

October 8, 2004

Mr. Larry Kriff 2 Margaret Street Plattsburgh, New York 12901

Re: 33 Amsden Street Test Pit Results

Malone, New York

Dear Mr. Kriff:

Attached please find a letter from our consultant, TRC, which summarizes the results of our limited exploratory test pit program at your property located at 33 Amsden Street.

The results of the investigation indicated that significant fill is present beneath the building at 33 Amsden Street, however only limited surficial indications of MGP-type impacts were observed. It is important to note that historical records indicate multiple industrial uses on the property, including manufacture of rubber soles for shoes.

As per your recent discussions with Chuck Willard of our office, our Law Department will be contacting you in the near future regarding placement of a deed restriction on the property.

Please contact me at (315) 428-5652 if you have any questions.

Sincerely,

Stevěn P. Stucker, C.P.G.

Senior Analyst

Cc:

Russell Huyck-NYSDEC

William Holzhauer-National Grid Service Company

Charles F. Willard-Niagara Mohawk, a National Grid Company

Pat Collette-National Grid Service Company

Doug Martin-TRC

Deanna Ripstein-NYSDOH

October 7, 2004

Mr. Steven Stucker Niagara Mohawk, A National Grid Company 300 Erie Boulevard West Syracuse, NY 13202

Subject:

Exploratory Test Pit Program Results

Kriff Property, 33 Amsden Street, Malone, NY Site

TRC Project No. 48278-1000-00010

Dear Steve:

This letter presents the final data summary for the limited exploratory test pit program conducted by TRC Environmental Corporation (TRC) performed at the request of Niagara Mohawk – A National Grid Company (Niagara Mohawk) at the Kriff property, located at 33 Amsden Street in the Village of Malone, New York. Below are presented a brief summary of the scope of work and the results of the soil sampling and analysis.

1.0 METHODS

TRC mobilized to the site on August 18, 2004 to perform a limited exploratory test pit program of Kriff property soils as part of a due diligence effort for Niagara Mohawk. The project consisted of one-day of excavation and soil sampling, involving the excavation of three test pits.

TRC contracted Lyon Drilling of Tully, New York to perform the excavation work. Utility clearance activities included discussions with the Village of Malone Department of Public Works regarding water and sewer lines in the vicinity of the Kriff building. Primary areas of interest included the southern side of the Kriff building/southern property line and the eastern (i.e., rear) side of the building, for the evaluation of potential MGP residuals. Locations were agreed upon with Niagara Mohawk and NYSDEC before initiation of clearing behind the building to enable accesss for the intrusive work.

At each of the three test pit locations, Lyon Drilling used a Komatsu rubber-tracked, mini excavator to perform the excavation work. At each location, excavation was initiated along the building foundation. Soils were qualitatively evaluated during progression of the excavation for indications of contamination, using visual, olfactory, and PID monitoring methods. Those observations were documented in the field log book. Excavations were advanced until native soils were encountered, which ranged in depth from four feet (TP-11) to seven feet (TP-9) below ground surface. Within each test pit excavation, one subsurface soil sample was collected within the fill layer, typically at the base of the building foundation. A total of three soil samples were collected and submitted to CHEMTECH, of Mountainside, New Jersey for analysis of TCL volatile organic compounds (VOCs), TCL Semi-volatile organic compounds (SVOCs), Target Analyte List (TAL) metals, total cyanide, and polychlorinated biphenyls (PCBs).

Following completion of the three excavations, collection of soil samples, and documentation of subsurface conditions, the excavations were backfilled and the areas restored. Location of the three new

Steven Stucker October 7, 2004 Page 2 of 6

sample locations was completed by measuring from the corners of the building, which had been surveyed during the previous site investigation.

2.0 RESULTS

The following section summarizes the physical and chemical results of the excavation program. Test pits on the Kriff property were designated sequential numbers from the previous test pits completed during the previous Site Characterization study performed on the former Manufactured Gas Plant (MGP) site. Sample locations are depicted on Figure 1; summary data tables are provided as Table 1 (Organic compounds) and Table 2 (Inorganic compounds). Copy of the original laboratory data is provided as Attachment 1.

Test Pit TP-9

Test pit TP-9 was excavated along the approximate center of the eastern (rear) wall of the Kriff warehouse building. Fill material, consisting of a heterogeneous mix of brown silt with a wide variety of debris, including brick and concrete fragments, metal, glass, coke fragments and several small pieces of weathered tar-like material was encountered to a depth of four feet below ground surface (bgs). Naphthalene odor was noted in the shallow fill. A thin, discrete white to gray ash layer was noted immediately beneath this material. Tan silt/little fine sand, interpreted to represent native soil, was encountered at a depth of four feet and extended to the bottom of the excavation at seven feet bgs. No odors or PID readings were noted in the native soil.

One analytical soil sample was collected from the sidewalls of the excavation, consisting of a composite of the fill and native silt. No significant indications of potential contamination were noted in the boring, however a two by three foot area of weathered tar was observed on the ground surface, adjacent to the completed test pit at the time of excavation. The collected soil sample was submitted for analysis of TCL VOCs, TCL SVOCs, TAL metals, total cyanide and PCBs.

