

August 4, 2005

Mr. Scott Deyette
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway
Albany, New York 12233

Re: Site Characterization Data Summary for Oswego (West Utica St.) Former Manufactured Gas Plant, Oswego, New York

Dear Mr. Deyette:

Please find attached the *Site Characterization Data Summary Report, Oswego (West Utica St.) Former MGP in Oswego, New York* prepared by Brown and Caldwell Associates. This Site Characterization (SC) Data Summary Report comprises tables, figures and logs that relate the findings of the initial SC activities, and is being submitted in accordance with: the *Site Characterization/Interim Remedial Measure Work Plan for Site investigations at Oswego Non-Owned Former MGP Site* (EECS, Inc., January 2004) (hereafter referred to as the "SC Work Plan"); the August 17, 2004 letter addendum to the SC Work Plan; and the Voluntary Consent Order (VCO) between the New York State Department of Environmental Conservation (NYSDEC) and Niagara Mohawk, A National Grid Company (Niagara Mohawk) dated January 25, 2002.

The Data Usability Summary Report (DUSR), presenting the results of the independent validation of the analytical data for the initial SC, was previously submitted to the NYSDEC.

Data and information obtained during the SC investigation activities indicate that MGP-related constituents are present at the site. Niagara Mohawk recommends that a Remedial Investigation (RI) be conducted at this site to further evaluate the nature and extent of the MGP-related constituents and assess whether remedial activities are required to address them. Accordingly, Niagara Mohawk would like to schedule a meeting with the NYSDEC to discuss the findings of the SC and potential RI activities. After you have had an opportunity to review the attached SC Data Summary Report, please contact me to schedule this meeting.

Please contact me at (315) 428-5652 if you have any questions.

Sincerely,

Steven P. Stucker, C.P.G.

Senior Analyst

Cc:

William Holzhauer-National Grid Service Company (w/o report)
Terry Young-Niagara Mohawk, a National Grid Company (w/o report)

Wendy Kuehner-NYSDOH (w/report)

Robert O'Neill-Brown & Caldwell (w/o report)

Brown and Caldwell Associates

Site Characterization
Data Summary Report
Oswego (West Utica St.) Former MGP
Oswego, New York

August 2005

RECEIVED

AUG 0 8 2005

Remedial Bureau C
Division of Environmental Remediation

SITE CHARACTERIZATION DATA SUMMARY REPORT OSWEGO (WEST UTICA ST.) FORMER MGP OSWEGO, NEW YORK

Prepared for:

Niagara Mohawk, A National Grid Company 300 Erie Boulevard West Syracuse, New York 13202

Prepared by:

Brown and Caldwell Associates 110 Commerce Drive Allendale, New Jersey 07401

August 2005

126410.003

TABLE OF CONTENTS

ATTACHMENTS

Attachment 1 - Test Pit Logs

Attachment 2 - Soil Boring and Well Construction Logs

LIST OF TABLES

<u> Table No.</u>	<u>Title</u>
1	Well Construction and Water Level Data
2	Soil Analytical Results, Detected Constituents
3	Groundwater Analytical Results, Detected Constituents
4	Field Parameter Measurements for Groundwater
5	Summary of Visual/Olfactory Field Observations

LIST OF FIGURES

Figure No.	<u>Title</u>
1	Site Location Map
2	Site Plan
3	Hydrogeologic Cross-Sections
4	Water Table Contour Map
5	BTEX, PAH, and Cyanide Concentrations in Soil
6	BTEX, SVOC, and Cyanide Concentrations in Groundwater

TABLES

TABLE 1
WELL CONSTRUCTION AND WATER LEVEL DATA
Oswego (West Utica St.) MGP Site, Oswego, New York

Well	Ground Surface Elevation (ft., NGVD)	Top of Casing Elevation (ft., NGVD)	Top of Screen (ft., BGS)	Bottom of Screen (ft., BGS)	Date of Measurements	Total Depth (ft., BTOC)	Depth to Water (ft., BTOC)	Water Elevation (ft., NGVD)
MW-101	304.42	303.99	4.0	14.0	12/16/2004	13.80	3.88	300.11
MW-102	303.70	303.39	6.0	16.0	12/16/2004	17.44	6.01	297.38
MW-103	306.75	306.48	5.0	15.0	12/16/2004	14.59	4.70	301.78
MW-104	309.14	308.79	4.5	14.5	12/16/2004	14.08	6.58	302.21

Notes:

NGVD - National Geodetic Vertical Datum

BGS - Below Ground Surface

BTOC - Below Top of Casing

		Recommended Soil Cleanup Objective	B-102A	B-105A	B-106	MW-101	MW-103	MW-104
Constituent	Units	(TAGM 4046)	10-12'	16-18'	20-20.7'	4-6'	8-10'	6-8'
			11/29/2004	11/23/2004	11/19/2004	11/23/2004	11/29/2004	11/24/20
<i>Volatile Organic Compo</i> BTEX	unas							
Benzene	mg/Kg	0.06	1.1	3 D	0.12	0.00023 U	0.00023 U	0.00022 U
Ethylbenzene	mg/Kg	5.5	1.7	8.2 D	0.12	0.00023 U	0.00023 U	0.00022 t
Toluene	mg/Kg	1.5	6.22	0.19	0.019	0.00028 U	0.00028 U	0.00027
o-Xylene	mg/Kg	1.2	8.1	4.4 D	0.25	0.00049 U	0.00049 U	0.000471
n&p-Xylenes	mg/Kg	1.2	23	21 D	0.68 EJ	0.0014 J	0.00058 U	0.00056 U
Total BTEX	mg/Kg	NE	40	37	1.25	0.0014	ND	ND
Other VOCs	mg/Kg		No other VOCs	detected in sam	ples			
Semivolatile Organic Con	mpounds							
Noncarcinogenic PAHs	/17	50	0.20.1	157	0.40.11	0.0004 11	0.0004 777	0.000 ***
Acenaphthene	mg/Kg	50	0.28 J	1.5 J	0.48 U	0.0081 U	0.0081 UJ	0.008 U
Acenaphthylene	mg/Kg	41	1.3	0.12 U	3.3 J	0.011 U	0.011 UJ	0.011 U
Anthracene	mg/Kg	50	0.96	0.92 J	0.52 U	0.062 J	0.0088 UJ	0.0086 L
Benzo(g,h,i)perylene	mg/Kg	50	0.44	0.17 U	0.95 U	0.066 J	0.016 U	0.016 U
Fluoranthene	mg/Kg	50	1.8	1.6 J	13 J	0.24 J	0.0051 UJ	0.12 J
Fluorene	mg/Kg	50	0.9	1.2 J	3 J	0.01 U	0.01 UJ	0.01 U
Naphthalene	mg/Kg	13	24 D	210 D	390 D	0.39	0.13 J	0.21 J
Phenanthrene	mg/Kg	50	3.2	3.2 J	20 J	0.14 J	0.047 J	0.055 J
yrene	mg/Kg	50	1.6	1.2 J	11 J	0.23 J	0.0066 UJ	0.086 J
Total Noncarcinogenic PAHs	mg/Kg	NE	34	220	440	1.1	0.18	0.47
Carcinogenic PAHs								
Benzo(a)anthracene	mg/Kg	0.224	0.59	0.058 U	3.1 J	0.18 J	0.0056 UJ	0.0055 U
Benzo(a)pyrene	mg/Kg	0.061	0.5	0.066 U	2.9 J	0.2 J	0.0063 U	0.0062 U
Benzo(b)fluoranthene	mg/Kg	1.1	0.49	0.2 U	4 J	0.33 J	0.02 U	0.05 J
Benzo(k)fluoranthene	mg/Kg	1.1	0.28 J	0.13 U	0.74 U	0.091 J	0.013 U	0.012 U
Chrysene	mg/Kg	0.4	0.53	0.42 J	3.9 J	0.17 J	0.012 U	0.046 J
Dibenzo(a,h)anthracene	mg/Kg	0.014	0.012 U	0.11 U	0.64 U	0.011 U	0.011 U	0.011 U
ndeno(1,2,3-cd)pyrene	mg/Kg	3.2	0.48 J	0.093 U	0.53 U	0.037 I	0.0089 U	0.0087 U
Total Carcinogenic PAHs	mg/Kg	NE	2.9	0.4	14	1.0	ND	0.10
Total PAHs	mg/Kg	NE	37	220	454	2.1	0.18	0.10
Other SVOCs	-8/8						5.10	3.37
Bis(2-ethylhexyl)phthalate	mg/Kg	50	NA	NA	NA	NA	NA	NA
Polychlorinated Bipheny			not detected in s	amples (only sai	mples TP-101 (5) and TP-104B (6') were analyzed	
Pesticides			not detected in s					
Inorganic Constituents						,		
Muminum	mg/Kg	SB	NA	NA	NA	NA	NA	NA
Arsenic	mg/Kg	7.5 or SB	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Barium	mg/Kg	300 or SB	NA	NA	NA NA	NA NA	NA NA	NA NA
Beryllium	mg/Kg	0.160 or SB	NA	NA	NA NA	NA NA	NA NA	
Calcium	mg/Kg	SB	NA NA	NA NA				NA
					NA	NA	NA	NA
Chromium	mg/Kg	10 or SB	NA	NA	NA	NA	NA	NA
Cobalt	mg/Kg	30 or SB	NA	NA	NA	NA	NA	NA
Copper	mg/Kg	25 or SB	NA	NA	NA	NA	NA	NA
ron	mg/Kg	2000 or SB	NA	NA	NA	NA	NA	NA
Lead	mg/Kg	SB	NA	NA	NA	NA	NA	NA
Magnesium	mg/Kg	SB	NA	NA	NA	NA	NA	NA

