
Chlorobenzene	5.0 U	5.0	1	05/30/23 22:31	
Chloroethane	5.0 U	5.0	1	05/30/23 22:31	
Chloroform	5.0 U	5.0	1	05/30/23 22:31	
Chloromethane	5.0 U	5.0	1	05/30/23 22:31	
Cyclohexane	10 U	10	1	05/30/23 22:31	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 22:31	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 22:31	
Dichloromethane	5.0 U	5.0	1	05/30/23 22:31	
Ethylbenzene	5.0 U	5.0	1	05/30/23 22:31	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 22:31	
Methyl Acetate	10 U	10	1	05/30/23 22:31	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 22:31	
Methylcyclohexane	10 U	10	1	05/30/23 22:31	
Styrene	5.0 U	5.0	1	05/30/23 22:31	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 22:31	
Toluene	5.0 U	5.0	1	05/30/23 22:31	

Printed 6/5/2023 4:24:12 PM

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304484

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2306660-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/30/23 22:31	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 22:31	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 22:31	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 22:31	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 22:31	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 22:31	
o-Xylene	5.0 U	5.0	1	05/30/23 22:31	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 22:31	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 22:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	05/30/23 22:31	
Dibromofluoromethane	95	80 - 116	05/30/23 22:31	
Toluene-d8	98	87 - 121	05/30/23 22:31	

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304484

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2306700-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 11:24	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 11:24	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 11:24	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 11:24	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 11:24	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 11:24	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 11:24	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,4-Dioxane	100 U	100	1	05/31/23 11:24	
2-Butanone (MEK)	10 U	10	1	05/31/23 11:24	
2-Hexanone	10 U	10	1	05/31/23 11:24	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 11:24	
Acetone	10 U	10	1	05/31/23 11:24	
Benzene	5.0 U	5.0	1	05/31/23 11:24	
Bromochloromethane	5.0 U	5.0	1	05/31/23 11:24	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 11:24	
Bromoform	5.0 U	5.0	1	05/31/23 11:24	
Bromomethane	5.0 U	5.0	1	05/31/23 11:24	
Carbon Disulfide	10 U	10	1	05/31/23 11:24	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 11:24	
Chlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
Chloroethane	5.0 U	5.0	1	05/31/23 11:24	
Chloroform	5.0 U	5.0	1	05/31/23 11:24	
Chloromethane	5.0 U	5.0	1	05/31/23 11:24	
Cyclohexane	10 U	10	1		
		5.0		05/31/23 11:24	
Dibromochloromethane	5.0 U		1	05/31/23 11:24	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 11:24	
Dichloromethane Ed. 19	5.0 U	5.0	1	05/31/23 11:24	
Ethylbenzene	5.0 U	5.0	1	05/31/23 11:24	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 11:24	
Methyl Acetate	10 U	10	1	05/31/23 11:24	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 11:24	
Methylcyclohexane	10 U	10	1	05/31/23 11:24	
Styrene	5.0 U	5.0	1	05/31/23 11:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 11:24	
Toluene	5.0 U	5.0	1	05/31/23 11:24	

Printed 6/5/2023 4:24:14 PM

Superset Reference:23-0000664717 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304484

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2306700-04Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 11:24	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 11:24	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 11:24	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 11:24	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 11:24	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 11:24	
o-Xylene	5.0 U	5.0	1	05/31/23 11:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 11:24	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 11:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/31/23 11:24	
Dibromofluoromethane	95	80 - 116	05/31/23 11:24	
Toluene-d8	99	87 - 121	05/31/23 11:24	

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Printed 6/5/2023 4:24:12 PM

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2304484

Date Analyzed: 05/30/23

Lab Control Sample

RQ2306660-03

Analytical

	Anaiyucai				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	21.3	20.0	106	75-125
1,1,2,2-Tetrachloroethane	8260C	20.9	20.0	105	78-126
1,1,2-Trichloroethane	8260C	21.6	20.0	108	82-121
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	21.7	20.0	108	67-124
1,1-Dichloroethane (1,1-DCA)	8260C	22.9	20.0	115	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	23.6	20.0	118	69-142
1,2,3-Trichlorobenzene	8260C	19.1	20.0	96	67-136
1,2,4-Trichlorobenzene	8260C	18.5	20.0	92	75-132
1,2-Dibromo-3-chloropropane (DBCP)	8260C	19.4	20.0	97	55-136
1,2-Dibromoethane	8260C	20.5	20.0	103	82-127
1,2-Dichlorobenzene	8260C	19.9	20.0	100	80-119
1,2-Dichloroethane	8260C	20.7	20.0	104	71-127
1,2-Dichloropropane	8260C	22.0	20.0	110	80-119
1,3-Dichlorobenzene	8260C	19.5	20.0	98	83-121
1,4-Dichlorobenzene	8260C	19.4	20.0	97	79-119
1,4-Dioxane	8260C	459	400	115	44-154
2-Butanone (MEK)	8260C	19.4	20.0	97	61-137
2-Hexanone	8260C	20.5	20.0	103	63-124
4-Methyl-2-pentanone	8260C	21.2	20.0	106	66-124
Acetone	8260C	19.2	20.0	96	40-161
Benzene	8260C	21.8	20.0	109	79-119
Bromochloromethane	8260C	23.2	20.0	116	81-126
Bromodichloromethane	8260C	20.0	20.0	100	81-123
Bromoform	8260C	19.9	20.0	100	65-146
Bromomethane	8260C	23.5	20.0	117	42-166
Carbon Disulfide	8260C	21.0	20.0	105	66-128
Carbon Tetrachloride	8260C	19.9	20.0	99	70-127
Chlorobenzene	8260C	20.1	20.0	101	80-121
Chloroethane	8260C	20.7	20.0	103	62-131
Chloroform	8260C	22.0	20.0	110	79-120
Chloromethane	8260C	24.7	20.0	124	72-179
Cyclohexane	8260C	21.0	20.0	105	69-120
Dibromochloromethane	8260C	19.9	20.0	99	72-128
D: 4 1 6/5/0002 4 04 10 DM			C 41	D C 22.0000	00

Superset Reference:23-0000664717 rev 00

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Date Analyzed: 05/30/23

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2304484

Lab Control Sample

RQ2306660-03

Angleta Noma	Analytical	D a sul4	Carileo America	0/ Dag	0/ Dog Limita
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Dichlorodifluoromethane (CFC 12)	8260C	19.4	20.0	97	59-155
Dichloromethane	8260C	22.5	20.0	113	73-122
Ethylbenzene	8260C	20.4	20.0	102	76-120
Isopropylbenzene (Cumene)	8260C	20.5	20.0	103	77-128
Methyl Acetate	8260C	16.4	20.0	82	61-133
Methyl tert-Butyl Ether	8260C	22.5	20.0	112	75-118
Methylcyclohexane	8260C	21.4	20.0	107	51-129
Styrene	8260C	21.0	20.0	105	80-124
Tetrachloroethene (PCE)	8260C	19.2	20.0	96	72-125
Toluene	8260C	21.0	20.0	105	79-119
Trichloroethene (TCE)	8260C	20.3	20.0	101	74-122
Trichlorofluoromethane (CFC 11)	8260C	22.5	20.0	113	71-136
Vinyl Chloride	8260C	20.7	20.0	103	74-159
cis-1,2-Dichloroethene	8260C	22.6	20.0	113	80-121
cis-1,3-Dichloropropene	8260C	22.2	20.0	111	77-122
m,p-Xylenes	8260C	40.4	40.0	101	80-126
o-Xylene	8260C	20.6	20.0	103	79-123
trans-1,2-Dichloroethene	8260C	22.5	20.0	112	73-118
trans-1,3-Dichloropropene	8260C	22.3	20.0	111	71-133

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2304484

Date Analyzed: 05/31/23

Lab Control Sample

RQ2306700-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.6	20.0	98	75-125
1,1,2,2-Tetrachloroethane	8260C	20.6	20.0	103	78-126
1,1,2-Trichloroethane	8260C	20.0	20.0	100	82-121
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	20.6	20.0	103	67-124
1,1-Dichloroethane (1,1-DCA)	8260C	20.7	20.0	104	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	20.6	20.0	103	69-142
1,2,3-Trichlorobenzene	8260C	19.0	20.0	95	67-136
1,2,4-Trichlorobenzene	8260C	18.6	20.0	93	75-132
1,2-Dibromo-3-chloropropane (DBCP)	8260C	18.8	20.0	94	55-136
1,2-Dibromoethane	8260C	19.5	20.0	98	82-127
1,2-Dichlorobenzene	8260C	19.5	20.0	98	80-119
1,2-Dichloroethane	8260C	19.3	20.0	96	71-127
1,2-Dichloropropane	8260C	20.5	20.0	102	80-119
1,3-Dichlorobenzene	8260C	19.5	20.0	98	83-121
1,4-Dichlorobenzene	8260C	19.2	20.0	96	79-119
1,4-Dioxane	8260C	415	400	104	44-154
2-Butanone (MEK)	8260C	17.4	20.0	87	61-137
2-Hexanone	8260C	19.2	20.0	96	63-124
4-Methyl-2-pentanone	8260C	19.6	20.0	98	66-124
Acetone	8260C	16.1	20.0	81	40-161
Benzene	8260C	20.3	20.0	101	79-119
Bromochloromethane	8260C	20.4	20.0	102	81-126
Bromodichloromethane	8260C	19.1	20.0	95	81-123
Bromoform	8260C	19.0	20.0	95	65-146
Bromomethane	8260C	21.3	20.0	106	42-166
Carbon Disulfide	8260C	19.4	20.0	97	66-128
Carbon Tetrachloride	8260C	19.5	20.0	98	70-127
Chlorobenzene	8260C	19.7	20.0	99	80-121
Chloroethane	8260C	19.3	20.0	97	62-131
Chloroform	8260C	20.4	20.0	102	79-120
Chloromethane	8260C	22.5	20.0	112	72-179
Cyclohexane	8260C	20.6	20.0	103	69-120
Dibromochloromethane	8260C	19.3	20.0	96	72-128
Printed 6/5/2023 4:24:13 PM			Superset I	Reference:23-0000	0664717 rev 00

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Date Analyzed: 05/31/23

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2304484

Lab Control Sample

RQ2306700-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Dichlorodifluoromethane (CFC 12)	8260C	17.1	20.0	86	59-155
Dichloromethane	8260C 8260C	20.7		104	
			20.0		73-122
Ethylbenzene	8260C	20.1	20.0	101	76-120
Isopropylbenzene (Cumene)	8260C	20.2	20.0	101	77-128
Methyl Acetate	8260C	15.6	20.0	78	61-133
Methyl tert-Butyl Ether	8260C	20.7	20.0	103	75-118
Methylcyclohexane	8260C	21.3	20.0	107	51-129
Styrene	8260C	20.6	20.0	103	80-124
Tetrachloroethene (PCE)	8260C	19.3	20.0	97	72-125
Toluene	8260C	19.6	20.0	98	79-119
Trichloroethene (TCE)	8260C	19.2	20.0	96	74-122
Trichlorofluoromethane (CFC 11)	8260C	20.9	20.0	104	71-136
Vinyl Chloride	8260C	18.8	20.0	94	74-159
cis-1,2-Dichloroethene	8260C	20.5	20.0	103	80-121
cis-1,3-Dichloropropene	8260C	21.1	20.0	105	77-122
m,p-Xylenes	8260C	39.8	40.0	99	80-126
o-Xylene	8260C	19.9	20.0	100	79-123
trans-1,2-Dichloroethene	8260C	20.1	20.0	100	73-118
trans-1,3-Dichloropropene	8260C	21.0	20.0	105	71-133

Service Request No:R2304485

Ariadna Cheremeteff Bergmann Associates, Incorporated 280 East Broad Street Suite 200 Rochester, NY 14604

Laboratory Results for: Q2 Gowanda 2023

Dear Ariadna,

Enclosed are the results of the sample(s) submitted to our laboratory May 19, 2023 For your reference, these analyses have been assigned our service request number **R2304485**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7476. You may also contact me via email at Chris.Leavy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Christopher Leavy Project Manager

ADDRESS

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Bergmann Associates, Incorporated Service Request: R2304485

Project: Q2 Gowanda 2023 Date Received: 05/19/2023

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Eleven water samples were received for analysis at ALS Environmental on 05/19/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Approved by _____ Date _____06/05/2023

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-21		Lab	ID: R2304	1485-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	5.8			5.0	ug/L	8260C
CLIENT ID: DR-1		Lab	ID: R2304	1485-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	100			13	ug/L	8260C
Trichloroethene (TCE)	270			13	ug/L	8260C
CLIENT ID: DR-2		Lab	ID: R2304	1485-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	62			5.0	ug/L	8260C
Trichloroethene (TCE)	15			5.0	ug/L	8260C
CLIENT ID: DR-3		Lab	ID: R2304	1485-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	35			5.0	ug/L	8260C
Trichloroethene (TCE)	18			5.0	ug/L	8260C
CLIENT ID: G-1		Lab	ID: R2304	1485-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	28			5.0	ug/L	8260C
Trichloroethene (TCE)	6.5			5.0	ug/L	8260C
CLIENT ID: G-2		Lab	ID: R2304	1485-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	24			5.0	ug/L	8260C
CLIENT ID: G-3		Lab	ID: R2304	1485-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	120			5.0	ug/L	8260C
Trichloroethene (TCE)	18			5.0	ug/L	8260C
CLIENT ID: MW-X		Lab	ID: R2304	1485-009		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	120			5.0	ug/L	8260C
cis-1,2-Dichloroethene	100	D		13	ug/L	8260C
trans-1,2-Dichloroethene	9.0			5.0	ug/L	8260C
Trichloroethene (TCE)	210	Е		5.0	ug/L	8260C
Trichloroethene (TCE)	170	D		13	ug/L	8260C
Vinyl Chloride	5.6			5.0	ug/L	8260C
CLIENT ID: DR-4		Lab	ID: R2304	1485-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Trichloroethene (TCE)	14			5.0	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com **Project:** Q2 Gowanda 2023/14263.12

Client:

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2304485-001	MW-21	5/19/2023	1045
R2304485-002	DR-1	5/18/2023	1230
R2304485-003	DR-2	5/18/2023	1158
R2304485-004	DR-3	5/18/2023	1110
R2304485-005	DR-4	5/18/2023	1036
R2304485-006	G-1	5/18/2023	0944
R2304485-007	G-2	5/18/2023	0918
R2304485-008	G-3	5/18/2023	1423
R2304485-009	MW-X	5/18/2023	
R2304485-010	Field Blank	5/19/2023	1050
R2304485-011	Trip Blank	5/16/2023	

Λ	•	Chain of Cust	ody / Analyt	tical Reque	st Fo	rm				•		6	82	90	113	SR	l#:			
(ALS)	1565 Jefferson Road, Buildi					1 58	<u>85</u> 28	88 5	380	• a	sglo	bal.	com	١		Pa	ge 3)	of	4
	Report To:	ALL SHADED AREA	S <u>MUST</u> BE COM ENT / SAMPLER	PLETED BY THE	Pro	eserv	/ative													. None
Company:	Summer	Project Name:	L General	loz3				9	ď					Filter						. HCl
Contact:	Tushin L. O'BAIEN	Project Number: 1471	3,12	 	1			4 ● T	TCLP	ď									- 1	. HNO3
Email:			34-62-	23	GW			52	625	• TCLP			<u>ŏ</u>	Field / In-Lab						. H2SO4
Phone:	Good - 74 3-1912	Sampler's Signature:	er -		- ww sw	ers		624		• 608		TCLP	t Be	Field			.		1	. NAOH
Address: 7	80E Broad St #200	Email CC:			ow s	Containers		8260) 624.524.TCLP	8270		8	•	Select Below	9					- 1	. Zn Acet.
	obester, M1464	Email CC:			NA NA	ວິ		A-8	1 '	Pesticides - 8081	• 608	- 8151	•	Dissolved					- 1	. MeOH
	VW GOVERN	State Samples Collected (Circle or Write):	NY, MA, PA, CT	, Other:	۱ ۱	rof	ã	GC/MS VOA -	GC/MS SVOA	sa	- 8082	des	Total			ŀ			- 1	. NaHSO4
Lab ID	Sample Co	llection Informat			Matrix	Number	MS/MSD?	/MS	/MS	ticic	3 - S	Herbicides	Metals,	Metals,					- 1	. Other
(ALS)	Sample ID:		Date	Time	βa	Nui	MS	GC/	GC/	Pes	PCBs	Her	Me	Me					<u> </u>	Notes:
	Mw 21		5/19/23	1045	ادر	3		X												
	DR-1		5/18/23	1230	120	3		X										\Box		
	DR-2		5/18/23	1158	SW	3		Υ						· ·					_	
	DR-3		5/18/25	1110	3	3		×											1	
	DR-4		5/18/23	1036	(20)	3		χ												
	(3-1		5/8/23	0944	32	3		X												
	6-2			0918	Cup	3		メ												
	6-3		5/18/23	1423	ري	3		X											十	
	m>.x		5/18/23		(%)	3		久								1				
	Field Bank		5 19 23	1050	12	3		1						-					-	
Special Ins	tructions / Comments:		****	Turnaroui								uire			Metals					

								<u> </u>	
				Rush (Surcharges *Subject to Availability* *Please Check with you	• ;		II/Cat A -Results/QC	VOA/SVOA Report List: TCL • BTEX • TCLP CP-51/Stars •THM • Other:	•
				Standard (10 Bus	siness Days)		IV/Cat B - Data Report w/. Data	Invoice To: (a Same as Report	To)
				Date Required:		EDD:EDD Type:	YesNo JOUN	PO#: Company:	
	Relinquished By:	Received By:	Relinquished By:	Received By:	Relinquish	ed By:	Received By:	D220440-	$\overline{}$
Signature	her	bulylon						R2304485 Bergmann Associates, Incorporated C2 Governds 2023	Ī
Printed Name	Sisting Oberes	Budy For						AND THE PARTY OF T	Ī
Company	Beynow	1405					,	Aburess.	ر
D-1- (TI	c/18/22 328	(19/2) 1228		Page 7 of 53					

Turnaround Requirements

Report Requirements

Metals: RCRA 8+PP 13+TAL 23+TCLP+Other (List)