Results of the lab analyses of the soil sample, TP9(2-6), were consistent with the physical findings (refer to Tables 1 through 4). No VOCs were detected in the sample, except methylene chloride which is attributed to be lab contamination (i.e., detected in the lab blank). A full range of PAH compounds was detected in the sample, with a total PAH concentration of 124 parts per million (ppm). PCBs were not detected. Metals concentrations were consistent with the nature of the fill material that was encountered in this area of the property; cyanide was not detected in the sample.

In summary, no significant contamination was detected in TP-9, although some limited evidence of weathered tar was noted nearby. No other MGP type impacts were observed. Analytical results for the one collected sample indicates the presence of PAH compounds and metals at levels consistent with industrial fill, which may be attributable to the various other industrial activities that occurred on the property.

Test Pit TP-10

Test pit TP-10 was excavated along the southeastern side of the warehouse building. Encountered geology was consistent with that of TP-9, with fill material encountered to a depth of four feet bgs, before

Steven Stucker October 7, 2004 Page 3 of 6

what appeared to be native silt was encountered. The fill layer included silt and sand, ash, demolition debris and occasional glass bottles. The bottom of the building foundation was encountered at approximately four feet; a soil sample was collected from this interval (four to five feet), immediately beneath the foundation. No visible evidence of contamination was noted in the excavation. The collected soil sample was submitted for analysis of TCL VOCs, TCL SVOCs, TAL metals, total cyanide and PCBs.

Results of the lab analyses of the soil sample, TP10(4-5) were consistent with the physical findings (refer to Tables 1 through 4). No VOCs were detected in the sample, except methylene chloride which is attributed to be lab contamination. Thirteen PAH compounds were detected in the sample, with a total PAH concentration of 1,104 ppm. PCBs were not detected. Metals concentrations were consistent with those from TP-9, and the widespread fill in this area of the property. A low concentration (3.9 ppm) of cyanide was also detected.

Findings in TP-10 indicate the presence of constituents of concern at levels consistent with historic filling, however no significant indications of contamination, MGP-related or otherwise, were encountered in this location.

Test Pit TP-11

Test pit TP-11 was excavated along the southwestern side of the warehouse building. Fill material was again encountered to a depth of four feet bgs. The fill consisted of silt and sand mixed with ash, clinkers, and other debris, including numerous glass bottles and what appeared to be spent dry cell batteries. Native silt was observed at the bottom of the excavation. The bottom of the foundation was encountered at approximately two feet; a soil sample was collected from this interval (2.5 to 3.5 feet bgs). Other than the observation of a small fragment of weathered tar in the fill, no indications of contamination were noted in this excavation. The collected soil sample was submitted for analysis of TCL VOCs, TCL SVOCs, TAL metals, total cyanide and PCBs.

Results of the lab analyses of the soil sample, TP11(2.5-3.5) are presented in Tables 1 and 2. No VOCs were detected in the sample, except methylene chloride (see above). Low concentrations of thirteen PAH compounds were detected in the sample, with a total PAH concentration of 40.6 ppm. PCBs were not detected. Metals concentrations were consistent with those from the other two excavations and are representative of the fill in this area of the property. A low concentration (4.1 ppm) of cyanide was also detected.

Findings in TP-11 indicate the presence of constituents of concern at levels consistent with historic filling, however no significant indications of MGP or other related impacts were encountered in this location.

3.0 CONCLUSIONS

In summary, no significant indications of subsurface contamination were noted in the completed test pit excavations, although substantial fill material was noted throughout the area. Presence of this fill material is consistent with available information relating to historical development of the site and vicinity, including widespread presence of coal fragments and ash within the fill unit. Only limited indications of MGP-type impacts, in the form of several surficial weathered tar fragments, were noted on the Kriff

Steven Stucker October 7, 2004 Page 4 of 6

property. Detected concentrations of constituents of concern indicated the presence of PAHs and various metals, at concentrations that are consistent with this type of widespread fill. Concentrations of these compounds were greatest in the sample collected at TP-10, which was located along the southeast corner of the warehouse building.

If you have any questions or comments regarding the work performed or the results discussed herein, please let me know.