		Recommended						
		Soil Cleanup	D 4004	D 4054	D 404	N FIVE 4 0 4	207/402	3.077.404
		Objective	B-102A	B-105A	B-106	MW-101	MW-103	MW-104
	Units	(TAGM 4046)	10-12'	16-18'	20-20.7'	4-6'	8-10'	6-8'
			11/29/2004	11/23/2004	11/19/2004	11/23/2004	11/29/2004	11/24/200
470								
	mg/Kg	SB	NA	NA	NA	NA	NA	NA
	mg/Kg	13 or SB	NA	NA	NA	NA	NA	NA
	mg/Kg	SB	NA	NA	NA	NA	NA	NA
	mg/Kg	150 or SB	NA	NA	NA	NA	NA	NA
	mg/Kg	20 or SB	NA	NA	NA	NA	NA	NA
tal	mg/Kg	NE	0.121 U	0.704 J	30	20 J	0.136 U	0.115 UJ
ameters								
ic Carbon	mg/Kg	NE	1700	5600	9700	58000-R	4700	8400
(GC)		NE	NA	NA	NA	NA	NA	NA
			detection limit is th J - Estimated conce D - The sample wa UJ - The analyte we detection limit is ap accurately and prec E - Value exceeds of SB - Site Backgrout NE - Not establish NA - Not analyzed ND - Not detected	the associated numeric entration. The result is diluted. as not detected above oproximate and may issely measure the an- icalibration range. and. Site background ed.	cal value. t is below the quantit the the reported sampl or may not represen alyte in the sample. concentrations have	ove the reported sam ation limit but above the quantitation limit. It the actual limit of the enot been established Recommended Soil Cl	the method detection. However, the reports the quantitation necesses.	n limit. ed method sary to
			ND - Not detected Boxed values indica		ncentrations al	ncentrations above the NYSDEC I	ncentrations above the NYSDEC Recommended Soil C	ncentrations above the NYSDEC Recommended Soil Cleanup Objectives. I

		Recommended Soil Cleanup Objective	TP-101	TP-102	TP-103	TP-103 DUP	TP-104
Constituent	Units	(TAGM 4046)	5'	8'	7.5'	7.5'	6'
Constituent	Omes	(1710111 1010)	11/19/2004	11/18/2004	11/18/2004	11/18/2004	11/18/2004
			11/17/2004	11/10/2004	11/10/2004	11/10/2004	11/10/2009
Volatile Organic Compour	nds						
BTEX							
Benzene	mg/Kg	0.06	0.0012 U	0.00024 U	0.011 J	0.0024 J	0.16
Ethylbenzene	mg/Kg	5.5	0.0012 U	0.26 JD	0.016 J	0.0024 J	0.19 D
Toluene	mg/Kg	1.5	0.0013 U	0.013 J	0.0059 J	0.0011 J	0.016
o-Xylene	mg/Kg	1.2	0.0012 U	0.13 J	0.013 J	0.0021 J	0.21
m&p-Xylenes	mg/Kg	1.2	0.0032 U	1.5 D	0.02 J	0.0035 J	1.4 D
Total BTEX	mg/Kg	NE	ND	1.9	0.07	0.0115	2.0
Other VOCs	mg/Kg			detected in sampl			2.0
Semivolatile Organic Com							
Noncarcinogenic PAHs	P.S. 430						
Acenaphthene	mg/Kg	50	0.017 U	0.042 J	0.37 J	0.19 J	0.0089 U
Acenaphthylene	mg/Kg	41	0.016 U	0.24 J	1	0.5 J	0.0007 U
Anthracene	mg/Kg	50	0.022 U	0.49	2.3	0.98 J	0.0096 U
Benzo(g,h,i)perylene	mg/Kg	50	0.083 U	1.2	1.4	0.66 J	0.0070 U
Fluoranthene	mg/Kg	50	0.067 U	2.8 D	8.9 D	3.8 JD	0.0056 U
Fluorene	mg/Kg	50	0.023 U	0.14 J	1.1	0.54 J	0.0030 U
Naphthalene	mg/Kg	13	0.026 U	0.52	2.2 JD	8 JD	3.5 D
Phenanthrene	mg/Kg	50	0.020 U	1.3	7 D	3.3 JD	0.009 U
Pyrene	mg/Kg	50	0.022 U	3.7 D	11 D	3.6 JD	0.009 U
Total Noncarcinogenic PAHs	mg/Kg	NE NE	ND	10.4	35	22	3.5
Carcinogenic PAHs	Alig/ Ing	1111	112	10.7	33	22	5.5
Benzo(a)anthracene	mg/Kg	0.224	0.029 U	2.6	5.3 D	1.8 J	0.0061 U
Benzo(a)pyrene	mg/Kg	0.061	0.021 U	3.2 D	5.4 D	1.7 J	0.0069 U
Benzo(b)fluoranthene	mg/Kg	1.1	0.021 C	3.7 D	5.4 D	2.3 J	0.000 U
Benzo(k)fluoranthene	mg/Kg	1.1	0.094 U	1.1	2.6	0.79 J	0.021 U
Chrysene	mg/Kg	0.4	0.034 U	2.2	4.1 D	1.5 J	0.014 U
		0.014	0.036 U 0.077 U	0.43	0.52		
Dibenzo(a,h)anthracene	mg/Kg					0.012 UJ	0.012 U
Indeno(1,2,3-cd)pyrene	mg/Kg	3.2	0.072 U	0.99	0.75	0.0097 UJ	0.0097 U
Fotal Carcinogenic PAHs Fotal PAHs	mg/Kg mg/Kg	NE NE	ND ND	14.2 25	24.6	8.1 30	ND 2.5
Other SVOCs	mg/ Kg	NE	ND	25	00	30	3.5
Bis(2-ethylhexyl)phthalate	mg/Kg	50	0.092 J	NA	NA	NA	NA
Polychlorinated Biphenyls						and TP-104B (6')	
							vere analyzed)
Pesticides Inorganic Constituents			not detected in sa	imples (only sam	pie 1.P-101 (5') w	as analyzed)	
Muminum	mg/Kg	SB	9640	NA	NA	NA	NA
Arsenic	mg/Kg	7.5 or SB	2.5	NA	NA	NA	NA
Barium	mg/Kg	300 or SB	48.8	NA	NA	NA	NA
Beryllium	mg/Kg	0.160 or SB	0.47	NA	NA	NA	NA
Calcium	mg/Kg	SB	1510	NA	NA	NA	NA
Chromium	mg/Kg	10 or SB	11.1 J	NA	NA	NA	NA
Cobalt	mg/Kg	30 or SB	6.4	NA	NA	NA	NA
Copper	mg/Kg	25 or SB	29.9	NA	NA	NA	NA
ron	mg/Kg	2000 or SB	16900	NA NA	NA NA	NA NA	NA NA
LOII							
Lead	mg/Kg	SB	3.3	NA	NA	NA	NA

	Recommended Soil Cleanup Objective	TP-101	TP-102	TP-103	TP-103 DUP	TP-104		
Units	(TAGM 4046)	1			1.77	6' 11/18/2004		
mg/Kg	SB	271	NA	NA	NA	NA		
mg/Kg	13 or SB	13.2	NA	NA	NA	NA		
mg/Kg	SB	722	NA	NA	NA	NA		
mg/Kg	150 or SB	17.9	NA	NA	NA	NA		
mg/Kg	20 or SB	32.6 EJ	NA	NA	NA	NA		
mg/Kg	NE	1.55	1.13	7.15	9.85	0.004 U		
mg/Kg	NE	1700	7800	8500	3600	3700		
	NE	NA	NA	NA	NA	30W Lubrication Oil		
		Notes: U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The method detection limit is the associated numerical value. J - Estimated concentration. The result is below the quantitation limit but above the method detection limit. D - The sample was diluted. UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported method detection limit is approximate and may or may not represent the actual limit of the quantitation necessary to accurately and precisely measure the analyte in the sample. E - Value exceeds calibration range. SB - Site Background. Site background concentrations have not been established. NE - Not established. NA - Not analyzed. ND - Not detected. Boxed values indicate concentrations above the NYSDEC Recommended Soil Cleanup Objectives. Boxed and X rejected value.						
	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Soil Cleanup Objective Units (TAGM 4046) mg/Kg SB mg/Kg 13 or SB mg/Kg SB mg/Kg SB mg/Kg 150 or SB mg/Kg 20 or SB mg/Kg NE	Soil Cleanup Objective TP-101	Soil Cleanup Objective TP-101 TP-102 Units (TAGM 4046) 5' 8' 11/19/2004 11/18/2004 mg/Kg SB 271 NA mg/Kg SB 722 NA mg/Kg 150 or SB 17.9 NA mg/Kg NE 1.55 1.13 NA mg/Kg NE NA NA NA NA Notes: U - The analyte was analyzed for, but w limit. The method detection limit is the au J - Estimated concentration. The result is detection limit. D - The sample was diluted. UJ - The analyte was not detected above to reported method detection limit is approx quantitation necessary to accurately and property of the sample was diluted. NA - Not analyzed. ND - Not detected. Boxed values indicate concentrations above values indicate concentrations ab	Soil Cleanup Objective TP-101 TP-102 TP-103 Units (TAGM 4046) 5' 8' 7.5' 11/19/2004 11/18/2004 11/18/2004 11/18/2004 mg/Kg SB 271 NA NA MA Mg/Kg SB 722 NA NA Mg/Kg SB 722 NA NA NA mg/Kg 150 or SB 17.9 NA NA NA Mg/Kg NE 1.55 1.13 7.15 mg/Kg NE 1700 7800 8500 NE NA	Soil Cleanup Objective TP-101 TP-102 TP-103 TP-103 DUP Units (TAGM 4046) 5' 8' 7.5' 7.5' T.5' T.5' T.5' T.5' T.5' T.5' T.5' T		