68290C Chain of Custody / Analytical Request Form SR#: 1565 Jefferson Road, Building 300, Suite 360 ● Rochester, NY 14623 ● +1 585 288 5380 ● alsglobal.com 41 Page of ALL SHADED AREAS MUST BE COMPLETED BY THE Preservative Report To: CLIENT / SAMPLER 0. None Project Name: / 8269-624-524-TCLP - Field / In-Lab Filter TCLP 1. HCl Project Number: l2. HNO3 Beymonn Ruon ALS Quote for Metals, Total - Select Below 3. H2SO4 • TCLP ww Containers -8270 4. NAOH Email CC: Dissolved Herbicides - 8151 Pesticides - 8081 5. Zn Acet. Email CC: GC/MS SVOA GC/MS VOA(6. MeOH ŏ PCBs - 8082 MS/MSD? State Samples Collected NY, MA, PA, CT, Other: (Circle or Write): Number 7. NaHSO4 Matrix Metals, **Sample Collection Information:** Lab ID 8. Other (ALS) Sample ID: Date Time Notes: Black (ALS Supplied 17,00 Special instructions / Comments: **Turnaround Requirements** Report Requirements Metals: RCRA 8+PP 13+TAL 23+TCLP+Other (List) Rush (Surcharges Apply) Tier II/Cat A -Results/QC *Subject to Availability* VOA/SVOA Report List: TCL • BTEX • TCLP • *Please Check with your PM* CP-S1/Stars +THM + Other: Tier IV/Cat B - Data Invoice To: (a Same as Report To) Standard (10 Business Days) Validation Report w/. Data PO#: Date Required: EDD: __X__Yes ____ Company: EDD Type F Talich Relinguished By: Received By: Relinquished By: Received By: Relinquished By: Received By: R2304485
Bergmann Associates, Incorporated
Q2 Gowands 2023 Signature Company Page 8 of 53

Cooler Receipt and Preservation Check Form

	3)				*		_		-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1811 81881	IBIRI BHI
Project/Clie	ent	Beyma-			Fold	ler Nun	nber_							 	
Cooler receiv		19	by:		•				UPS	FEDE	EX VE	LÒCIT	Y QUIE	ÎD.	
1 Were Cu	stody seals or	outside of coole	<u></u>		Y M						equired h			YN	NA
		rly completed (in		ad)?	BO N	5b				<u></u>	de have :) NA
	• • • •	good condition		L		6		e did th					\frown	CLIE	
L		Ice Gel packs	·	- 1		7		/OA rec		 					
4 Circle:	wet ice Dry	rice Gerpacks	pres	ent?			2011	VOA ICO	zerved a	S. E	Bulk i	Encore	5035se	2 PG	
3. Temperatur	e Readings	Date: 5	14	Time	: <u> 1345</u>		ID:	IR#12	tr#1	<u> </u>	Fro	m: Te	mp Blank	Sam	ple Bo
Observed To		18.1					1								
Within 0-6°		Y (5)		Y	N		<u>N</u>	Y	N	Y	N	Y		Y	N
	e samples froz	·			N		N	Y	N	Y	N	Y		<u>Y</u>	N
	-	note packing/ic												me Da	ay Rule
&Client A	Approval to R	lun Samples:		Star	nding Ap	proval	Clien	t aware	at drop	off C	lient not	ified by	y:		
All samples	held in storag	ge location:	pre	ا ع	by fu	on	5/4	<u>t_</u> at <u>j</u>	355	·		,. –			
5035 sample	es placed in st	orage location:		1	bý	on_		at _	·	within 4	48 hours	of san	ipling?	Y 1	1
		سرجبيبي والمراد فوجر	بندويت		منج جندين					4.					
Cooler Bro	akdown/Prese	ervation Check*	: Date	: <u>5</u>	22 23	<u> </u>	Time:		15		:_ <i>U</i> 1	1			_
9. V	Vere all bottle	labels complete	(i.e. ana	lysis,	preserva	tion, etc.	.)?		(ES)				٤		
		ibels and tags agr ontainers used fo				rs:			ES I	NO -			3		
		ls acceptable (no				ng)?				NO OF	VA)		-		
13. V	Vere dissolved	metals filtered i	n the fie	ld?							₩A)				
		Cassettes / Tubes					Canis	ters Pre					flated (N		
pH -		Reagent	Preser	ved?	Lot Re	ceived		Exp	Samp Adjus		Vol.	1 .	ot Added		Final pH
≥12	paper	NaOH	163	H-	ļ			 	Aujus	icu	Adda	-		- -	pri .
≤2		HNO ₃	 						, .		1.	_			
52		H ₂ SO ₄			·										
<4		NaHSO ₄						ļ			1 .				
5-9		For 608pest				tify for 3					ļ				
Residual Chlorine		For CN, Phenol, 625,				tact PM t (625, 60									
(-)		608pest, 522				corbic (ph					1			İ	
		Na ₂ S ₂ O ₃	Ī		1		•				ļ				
		ZnAcetate	<u> - </u>	<u> </u>	<u> </u>								before analy: with chemic		
		HCI	**	**	220	8015	3	6/25			just repres			aiprese -	rvatives
	. 10	1050-0	Δ 🗸	L	,		٠	,							
Bottle lot	numbers: <u>[o</u>	205 22 - 3 es/ Other Comm	onts:	1						· · · · · · · · · · · · · · · · · · ·					
Explain at				3									4		
	·lce	in by a	مار												
	,,	4	(•										-	
	•			•	· •								•		
	•												•		
				ij									HPROD	BUL	K
				-			-		•				HTR	FLD	
•				-					٠.				SUB -	HGF	B [.]
			111	٨									ALS .	LL35	41
Labels se	econdary re	viewed by:	N N	1							•		•		
PC Seco	ndary Revi	ew:				*signi	ficant	air bubb	les: VC)A > 5-6	5 mm : V	VC >1	in. diamet	er	
P:\[NTPANI	ET\OAOC\Forms	Controlled\Cooler	Receipt -	20 das		_					01/23/202		-		
1.1111111111111111111111111111111111111	~	- Caucoucai/Coolei	neceipt f.	∠U.UUC							V1/23/202				

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- Е Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- Organics- Concentration has exceeded the Е calibration range for that specific analysis.
- Concentration is a result of a dilution, D typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF_routine rev 6.doc

- +Correlation coefficient for MSA is <0.995.
- Ν Inorganics- Matrix spike recovery was outside laboratory limits.
- Organics- Presumptive evidence of a compound Ν (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- Concentration >40% difference between the two P GC columns.
- \mathbf{C} Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations1

NELAP States	
Florida ID # E87674	
New Hampshire ID # 2941	
New York ID # 10145	
Pennsylvania ID# 68-786	
Virginia #460167	

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Service Request: R2304485

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Water

Water

 Sample Name:
 MW-21
 Date Collected: 05/19/23

 Lab Code:
 R2304485-001
 Date Received: 05/19/23

Sample Matrix: Water

Sample Matrix:

Sample Matrix:

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: DR-1 Date Collected: 05/18/23

Lab Code: R2304485-002 **Date Received:** 05/19/23

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: DR-2 Date Collected: 05/18/23

Lab Code: R2304485-003 **Date Received:** 05/19/23

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: DR-3 Date Collected: 05/18/23

Lab Code: R2304485-004 Date Received: 05/19/23
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: DR-4 Date Collected: 05/18/23

Lab Code:R2304485-005Date Received: 05/19/23Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By 8260C KRUEST

Printed 6/5/2023 4:25:52 PM Superset Reference:23-0000664718 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Service Request: R2304485

Sample Name: G-1

Lab Code: R2304485-006

Sample Matrix: Water

Date Collected: 05/18/23 **Date Received:** 05/19/23

8260C

Analysis Method

Extracted/Digested By Analyzed By

KRUEST

Sample Name: G-2

Lab Code: R2304485-007

Sample Matrix: Water

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: G-3

Lab Code:

R2304485-008

Sample Matrix: Water

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-X

Lab Code:

R2304485-009

Sample Matrix:

Water

Date Collected: 05/18/23

Date Received: 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-X

Lab Code:

R2304485-009.R01

Sample Matrix:

Water

Date Collected: 05/18/23 **Date Received:** 05/19/23

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 6/5/2023 4:25:52 PM

Superset Reference:23-0000664718 rev 00

Analyst Summary report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

 Sample Name:
 Field Blank
 Date Collected: 05/19/23

 Lab Code:
 R2304485-010
 Date Received: 05/19/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: Trip Blank Date Collected: 05/16/23

Lab Code: R2304485-011 **Date Received:** 05/19/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	
For analytical methods not listed, method is the same as the analytic reference.	

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Bergmann Associates, Incorporated Project: Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 10:45

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-21
 Units: ug/L

 Lab Code:
 R2304485-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 12:42	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 12:42	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 12:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 12:42	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 12:42	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 12:42	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 12:42	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 12:42	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 12:42	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 12:42	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 12:42	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 12:42	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 12:42	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 12:42	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 12:42	
1,4-Dioxane	100 U	100	1	05/31/23 12:42	
2-Butanone (MEK)	10 U	100	1	05/31/23 12:42	
2-Hexanone	10 U	10	1	05/31/23 12:42	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 12:42	
Acetone	10 U	10	1	05/31/23 12:42	
Benzene	5.0 U	5.0	1	05/31/23 12:42	
Bromochloromethane	5.0 U	5.0	1	05/31/23 12:42	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 12:42	
Bromoform	5.0 U	5.0	1	05/31/23 12:42	
Bromomethane	5.0 U	5.0	1	05/31/23 12:42	
Carbon Disulfide	10 U	10	1	05/31/23 12:42	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 12:42	
Chlorobenzene	5.0 U	5.0	1	05/31/23 12:42	
Chloroethane	5.0 U	5.0	1	05/31/23 12:42	
Chloroform	5.0 U	5.0	1	05/31/23 12:42	
Chloromethane	5.0 U	5.0	1	05/31/23 12:42	
Cyclohexane	10 U	10	1	05/31/23 12:42	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 12:42	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 12:42	
Dichloromethane	5.0 U	5.0	1	05/31/23 12:42	
Ethylbenzene	5.0 U	5.0	1	05/31/23 12:42	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 12:42	
Methyl Acetate	10 U	10	1	05/31/23 12:42	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 12:42	
Methylcyclohexane	10 U	10	1	05/31/23 12:42	
Styrene	5.0 U	5.0	1	05/31/23 12:42	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 12:42	
Toluene	5.0 U	5.0	1	05/31/23 12:42	

Printed 6/5/2023 4:25:53 PM

Superset Reference:23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 10:45

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 MW-21
 Units: ug/L

 Lab Code:
 R2304485-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 12:42	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 12:42	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 12:42	
cis-1,2-Dichloroethene	5.8	5.0	1	05/31/23 12:42	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 12:42	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 12:42	
o-Xylene	5.0 U	5.0	1	05/31/23 12:42	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 12:42	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 12:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	05/31/23 12:42	
Dibromofluoromethane	96	80 - 116	05/31/23 12:42	
Toluene-d8	98	87 - 121	05/31/23 12:42	

Analytical Report

Client: Bergmann Associates, Incorporated

Service Request: R2304485 **Date Collected:** 05/18/23 12:30 **Project:** Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

Units: ug/L

Sample Name: DR-1

Lab Code: R2304485-002 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	13 U	13	2.5	05/31/23 13:05	
1,1,2,2-Tetrachloroethane	13 U	13	2.5	05/31/23 13:05	
1,1,2-Trichloroethane	13 U	13	2.5	05/31/23 13:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	13 U	13	2.5	05/31/23 13:05	
1,1-Dichloroethane (1,1-DCA)	13 U	13	2.5	05/31/23 13:05	
1,1-Dichloroethene (1,1-DCE)	13 U	13	2.5	05/31/23 13:05	
1,2,3-Trichlorobenzene	13 U	13	2.5	05/31/23 13:05	
1,2,4-Trichlorobenzene	13 U	13	2.5	05/31/23 13:05	
1,2-Dibromo-3-chloropropane (DBCP)	13 U	13	2.5	05/31/23 13:05	
1,2-Dibromoethane	13 U	13	2.5	05/31/23 13:05	
1,2-Dichlorobenzene	13 U	13	2.5	05/31/23 13:05	
1,2-Dichloroethane	13 U	13	2.5	05/31/23 13:05	
1,2-Dichloropropane	13 U	13	2.5	05/31/23 13:05	
1,3-Dichlorobenzene	13 U	13	2.5	05/31/23 13:05	
1,4-Dichlorobenzene	13 U	13	2.5	05/31/23 13:05	
1,4-Dioxane	250 U	250	2.5	05/31/23 13:05	
2-Butanone (MEK)	25 U	25	2.5	05/31/23 13:05	
2-Hexanone	25 U	25	2.5	05/31/23 13:05	
4-Methyl-2-pentanone	25 U	25	2.5	05/31/23 13:05	
Acetone	25 U	25	2.5	05/31/23 13:05	
Benzene	13 U	13	2.5	05/31/23 13:05	
Bromochloromethane	13 U	13	2.5	05/31/23 13:05	
Bromodichloromethane	13 U	13	2.5	05/31/23 13:05	
Bromoform	13 U	13	2.5	05/31/23 13:05	
Bromomethane	13 U	13	2.5	05/31/23 13:05	
Carbon Disulfide	25 U	25	2.5	05/31/23 13:05	
Carbon Tetrachloride	13 U	13	2.5	05/31/23 13:05	
Chlorobenzene	13 U	13	2.5	05/31/23 13:05	
Chloroethane	13 U	13	2.5	05/31/23 13:05	
Chloroform	13 U	13	2.5	05/31/23 13:05	
Chloromethane	13 U	13	2.5	05/31/23 13:05	
Cyclohexane	25 U	25	2.5	05/31/23 13:05	
Dibromochloromethane	13 U	13	2.5	05/31/23 13:05	
Dichlorodifluoromethane (CFC 12)	13 U	13	2.5	05/31/23 13:05	
Dichloromethane (CFC 12)	13 U	13	2.5	05/31/23 13:05	
Ethylbenzene	13 U	13	2.5	05/31/23 13:05	
Isopropylbenzene (Cumene)	13 U	13	2.5	05/31/23 13:05	
Methyl Acetate	25 U	25	2.5	05/31/23 13:05	
Methyl tert-Butyl Ether	23 U 13 U	13	2.5	05/31/23 13:05	
		25	2.5		
Methylcyclohexane	25 U 13 U	13	2.5	05/31/23 13:05	
Styrene Tetra chlamathana (PCF)				05/31/23 13:05	
Tetrachloroethene (PCE)	13 U	13	2.5	05/31/23 13:05	
Toluene	13 U	13	2.5	05/31/23 13:05	

Printed 6/5/2023 4:25:53 PM

Superset Reference:23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 12:30

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 DR-1
 Units: ug/L

 Lab Code:
 R2304485-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	270	13	2.5	05/31/23 13:05	
Trichlorofluoromethane (CFC 11)	13 U	13	2.5	05/31/23 13:05	
Vinyl Chloride	13 U	13	2.5	05/31/23 13:05	
cis-1,2-Dichloroethene	100	13	2.5	05/31/23 13:05	
cis-1,3-Dichloropropene	13 U	13	2.5	05/31/23 13:05	
m,p-Xylenes	13 U	13	2.5	05/31/23 13:05	
o-Xylene	13 U	13	2.5	05/31/23 13:05	
trans-1,2-Dichloroethene	13 U	13	2.5	05/31/23 13:05	
trans-1,3-Dichloropropene	13 U	13	2.5	05/31/23 13:05	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/31/23 13:05	
Dibromofluoromethane	97	80 - 116	05/31/23 13:05	
Toluene-d8	98	87 - 121	05/31/23 13:05	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 11:58

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 DR-2
 Units: ug/L

 Lab Code:
 R2304485-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 17:08	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 17:08	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 17:08	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 17:08	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 17:08	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 17:08	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 17:08	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 17:08	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 17:08	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 17:08	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 17:08	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 17:08	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 17:08	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 17:08	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 17:08	
1,4-Dioxane	100 U	100	1	05/30/23 17:08	
2-Butanone (MEK)	10 U	10	1	05/30/23 17:08	
2-Hexanone	10 U	10	1	05/30/23 17:08	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 17:08	
Acetone	10 U	10	1	05/30/23 17:08	
Benzene	5.0 U	5.0	1	05/30/23 17:08	
Bromochloromethane	5.0 U	5.0	1	05/30/23 17:08	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 17:08	
Bromoform	5.0 U	5.0	1	05/30/23 17:08	
Bromomethane	5.0 U	5.0	1	05/30/23 17:08	
Carbon Disulfide	10 U	10	1	05/30/23 17:08	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 17:08	
Chlorobenzene	5.0 U	5.0	1	05/30/23 17:08	
Chloroethane	5.0 U	5.0	1	05/30/23 17:08	
Chloroform	5.0 U	5.0	1	05/30/23 17:08	
Chloromethane	5.0 U	5.0	1	05/30/23 17:08	
Cyclohexane	10 U	10	1	05/30/23 17:08	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 17:08	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 17:08	
Dichloromethane (et e 12)	5.0 U	5.0	1	05/30/23 17:08	
Ethylbenzene	5.0 U	5.0	1	05/30/23 17:08	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 17:08	
Methyl Acetate	10 U	10	1	05/30/23 17:08	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 17:08	
Methylcyclohexane	10 U	10	1	05/30/23 17:08	
Styrene	5.0 U	5.0	1	05/30/23 17:08	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 17:08	
Toluene	5.0 U	5.0	1	05/30/23 17:08	
TOTACITO	3.0 0	5.0	1	05/50/25 17.00	

Printed 6/5/2023 4:25:54 PM

Superset Reference: 23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 11:58 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

Sample Name: DR-2 Units: ug/L

Lab Code: R2304485-003 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	15	5.0	1	05/30/23 17:08	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 17:08	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 17:08	
cis-1,2-Dichloroethene	62	5.0	1	05/30/23 17:08	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 17:08	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 17:08	
o-Xylene	5.0 U	5.0	1	05/30/23 17:08	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 17:08	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 17:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	05/30/23 17:08	
Dibromofluoromethane	95	80 - 116	05/30/23 17:08	
Toluene-d8	97	87 - 121	05/30/23 17:08	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Sample Name:

Lab Code:

DR-3 R2304485-004 Service Request: R2304485

Date Collected: 05/18/23 11:10

Date Received: 05/19/23 13:28

Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

1.1.1-Trichlorocthane	Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,2,2-Tetrakhloroethane	1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 17:31	
1,12-Trichloro-1,22-triflutoroethane 5.0 U 5.0 1 05/30/23 17:31 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 1 05/30/23 17:31 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 1 05/30/23 17:31 1,2,3-Trichloroethane (1,1-DCE) 5.0 U 5.0 1 05/30/23 17:31 1,2,3-Trichloroethane 5.0 U 5.0 1 05/30/23 17:31 1,2,3-Trichloroethane 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichromo-3-chloropropane (DBCP) 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichromo-s-chloropropane (DBCP) 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichloroethane 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichloropropane 5.0 U 5.0 1 05/30/23 17:31 1,3-Dichlorobenzene 10 U 100 1 05/30/23 17:31 1,3-Dichlorobenzene 10 U 10 1 05/30/23 17:31 1,3-Dichlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1,3-Dichlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1,3-Dichloromethane 5.0 U 5.0		5.0 U	5.0	1	05/30/23 17:31	
1,12-Trichloro-1,22-triflutoroethane 5.0 U 5.0 1 05/30/23 17:31 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 1 05/30/23 17:31 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 1 05/30/23 17:31 1,2,3-Trichloroethane (1,1-DCE) 5.0 U 5.0 1 05/30/23 17:31 1,2,3-Trichloroethane 5.0 U 5.0 1 05/30/23 17:31 1,2,3-Trichloroethane 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichromo-3-chloropropane (DBCP) 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichromo-s-chloropropane (DBCP) 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichloroethane 5.0 U 5.0 1 05/30/23 17:31 1,2-Dichloropropane 5.0 U 5.0 1 05/30/23 17:31 1,3-Dichlorobenzene 10 U 100 1 05/30/23 17:31 1,3-Dichlorobenzene 10 U 10 1 05/30/23 17:31 1,3-Dichlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1,3-Dichlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1,3-Dichloromethane 5.0 U 5.0		5.0 U	5.0	1	05/30/23 17:31	
1,1-Dichloroethane (1,1-DCA)		5.0 U	5.0	1		
1.1-Dichloroethene (1.1-DCE)		5.0 U	5.0	1	05/30/23 17:31	
1,2,3-Trichlorobenzene 5.0 U 5.0 U 5.0 U 0.50 U 1 05/30/23 17:31 1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 1,2-Dibromoethane 5.0 U 5.0 U 5.0 I 05/30/23 17:31 1,2-Dichlorobenzene 5.0 U 5.0 U 5.0 I 05/30/23 17:31 1,2-Dichlorobenzene 5.0 U 5.0 I 05/30/23 17:31 1,2-Dichlorophane 5.0 U 5.0 I 05/30/23 17:31 1,2-Dichlorobenzene 5.0 U 5.0 I 05/30/23 17:31 1,2-Dichlorobenzene 5.0 U 5.0 I 05/30/23 17:31 1,4-Dichlorobenzene 5.0 U 5.0 I 05/30/23 17:31 1,4-Dioxane 10 U 100 I 05/30/23 17:31 1,4-Dioxane 10 U 10 I 05/30/23 17:31 2-Huanone (MEK) 10 U 10 I 05/30/23 17:31 2-Hexanone 10 U 10 I 05/30/23 17:31 4-Methyl-2-pentanone 10 U 10 I 10/30/23 17:31 Acetone 10 U 10 I 10/30/23 17:31 Benzene 5.0 U 5.0 U <td></td> <td>5.0 U</td> <td>5.0</td> <td>1</td> <td>05/30/23 17:31</td> <td></td>		5.0 U	5.0	1	05/30/23 17:31	
1,2,4-Trichlorobenzene 5.0 U 1.0 U		5.0 U	5.0	1		
1,2-Dibromo-3-chloropropane (DBCP) 5.0 U 5.0		5.0 U	5.0	1		
1.2-Dibromoethane		5.0 U	5.0	1		
1,2-Dichlorobenzene	* * ·					
1,2-Dichloroethane						
1,2-Dichloropropane						
1,3-Dichlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1,4-Dichlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1,4-Dichlorobenzene 100 U 100 1 105/30/23 17:31 2-Butanone (MEK) 10 U 10 U 10 0 1 05/30/23 17:31 2-Hexanone 10 U 10 1 1 05/30/23 17:31 4-Methyl-2-pentanone 10 U 10 1 1 05/30/23 17:31 Acetone 10 U 10 1 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 1 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 1 1 05/30/23 17:31 Bromoform 5.0 U 5.0 1 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 1 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 1 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 1 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 1 05/30/23 17:31 Carbon Disulfide 5.0 U 5.0 I 1 05/30/23 17:31 Chlorothane 5.0 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,4-Dichlorobenzene 5.0 U 5.0 U 1 05/30/23 17:31 1,4-Dioxane 100 U 100 1 05/30/23 17:31 2-Butanone (MEK) 10 U 10 1 05/30/23 17:31 2-Hexanone 10 U 10 1 05/30/23 17:31 4-Methyl-2-pentanone 10 U 10 1 05/30/23 17:31 Acetone 10 U 10 1 05/30/23 17:31 Benzene 5.0 U 5.0 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 1 05/30/23 17:31 Bromodichloromethane 5.0 U 5.0 1 05/30/23 17:31 Bromoform 5.0 U 5.0 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 Chloroethane 5.0 U 5.0 1 05/30/23 17:31				1		
1,4-Dioxane						
2-Butanone (MEK) 10 U						
2-Hexanone 10 U 10 U 10 U 1 05/30/23 17:31 4-Methyl-2-pentanone 10 U 10 U 10 U 1 05/30/23 17:31 Acetone 10 U 10 U 10 U 1 05/30/23 17:31 Benzene 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Bromoform 5.0 U 5.0 U 1 05/30/23 17:31 Carbon Disulfide 10 U 10 I 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 I 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 I 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 I 1 05/30/23 17:31 Chlorothane 5.0 U 5.0 I 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 I 1 05/30/23 17:31 Obi		_		_		
4-Methyl-2-pentanone 10 U 10 U 10 U 10 O5/30/23 17:31 Acetone 10 U 10 U 10 O5/30/23 17:31 Benzene 5.0 U 5.0 U 1 O5/30/23 17:31 Bromochloromethane 5.0 U 5.0 U 1 O5/30/23 17:31 Bromodichloromethane 5.0 U 5.0 U 1 O5/30/23 17:31 Bromoform 5.0 U 5.0 U 1 O5/30/23 17:31 Bromoethane 5.0 U 5.0 U 1 O5/30/23 17:31 Carbon Disulfide 10 U 10 U 1 O5/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 U 5.0 U 1 O5/30/23 17:31 Chlorobenzene 5.0 U 5.0 U 1 O5/30/23 17:31 Chloroethane 5.0 U 5.0 U 1 O5/30/23 17:31 Chloroform 5.0 U 5.0 U 1 O5/30/23 17:31 Cyclohexane 10 U 10 U 1 O5/30/23 17:31 Obloromethane 5.0 U 5.0 U 1 O5/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 5.0 U 1 O5/30/23 17:31	` '					
Acetone 10 U 10 1 05/30/23 17:31 Benzene 5.0 U 5.0 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 1 05/30/23 17:31 Bromoform 5.0 U 5.0 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 1 05/30/23 17:31 Chloroethane 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 1 05/30/23 17:31 Di						
Benzene 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Bromochloromethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Bromodichloromethane 5.0 U 5.0 U 5.0 I 05/30/23 17:31 Bromoform 5.0 U 5.0 U 5.0 I 05/30/23 17:31 Bromomethane 5.0 U 5.0 I 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 1 05/30/23 17:31 Chlorotehane 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Cyclohexane 10 U 10 1 05/30/23 17:31 Oyclohexane 10 U 10 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Bromochloromethane 5.0 U 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 05/30/23 17:31 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 1 05/30/23 17:31 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 1 05/30/23 17:31 Cyclohexane 10 U 10 1 05/30/23 17:31 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 1 05/30/23 17:31 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 1 05/30/23 17:31 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 1 05/30/23 17:31 1 05/30/23 17:31 Methyl Acet						
Bromodichloromethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Bromoform 5.0 U 5.0 U 5.0 I 05/30/23 17:31 Bromomethane 5.0 U 5.0 I 05/30/23 17:31 Carbon Disulfide 10 U 10 I 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 I 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 I 05/30/23 17:31 Chlorobethane 5.0 U 5.0 I 05/30/23 17:31 Chloroform 5.0 U 5.0 I 05/30/23 17:31 Cyclohexane 10 U 10 I 05/30/23 17:31 Oylohexane 10 U 10 I 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 I 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 I 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 I 05/30/23 17:31 Ethylbenzene (Cumene) 5.0 U 5.0 I 05/30/23 17:31 Methyl xertae 10 U 10 I 05/30/23 17:31						
Bromoform 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Bromomethane 5.0 U 5.0 U 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 1 05/30/23 17:31 Chlorothane 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Cyclohexane 10 U 5.0 1 05/30/23 17:31 Cyclohexane 10 U 10 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 1						
Bromomethane 5.0 U 5.0 U 1 05/30/23 17:31 Carbon Disulfide 10 U 10 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 1 05/30/23 17:31 Chlorothane 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 1 05/30/23 17:31 Cyclohexane 10 U 10 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 1				_		
Carbon Disulfide 10 U 10 1 05/30/23 17:31 Carbon Tetrachloride 5.0 U 5.0 1 05/30/23 17:31 Chlorobenzene 5.0 U 5.0 1 05/30/23 17:31 Chloroethane 5.0 U 5.0 1 05/30/23 17:31 Chloroform 5.0 U 5.0 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 1 05/30/23 17:31 Cyclohexane 10 U 10 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 1 05/30/23 17:31 Methyl Acetate 10 U 10 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 1 05/30/23				_		
Carbon Tetrachloride 5.0 U 5.0 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Chlorobenzene 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Chloroform 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Cyclohexane 10 U 10 I 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 I 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 I 1 05/30/23 17:31 Methylcyclohexane 10 U 10 I 1 05/30/23 17:31 Styrene 5.0 U 5.0 I 0 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 05/30/23 17:31				_		
Chloroethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Chloroform 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Cyclohexane 10 U 10 I 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 5.0 I 05/30/23 17:31 Dichloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 U 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U						
Chloroform 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Chloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Cyclohexane 10 U 10 1 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 I 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 I 1 05/30/23 17:31 Methylcyclohexane 10 U 10 I 1 05/30/23 17:31 Styrene 5.0 U 5.0 I 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 1 05/30/23 17:31						
Chloromethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Cyclohexane 10 U 10 I 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 I 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 I 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 I 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 I 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 I 1 05/30/23 17:31 Methyl Acetate 10 U 10 I 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 I 1 05/30/23 17:31 Methylcyclohexane 10 U 10 I 1 05/30/23 17:31 Styrene 5.0 U 5.0 I 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 1 05/30/23 17:31						
Cyclohexane 10 U 10 1 05/30/23 17:31 Dibromochloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 U 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 U 1 05/30/23 17:31 Methylcyclohexane 10 U 10 U 1 05/30/23 17:31 Styrene 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31						
Dibromochloromethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 U 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 U 1 05/30/23 17:31 Methylcyclohexane 10 U 10 U 1 05/30/23 17:31 Styrene 5.0 U 5.0 U 5.0 U 5.0 U Tetrachloroethene (PCE) 5.0 U 5.0 U 5.0 U 5.0 U						
Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Dichloromethane 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 U 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 U 1 05/30/23 17:31 Methylcyclohexane 10 U 10 U 1 05/30/23 17:31 Styrene 5.0 U 5.0 U 5.0 U 5.0 U Tetrachloroethene (PCE) 5.0 U 5.0 U 5.0 U 5.0 U						
Dichloromethane 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Ethylbenzene 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 I 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 I 1 05/30/23 17:31 Methylcyclohexane 10 U 10 I 1 05/30/23 17:31 Styrene 5.0 U 5.0 I 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 05/30/23 17:31						
Ethylbenzene 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Isopropylbenzene (Cumene) 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 I 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 I 05/30/23 17:31 Methylcyclohexane 10 U 10 I 05/30/23 17:31 Styrene 5.0 U 5.0 I 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 05/30/23 17:31						
Isopropylbenzene (Cumene) 5.0 U 5.0 U 5.0 U 1 05/30/23 17:31 Methyl Acetate 10 U 10 I 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 I 05/30/23 17:31 Methylcyclohexane 10 U 10 I 1 05/30/23 17:31 Styrene 5.0 U 5.0 I 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 05/30/23 17:31						
Methyl Acetate 10 U 10 1 05/30/23 17:31 Methyl tert-Butyl Ether 5.0 U 5.0 U 1 05/30/23 17:31 Methylcyclohexane 10 U 10 1 05/30/23 17:31 Styrene 5.0 U 5.0 U 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 U 1 05/30/23 17:31				_		
Methyl tert-Butyl Ether 5.0 U 5.0 I 05/30/23 17:31 Methylcyclohexane 10 U 10 I 1 05/30/23 17:31 Styrene 5.0 U 5.0 I 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 I 05/30/23 17:31						
Methylcyclohexane 10 U 10 U 1 05/30/23 17:31 Styrene 5.0 U 5.0 U 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 U 1 05/30/23 17:31				_		
Styrene 5.0 U 5.0 U 1 05/30/23 17:31 Tetrachloroethene (PCE) 5.0 U 5.0 U 1 05/30/23 17:31				_		
Tetrachloroethene (PCE) 5.0 U 5.0 1 05/30/23 17:31						
	Toluene	5.0 U	5.0	1	05/30/23 17:31	

Printed 6/5/2023 4:25:54 PM

Superset Reference:23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 11:10

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 DR-3
 Units: ug/L

 Lab Code:
 R2304485-004
 Basis: NA

Dasis

Service Request: R2304485

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	18	5.0	1	05/30/23 17:31	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 17:31	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 17:31	
cis-1,2-Dichloroethene	35	5.0	1	05/30/23 17:31	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 17:31	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 17:31	
o-Xylene	5.0 U	5.0	1	05/30/23 17:31	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 17:31	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 17:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	108	85 - 122	05/30/23 17:31	
Dibromofluoromethane	100	80 - 116	05/30/23 17:31	
Toluene-d8	101	87 - 121	05/30/23 17:31	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 10:36

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 DR-4
 Units: ug/L

 Lab Code:
 R2304485-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 17:54	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 17:54	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 17:54	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 17:54	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 17:54	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 17:54	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 17:54	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 17:54	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 17:54	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 17:54	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 17:54	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 17:54	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 17:54	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 17:54	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 17:54	
1,4-Dioxane	100 U	100	1	05/30/23 17:54	
2-Butanone (MEK)	10 U	10	1	05/30/23 17:54	
2-Hexanone	10 U	10	1	05/30/23 17:54	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 17:54	
Acetone	10 U	10	1	05/30/23 17:54	
Benzene	5.0 U	5.0	1	05/30/23 17:54	
Bromochloromethane	5.0 U	5.0	1	05/30/23 17:54	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 17:54	
Bromoform	5.0 U	5.0	1	05/30/23 17:54	
Bromomethane	5.0 U	5.0	1	05/30/23 17:54	
Carbon Disulfide	10 U	10	1	05/30/23 17:54	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 17:54	
Chlorobenzene	5.0 U	5.0	1	05/30/23 17:54	
Chloroethane	5.0 U	5.0	1	05/30/23 17:54	
Chloroform	5.0 U	5.0	1	05/30/23 17:54	
Chloromethane	5.0 U	5.0	1	05/30/23 17:54	
Cyclohexane	10 U	10	1	05/30/23 17:54	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 17:54	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 17:54	
Dichloromethane	5.0 U	5.0	1	05/30/23 17:54	
Ethylbenzene	5.0 U	5.0	1	05/30/23 17:54	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 17:54	
Methyl Acetate	10 U	10	1	05/30/23 17:54	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 17:54	
Methylcyclohexane	10 U	10	1	05/30/23 17:54	
Styrene	5.0 U	5.0	1	05/30/23 17:54	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 17:54	
Toluene	5.0 U	5.0	1	05/30/23 17:54	

Printed 6/5/2023 4:25:54 PM

Superset Reference: 23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 10:36

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 DR-4
 Units: ug/L

 Lab Code:
 R2304485-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	14	5.0	1	05/30/23 17:54	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 17:54	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 17:54	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 17:54	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 17:54	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 17:54	
o-Xylene	5.0 U	5.0	1	05/30/23 17:54	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 17:54	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 17:54	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/30/23 17:54	
Dibromofluoromethane	95	80 - 116	05/30/23 17:54	
Toluene-d8	97	87 - 121	05/30/23 17:54	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28 Units: ug/L

Service Request: R2304485

Date Collected: 05/18/23 09:44

Basis: NA

G-1 **Sample Name:**

Lab Code: R2304485-006

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 18:17	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 18:17	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 18:17	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 18:17	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 18:17	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 18:17	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 18:17	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 18:17	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 18:17	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 18:17	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 18:17	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 18:17	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 18:17	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 18:17	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 18:17	
1,4-Dioxane	100 U	100	1	05/30/23 18:17	
2-Butanone (MEK)	10 U	10	1	05/30/23 18:17	
2-Hexanone	10 U	10	1	05/30/23 18:17	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 18:17	
Acetone	10 U	10	1	05/30/23 18:17	
Benzene	5.0 U	5.0	1	05/30/23 18:17	
Bromochloromethane	5.0 U	5.0	1	05/30/23 18:17	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 18:17	
Bromoform	5.0 U	5.0	1	05/30/23 18:17	
Bromomethane	5.0 U	5.0	1	05/30/23 18:17	
Carbon Disulfide	10 U	10	1	05/30/23 18:17	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 18:17	
Chlorobenzene	5.0 U	5.0	1	05/30/23 18:17	
Chloroethane	5.0 U	5.0	1	05/30/23 18:17	
Chloroform	5.0 U	5.0	1	05/30/23 18:17	
Chloromethane	5.0 U	5.0	1	05/30/23 18:17	
Cyclohexane	10 U	10	1	05/30/23 18:17	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 18:17	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 18:17	
Dichloromethane	5.0 U	5.0	1	05/30/23 18:17	
Ethylbenzene	5.0 U	5.0	1	05/30/23 18:17	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 18:17	
Methyl Acetate	10 U	10	1	05/30/23 18:17	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 18:17	
Methylcyclohexane	10 U	10	1	05/30/23 18:17	
Styrene	5.0 U	5.0	1	05/30/23 18:17	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 18:17	
Toluene	5.0 U	5.0	1	05/30/23 18:17	

Printed 6/5/2023 4:25:55 PM

Superset Reference:23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 09:44

Sample Matrix: Water Date Received: 05/19/23 13:28

Sample Name: G-1 Units: ug/L

Lab Code: R2304485-006 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	6.5	5.0	1	05/30/23 18:17	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 18:17	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 18:17	
cis-1,2-Dichloroethene	28	5.0	1	05/30/23 18:17	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 18:17	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 18:17	
o-Xylene	5.0 U	5.0	1	05/30/23 18:17	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 18:17	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 18:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/30/23 18:17	
Dibromofluoromethane	96	80 - 116	05/30/23 18:17	
Toluene-d8	98	87 - 121	05/30/23 18:17	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Date Collected: 05/18/23 09:18 Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Received:** 05/19/23 13:28

G-2 **Sample Name:** Units: ug/L Lab Code: R2304485-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 18:40	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 18:40	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 18:40	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 18:40	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 18:40	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 18:40	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 18:40	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 18:40	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 18:40	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 18:40	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 18:40	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 18:40	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 18:40	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 18:40	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 18:40	
1,4-Dioxane	100 U	100	1	05/30/23 18:40	
2-Butanone (MEK)	10 U	10	1	05/30/23 18:40	
2-Hexanone	10 U	10	1	05/30/23 18:40	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 18:40	
Acetone	10 U	10	1	05/30/23 18:40	
Benzene	5.0 U	5.0	1	05/30/23 18:40	
Bromochloromethane	5.0 U	5.0	1	05/30/23 18:40	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 18:40	
Bromoform	5.0 U	5.0	1	05/30/23 18:40	
Bromomethane	5.0 U	5.0	1	05/30/23 18:40	
Carbon Disulfide	10 U	10	1	05/30/23 18:40	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 18:40	
Chlorobenzene	5.0 U	5.0	1	05/30/23 18:40	
Chloroethane	5.0 U	5.0	1	05/30/23 18:40	
Chloroform		5.0	1	05/30/23 18:40	
Chloromethane	5.0 U 5.0 U	5.0	1	05/30/23 18:40	
Cyclohexane	10 U	10	1	05/30/23 18:40	
Dibromochloromethane		5.0	1	05/30/23 18:40	
	5.0 U 5.0 U	5.0		05/30/23 18:40	
Dichlorodifluoromethane (CFC 12)			1		
Dichloromethane Fil. 11	5.0 U 5.0 U	5.0	1	05/30/23 18:40	
Ethylbenzene		5.0	1	05/30/23 18:40	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 18:40	
Methyl Acetate	10 U	10	1	05/30/23 18:40	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 18:40	
Methylcyclohexane	10 U	10	1	05/30/23 18:40	
Styrene	5.0 U	5.0	1	05/30/23 18:40	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 18:40	
Toluene	5.0 U	5.0	1	05/30/23 18:40	