Sincerely,

TRC ENVIRONMENTAL CORPORATION

Douglas A. Martin, LEP

Project Manager

Attachments

1. Site Plan

2. Data Summary Tables

Slouglas & Martin

3. Laboratory Hit Summaries

ATTACHMENTS

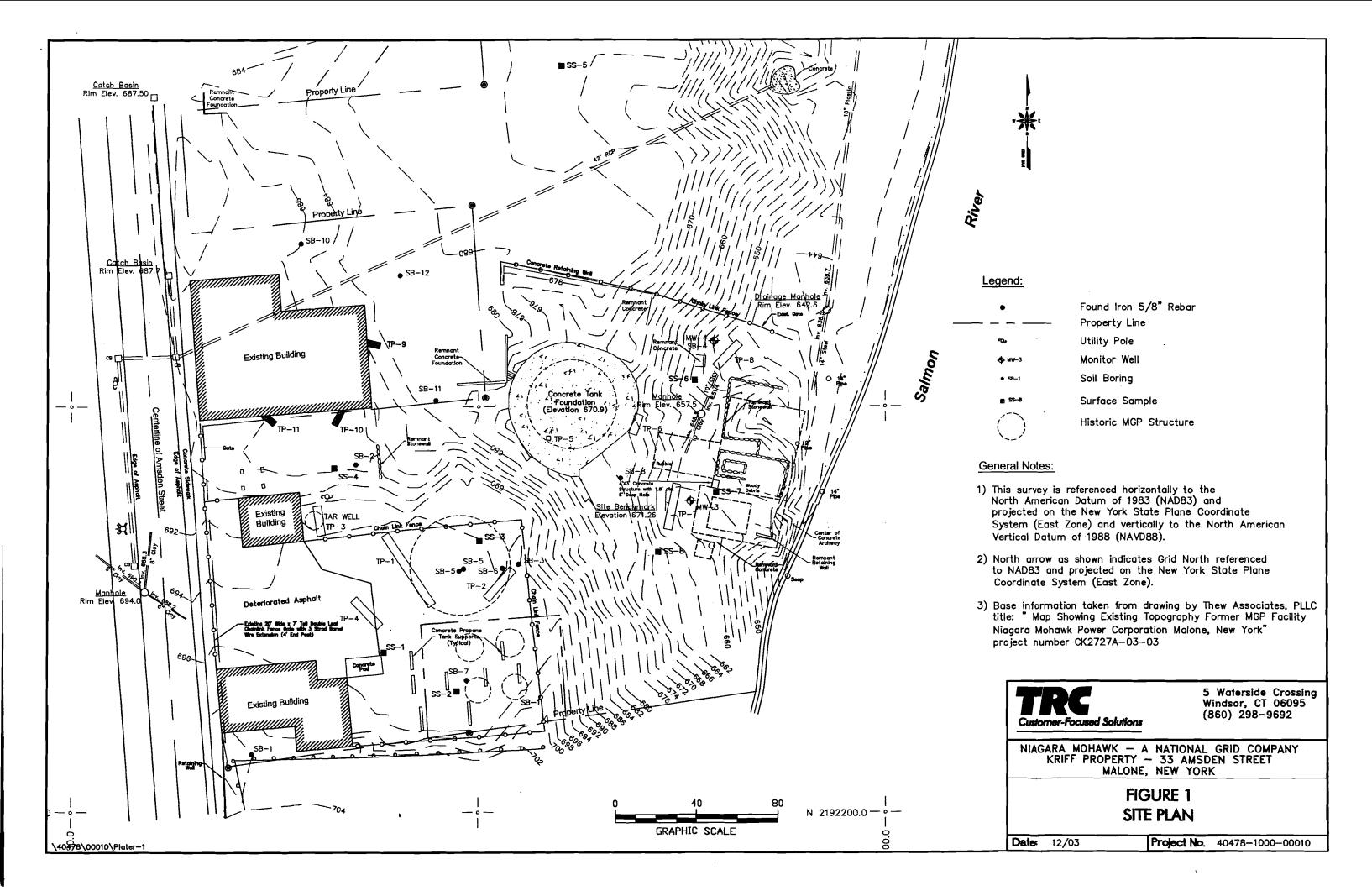


TABLE 1: Test Pit Soil Sample Results - VOCs Malone, NY Kriff Property

		OHE, NY K	***************************************				
Parameters	Units	TP9(2	-6)	TP10(4	l - 5)	TP11(2.	5-3.5)
Palanciers	OHRS	8/18/2	904	8/18/20	104	8/18/2	004
Dichlorodifluoromethane	ug/Kg	ND	11	ND	12	ND	11
Chloromethane	ug/Kg	ND	1 11	ND	12	ND	11
Vinyl Chloride	ug/Kg	ND	11	ND	12	ND .	11
Bromomethane	ug/Kg	ND	11	ND	12	ND	11
Chloroethane	ug/Kg	ND	11	ND	12	ND ·	11
Trichlorofluoromethane	ug/Kg	ND	11	ND	12	ND	11
1,1,2-Trichlorotrifluoroethane	ug/Kg	ND	11	ND	12	ND	11
1,1-Dichloroethene	ug/Kg	ND	11	ND	12	ND	11
Acetone	ug/Kg	ND	56	ND	58	ND	57
Carbon Disulfide	ug/Kg	ND	11	ND	12	ND	11
Methyl tert-butyl Ether	ug/Kg	ND	11	ND	12	ND	11
Methyl Acetate	ug/Kg	ND	11	ND	12	ND	11
Methylene Chloride	ug/Kg	1.7	11	1.7	12	1.9	11
trans-1,2-Dichloroethene	ug/Kg	ND	11	ND	12	ND	11
1,1-Dichlorcethane	ug/Kg	ND	11	ND	12	ND .	11
Cyclohexane	ug/Kg	ND	11	ND	12	ND	11
2-Butanone	ug/Kg	ND	56	ND	58	ND	57
Carbon Tetrachloride	ug/Kg	ND	11	ND	12	ND	11
cis-1,2-Dichloroethene	ug/Kg	ND	11	ND	12	ND	11
Chloroform	ug/Kg	ND	11	ND	12	ND	11
1,1,1-Trichloroethane	ug/Kg	ND	11	ND	12	ND	11
Methylcyclohexane	ug/Kg	ND	11	ND	12	ND	11
Benzene	ug/Kg	ND	11	ND	12	ND	11
1,2-Dichloroethane	ug/Kg	ND	11	ND	12	ND.	11
Trichloroethene	ug/Kg	ND	11	ND	12	ND .	
1,2-Dichloropropane	ug/Kg	ND	11	ND	12	ND	. 11
Bromodichloromethane	ug/Kg	ND	11	ND	12	ND	11
4-Methyl-2-Pentanone	ug/Kg	ND	56	ND	58	ND	57
Toluene	ug/Kg	NÓ	11	ND	12	ND	11
t-1,3-Dichloropropene	ug/Kg	ND	11	ND	12	ND	11
cis-1,3-Dichloropropene	ug/Kg	ND	11	ND	12	ND	11
1,1,2-Trichloroethane	ug/Kg	ND	11	ND	12	ND ·	. 11
2-Hexanone	ug/Kg	ND	56	ND	58	·ND	57
Dibromochloromethane	ug/Kg	ND	11	ND	12	ND	· 11
1,2-Dibromoethane	ug/Kg	ND	11	ND	12	ND	11
Tetrachloroethene	ug/Kg	ND	11	ND	12	ND	11
Chlorobenzene	ug/Kg	ND	11	ND	12	ND	11
Ethyl Benzene	ug/Kg	ND	11	ND	12	ND	11
m/p-Xylenes	ug/Kg	ND	11	ND	12	ND	11
o-Xylene	ug/Kg	ND	11	ND	12	ND	11
Styrene	ug/Kg	ND	11	ND	12	ND	11
Bromoform	ug/Kg	ND	11	ND	12	ND	11
Isopropylbenzene	ug/Kg	ND	11	ND	12	ND	11
1,1,2,2-Tetrachloroethane	ug/Kg	ND	11	ND	12	ND	11
1,3-Dichlorobenzene	ug/Kg	ND	11	ND	12	ND	11
1,4-Dichlorobenzene	ug/Kg	ND	11	ND	12	ND	11
1,2-Dichlorobenzene	ug/Kg	ND	11	ND	12	ND	11
1,2-Dibromo-3-Chloropropane	ug/Kg	ND	11	ND	12	ND	11
1,2,4-Trichlorobenzene	ug/Kg	ND	11	ND	12	ND	11