TABLE 3 GROUNDWATER ANALYTICAL RESULTS DETECTED CONSTITUENTS

OSWEGO (West Utica St.) MGP Site

Oswego, New York

meta.			Oswego, N	ew York			
And the second							
			MW-101	MW-102	MW-103	MW-103 DUP	MW-104
		Class GA	1VIW-1UI	IVI W-102	IVI W -103	MW-103 DUP	W - 104
		Groundwater					
Constituent	Units	Criteria	12/16/2004	12/16/2004	12/16/2004	12/16/2004	12/16/2004
Constituent	Cinto	GIRCIM	12, 10, 200 ;	12/10/2001	12, 10, 2001	12, 10, 2001	12/ 10/ 200 1
Volatile Otganic Com	pounds						
BTEX	/-			1500 7	0.5.11	0.7.1	
Benzene	ug/L	1	11000 D	4500 D	0.5 U	0.5 U	0.5 U
Ethylbenzene	ug/L	5	140	150 J	0.5 U	0.5 U	0.5 U
Toluene	ug/L	5	240 D	3600 D	0.5 U	0.5 U	1.5 J
o-Xylene	ug/L	5	140 D	1300 D	0.5 U	0.5 U	0.5 U
m&p-Xylenes	ug/L	5	270	3000 D	0.5 U	0.5 U	0.5 U
Total BTEX	ug/L	NE	11790	12550	ND	ND	1.5
Other VOCs							
Carbon disulfide	ug/L	NE	3.2 J	1 J	0.5 U	0.5 U	0.5 U
Chlorobenzene	ug/L	5	0.5 U	1.6 J	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U	2.5 J
Isopropylbenzene	ug/L	5	5.3 J	8.3 J	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	ug/L	NE	6 J	1.7 J	0.5 U	0.5 U	0.5 U
Styrene	ug/L	5	46	120	0.5 U	0.5 U	0.5 U
Semivolatile Organic (de					
Acenaphthene	ug/L	NE	1.1 U	24 J	1.2 U	1.1 U	1.2 U
Acenaphthylene	ug/L	NE	1.1 U	130	1.2 U	1.1 U	1.2 U
Anthracene	ug/L	NE	2 J	5.3 J	0.98 U	0.96 U	0.97 U
Fluorene	ug/L	NE	1.1 U	33 J	1.2 U	1.1 U	1.2 U
2-Methylnaphthalene	ug/L	NE	4.4 J	380 J	1.5 U	1.5 U	1.5 U
Naphthalene	ug/L	NE	320 D	8100 D	1.9 U	1.9 U	1.9 U
Phenanthrene	ug/L	NE	2.2 J	23 J	0.9 U	0.89 U	0.89 U
1,1'-Biphenyl	ug/L	5	0.68 U	36 J	0.69 U	0.68 U	0.68 U
Carbazole		NE	0.86 U	74	0.88 U	0.86 U	0.87 U
	ug/L						
m&p-Cresol	ug/L	1	14 J	800 JD	3.2 U	3.1 U	3.2 U
Dibenzofuran	ug/L	NE 1	1 U	58	1.1 U	1 U	1.1 U
2,4-Dimethylphenol	ug/L	1	2.3 U	480 JD	2.3 U	2.3 U	2.3 U
2-Methylphenol	ug/L	1	23 JD	360 J	3.2 U	3.1 U	3.2 U
Phenol	ug/L	1	70	360 J	3.3 U	3.2 U	3.3 U
Total SVOCs	ug/L	NE	436	10863	ND	ND	ND
Polychlorinated Biphe	nyls		not detected in	any sample			
Pesticides			not detected in a	any sample			
Inorganic Constituent	<i>S</i> :						
Aluminum	ug/L	NE	4030	496	428	374	51.6 J
Arsenic	ug/L	25	6.4 J	4.07 J	2.9 U	2.9 U	3.57 J
Barium	ug/L	1000	115 J	125 J	80.3 J	80.7 J	153 J
Calcium	ug/L	NE	54900	96100	121000	124000	151000
Chromium	ug/L	50	13.3	2.62 J	3.38 J	3.4 J	2.4 U
Cobalt	ug/L	NE	6.1 J	1.77 J	2.09 J	2.12 J	1.3 U
Copper	ug/L	200	23.5 J	15.2 J	8.92 J	9.8 J	9.23 J
Iron	ug/L	300	8680	1020	1060	963	56.7 J

TABLE 3

GROUNDWATER ANALYTICAL RESULTS

DETECTED CONSTITUENTS

OSWEGO (West Utica St.) MGP Site

Oswego, New York

			<u> </u>				
			MW-101	MW-102	MW-103	MW-103 DUP	MW-104
Constituent	Units	Class GA Groundwater Criteria	12/16/2004	12/16/2004	12/16/2004	12/16/2004	12/16/2004
20.		25	5.50 X	0.5.11	0.511	(45)	0.7.11
Lead	ug/L	25	5.59 J	2.7 U	2.7 U	4.15 J	2.7 U
Magnesium	ug/L	35000	18400	17900	41000	42100	79600
Manganese	ug/L	300	592	962	1050	1060	155
Nickel	ug/L	100	14.5 J	4.9 U	4.9 U	5.77 J	4.9 U
Potassium	ug/L	NE	36900 J	9460 J	18400 J	18800 J	24000 J
Selenium	ug/L	10	5.6 U	5.6 U	5.6 U	5.6 U	7.67 J
Sodium	ug/L		191000	79100	65000	66200	201000
Vanadium	ug/L	NE	8.26 J	1.6 U	1.79 J	1.6 U	1.6 U
Zinc	ug/L	NE	53 J	45.4 J	22.4 J	24.4 J	22.6 J
Cyanide, Total	ug/L	200	537.104	118	67.6	62.7	10 U

Notes

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J Estimated concentration. The result is below the quantitation limit but above the method detection limit.
- D The sample was diluted.
- NE Not established.
- ND Not detected.

Boxed concentrations are above New York State Class GA Groundwater Standards and Guidance

TABLE 4 FIELD PARAMETER MEASUREMENTS FOR GROUNDWATER Oswego (West Utica St.) MGP Site, Oswego, New York

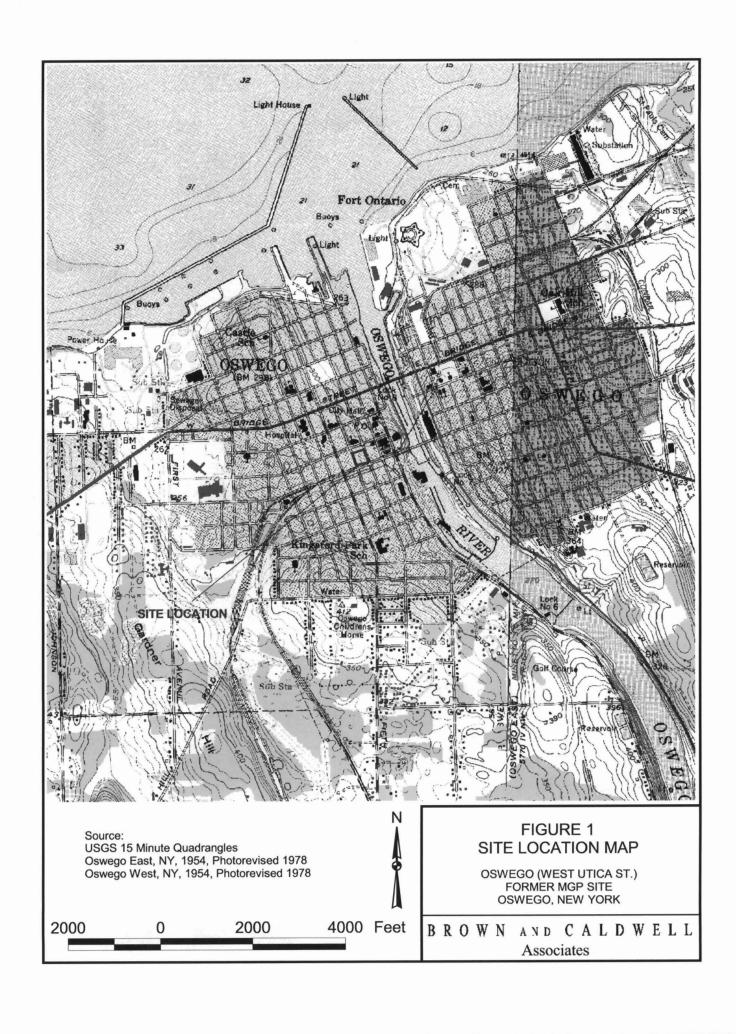
Turbidity (NTU)	827.0 117.0 69.5 9.3
Dissolved Oxygen (mg/l)	1.55 0.85 0.74 2.71
ORP (mV)	-121.0 8.0 -9.0 142.0
Specific Conductance (mS/cm)	1.50 1.48 1.42 2.55
Temperature (°C)	7.63 11.52 12.64 10.12
$_{ m Hd}$	8.49 7.31 7.01 7.21
Date	12/16/2004 12/16/2004 12/16/2004 12/16/2004
Well	MW-101 MW-102 MW-103 MW-104

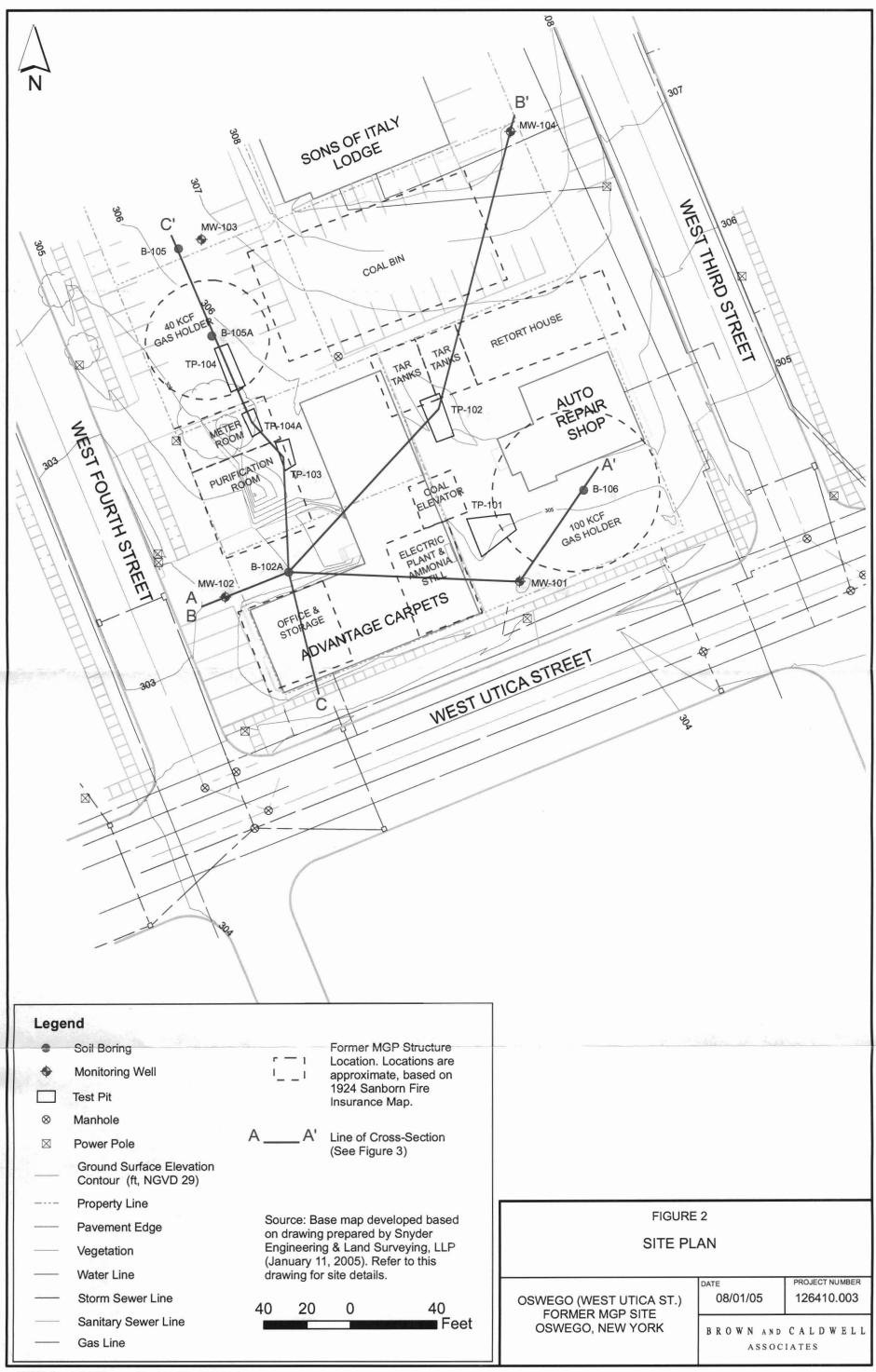
Notes:

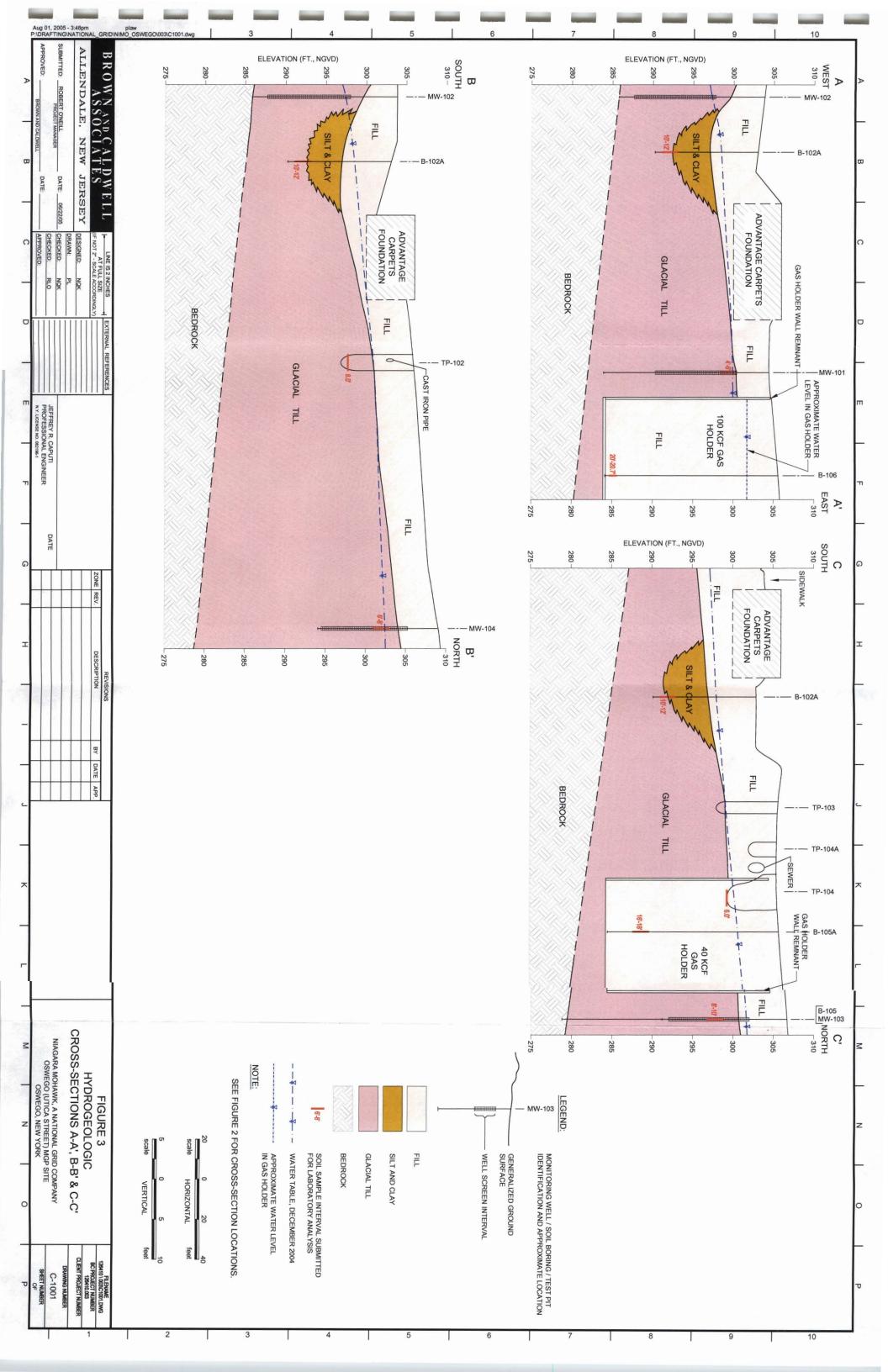
°C - degrees centigrade mS/cm - milliSiemens per centimeter mV - millivolts mg/1 - milligrams per liter NTU - nephelometric turbidity units

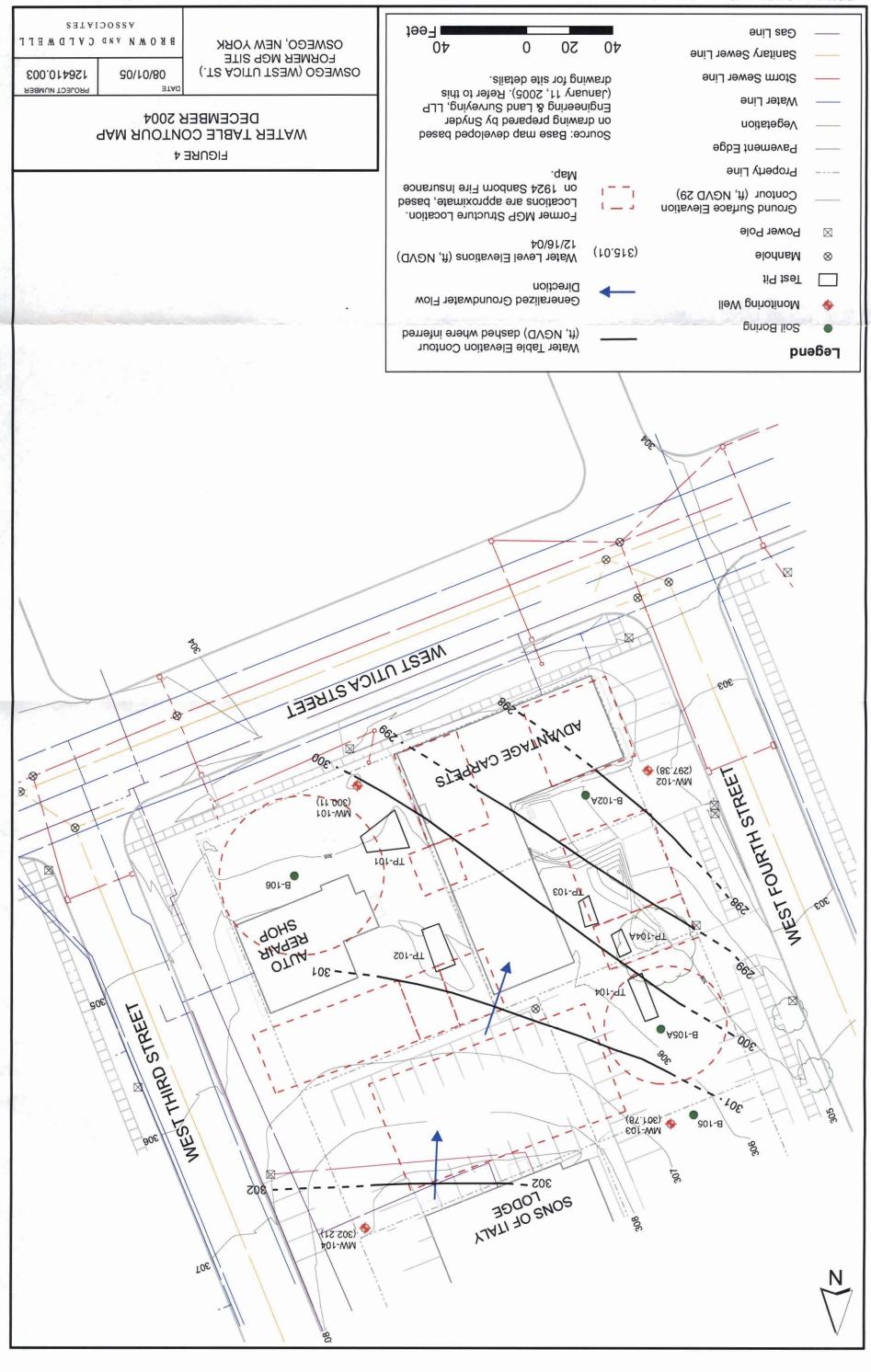
TABLE 5

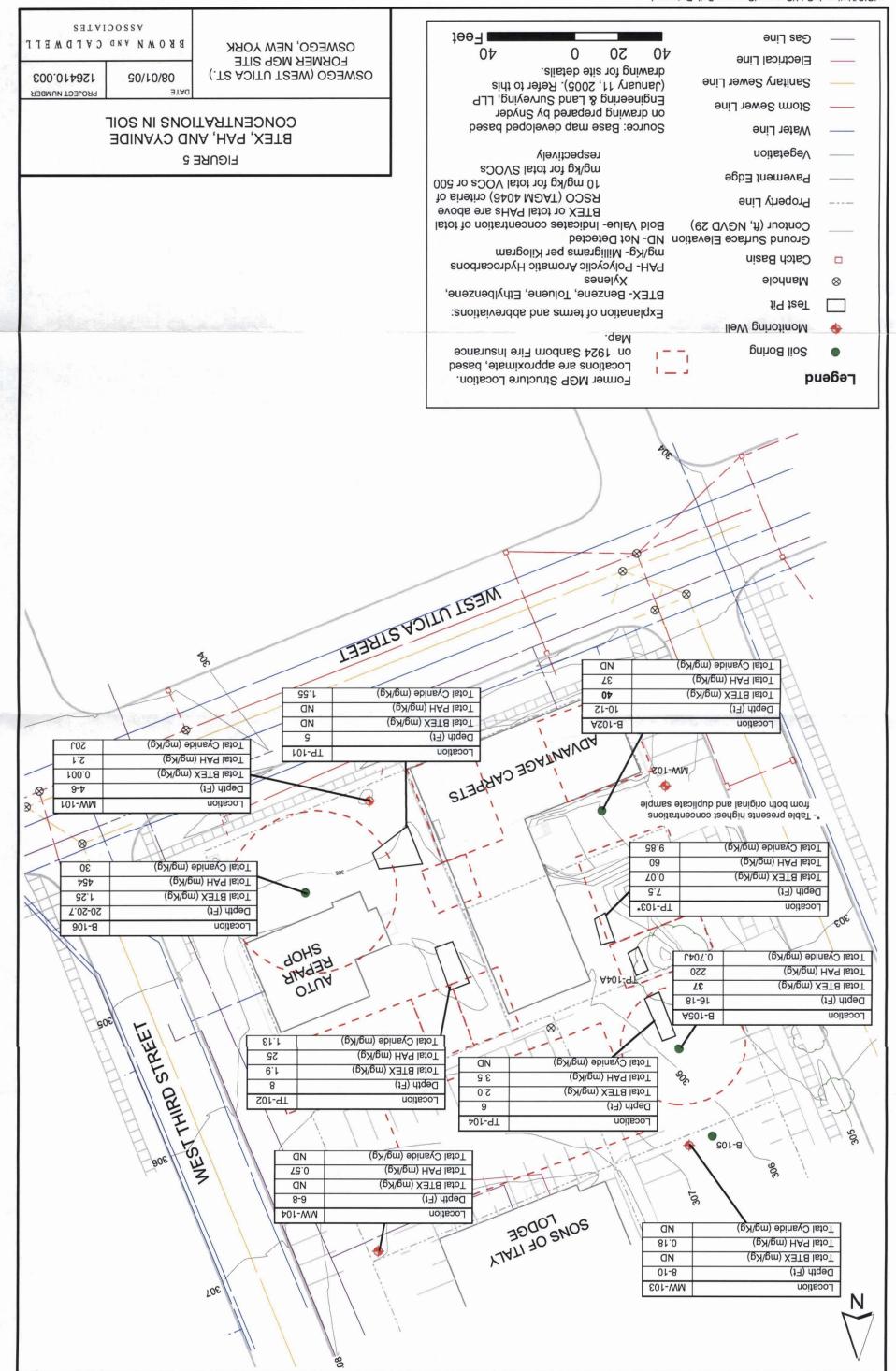
SUMMARY OF VISUAL/OLFACTORY FIELD OBSERVATIONS Oswego (West Utica St.) MGP Site