Printed 6/5/2023 4:25:55 PM

Superset Reference:23-0000664718 rev 00

Service Request: R2304485

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 09:18 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

G-2 **Sample Name:** Units: ug/L

Lab Code: R2304485-007 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/30/23 18:40	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 18:40	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 18:40	
cis-1,2-Dichloroethene	24	5.0	1	05/30/23 18:40	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 18:40	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 18:40	
o-Xylene	5.0 U	5.0	1	05/30/23 18:40	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 18:40	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 18:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	05/30/23 18:40	
Dibromofluoromethane	96	80 - 116	05/30/23 18:40	
Toluene-d8	97	87 - 121	05/30/23 18:40	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12 **Date Collected:** 05/18/23 14:23

Sample Matrix: Water Date Received: 05/19/23 13:28

Sample Name: G-3 Units: ug/L

Lab Code: R2304485-008 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 16:45	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 16:45	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 16:45	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 16:45	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 16:45	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 16:45	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 16:45	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 16:45	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 16:45	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 16:45	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 16:45	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 16:45	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 16:45	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 16:45	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 16:45	
1,4-Dioxane	100 U	100	1	05/30/23 16:45	
2-Butanone (MEK)	10 U	10	1	05/30/23 16:45	
2-Hexanone	10 U	10	1	05/30/23 16:45	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 16:45	
Acetone	10 U	10	1	05/30/23 16:45	
Benzene	5.0 U	5.0	1	05/30/23 16:45	
Bromochloromethane	5.0 U	5.0	1	05/30/23 16:45	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 16:45	
Bromoform	5.0 U	5.0	1	05/30/23 16:45	
Bromomethane	5.0 U	5.0	1	05/30/23 16:45	
Carbon Disulfide	10 U	10	1	05/30/23 16:45	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 16:45	
Chlorobenzene	5.0 U	5.0	1	05/30/23 16:45	
Chloroethane	5.0 U	5.0	1	05/30/23 16:45	
Chloroform	5.0 U	5.0	1	05/30/23 16:45	
Chloromethane	5.0 U	5.0	1	05/30/23 16:45	
Cyclohexane	10 U	10	1	05/30/23 16:45	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 16:45	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 16:45	
Dichloromethane	5.0 U	5.0	1	05/30/23 16:45	
Ethylbenzene	5.0 U	5.0	1	05/30/23 16:45	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 16:45	
Methyl Acetate	10 U	10	1	05/30/23 16:45	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 16:45	
Methylcyclohexane	10 U	10	1	05/30/23 16:45	
Styrene	5.0 U	5.0	1	05/30/23 16:45	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 16:45	
Toluene	5.0 U	5.0	1	05/30/23 16:45	

Printed 6/5/2023 4:25:55 PM

Superset Reference:23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Date Collected: 05/18/23 14:23 Q2 Gowanda 2023/14263.12

Project: Sample Matrix: Water **Date Received:** 05/19/23 13:28

G-3 **Sample Name:** Units: ug/L

Lab Code: R2304485-008 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	18	5.0	1	05/30/23 16:45	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 16:45	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 16:45	
cis-1,2-Dichloroethene	120	5.0	1	05/30/23 16:45	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 16:45	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 16:45	
o-Xylene	5.0 U	5.0	1	05/30/23 16:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 16:45	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 16:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/30/23 16:45	
Dibromofluoromethane	102	80 - 116	05/30/23 16:45	
Toluene-d8	101	87 - 121	05/30/23 16:45	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water **Date Collected:** 05/18/23

Service Request: R2304485

Date Received: 05/19/23 13:28

Units: ug/L

Basis: NA

Sample Name: MW-X

Lab Code: R2304485-009

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 12:19	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 12:19	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 12:19	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 12:19	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 12:19	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 12:19	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 12:19	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 12:19	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 12:19	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 12:19	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 12:19	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 12:19	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 12:19	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 12:19	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 12:19	
1,4-Dioxane	100 U	100	1	05/31/23 12:19	
2-Butanone (MEK)	10 U	10	1	05/31/23 12:19	
2-Hexanone	10 U	10	1	05/31/23 12:19	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 12:19	
Acetone	10 U	10	1	05/31/23 12:19	
Benzene	5.0 U	5.0	1	05/31/23 12:19	
Bromochloromethane	5.0 U	5.0	1	05/31/23 12:19	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 12:19	
Bromoform	5.0 U	5.0	1	05/31/23 12:19	
Bromomethane	5.0 U	5.0	1	05/31/23 12:19	
Carbon Disulfide	10 U	10	1	05/31/23 12:19	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 12:19	
Chlorobenzene	5.0 U	5.0	1	05/31/23 12:19	
Chloroethane	5.0 U	5.0	1	05/31/23 12:19	
Chloroform	5.0 U	5.0	1	05/31/23 12:19	
Chloromethane	5.0 U	5.0	1	05/31/23 12:19	
Cyclohexane	10 U	10	1	05/31/23 12:19	
Dibromochloromethane	5.0 U	5.0	1	05/31/23 12:19	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 12:19	
		5.0			
Dichloromethane	5.0 U 5.0 U	5.0	1	05/31/23 12:19	
Ethylbenzene			1	05/31/23 12:19	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 12:19	
Methyl Acetate	10 U	10	1	05/31/23 12:19	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 12:19	
Methylcyclohexane	10 U	10	1	05/31/23 12:19	
Styrene	5.0 U	5.0	1	05/31/23 12:19	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 12:19	
Toluene	5.0 U	5.0	1	05/31/23 12:19	

Printed 6/5/2023 4:25:56 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Service Request: R2304485 **Date Collected:** 05/18/23

Date Received: 05/19/23 13:28

Units: ug/L

Sample Name: MW-X

Lab Code: R2304485-009 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	210 E	5.0	1	05/31/23 12:19	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 12:19	
Vinyl Chloride	5.6	5.0	1	05/31/23 12:19	
cis-1,2-Dichloroethene	120	5.0	1	05/31/23 12:19	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 12:19	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 12:19	
o-Xylene	5.0 U	5.0	1	05/31/23 12:19	
trans-1,2-Dichloroethene	9.0	5.0	1	05/31/23 12:19	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 12:19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/31/23 12:19	
Dibromofluoromethane	96	80 - 116	05/31/23 12:19	
Toluene-d8	97	87 - 121	05/31/23 12:19	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

 $\textbf{Date Received:} \ \ 05/19/23 \ 13{:}28$

Units: ug/L

Basis: NA

Service Request: R2304485

Date Collected: 05/18/23

Sample Name: MW-X

Lab Code: R2304485-009

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

1,1,1-Trichloroethane TCA 13 U	Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,2-Trichloroethane	1,1,1-Trichloroethane (TCA)	13 U	13	2.5	05/31/23 16:32	
1,12-Trichloro-1,2,2-trifluoroethane	1,1,2,2-Tetrachloroethane	13 U	13	2.5	05/31/23 16:32	
1-1 Dichloroethane (1,1-DCA)	1,1,2-Trichloroethane	13 U	13	2.5	05/31/23 16:32	
1,1-Dichloroethene (1,1-DCE)	1,1,2-Trichloro-1,2,2-trifluoroethane	13 U	13	2.5	05/31/23 16:32	
1.1-Dichloroethene (1.1-DCE)	1,1-Dichloroethane (1,1-DCA)	13 U	13	2.5	05/31/23 16:32	
1,24-Trichlorobenzene		13 U	13	2.5	05/31/23 16:32	
1,2-Dibromo-3-chloropropane (DBCP)		13 U	13	2.5	05/31/23 16:32	
1.2-Dibromoethane	1,2,4-Trichlorobenzene	13 U	13	2.5	05/31/23 16:32	
1.2-Dichlorobetnace	1,2-Dibromo-3-chloropropane (DBCP)	13 U	13	2.5	05/31/23 16:32	
1,2-Dichloroethane		13 U	13	2.5	05/31/23 16:32	
1,2-Dichloroethane			13			
1,2-Dichloropropane		13 U	13	2.5		
1,3 Dichlorobenzene 13 U 13 2.5 05/31/23 16:32 1,4-Dichlorobenzene 13 U 13 2.5 05/31/23 16:32 1,4-Dichlorobenzene 25 U 250 2.5 05/31/23 16:32 2-Butanone (MEK) 25 U 25 2.5 05/31/23 16:32 2-Hexanone 25 U 25 2.5 05/31/23 16:32 2-Hexanone 25 U 25 2.5 05/31/23 16:32 Acetone 25 U 25 2.5 05/31/23 16:32 Bromochloromethane 13 U 13 2.5 05/31/23 16:32 Bromodichloromethane 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Bromoformethane 13 U 13 2.5 05/31/23 16:32 Bromomethane 13 U 13 2.5 05/31/23 16:32 Bromomethane 13 U 13 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16						
1,4-Dichlorobenzene 13 U 13 D 2.5 05/31/23 16:32 1,4-Dioxane 250 U 250 U 25 2.5 05/31/23 16:32 2-Butanone (MEK) 25 U 25 D 2.5 05/31/23 16:32 2-Hexanone 25 U 25 D 2.5 05/31/23 16:32 4-Methyl-2-pentanone 25 U 25 D 2.5 05/31/23 16:32 Acetone 25 U 25 D 2.5 05/31/23 16:32 Benzene 13 U 13 D 2.5 05/31/23 16:32 Bromochloromethane 13 U 13 D 2.5 05/31/23 16:32 Bromoform dichloromethane 13 U 13 D 2.5 05/31/23 16:32 Bromoform 13 U 13 D 2.5 05/31/23 16:32 Bromoform 13 U 13 D 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 D 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 D 2.5 05/31/23 16:32 Chloroethane 13 U 13 D <t< td=""><td></td><td>13 U</td><td>13</td><td>2.5</td><td>05/31/23 16:32</td><td></td></t<>		13 U	13	2.5	05/31/23 16:32	
1,4-Dioxane			13			
2-Butanone (MEK) 25 U 25 2.5 05/31/23 16:32 2-Hexanone 25 U 25 2.5 05/31/23 16:32 4-Methyl-2-pentanone 25 U 25 2.5 05/31/23 16:32 Acetone 25 U 25 2.5 05/31/23 16:32 Benzene 13 U 13 2.5 05/31/23 16:32 Bromodchloromethane 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Bromofethane 13 U 13 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Chloroferder 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32						
2-Hexanone 25 U 25 2.5 05/31/23 16:32 4-Methyl-2-pentanone 25 U 25 2.5 05/31/23 16:32 Acetone 25 U 25 2.5 05/31/23 16:32 Benzene 13 U 13 2.5 05/31/23 16:32 Bromochloromethane 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Objoromet		25 U	25	2.5		
4-Methyl-2-pentanone 25 U 25 2.5 05/31/23 16:32 Acetone 25 U 25 2.5 05/31/23 16:32 Benzene 13 U 13 2.5 05/31/23 16:32 Bromochloromethane 13 U 13 2.5 05/31/23 16:32 Bromodichloromethane 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Bromomethane 13 U 13 2.5 05/31/23 16:32 Bromomethane 13 U 13 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 <						
Acetone 25 U 25 2.5 05/31/23 16:32 Benzene 13 U 13 2.5 05/31/23 16:32 Bromodchloromethane 13 U 13 2.5 05/31/23 16:32 Bromodichloromethane 13 U 13 2.5 05/31/23 16:32 Bromoform 13 U 13 2.5 05/31/23 16:32 Bromomethane 13 U 13 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32						
Benzene 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromochloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromoform 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromomethane 13 U 13 U 2.5 05/31/23 16:32 Bromomethane 13 U 13 U 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chlorothane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) <	* *					
Bromochloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromodichloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromomethane 13 U 13 U 13 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chlorothane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Et						
Bromodichloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromoform 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromomethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U	Bromochloromethane	13 U	13	2.5	05/31/23 16:32	
Bromoform 13 U 13 U 13 U 2.5 05/31/23 16:32 Bromomethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 U 25 U 25 U 25 O5/31/23 16:32 Carbon Tetrachloride 13 U 13 U 13 U 2.5 O5/31/23 16:32 Chlorobenzene 13 U 13 U 13 U 2.5 O5/31/23 16:32 Chlorothane 13 U 13 U 2.5 O5/31/23 16:32 Chloromethane 13 U 13 U 2.5 O5/31/23 16:32 Cyclohexane 25 U 25 U 2.5 O5/31/23 16:32 Obichloromethane 13 U 13 U 13 U 2.5 O5/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 U 2.5 O5/31/23 16:32 Dichloromethane 13 U 13 U 2.5 O5/31/23 16:32 Ethylbenzene 13 U 13 U 2.5 O5/31/23 16:32 Ethylbenzene (Cumene) 13 U 13 U 2.5 O5/31/23 16:32 Methyl Acetate 25 U 25 U 2.5 O5/31/23 16:32		13 U	13	2.5	05/31/23 16:32	
Bromomethane 13 U 13 U 2.5 05/31/23 16:32 Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chlorothane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dibromochloromethane 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl cert-Butyl Ether 13 U 13 2.5						
Carbon Disulfide 25 U 25 2.5 05/31/23 16:32 Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Obichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Ethylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/						
Carbon Tetrachloride 13 U 13 2.5 05/31/23 16:32 Chlorobenzene 13 U 13 2.5 05/31/23 16:32 Chloroethane 13 U 13 2.5 05/31/23 16:32 Chloroform 13 U 13 2.5 05/31/23 16:32 Chloromethane 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dibromochloromethane 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Ethylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 <td></td> <td></td> <td>25</td> <td></td> <td></td> <td></td>			25			
Chlorobenzene 13 U 13 U 13 U 2.5 05/31/23 16:32 Chlorofethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Chloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Cyclohexane 25 U 25 U 2.5 05/31/23 16:32 Dibromochloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 U 13 U 2.5 05/31/23 16:32 Dichloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 U 13 U 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 U 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 U 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 U 25 U 05/31/23 16:32 Styrene 13 U 13 U 13 U 2.5 05/31/23 16:32 Tetrachloroethene (PCE)	Carbon Tetrachloride	13 U	13	2.5		
Chloroform 13 U 13 U 13 U 2.5 05/31/23 16:32 Chloromethane 13 U 13 U 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dibromochloromethane 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32	Chlorobenzene	13 U	13			
Chloroform 13 U 13 U 13 U 2.5 05/31/23 16:32 Chloromethane 13 U 13 U 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dibromochloromethane 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32	Chloroethane	13 U	13	2.5	05/31/23 16:32	
Chloromethane 13 U 13 2.5 05/31/23 16:32 Cyclohexane 25 U 25 2.5 05/31/23 16:32 Dibromochloromethane 13 U 13 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 2.5 05/31/23 16:32 Dichloromethane 13 U 13 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32	Chloroform	13 U	13	2.5		
Dibromochloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 U 2.5 05/31/23 16:32 Dichloromethane 13 U 13 U 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 U 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 U 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 D 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 D 2.5 05/31/23 16:32 Styrene 13 U 13 D 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 D 2.5 05/31/23 16:32	Chloromethane		13			
Dibromochloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Dichlorodifluoromethane (CFC 12) 13 U 13 U 13 U 2.5 05/31/23 16:32 Dichloromethane 13 U 13 U 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 U 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 U 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 D 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 D 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 D 2.5 05/31/23 16:32 Styrene 13 U 13 D 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 D 2.5 05/31/23 16:32	Cyclohexane	25 U	25	2.5	05/31/23 16:32	
Dichloromethane 13 U 13 U 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 U 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32		13 U	13	2.5	05/31/23 16:32	
Dichloromethane 13 U 13 U 13 U 2.5 05/31/23 16:32 Ethylbenzene 13 U 13 U 13 U 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 U 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32	Dichlorodifluoromethane (CFC 12)	13 U	13	2.5	05/31/23 16:32	
Ethylbenzene 13 U 13 2.5 05/31/23 16:32 Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32		13 U	13	2.5	05/31/23 16:32	
Isopropylbenzene (Cumene) 13 U 13 2.5 05/31/23 16:32 Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32						
Methyl Acetate 25 U 25 2.5 05/31/23 16:32 Methyl tert-Butyl Ether 13 U 13 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32						
Methyl tert-Butyl Ether 13 U 13 U 2.5 05/31/23 16:32 Methylcyclohexane 25 U 25 U 2.5 05/31/23 16:32 Styrene 13 U 13 U 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 U 2.5 05/31/23 16:32						
Methylcyclohexane 25 U 25 2.5 05/31/23 16:32 Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32						
Styrene 13 U 13 2.5 05/31/23 16:32 Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32						
Tetrachloroethene (PCE) 13 U 13 2.5 05/31/23 16:32						
	· · · · · · · · · · · · · · · · · · ·					

Printed 6/5/2023 4:25:56 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Service Request: R2304485 **Date Collected:** 05/18/23

Date Received: 05/19/23 13:28

Units: ug/L

Sample Name: MW-X

Lab Code: R2304485-009 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	170 D	13	2.5	05/31/23 16:32	
Trichlorofluoromethane (CFC 11)	13 U	13	2.5	05/31/23 16:32	
Vinyl Chloride	13 U	13	2.5	05/31/23 16:32	
cis-1,2-Dichloroethene	100 D	13	2.5	05/31/23 16:32	
cis-1,3-Dichloropropene	13 U	13	2.5	05/31/23 16:32	
m,p-Xylenes	13 U	13	2.5	05/31/23 16:32	
o-Xylene	13 U	13	2.5	05/31/23 16:32	
trans-1,2-Dichloroethene	13 U	13	2.5	05/31/23 16:32	
trans-1,3-Dichloropropene	13 U	13	2.5	05/31/23 16:32	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	05/31/23 16:32	
Dibromofluoromethane	92	80 - 116	05/31/23 16:32	
Toluene-d8	93	87 - 121	05/31/23 16:32	