ND = Not Detected

TABLE 2: Test Pit Soil Sample Results - SVOCs Malone, NY Kriff Property

£		TP9(2-6)	(9-6	TP10(4-5)	-5)	TP11(2.5-3.5)	-3.5)
raiantetis	Ciffes	08/18/2004	2004	08/18/2004	304	08/18/2004	904
Benzaldehyde	ug/Kg	QΝ	180	QN	1900	QΝ	940
Phenol	ug/Kg	2	180	2 :	1900	2 :	940
bis(2-Chloroethyl)ether	ug/Kg		180	2 2	1900	2 2	940
Z-Cniorophenol	ng/kg //si.	2 2	9 6		1900	2 5	940
2-iveurylphenol 2 2-oxyhis(1-Chloropropane)	ug/Ka	Z Z	180	2 2	1900	2 2	940
Acetophenone	ua/Ka	2	180	2	1900	2	940
3+4-Methylphenols	ug/Kg	Q	180	2	1900	S.	940
N-Nitroso-di-n-propylamine	ug/Kg	Q	180	N	1900	2	940
Hexachloroethane	ug/Kg	Q	180	Q	1900	<u>Q</u>	940
Nitrobenzene	ug/Kg	<u>Q</u>	180	2	1900	2	940
Isophorone	ug/Kg	2	180	<u>Q</u> :	1900	2.5	940
2-Nitrophenol	ug/Kg	2 :	180	Q :	1900	2 9	940
2,4-Dimethylphenol	ug/Kg		180		1900	2 2	940
bis(2-Chloroethoxy)methane	ug/Kg	ב ב ב	180	2 9	1800	2.5	940
Z,4-Diciliorophicalor Nanhthalene	ug/Kg	<u>}</u> &	180	2 2	1900	2	.940
4-Chloroaniline	ua/Ka	QN.	180	2	1900	Q	940
Hexachlorobutadiene	ug/Kg	QN	180	Q	1900	Ŕ	940
Caprolactam	ug/Kg	Q	180	QN	1900	<u>N</u>	940
4-Chloro-3-methylphenol	ug/Kg	2	180	2	1900	2	940
2-Methylnaphthalene	ug/Kg	2	180	Q i	1900	2	940
Hexachlorocyclopentadiene	ug/Kg	2 2	180	2 2	0061	<u> </u>	940
2,4,6-I richlorophenol	ug/Kg		180		1900	2 2	940
2,4,5-1 richlorophenol	ug/kg	2 2	180	2 2	1900	`. <u>2</u> . <u>2</u>	2400
1,1-Diplication	ug/Kg	Ž Ž	9 2	2 2	1900	2	940
2-Nitroaniline	ug/Kg	<u>P</u>	460	2	4800	2	2400
Dimethylphthalate	ug/Kg	QN .	180	Q	1900	Q	940
Acenaphthylene	ug/Kg	180	180	1300	1900	360	940
2,6-Dinitrotoluene	ug/Kg	g	180	Q	1900	9	940
3-Nitroaniline	ug/Kg	2 :	460	2 :	4800	윤	2400
Acenaphthene	ug/Kg	2 2	180		1900	2.2	940
2,4-Uintrophenoi	ug/Kg	<u>S</u> S	460	2 5	4800	<u> </u>	2400
Dibenzofuran	ug/Ka	37	180	2	1900	2	940
2,4-Dinitrotoluene	ug/Kg	QN	180	Q.	1900	S	940
Diethylphthalate	ug/Kg	2	180	Q	1900	9	940
4-Chlorophenyl-phenylether	ug/Kg	<u>8</u> :	180	2 9	1900	2	940
Fluorene	ug/Kg ///	χ 4 (081	2 2	1900	2 2	940
4-Nitroanline	ug/Kg	2 2	460	2 2	4800	2 2	2400
A, O-Dilling Z-III Cirily Priction N-Nitrosodiphenylamine	ug/Kg	Ş	180		1900	2 2	940
4-Bromophenyl-phenylether	ug/Kg	2	180	2	1900	2	940
Hexachlorobenzene	ug/Kg	Q	180	Q	1900	g	940
Atrazine	ug/Kg	2	180	2 5	1900	9	940
Pentachlorophenol	ug/Kg	- 3 ⊊	460	ND 7007	4800	<u> </u>	2400
Phenanthrene	ug/Kg :: // a	0//	180	4600	1900	2300	940
Anthracene	ug/Ng	730	100	00/1	1900	020	940