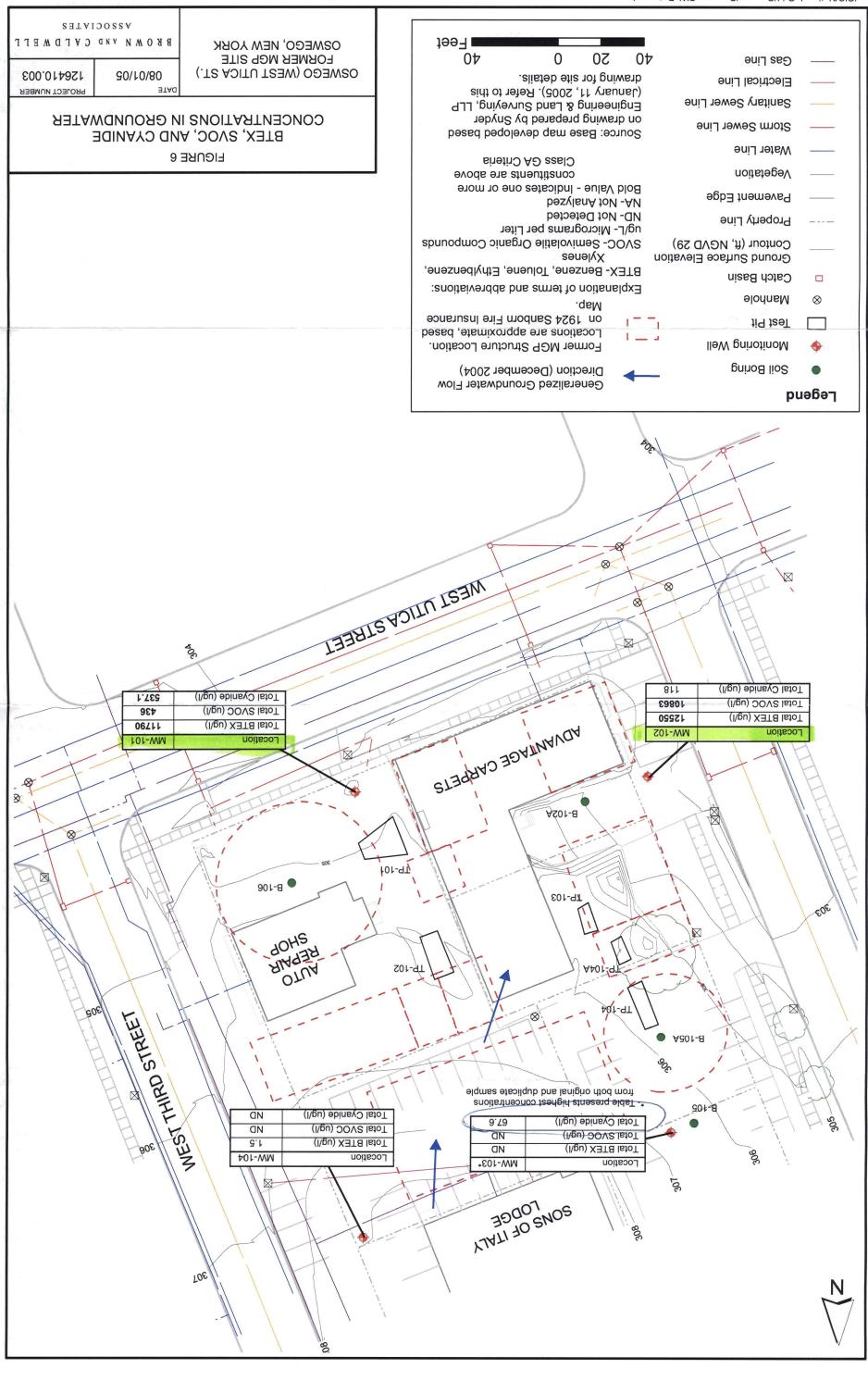

Location	Depth (ft., BGS)	Description
	l	
Soil Borin	gs '	
D 400A	0.0	Madayata tay aday
B-102A	6-8	Moderate tar odor
	8-10	Strong iridescent sheen. Intermittent brown-black NAPL @8.5-10.
	10-12	Black-brown viscous NAPL coat fragments of sandstone. Strong iridescent sheen.
	40.40.0	Strong tar odor.
D 405	12-12.8	Strong tar odor (in Till)
B-105	8-10	Slight petroleum odor in lower part of sample.
D 4054	14-16	14.1-14.3: Slight tar odor in sand lens
B-105A	2-4	Slight tar odor.
	4-6	@4.8: wood with little black-brown NAPL. Stong tar odor. Sheen.
	6-8	Wood fragments with black-brown NAPL, stains. Tar odor. Few droplets of NAPL on
	0.40	water in sample.
	8-10	Droplets of NAPL on water in sample. Tar odor.
	10-12	Moderate tar odor
	12-14	Slight tar odor, slight sheen.
	14-16	Faint tar odor
	16-18	Dark yellow-light brown NAPL throughout soil sample. Stong tar odor, slight petroleum
	40.00	odor. Strong sheen.
	18-20	Black stain @19.8. Droplets of NAPL. Strong sheen. Stong tar odor.
- 100	20-21.1	Local black stains. Strong tar odor.
B-106	2-4	Moderate detergent-like odor. Sheen on water in borehole.
	4-6	@5.8: black sand and gravel, wood fragments with stong tar odor and sheen.
	10-12	Black stain. Strong sheen. Petroleum odor.
	12-14	Slight tar odor, slight sheen.
	14-16	Slight sheen.
	16-18	Slight tar odor.
101	20-21.4	@20.5: strong tar odor, sheen. @ base of sample: black stain, strong tar odor.
MW-101	4-6	@5.2-5.6: Black stain with moderate tar odor.
	6-8	Intermittent black stain. Tar odor.
	8-10	Intermittent black stain. Tar odor.
	10-12	Faint tar odor. (Top of till).
	12-14	Slight tar odor.
	14-16	Slight tar odor.
	16-18 18-20	Moderate tar odor. Moderate tar odor.
	1511-511	
	20-20.4	Moderate tar odor.


TABLE 5


SUMMARY OF VISUAL/OLFACTORY FIELD OBSERVATIONS Oswego (West Utica St.) MGP Site


Location	Depth (ft., BGS)	Description
MW-102	0-2	Faint tar odor.
1017	4-6	Occasional dark mottling of soil.
	8-10	In Till: NAPL coating gravel grains in till; Silt & Clay in till matrix is mottled with NAPL
	9,.0	land stained. Sheen, Tar odor.
	10-12	Black stained mottles or layers throughout sample. NAPL in pockets (usually
		associated with gravel grains). NAPL is brown-black and iridescent. Strong sheen.
		Strong tar odor.
	12-14	Black, iridescent NAPL mottling and/or veins throughout sample and coating gravel.
		Strong tar odor.
	14-16	Black, iridescent NAPL in pockets and/or veins throughout sample. Moderate tar odor
	16-18	Occasional black mottling of soil. Moderate tar odor.
MW-103	6-8	Slight tar odor.
	8-10	Slight tar odor.
		Note: Collected soil samples from well screen interval onlySee description of adjacent
		boring B-105 for description of soil from above and below.
MW-104		No observations or odor indicative of MGP-related materials.
Test Pits		
TP-101A	0.5	Moderate tar odor.
TP-101B	0.5-1.5	Lens of nearly-solid tar on west side of pit (outside of holder wall).
	3	Thin layer of LNAPL on surface of water east (inside) of holder wall. Gasoline odor.
TP-102	3	East-west pipe cast iron (±12 in. diameter) with slight tar odor.
	8	Initially, a thin, clear LNAPL layer was observed on water surface with gasoline odor.
		Later, dark NAPL with strong tar odor flowed into pit.
TP-103	3.5	East-west pipe cast iron (±12 in. diameter) with slight tar odor.
	5.5	Groundwater in pit with sheen.
TP-104A		South side of sewer line: No observations or odor indicative of MGP-related materials.
TP-104B		North side of sewer line:
	4	Moderate tar odor.
	5	Groundwater in pit with moderate tar odor and sheen. Thin layer of clear LNAPL on
		water surface.
	6	Strong tar odor. Sheen. (Note: GC fingerprint analysis indicate 30W lubricating oil).
Monitoring	। g Wells/Piezd 	ometers
MW-101		No observations or odor indicative of MGP-related materials.
		Tar-like odor during 12/16/04 groundwater sampling.
MW-102		Tal-like odor during 12/10/04 groundwater barriping.
MW-102 MW-103		Slight petroleum odor during 12/16/04 groundwater sampling.