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 10:50

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 Field Blank
 Units: ug/L

 Lab Code:
 R2304485-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 13:28	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 13:28	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 13:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 13:28	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 13:28	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 13:28	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 13:28	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 13:28	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 13:28	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 13:28	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 13:28	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 13:28	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 13:28	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 13:28	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 13:28	
1,4-Dioxane	100 U	100	1	05/31/23 13:28	
2-Butanone (MEK)	10 U	10	1	05/31/23 13:28	
2-Hexanone	10 U	10	1	05/31/23 13:28	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 13:28	
Acetone	10 U	10	1	05/31/23 13:28	
Benzene	5.0 U	5.0	1	05/31/23 13:28	
Bromochloromethane	5.0 U	5.0	1	05/31/23 13:28	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 13:28	
Bromoform	5.0 U	5.0	1	05/31/23 13:28	
Bromomethane	5.0 U	5.0	1	05/31/23 13:28	
Carbon Disulfide	10 U	10	1	05/31/23 13:28	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 13:28	
Chlorobenzene	5.0 U	5.0	1	05/31/23 13:28	
Chloroethane	5.0 U	5.0	1	05/31/23 13:28	
Chloroform	5.0 U	5.0	1	05/31/23 13:28	
Chloromethane	5.0 U	5.0	1	05/31/23 13:28	
Cyclohexane	3.0 U 10 U	10	1		
		5.0		05/31/23 13:28	
Dibromochloromethane	5.0 U		1	05/31/23 13:28	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 13:28	
Dichloromethane	5.0 U	5.0	1	05/31/23 13:28	
Ethylbenzene	5.0 U	5.0	1	05/31/23 13:28	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 13:28	
Methyl Acetate	10 U	10	1	05/31/23 13:28	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 13:28	
Methylcyclohexane	10 U	10	1	05/31/23 13:28	
Styrene	5.0 U	5.0	1	05/31/23 13:28	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 13:28	
Toluene	5.0 U	5.0	1	05/31/23 13:28	

Printed 6/5/2023 4:25:57 PM

Superset Reference:23-0000664718 rev 00

Analytical Report

Client: Bergmann Associates, Incorporated

Q2 Gowanda 2023/14263.12 **Date Collected:** 05/19/23 10:50

Sample Matrix: Water Date Received: 05/19/23 13:28

 Sample Name:
 Field Blank
 Units: ug/L

 Lab Code:
 R2304485-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 13:28	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 13:28	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 13:28	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 13:28	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 13:28	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 13:28	
o-Xylene	5.0 U	5.0	1	05/31/23 13:28	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 13:28	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 13:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	05/31/23 13:28	
Dibromofluoromethane	94	80 - 116	05/31/23 13:28	
Toluene-d8	97	87 - 121	05/31/23 13:28	

Analytical Report

Client: Bergmann Associates, Incorporated **Project:**

Q2 Gowanda 2023/14263.12

Sample Matrix: Water Service Request: R2304485 **Date Collected:** 05/16/23

Date Received: 05/19/23 13:28

Sample Name: Trip Blank Units: ug/L Lab Code: R2304485-011 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 16:21	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 16:21	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 16:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 16:21	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 16:21	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 16:21	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 16:21	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 16:21	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 16:21	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 16:21	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 16:21	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 16:21	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 16:21	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 16:21	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 16:21	
1,4-Dioxane	100 U	100	1	05/30/23 16:21	
2-Butanone (MEK)	10 U	10	1	05/30/23 16:21	
2-Hexanone	10 U	10	1	05/30/23 16:21	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 16:21	
Acetone	10 U	10	1	05/30/23 16:21	
Benzene	5.0 U	5.0	1	05/30/23 16:21	
Bromochloromethane	5.0 U	5.0	1	05/30/23 16:21	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 16:21	
Bromoform	5.0 U	5.0	1	05/30/23 16:21	
	5.0 U		1		
Bromomethane	10 U	5.0		05/30/23 16:21	
Carbon Disulfide		10	1	05/30/23 16:21	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 16:21	
Chlorobenzene	5.0 U	5.0	1	05/30/23 16:21	
Chloroethane	5.0 U	5.0	1	05/30/23 16:21	
Chloroform	5.0 U	5.0	1	05/30/23 16:21	
Chloromethane	5.0 U	5.0	1	05/30/23 16:21	
Cyclohexane	10 U	10	1	05/30/23 16:21	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 16:21	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 16:21	
Dichloromethane	5.0 U	5.0	1	05/30/23 16:21	
Ethylbenzene	5.0 U	5.0	1	05/30/23 16:21	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 16:21	
Methyl Acetate	10 U	10	1	05/30/23 16:21	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 16:21	
Methylcyclohexane	10 U	10	1	05/30/23 16:21	
Styrene	5.0 U	5.0	1	05/30/23 16:21	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 16:21	
Toluene	5.0 U	5.0	1	05/30/23 16:21	

Printed 6/5/2023 4:25:57 PM

Analytical Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Service Request: R2304485 **Date Collected:** 05/16/23

Date Received: 05/19/23 13:28

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 R2304485-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/30/23 16:21	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 16:21	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 16:21	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 16:21	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 16:21	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 16:21	
o-Xylene	5.0 U	5.0	1	05/30/23 16:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 16:21	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 16:21	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	110	85 - 122	05/30/23 16:21	
Dibromofluoromethane	102	80 - 116	05/30/23 16:21	
Toluene-d8	104	87 - 121	05/30/23 16:21	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Bergmann Associates, Incorporated Service Request: R2304485

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	80 - 116	87 - 121
MW-21	R2304485-001	103	96	98
DR-1	R2304485-002	102	97	98
DR-2	R2304485-003	94	95	97
DR-3	R2304485-004	108	100	101
DR-4	R2304485-005	102	95	97
G-1	R2304485-006	104	96	98
G-2	R2304485-007	95	96	97
G-3	R2304485-008	104	102	101
MW-X	R2304485-009	102	96	97
MW-X DL	R2304485-009	99	92	93
Field Blank	R2304485-010	100	94	97
Trip Blank	R2304485-011	110	102	104
Lab Control Sample	RQ2306629-03	100	96	96
Method Blank	RQ2306629-04	102	96	96
Lab Control Sample	RQ2306700-03	100	97	97
Method Blank	RQ2306700-04	104	95	99

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304485

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2306629-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/30/23 11:13	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/30/23 11:13	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/30/23 11:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/30/23 11:13	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/30/23 11:13	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/30/23 11:13	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/30/23 11:13	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/30/23 11:13	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/30/23 11:13	
1,2-Dibromoethane	5.0 U	5.0	1	05/30/23 11:13	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/30/23 11:13	
1,2-Dichloroethane	5.0 U	5.0	1	05/30/23 11:13	
1,2-Dichloropropane	5.0 U	5.0	1	05/30/23 11:13	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/30/23 11:13	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/30/23 11:13	
1,4-Dioxane	100 U	100	1	05/30/23 11:13	
2-Butanone (MEK)	10 U	10	1	05/30/23 11:13	
2-Hexanone	10 U	10	1	05/30/23 11:13	
4-Methyl-2-pentanone	10 U	10	1	05/30/23 11:13	
Acetone	10 U	10	1	05/30/23 11:13	
Benzene	5.0 U	5.0	1	05/30/23 11:13	
Bromochloromethane	5.0 U	5.0	1	05/30/23 11:13	
Bromodichloromethane	5.0 U	5.0	1	05/30/23 11:13	
Bromoform	5.0 U	5.0	1		
	5.0 U	5.0 5.0	1	05/30/23 11:13 05/30/23 11:13	
Bromomethane Carbon Disulfide	3.0 U	10	1	05/30/23 11:13	
Carbon Tetrachloride	5.0 U	5.0	1	05/30/23 11:13	
Chlorobenzene	5.0 U	5.0	1	05/30/23 11:13	
Chloroethane	5.0 U	5.0	1	05/30/23 11:13	
Chloroform	5.0 U	5.0	1	05/30/23 11:13	
Chloromethane	5.0 U	5.0	1	05/30/23 11:13	
Cyclohexane	10 U	10	1	05/30/23 11:13	
Dibromochloromethane	5.0 U	5.0	1	05/30/23 11:13	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/30/23 11:13	
Dichloromethane	5.0 U	5.0	1	05/30/23 11:13	
Ethylbenzene	5.0 U	5.0	1	05/30/23 11:13	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/30/23 11:13	
Methyl Acetate	10 U	10	1	05/30/23 11:13	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/30/23 11:13	
Methylcyclohexane	10 U	10	1	05/30/23 11:13	
Styrene	5.0 U	5.0	1	05/30/23 11:13	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/30/23 11:13	
Toluene	5.0 U	5.0	1	05/30/23 11:13	

Printed 6/5/2023 4:25:58 PM

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304485

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2306629-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/30/23 11:13	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/30/23 11:13	
Vinyl Chloride	5.0 U	5.0	1	05/30/23 11:13	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 11:13	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 11:13	
m,p-Xylenes	5.0 U	5.0	1	05/30/23 11:13	
o-Xylene	5.0 U	5.0	1	05/30/23 11:13	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/30/23 11:13	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/30/23 11:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/30/23 11:13	
Dibromofluoromethane	96	80 - 116	05/30/23 11:13	
Toluene-d8	96	87 - 121	05/30/23 11:13	

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304485

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2306700-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	5.0 U	5.0	1	05/31/23 11:24	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	05/31/23 11:24	
1,1,2-Trichloroethane	5.0 U	5.0	1	05/31/23 11:24	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0 U	5.0	1	05/31/23 11:24	
1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	1	05/31/23 11:24	
1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	1	05/31/23 11:24	
1,2,3-Trichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,2,4-Trichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dibromo-3-chloropropane (DBCP)	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dibromoethane	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dichloroethane	5.0 U	5.0	1	05/31/23 11:24	
1,2-Dichloropropane	5.0 U	5.0	1	05/31/23 11:24	
1,3-Dichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,4-Dichlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
1,4-Dioxane	100 U	100	1	05/31/23 11:24	
2-Butanone (MEK)	10 U	10	1	05/31/23 11:24	
2-Hexanone	10 U	10	1	05/31/23 11:24	
4-Methyl-2-pentanone	10 U	10	1	05/31/23 11:24	
Acetone	10 U	10	1	05/31/23 11:24	
Benzene	5.0 U	5.0	1	05/31/23 11:24	
Bromochloromethane	5.0 U	5.0	1	05/31/23 11:24	
Bromodichloromethane	5.0 U	5.0	1	05/31/23 11:24	
Bromoform	5.0 U	5.0	1	05/31/23 11:24	
Bromomethane	5.0 U	5.0	1	05/31/23 11:24	
Carbon Disulfide	10 U	10	1	05/31/23 11:24	
Carbon Tetrachloride	5.0 U	5.0	1	05/31/23 11:24	
Chlorobenzene	5.0 U	5.0	1	05/31/23 11:24	
Chloroethane	5.0 U	5.0	1	05/31/23 11:24	
Chloroform	5.0 U	5.0	1	05/31/23 11:24	
Chloromethane	5.0 U	5.0	1	05/31/23 11:24	
Cyclohexane	10 U	10	1		
		5.0		05/31/23 11:24	
Dibromochloromethane	5.0 U		1	05/31/23 11:24	
Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	1	05/31/23 11:24	
Dichloromethane Ed. 19	5.0 U	5.0	1	05/31/23 11:24	
Ethylbenzene	5.0 U	5.0	1	05/31/23 11:24	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	05/31/23 11:24	
Methyl Acetate	10 U	10	1	05/31/23 11:24	
Methyl tert-Butyl Ether	5.0 U	5.0	1	05/31/23 11:24	
Methylcyclohexane	10 U	10	1	05/31/23 11:24	
Styrene	5.0 U	5.0	1	05/31/23 11:24	
Tetrachloroethene (PCE)	5.0 U	5.0	1	05/31/23 11:24	
Toluene	5.0 U	5.0	1	05/31/23 11:24	

Printed 6/5/2023 4:26:00 PM

Analytical Report

Client: Bergmann Associates, Incorporated Service Request: R2304485

Project:Q2 Gowanda 2023/14263.12Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2306700-04Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	5.0 U	5.0	1	05/31/23 11:24	
Trichlorofluoromethane (CFC 11)	5.0 U	5.0	1	05/31/23 11:24	
Vinyl Chloride	5.0 U	5.0	1	05/31/23 11:24	
cis-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 11:24	
cis-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 11:24	
m,p-Xylenes	5.0 U	5.0	1	05/31/23 11:24	
o-Xylene	5.0 U	5.0	1	05/31/23 11:24	
trans-1,2-Dichloroethene	5.0 U	5.0	1	05/31/23 11:24	
trans-1,3-Dichloropropene	5.0 U	5.0	1	05/31/23 11:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/31/23 11:24	
Dibromofluoromethane	95	80 - 116	05/31/23 11:24	
Toluene-d8	99	87 - 121	05/31/23 11:24	

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Printed 6/5/2023 4:25:58 PM

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2304485

Date Analyzed: 05/30/23

Lab Control Sample

RQ2306629-03

Analytical

A I A NT	Anaryucar	D 14	G 91 A 4	0/ D	0/ D I ! !
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.7	20.0	98	75-125
1,1,2,2-Tetrachloroethane	8260C	19.4	20.0	97	78-126
1,1,2-Trichloroethane	8260C	19.5	20.0	97	82-121
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	20.7	20.0	104	67-124
1,1-Dichloroethane (1,1-DCA)	8260C	20.9	20.0	105	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	21.3	20.0	106	69-142
1,2,3-Trichlorobenzene	8260C	18.6	20.0	93	67-136
1,2,4-Trichlorobenzene	8260C	18.1	20.0	91	75-132
1,2-Dibromo-3-chloropropane (DBCP)	8260C	18.5	20.0	92	55-136
1,2-Dibromoethane	8260C	18.8	20.0	94	82-127
1,2-Dichlorobenzene	8260C	19.1	20.0	95	80-119
1,2-Dichloroethane	8260C	19.3	20.0	96	71-127
1,2-Dichloropropane	8260C	19.9	20.0	99	80-119
1,3-Dichlorobenzene	8260C	19.1	20.0	95	83-121
1,4-Dichlorobenzene	8260C	19.3	20.0	96	79-119
1,4-Dioxane	8260C	372	400	93	44-154
2-Butanone (MEK)	8260C	19.0	20.0	95	61-137
2-Hexanone	8260C	22.1	20.0	111	63-124
4-Methyl-2-pentanone	8260C	22.0	20.0	110	66-124
Acetone	8260C	17.1	20.0	85	40-161
Benzene	8260C	19.9	20.0	99	79-119
Bromochloromethane	8260C	20.6	20.0	103	81-126
Bromodichloromethane	8260C	18.4	20.0	92	81-123
Bromoform	8260C	18.8	20.0	94	65-146
Bromomethane	8260C	19.9	20.0	100	42-166
Carbon Disulfide	8260C	21.7	20.0	108	66-128
Carbon Tetrachloride	8260C	19.1	20.0	96	70-127
Chlorobenzene	8260C	18.8	20.0	94	80-121
Chloroethane	8260C	19.4	20.0	97	62-131
Chloroform	8260C	19.9	20.0	99	79-120
Chloromethane	8260C	22.1	20.0	111	72-179
Cyclohexane	8260C	20.4	20.0	102	69-120
Dibromochloromethane	8260C	18.4	20.0	92	72-128
D' - 1 6/5/2022 4 25 50 DM			a	22 0000	0664710 00

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Service Request: R2304485

Date Analyzed: 05/30/23

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2306629-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Dichlorodifluoromethane (CFC 12)	8260C	17.8	20.0	89	59-155
Dichloromethane (et e 12)	8260C	20.8	20.0	104	73-122
Ethylbenzene	8260C	19.5	20.0	97	76-120
Isopropylbenzene (Cumene)	8260C	19.7	20.0	98	77-128
Methyl Acetate	8260C	15.4	20.0	77	61-133
Methyl tert-Butyl Ether	8260C	19.9	20.0	99	75-118
Methylcyclohexane	8260C	20.8	20.0	104	51-129
Styrene	8260C	19.6	20.0	98	80-124
Tetrachloroethene (PCE)	8260C	18.5	20.0	92	72-125
Toluene	8260C	19.2	20.0	96	79-119
Trichloroethene (TCE)	8260C	18.8	20.0	94	74-122
Trichlorofluoromethane (CFC 11)	8260C	20.9	20.0	105	71-136
Vinyl Chloride	8260C	19.0	20.0	95	74-159
cis-1,2-Dichloroethene	8260C	20.4	20.0	102	80-121
cis-1,3-Dichloropropene	8260C	20.5	20.0	103	77-122
m,p-Xylenes	8260C	38.2	40.0	96	80-126
o-Xylene	8260C	19.3	20.0	97	79-123
trans-1,2-Dichloroethene	8260C	20.6	20.0	103	73-118
trans-1,3-Dichloropropene	8260C	20.5	20.0	102	71-133

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

Printed 6/5/2023 4:25:59 PM

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R2304485

Date Analyzed: 05/31/23

Lab Control Sample

RQ2306700-03

Analytical

	Analytical		a	a	
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.6	20.0	98	75-125
1,1,2,2-Tetrachloroethane	8260C	20.6	20.0	103	78-126
1,1,2-Trichloroethane	8260C	20.0	20.0	100	82-121
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	20.6	20.0	103	67-124
1,1-Dichloroethane (1,1-DCA)	8260C	20.7	20.0	104	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	20.6	20.0	103	69-142
1,2,3-Trichlorobenzene	8260C	19.0	20.0	95	67-136
1,2,4-Trichlorobenzene	8260C	18.6	20.0	93	75-132
1,2-Dibromo-3-chloropropane (DBCP)	8260C	18.8	20.0	94	55-136
1,2-Dibromoethane	8260C	19.5	20.0	98	82-127
1,2-Dichlorobenzene	8260C	19.5	20.0	98	80-119
1,2-Dichloroethane	8260C	19.3	20.0	96	71-127
1,2-Dichloropropane	8260C	20.5	20.0	102	80-119
1,3-Dichlorobenzene	8260C	19.5	20.0	98	83-121
1,4-Dichlorobenzene	8260C	19.2	20.0	96	79-119
1,4-Dioxane	8260C	415	400	104	44-154
2-Butanone (MEK)	8260C	17.4	20.0	87	61-137
2-Hexanone	8260C	19.2	20.0	96	63-124
4-Methyl-2-pentanone	8260C	19.6	20.0	98	66-124
Acetone	8260C	16.1	20.0	81	40-161
Benzene	8260C	20.3	20.0	101	79-119
Bromochloromethane	8260C	20.4	20.0	102	81-126
Bromodichloromethane	8260C	19.1	20.0	95	81-123
Bromoform	8260C	19.0	20.0	95	65-146
Bromomethane	8260C	21.3	20.0	106	42-166
Carbon Disulfide	8260C	19.4	20.0	97	66-128
Carbon Tetrachloride	8260C	19.5	20.0	98	70-127
Chlorobenzene	8260C	19.7	20.0	99	80-121
Chloroethane	8260C	19.3	20.0	97	62-131
Chloroform	8260C	20.4	20.0	102	79-120
Chloromethane	8260C	22.5	20.0	112	72-179
Cyclohexane	8260C	20.6	20.0	103	69-120
Dibromochloromethane	8260C	19.3	20.0	96	72-128
D: 4 1 6/5/2022 4 25 50 DM			g .	22 0000	0664710 00