TABLE 2: Test Pit Soil Sample Results - SVOCs Malone, NY Kriff Property

Parameters	Units	TP9() 08/18/		TP10(4 08/18/2		TP11(2.5 08/18/2	•
Carbazole	ug/Kg	58	180	ND	1900	ND	940
Di-n-butylphthalate	ug/Kg	ND	180	ND	1900	ИD	940
Fluoranthene	ug/Kg	2300	180	19000	1900	6200	940
Pyrene	ug/Kg	2000	180	18000	1900	5400	940
Butylbenzylphthalate	ug/Kg	ND	180	ND	1900	ND	940
3,3-Dichlorobenzidine	ug/Kg	ND.	180	ND	1900	ΝĎ	940
Benzo(a)anthracene	ug/Kg	1300	180	13000	1900	4300	940
Chrysene	ug/Kg	1100	180	10000	1900	3900	940
bis(2-Ethylhexyl)phthalate	ug/Kg	ND	180	NÖ	1900	ND	940
Di-n-octyl phthalate	ug/Kg	ND	180	ND	1900	ΝĎ	940
Benzo(b)fluoranthene	ug/Kg	1200	180	14000	1900	4000	940
Benzo(k)fluoranthene	ug/Kg	930-	180	6000	1900	4400	940
Benzo(a)pyrene	ug/Kg	1100	180	10000	1900	4200	940
Indeno(1,2,3-cd)pyrene	ug/Kg	580	180	7100	1900	2700	940
Dibenz(a,h)anthracene	ug/Kg	82	180	900	1900	420	940
Benzo(g,h,i)perylene	ug/Kg	380	180	4800	1900	1800	.940

ND = Not Detected

TABLE 4: Test Pit Soil Sample Results - PCBs Malone, NY Kriff Property

Parameters	Units	TP9(2- 08/18/20		TP10(4 08/18/2		TP11(2.5	
Aroclor-1016	ug/Kg	ND	37	ND	38	ND	37
, Aroclor-1221	ug/Kg	ND	74	ND	78	ND	76
Aroclor-1232	ug/Kg	NĎ	37 ·	ND	38	ND	37
Aroclor-1242	ug/Kg	ND	37	ND	38	ND	37
Aroclor-1248	ug/Kg	ND	37	ŅD	38	ND	37
Aroclor-1254	ug/Kg	ND	37	ND	-38	ND	37
Arocior-1260	ug/Kg	ND	37	ND	-38	ND	37

· ND = Not Detected

TABLE 3: Test pit Soil Sample Results - Inorganics Malone, NY Kriff Property

		TP9(2-	6)	TP10(4	-5)	TP11(2.5-	3.51
Parameters	Units	8/18/20		8/18/20		8/18/200	
Aluminum	mg/Kg	4290	44.2	4300	46.6	4020	45.5
Antimony	mg/Kg	1.4	13.3	1.7	14.0	ND	13.7
Arsenic	mg/Kg	3.5	2.2	6.6	2.3	5.6	2.3
Barium	mg/Kg	80.1	44.2	104	46.6	107	45.5
Beryllium	mg/Kg	0.18	1.1	0.30	1.2	0.24	1.1 .
Cadmium	mg/Kg	0.44	1.1	2.9	1.2	6.9	1.1
Calcium	mg/Kg	27300	1110	6300	1160	4170	1140
Chromium	mg/Kg	7.7	2.2	8.4	2.3	7.6	2.3
Cobalt	mg/Kg	3.3	11.1	3.9	11.6	3.4	11.4
Copper	mg/Kg	22.0	5.5	68.0	5.8	26.1	5.7
Iron	mg/Kg	6940	22.1	10000	23.3	9680	22.8
Lead	mg/Kg	131	0.66	326	0.70	108	0.68
Magnesium	mg/Kg	6330	1110	2840	1160	2380	1140
Manganese	mg/Kg	343	3.3	238	3.5	231	3.4
Mercury	mg/Kg	0.53	0.11	1.1	0.12	0.57	0.11
Nickel	mg/Kg	8.1	8.8	10.3	9.3	7.3	9.1
Potassium	mg/Kg	383	1110	361	1160	332	1140
Selenium	mg/Kg	ND	1.1	0.70	1.2	ND	1.1
Silver	mg/Kg	ND	2.2	ND	2.3	ND	2.3
Sodium	mg/Kg	ND	1110	185	1160	81.4	1140
Thallium	mg/Kg	ND	2.2	ND	2.3	ND	2.3
Vanadium	mg/Kg	9.3	11.1	10.7	11.6	10.5	11.4
Zinc	mg/Kg	308	4.4	1120	4.7	870	4.6
Cyanide	mg/Kg	ND	0.55	3.9	0.58	4.1	0.57