FIGURES



BROWN AND CALDWELL

TEST PIT LOG

SITE LOCATION	Oswego, NY, Utica St.	TEST PIT NUMBER	TP-101A/B
PROJECT	126410.002	BC	N. Krupinski
NUMBER		REPRESENTATIVE	
GENERAL	Area of former gas	CONTRACTOR	Parratt Wolff
LOCATION	holder, ammonia still, electric plant		
DATE	11/19/04	OTHERS	J. Wolf (DEC)
TIME OPENED	06:57	TIME CLOSED	08:40
DEPTH TO WATER	TP-101A: 3.5	EQUIPMENT	Backhoe
(ft. BGS)	TP-101B: 4.0		excavator
DEPTH TO NATIVE	3.5	TOTAL LENGTH	19.5
SOILS (ft. BGS)		(ft.)	
TOTAL DEPTH (ft.	TP-101A: 7.0	NAPL OBSERVED	Yes, inside &
BGS)	TP-101B: 4.0		outside holder,
			w/ petroleum
			and tar odors
ANALYTICAL	TP-101-F(5.0')		
SAMPLES			

View Northeast (TP-101A foreground, TP-101B background)

Fill: Black-gray mfc GRAVEL and cmf SAND, little Silt & Clay. Frequent whole bricks, some wood

Thin NAPL/sheen on water (gasoline odor)

Brick wall of holder tank

NAPL on water

TEST PIT LOG

SITE LOCATION

Oswego, NY, Utica St.

TEST PIT NUMBER TP-101A/B

View Northwest (TP-101A left, TP-101B right)

Brick holder tank wall

View Southwest (TP-101A)

<u>0.5'-1.0'</u>: Tar, hard but slightly malleable.

1.0'-1.5': White-gray ash.

1.5'-3.5': Tan mcf SAND and mfc GRAVEL (rounded), some Silt & Clay.

2.0'-2.5': Lens of wood.

3.5'-7.0': Gray-black stained CLAY & SILT, some mfc Gravel, little (-) mcf Sand. Moderate to strong coal tar odor. Analytical sample collected @ 5.0'

BROWN AND CALDWELL

TEST PIT LOG

SITE LOCATION	Oswego, NY, Utica St.	TEST PIT N
PROJECT	126410.002	BC
NUMBER		REPRESENT
GENERAL	Area of former tar tank	CONTRACT
LOCATION	rooms	
DATE	11/18/04	OTHERS
TIME OPENED	13:18	TIME CLOS
DEPTH TO WATER	6.5	EQUIPMEN
(ft. BGS)		
DEPTH TO NATIVE	5.0	TOTAL LEN
SOILS (ft. BGS)		(ft.)
TOTAL DEPTH (ft.	8.5	NAPL OBSE
BGS)		
ANALYTICAL	TP-102-F(8.0')	
SAMPLES		

TEST PIT NUMBER	TP-102
BC	N. Krupinski
REPRESENTATIVE	
CONTRACTOR	Parratt Wolff
OTHERS	J. Wolf (DEC)
TIME CLOSED	15:15
EQUIPMENT	Backhoe
	excavator
TOTAL LENGTH	14.0
(ft.)	
NAPL OBSERVED	Yes, with
	petroleum and
	tar odors

View Southeast

<u>0.6'-2.0'</u>: Black cmf SAND, some fm Gravel, some (-) Silt & Clay.

2.0'-5.0': Brown-tan CLAY & SILT< and fmc SAND, some mfc Gravel. Occ. black mottled/stained layers, occ. bricks.

3.0': Cast iron pipe (1' diameter)

5.0'-8.0': Tan SAND and Clayey SILT, some mfc Gravel.

<u>6.5</u>': Light-colored NAPL on water surface (petroleum odor).

8.0':Black cmf SAND and fmc GRAVEL, some Silt & Clay. Strong tar odor. Analytical sample collected @ 8.0'

TEST PIT LOG

SITE LOCATION

Oswego, NY, Utica St.

TEST PIT NUMBER TP-102

View Southeast

8.0'-8.5': Black cmf SAND and fmc GRAVEL, some Silt & Clay. Strong tar odor.

Dark-colored NAPL, tar odor.

Dark-colored NAPL, tar odor.

Page 4 of 9

BROWN AND CALDWELL

TEST PIT LOG

SITE LOCATION	Oswego, NY, Utica St.	TEST PIT NUMBER	TP-103
PROJECT	126410.002	BC	N. Krupinski
NUMBER		REPRESENTATIVE	
GENERAL	Area of former	CONTRACTOR	Parratt Wolff
LOCATION	purifying room		
DATE	11/18/04	OTHERS	J. Wolf (DEC)
TIME OPENED	11:20	TIME CLOSED	12:50
DEPTH TO WATER	5.5	EQUIPMENT	Backhoe
(ft. BGS)			excavator
DEPTH TO NATIVE	6.5	TOTAL LENGTH	10
SOILS (ft. BGS)		(ft.)	
TOTAL DEPTH (ft.	8.0	NAPL OBSERVED	Yes, sheen on
BGS)			water with
			petroleum
			odor
ANALYTICAL	TP-103-F(7.5')		
SAMPLES			

View Northwest

0.5'-8.0': Dark brown cmf GRAVEL/COBBLES and cmf SAND, some CLAY & SILT. Frequent bricks, concrete, rubble, coke, coal, loose pieces of iron pipe (4" diameter), occ. ash.

1.5'-2.0': Black ash lens

3.0'Cast iron pipe (1' diameter), slight tar odor near pipe.

<u>5.5</u>': Water table with light-colored sheen, petroleum odor.

BROWN AND CALDWELL

TEST PIT LOG

SITE LOCATION

Oswego, NY, Utica St.

TEST PIT NUMBER TP-103

Photo of excavated material 6.5': Tan mcf SAND and CLAY & SILT, some mcf Gravel (rounded/subrounded).

7.5': Gray-black stained cmf SAND and CLAY & SILT, some mcf Gravel. Analytical sample collected from soil @ 7.5'.

| B R O W N A N D C A L D W E L L

TEST PIT LOG

SITE LOCATION	Oswego, NY, Utica St.	TEST PIT NUMBER	TP-104 A/B
PROJECT	126410.002	BC	N. Krupinski
NUMBER		REPRESENTATIVE	-
GENERAL	Area of former gas	CONTRACTOR	Parratt Wolff
LOCATION	holder and associated contamination		
DATE	11/17/04-11/18/04	OTHERS	B. O'Neill
			(BC), S.
			Stucker (NM)
			, J. Wolf
			(DEC)
TIME OPENED	A: 13:57	TIME CLOSED	A: 15:05
	B: 15:34		B: 11:20
DEPTH TO WATER	5.0	EQUIPMENT	Backhoe
(ft. BGS)			excavator
DEPTH TO NATIVE	>4.0	TOTAL LENGTH	12.0/19.0
SOILS (ft. BGS)		(ft.)	
TOTAL DEPTH (ft.	TP-104A: 3.2	NAPL OBSERVED	Yes, in TP-
BGS)	TP-104B: 6.0		104B, w/
			petroleum
			odor
ANALYTICAL SAMPLES	TP-104B-F(6.0')		

View East (TP-104A)

3.0': Cast iron pipe (1' diameter)

1.0'-3.2': Brown-black fill with bricks, concrete, sandstone, tile, asphalt, ash.

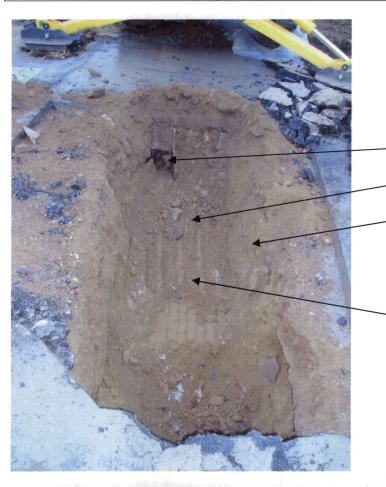
BROWN AND CALDWELL

TEST PIT LOG

SITE LOCATION

Oswego, NY, Utica St.

TEST PIT NUMBER TP-104 A/B


View Northwest (TP-104A) 1.0'-3.2': Brown-black fill with bricks, concrete, sandstone, tile, asphalt, ash.

TEST PIT LOG

SITE LOCATION

Oswego, NY, Utica St.

TEST PIT NUMBER TP-104 A/B

View Northwest (TP-104B)

Metal corner

Edge or footer of holder tank

<u>0.3'-</u>: Brown cmf GRAVEL and cmf SAND, some Silt & Clay. Frequent rubble, metal pieces. Occ. tar odor.

<u>4.0</u>': Flat slab of stone blocks and concrete, possible holder tank foundation, tar odor.

View Southeast (TP-104B)

<u>5.0</u>²: Groundwater with thin light/clear NAPL sheen, petroleum odor.

6.0': Gray cmf SAND and cmf GRAVEL (subrounded), some (+) Clay & Silt. Tar odor. Analytical sample @ 6.0'

ATTACHMENT 2 SOIL BORING AND WELL CONSTRUCTION LOGS

BROWN AND CALDWELL

Project Name: SC of Oswego (Utica St) MGP Site

Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

Boring No.
B-102A

NA

The state of the s									
Geologist/Office		Checked By:	Boreho	ole Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)	
N. Krupinski/Aller	ndale	R. O'Neill		8"			NA"	12.8 ft.	
Start/Finish Da	ite	Drilling Contr	actor:	Sampling: S	plit Spoon	Development	Method:		
11/29/04 - 11/2	29/04	Parratt-Wolff, Inc.		Hammer Typ	e: Manual	NA			
Driller: Drilling Method: R. Baldue Hollow-stem auge				ing Equipmen	Vert Datum:	/Proj: State Pla NGVD 29 ce Elev: 303.1		Easting: 839105.1 ft. Northing: 1257885.3 ft. TOC Elev: NA ft.	

								Grap	hic Log	(mc	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Recovery	Lithology	Backfill	OVM Readings (ppm)	Remarks
10-		SC SM CL ML CL ML ML SW/ SM SC J	SILT, some mf Gravel. Red brick fragments, occ. black layer. Damp. Brown CLAY & SILT, some cmf Sand, little (+) fm Gravel. Occ. pieces of coal throughout, occ. Black layers. Soil is disturbed, not stratified. Saturated @ 3.0'. Light Brown and tan/gray CLAY & SILT, some cmf Sand, little fm Gravel (sub-rounded, natural). Soil is disturbed (not stratified). Wet. SILT & CLAY DEPOSIT Black-gray stained SILT & CLAY to Clayey SILT. Moderate tar odor. Wet. As above, Brown-gray-black. Strong iridescent sheen, intermittent Black-brown NAPL @ 8.5-10.0. Dense @ 9.8'. Saturated f w/ water. As above, bits of fractured gray sandstone throughout Large veins of Black-red-brown	/-7-13-4 2-3-1-2 1-2-2-3 1-2-10-10 5-2-2-8 14-50/0.4 39-50/0.3	1 2 3 4 5 6 7					0 0 34.1 96.1 284 26.8	10'-12' Soil sample sent for laboratory analysis. 12.8' End of boring.

BROWN AND CALD WELL

Project Name: SC of Oswego (Utica St) MGP Site Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

NA

Boring No. B-105

0 11 2 2					Page 1 of 1				
Geologist/Of	fice				Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)	
N. Krupinski/Al	Krupinski/Allendale R. O'Neill 8"				NA"	28.1 ft.			
Start/Finish 1	Date	Drilling Contra	ctor:	Sampling: S	plit Spoon Developmen		Method:		
11/22/04 - 11	/22/04	Parratt-Wolff, Inc.		Hammer Typ	e: Manual	NA			
Driller:	Driller: Drilling Method: Drilling Equi			ng Equipment	: Horiz Datum	/Proj: State Pla	ne NAD 83	Easting: 839054.2 ft.	
D. Paldus Hallow stem avers Ingresoll Pand 930					Vert Datum: Ground Surface	NGVD 29 ce Elev: 306.4 f	ft.	Northing: 1259034.9 ft. TOC Elev: NA ft.	

						Γ		Graj	phic Log	Î	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Recovery	Lithology	Backfill	OVM Readings (ppm)	Remarks
		GW	FILL Light Brown fm GRAVEL (sub-rounded)	6-28-16-12	1	V	H	d		5.6	
		GW	and cmf SAND, little Silt. Dry.	6-7-2-3	2	X				5.7	Grouted to surface.
5-		GW SW	Brown mf GRAVEL (fractured, some sub-rounded) and cmf SAND, some (-) Clayey Silt. Bits of brick. Dry.	7-9-32-8	3		1			1.4	
		SW	GLACIAL TILL Tan mcf SAND, some Silt & Clay, some mf Gravel (fractured or sub-rounded). Saturated	11-12-28-62	4	X				0.0	
1 =		sw	\ \(\tilde{\text{@ 6.5'.}} \) As above. \(\tilde{\text{@ 9.3' denser.}} \)	32-52-60/0.5	5	X	T			0.5	
10-		SW	As above, slight petroleum-like odor. Very	44-50/0.4	6		#			0.2	
		<u>sw</u> ,	Tan mcf SAND, some Silt & Clay, some mf - Gravel (fractured or sub-rounded). Very	50/0.4	7	×	T	••••		2.2	
15		sw	As above. @ 14.1'-14.3' lens of cmf SAND, trace Silt. Slight tar-like odor. Very dense.	40-50/0.3	8	X	I	••••		0.0	
		S₩	As above, @ 16.2'-16.3' lens of Gray cmf SAND, trace Silt.	56	9	X	I	····		0.0	
		SW/	As above. Gravel is Sub-rounded/sub-angular.	50/0.2	10	*	1	•••		0.0	
20-		sw	As above. @ 20.8' Gray SILT, trace f	44-56	11	X	I			0.0	
	-	<u>sw</u>	Gray-pink fm SAND, some (-) Silt. Dense.	34-50/0.2	12	X	I	***		0.1	
25		CL ML	Gray-pink CLAY & SILT, little f Gravel, trace f Sand. Dense, Damp.	100/0.1	13	+	T			0.0	
			No recovery.	86/0.0	14						
	ļ	ML CL	Pink-gray SILT & CLAY and fm GRAVEL [(fragmented brown-gray sandstone), some mcf Sand.	50/0.1	15					0.0	28.1 End of Boring.
											J

BROWN AND CALDWELL

Project Name: SC of Oswego (Utica St) MGP Site Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

Boring No. B-105A

NA Page 1 of 1

C. San Carlo					rage 1 of 1			
Geologist/Offic	ce	Checked By:	Boreho	le Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)
N. Krupinski/Allendale R. O'Neill 8"					NA"	21.1 ft.		
Start/Finish Da	ate	Drilling Contra	Orilling Contractor: Sampling: Sp			Development	Method:	
11/23/04 - 11/2	23/04	Parratt-Wolff, Inc.		Hammer Typ	e: Manual	NA		
Driller:	Drill	ling Method:	Drilli	ng Equipmen	t: Horiz Datum	/Proj: State Pla	ne NAD 83	Easting: 839069.8 ft.
R. Baldue Hollow-stem auger			Inger	soll Rand 830	Vert Datum: Ground Surface	NGVD 29 ce Elev: 308.8	Northing: 1257994.5 ft. TOC Elev: NA ft.	

					Т	Г		Grai	ohic Log	ि	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Recovery	Lithology	Backfill	OVM Readings (ppm)	Remarks
-		SP	FILL Light Brown cmf SAND, some Clayey Silt,	/-9-18-19	1	X	I			0.5	Grouted to surface.
		ML CL	some fm Gravel. Slight soil odor, damp. Brown-gray CLAY & SILT and cmf SAND, - little f Gravel. Slight tar odor. Damp.	14-14-2-2	2	M	Ц			0.3	
5-		ML CL	As above. @ 4.4' Gray fm GRAVEL, some cmf Sand, little Silt. @ 4.8' Black wood with little Black-brown liquid NAPL (coal tar?),	14-5-8-13	3	M	I			27.1	Boring is located within area
		GW	\ \textroong tar odor, sheen. Saturated w/ water	13-8-7-8	4	X	1			11.5	of former 40 KCF gas holder.
		GW	w/ NAPL) at top. Tar odor, few droplets of NAPL (coal tar?) on water. Dark Gray fm GRAVEL, some cmf Sand,	9-7-3-1	5	X	1	ã		5.6	
10-		Ğ₩	some (-) Silt & Clay. Tar odor, droplets of NAPL (coal tar?) on water. Dark Gray mf GRAVEL (rounded/sub-rounded gray, green, red	3-3-7-9	6	1	Į	Ğ		6.2	
		sw	sandstone), some cmf Sand, little Silt &	7-7-8-14	7	X				5.0	
15		GW	Gray mf Gravel (sub-rounded/sub-angular gray, green, red sstn.), some (-) cmf Sand,	8-6-16-5	8	X	H	Ö		1.1	
		sw	trace Silt. Piece of screw w/ orange paint (possibly from above). Faint tar odor. Gray cmf SAND, little (+) Silt & Clay, trace f Gravel. @ 16.9'-17.2' lens of SILT &	16-18-3-3	9					11.1	16'-18' Soil sample sent for laboratory analysis.
		sw	CLAY. NAPL throughout (dark Yellow/light brown, strong tar odor, slight petroleum odor, corrodes latex). Strong	2-3-13-3	10	1	L			4.0	
20-		sw	sheen.	9-37-50/0.0	11	*	I			101	21 11 End of Dodge
			Sand, little Silt. @ 19.8' piece of Red brick. Strong tar odor, strong sheen, droplets of NAPL. Concrete in tip. Gray f SAND. @ 20.5' Black-stained mf GRAVEL and cmf SAND, little (+) Silt. @ 20.8' piece of gravel coated w/ prominently green SILT & CLAY, some cmf Sand. @ 21.0' piece of brick and concrete in tip. Strong tar odor throughout, Black-stained at 1 bottom.								21.1' End of Boring.

BROWN AND CALDWELL

Project Name: SC of Oswego (Utica St) MGP Site Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

Boring No. B-106

NA

1								
Geologist/Office		Checked By:	Boreho	le Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)
N. Krupinski/Allen	dale	R. O'Neill		8"			NA"	21.4 ft.
Start/Finish Da	te	Drilling Contra	ctor:	Sampling: S	plit Spoon	Development	Method:	
11/19/04 - 11/1	9/04	Parratt-Wolff,	Inc.	Hammer Type: Manual		NA		
2			ng Equipmen soll Rand 830	t: Horiz Datum, Vert Datum: Ground Surface	NGVD 29		Easting: 839241.2 ft. Northing: 1257922.9 ft. TOC Elev: NA ft.	

							7	Gran	hic Log	<u>a</u>	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Recovery	Lithology	Backfill	OVM Readings (ppm)	Remarks
		SW GW	FILL Brown cmf SAND and fm GRAVEL, little Silt. @ 0.6' Red mf GRAVEL and cmf SAND, some Silt & Clay. @ 0.8' Black & J-	/-7-6-6 5-2-4-4	2	X	I			33.1	Grouted to surface
5-		SW GW	white SILT & CLAY (ash), some mf Gravel (brick), little mfc Sand. Black/white SILT & CLAY and mcf SAND, trace f Gravel. Pieces of brick @ [] 3.6'. Moderate detergent-like odor. Sheen on []	3-2-2-1	3	$\langle \rangle$	1			12.1	Boring is located within area
		SW GW	water in borehole. Saturated @ 3.5'. Brown cmf SAND and fm GRAVEL, some - Silt & Clay. @ 5.8' Black mf GRAVEL and + cmf SAND, some Silt & Clay. Bits of wood, -	3-4-2-3	4	X	I	3		1.6	of former 100 KCF gas holder.
10-		sw	pieces of brick. Strong tar odor, sheen	4-2-3-2	5	\bigvee				9.0 5.0	
10-		1 1	Gravel (red brick). @ 9.6' Black and gray ash and brick, pebbles. Black cmf SAND and mf GRAVEL, little Silt. Pieces of brick. Black staining, strong 7	7-2-2-4 6-2-3-3	7	\mathbb{N}		Š		2.1	
			\ \text{sheen, petroleum odor.} \qquad \text{Black and red mfc SAND, grades to fm} \qquad \text{GRAVEL, some cmf Sand, trace Silt. Pieces \qquad \text{of brick, coal. Slight tar odor, slight sheen.} \qquad \qquad	2-3-3-1	8	X	1	K		1.6	
15-		GW	As above, brick in last 0.4'. Slight sheen.	4-3-2-4	9	X	1	X		1.5	
=		sw	and mf GRAVEL (brick). Slight tar odor. Black-brown and red mfc SAND, trace Silt.	4-6-7-5	10	X M	1	₩.		0.5	
20-		SW	@ 19.2' grades to mf GRAVEL, little cmf Sand, trace Silt. As above. @ 20.4' piece of brick, @ 20.5' black wood/SILT, little fm Sand. @ 20.5' #	16-50/0.2	11	A	I			1.2	20.0'-20.7' Soil sample sent for laboratory analysis.
			strong tar odor & staining, sheen. Brick and rooncrete in shoe. Black SILT & CLAY, little (+) fm Sand, trace f Gravel. Stained black, strong tar odor. @ 21.2' piece of brick and concrete in the shoe.	50/0.3	12	X		11.6/2		3.6	21.4' End of Boring

BROWN AND CALDWELL

Hollow-stem auger

R. Baldue

Project Name: SC of Oswego (Utica St) MGP Site

Project Number: 126410.002

Ingersoll Rand 830

Project Location: W. Utica St., Oswego, NY

Permit Number:

NA

Well No.

MW-101

Page 1 of 1

TOC Elev: 304.0 ft.

								1 mgc 1 01 1
Geologist/Offi	ce	Checked By:	Boreho	ole Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)
N. Krupinski/Alle	endale	R. O'Neill		8"	2" Slotted PVC		0.02"	20.4 ft.
Start/Finish D	ate	Drilling Contra	ctor:	Sampling: S	plit Spoon	Development	Method:	
11/23/04 - 11/	24/04	Parratt-Wolff,	Inc.	Hammer Typ	e: Manual	Surge & Pump		
Driller:	Dril	ling Method:	Drilli	ng Equipment		/Proj: State Pla	ne NAD 83	Easting: 839211.8 ft.
D D.11	llaur atom ourons	Incom	aall Dand 930	Vert Datum:	NGVD 29		Northing: 1257880.6 ft.	

Ground Surface Elev: 304.4 ft.

						Г		Grap	hic Log	î	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Recovery			OVM Readings (ppm)	Remarks
		GW	Red fm GRAVEL, little cmf Sand, little Silt -	/-5-5-4	1	X	I	3		0.0	0'-1' Concrete pad
		SW GW	& Clay. @ 0.3' Black cmf SAND and fm GRAVEL, little Silt. @ 0.5' Tan mcf	5-4-3-3	2	M		Ā		-	1.0'-2.5' Bentonite seal 2.5'-3.0' Choker sand (00)
5-		ML CL	Brown cmf SAND and fm GRAVEL, little	4-6-22-9	3	M	I			0.0	3.0'-16.0' Filter sand (1) 4'-6' Soil sample sent for laboratory analysis
		ML CL	fm Gravel. @ 5.2'-5.6' stained Black, moderate tar odor. Wet/saturated. As above. Black staining intermittent	3-3-4-4	4	M	I			0.6	
3		ML CL	throughout. Tar odor. Wet. As above, intermittent staining throughout, — moderate tar odor. Saturated. —	8-13-15-26	5	M	I			0.9	4'-14' 0.02" Slot screen
10-		SM SC	Gray-tan SILT & CLAY and mcf SAND, some fm Gravel (sub-rounded/sub-angular gray sstn, shale). Faint tar odor. Dense.	20-22-28-30	6	M	I			0.2	4-14 0.02 510t selecti
		SM SC	As above, Piece of rock @ 12.6'. Very dense. Slight tar odor.	19-31-37-50/0.2	7	X	I			3.2	
15		SM SC	As above, piece of Gray sandstone. Very	39-50/0.4	8	X	I			14.1	
		SM SCJ	Gray cmf SAND and SILT & CLAY, some fm Gravel (sub-rounded). @ 16.3' grades to flight Brown. Moderate tar odor.	44-50/0.3'	9	X	T	1///		-	16'-20.4' Bentonite
	l		As above, moderate tar odor.	65/0.5'	10	×		11//		-	
20—	SA .	<u>ST</u> N	Piece of Gray Sandstone. @ 20.2' Pink-gray fm GRAVEL (sandtone), some cmf Sand, little Silt & Clay. Moderate tar odor.	80/0.4'	11	×				-	20.4' End of borehole.

Project Name: SC of Oswego (Utica St) MGP Site

Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

NA

Well No.

MW-102

Geologist/Offic	ce	Checked By:	Boreho	le Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)
N. Krupinski/Alle	ndale	R. O'Neill		8"	2" Slotted PVC		0.02"	18.0 ft.
Start/Finish Da	ate	e Drilling Contrac		Sampling: S	plit Spoon	Development	Method:	
11/30/04 - 11/3	30/04	Parratt-Wolff,	Inc. Hammer Type		e: Manual	Surge & Pump		
Driller:	Dril	ling Method:	Drilli	ng Equipment	: Horiz Datum	Proj: State Pla	ne NAD 83	Easting: 839075.9 ft.
R. Baldue Ho					vert Datum: NGVI Ground Surface Elev			Northing: 1257873.7 ft. TOC Elev: 303.4 ft.

						Г		Gran	phic Log	ि	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Recovery		Well Traffic Rated Vault Box	OVM Readings (ppm)	Remarks
10—		SW ML CL ML CL SW	FILL Black cmf SAND (coke, slag), some Silt & Clay. @ 1.7' piece of Gray sandstone. @ 1.8' Brown-tan SILT & CLAY and cmf SAND, some (-) fm Gravel. Very faint tar odor. Dry/damp. Light Brown-tan SILT & CLAY and cmf SAND, some fm Gravel (sub-rounded/sub-angular). Occ. pieces of brick, coke, lenses of black coke fill. Damp. GLACIAL TILL Light Brown-tan SILT & CLAY and cmf SAND, some fm Gravel (sub-rounded/sub-angular natural). @ 4.0'-4.5' occ. dark Brown mottling. Saturated. As above, saturated. Black SILT & CLAY, some (-) mf Gravel, trace fmc Sand. NAPL around gravel pieces, mottled w/ NAPL in SILT & CLAY, stained, strong sheen, strong coal tar odor. Wet. Tan/light Brown/black SILT & CLAY, some fm Gravel, some fmc Sand. Slightly dense. Mottled/layered w/ Black-stained soil throughout, NAPL pockets throughout, usually associated w/ pieces of gravel. NAPL is Brown to black and iridescent. Strong sheen, strong tar odor. As above, Tan. Dense. Black and iridescent NAPL mottled or in veins throughout, coats gravel. Strong tar odor. Wet. Tan mf SAND, little fm Gravel, little Silt & Clay. Dense. Veins/pockets of Black iridescent NAPL throughout w/ little black staining. Moderate tar odor. Tan fm SAND, some mf Gravel, little Clayey Silt. Dense. @ 16.2' Gray. Occ. Black mottling throughout. Moderate tar odor. No recovery. Bit of Gray slough in shoe (Silt, Sand).	10-6 7-4-1-2 3-3-1-2 1-2-3-3 5-4-6-10 7-12-16-22 36-23-14-24 15-27-50/0.3 50/0.0	1 2 3 4 5 6 7 8 8 9 10 10					1.0 0.0 0.0 16.8 58.1 27.1 29.0 15.2	0'-1.5' Concrete pad 1.5-3.5" Bentonite seal 3.5'-4.0' Choker sand (00) 4.0'-16.5' Filter sand (1) 6'-16' 0.02" Slot screen 16.5'-18' Bentonite 16'-18' Sump 18' End of borehole.

BROWN AND CALDWELL

Project Name: SC of Oswego (Utica St) MGP Site Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

Well No. MW-103

NA

1									
Geologist/Offic	- 1				le Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)
N. Krupinski/Aller	le R. O'Neill			8"	2" Slotted PVC		0.02	13.5 1t.	
Start/Finish Da 11/29/04 - 11/2							Development Surge & Pump		
Driller: R. Baldue	Driller: Dril				ng Equipmen soll Rand 830	Vert Datum:	/Proj: State Pla NGVD 29 ce Elev: 306.8		Easting: 839064.9 ft. Northing: 1258039.1 ft. TOC Elev: 306.5 ft.
						Ground burns			

							-	Gran	hic Log	n)	
Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blow Counts	Sample No.	Sample Int	Т	Lithology	Well Traffic Rated Vault Box	OVM Readings (ppm)	Remarks
10—		ML CL ML CL	GLACIAL TILL Light Brown/tan SILT & CLAY and cmf SAND, some fm Gravel (sub-rounded, natural). Very slight tar odor. Saturated. As above. Dense. Very slight tar odor.	10-10-38-50/0.2 20-31-32-44	1 2					8.3	0'-1' Concrete pad 1'-3' Bentonite seal 3.0'-3.5' Choker sand (00) 3.5'-15.5' Filter sand (1) 8'-10' Soil sample sent for laboratory analysis 5'-15' 0.02" Slot screen 15.5' End of borehole. See log of adjacent boring B-105 for description of soil at location MW-103.

BROWN AND CALDWELL Project Name: SC of Oswego (Utica St) MGP Site

Project Number: 126410.002

Project Location: W. Utica St., Oswego, NY

Permit Number:

NA

Well No.

MW-104

0 11 2 2	_				, 0,			1 - 18 - OI
Geologist/Offic	ce	Checked By:	Boreho	le Diameter:	Screen Diameter and Type:		Slot Size:	Total Boring Depth (ft)
N. Krupinski/Aller	ndale	R. O'Neill		8"	2" Slotted PVC		0.02"	15.0 ft.
Start/Finish Da	ite	te Drilling Contracto		Sampling: S	plit Spoon	Development	Method:	,
11/24/04 - 11/2	24/04	Parratt-Wolff,	Inc.	Hammer Typ	e: Manual	Surge & Pump		
Driller:	Drilling Method:		Drilli	ng Equipmen	t: Horiz Datum	/Proj: State Pla	ne NAD 83	Easting: 839207.6 ft. Northing: 1258088.8 ft.
R. Baldue	Но	low-stem auger	Inger	soll Rand 830		ce Elev: 309.1	ft.	TOC Elev: 308.8 ft.

١		. Dalu		Tionow-stem auger	Ingerion rums		Giod		uiia			: 309.1 It.	<u> </u>	100 ERV. 300.0 II.
	Depth (feet)	Elevation (feet)	USC Soil Type	Description	Blo Cou		Sample No.	Sample Int	Т	Grap (Solophia)	Well Traffic Rated Vault Box	OVM Readings (ppm)	Remarks	
	10-		ML CL ML SP SP SP	Brown SILT & CLAY, some f (rounded to sub-angular), some Occ. pockets of ash or dark Br Damp. As above.	of Gray,	/-12- 6-8-1- 9-20-2 22-50 17- 73 23- 34-50	4-20 20-18 /0.4 59	1 2 3 4 5 6 7 8						0'-1' Concrete pad 1'-3' Bentonite seal 3.0'-3.5' Choker sand (00) 3.5'-15.0' Filter sand (1) 6'-8' Soil sample sent for laboratory analysis 4.5'-14.5' 0.02" Slot screen 15' End of borehole.