QA/QC Report

Client: Bergmann Associates, Incorporated

Project: Q2 Gowanda 2023/14263.12

Sample Matrix: Water

orated Service Request: R2304485

Date Analyzed: 05/31/23

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2306700-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Dichlorodifluoromethane (CFC 12)	8260C	17.1	20.0	86	59-155
Dichloromethane	8260C 8260C	20.7		104	
			20.0		73-122
Ethylbenzene	8260C	20.1	20.0	101	76-120
Isopropylbenzene (Cumene)	8260C	20.2	20.0	101	77-128
Methyl Acetate	8260C	15.6	20.0	78	61-133
Methyl tert-Butyl Ether	8260C	20.7	20.0	103	75-118
Methylcyclohexane	8260C	21.3	20.0	107	51-129
Styrene	8260C	20.6	20.0	103	80-124
Tetrachloroethene (PCE)	8260C	19.3	20.0	97	72-125
Toluene	8260C	19.6	20.0	98	79-119
Trichloroethene (TCE)	8260C	19.2	20.0	96	74-122
Trichlorofluoromethane (CFC 11)	8260C	20.9	20.0	104	71-136
Vinyl Chloride	8260C	18.8	20.0	94	74-159
cis-1,2-Dichloroethene	8260C	20.5	20.0	103	80-121
cis-1,3-Dichloropropene	8260C	21.1	20.0	105	77-122
m,p-Xylenes	8260C	39.8	40.0	99	80-126
o-Xylene	8260C	19.9	20.0	100	79-123
trans-1,2-Dichloroethene	8260C	20.1	20.0	100	73-118
trans-1,3-Dichloropropene	8260C	21.0	20.0	105	71-133

FIELD FORMS

GROUNDWAT	TER SAM	PLING WORKSHEE	T					
CROONDWA	LIK OAM	TEMO WORKONEL	<u> </u>					
PROJECT NA		Gowanda Q2 2023						
Project Numbe	er:	23006924A						
Site Location:		Gowanda, New Yor						
Sample Date:		5/19/202	23					
Weather:		61 Degrees F				BE	RGMAN	N N
Personnel:		Justin L. O'B	rien				CTS ENGINEERS PLA	
GROUNDWAT	ER SAM	PLE POINT						
Well Number:		MW-1						
Location:								
Casing Diamet	er:	2"						
						Well Dia	. Volume/Foot	1
Depth to water				6.4		1" =	= 0.041 gal/foot	
Depth to bottor			16.02				= 0.163 gal/foot	
Length of wate	r column	in well:	9.62				= 0.653 gal/foot	
							= 1.469 gal/foot	
		. "		4 = 004		8" =	= 2.611 gal/foot	j
		casing, gallons:	\(\(\frac{1}{2}\) \(\frac{1}{2}\)	1.5681		4.70		
		h water column X ga	l/foot X 3):			4.70	_	
		rior to sampling:		_		4.75	_	
Sampling Meth		Bailer					_	
Sampling Equi	pment.	Dallel					_	
Well Recharge	v43	N/A					_	
Required Analy		IN/A					_	
rtequired Arial	yolo.						_	
FIELD PARAM	METER M	EASUREMENTS						
			Accumu	lated Volu	ıme Purae	ed in Gallons		
Parameter:								
Turbidity	N/A	NTU						
Temperature	11.26	°C						
рН	7.08							
Conductivity	0.05	SPC ms/cm						
Oxygen	3.38	DO mg/L						
Salinity								
Time sample w	vas collec	ted:	6:57					
COMMENTS								
COMMENTS								

GROUNDWAT	TER SAI	MPLING WORKSHEE	T							
			_						2	
PROJECT NA		Gowanda Q2 2023						11		
Project Number	er:	23006924A								
Site Location:		Gowanda, New Yorl					_			
Sample Date:		5/19/202	23				ρг		A A I	LIKI
Weather:		61 Degrees F					BE	RGI	MAI	
Personnel:		Justin L. O'B	rien				ARCHITE	CTS ENGIN	IEERS PL	ANNERS
GROUNDWAT	ER SAN	MPLE POINT								
Well Number:		MW-2								
Location:									_	
Casing Diamet	ter:	2"								_
Depth to water				6.1		_	1" =	. Volume = 0.041 ga	al/foot	-
Depth to bottor			17.15					= 0.163 ga		
Length of wate	er columr	n in well:	11.05					= 0.653 ga		
								= 1.469 ga		
		l casing, gallons: yth water column X gal	l/foot X 3):	1.80		<u>-</u> 5.40		= 2.611 ga	al/toot	
		prior to sampling:	,		5.50			_		
Sampling Meth	nodology	: Hand bailing		_				_		
Sampling Equi	pment:	Bailer						_		
Well Recharge	ed?	N/A								
Required Analy	ysis:							_		
FIELD PARAN	METER M	MEASUREMENTS								
			Accumula	ted Volu	ıme Pur	rged in C	allons			
Parameter:										
Turbidity	N/A	NTU								
Temperature		°C								
рН										
Conductivity		SPC ms/cm								
Oxygen		DO mg/L								
Salinity										
Time sample w	vas colle	cted:	6:40						_	
COMMENTS									-	
									- -	
	_			·					_	

TER SAMP	PLING WORKSHEE	T						
							2	
						▮╚	ノー	
_								
=		23			RFI	CN	Λ Λ	N N
_								
-	Justin L. O'B	rien		A	ARCHITEC	TS ENGIN	EERS PI	LANNERS
ER SAMP	LE POINT							
<u>_</u>	MW-3							
_								
er:	2"			_				_
m of the we	ell:	16.30 9.62	6.68	<u>v</u>	1" = 2" = 4" =	0.041 ga 0.163 ga 0.653 ga	l/foot l/foot l/foot	
s (= length purged pri nodology: _	water column X ga or to sampling: Hand bailing	I/foot X 3):	1.6	4.70 4.75				
pinent.	Dallel					i		
d?	N/A					•		
_	14/71					Ī		
METER ME	ASUREMENTS					•		
		Accumula	ted Volume	Purged in Ga	llons			
N/A	NTU							
10.85	°C							
7.09								
0.042	SPC ms/cm							
4.72	DO mg/L							
vas collect	ed:	6:20						
	mE: r: ER SAMP er: below top n of the wer column in er in well co s (= length purged pri odology: pment: d? r/sis: IETER ME N/A 10.85 7.09 0.042 4.72	ME: Gowanda Q2 2023 T: 23006924A Gowanda, New Yor 5/19/202 61 Degrees F Justin L. O'B TER SAMPLE POINT MW-3 er: 2" , below top of casing: m of the well: r column in well: er in well casing, gallons: s (= length water column X gapurged prior to sampling: nodology: Hand bailing pment: Bailer d? N/A //sis: IETER MEASUREMENTS N/A NTU 10.85 °C 7.09 0.042 SPC ms/cm	Company Comp	ME: Gowanda Q2 2023 23006924A	ME: Gowanda Q2 2023	ME: Gowanda Q2 2023	ME: Gowanda Q2 2023	Gowanda Q2 2023 23006924A Gowanda, New York 5/19/2023 61 Degrees F Justin L. O'Brien MW-3

GROUNDWAT	ER SAM	PLING WORKSHEE	T				
			_				
PROJECT NA		Gowanda Q2 2023					
Project Numbe	r:	23006924A					
Site Location:		Gowanda, New Yor					
Sample Date:		5/19/202	23				ı
Weather:		61 Degrees F				BERGMANN	
Personnel:		Justin L. O'B	Brien			ARCHITECTS ENGINEERS PLANNERS	;
GROUNDWAT	ER SAM	PLE POINT					
Well Number:		MW-4					
Location:							
Casing Diamet	er:	2"					
Depth to water				7.62		Well Dia. Volume/Foot 1" = 0.041 gal/foot	
Depth to bottor			15.78			2" = 0.163 gal/foot	
Length of wate	r column	in well:	8.16			4" = 0.653 gal/foot	
						6" = 1.469 gal/foot	
Volume of water	er in well	casing, gallons:		1.3301		8" = 2.611 gal/foot	
		h water column X ga	l/foot X 3):	110001		3.99	
		rior to sampling:	.,,.			4.0	
Sampling Meth				_			
Sampling Equi		Bailer					
	•						
Well Recharge	d?	N/A					
Required Analy	/sis:						
FIELD PARAM	IETER M	<u>EASUREMENTS</u>					
			Accumu	lated Volu	me Purge	d in Gallons	
Parameter:			Addama	lated Voic	line i di ge		
Turbidity	347.65	NTU					
Temperature	8.9	°C					
рН	6.97						
Conductivity	0.603	SPC ms/cm					
Oxygen	7.58	DO mg/L					
Salinity							
Time sample w	as collec	ted:	9:10				
COMMENTS							
							
II .							

T p									
GROUNDWA'	TER SAM	PLING WORKSHEE	<u>:T</u>						
PROJECT NA		Gowanda Q2 2023							
Project Number	er:	23006924A					_	-	
Site Location:		Gowanda, New Yor	k			_			
Sample Date:		5/18/202	23						
Weather:		66 Degrees F				BE	RGI	$ \mathbf{A} $	NN
Personnel:		Justin L. O'B	rien				CTS ENGIN		
GROUNDWAT	ΓER SAM	PLE POINT				ARCIIII	CIS ENGI	VEEKS FE	ANNERS
Well Number:		MW-5							
Location:		IVIVV-J							
	tor:	2"						•	
Casing Diame	ter.					Well Die	Values	T1	7
Damth tooto.				44.0			Volume/		
Depth to water			40.05	11.2			0.041 ga		
Depth to botto			13.95				0.163 ga		
Length of wate	er column	in well:	2.75				0.653 ga		
							: 1.469 ga		
						8" =	: 2.611 ga	l/foot	
		casing, gallons:		0.45					
		h water column X ga	l/foot X 3):		1.34				
Actual volume	purged p	rior to sampling:			1.50		_		
Sampling Meth	nodology:	Hand bailing		<u> </u>			_		
Sampling Equi	ipment:	Bailer							
	•						_		
Well Recharge	ed?	N/A					_		
Required Anal							_		
	,						_		
FIELD PARAM	METER M	<u>EASUREMENTS</u>							
			Accumula	ted Volun	ne Purged in G	allons			
Parameter:									
Turbidity	N/A	NTU							
Temperature	13.75	°C							
рН	7.23								
Conductivity	0.044	SPC ms/cm							
Oxygen	8.34	DO mg/L							
Salinity									
,	<u> </u>	1			<u> </u>			<u>l</u>	
Time sample v	was collec	ted:	15:25						
COMMENTS								-	
COMMENTS								•	
								•	
ii									

GROUNDWAT	TER SAM	PLING WORKSHEE	=T						
CROONDWAI	LI SAW	LING WONNGHEE	<u>- 1</u>						
PROJECT NA	MF·	Gowanda Q2 2023					▎╚	2 I	
Project Number		23006924A					▮╚	ノー	
Site Location:		Gowanda, New Yor	k						
Sample Date:		5/18/202				•			
Weather:		66 degrees F				BEF	3GN	4 A I	N N
Personnel:		Justin L. O'E	Brien			ARCHITEC			
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		MW-6							
Location:									
Casing Diamet	er:	2"							_
Depth to water Depth to bottor Length of wate	m of the w	ell:	13.54 22.88 9.34			2" = 0 4" = 0 6" = 1	/olume/f 0.041 gal, 0.163 gal, 0.653 gal, 1.469 gal, 2.611 gal,	/foot /foot /foot /foot	-
3 Well volumes	s (= lengtl purged p nodology:	casing, gallons: n water column X ga rior to sampling: Hand bailing Bailer	l/foot X 3):	1.52	4.57 4.75		gai	rioot	1
Well Recharge Required Analy		N/A							
FIELD PARAM	METER M	EASUREMENTS							
			Accumula	ted Volume	Purged in G	allons			
Parameter:									
Turbidity	N/A	NTU							
Temperature	14.24	°C							
рН	7.38								
Conductivity	0.04	SPC ms/cm							
Oxygen	4.68	DO mg/L							
Salinity		J							1
Time sample w	vas collec	ted:	15:10						

GROUNDWA:	TER SAM	PLING WORKSHEE	T					
CHOCHDIIA		. LO ITOMMONILL	<u>··</u>					
PROJECT NA	ME:	Gowanda Q2 2023					$\sqcup \sqcup \sqcup$	
Project Numbe		23006924A						
Site Location:		Gowanda, New Yor	k					
Sample Date:		5/18/202	23					
Weather:		66 Degrees F				RF	RGMAI	N N
Personnel:		Justin L. O'B	rien					
GROUNDWAT	TER SAMI	PLE POINT				ARCHITEC	TS ENGINEERS PL	ANNERS
Well Number:		MW-7						
Location:	.	0"						
Casing Diame	ter:	2"				Wall Die	Volume/Foot	
Donth to water	· bolow to	n of occina:		13.55			a. Volume/Foot = 0.041 gal/foot	
Depth to water Depth to botton			21.8	13.33			= 0.041 gal/loot = 0.163 gal/foot	
Length of water			8.25				= 0.163 gal/foot	
Lengin or water	ti Columni	III WEII.	0.23				= 0.000 gal/foot	
							= 2.611 gal/foot	
Volume of wat	er in well (casing, gallons:		1.3			= 2.011 gai/100t	
		n water column X ga	l/foot X 3): _			4.03		
		rior to sampling:			•	4.25	_	
Sampling Meth				_			_	
Sampling Equi		Bailer						
	•						_	
Well Recharge	ed?	N/A					_	
Required Analy	ysis:						<u> </u>	
							_	
FIELD PARAM	<u>IETER MI</u>	<u>EASUREMENTS</u>						
			Accumul	ated Volu	ıme Pur	ged in Gallons		
Parameter:								
Turbidity	N/A	NTU						
Temperature	9.93							
рН	7.09							
Conductivity	0.605							
Oxygen	5.76	DO mg/L						
Salinity								
Time sample v	vas collec	ted:	8:23					
				·				
<u>COMMENTS</u>								

PROJECT NAME: Gowanda Q2 2023 23006924A 230069	GROUNDWAT	TER SAM	PLING WORKSHEE	T						
Project Number: Gowanda, New York Sample Date: 10/19/2023				_					$\overline{}$	
Site Location: Gowanda, New York 10/19/2023 Tologrees F Justin L. O'Brien BERGMANN ARCHITECTS ENGINEERS PLANNER GROUNDWATER SAMPLE POINT								-11	ゴ I	
Sample Date: 10/19/2023		er:						_ _	ノー	
Meather: Topgrees F										
Personnel: Justin L. O'Brien GROUNDWATER SAMPLE POINT Well Number: MW-8 Location: 2" Well Dia. Volume/Foot Depth to water, below top of casing: 9.79 1" = 0.041 gal/foot Depth to bottom of the well: 17.65 2" = 0.163 gal/foot Length of water column in well: 7.86 4" = 0.653 gal/foot 6" = 1.469 gal/foot 8" = 2.611 gal/foot 8" = 2.611 gal/foot 3 Well volumes (= length water column X gal/foot X 3): 3.844 Actual volume purged prior to sampling: 4.0 Sampling Methodology: Hand bailing Sampling Equipment: Bailer Well Recharged? N/A Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity N/A NTU Tremperature 11.09 °C PH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Time sample was collected: 7:40 Time sample was collected: 7:40				23						
Personnel: Justin L. O'Brien GROUNDWATER SAMPLE POINT Well Number: MW-8 Location: 2" Well Dia. Volume/Foot Depth to water, below top of casing: 9.79 1" = 0.041 gal/foot Depth to bottom of the well: 17.65 2" = 0.163 gal/foot Length of water column in well: 7.86 4" = 0.653 gal/foot 6" = 1.469 gal/foot 8" = 2.611 gal/foot 8" = 2.611 gal/foot 3 Well volumes (= length water column X gal/foot X 3): 3.844 Actual volume purged prior to sampling: 4.0 Sampling Methodology: Hand bailing Sampling Equipment: Bailer Well Recharged? N/A Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity N/A NTU Tremperature 11.09 °C PH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Time sample was collected: 7:40 Time sample was collected: 7:40							ВE	RG	МΑ	\mathbf{N}
Well Number:	Personnel:		Justin L. O'B	<u> </u>						
Depth to water, below top of casing:	GROUNDWAT	TER SAM	PLE POINT							
Casing Diameter: 2"			MW-8							
Depth to water, below top of casing: 9.79										
Depth to water, below top of casing: 9.79	Casing Diamet	ter:	2"					1		-
Depth to bottom of the well: 17.65 2" = 0.163 gal/foot 4" = 0.653 gal/foot 4" = 0.653 gal/foot 6" = 1.469 gal/foot 8" = 2.611 gal/foot 4" = 0.653 gal/foot 8" = 2.611 gal/foot 8" = 2.611 gal/foot 8" = 2.611 gal/foot 4" = 0.653 gal/foot 4										
Length of water column in well:				_	9.79					
Volume of water in well casing, gallons: 3 Well volumes (= length water column X gal/foot X 3): 3 Well volumes (= length water column X gal/foot X 3): 3 Actual volume purged prior to sampling: Sampling Methodology: Hand bailing Bailer Well Recharged? N/A Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity Timperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Time sample was collected: 7:40										
Volume of water in well casing, gallons: 3 Well volumes (= length water column X gal/foot X 3): 3 Well volume purged prior to sampling: Sampling Methodology: Sampling Equipment: Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Time sample was collected: 7:40	Length of wate	er column	in well:	7.86						
Volume of water in well casing, gallons: 3 Well volumes (= length water column X gal/foot X 3): 3.844 Actual volume purged prior to sampling: Sampling Methodology: Hand bailing Sampling Equipment: Bailer Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity N/A NTU Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Time sample was collected: 7:40										
3 Well volumes (= length water column X gal/foot X 3): Actual volume purged prior to sampling: Sampling Methodology: Hand bailing Bailer Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity N/A NTU Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Time sample was collected: 7:40							8" =	: 2.611 ga	l/foot	
Actual volume purged prior to sampling: Sampling Methodology: Hand bailing Bailer Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity N/A NTU Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Salinity Time sample was collected: 7:40					1.28					
Sampling Methodology: Hand bailing Sampling Equipment: Bailer Well Recharged? N/A Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Grammatic Turbidity N/A NTU Gramperature 11.09 °C Gramperature 11.09 °C Grammatic				l/foot X 3):				_		
Sampling Equipment: Bailer						4.0		_		
Well Recharged? Required Analysis: FIELD PARAMETER MEASUREMENTS Accumulated Volume Purged in Gallons Parameter: Turbidity N/A NTU Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Salinity Time sample was collected: 7:40								_		
Required Analysis:	Sampling Equi	pment:	Bailer					_		
Required Analysis:		10	- N1/A					_		
Accumulated Volume Purged in Gallons			N/A					_		
Accumulated Volume Purged in Gallons	Required Analy	ysis:						_		
Parameter: Turbidity N/A NTU Temperature 11.09 °C P pH 7.17 P P Conductivity 0.052 SPC ms/cm SPC ms/cm Oxygen 6.02 DO mg/L Salinity Time sample was collected: 7:40	FIELD PARAM	METER M	EASUREMENTS							
Turbidity N/A NTU Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Salinity 7:40				Accumula	ated Volun	ne Purged in G	allons			
Temperature 11.09 °C pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Salinity 7:40										
pH 7.17 Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Salinity Time sample was collected: 7:40										
Conductivity 0.052 SPC ms/cm Oxygen 6.02 DO mg/L Salinity Time sample was collected: 7:40										
Oxygen 6.02 DO mg/L Salinity Time sample was collected: 7:40	рН	7.17								
Salinity Time sample was collected: 7:40	Conductivity	0.052	SPC ms/cm							
Time sample was collected: 7:40		6.02	DO mg/L							
	Salinity									
COMMENTS	Time sample v	vas collec	ted:	7:40						
COMMENTS										
	COMMENTS									
<u> </u>										