ND = Not Detected

LABORATORY HIT SUMMARIES

Hit Summary Report

SDG No.: S4256

Order ID:

S4256

Client:

TRC Environmental Corp., CT

Project ID:

Malone NY

SVOC-TCL BNA -20

Test:	SVOC-TCL BN.	A -20						
Sample ID	Client ID TP9(2-6)	Matrix	Parameter	Concentration	С	RDL	MDL	Units
34256-01	TP9(2-6)	SOIL	Naphthalene	83	J	180	13	ug/Kg
34256-01	TP9(2-6)	SOIL	Acenaphthylene	180	J	180	7.8	ug/Kg
34256-01	TP9(2-6)	SOIL	Dibenzofuran	37	J	180	10	ug/Kg
34256-01	TP9(2-6)	SOIL	Fluorene	54	J	180	11	ug/Kg
34256-01	TP9(2-6)	SOIL	Phenanthrene	770		180	11	ug/Kg
34256-01	TP9(2-6)	SOIL	Anthracene	230		180	11	ug/Kg
34256-01	TP9(2-6)	SOIL	Carbazole	58	J	180	15	ug/Kg
34256-01	TP9(2-6)	SOIL	Fluoranthene	2300		180	32	ug/Kg
34256-01	TP9(2-6)	SOIL	Pyrene	2000		180	47	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo(a)anthracene	1300		180	14	ug/Kg
34256-01	TP9(2-6)	SOIL	Chrysene	1100		180	17	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo(b)fluoranthene	1200		180	29	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo(k)fluoranthene	930		180	45	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo(a)pyrene	1100		180	10	ug/Kg
34256-01	TP9(2-6)	SOIL	Indeno(1,2,3-cd)pyrene	580		180	35	ug/Kg
34256-01	TP9(2-6)	SOIL	Dibenz(a,h)anthracene	82	J	180	37	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo(g,h,i)perylene	380		180	40	ug/Kg
34256-01	TP9(2-6)	SOIL	ACP	* 460	AB	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Phenanthrene, 2-methyl-	* 140	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	1H-Indene, 2-phenyl-	* 97	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	(6H)Cyclobuta[jk]phenanthre	* 280	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Unknown	* 99	J	180	32	ug/Kg
34256-01	TP9(2-6)	SOIL	11H-Benzo[b]fluorene	* 110	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	11H-Benzo[a]fluorene	* 180	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Pyrene, 2-methyl-	* 84	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo[c]phenanthrene	* 180	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Cyclopenta[cd]pyrene	* 140	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Benz(A)anthracene-7,12-dion	* 150	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Triamterene	* 150	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Unknown	* 240	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Naphthalene, 1-(2-naphthaleny	* 100	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo[j]fluoranthene	* 710	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	n-Pentafluorosulfanyl-S,S-dip	* 99	J	0	0	ug/Kg
54256-01	TP9(2-6)	SOIL	Unknown	* 110	J	0	0	ug/Kg
54256-01	TP9(2-6)	SOIL	Estra-1,3,5,7,9,15-hexaen-17-	* 110	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Cycloocta[1,2-b:4,3-b:5,6-b:8,	* 110	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Phenanthrene, 9-ethyl-3,6-di	* 110	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo[b]triphenylene	* 100	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Dibenz[a,h]anthracene	* 120	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Unknown	* 130	J	0	0	ug/Kg
34256-01	TP9(2-6)	SOIL	Benzo[a]naphthacene	* 130	J	0	0	ug/Kg
54256-01	TP9(2-6)	SOIL	3,4:8,9-Dibenzpyrene	* 240	J	0	0	ug/Kg

Note: The asterisk "*" flag next to a parameter signifies a TIC parameter.

Chemtech

Hit Summary Report

SDG No.: S4

S4256

Order ID:

S4256

Client:

TRC Environmental Corp., CT

Project ID:

Malone NY

Test:

ample ID

SVOC-TCL BNA-20

Client ID Matrix

Parameter

Concentration

C RDL

Units

MDL

Total SVOC's:

12384.00 4379.00

Total TIC's:
Total SVOC's and TIC's:

16763.00

-> 124 ppm PAHS

Chemtech

Hit Summary Report

SDG No.: S

S4256

Order ID:

S4256

Client:

TRC Environmental Corp., CT

Project ID:

Malone NY

Test:

SVOC-TCL BNA -20

12500	5 / OC 1 CE 2: 11							
ample ID	Client ID TP10(4-5)	Matrix	Parameter	Concentration	С	RDL	MDL	Units
4256-02	TP10(4-5)	SOIL	Acenaphthylene	1300	J	1900	81	ug/Kg
4256-02	TP10(4-5)	SOIL	Phenanthrene	4600		1900	110	ug/Kg
4256-02	TP10(4-5)	SOIL	Anthracene	1700	J	1900	110	ug/Kg
4256-02	TP10(4-5)	SOIL	Fluoranthene	19000		1900	340	ug/Kg
34256-02	TP10(4-5)	SOIL	Pyrene	18000		1900	490	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo(a)anthracene	13000		1900	150	ug/Kg
4256-02	TP10(4-5)	SOIL	Chrysene	10000		1900	180	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo(b)fluoranthene	14000		1900	300	ug/Kg
14256-02	TP10(4-5)	SOIL	Benzo(k)fluoranthene	6000		1900	480	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo(a)pyrene	10000		1900	100	ug/Kg
4256-02	TP10(4-5)	SOIL	Indeno(1,2,3-cd)pyrene	7100		1900	370	ug/Kg
14256-02	TP10(4-5)	SOIL	Dibenz(a,h)anthracene	900	J	1900	390	ug/Kg
34256-02	TP10(4-5)	SOIL	Benzo(g,h,i)perylene	4800		1900	420	ug/Kg
4256-02	TP10(4-5)	SOIL	(6H)Cyclobuta[jk]phenanthre	* 2500	J	0	0	ug/Kg
14256-02	TP10(4-5)	SOIL	Phenanthrene, 2,5-dimethyl-	* 800	J	0	0	ug/Kg
14256-02	TP10(4-5)	SOIL	Unknown	* 1300	J	1900	340	ug/Kg
4256-02	TP10(4-5)	SOIL	11H-Benzo[b]fluorene	* 1400	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Pyrene, 2-methyl-	* 990	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo[c]phenanthrene	* 1100	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	3,4-Dihydrocyclopenta(cd)pyr	* 800	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Chrysene, 1-methyl-	* 890	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	2-Propen-1-one, 1-(2-hydroxy	* 1100	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	1,1-Dichloro-1-sila-2,3-benzo	* 830	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	4,5-Dihydrobenzo[E]pyrene	* 1100	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	3-Pyridinecarboxylic acid, 6-[* 850	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Perylene	* 2400	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzene, 1,1-(1-ethyl-1,2-et	* 1100	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo[e]pyrene	* 5600	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo[b]triphenylene	* 810	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo[1,2-b:4,3-b]dithiophen	* 1000	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benz[j]aceanthrylene, 3-methy		J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo[b]chrysene	* 930	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	1,2:7,8-Dibenzphenanthrene	* 1300	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Benzo[b]triphenylene	* 900	J	0	0	ug/Kg
4256-02			1,2:3,4-Dibenzpyrene	* 1600	J	0	0	ug/Kg
4256-02			1,2:4,5-Dibenzpyrene	* 1400	J	0	0	ug/Kg
4256-02	TP10(4-5)	SOIL	Pyrazine, 2-methoxy-3-(1-met	* 860	J	0	0	ug/Kg
4256-02	TP10(4-5) TP10(4-5) TP10(4-5) TP10(4-5)	SOIL SOIL SOIL SOIL	1,2:3,4-Dibenzpyrene	* 1600 * 1400	J J	0 0		0 0

Total SVOC's:

110400.00 32560.00

Total TIC's:
Total SVOC's and TIC's:

142960.00

-> 1,104 ppm PAHs

Chemtech

Hit Summary Report

SDG No.: S4256

Order ID:

S4256

Client:

TRC Environmental Corp., CT

Project ID:

Malone NY

Test:

SVOC-TCL BNA-20

Sample ID Client ID:	Client ID TP11(2.5-3.5)	Matrix	Parameter	Concentration	C	RDL	MDL	Units
34256-03	TP11(2.5-3.5)	SOIL	Acenaphthylene	360	J	940	40	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Phenanthrene	2300		940	54	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Anthracene	620	. J	940	54	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Fluoranthene	6200		940	160	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Pyrene	5400		940	240	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzo(a)anthracene	4300		940	71	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Chrysene	3900		940	88	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzo(b)fluoranthene	4000		940	150	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzo(k)fluoranthene	4400		940	230	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzo(a)pyrene	4200		940	51	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Indeno(1,2,3-cd)pyrene	2700		940	180	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Dibenz(a,h)anthracene	420	J	940	190	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzo(g,h,i)perylene	1800		940	200	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	4H-Cyclopenta[def]phenanthr	* 870	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	11H-Benzo[a]fluorene	* 400	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	2,5-Cyclohexadien-1-one, 2,5-	* 590	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	3,4-Epoxy-4a-ethyl-2,3,4,4a,5	* 470	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benz[e]acephenanthrylene	* 970	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzene, 1,1-(1-ethyl-1,2-et	* 620	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Perylene	* 2700	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Benzo[b]chrysene	* 490	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Equilenin	* 450	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	9,10-Anthracenedione, 1,4-bi	* 530	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Dibenz[a,j]anthracene	* 510	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	1,2:7,8-Dibenzphenanthrene	* 580	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	Unknown	* 460	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	1,2:3,4-Dibenzpyrene	* 770	J	0	0	ug/Kg
34256-03	TP11(2.5-3.5)	SOIL	3,4:8,9-Dibenzpyrene	* 600	J	0	0	ug/Kg

40600.00 Total SVOC's: Total TIC's: 11010.00 Total SVOC's and TIC's: 51610.00

-> 40.6 ppm PAHS

Hit Summary Sheet SW-846

SDG No.: Client: S4256

4250

TRC Environmental Corp., CT

Order ID:

S4256

Project ID:

Malone NY

Chent.	TRC Environment	tai Cui p., C i			Wiaione	. 141		
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID:	TP11(2.5-3.5)							
S4256-03	TP11(2.5-3.5)	SOIL	Aluminum	4020		45.5	0.01	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Arsenic	5.6		2.3	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Barium	107		45.5	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Beryllium	0.24	J	1.1	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Cadmium	6.9		1.1	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Calcium	4170		1140	0.01	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Chromium	7.6		2.3	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Cobalt	3.4	J	11.4	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Copper	26.1		5.7	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Iron	9680		22.8	0.02	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Lead	108		0.68	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Magnesium	2380		1140	0.03	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Manganese	231		3.4	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Mercury	0.57		0.11	0.02	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Nickel	7.3	J	9.1	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Potassium	332	J	1140	0.04	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Sodium	81.4	J	1140	0.13	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Vanadium	10.5	J	11.4	0.00	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Zinc	870		4.6	0.03	mg/Kg
S4256-03	TP11(2.5-3.5)	SOIL	Cyanide	4.1		0.57	0.86	ug/L
Client ID:	TP9(2-6)							
S4256-01	TP9(2-6)	SOIL	Aluminum	4290		44.2	0.01	mg/Kg
S4256-01	TP9(2-6)	SOIL	Antimony	1.4	J	13.3	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Arsenic	3.5		2.2	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Barium	80.1		44.2	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Beryllium	0.18	J	1.1	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Cadmium	0.44	J	1.1	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Calcium	27300		1110	0.01	mg/Kg
S4256-01	TP9(2-6)	SOIL	Chromium	7.7		2.2	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Cobalt	3.3	J	11.1	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Copper	22.0		5.5	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Iron	6940		22.1	0.02	mg/Kg
S4256-01	TP9(2-6)	SOIL	Lead	131		0.66	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Magnesium	6330		1110	0.03	mg/Kg
S4256-01	TP9(2-6)	SOIL	Manganese	343		3.3	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Mercury	0.53		0.11	0.02	mg/Kg
S4256-01	TP9(2-6)	SOIL	Nickel	8.1	J	8.8	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Potassium	383	J	1110	0.04	mg/Kg
S4256-01	TP9(2-6)	SOIL	Vanadium	9.3	J	11.1	0.00	mg/Kg
S4256-01	TP9(2-6)	SOIL	Zinc	308		4.4	0.03	mg/Kg

Hit Summary Sheet SW-846

SDG No.:

S4256

Order ID:

S4256

Client:

TRC Environmental Corp., CT

Project ID:

Malone NY

Sample ID Client ID:	Client ID TP10(4-5)	Matrix	Parameter	Concentration	C	RDL	MDL	Units
S4256-02	TP10(4-5)	SOIL	Aluminum	4300		46.6	0.01	mg/Kg
S4256-02	TP10(4-5)	SOIL	Antimony	1.7	J	14.0	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Arsenic	6.6		2.3	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Barium	104		46.6	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Beryllium	0.30	J	1.2	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Cadmium	2.9		1.2	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Calcium	6300		1160	0.01	mg/Kg
S4256-02	TP10(4-5)	SOIL	Chromium	8.4		2.3	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Cobalt	3.9	J	11.6	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Copper	68.0		5.8	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Iron	10000		23.3	0.02	mg/Kg
S4256-02	TP10(4-5)	SOIL	Lead	326		0.70	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Magnesium	2840		1160	0.03	mg/Kg
S4256-02	TP10(4-5)	SOIL	Manganese	238		3.5	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Mercury	1.1		0.12	0.02	mg/Kg
S4256-02	TP10(4-5)	SOIL	Nickel	10.3		9.3	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Potassium	361	J	1160	0.04	mg/Kg
S4256-02	TP10(4-5)	SOIL	Selenium	0.70	J	1.2	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Sodium	185	J	1160	0.13	mg/Kg
S4256-02	TP10(4-5)	SOIL	Vanadium	10.7	J	11.6	0.00	mg/Kg
S4256-02	TP10(4-5)	SOIL	Zinc	1120		4.7	0.03	mg/Kg
S4256-02 ·	TP10(4-5)	SOIL	Cyanide	3.9		0.58	0.88	ug/L

Summary Sheet SW-846

SDG No.:

S4256

Order ID:

S4256

Client:

TRC Environmental Corp., CT

Project ID:

TRCE02

ample ID	Client ID	Matrix	Parameter	Concentration	C	RDL	MDL	Units
Client ID:	TP10(4-5)							
34256-02	TP10(4-5)	SOIL	Methylene Chloride	1.7	Æ	12	1.5	ug/Kg
			Total VOC's:	1.70				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	1.70				
Client ID:	TP11(2.5-3.5)							
34256-03	TP11(2.5-3.5)	SOIL	Methylene Chloride	1.9	JВ	11	1.5	ug/Kg
			Total VOC's:	1.90				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	1.90				
Client ID:	TP9(2-6)							
34256-01	TP9(2-6)	SOIL	Methylene Chloride	1.7	Љ	11	1.4	ug/Kg
			Total VOC's:	1.70				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	1.70				