-									
GROUNDWA'	<u>TER SAM</u>	PLING WORKSHEE	<u>T</u>						
DDO IECT NA	NAIT.	Cawanda 02 2022							
PROJECT NA		Gowanda Q2 2023)	
Project Number:		23006924A							
Site Location:		Gowanda, New Yor				•			
Sample Date:		5/19/202	23					4 A A	
Weather:		71 Degrees F				RFF	RGM	1 A D	1 I/
Personnel:		Justin L. O'B	Brien			ARCHITEC	TS ENGINE	ERS PLA	NNERS
GROUNDWAT	ΓER SAM	PLE POINT							
Well Number:		MW-9							
Location:									
Casing Diame	ter:	2"						_	
Depth to water		on of casing:		9.35			. Volume/ : 0.041 ga		
Depth to botto			20.96	0.00			: 0.163 ga		
Length of water			11.61				: 0.103 ga : 0.653 ga		
Lengin or water	51 COIGITIII	III WEII.	11.01				: 0.055 ga : 1.469 ga		
							: 1.409 ga : 2.611 ga		
Valuma of wat	or in wall	casing, gallons:		1.89		0 =	2.011 ya	11/1001	J
		h water column X ga	I/foot V 2\:	1.09	 5.677				
		rior to sampling:	1/100t A 3).		5.75		_		
Sampling Meth					5.75		_		
							_		
Sampling Equi	ipment.	Bailer					_		
Mall Daabaaa	- 40	NI/Λ					_		
Well Recharge		N/A					_		
Required Anal	ysis:						_		
FIELD PARAM	METER M	<u>EASUREMENTS</u>							
	1		Accumula	ated Volume	Purged in G	allons			
Parameter:									
Turbidity	N/A	NTU	+						
Temperature	10.93								
рН	6.90		+				1		
Conductivity	0.051		+						
Oxygen	4.03		+				+		
	4.03	DO mg/L	+						
Salinity									
Time sample v	was collec	ted:	8:35						
00141451156								=	
COMMENTS								_	
								-	
								_	

I									
GROUNDWAT	TER SAM	PLING WORKSHEE	<u>:T</u>						
PROJECT NA	ME.	Gowanda Q2 2023						2	
		23006924A						<i>)</i>	
Project Number	er:								
Site Location:		Gowanda, New Yor				•			
Sample Date:		5/19/202	23					4 A B	LAL
Weather:		71 Degrees F				BE	RGN	1 A l	N I N
Personnel:		Justin L. O'B	rien			ARCHITEC	TS ENGIN	EERS PLA	NNERS
GROUNDWAT	TER SAM	PLE POINT							
Well Number:		MW-10							
Location:			_						
Casing Diamet	ter:	2"						-	
Depth to water	r, below to	op of casing:		7.08			. Volume/ = 0.041 ga		
Depth to bottor	m of the v	vell:	19.44			2" =	= 0.163 ga	l/foot	
Length of wate	er column	in well:	12.36			4" =	0.653 ga	l/foot	
						6" =	: 1.469 ga	l/foot	
						8" =	= 2.611 ga	l/foot	
Volume of wat	er in well	casing, gallons:		2.0					
3 Well volume:	s (= lengt	h water column X ga	l/foot X 3):		6.05				
Actual volume	purged p	rior to sampling:	ŕ		6.25		_		
Sampling Meth	nodology:	Hand bailing					_		
Sampling Equi		Bailer					_		
	•	-					_		
Well Recharge	ed?	N/A					_		
Required Analy							_		
	-	EASUREMENTS					_		
FIELD FARAIN	WEIER IN	<u>EASUREIMIENTS</u>		. 137.1	<u> </u>				
		T	Accumula	ated Volume	Purged in G	allons		1	
Parameter:	NI/A	NITLI							-
Turbidity	N/A	NTU							1
Temperature	10.71								
рН	7.02								
Conductivity	0.042								
Oxygen	2.91	DO mg/L							
Salinity									
Time sample v	was collec	ted:	8:08						
COMMENTS								• •	
								_	
	-							-	

GROUNDWAT	TER SAM	PLING WORKSHEE	T							
	_								$\overline{2}$	
PROJECT NAME:		Gowanda Q2 2023)		
Project Number:		23006924A	<u> </u>							
Site Location:		Gowanda, New Yorl 5/18/202					_			
Sample Date: Weather:		66 Degrees F	<u></u>					DCI	ΜΛΙ	NI NI
Personnel:		Justin L. O'B	rion		BERGMA					
reisonnei.		JUSTIT L. O'B	ileli				ARCHITE	CTS ENGIN	NEERS PL	ANNERS
GROUNDWAT	TER SAMI	PLE POINT								
Well Number:		MW-11								
Location:	1	011							=	
Casing Diamet	ter:	2"						Iv	·- ·	_
Depth to water Depth to botton Length of wate	m of the w	vell:	15.48 9	6.48		-	1" = 2" = 4" = 6" =	Volume 0.041 ga 0.163 ga 0.653 ga 1.469 ga	al/foot al/foot al/foot al/foot	
3 Well volume Actual volume Sampling Meth Sampling Equi Well Recharge	s (= length purged prodology: pment:	casing, gallons: n water column X gal rior to sampling: Hand bailing Bailer N/A	I/foot X 3):	1.467	4.5	4.401	•	= 2.611 ga - - - - -	Ι/ΤΟΟΣ	J
Required Analy		EASUREMENTS						_		
			Accumula	ated Vol	ıme Pu	rged in C	allons			
Parameter:										
Turbidity	N/A	NTU								
Temperature	10.14									_
рН	7.00									_
Conductivity	0.485									_
Oxygen	3.51	DO mg/L								_
Salinity										
Time sample v COMMENTS		ted: om this well	12:53						- - -	

GROUNDWAT	TER SAM	PLING WORKSHEE	T			
			<u>··</u>			
PROJECT NA		Gowanda Q2 2023				
Project Number:		23006924A				
Site Location:		Gowanda, New Yor				
Sample Date:		5/18/202	23			
Weather:		66 Degrees F				BERGMANN
Personnel:		Justin L. O'B	Brien			ARCHITECTS ENGINEERS PLANNERS
GROUNDWAT	TER SAMI	PLE POINT				
Well Number:		MW-12				
Location:						
Casing Diamet	ter:	2"				
Depth to water Depth to botto Length of wate	m of the w	rell:	6.8		Well Dia. Volume/Foot 1" = 0.041 gal/foot 2" = 0.163 gal/foot 4" = 0.653 gal/foot	
3 Well volume: Actual volume Sampling Meth	s (= length purged pr nodology:		l/foot X 3):	1.72	5.17 5.25	
Sampling Equi	pment:	Bailer				
Well Recharge		N/A				
Required Analy						
FIELD PARAN	METER MI	<u>EASUREMENTS</u>				
			Accumula	ted Vol	ıme Pu	ırged in Gallons
Parameter:						
Turbidity	N/A	NTU				
Temperature	10.94					
рН	6.93					
Conductivity	0.419					
Oxygen	2.76	DO mg/L				
Salinity						
Time sample v	vas collec	ted:	13:15			

GROUNDWA:	TER SAM	PLING WORKSHEE	T							
			<u>·</u>						5	
PROJECT NA		Gowanda Q2 2023						1 :-	ゴ し	
Project Number	er:	23006924A							ノー	
Site Location:		Gowanda, New York					_			
Sample Date:		5/18/202	23							
Weather:		66 Degrees F	u! =				BE	RGI	ΜΑΙ	NN
Personnel:		Justin L. O'B	rien					CTS ENGI		
GROUNDWAT	TER SAMI	PLE POINT								
Well Number:		MW-13								
Location:		0.11							_	
Casing Diamet	ter:	2"					W-U Di-	11/-1	/F 1	7
Depth to water			47.40	7.48		_	1" =	. Volume/ = 0.041 ga	ıl/foot	-
Depth to botton			17.40					0.163 ga		
Length of wate	er column	ın weii:	9.92					= 0.653 ga = 1.469 ga		
								: 1.469 ga : 2.611 ga		
Volume of wat	er in well	casing, gallons:		1.617			0 -	- 2.011 ga	11/1001	
		n water column X gal	l/foot X 3): -	11011		<u> </u>	5			
		rior to sampling:	,.		5.0			_		
Sampling Meth				-				_		
Sampling Equi		Bailer						=		
Well Recharge		N/A						<u></u>		
Required Anal	ysis:							_ _		
FIELD PARAM	METER MI	EASUREMENTS								
			Accumula	ated Vol	ume Pui	raed in C	Sallons			
Parameter:]				
Turbidity	N/A	NTU								
Temperature	11.11	°C								
рН	6.94									
Conductivity	0.365	SPC ms/cm								
Oxygen	3.20	DO mg/L								
Salinity										
Time sample v	was collec	ted:	13:28							
COMMENTS									-	
									_	
									-	

GROUNDWA:	TFR SAM	PLING WORKSHEE	T			
CHOCHDIA	. LIX OAIII	· Litto Holdicille	<u></u>			
PROJECT NA	ME:	Gowanda Q2 2023				\square
Project Number	er:	23006924A				
Site Location:		Gowanda, New Yor	k			
Sample Date:		5/18/202	23			
Weather:		66 Degrees F			BEF	RGMANN
Personnel:						'S ENGINEERS PLANNERS
GROUNDWAT	ΓER SAM	PLE POINT				
Well Number:		MW-14				
Location:						
Casing Diame	ter:	2"				
Depth to water	r helow to	on of casing:	10.84			Volume/Foot 0.041 gal/foot
Depth to botto			18.15			0.163 gal/foot
Length of water			7.31			0.653 gal/foot
Longar or wate	or column		7.01			1.469 gal/foot
						2.611 gal/foot
		casing, gallons:		1.19		
		h water column X ga	l/foot X 3):	3.57		
		rior to sampling:		3.75	5	
Sampling Meth						
Sampling Equi	ipment:	Bailer				
Mall Daabass	- 40	NI/A				
Well Recharge		N/A				
Required Anal	ysis.					
FIELD PARAM	METER M	<u>EASUREMENTS</u>				
			Accumulate	d Volume Pu	rged in Gallons	
Parameter:						
Turbidity	N/A	NTU				
Temperature	11.7					
рН	6.97					
Conductivity	0.455					
Oxygen	3.35	DO mg/L				
Salinity						
Time sample v	was collec	eted:	13:41			
'						
COMMENTS						
Ī						

GROUNDWA:	TER SAM	PLING WORKSHEE	:T							
	<u> </u>		_						$\overline{\ }$	
PROJECT NA	ME:	Gowanda Q2 2023						1 :-	\prec \Box	
Project Number		23006924A							ノー	
Site Location:		Gowanda, New Yor	k							
Sample Date:		5/18/202	23							
Weather:		66 Degrees F					BE	RGI	MA	NN
Personnel:		Justin L. O'E	Brien					CTS ENGI		
GROUNDWAT	ΓER SAMI	PLE POINT								
Well Number:		MW-15								
Location:										
Casing Diame	ter:	2"							•	_
								. Volume/]
Depth to water				10.42		_		: 0.041 ga		
Depth to botto			19.80					: 0.163 ga		
Length of water	er column	in well:	9.38					: 0.653 ga		
								: 1.469 ga		
				4 = 000			8" =	: 2.611 ga	l/foot	_
		casing, gallons:		1.5289		- 4.50				
		n water column X ga	1/foot X 3):			4.59		_		
		rior to sampling:				4.75		_		
Sampling Meth								_		
Sampling Equi	ipment:	Bailer						_		
Well Recharge	243							_		
Required Anal								_		
rtequired /tilal	y515.							_		
FIELD PARAM	METER M	EASUREMENTS								
	1		A	lated Val	D	rand in C	allana			
Parameter:			Accumu	iated voi	ume Pur	rged in G	alions	1	1	1
Turbidity	N/A	NTU								
Temperature	11.72	°C								
	7.01		+					1		
pH Conductivity	0.38					+		+		+
Oxygen	4.60	DO mg/L								
Salinity	4.00	DO Hig/L								
Sairiity										
Time sample v	was collec	ted:	10:05							
COMMENTS										
COMMENTS									•	
									•	
									-	

GROUNDWAT	TER SAM	PLING WORKSHEE	T					
CHOCHEN	. <u></u>	·	<u> </u>					٦ .
								1
PROJECT NA		Gowanda Q2 2023						1
Project Number	er:	23006924A						1
Site Location:		Gowanda, New Yor						-1
Sample Date:		5/18/202	23			D E		
Weather: Personnel:		66 Degrees F Justin L. O'E	Prion			BE	RGM	ANN
Personner:		Justin L. O E	snen			ARCHITI	ECTS ENGINEER	S PLANNERS
GROUNDWAT	TER SAM	PLE POINT						
Well Number:		MW-16						
Location:								
Casing Diamet	ter:	2"						
_							. Volume/Foot	
Depth to water			13.19				0.041 gal/foot	
Depth to botton			23.26				0.163 gal/foot	
Length of wate	er column	ın weii:	10.07				0.653 gal/foot	
							1.469 gal/foot2.611 gal/foot	
Volume of wat	er in well	casing, gallons:		1.6414		0 -	2.011 gai/100t	
		h water column X ga	I/foot X 3):	1.0111		1.9242		
		rior to sampling:	,.			5	_	
Sampling Meth				_			_	
Sampling Equi		Bailer					_	
							_	
Well Recharge		N/A					_	
Required Analy	ysis:	_					<u>-</u>	
FIELD PARAN	METER M	EASUREMENTS						
	I		Accumul	ated Volu	ıme Purae	d in Gallons		
Parameter:			Accumul					
Turbidity	N/A	NTU						
Temperature	9.26	°C						
рН	7.02							
Conductivity	0.642	SPC ms/cm						
Oxygen	4.98	DO mg/L						
Salinity								
Time a communication		to al.	0.40					
Time sample v	vas collec	tea:	8:40					
COMMENTS								
COMMENTO								

GROUNDWA	TER SAM	PLING WORKSHEE	T							
									$\overline{\mathbf{C}}$	
PROJECT NA		Gowanda Q2 2023						16	וכ	
Project Number	er:	23006924A							ノ	
Site Location:		Gowanda, New Yor					_			
Sample Date:		3/10/202	23				ρг		N A	RIRI
Weather:		29 Degrees F	ud a la				BE	RG		
Personnel:		Justin L. O'B	<u>srien</u>				ARCHIT	ECTS ENGI	NEERS	PLANNERS
GROUNDWAT	TER SAM	PLE POINT								
Well Number:		MW-17								
Location:	4	Oll							-	
Casing Diame	ter:	2"					Wall Dia	IV a la succession	/F +	_
Depth to water			_	13.43		_	1" =	. Volume = 0.041 ga	ıl/foot	\dashv
Depth to botto			25.18			_		= 0.163 ga		
Length of water	er column	in well:	11.75					= 0.653 ga		
								= 1.469 ga		
Volume of wat	er in well	casing, gallons:		1.9153			8" =	= 2.611 ga	II/foot	
		h water column X ga	I/foot X 3):		5.75	5				
		rior to sampling:			5.75					
Sampling Meth								_		
Sampling Equi	ipment:	Bailer						_		
M/-II D I	10	N1/A						_		
Well Recharge		N/A						_		
Required Anal	ysis:							_		
FIELD PARAM	METER M	<u>EASUREMENTS</u>								
			Accumu	lated Vol	ume Pui	rged in G	allons			
Parameter:										
Turbidity	N/A	NTU								
Temperature	13.12									
рН	7.17									
Conductivity	0.501									
Oxygen	5.32	DO mg/L								
Salinity										
Time sample v	was collec	ted:	14:53							
COMMENTS									-	
									-	
									-	

IPLING WORKSHEE	: T				
	_				
Gowanda Q2 2023					
	23		DE		N I N I
			BE	RGMA	N
Justin L. O'B	<u>Brien</u>		ARCHITI	ECTS ENGINEERS PL	ANNERS
PLE POINT					
MW-18					
2"				1	_
op of casing: well: in well:	9.68 25.0 15.3		- 1": 2": 4": 6":	= 0.041 gal/foot = 0.163 gal/foot = 0.653 gal/foot = 1.469 gal/foot	
casing, gallons: h water column X ga rior to sampling: Hand bailing Bailer			7.49		_
EASUREMENTS					
	Accumulated	Volume Pu	rged in Gallons		
NTU					
DO mg/L					
cted:	10:18	_			
	23006924A Gowanda, New Yor 5/19/202 71 Degrees F Justin L. O'E PLE POINT MW-18 2" op of casing: well: in well: casing, gallons: h water column X garior to sampling: Hand bailing Bailer PEASUREMENTS NTU CC SPC ms/cm DO mg/L	23006924A Gowanda, New York 5/19/2023 71 Degrees F Justin L. O'Brien PLE POINT MW-18 2" op of casing: 9.68 well: 25.0 in well: 15.3 casing, gallons: 4.4 h water column X gal/foot X 3): rior to sampling: Hand bailing Bailer Accumulated NTU S C SPC ms/cm DO mg/L	23006924A Gowanda, New York 5/19/2023 71 Degrees F Justin L. O'Brien	23006924A Gowanda, New York 5/19/2023 T1 Degrees F Justin L. O'Brien BE ARCHITI PLE POINT	23006924A Gowanda, New York 5/19/2023 T1 Degrees F Justin L. O'Brien

1								
<u>GROUNDWA</u>	TER SAM	PLING WORKSHEE	<u>T</u>					
							7 1	
PROJECT NA	ME-	Gowanda Q2 2023				1 :-	ベ し	
Project Number		23006924A					ノI	
Site Location:	JI.	Gowanda, New Yor	<u>k</u>					
Sample Date:		5/19/202						
Weather:		71 Degrees F			R	ERGI	ΜΔ	NN
Personnel:		Justin L. O'B	trien					
CISOIIICI.		Oddin L. O L			ARC	HITECTS ENGI	NEERS P	PLANNERS
GROUNDWAT	TER SAM	PLE POINT						
Well Number:		MW-19R						
Location:								
Casing Diamet	ter:	2"					-	_
						Dia. Volume		
Depth to water			8.32			1" = 0.041 ga		
Depth to botto			17.67			2" = 0.163 ga		
Length of wate	er column	in well:	9.35			4" = 0.653 ga		
						6" = 1.469 ga		
						8" = 2.611 ga	ıl/foot	
		casing, gallons:		1.5	-			
		h water column X ga	I/foot X 3):	4.57				
		rior to sampling:		4.75				
Sampling Meth								
Sampling Equi	ipment:	Bailer				<u></u>		
	10	- N 1 / A						
Well Recharge		N/A						
Required Anal	ysis:							
FIELD PARAN	/ETER M	EASUREMENTS						
I IEED I ARAI		<u>LACONLINIENTO</u>						
_			Accumulate	ed Volume Pu	rged in Gallons	3		_
Parameter:	N1/A	NITH						
Turbidity	N/A	NTU						
Temperature	12.43							
pΗ	7.17							
Conductivity	0.052							
Oxygen	8.56	DO mg/L						
Salinity								
Time sample v	vas collec	ted:	9:40					
COMMENTS							-	
							-	
							-	
	-						=	

1										
<u>GROUNDWA1</u>	TER SAM	PLING WORKSHEE	<u>:T</u>							
									- 1	
DDO IEOT NA		0							2	
PROJECT NA		Gowanda Q2 2023						11		
Project Number	er:	23006924A	L-						7	
Site Location:		Gowanda, New Yor					-			
Sample Date:		5/18/202	23				DE		4 4	
Weather:		66 Degrees F	u:				BE	RGI	MA	N
Personnel:		Justin L. O'B	rien				ARCHITE	CTS ENGII	NEERS P	LANNERS
GROUNDWAT	ER SAM	PLE POINT								
Well Number:		MW-20								
Location:										
Casing Diamet	ter:	2"							-	
J							Well Dia	Volume	/Foot	
Depth to water	. below to	p of casing:	10.18					0.041 ga		
Depth to bottor			14.75			•		0.163 ga		
Length of wate			4.57					0.653 ga		
3								1.469 ga		
								2.611 ga		
Volume of water	er in well	casing, gallons:		0.7449						
		n water column X ga	l/foot X 3):			2.2347				
		rior to sampling:	,		2.25			_		
Sampling Meth				_				_		
Sampling Equi		Bailer						_		
	•	-						_		
Well Recharge	ed?	N/A						_		
Required Analy								_		
								_		
FIELD PARAM	METER M	EASUREMENTS								
			Accumu	lated Volu	ıme Pur	ged in G	allons		•	
Parameter:										
Turbidity	N/A	NTU								
Temperature	14.02									
рН	7.28									
Conductivity	0.044									
Oxygen	4.86	DO mg/L								
Salinity										
Time sample v	ممالمه	tod:	15:40							
rime sample v	vas collec	iea.	15.40							
COMMENTS									-	
COMMENTS									-	
									=	
									-	

GROUNDWA'	TER SAM	PLING WORKSHEE	<u>T</u>						
DDG IFOT NA		0						2	
PROJECT NA		Gowanda Q2 2023					11		
Project Number	er:	23006924A					_	-	
Site Location:		Gowanda, New Yor				_			
Sample Date:		5/19/202	23			D E		4 4	
Weather:		71 Degrees F				BE	RGI	MA	NN
Personnel:		Justin L. O'B	rien			ARCHITI	CTS ENGI	NEERS PI	LANNERS
GROUNDWAT	TER SAM	PLE POINT							
Well Number:		MW-21							
Location:									
Casing Diame	ter:	2"						•	
Ü						Well Dia	. Volume/	Foot	
Depth to water	r, below to	p of casing:		9.9		1" =	= 0.041 ga	l/foot	
Depth to botto			15.82				= 0.163 ga		
Length of wate			5.92				= 0.653 ga		
							= 1.469 ga		
							= 2.611 ga		
Volume of wat	er in well	casing, gallons:		0.965		ų.			
		h water column X ga	l/foot X 3):		2.89)			
		rior to sampling:	,		3.0		_		
Sampling Meth							_		
Sampling Equi		Bailer					_		
	•								
Well Recharge	ed?	N/A							
Required Anal									
	•	EASUREMENTS					_		
I ILLU I AIXAII	AIL I LIX IAI	<u>LASUNLINILINIS</u>		4 137 1					
D		1	Accumul	ated volui	me Purged in G	allons	1		1
Parameter:	NI/A	NITLI	_						
Turbidity	N/A	NTU							
Temperature	13.1								
рН	7.37								
Conductivity	0.052								
Oxygen	5.42	DO mg/L							
Salinity									
Time sample v	was collec	ted:	10:45						
COMMENTS								-	
1									

GROUNDWA:	TER SAM	PLING WORKSHEE	T							
SKOUNDINA	. <u>- 1</u> . OAIII	. LING HOMMONEL	<u>· ·</u>							
PROJECT NA		Gowanda Q2 2023						1 -	うΙ	
Project Number	er:	23006924A						1 -	ノー	
Site Location:		Gowanda, New Yor					_			
Sample Date:		5/18/202	23				D E			
Weather:		31 Degrees F					BE	RGI	MA	NN
Personnel:		Justin L. O'B	rien				ARCHITE	CTS ENGI	NEERS P	LANNERS
GROUNDWAT	TER SAM	PLE POINT								
Well Number:		DR-1								
Location:										
Casing Diame	ter:	4"								
								. Volume		
Depth to water			<u>-</u>	7.68		_		= 0.041 ga		
Depth to botto			18.06					= 0.163 ga		
Length of water	er column	in well:	10.38					= 0.653 ga		
								= 1.469 ga		
Valuma of wat	or in wall	oosing gollons:		6.7781			8" =	= 2.611 ga	ai/foot	
		casing, gallons: h water column X ga	l/foot V 2):	0.7701		20.334				
		rior to sampling:	1/100t A 3).			20.334		_		
Sampling Meth						20.5		_		
Sampling Equi		Bailer						_		
Camping Equi	ipilicit.	Dalici						_		
Well Recharge	ed?	N/A						_		
Required Anal								_		
'	,							_		
FIELD PARAM	<u>METER M</u>	<u>EASUREMENTS</u>								
			Accumu	lated Vol	ume Pur	rged in G	allons			
Parameter:										
Turbidity	N/A	NTU								
Temperature	10.14									
рН	7									
Conductivity	0.48									
Oxygen	3.51	DO mg/L								
Salinity										
Time sample v	vas collec	ted:	12:30							
									_	
COMMENTS									_	
									_	
	-								_	

GROUNDWA.	TFR SAM	PLING WORKSHEE	:T				_
GROUNDWA	IER SAIVI	FLING WURNSHEE	<u>. 1</u>				
PROJECT NA		Gowanda Q2 2023				\vdash	
Project Number	er:	23006924A		i			
Site Location:		Gowanda, New Yor					
Sample Date:		5/18/202	23				
Weather:		66 Degrees F				BERGMANN	
Personnel:		Justin L. O'B	rien	•		ARCHITECTS ENGINEERS PLANNERS	
GROUNDWAT	TER SAM	PLE POINT					
Well Number:		DR-2					
Location:		DIC 2		i			
Casing Diame	ter:	4"					
				ı		Well Dia. Volume/Foot	
Depth to water	r, below to	p of casing:		7.45		1" = 0.041 gal/foot	
Depth to botto			18.06			2" = 0.163 gal/foot	
Length of wate			10.61			4" = 0.653 gal/foot	
Ĭ						6" = 1.469 gal/foot	
						8" = 2.611 gal/foot	
Volume of wat	ter in well	casing, gallons:		6.9283		<u> </u>	
3 Well volume	s (= lengtl	h water column X ga	l/foot X 3):			20.78	
Actual volume	purged p	rior to sampling:				21	
Sampling Meth	hodology:	Hand bailing					
Sampling Equi	ipment:	Bailer					
Well Recharge		N/A					
Required Anal	ysis:						
FIELD PARAM	<u>MEIER M</u>	<u>EASUREMENTS</u>					
			Accumu	lated Vo	ume Pu	urged in Gallons	
Parameter:							
Turbidity	N/A	NTU					
Temperature	11.08						
рН	7.16						
Conductivity	0.427						
Oxygen	3.26	DO mg/L					
Salinity							
Time sample v	was collec	ted:	11:58				
COMMENTS							

GROUNDWAT	TER SAM	PLING WORKSHEE	:T						
			_					$\overline{}$	
PROJECT NA	ME:	Gowanda Q2 2023						ベ し	
Project Numbe	r:	23006924A						ノI	
Site Location:		Gowanda, New Yor				-			
Sample Date:		5/18/202	23						
Weather:		66 Degrees F				BE	RG	МΑ	NN
Personnel:		Justin L. O'B	Brien				ECTS ENGI		
GROUNDWAT	ER SAM	PLE POINT							
Well Number:		DR-3							
Location:		411							
Casing Diamet	er:	4"				MAZIL DIS	11/-1	F 1	7
Donth to water	h a law 4a	un of accine		44.00			. Volume/		4
Depth to water			20.45	11.89			0.041 gal		
Depth to bottor			20.45 8.56				0.163 gal		
Length of wate	Column	in weii.	0.30				= 0.653 gal = 1.469 gal		
							= 1.409 gal = 2.611 gal		
Volume of wate	er in well	casing, gallons:		5.6			- 2.011 gai	1/1001	
		h water column X ga	I/foot X 3)·	0.0	16.769				
		rior to sampling:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		17		_		
Sampling Meth				_			_		
Sampling Equi		Bailer					_		
							_		
Well Recharge	d?	N/A					_		
Required Analy		-							
FIELD PARAN	IETER M	EASUREMENTS							
			Accumul	ated Volu	me Purged in G	allone			
Parameter:		1	Accumul	ated Void					
Turbidity	N/A	NTU							
Temperature	11.77	°C							
рН	7.11								
Conductivity	0.463								
Oxygen	3.96	DO mg/L							
Salinity		J							
Time sample w	as collec	ted:	11:10						
COMMENTS									

GROUNDWA:	TFR SAM	PLING WORKSHEE	T							
SKOONDWA	LIX OAW	. LING WORKSHEE	<u> </u>							
) I	
PROJECT NA	ME:	Gowanda Q2 2023						1 :-	ベ し	
Project Number	er:	23006924A							ノー	
Site Location:		Gowanda, New Yor	k				_			
Sample Date:		5/18/202	23							
Weather:		66 Degrees F					BE	RGI	MA	NN
Personnel:		Justin L. O'B	rien					CTS ENGII		
GROUNDWAT	TER SAM	PLE POINT								
Well Number:		DR-4								
Location:										
Casing Diame	ter:	4"							•	
								. Volume		
Depth to water			_	11.8		_		= 0.041 ga		
Depth to botto			19.69					= 0.163 ga		
Length of water	er column	in well:	7.89					= 0.653 ga		
								= 1.469 ga		
\/aluma af uuat	المبيد ما سم	anaina anllana.		E 4 E			8" =	= 2.611 ga	II/foot	_
		casing, gallons:	/foot V 2);	5.15		15.46				
		h water column X ga	1/100t X 3):			15.46 15.5		_		
Sampling Meth		rior to sampling:		-		15.5		_		
Sampling Equi		Hand bailer						_		
Sampling Equi	ipin e nt.	Tialiu Dallei						_		
Well Recharge	2d?	N/A						_		
Required Anal		1477						_		
	,							_		
FIELD PARAM	METER M	<u>EASUREMENTS</u>								
			Accumula	ated Vol	ume Pui	rged in G	allons			
Parameter:						Ĭ				
Turbidity	N/A	NTU								
Temperature	11.72	°C								
рН	6.99									
Conductivity	0.38	SPC ms/cm								
Oxygen	4.6	DO mg/L								
Salinity										
Time sample v	vas collec	ted:	10:36							
									•	
COMMENTS									-	
									_	
									-	

GROUNDWAT	TER SAM	PLING WORKSHEE	T						
- COUNTY			<u></u>						
PROJECT NA	<u>ME:</u>	Gowanda Q2 2023							
Project Number	er:	23006924						'	
Site Location:		Gowanda, New Yor				-			
Sample Date:		5/18/202	23			· 			
Weather:		66 Degrees F				BFI	RGM	1 A N	JN
Personnel:		Justin L. O'B	Brien				TS ENGINE		
GROUNDWAT	ER SAM	PLE POINT							
NA/ a III N Is soon Is a second		0.4							
Well Number:		<u>G-1</u>							
Location:		4"							
Casing Diamet	er:	4"				Wall Dia	. Volume/I	t	7
Donth to water	holow to	on of cooling:	12.02				- 0.041 gal		1
Depth to water			22.98						
Depth to botton			10.96				= 0.163 gal = 0.653 gal		
Length of wate	i columni	III well.	10.90				= 0.655 gal = 1.469 gal		
							= 1.409 gal = 2.611 gal		
Volume of wate	er in well	casing, gallons:		7.1569		0 -	- 2.011 gai	71001	
		h water column X ga		7.1000	 21.47				
		rior to sampling:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		21.5		_		
Sampling Meth					20		_		
Sampling Equi		Bailer					_		
Jeannyming _ qui	p						_		
Well Recharge	ed?	N/A					_		
Required Analy							_		
	,						_		
FIELD PARAM	METER M	EASUREMENTS							
			Accumula	ited Volume P	uraed in G	allons			
Parameter:									
Turbidity	N/A	NTU							
Temperature	11.58	°C							
рН	7.05								
Conductivity	0.433	SPC ms/cm							
Oxygen	10.3	DO mg/L							
Salinity									
				•	•				
Time sample v	vas collec	ted:	9:44						
COMMENTS									
ĬĪ.									

GROUNDWA'	TER SAM	PLING WORKSHEE	<u>T</u>					
PROJECT NA	ME:	Gowanda Q2 2023				[\supset	
Project Number	er:	23006924	A				ノー	
Site Location:		Gowanda, New Yor	k					
Sample Date:		5/18/202	23					
Weather:		66 Degrees F			R	FRG	MAN	I N
Personnel:		Justin L. O'B	Brien				GINEERS PLAI	
GROUNDWAT	TER SAMI	PLE POINT						
Well Number:		G-2						
Location:								
Casing Diame	ter:	4"						_
Depth to water Depth to botto Length of wate	m of the w	/ell:	11.92 20.72 8.80		W	2" = 0.16 4" = 0.65 6" = 1.46	ume/Foot 41 gal/foot 63 gal/foot 69 gal/foot 11 gal/foot	
3 Well volume	s (= length purged pr hodology:	casing, gallons: n water column X ga rior to sampling: Hand bailing Bailer		5.7464	17.24 17.25		3	_
Well Recharge Required Anal		N/A						
FIELD PARAM	METER MI	EASUREMENTS						
			Accumulat	ed Volume F	Purged in Gall	ons		
Parameter:								
Turbidity	N/A	NTU						
Temperature	10.4	°C						
рН	7.05							
Conductivity	0.406	SPC ms/cm						
Oxygen	10.68	DO mg/L						
Salinity								
Time sample v	was collec	ted:	9:18					
<u>COMMENTS</u>								

GROUNDWA'	TER SAM	PLING WORKSHEE	<u>:T</u>					_	
		0 1 00 000							
PROJECT NA		Gowanda Q2 2023							
Project Number	er:	23006924A							
Site Location:		Gowanda, New Yor							
Sample Date:		5/19/202	23						
Weather:		66 Degrees F				႘ႄႜႃ	RGM	1 A N	1 N
Personnel:		Justin L. O'B	Brien			ARCHITEC	TS ENGINE	ERS PLA	NNERS
GROUNDWAT	ΓER SAM	PLE POINT							
Well Number:		G-3							
Location:									
Casing Diame	ter:	4"						-	
Depth to water			10.39				. Volume = 0.041 ga]
Depth to botto			18.15				: 0.041 ga : 0.163 ga		
			7.76						
Length of wate	er column	in weii.	7.70				= 0.653 ga = 1.469 ga		
Valuma of wat	or in wall	occina gollono:		5.07		0 =	: 2.611 ga	11/1001	
		casing, gallons: h water column X ga	1/foot V 2).	5.07					
			1/100t \(\text{\\circ}}}}\exiting \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		15.25		_		
		rior to sampling:			15.25		_		
Sampling Meth							_		
Sampling Equi	ipment:	Bailer					_		
	10	N1/A					_		
Well Recharge		N/A							
Required Anal	ysis:						_		
FIELD PARAM	METER M	<u>EASUREMENTS</u>							
			Accumulate	ed Volume Pr	uraed in G	allons			
Parameter:					Ĭ				
Turbidity	N/A	NTU							
Temperature	13.48	°C							
рН	7.19								
Conductivity	0.057								
Oxygen	5.41								
Salinity	3.41	DO IIIg/L							
Sallilly									
Time sample v	was collec	eted:	14:23						
								_	
COMMENTS								_	
								-	
								-	

CALIBRATION SHEETS

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

405 Cambridge Ave Syracuse, NY 13208 Toll-free: (877) 903-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 19092 **Description** YSI 556

Calibrated 5/3/2023 10:37:06AM

Manufacturer YSI Model Number 556 Serial Number/Lot 11L100218

Number

Location New York

Status Pass

Temp °C 18

State Certified

Humidity % 59

Department	

		<u>Cal</u>	ibration Specificat	<u>tions</u>			
Group	roup # 1 Name PH d Accy Pct of Re	ading		Range Acc % Reading Acc % Plus/Minus	3.0000		
Nom In Val / In Val	<u>In Type</u>	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
G	roup # 2			Range Acc %	0.0000		
Group	Name Conducti	vity		Reading Acc %	3.0000		
State	d Accy Pct of Re	ading		Plus/Minus	0.000		
Nom In Val / In Val	<u>In Type</u>	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
G	roup# 3			Range Acc %	0.0000		
	Name Redox (C	ORP)		Reading Acc %			
State	d Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
G	roup# 4			Range Acc %	0.0000		
Group	Name Disolved	Oxygen Span		Reading Acc %	3.0000		
State	d Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

405 Cambridge Ave Syracuse, NY 13208 Toll-free: (877) 903-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 19092
Description YSI 556

Calibrated 5/3/2023 10:37:06AM

Test Instruments	Used During the Calibrat	<u>ion</u>			(As Of Cal Entry Date)
<u>Test Standard ID</u>	<u>Description</u>	<u>Manufacturer</u>	Model Number	<u>Serial Number /</u> <u>Lot Number</u>	Last Cal Date/ Copened Date Next Cal Date / Expiration Date
NYS COND 1.413 - 2GH566	NYS COND 1.413	AquaPhoenix Scientific	31986	2GH566	8/31/2023
NYS ORP 240 - 2GH171	NYS ORP 240	AquaPhoenix Scientific	32001	2GH171	5/31/2023
NYS PH 10 - 1GF458	NYS PH 10	AquaPhoenix Scientific	32034	16F458	6/30/2023
NYS PH 4 - 1GF366	NYS PH 4	AquaPhoenix Scientific	32017	1GF366	6/30/2023
NYS PH 7 - 2GC931	NYS PH 7	AquaPhoenix Scientific	32025	2GC931	3/31/2024

Notes about this calibration

Calibration Result Calibration Successful

Who Calibrated Joe Filippi

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance