

2024-2025 Annual Periodic Review Report

Reporting Period: February 24, 2024 to March 27, 2025

Former Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York Site Number: V00512

Prepared for:

Ralph & Flatlands Associates, LLC c/o Richard H. Lewis, Esq. Meltzer, Lippe, Goldstein & Breitstone, LLP 190 Willis Avenue Mineola, NY 11501

> Prepared by: Touchstone Environmental Geology, PC 1919 Middle Country Road, Suite 205 Centereach, NY 11720 (631) 315-2734

> > April 2025

TABLE OF CONTENTS

Section	Pag	e
1.0 EXECUTIVE SUMMARY	3	
2.0 SITE OVERVIEW	3	
3.0 REMEDIAL PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	7	
4.0 INSTITUTIONAL CONTROL/ENGINEERING CONTROL (IC/ECs) PLAN	8	
5.0 MONITORING PLAN COMPLIANCE REPORT	8	
6.0 OPERATIONS AND MAINTENANCE PLAN	9	
7.0 OVERALL PPR CONCLUSIONS AND RECOMMENDATIONS	10	
REFERENCES	12	

FIGURES

- 1. PROPERTY LOCATION MAP
- 2. BASEMENT INDOOR AIR SAMPLE LOCATIONS
- 3. LAYOUT OF INITIAL AND ADDITIONAL SSD VENTS AND DUCTS

TABLES AND DATA PLOTS

- 1. PERCHLOROETHYLENE IN INDOOR AIR SAMPLES
- 2. PRE-SAMPLING PRODUCT INVENTORIES AND VACUUM READINGS
- 3. COMPARISON OF 2025 INDOOR AIR RESULTS TO 2024 INDOOR AIR RESULTS

ATTACHMENTS

- A. CERTIFICATION FORM
- B. INDOOR AIR LABORATORY DATA
- C. DUSR

TOUCHSTONE ENVIRONMENTAL GEOLOGY, PC

2024-2025 Periodic Review Report Former Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

1.0 EXECUTIVE SUMMARY

A. Nature and Extent of Contamination

Historically, the contaminated media at the former Bon Ton Cleaners Site (the Site) included groundwater and soil vapor. The Site consists of a small shopping center with several retail stores and adjacent parking areas. The primary contaminant is tetrachloroethane (PCE). A program of groundwater remediation including Soil Vapor Extraction (SVE), Air Sparging (AS) and chemical oxidation has been implemented to address the PCE in groundwater and soil vapor below the building and the parking lot of the shopping center. The termination criteria for groundwater outlined in the approved Remedial Action Work Plan (Ref.6) has been achieved.

PCE vapors were detected under the building in the areas occupied by Thriftyway (1940 Ralph Avenue); Golden Krust (1936 Ralph Avenue); Former Bon Ton Cleaners (1932 Ralph Avenue); Former Dunkin Donuts and Glamour Decorating (currently vacant) / Chinese Restaurant (1930 Ralph Avenue); and Telco Dept. Store (1910 - 1924 Ralph Avenue). A Soil Vapor Extraction (SVE) system was installed and operated under these units. The SVE system has since been converted to a more energy efficient Sub-Slab Depressurization (SSD) system.

B. Effectiveness of Remedial Program

The Remedial Program has been effective. The groundwater to soil vapor contamination pathway has been addressed. The SSD system is maintaining a negative pressure under the shopping center building slab at areas identified previously. The SSD system termination criteria for the Telco Dept. Store space (1910-1924) was achieved during the 2014 annual sampling event.

C. Compliance

The site is in compliance. In addition, units 1910-1924, the space occupied by Telco, have achieved the termination criteria.

D. Recommendations

The SSD systems in the units not occupied by Telco should remain in operation until the termination criteria at those spaces are achieved. The operations of the system at 1910-1924 have achieved the termination criteria and may remain off.

2.0 SITE OVERVIEW

A. Site Location, Surrounding Area and Nature & Extent of Contamination Prior to Site Remediation

The following Periodic Review Report (PRR) has been prepared by TOUCHSTONE ENVIRONMENTAL GEOLOGY, PC (TOUCHSTONE) on behalf of Ralph & Flatlands Associates. TOUCHSTONE was retained by Ralph & Flatlands Associates in January, 2024 to monitor and maintain the SSD system. The property is located at the intersection of Ralph Avenue and Flatlands Avenue in Brooklyn, NY and includes street addresses 1900 through 1968 Ralph Avenue. The

address of the former Bon Ton Cleaner unit is 1932 Ralph Avenue (see Figure 1). The surrounding area consists of residential and commercial usage on the northern, southern and western portions of the property. The property directly to the east is a NYCDEP combined overflow facility related to the city sewer system.

This report was prepared in accordance with the NYSDEC's PRR General Guidance document and a Voluntary Cleanup Program (VCP) Agreement, Index Number W-20916-02-03. The VCP Agreement addresses the remediation of an area of the Upper Glacial Aquifer located in the central portion of the property below the former Bon Ton Cleaners (the Site). For the purposes of this document, the contaminants of concern are tetrachloroethane (PCE) and its degradation products.

The scope of testing for the PRR includes indoor air testing at the locations identified in the Site Management Plan (SMP) prepared for this Site (Ref. 12). These include the following locations:

<u>Tenant</u> Thriftyway	<u>Sampling Location(s)</u> Basement
Golden Krust Restaurant	Basement
Glamour Decorating (vacant) (former Dunkin Donuts/Chinese Restaurant)	Basement
Former Bon Ton Cleaners (now a law office)	Basement

B. Chronology of Remedial Program

ACT (a former environmental consultant for this project) performed a series of previous investigations at this Site for refinancing purposes (Refs. 1, and 2). Copies of the ACT reports, including the corresponding site maps and laboratory data, are appended to the Investigation Work Plan (Ref. 3). CA RICH Consultants, Inc. performed the follow up investigations and remediation activities.

During the winter of 2002 and spring of 2003, a supplemental subsurface investigation of the Site was performed to determine the nature and extent of contamination at Bon Ton Cleaners (Ref. 5). Based on the results of that investigation, a remedy was designed consisting of two mechanical systems, the cleanout of one concrete sump, and chemical oxidation. The design and installation of the mechanical systems and the cleanout of the sump are described in the Final Engineering Report - Part A and Operations, Maintenance & Monitoring Plan (Ref. 8). The chemical oxidation phase is described in the Final Engineering Report – Part B and Operations, Maintenance & Monitoring Plan (Ref. 9).

Installation of the mechanical remediation systems began in August 2004, and included installation of Soil Vapor Extraction (SVE) wells and Air Sparging (AS) points. The sump was cleaned out on October 15, 2004. The installation of the SVE blower and the AS compressor was completed in March 2005. The AS/SVE system operated from March 29, 2005 through March 29, 2006 when the AS system was shut down. On November 29, 2006, the SVE system was shut down and replaced with four smaller energy efficient Sub-Slab Depressurization (SSD) fans in accordance with NYSDOH's October 2006 Guidance. A Site Management Plan (SMP) was completed for the project in December 2008 and revised in April 2011.

The tenant at the dry cleaners unit (the former Bon Ton Cleaners) vacated the space during 2011. All of the dry cleaning equipment and chemicals were removed at that time. A new tenant, an attorney, moved into the space in November 2011. In accordance with the SMP, one indoor air sample was collected from the ground floor of the attorney's office when he moved into the

space. On January 20, 2012, the NYSDEC issued a release letter regarding the Voluntary Cleanup Agreement for this site.

The following documents prepared for this Site should be reviewed for additional details:

<u>Document</u> Phase II Environmental Site Assessment, 1890-1960 Ralph Avenue, Brooklyn, New York	<u>Date</u> June 5, 2001
Phase II Environmental Site Assessment, 1890-1960 Ralph Avenue, Brooklyn, New York	July 23, 2001
Investigation Work Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	October 2002
Supplemental Investigation Work Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	May 2003
Investigation Report Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	October 2003
Remediation Work Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	April 2004
Pilot Test and Final Design Report Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	December 2004
Final Engineering Report - Part A and Operations, Maintenance & Monitoring Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	April 2005
Final Engineering Report - Part B and Operations, Maintenance & Monitoring Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York	May 2006
SSD Pilot Test and Design Report, Bon Ton Cleaners Site, 1932 Ralph Avenue, Brooklyn, New York	November 2006
Final SSD Start-Up Test Report, Bon Ton Cleaners Site, 1932 Ralph Avenue, Brooklyn, New York	June 2008
Site Management Plan, Bon Ton Cleaners 1932 Ralph Avenue, Brooklyn, New York	April, 2011

AS/SVE System Details

Installation of the mechanical remediation systems began during August 2004 and consisted of the installation of SVE wells and AS points. The system consisted of four SVE wells and three AS points. A pilot test of the AS unit was performed on September 23, 2004, while a pilot test of the SVE unit was performed on October 15, 2004. Results of the pilot tests are included in the Final Engineering Report – Part A, and Operations, Maintenance & Monitoring Plan (Ref. 8). The trenching for the underground AS piping was completed in November 2004. The installation of the SVE blower and the AS compressor was completed in March 2005. The AS/SVE system was started-up on March 29, 2005.

The soil vapor was extracted using a Fuji Model VFC604A-7W, 4½-horsepower regenerative blower located in the basement boiler room of Bon Ton Cleaners. The soil vapor passed through a moisture knock-out drum, into the blower, and flowed through a series of three 150-pound vapor-phase carbon drums provided by General Carbon. These were also located in the basement boiler room of Bon Ton Cleaners. In addition, two 165-pound liquid-phase carbon drums provided by General Carbon were placed in the basement boiler room to transfer condensation accumulated in the knock-out drum from the SVE wells. A float-activated sump pump located in the moisture knock-out drum transferred the accumulated condensate to the liquid-phase carbon drums and then to a municipal sewer connection. A two-inch diameter discharge stack was attached to the side of the building with the discharge point above the existing building roof elevation. An electrical connection was made directly from the blower to a utility panel inside the basement boiler room of Bon Ton Cleaners.

The SVE unit operated continuously from March 29, 2005 through November 29, 2006 except from June 7-9, 2005, when the system was down due to a blown fuse. During operation, the valves to all SVE wells were set in the open position and the SVE blower operated at a flow rate of approximately 165 cfm.

Air sparging was achieved using a Curtis-Toledo[™] model SES50HS8 5-horsepower reciprocating air compressor and an air-cooled aftercooler. An electro-mechanical timer was also installed to allow the air compressor to cycle off for two hours after every two hours of operation.

From March 29, 2005 to March 29, 2006, the air sparging unit remained in continuous operation except from June 7-9, 2005, when the system was down due to a blown fuse. On March 29, 2006, the air sparging unit was shut down.

Chemical Oxidation Details

On March 7, 2006 and September 19, 2006, 150 gallons of 5% sodium permanganate were applied to three locations around well VW-3 using a Geoprobe[™] direct push system. Bulk sodium permanganate was purchased from the Carus Chemical Company at a concentration of 40% and in 5-gallon containers. Using a portable steel-mixing tank, 50-gallon doses of 5% sodium permanganate were prepared by mixing 5 gallons of 40% sodium permanganate with 45 gallons of tap water.

The permanganate was injected through Geoprobe[™] macro-core sampling rods using a highpressure pump. The macro-core rods were driven to 23 feet below grade, where the first injection took place, then retracted at 4-foot intervals for additional applications of permanganate. The permanganate was applied at 4-foot intervals within each point from 8 to 23 feet below grade. The results of the groundwater analyses of water samples collected from this well since the sodium permanganate was applied has indicated a significant decrease in PCE concentrations. Details regarding the design of the chemical oxidation and laboratory results are included in the Final Engineering Report – Part B. (Ref. 9).

Sub-Slab Depressurization System Design and Installation Details

Currently, there is an SSD system operating in the basement boiler room and storage room of the former Bon Ton Cleaners and in the basement common hallway behind Golden Krust and Bon Ton Cleaners. The SSD system was installed on November 29, 2006 and consists of one Fantech® Model HP2190 SSD fan connected to each of the four SVE wells. The SSD system was completed in such a way that each fan can be operated independently. A magnehelic gauge was retrofitted to each of the SVE riser pipes between the slab and the SSD fans for vacuum readings. These magnehelic gauges also serve as warning devices or indicators to ensure that this active system is working properly. In addition, labels were affixed to each of the SSD points indicating the following:

Sub-Slab Depressurization System

This is a component of a Sub-Slab Depressurization System

DO NOT ALTER OR DISCONNECT

For Service call: ISJ Corp. (212) 239-8580

Date Installed: November 29, 2006

The SVE wells are connected to a 2-inch diameter header pipe that exhausts out of the basement boiler room of the former Bon Ton Cleaners. The header pipe discharges to the atmosphere through a rooftop stack whose discharge point is above the existing building roof elevation. Figure 3 illustrates the SSD system layout and vent line location.

On December 13, 2006, an initial start-up test was conducted to confirm that the SSD system was maintaining negative pressure. As part of the start-up test vacuum readings were obtained from the magnehelic gauges attached to each of the SVE riser pipes at SVE-1 through SVE-4 and via hand-held magnehelic gauges at vapor monitoring points VMP-1 through VMP-4 and VMP-6. The magnehelic gauges showed that each SSD fan was maintaining a vacuum of 1.5 inches of H₂0. In addition, the vacuum readings at the vapor monitoring points ranged from 0.01 inches of H₂0 to 0.12 inches of H₂0. The radius of influence is approximately 75 feet based on the readings collected from SVE-3 and VMP-4. This meets or exceeds the design criteria of 50 feet measured in the SSD Pilot Test and Design Report (Ref. 10). After the SSD system was placed into full operation, a second or Final SSD Start-Up test was performed in June 2008 (Ref. 11).

An additional five SSD vents were added in February 2011. One of these vents was added to the rear portion of the basement of the former Dunkin Donuts and Glamour Decorating unit (now vacant) and is connected to a Fantech model 2190 fan. The other four vents were installed in the Telco space and are collectively connected to a Fuji Model VFC604A-7W, 4½-horsepower regenerative blower located on the roof. Operation of the system at Telco was terminated in 2014.

3.0 REMEDIAL PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

The remedial actions performed at the Site have been effective and protective of human health. Soil samples collected during the Remedial Investigation did not exceed the prevailing Soil Cleanup Objectives. As such a soil removal action was not required.

PCE was initially detected at a concentration of 761 ug/L in in groundwater at the shallow monitoring well directly down-gradient of the former dry cleaner. Operation of the AS/SVE system coupled with targeted injections of chemical oxidants resulted in cleanup of the on-site groundwater in compliance with the termination criteria outlined in the Remedial Action Work Plan prepared for the project.

Operation of the SVE system also greatly reduced the levels of PCE in the soil vapor below the property in compliance with the Remedial Action Work Plan. Upon achieving the termination criteria for the SVE system, the SVE blower was removed and replaced with energy efficient vapor abatement fans located at each of the SVE vent locations. The Start Up test and the periodic annual indoor air tests confirm the SSD system continues to be operating effectively. A summary of historical PCE results at numerous tenants are included on Table 1. A list of

products stored by the tenants on the date of our visit is included on Table 2. The analytical results from the latest round of indoor air samples are presented in Table 3. The results for PCE ranged from 0.495 to 2.6 ug/m3 during the February 2025 sampling event and from 0.4 to 1.82 ug/m3 during the March 2025 sampling event, which is within the normal background range in NYS and below the NYSDOH indoor air guidance value of 30µug/m³.

4.0 INSTITUTIONAL CONTROL/ENGINEERING CONTROL (IC/ECs) PLAN

A. IC/EC Requirements and Compliance

The following institutional controls for this Site have been implemented by the property owner: 1) Pursuant to the VCA, a Declaration of Covenants and Restrictions (DCR) was filed with the New York City Register's Office and 2) groundwater beneath the Site will not be used for potable or industrial purposes without treatment unless first obtaining permission to do so from NYSDEC. The property owner has implemented these two institutional controls. The DCR has been amended to indicate that the termination criteria at units 1910 – 1924 has been achieved. A Site Management Plan has also been approved and is being implemented.

B. IC/EC Certification

We certify that the ICs and ECs for this project are: in place and effective; are performing as designed; nothing has occurred that would impair the ability of the controls to protect public health and the environment; no violations have occurred and there were no failures to comply with the Site Management Plan; site access is available to maintain the engineering controls; and, there is no groundwater usage at the site. A PRR Certification Form is attached at the end of this document.

5.0 MONITORING PLAN COMPLIANCE REPORT

Indoor Air Monitoring Procedures

Indoor air is the only media that requires testing under the SMP. In accordance with the SMP, the SSDS is inspected twice a year and indoor air samples are collected on an annual basis at the following locations:

Tenant	Sampling Location(s)
Thriftyway (formerly Go Digital)	Basement
Golden Krust	Basement
Glamour Decorating (now vacant and formerly	Basement
Dunkin Donuts/ Chinese Restaurant)	Basement
Former Bon Ton Cleaners (now a law office)	Basement

A sample location map is included on Figure 2. Samples were collected using Summa Canisters calibrated to collect air for an 8-hour period. The samples were delivered to an ELAP-approved Laboratory and are analyzed for halogenated volatile organic compounds using EPA Method TO-15. Monitoring of the indoor air will continue as long as the SSD system is in operation unless the NYSDEC indicates monitoring is no longer required.

Sub-Slab Sampling

No sub-slab sampling was required or performed during this sampling event.

Summary of Results

On August 12, 2024 Touchstone mobilized to the site and inspected the SSDS. The SSDS was in good working order. All of the fans has a positive vacuum readings.

On Wednesday, February 19, 2025 Touchstone mobilized to the Site and performed the annual inspection and indoor air sampling required for the <u>PRR</u>. During the inspection, the field technician observed that Fan No. 4 installed on vapor extraction point SVE-4 was not working. (The fan was observed to be working properly during our mid-year inspection event during the

summer of 2024). To correction this situation, a new Fantech model Rn2 (the manufacturer's replacement model for the failed HP2190 fan) was ordered.

Four indoor air samples were collected from the Site on February 19, 2025. The results are as follows:

Concentrations of Ethanol (max of 720 ug/m3 in GK-2-19), Benzene (max of 1.43 ug/m3 • in K-2-19), Toluene (max of 2.33 ug/m3 in LO-2-19), and Carbon Tetrachloride (max of 0.818 ug/m3 in GK-2-19) were identified as greater than the 2024 concentrations in each of the 2025 indoor air samples (TW-2-19, GD-2-19, GK-2-19, and LO-2-19). Concentrations of Tetrachloroethene (max of 2.6 ug/m3 in GD-2-19), Dichlorodifluoromethane (max of 3.44 ug/m3 in GD-2-19), Chloromethane (max of 1.75 ug/m3 in GD-2-19), and Chloroform (max of 10.2 ug/m3 in GD-2-19) were identified to be greater than the 2024 concentrations in three of the 2025 indoor air samples (TW-2-19, GD-2-19, and LO-2-19). Concentrations of n-Hexane (max of 1.59 ug/m3 in TW-2-19) were identified as greater than the 2024 concentrations in three of the 2025 indoor air samples (TW-2-19, GD-2-19, and GK-2-19). Concentrations of Trichloroethene (max of 0.247 ug/m3 in GD-2-19) were identified as greater than the 2024 concentrations in two of the 2025 indoor air samples (GD-2-19 and GK-2-19). Concentrations of Trichlorofluoromethane (8.54 ug/m3 in GD-2-19), isopropanol (683 ug/m3 in TW-2-19), Vinyl Chloride (0.225 ug/m3 in GK-2-19), and 1.1-Dichloroethene (0.123 ug/m3 in GK-2-19) were each identified as greater than the 2024 concentrations in one of the 2025 indoor air samples.

On March 24, 2025, Touchstone again mobilized to the Site to replace the failed Fan No. 4 at vapor point SVE-4 and inspect the on-site sub-slab depressurization system (SSDS). Fan No. 4 at vapor point SVE-4 was replaced. The reading at vapor point SVE-4 was 1.9 inches of water, indicating that the blower fan is functioning properly. All fans and components of the SSDS were verified to be operating correctly.

On Friday, March 27, 2025, four additional indoor air samples (designated GD-3-27-25, LO-3-

27-25, TW-3-27-25, and GK-3-27-25) were collected to determine the current conditions at the Site after Fan No. 4 at vapor point SVE-4 was replaced. The results are as follows:

• The compounds dichlorodifluoromethane (max. of 3.03 ug/m3 in GK-3-27-25), chloromethane (max. of 2.46 ug/m3 in GK-3-27-25), and tetrachloroethene (max. of 1.82 ug/m3 in GD-3-27-25) were detected in March 2025 at concentrations less than those detected in February 2025.

On March 27, 2025, the NYSDEC was notified regarding the replacement of Fan No. 4 at vapor point SVE-4, as well as the results of the February 19, 2025 and March 27, 2025 sampling events.

6.0 OPERATIONS AND MAINTENANCE PLAN

Operations and Maintenance (O&M) procedures that apply to the Fantech® fans includes a physical inspection of the fans to confirm that air is being discharged and that the units are operating. The Fantech® manual is enclosed in the Site Management Plan (Ref. 12). No other maintenance is recommended in the owner's manual.

SSD System Termination Criteria

The following termination criteria was included in the SMP for this site. The SSD system will be terminated when the following are demonstrated in accordance with Indoor Air Matrix 2 of the NYSDOH's Guidance document (Ref. 13):

- Indoor air concentrations of PCE in the basement of Golden Krust unit 1936, former dry cleaner unit 1932, and the currently vacant Glamour Decorating (former Dunkin Donuts/ Chinese Restaurant) unit 1930 are less than 3 ug/m³; and,
- Sub-slab vapor concentration of PCE below the unit is less than 100 ug/m³.

These criteria shall be demonstrated during the winter heating season, to represent the worst-case scenario, and after the SSD system has been turned off for a period of 30 days. The termination criteria will be applied on a unit-by-unit basis.

During the December 2014 sampling round, concurrent indoor air and sub-slab vapor samples were collected at units 1910-1924 (the Telco space) after the blower servicing that area of the shopping center had been off for 30 days. The corresponding indoor air and sub-slab vapor results were 2.33 ug/m³ and 20.5 ug/m³, respectively. As such, the termination criteria were achieved for that portion of the shopping center.

During the December 2016 sampling round, a similar test was performed for the remaining components of the system. Based on PCE sub-slab vapor concentrations of 336 to 1,550 μ ug/m³, the termination criteria for this portion of the building has not been achieved.

The fans at the remaining units, which are the former dry cleaner (currently a Law Office) and former Dunkin Donuts / Chinese Restaurant (Glamour Decorating and currently vacant), remain in operation.

7.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

- On August 12, 2024 Touchstone mobilized to the site and inspected the SSDS. The SSDS was in good working order. All of the tans has a positive vacuum readings.
- On Wednesday, February 19, 2025 Touchstone mobilized to the Site. Touchstone performed the annual inspection and indoor air sampling. During the inspection, onsite Fan No. 4 at vapor point SVE-4 was identified as not working. The fan was observed to be operating during the previous inspection event during the summer of 2024. A new Fantech model Rn2 (the manufacturer's replacement model for the failed HP2190 fan) was ordered.
- Four indoor air samples were collected from the Site on February 19, 2025. The samples were transported to a state-certified laboratory and analyzed for Volatile Organic Compounds (VOCs) in air and VOCs in air by SIM. The results of the February 19, 2025 samples were then compared to the results of the February 4, 2024 sampling event. The results are as follows:
 - Concentrations of Ethanol (max of 720 ug/m3 in GK-2-19), Benzene (max of 1.43 ug/m3 in GK-2-19), Toluene (max of 2.33 ug/m3 in LO-2-19), and Carbon Tetrachloride (max of 0.818 ug/m3 in GK-2-19) were identified as greater than the 2024 concentrations in each of the 2025 indoor air samples (TW-2-19, GD-2-19, GK-2-19, and LO-2-19). Concentrations of Tetrachloroethene (max of 2.6 ug/m3 in GD-2-19), Dichlorodifluoromethane (max of 3.44 ug/m3 in GD-2-19), Chloromethane (max of 1.75 ug/m3 in GD-2-19), and Chloroform (max of 10.2 ug/m3 in GD-2-19) were identified to be greater than the 2024 concentrations in three of the 2025 indoor air samples (TW-2-19, GD-2-19). Concentrations of n-Hexane (max of 1.59 ug/m3 in TW-2-19) were identified as greater than the 2024 concentrations in three of the 2025 indoor air samples (TW-2-19).

19, GD-2-19, and GK-2-19). Concentrations of Trichloroethene (mac of 0.247 ug/m3 in GD-2-19) were identified as greater than the 2024 concentrations in two of the 2025 indoor air samples (GD-2-19 and GK-2-19). Concentrations of Trichlorofluoromethane (8.54 ug/m3 in GD-2-19), isopropanol (683 ug/m3 in TW-2-19), Vinyl Chloride (0.225 ug/m3 in GK-2-19), and 1,1-Dichloroethene (0.123 ug/m3 in GK-2-19) were each identified as greater than the 2024 concentrations in one of the 2025 indoor air samples.

- On March 24, 2025, Touchstone again mobilized to the Site in order to replace Fan No. 4 at vapor point SVE-4 and inspect the on-site sub-slab depressurization system (SSDS). Fan No. 4 at vapor point SVE-4 was replaced. All fans and components of the SSDS were verified to be operating correctly. The reading at vapor point SVE-4 was 1.9 inches of water, indicating that the blower fan is functioning properly.
- On Friday, March 27, 2025, the NYSDEC was notified that Fan No. 4 had failed, that a replacement fan was ordered and that a second round of sampling would be scheduled. An extension on this Periodic Review Report was granted by the NYSDEC to replace Fan No. 4. The next certifying period will remain unchanged and is due on February 24, 2026.
- Additionally, four additional indoor air samples (designated GD-3-27-25, LO-3-27-25, TW-3-27-25, and GK-3-27-25) were collected to determine the current conditions at the Site after Fan No. 4 at vapor point SVE-4 was replaced. The additional air samples collected on March 27, 2025 were analyzed for VOCs in air and VOCs in air by SIM. The results of the March 27, 2025 samples were then compared to the results of the February 4, 2024 and February 19, 2025 sampling events. The results are as follows:
 - The compounds dichlorodifluoromethane (max. of 3.03 ug/m3 in GK-3-27-25), chloromethane (max. of 2.46 ug/m3 in GK-3-27-25), and tetrachloroethene (max. of 1.82 ug/m3 in GD-3-27-25) were detected in March 2025 at concentrations greater than those detected in February 2024, but less than those detected in February 2025.
- In accordance with the SMP the SSD system at the Telco Department Store (units 1910 1924) was turned off on November 13, 2014 and has remained off since that time.
- Concurrent sub-slab vapor and indoor air samples were collected from the remaining units during the December 2016 sampling event. Based on PCE sub-slab vapor concentrations of 336 to 1,550 ug/m³, the termination criteria for this portion of the building has not been achieved. These fans should remain in operation and annual sampling should be performed.
- At this time, there are no known plans for the redevelopment or expansion of this Site. No groundwater supply wells were installed or operated in the past year for potable or industrial purposes.
- The SSDS at this Site was installed in 2006. The fans should continue to be checked on a semi-annual basis. As the fans fail with age, they should be replaced new fans and a new label indicating the date of the replacement should be placed on the new fan.

REFERENCES

- 1. ACT, (June 5, 2001) Phase II Environmental Site Assessment, 1890-1960 Ralph Avenue Brooklyn, New York.
- 2. ACT, (July 23, 2001) Phase II Environmental Site Assessment, 1890-1960 Ralph Avenue Brooklyn, New York.
- 3. CA RICH (October 2002), Investigation Work Plan Bon Ton Cleaners 1932 Ralph Avenue Brooklyn, New York, Site Number V-00512-2.
- 4. CA RICH (May 2003), Supplemental Investigation Work Plan Bon Ton Cleaners 1932 Ralph Avenue Brooklyn, New York, Site Number V-00512-2.
- 5. CA RICH (October 2003), Investigation Report Bon Ton Cleaners 1932 Ralph Avenue Brooklyn, New York, Site Number V-00512-2.
- 6. CA RICH (April 2004) Remediation Work Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York.
- 7. CA RICH (December 2004) Pilot Test and Final Design Report Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York.
- 8. CA RICH (April 2005) Final Engineering Report Part A and Operations, Maintenance & Monitoring Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York.
- 9. CA RICH (May 2006) Final Engineering Report Part B and Operations, Maintenance & Monitoring Plan Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York.
- 10. CA RICH (November 2006) SSD Pilot Test and Design Report, Bon Ton Cleaners Site, 1932 Ralph Avenue, Brooklyn, New York.
- 11. CA RICH (June 2008) Final SSD Start-Up Test Report, Bon Ton Cleaners Site, 1932 Ralph Avenue, Brooklyn, New York.
- 12. CA RICH (December 2008, revised April, 2011) Site Management Plan, Bon Ton Cleaners, 1932 Ralph Avenue, Brooklyn, New York.
- 13. NYSDOH (October 2006) Guidance for Evaluating Soil Vapor Intrusion in the State of New York.
- 14. CA RICH (December 2009) Post Remediation Soil Vapor Investigation Work Plan for Bon Ton Cleaners Voluntary Cleanup Program (VCP) Site 1932 Ralph Avenue, Brooklyn, NY
- 15. NYSDEC (September 22, 2009) Comment letter regarding the 2008 Annual Report.
- 16. Mactec (August 2020) Results of Field Pressure Test and Vent Repairs, Former Bon Ton Cleaners VCP Site, 1932 Ralph Avenue, Brooklyn, NY.

List of Figures

- 1. Property Location Map
- 2. Basement Indoor Air Sample Locations
- 3. Layout of Current SSD Vents and Ducts

List of Tables

- 1. PCE in Indoor Air Samples
- 2. Pre-Sampling Product Inventories and Vacuum Readings
- 3. Comparison of 2025 Indoor Air Results to 2024 Indoor Air Results

FIGURES

2:\Projects\Clifton Park Misc Proj\Ralph Ave\Fig-1 Loc.dwg Mon, 29 Feb 2016 - 4:09pm willic

Perchloroethene (PCE) in Indoor Air at the Chinese Restaurant/Dunkin Donuts/Glamor Decorating from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

Location	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	Chinese	NYSDOH Action Levels
Looution	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	Restaurant	
Matrix	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	a Indoor Air (1)
Date Sampled	1/21/2003	9/4/2003	6/30/2005	7/28/2005	8/23/2005	9/27/2005	10/27/2005	11/21/2005	12/28/2005	1/31/2006	2/27/2006	3/28/2006	6/29/2006	9/28/2006	
•			ŝ												
Level	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	
Sample ID	1 20704 6		AS-1 Back South			VC 3		186	1 20			AS 2			
Sample ID	L-09794-0		Corner	F A0-0	A0-4	A0-0	7.0-4	70-0	7.0-4	70-4	70-4	A0-2	A0-0		Š
Sample Method	Passive Diffusion	Passive Diffusion	Summa Canistor	Passive Diffusion	Not Sampled	Ž									
Sample Wethou	Badge	Badge		Badge	Not Sampled										
<u>Parameter</u>			<u> </u>												
PCE (µg/m3)	160	226	ND ND	24	9.9	11	13	20	12	2.6	1.5	2.1	34		30
		Ű	2												
Level	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	<i>"</i>
Sample ID	1-89794-5	AP9406-CGB	AS-2 Basement	PAS-04	AS-5	AS-4	AS-5	AS-5	AS-5	AS-5	AS-5	AS-3	AS-4		ап
	L 00704 0			1710 04	710 0	710 4	7.0 0	7.0 0	7.00	110 0	100	710 0	710 4		
Sample Mothod	Passive Diffusion	Passive Diffusion	Summa Canister	Passive Diffusion	Not Sampled	3									
Sample Wethou	Badge	Badge		Badge	Not Sampled										
Parameter	_	-		_		-	_	_	_	_	-	-			ac
PCE (µg/m3)	180	364	26.2	30	24	10	12	13	22	3.2	2.0	7.3	46		30
															ž
Matrix	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	
Sample ID															
Sample ID															6
Sample Method	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
Parameter	· · · · · · · · · · · · · · · · · · ·					····									
$\frac{1}{2}$															ΝΔ

Notes:

* Method: VOCs via EPA TO-15

1. Internal standard recoveries for samples AS-2 and AS-3 were outside QC limits. However, reanalysis of the sample resulted in similar results, indicating that a sample matrix effect is responsible for the internal standard criteria not being met. The greater concentration is shown.

** Method: NYSDOH 311-9 All concentrations are reported in micrograms per cubic meter

2. Dunkin Donuts occupied the southern portion of the Chinese Restaurant during September 2007.

ND - Not Detected

Boxed Value Indicates That Value Is Above NYSDOH Action Level

NA - Not Applicable

(1) NYSDOH Tetrachloroethene (PERC) in Indoor and Outdoor Air; May,2003

Page 1 of 13

Perchloroethene (PCE) in Indoor Air at the Chinese Restaurant/Dunkin Donuts/Glamor Decorating from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

Location	Chinese Restaurant	Dunkin Donuts	NYSDOH Action Levels														
Matrix	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Indoor Air (1)
Date Sampled	12/13/2006	12/12/2007	1/24/2008	12/5/2008	7/30/2009	12/22/2009	12/29/2010	1/6/2011	12/28/2011	12/26/2012	1/15/2014	12/16/2014	12/22/2015	12/19/2016	1/11/2018	12/13/2018	
_																	
Level	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	
Sample ID	AS-1	AS-1	BT-04	BT-04	BT-04	BT-01	IA-04	BT-01									
Sample Method	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Not Applicable								
Parameter																	
PCE (µg/m3)	1.8	1.000	5.2	230	160	32.57	180	less than 1.36									30
- (10, -7	-	,	-														
Level	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	
Sample ID		ΔS-2		BT-05	BT-05	BT-03	14-05	Ducomoni					12/22	12/19	DD 01/11	חם 12/13	
Comple Method	AU-2 Summa Caniator	Summa Canistar	Summa Conjeter	Summa Caniator	Summa Caniator	Summa Conjeter	Summa Conjeter	Not Applicable	Summa Canistor	Summa Conjeter	Summa Canistor	Summa Canistor	Summa Capiatar	Summa Caniatar	Summa Caniator	Summa Caniator	
Sample Method	Summa Camster	Summa Camster	Summa Camster	Summa Camster	Summa Camster	Summa Camster	Summa Camster	Not Applicable	Summa Camster								
	07	540	10	250	140	20.52	110	-	less then 1.00	10	1.0	1.07	2.66	1.60	4.67	0.00	20
PCE (µg/m3)	21	540	10	250	140	30.53	110	-	less than 1.36	13	1.8	1.97	3.00	1.03	1.07	2.29	30
Matrix	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	
Sample ID						BT-02											
Sample Method	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Summa Canister	Not Applicable										
<u>Parameter</u>																	
PCE (µg/m3)						6,038.70											NA

Note: Tenants changed between December 2006 and December 2007 sampling rounds.

Page 2 of 13

	TABLE 1														
	Perchloroethene (PCE) in Indoor Air at the Chinese Restaurant/Dunkin Donuts/Glamor Decorating from Summa Canisters* and Passive Diffusion Badges**														
	Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York														
Location	LocationDunkin DonutsDunkin DonutsGlamourGlamourGlamourGlamourGlamourGlamourGlamourGlamourGlamourNYSDOHMatrixAir <t< th=""></t<>														
Matrix Date Sampled	Air 1/11/2018	Air 12/13/2018	Air 2/21/2020	Air 12/14/2020	Air 2/25/2022	Air 3/2/2023	Air 2/6/2024	Air 2/19/2025	Air 3/27/2025	Indoor Air (1)					
Level	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor						
Sample ID Sample Method Parameter	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable						
PCE (µg/m3)										30					
Level	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement						
Sample ID Sample Method	DD 01/11 Summa Canister	DD 12/13 Summa Canister	GD-022020 Summa Canister	GD-122020 Summa Canister	Summa Canister	GD-3-2 Summa Canister	GD-2-6 Summa Canister	GD-2-19 Summa Canister	GD-3-27-25 Summa Canister						
Parameter															
PCE (µg/m3)	1.67	2.29	1.54	3.11	0.665	0.875	0.902	2.6	1.82	30					
Matrix	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab						
Sample Method	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable						
PCE (µg/m3)										NA					

Note: Tenants changed between December 2018 and February 2020 sampling rounds.

Page 3 of 13

PCE in Indoor Air Samples at Golden Krust Restaurant from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

Location	Golden Krust	Golden Krust		Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust		NYSDOH
Matrix	Air	Air		Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	900	Action Levels
Date Sampled	1/21/2003	9/4/2003	2005	6/30/2005	7/28/2005	8/23/2005	9/27/2005	10/27/2005	11/21/2005	12/28/2005	1/31/2006	2/27/2006	3/28/2006	6/29/2006	9/28/2006	ber 2	Indoor Air (1)
Level Sample ID Sample Method <u>Parameter</u> PCE (µq/m3)	First Floor L-89794-3 Passive Diffusion Badge 44	First Floor AP9490-GKU Passive Diffusion Badge	tarted-Up March 2	First Floor AS-4 Upstairs Summa Canister 69	First Floor PAS-01 Passive Diffusion Badge 269	First Floor AS-3 Passive Diffusion Badge 147	First Floor AS-6 Passive Diffusion Badge 33	First Floor AS-3 Passive Diffusion Badge 9.7	First Floor AS-3 Passive Diffusion Badge 14	First Floor AS-3 Passive Diffusion Badge 95	First Floor AS-1 Passive Diffusion Badge	First Floor AS-3 Passive Diffusion Badge 5.9	First Floor AS-1 Passive Diffusion Badge 7.3	First Floor AS-3 Passive Diffusion Badge 70	First Floor AS-1 Passive Diffusion Badge 66	System Novemb	30
Level Sample ID Sample Method <u>Parameter</u> PCE (μg/m3)	Basement L-89794-1 Passive Diffusion Badge 47	Basement AD8794-GKB Passive Diffusion Badge 168	SVE System S	Basement AS-5 Basement Summa Canister 96.6	Basement PAS-02 Passive Diffusion Badge 49	Basement AS-2 Passive Diffusion Badge 23	Basement AS-8 Passive Diffusion Badge 10	Basement AS-2 Passive Diffusion Badge 3.7	Basement AS-2 Passive Diffusion Badge 4.7	Basement AS-1 Passive Diffusion Badge 7.4	Basement AS-2 Passive Diffusion Badge 1.9	Basement AS-1 Passive Diffusion Badge 0.9	Basement AS-5 Passive Diffusion Badge 3.3	Basement AS-1 Passive Diffusion Badge 24	Basement AS-2 Passive Diffusion Badge 22	eplaced With an SSD	30
Matrix Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	Sub Slab Not Applicable	Sub Slab Not Applicable		Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	SVE System Re	NA
Notes: * Method: VOCs ** Method: NYSL All concentrations Boxed Value Indi (1) NYSDOH Tetr	via EPA TO-15 OOH 311-9 s are reported in n cates That Value achloroethene (P.	nicrograms per cub Is Above NYSDOH ERC) in Indoor and	T <u>pic me</u> 1 Activ d Oute	he greater conce ater on Level door Air; May,20	entration is shown												Page 4 of 13

PCE in Indoor Air Samples at Golden Krust Restaurant from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

Location	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	NYSDOH Action
Matrix	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Levels
Date Sampled	12/13/2006	12/12/2007	1/24/2008	12/5/2008	7/30/2009	12/22/2009	12/29/2010	1/6/2011	12/28/2011	12/26/2012	1/15/2014	12/16/2014	12/22/2015	12/19/2016	Indoor Air (1)
Level Sample ID	First Floor AS-3 ¹	First Floor AS-3	First Floor BT-02	First Floor BT-02	First Floor BT-02	First Floor BT-04	First Floor IA-02	First Floor BT-03	First Floor						
Sample Method	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Not Applicable						
Parameter															
PCE (µg/m3)	65	400	7.4	3,700	120	33.25	22	49.53							30
Loval	Bacamont	Bacamont	Bacamont	Pacamont	Bacamont	Bacamant	Pacamont	Pacamant	Bacomont	Bacamant	Bacamont	Pacamont	Bacamant	Bacamant	
Sample ID	AS-4	AS-4	BT-03	BT-03	BT-03	BT-06	IA-03	Basement	GKB-03	GKB-03	GKB-03	GKB-03	GK 12/22	GK 12/19	
Sample Method	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Not Applicable	less than 1.36	Summa Canister					
Parameter															
PCE (µg/m3)	30	6.4	ND	130	90	4.75	17			7.3	0.81	1.19	2.71	2.05	30
Matrix	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	
Sample ID	oub oldb	oub oldb	oub oldb	oub olub	oub olub	BT-05	oub olub	oub olub	ous olds	oub oldb	ous clus	oub olub	oub oldb	oub olub	
Sample Method	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Summa Canister	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
Parameter															
PCE (µg/m3)						284.97									NA

Page 5 of 13

PCE in Indoor Air Samples at Golden Krust Restaurant from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

					Brooklyn, New	York				
Location	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	Golden Krust	NYSDOH Action
Matrix	Air	Air	Air	Air	Air	Air	Air	Air	Air	Levels
Date Sampled	1/11/2018	12/13/2018	2/21/2020	12/14/2020	2/25/2022	3/2/2023	2/6/2024	2/19/2025	3/27/2025	Indoor Air (1)
Level Sample ID	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	
Sample Method	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
<u>Parameter</u> PCE (μg/m3)										30
Level Sample ID	Basement GK 01/11	Basement GK 12/13	Basement GK-022020	Basement GK-122020	Basement GOLDEN KRUST	Basement GK-3-2	Basement GK-2-6	Basement GK-2-19	Basement GK-3-27-25	
Sample Method	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	
<u>Parameter</u> PCE (μg/m3)	1.69	1.55	0.631	0.814	0.665	0.949	0.821	0.495	0.5	30
Matrix Sample ID	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	
Sample Method	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
<u>Parameter</u> PCE (µg/m3)										NA

Page 6 of 13

PCE in Indoor Air Samples at Total Furniture/Telco from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York

Location	Total Furniture	Total Furniture	Total Furniture	Total Furniture	Telco	NYSDOH Action Levels							
Matrix Date Sampled	Air 9/4/2003	Air 6/30/2005	Air 7/28/2005	Air 8/23/2005	Air 9/27/2005	Air 10/27/2005	Air 11/21/2005	Air 12/28/2005	Air 1/31/2006	Air 2/27/2006	Air 3/28/2006	Air 6/29/2006	Indoor Air (1)
Level Sample ID Sample Method	First Floor AD8746-TFU Passive	First Floor BS-5*** Passive	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor Not Required	
<u>Parameter</u> PCE (μg/m3)	Diffusion Badge	Diffusion Badge											30
Level	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	Basement	
Sample ID Sample Method Parameter	AP9540-TFB Passive Diffusion Badge	AS-3 Basement Summa Canister	PAS-05 Passive Diffusion Badge	AS-6 Passive Diffusion Badge	AS-2 Passive Diffusion Badge	AS-6 Passive Diffusion Badge	AS-4 Passive Diffusion Badge	AS-6 Passive Diffusion Badge	AS-6 Passive Diffusion Badge	AS-6 Passive Diffusion Badge	AS-4 Passive Diffusion Badge	AS-6 Passive Diffusion Badge	
PCE (µg/m3)	67	13.1	4.2	4.0	5.3	5.0	11	3.5	1.0	0.4	3.4	11	30
Matrix Sample ID	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	
Sample Method Parameter PCE (µg/m3)	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	NA
	1	I	1	1	1	1	1	1	1	1	1	1	<u></u>

Notes:

Method: VOCs via EPA TO-15

** Method: NYSDOH 311-9

*** Construction (ie. painting, applying vinyl floor tile) occuring while sample was being obtained.

All concentrations are reported in micrograms per cubic meter

Boxed Value Indicates That Value Is Above NYSDOH Action Level

(1) NYSDOH Tetrachloroethene (PERC) in Indoor and Outdoor Air; May,2003 Tenants changed between August 2005 and September 2005 sampling rounds.

Page 7 of 13

PCE in Indoor Air Samples at Total Furniture/Telco from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site

							Bon 1 1932 Broc	2 Ralph Avenue oklyn, New York							
Location	Telco	6	Telco	Telco	Telco	Telco	Telco	Telco	Telco	Telco	Telco	Telco	Telco	Telco	NYSDOH Action Levels
Matrix Date Sampled	Air 9/28/2006	ber 200	Air 12/13/2006	Air 12/12/2007	Air 1/24/2008	Air 12/5/2008	Air 7/30/2009	Air 12/22/2009	Air 12/22/2009	Air 12/29/2010	Air 12/28/2011	Air 12/26/2012	Air 1/15/2014	Air 12/16/2014	Indoor Air (1)
Level Sample ID	First Floor	lovem	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	First Floor	
Sample Method	Not Required	tem N	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	Not Required	
<u>Parameter</u> PCE (µg/m3)		SD Sys													30
Level	Basement	an S	Basement	Basement	Basement	Basement	Basement	Basement- North	Basement- South	Basement	Basement	Basement	Basement	Basement	
Sample ID	AS-4	/ith	AS-6	AS-5	BT-06	BT-06	BT-06	BT-10	BT-09	IA-06	TCB-04	TCB-04	TCB-04	TC 12/22	
Sample Method	Passive Diffusion Badge	ced M	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	
Parameter PCE (µg/m3)	3.6	ı Repla	4.2	35	11	19	16	3.6	21.03	63	less than 1.36	8.2	2.2	2.33	30
Matrix Sample ID	Sub Slab	system	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab BT-12	Sub Slab BT-11	Sub Slab	Sub Slab	Sub Slab	Sub Slab TSS-01	Sub Slab TSS-01	
Sample Method	Not Applicable	SVE S	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Summa Canister	Summa Canister	Not Applicable	Not Applicable	Not Applicable	Summa Canister	Summa Canister	
PCE (µg/m3)								5,699.40	583.51				159	20.5	NA
													-		

Page 8 of 13

PCE in Indoor Air Samples at Go Digital/Thriftyway from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site	
1932 Ralph Avenue	
Brooklyn, New York	

Location	Go Digital		Go Digital		Go Digital	NYSDOH Action											
Matrix	Air		Air	98	Air	Levels											
Date Sampled	9/4/2003	22	6/30/2005	7/28/2005	8/23/2005	9/27/2005	10/27/2005	11/21/2005	12/28/2005	1/31/2006	2/27/2006	3/28/2006	6/29/2006	9/28/2006	20	12/13/2006	Indoor Air (1)
		20													ъ		
Level	First Floor	S	First Floor	đ	First Floor												
Sample ID	AP9841-GDU	ar	BS-6												vel		
Sample Mathed	Passive	Σ	Passive	Not Required	ŝ	Not Required											
Sample Methou	Diffusion Badge	ΞD	iffusion Badge	Not Required	Not ivequired	Not Required	Not Required	Not Required	ε	Not Required							
Parameter		ġ													ste		
PCE (µg/m3)	9.2	arto	2.6												š		30
	i	ŝ													ő		
Level	Basement	ε	Basement	ss	Basement												
Sample ID	AP9489-GDB	S A	S-6 Basement	PAS-06	AS-1	AS-9	AS-1	AS-1	AS-2	AS-3	AS-2	AS-6	AS-2	AS-3	LE LE	AS-5	
Sample Mathed	Passive	ŝ	umma Canistar	Passive	÷	Summa Conjeter											
Sample Method	Diffusion Badge	۳ o	unnina Ganister	Diffusion Badge	Ň	Summa Camster											
Parameter	i	Ś													p		
PCE (µg/m3)	72		ND	12	8.2	2.9	2.7	2.2	<0.7	0.7	<0.2	3.8	9.7	11	ő	8.0	30
															å		
Matrix	Sub Slab		Sub Slab	Å	Sub Slab												
Sample ID															E		
															ste		
Sample Method	Not Applicable	1	Not Applicable	S	Not Applicable												
Parameter															Ψ		
PCE (µg/m3)															s		NA
Notes:																	
* Method: VOCs	via EPA TO-15																
wicariod. V003																	
** Method: NYSD	UH 311-9																
All concentrations	are reported in mic	rogra	ams per cubic m	eter													

ND - Not Detected Boxed Value Indicates That Value Is Above NYSDOH Action Level (1) NYSDOH Tetrachloroethene (PERC) in Indoor and Outdoor Air; May,2003

Page 9 of 13

PCE in Indoor Air Samples at Go Digital/Thriftyway from Summa Canisters* and Passive Diffusion Badges**

Bon Ton Cleaners Site 1932 Ralph Avenue

						Brooklyn, N	lew York						
Location Matrix Date Sampled	Go Digital Air 12/12/2007	Go Digital Air 1/24/2008	Go Digital Air 12/5/2008	Thriftyway Air 7/30/2009	Thriftyway Air 12/22/2009	Thriftyway Air 12/29/2010	Thriftyway Air 12/28/2011	Thriftyway Air 12/26/2012	Thriftyway Air 1/15/2014	Thriftyway Air 12/16/2014	Thriftyway Air 12/22/2015	Thriftyway Air 12/19/2016	NYSDOH Action Levels Indoor Air (1)
Level Sample ID Sample Method	First Floor	First Floor	First Floor	First Floor	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor	First Floor Not Required	First Floor Not Required	
<u>Parameter</u> PCE (μg/m3)													30
Level Sample ID	Basement AS-6	Basement BT-01	Basement BT-01	Basement BT-01	Basement BT-13	Basement IA-01	Basement IA-01	Basement TWB-02	Basement TWB-02	Basement TWB-02	Basement TW 12/22	Basement TW 12/19	
Sample Method	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister	
<u>Parameter</u> PCE (μg/m3)	3.2	1.4	250	76	6.51	3.5	less than 1.36	5.4	0.81	1	2.92	1.23	30
Matrix Sample ID	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab BT-14	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	Sub Slab	
Sample Method Parameter	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Summa Canister	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	
PCE (µg/m3)					94.99								NA
Notes: Tenants changed between December 2008 and July 2009 sampling rounds.													

	TABLE 1 PCE in Indoor Air Samples at Go Digital/Thriftyway from Summa Canisters* and Passive Diffusion Badges**														
	Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York														
Location Matrix Date Sampled	On rix AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway AirThriftyway 														
Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	First Floor Not Required	30					
Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	Basement TW 01/11 Summa Canister 0.848	Basement TW 12/13 Summa Canister 1.15	Basement TW-022020 Summa Canister 0.468	Basement TW-122020 Summa Canister 0.719	Basement Thriftyway Summa Canister 1.04	Basement TW-3-2 Summa Canister 0.57	Basement TW-2-6 Summa Canister 0.387	Basement TW-2-19 Summa Canister 0.522	Basement TW-3-27-25 Summa Canister 0.4	30					
Matrix Sample ID Sample Method <u>Parameter</u> PCE (μg/m3)	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	NA					
										page 11 of 13					

PCE in Ir from Summa Car	TABLE 1 ndoor Air Samples at Fo nisters* and Passive Dif Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York	oodtown ffusion Badges**										
Location Matrix	Foodtown Air	NYSDOH Action Levels										
Date Sampled	12/22/2009	Indoor Air (1)										
Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	Basement BT-08 Summa Canister ND	30										
Matrix Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	Sub Slab Basement BT-07 Summa Canister ND	NA										
Notes: * Method: VOCs via EPA TO ** Method: NYSDOH 311-9 All concentrations are report ND - Not Detected (1) NYSDOH Tetrachloroeth	PCE (µg/m3) ND NA Votes: * Method: VOCs via EPA TO-15 ** Method: NYSDOH 311-9 * All concentrations are reported in micrograms per cubic meter ND - Not Detected * (1) NYSDOH Tetrachloroethene (PERC) in Indoor and Outdoor Air; May, 2003											

	TABLE 1 PCE in Indoor Air Samples at Former Bon Ton Cleaners and Law Office from Summa Canisters* and Passive Diffusion Badges**																
	Bon Ton Cleaners Site 1932 Ralph Avenue Brooklyn, New York																
Location Matrix Date Sampled	Former Cleaners/Law Office Air 12/22/2009	Former Cleaners/Law Office Air 12/26/2012	Former Cleaners/Law Office Air 1/15/2014	Former Cleaners/Law Office Air 12/16/2014	Former Cleaners/Law Office Air 12/22/2015	Former Cleaners/Law Office Air 12/19/2016	Former Cleaners/Law Office Air 1/11/2018	Former Cleaners/Law Office Air 12/13/2018	Former Cleaners/Law Office Air 12/13/2018	Former Cleaners/Law Office Air 2/21/2020	Former Cleaners/Law Office Air 12/14/2020	Former Cleaners/Law Office Air 2/25/2022	Former Cleaners/Law Office Air 3/2/2023	Former Cleaners/Law Office Air 2/6/2024	Former Cleaners/Law Office Air 2/19/2025	Former Cleaners/Law Office Air 3/27/2025	NYSDOH Action Levels Indoor Air (1)
Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	First Floor LOGF-06 Summa Canister less than 1.36	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	First Floor Not Applicable	30
Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	Basement LOGB-05 Summa Canister less than 1.36	Basement LOB-05 Summa Canister 11	Basement LOB-05 Summa Canister 2.8	Basement LOB-05 Summa Canister 0.834	Basement LO 12/22 Summa Canister 2.58	Basement LO 12/19 Summa Canister 1.86	Basement LO 01/11 Summa Canister 0.888	Basement LO 01/11 Summa Canister 1.11	Basement LO 01/11 Summa Canister 1.11	Basement LO-022020 Summa Canister 0.292	Basement LO-122020 Summa Canister 0.644	Basement LAW OFFICE Summa Canister 0.692	Basement LO-3-2 Summa Canister 1.14	Basement LO-2-6 Summa Canister 0.509	Basement LO-2-19 Summa Canister 1.1	Basement LO-3-27-25 Summa Canister 0.7	30
Level Sample ID Sample Method <u>Parameter</u> PCE (µg/m3)	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab SS-1 1,550 SS-2 336 Summa Canisters	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	Sub Slab Not Applicable	NA
Notes: * Method: VOCs via EP, ** Method: NYSDOH 31 All concentrations are re (1) NYSDOH Tetrachlord	A TO-15 1-9 ported in micrograms p pethene (PERC) in Indo	er cubic meter or and Outdoor Air; May	r, 2003														
	. ,																Page 13 of 13

PCE in Indoor Air Samples at Former Bon Ton Cleaners and Law Office
from Summa Conjeterst and Dessive Diffusion Dedgest

Table 2Product Inventory February 19, 2025Former Bon Ton Cleaners SiteBrooklyn, New York

Sample Location	Product Description	Remarks
GD-2-19	Drapes	Vacant
Former Glamor Decorating	Rugs	Store and Basement Empty
(formerly Dunkin Donuts)		
GK-2-19	Foam Cups, Bleach, Pasta,	Food preparation area
Golden Kurst	Corn Meal, Beans	
	Vegetables, Bread	Same as 2/6/2024
	Aluminum Pans	
	Oats and Flour	
LO-2-19	Paper files	Storage area inaccessible during
Law Office (Former Cleaners)		visit, empty shelves
TW-2-19	Paper	Same as 2/6/2024
Thriftyway	Metal Shelves and Displays	
	Cans of Latex Paint	
	Plastic Bins	

SSD Riser Vacuum Reading

Riser Name	Reading in Inches of Water
SVE-1	1.9
SVE-2	1.9
SVE-3	1.9
SVE-4	0
SVE-5	1.9

Table 2 Product Inventory March 27, 2025 Former Bon Ton Cleaners Site Brooklyn, New York

Sample Location	Product Description	Remarks
GD-3-27-25	Drapes	Vacant
Former Glamor Decorating	Rugs	Store and Basement Empty
(formerly Dunkin Donuts)		
GK-3-27-25	Foam Cups, Bleach, Pasta,	Food preparation area
Golden Kurst	Corn Meal, Beans	
	Vegetables, Bread	Same as 2/19/2025
	Aluminum Pans	
	Oats and Flour	
LO-3-27-25	Paper files	Storage area inaccessible during
Law Office (Former Cleaners)		visit, empty shelves
TW-3-27-25	Paper	Same as 2/19/2025
Thriftyway	Metal Shelves and Displays	
	Cans of Latex Paint	
	Plastic Bins	

SSD Riser Vacuum Reading

Riser Name	Reading in Inches of Water
SVE-1	1.9
SVE-2	1.9
SVE-3	1.9
SVE-4	1.9
SVE-5	1.9

						For	mer Bon To	n Cleaners -	1932 Ralph	Avenue, Bro	oklyn, New '	York													
Sample ID		TM	V-2-6	TW	/-2-19	TW-3	-27-25	G)-2-6	GD	-2-19	GD-3	-27-25	Gł	(-2-6	GK	-2-19	GK-3	-27-25	LC)-2-6	LO-	-2-19	LO-3-27-25	
Location		Thrift	tStore	Thrift	t Store	Thrift	Store	(Currer	t vacant)	Glamour (current	Decorating ly vacant)	Glamour (current	Decorating ly vacant)	Golden Crust		Golden Crust		Golden Crust		Law	Office	Law	Office	Law	Office
Collection Date	NYSDOH Indoor Air	2/6	2/6/2024		2/19/2025		3/27/2025		2/6/2024		2/19/2025		/2025	2/6	2024	2/19	/2025	3/27	/2025	2/6/2024		2/19/2025		3/27	//2025
Unit	Guidance	ug	ua/m3		ug/m3		ua/m3		/m3	uç	ua/m3		ua/m3		/m3	ug	/m3	ug	/m3	ug/m3		ug/m3		ug/m3	
Sample Matrix	-	INDO	OR AIR	INDO	OR AIR	INDO	OR AIR	INDO	or Air	INDO	OR AIR	INDO	OR AIR	INDO	OR AIR	INDO	OR AIR	INDO	OR AIR	INDO	OR AIR	INDOOR AIR		INDO	OR AIR
Compound	-	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL	Conc	RL
VOLATILE ORGANICS IN AIR																									
Ethanol	~	69.9	9.42	141	9.42	68.7	1.00	99.5	9.42	177	9.42	91.7	1.00	703	9.42	720	9.42	163	1.00	86.9	9.42	237	9.42	121	1.00
Acetone	~	22.7	2.38	19.8	2.38	8.81	1.00	17.9	2.38	14.4	2.38	8.95	1.00	39.2	2.38	34.2	2.38	20.3	1.00	17.1	2.38	14.9	2.38	17.1	1.00
Trichlorofluoromethane	~	4.61	1.12	3.15	1.12	2.83	1.00	6.86	1.12	8.54	1.12	4.11	1.00	242	1.12	80.9	1.12	30.7	1.00	4.18	1.12	2.91	1.12	3.77	1.00
Isopropanol	~	484	1.23	683	2.46	124	1.00	442	1.23	364	2.46	76.4	1.00	447	1.23	290	2.46	195	1.00	364	1.23	317	2.46	124	1.00
2-Butanone	~	ND	1.74	ND	1.47	< 1.00	1.00	3.72	1.74	ND	1.47	< 1.00	1.00	3.2	1.74	2.95	1.47	< 1.00	1.00	25.3	1.74	ND	1.47	< 1.00	1.00
Ethyl Acetate	~	ND	1.8	ND	1.8	< 1.00	1.00	ND	1.8	ND	1.8	1	1.00	50.5	1.8	2.6	1.8	4.57	1.00	ND	1.8	ND	1.8	1.35	1.00
Chloroform	~	1.75	0.977	4.83	0.977	< 1.00	1.00	3.48	0.977	10.2	0.977	1.45	1.00	56.2	0.977	54.2	0.977	11	1.00	1.6	0.977	7.52	0.977	1.81	1.00
n-Hexane	~	ND	0.705	1.59	0.705	< 1.00	1.00	ND	0.705	0.737	0.705	< 1.00	1.00	ND	0.705	1.15	0.705	< 1.00	1.00	1.25	0.705	ND	0.705	< 1.00	1.00
Benzene	~	0.799	0.639	0.859	0.639	< 1.00	1.00	0.767	0.639	0.994	0.639	< 1.00	1.00	0.815	0.639	1.43	0.639	< 1.00	1.00	0.77	0.639	0.92	0.639	< 1.00	1.00
Toluene	~	1.25	0.754	2.03	0.754	< 1.00	1.00	1.29	0.754	1.85	0.754	1.12	1.00	1.3	0.754	1.75	0.754	1.18	1.00	0.953	0.754	2.33	0.754	1.22	1.00
										VOLATILE (DRGANICS I	N AIR BY SIN	4												
Vinyl chloride	•	ND	0.051	ND	0.051	< 0.20	0.20	ND	0.051	ND	0.051	< 0.20	0.20	0.204	0.051	0.225	0.051	< 0.20	0.20	ND	0.051	ND	0.051	< 0.20	0.20
1,1-Dichloroethene	•	ND	0.079	ND	0.079	< 0.20	0.20	ND	0.079	ND	0.079	< 0.20	0.20	0.23	0.079	0.123	0.079	< 0.20	0.20	ND	0.079	ND	0.079	< 0.20	0.20
cis-1,2-Dichloroethene	•	ND	0.079	ND	0.079	< 0.20	0.20	0.21	0.079	0.135	0.079	< 0.20	0.20	0.611	0.079	0.167	0.079	< 0.20	0.20	0.246	0.079	ND	0.079	< 0.20	0.20
Carbon tetrachloride	•	0.478	0.126	0.73	0.126	0.41	0.20	0.535	0.126	0.742	0.126	0.4	0.20	0.598	0.126	0.818	0.126	0.43	0.20	0.465	0.126	0.686	0.126	0.57	0.20
Trichloroethene	2	ND	0.107	ND	0.107	< 0.20	0.20	ND	0.107	0.247	0.107	< 0.20	0.20	ND	0.107	0.204	0.107	< 0.20	0.20	ND	0.107	ND	0.107	< 0.20	0.20
Tetrachloroethene	30	0.387	0.136	0.522	0.136	0.4	0.25	0.902	0.136	2.6	0.136	1.82	0.25	0.821	0.136	0.495	0.136	0.5	0.25	0.509	0.136	1.1	0.136	0.7	0.25
NOTES:																									

Table 3 2025 Indoor Air Results compared to 2024 Indoor Results

Bolded values indicate the analyte was detected at or above the Reporting Limit (RL)

~ = No established guidance * = No established guidance, but expected to be less than 1 ug/m3

ATTACHMENT A CERTIFICATION

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

01/14/2025

Richard H. Lewis ralph & flatlands associates, LLC Meltzer, Lippe, Goldstein & Breitstone, LLC 190 willis avenue Mineola, NY 11501 rlewis@meltzerlippe.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Bon Ton Cleaners Site No.: V00512 Site Address: 1932 Ralph Ave Brooklyn, NY 11234-

Dear Richard H. Lewis:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **March 26, 2025**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Qualified Environmental Professional (QEP). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Michael Sollecito, the Project Manager, at 518-402-2198 or michael.sollecito@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation Division of Environmental Remediation, BURB 625 Broadway Albany, NY 12233-7016

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

Burt A. Lewis - rlewis@meltzerlippe.com

ec: w/ enclosures

Michael Sollecito, Project Manager David Gardner, Section Chief Jane O'Connell, Hazardous Waste Remediation Supervisor, Region 2

Touchstone environmental geology, pc - Eric a. Weinstock - eweinstock65@gmail.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit		V00512	Site Details			Box 1	
511		V00 312					
Sit	e Name Bo	n Ton Cleaners					
Site Cit Co Site	e Address: 1 y/Town: Bro unty: Kings e Acreage: 4	1932 Ralph Ave ooklyn 4.130	Zip Code: 11234-				
Re	porting Peric	od: February 24, 202	24 to February 24, 20	25			
						YES	NO
1.	Is the inforr	nation above correc	t?			Х	
	If NO, inclu	de handwritten abov	/e or on a separate sł	neet.			
2.	Has some o tax map an	or all of the site prop nendment during this	erty been sold, subdi s Reporting Period?	vided, merged, or und	lergone a		Х
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?					Х	
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?					Х	
	lf you answ that docun	wered YES to quest nentation has been	tions 2 thru 4, includ previously submitt	le documentation or ed with this certifica	evidence tion form) -	
5.	Is the site c	urrently undergoing	development?				Х
						Box 2	
						YES	NO
6.	Is the curre Commercia	nt site use consister al and Industrial	nt with the use(s) liste	d below?		Х	
7.	Are all ICs	in place and functior	ning as designed?		Х		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
AC	Corrective M	easures Work Plan ı	must be submitted al	ong with this form to	address t	hese iss	ues.
Sig	nature of Ow	ner, Remedial Party	or Designated Represe	entative	Date		

Description of Institutional Controls

Parcel	<u>Owner</u>
23-7763-1	Burt A. Lewis

Institutional Control

Ground Water Use Restriction Landuse Restriction Site Management Plan

(1) Until the conditions set forth in Section 3 of the Site Management Plan dated December 16, 2008, as amended April 20, 2011 ("SMP") have been satisfied, the owner of the Property shall prohibit the Property from being used for purposes other than Commercial or Industrial Use. The following portions of the Property are excluded from this restriction:

1958 Ralph Avenue1950-52 Ralph Avenue1900 Ralph Avenue1944 Ralph Avenue1900A Ralph Avenue1942 Ralph Avenue1900B Ralph Avenue1940 Ralph Avenue1968 Ralph Avenue1902 Ralph Avenue1960 Ralph Avenue1910-24 Ralph Avenue

(2) The owner of the Property shall prohibit the use of the groundwater underlying the entire site, without treatment rendering it safe drinking or industrial purposes.

(3) The owner of the Property shall provide a periodic certification, prepared, and submitted by a professional engineer or environmental professional, which will certify that the institutional and engineering controls put in place are unchanged from the previous certification, comply with the SMP, and have not been impaired.

Box 4

Description of Engineering Controls

Parcel 23-7763-1 Engineering Control

Vapor Mitigation Cover System

The engineering controls include:

1. A cover system consisting of the structures such as buildings, pavement, sidewalks comprising the site development.

2. 2. Operation of a sub-slab depressurization system to prevent the migration of vapors into the buildings from the subsurface.

			Box 5
	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the Engineering Control certification;	ion of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and generative and service and the information are under the second service and the information are under the second service and the second service are under the second service and the second service are under the	this ce Illy acc	ertificatio epted
	engineering practices; and the information presented is accurate and compete.	YES	NO
		Х	
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all o following statements are true:	f the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Depa	artmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect p the environment;	ublic h	ealth ar
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	he	
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	the site docur	e, the nent.
		YES	NO
		Х	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
1	A Corrective Measures Work Plan must be submitted along with this form to address the	ese iss	ues.
-	Signature of Owner, Remedial Party or Designated Representative Date	<u>, , , , , , , , , , , , , , , , , , , </u>	

Γ

IC CERTIFICATIONS SITE NO. V00512	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE I certify that all information and statements in Boxes 1,2, and 3 are true statement made herein is punishable as a Class "A" misdemeanor, pur Penal Law.	E SIGNATURE e. I understand that a false rsuant to Section 210.45 of the
I Richard Lewis atMeltzer, Lippe, Goldstein & print name print busine	Breitstone, LLP, ess address
am certifying asOwner(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	4/24/2025
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

	EC	CERTIFICATIONS
		Box 7
	Qualified Envir	onmental Professional Signature
l certi punis	fy that all information in Boxes 4 and 5 hable as a Class "A" misdemeanor, pu	5 are true. I understand that a false statement made herein a ursuant to Section 210.45 of the Penal Law.
	Rachel Atamanat1	Fouchstone Environmental Geology, PC,
	print name	print business address
		(Owner or Remedial Party)

Г

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature
- and extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

ATTACHMENT B LABORATORY REPORT

ANALYTICAL REPORT

Lab Number:	L2509734
Client:	Touchstone Environmental Geology, PC 1919 Middle Country Road Centerreach, NY 11720
ATTN: Phone:	Rachel Ataman (631) 672-3530
Project Name:	FLATLANDS
Project Number:	Not Specified
Report Date:	03/07/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NH ELAP (2249).

120 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.pacelabs.com

Pace

Serial_No:03072517:41

Project Name:	FLATLANDS
Project Number:	Not Specified

 Lab Number:
 L2509734

 Report Date:
 03/07/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2509734-01	TW-2-19	AIR	7901 FLATLANDS AVE. BROOKLYN, NY	02/19/25 18:00	02/21/25
L2509734-02	GD-2-19	AIR	7901 FLATLANDS AVE. BROOKLYN, NY	02/19/25 18:05	02/21/25
L2509734-03	GK-2-19	AIR	7901 FLATLANDS AVE. BROOKLYN, NY	02/19/25 18:15	02/21/25
L2509734-04	LO-2-19	AIR	7901 FLATLANDS AVE. BROOKLYN, NY	02/19/25 18:30	02/21/25

Project Name:FLATLANDSProject Number:Not Specified

 Lab Number:
 L2509734

 Report Date:
 03/07/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:FLATLANDSProject Number:Not Specified

 Lab Number:
 L2509734

 Report Date:
 03/07/25

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 6, 2025. The canister certification data is provided as an addendum.

L2509734-01: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2509734-01D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

huy how Jennifer Jerome

Title: Technical Director/Representative

Date: 03/07/25

AIR

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-01	Date Collected:	02/19/25 18:00
Client ID:	TW-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/07/25 01:59
Analyst:	TPH

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Air Lab								
Dichlorodifluoromethane	0.671	0.200		3.32	0.989			1
Chloromethane	0.740	0.200		1.53	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	75.0	5.00		141	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	8.34	1.00		19.8	2.38			1
Trichlorofluoromethane	0.560	0.200		3.15	1.12			1
Isopropanol	278	1.00		683	2.46		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.990	0.200		4.83	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-01	Date Collected:	02/19/25 18:00
Client ID:	TW-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Campie Dopan		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Air Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.450	0.200		1.59	0.705			1
Benzene	0.269	0.200		0.859	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.540	0.200		2.03	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Proje	ct Name:	FLATLANDS

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-01	Date Collected:	02/19/25 18:00
Client ID:	TW-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

	ррьу		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Air Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	85		60-140

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-01	Date Collected:	02/19/25 18:00
Client ID:	TW-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	03/07/25 01:59
Analyst:	TPH

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	Results RL MDL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Air L	ab						
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.116	0.020		0.730	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.077	0.020		0.522	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	83		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	87		60-140

Serial_No:03072517:41

Project Name:	FLATLANDS					Lab I	Number	" L2	2509734
Project Number:	Not Specified					Repo	ort Date	: 03	3/07/25
			SAMPL	E RESUL	TS				
Lab ID: Client ID: Sample Location:	L2509734-01 TW-2-19 7901 FLATLAN	D DS AVE. I	BROOKLYI	N, NY		Date Date Field	Collecte Receive Prep:	ed: 02/1 ed: 02/2 Not \$	9/25 18:00 1/25 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 03/07/25 09:33 TPH		ppbV			ua/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics ir	n Air - Mansfield Ai	r Lab							
Isopropanol		347	2.50		853	6.15			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	80		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	85		60-140

2.50

--

853

6.15

--

347

2.5

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-02	Date Collected:	02/19/25 18:05
Client ID:	GD-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/07/25 02:37
Analyst:	TPH

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Air Lab							
Dichlorodifluoromethane	0.695	0.200		3.44	0.989			1
Chloromethane	0.848	0.200		1.75	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	93.8	5.00		177	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	6.07	1.00		14.4	2.38			1
Trichlorofluoromethane	1.52	0.200		8.54	1.12			1
Isopropanol	148	1.00		364	2.46			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	2.08	0.200		10.2	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	FLATLANDS

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-02	Date Collected:	02/19/25 18:05
Client ID:	GD-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sumple Depth.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Air Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.209	0.200		0.737	0.705			1
Benzene	0.311	0.200		0.994	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.492	0.200		1.85	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	FLATLANDS

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-02	Date Collected:	02/19/25 18:05
Client ID:	GD-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Air Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	84		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	88		60-140

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-02	Date Collected:	02/19/25 18:05
Client ID:	GD-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	03/07/25 02:37
Analyst:	TPH

	ррьV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Air L	ab						
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.034	0.020		0.135	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.118	0.020		0.742	0.126			1
Trichloroethene	0.046	0.020		0.247	0.107			1
Tetrachloroethene	0.384	0.020		2.60	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	90		60-140

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-03	Date Collected:	02/19/25 18:15
Client ID:	GK-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/07/25 03:16
Analyst:	TPH

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Air Lab							
Dichlorodifluoromethane	0.797	0.200		3.94	0.989			1
Chloromethane	1.35	0.200		2.79	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	382	5.00		720	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	14.4	1.00		34.2	2.38			1
Trichlorofluoromethane	14.4	0.200		80.9	1.12			1
Isopropanol	118	1.00		290	2.46			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.00	0.500		2.95	1.47			1
Ethyl Acetate	0.721	0.500		2.60	1.80			1
Chloroform	11.1	0.200		54.2	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-03	Date Collected:	02/19/25 18:15
Client ID:	GK-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sumple Depth.		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Air Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.327	0.200		1.15	0.705			1
Benzene	0.448	0.200		1.43	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.465	0.200		1.75	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	FLATLANDS

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-03	Date Collected:	02/19/25 18:15
Client ID:	GK-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Air Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	91		60-140

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-03	Date Collected:	02/19/25 18:15
Client ID:	GK-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	03/07/25 03:16
Analyst:	TPH

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Air L	ab						
Vinyl chloride	0.088	0.020		0.225	0.051			1
1,1-Dichloroethene	0.031	0.020		0.123	0.079			1
cis-1,2-Dichloroethene	0.042	0.020		0.167	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.130	0.020		0.818	0.126			1
Trichloroethene	0.038	0.020		0.204	0.107			1
Tetrachloroethene	0.073	0.020		0.495	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-04	Date Collected:	02/19/25 18:30
Client ID:	LO-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/07/25 03:54
Analyst:	TPH

p		ppbV	ppbV		ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Air Lab							
Dichlorodifluoromethane	0.656	0.200		3.24	0.989			1
Chloromethane	0.751	0.200		1.55	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	126	5.00		237	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	6.28	1.00		14.9	2.38			1
Trichlorofluoromethane	0.518	0.200		2.91	1.12			1
Isopropanol	129	1.00		317	2.46			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	1.54	0.200		7.52	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name:	FLATLANDS
Project Name:	FLATLANDS

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-04	Date Collected:	02/19/25 18:30
Client ID:	LO-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

ppl		ppbV	ppbV		ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Air Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.288	0.200		0.920	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.618	0.200		2.33	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name:	FLATLANDS

 Lab Number:
 L2509734

 Report Date:
 03/07/25

SAMPLE RESULTS

Lab ID:	L2509734-04	Date Collected:	02/19/25 18:30
Client ID:	LO-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Air Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	91		60-140

Project Name:	FLATLANDS	Lab Number:	L2509734
Project Number:	Not Specified	Report Date:	03/07/25

Lab ID:	L2509734-04	Date Collected:	02/19/25 18:30
Client ID:	LO-2-19	Date Received:	02/21/25
Sample Location:	7901 FLATLANDS AVE. BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	03/07/25 03:54
Analyst:	TPH

	ppbV				ug/m3		Dilution	
Parameter	Results	Results RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Air L	ab						
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.109	0.020		0.686	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.162	0.020		1.10	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

Analytical Method:48,TO-15Analytical Date:03/06/25 18:59

		ppbV		_	ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Air Lab for sa	mple(s):	01-04	Batch: WG20	37508-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	1.00		ND	2.46			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Analytical Method:48,TO-15Analytical Date:03/06/25 18:59

	ppbV					ug/m3		Dilution	
Parameter	Results	RL	MDL	R	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield A	ir Lab for s	sample(s):	01-04	Batch	: WG20	37508-4			
Tetrahydrofuran	ND	0.500			ND	1.47			1
1,2-Dichloroethane	ND	0.200			ND	0.809			1
n-Hexane	ND	0.200			ND	0.705			1
1,1,1-Trichloroethane	ND	0.200			ND	1.09			1
Benzene	ND	0.200			ND	0.639			1
Carbon tetrachloride	ND	0.200			ND	1.26			1
Cyclohexane	ND	0.200			ND	0.688			1
1,2-Dichloropropane	ND	0.200			ND	0.924			1
Bromodichloromethane	ND	0.200			ND	1.34			1
1,4-Dioxane	ND	0.200			ND	0.721			1
Trichloroethene	ND	0.200			ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200			ND	0.934			1
Heptane	ND	0.200			ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200			ND	0.908			1
4-Methyl-2-pentanone	ND	0.500			ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200			ND	0.908			1
1,1,2-Trichloroethane	ND	0.200			ND	1.09			1
Toluene	ND	0.200			ND	0.754			1
2-Hexanone	ND	0.200			ND	0.820			1
Dibromochloromethane	ND	0.200			ND	1.70			1
1,2-Dibromoethane	ND	0.200			ND	1.54			1
Tetrachloroethene	ND	0.200			ND	1.36			1
Chlorobenzene	ND	0.200			ND	0.921			1
Ethylbenzene	ND	0.200			ND	0.869			1
p/m-Xylene	ND	0.400			ND	1.74			1

Analytical Method:48,TO-15Analytical Date:03/06/25 18:59

	ppbV			_	ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Ai	r Lab for	sample(s):	01-04	Batch: WG2	037508-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.190		ND	0.996			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Analytical Method: 48,TO-15-SIM Analytical Date: 03/06/25 19:37

	ppbV					ug/m3			Dilution
Parameter	Results	RL	MDL	Re	sults	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	sfield Air L	ab for sam	nple(s):	01-04	Batch:	WG203	7509-4		
Vinyl chloride	ND	0.020			ND	0.051			1
1,1-Dichloroethene	ND	0.020			ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020			ND	0.079			1
1,1,1-Trichloroethane	ND	0.020			ND	0.109			1
Carbon tetrachloride	ND	0.020			ND	0.126			1
Trichloroethene	ND	0.020			ND	0.107			1
Tetrachloroethene	ND	0.020			ND	0.136			1

Project Name: FLATLANDS Project Number: Not Specified Lab Number: L2509734 Report Date: 03/07/25

arameter	LCS %Recovery	Qual	LCS %Reco	D very Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics in Air - Mansfield Air Lab	Associated sa	ample(s):	01-04 Bat	ch: WG20375	608-3				
0		• • • •							
Dichlorodifluoromethane	104		-		70-130	-			
Chloromethane	94		-		70-130	-			
Freon-114	104		-		70-130	-			
Vinyl chloride	102		-		70-130	-			
1,3-Butadiene	91		-		70-130	-			
Bromomethane	105		-		70-130	-			
Chloroethane	102		-		70-130	-			
Ethanol	75		-		40-160	-			
Vinyl bromide	98		-		70-130	-			
Acetone	90		-		40-160	-			
Trichlorofluoromethane	85		-		70-130	-			
Isopropanol	102		-		40-160	-			
1,1-Dichloroethene	127		-		70-130	-			
Tertiary butyl Alcohol	110		-		70-130	-			
Methylene chloride	100		-		70-130	-			
3-Chloropropene	113		-		70-130	-			
Carbon disulfide	101		-		70-130	-			
Freon-113	112		-		70-130	-			
trans-1,2-Dichloroethene	116		-		70-130	-			
1.1-Dichloroethane	119		-		70-130	-			
Methyl tert butyl ether	96		-		70-130	_			
2-Butanone	101				70 120				
	101		-		70-130				

Project Name: FLATLANDS Project Number: Not Specified Lab Number: L2509734 Report Date: 03/07/25

	LCS			LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%F	Recovery	/ Qual	Limits	RPD	Qual	Limits	
Volatile Organics in Air - Mansfield Air Lab	Associated sa	ample(s):	01-04	Batch:	WG2037508-	3				
Ethyl Acetate	128			-		70-130	-			
Chloroform	117			-		70-130	-			
Tetrahydrofuran	98			-		70-130	-			
1,2-Dichloroethane	122			-		70-130	-			
n-Hexane	124			-		70-130	-			
1,1,1-Trichloroethane	107			-		70-130	-			
Benzene	102			-		70-130	-			
Carbon tetrachloride	122			-		70-130	-			
Cyclohexane	110			-		70-130	-			
1,2-Dichloropropane	114			-		70-130	-			
Bromodichloromethane	120			-		70-130	-			
1,4-Dioxane	110			-		70-130	-			
Trichloroethene	107			-		70-130	-			
2,2,4-Trimethylpentane	116			-		70-130	-			
Heptane	101			-		70-130	-			
cis-1,3-Dichloropropene	107			-		70-130	-			
4-Methyl-2-pentanone	102			-		70-130	-			
trans-1,3-Dichloropropene	113			-		70-130	-			
1,1,2-Trichloroethane	106			-		70-130	-			
Toluene	101			-		70-130	-			
2-Hexanone	90			-		70-130	-			
Dibromochloromethane	117			-		70-130	-			
1,2-Dibromoethane	104			-		70-130	-			

Project Name: FLATLANDS Project Number: Not Specified Lab Number: L2509734 Report Date: 03/07/25

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Air Lab	Associated sa	ample(s):	01-04	Batch:	WG2037508-	3				
Tetrachloroethene	99			-		70-130	-			
Chlorobenzene	101			-		70-130	-			
Ethylbenzene	97			-		70-130	-			
p/m-Xylene	104			-		70-130	-			
Bromoform	122			-		70-130	-			
Styrene	99			-		70-130	-			
1,1,2,2-Tetrachloroethane	116			-		70-130	-			
o-Xylene	106			-		70-130	-			
4-Ethyltoluene	102			-		70-130	-			
1,3,5-Trimethylbenzene	106			-		70-130	-			
1,2,4-Trimethylbenzene	108			-		70-130	-			
Benzyl chloride	108			-		70-130	-			
1,3-Dichlorobenzene	109			-		70-130	-			
1,4-Dichlorobenzene	111			-		70-130	-			
1,2-Dichlorobenzene	105			-		70-130	-			
1,2,4-Trichlorobenzene	95			-		70-130	-			
Naphthalene	101			-		70-130	-			
Hexachlorobutadiene	99			-		70-130	-			

Pace

Project Name:FLATLANDSProject Number:Not Specified

 Lab Number:
 L2509734

 Report Date:
 03/07/25

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual Volatile Organics in Air by SIM - Mansfield Air Lab Associated sample(s): 01-04 Batch: WG2037509-3 Vinyl chloride 88 70-130 25 _ -111 1,1-Dichloroethene 70-130 25 --25 cis-1,2-Dichloroethene 105 70-130 --1,1,1-Trichloroethane 105 70-130 25 --Carbon tetrachloride 112 70-130 25 --70-130 25 Trichloroethene 96 --70-130 Tetrachloroethene 89 25 --

Project Name: FLATLANDS

Project Number:

Serial_No:03072517:41 Lab Number: L2509734

Report Date: 03/07/25

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt	Flow Controler Leak Chk	Flow Out mL/min	Flow In	% RPD
L2509734-01	TW-2-19	0454	Flow 4	02/06/25	506114		-	-	-	Pass	10.0	11.3	12
L2509734-01	TW-2-19	5213	6.0L Can	02/06/25	506114	L2505816-06	Pass	-29.5	-6.0	-	-	-	-
L2509734-02	GD-2-19	02261	Flow 5	02/06/25	506114		-	-	-	Pass	10.0	10.4	4
L2509734-02	GD-2-19	1559	6.0L Can	02/06/25	506114	L2505816-06	Pass	-29.9	-6.0	-	-	-	-
L2509734-03	GK-2-19	0783	Flow 4	02/06/25	506114		-	-	-	Pass	10.0	10.9	9
L2509734-03	GK-2-19	3285	6.0L Can	02/06/25	506114	L2505816-09	Pass	-29.9	-8.1	-	-	-	-
L2509734-04	LO-2-19	01895	Flow 5	02/06/25	506114		-	-	-	Pass	10.0	10.6	6
L2509734-04	LO-2-19	5424	6.0L Can	02/06/25	506114	L2505816-05	Pass	-29.9	-5.8	-	-	-	-

Pace

Project Number:	CANISTER QC B	BAT				R	eport D	ate: ()3/07/25	
		Air Car	nister Cer	tificati	on Results					
Lab ID: Client ID: Sample Location:	L2505816-05 CAN 4868 SHEI	_F 52	.F 52			Date Date Field	Collecte Receive Prep:	ed: 02/03/25 18:00 ed: 02/04/25 Not Specified		
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 02/04/25 20:32 JMB									
_			ppbV		-	ug/m3			Dilution Factor	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier		
Volatile Organics in	Air - Manstield All	r Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1	
Propylene		ND	0.500		ND	0.861			1	
Propane		ND	0.500		ND	0.902			1	
Dichlorodifluoromethane		ND	0.200		ND	0.989			1	
Chloromethane		ND	0.200		ND	0.413			1	
Freon-114		ND	0.200		ND	1.40			1	
Methanol		ND	5.00		ND	6.55			1	
Vinyl chloride		ND	0.200		ND	0.511			1	
1,3-Butadiene		ND	0.200		ND	0.442			1	
Butane		ND	0.200		ND	0.475			1	
Bromomethane		ND	0.200		ND	0.777			1	
Chloroethane		ND	0.200		ND	0.528			1	
Ethanol		ND	5.00		ND	9.42			1	
Dichlorofluoromethane		ND	0.200		ND	0.842			1	
Vinyl bromide		ND	0.200		ND	0.874			1	
Acrolein		ND	0.500		ND	1.15			1	
Acetone		ND	1.00		ND	2.38			1	
Acetonitrile		ND	0.200		ND	0.336			1	
Trichlorofluoromethane		ND	0.200		ND	1.12			1	
Isopropanol		ND	1.00		ND	2.46			1	
Acrylonitrile		ND	0.500		ND	1.09			1	
Pentane		ND	0.200		ND	0.590			1	
Ethyl ether		ND	0.200		ND	0.606			1	
1,1-Dichloroethene		ND	0.200		ND	0.793			1	

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:03072517:41

L2505816

Lab Number:

Air Canister Certification Results

Lab ID:	L2505816-05	Date Collected:	02/03/25 18:00
Client ID:	CAN 4868 SHELF 52	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Air Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Pace

Serial_No:03072517:41 Lab Number: L2505816

Report Date: 03/07/25

Air Canister Certification Results

Lab ID:	L2505816-05	Date Collected:	02/03/25 18:00
Client ID:	CAN 4868 SHELF 52	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Air Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Pace

Air Canister Certification Results

Lab ID:	L2505816-05	Date Collected:	02/03/25 18:00
Client ID:	CAN 4868 SHELF 52	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Air Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	0.996			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

						Serial_No:03072517:41				
Project Name:	BATCH CANIST	ER CERTI	FICATION	١		Lal	b Num	ber:	L2505816	
Project Number:	CANISTER QC	ЗАТ				Re	port D	ate:	03/07/25	
		Air Can	ister Ce	rtificatior	Results					
Lab ID: Client ID: Sample Location:	L2505816-05 CAN 4868 SHE	LF 52				Date C Date R Field P	collecte leceive Prep:	ed: ed:	02/03/25 18:00 02/04/25 Not Specified	
Sample Depth:										
_			ррьу		Desertie	ug/m3		0	Dilution Eactor	
	- A'	Results	RL	MDL	Results	RL	MDL	Qualifie	r	
volatile Organics in	h Air - Mansfield Ai	r Lad								
Tentatively Identified Cor	npounds	Re	esults	Qualifier	Units	RDL		Dilutio Facto	on or	
No Tentatively Identified	Compounds									

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	105		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	107		60-140

Project Number:	CANISTER QC E	ЗАТ				R	eport D	Date: ()3/07/25
		Air Can	ister Cer	tificati	on Results	5			
Lab ID: Client ID: Sample Location:	L2505816-05 CAN 4868 SHE	LF 52				Date Date Field	Collecte Receive Prep:	ed: ed:	02/03/25 18:00 02/04/25 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 02/04/25 20:32 JMB								
_			ppbV			ug/m3		• •••	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
volatile Organics in	Air by Silvi - Mans	Stield Air L	ad						
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acrolein		ND	0.050		ND	0.115			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	9	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:03072517:41

L2505816

Lab Number:

Client ID:	
Sample Location:	

Sample Depth:

L2505816-05 CAN 4868 SHELF 52

Report Date: 03/07/25

Date Collected: 02/03/25 18:00 Date Received: 02/04/25

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIN	/I - Mansfield Air La	ab						
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Air Canister Certification Results

Serial_No:03072517:41 Lab Number:

L2505816

CANISTER QC BAT

BATCH CANISTER CERTIFICATION

Lab ID: -+ 10

Project Name:

Project Number:

Project Name: BATCH CANISTER CERTIFICATION Project Number: CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2505816-05	Date Collected:	02/03/25 18:00
Client ID:	CAN 4868 SHELF 52	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Air L	ab						
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	113		60-140
bromochloromethane	116		60-140
chlorobenzene-d5	115		60-140

Serial_No:03072517:41 Lab Number: L2505816

Report Date: 03/07/25

Project Number:	CANISTER QC B	AT				R	Report D	ate: (03/07/25
		Air Car	nister Cert	ificati	ion Results				
Lab ID: Client ID: Sample Location:	L2505816-06 CAN 4341 SHEI	_F 53				Date Date Field	Collecte Receive Prep:	ed: ed:	02/03/25 18:00 02/04/25 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 02/04/25 21:09 JMB								
_			ppbV		<u> </u>	ug/m3		o	Dilution Factor
Parameter	Air Monofield Air	Results	RL	MDL	Results	RL	MDL	Qualifier	
	All - Marisheid All	Lab							
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	1.00		ND	2.46			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:03072517:41

L2505816

Lab Number:

Air Canister Certification Results

Lab ID:	L2505816-06	Date Collected:	02/03/25 18:00
Client ID:	CAN 4341 SHELF 53	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Air Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Air Canister Certification Results

Lab ID:	L2505816-06	Date Collected:	02/03/25 18:00
Client ID:	CAN 4341 SHELF 53	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Air Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Pace

Air Canister Certification Results

Lab ID:	L2505816-06	Date Collected:	02/03/25 18:00
Client ID:	CAN 4341 SHELF 53	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Air Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	0.996			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial_No:03072517:41				
Project Name:	BATCH CANIST	ER CERTII	FICATION	١		La	b Num	ber:	L2505816		
Project Number:	CANISTER QC	ЗАТ				Re	port D	Date:	03/07/25		
		Air Can	ister Ce	rtificatior	n Results						
Lab ID:	L2505816-06					Date C	ollecte	ed:	02/03/25 18:00		
Client ID:	CAN 4341 SHE	HELF 53					eceive	02/04/25			
Sample Location:						Field F	rep:		Not Specified		
Sample Depth:											
		ppbV u		ua/m3	ug/m3		Dilution				
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	er Factor		
Parameter Volatile Organics i	n Air - Mansfield Ai	Results ir Lab	RL	MDL	Results	RL	MDL	Qualifie	Factor		
Parameter Volatile Organics i	n Air - Mansfield Ai	Results ir Lab Res	RL	MDL	Results	RL	MDL	Qualifie Diluti Fact	er Factor on or		
Parameter Volatile Organics in	n Air - Mansfield Ai mpounds	Results ir Lab Re	RL	MDL	Results	RL	MDL	Qualifie Diluti Fact	er Factor on or		

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	107		60-140
Bromochloromethane	109		60-140
chlorobenzene-d5	108		60-140

Project Number:	CANISTER QC E	BAT				R	eport D	Date: (03/07/25
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L2505816-06 CAN 4341 SHEI	_F 53				Date Collected: Date Received: Field Prep:			02/03/25 18:00 02/04/25 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 02/04/25 21:09 JMB								
_			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
volatile Organics in	Air by Silvi - Mans	Stield Air L	ab						
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acrolein		ND	0.050		ND	0.115			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	9	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:03072517:41

L2505816

Lab Number:

Sample Depth:	

Sample Location:

Lab ID:

Client ID:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Air La	ab						
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Air Canister Certification Results

Project Name: BATCH CANISTER CERTIFICATION Project Number: CANISTER QC BAT

L2505816-06

CAN 4341 SHELF 53

Serial_No:03072517:41 Lab Number: L2505816 **Report Date:** 03/07/25

02/03/25 18:00

Not Specified

02/04/25

Date Collected:

Date Received:

Field Prep:

Pace

Air Canister Certification Results

Lab ID:	L2505816-06	Date Collected:	02/03/25 18:00
Client ID:	CAN 4341 SHELF 53	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Air L	ab						
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	114		60-140
bromochloromethane	118		60-140
chlorobenzene-d5	115		60-140

Serial_No:03072517:41 Lab Number: L2505816

Report Date: 03/07/25

Project Number:	CANISTER QC E	AT				R	Report D	ate: ()3/07/25
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L2505816-09 CAN 2966 SHEI	_F 42				Date Date Field	Collecte Receive Prep:	ed: ed:	02/04/25 11:00 02/04/25 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 02/04/25 23:02 JMB		nnhV			ua/m3			Ditaina
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Air	Lab							
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	1.00		ND	2.46			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:03072517:41

L2505816

Lab Number:

Air Canister Certification Results

Lab ID:	L2505816-09	Date Collected:	02/04/25 11:00
Client ID:	CAN 2966 SHELF 42	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Air Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Air Canister Certification Results

Lab ID:	L2505816-09	Date Collected:	02/04/25 11:00
Client ID:	CAN 2966 SHELF 42	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Air Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Pace

Air Canister Certification Results

Lab ID:	L2505816-09	Date Collected:	02/04/25 11:00
Client ID:	CAN 2966 SHELF 42	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Air Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	0.996			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial_No:03072517:41			
Project Name:	BATCH CANIST	ER CERT	IFICATION	١		La	b Num	ber:	L2505816	
Project Number:	CANISTER QC	BAT				Re	eport Date: 03/07/25			
		Air Car	nister Ce	rtificatior	Results					
Lab ID:	L2505816-09					Date C	Collecte	ed:	02/04/25 11:00	
Client ID:	CAN 2966 SHE	CAN 2966 SHELF 42				Date F	Date Received: 02/04/25			
Sample Location:						Field F	Prep:		Not Specified	
Sample Depth:										
			ppbV			ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor	
Volatile Organics ir	n Air - Mansfield Ai	ir Lab								
								Dilutio	on	
		R	esults	Qualifier	Units	RDL		Facto	or	
Tentatively Identified Cor	npounds									

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	112		60-140
chlorobenzene-d5	103		60-140

Project Number:	CANISTER QC E	BAT				R	eport D	Date: (03/07/25
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L2505816-09 CAN 2966 SHEI	LF 42				Date Date Field	Collecte Receive Prep:	ed: ed:	02/04/25 11:00 02/04/25 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 02/04/25 23:02 JMB								
			ppbV			ug/m3			Dilution Eactor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in	Air by SIM - Mans	stield Air L	.ab						
Dichlorodifluoromethane	•	ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acrolein		ND	0.050		ND	0.115			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	9	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:03072517:41

L2505816

Lab Number:

Lab ID:	L2505816-

Project Number: CANISTER QC BAT

Project Name:

BATCH CANISTER CERTIFICATION

Report Date: 03/07/25

Air Canister Certification Results

Lab ID:	L2505816-09	Date Collected:	02/04/25 11:00
Client ID:	CAN 2966 SHELF 42	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Air La	ab						
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Air Canister Certification Results

Lab ID:	L2505816-09	Date Collected:	02/04/25 11:00
Client ID:	CAN 2966 SHELF 42	Date Received:	02/04/25
Sample Location:		Field Prep:	Not Specified

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Air L	ab						
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	115		60-140
bromochloromethane	121		60-140
chlorobenzene-d5	110		60-140

Serial_No:03072517:41 Lab Number: L2505816

Report Date: 03/07/25

Project Name: FLATLANDS Project Number: Not Specified

Serial_No:03072517:41 Lab Number: L2509734 *Report Date:* 03/07/25

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
NA	Absent

Containar Information

Container Information		Initial	Final	Temp			Frozen	Analysis(*)	
Container ID	ontainer Type Coolei		рН	pH deg C		Pres	Seal		
L2509734-01A	Canister - 6L (Batch Certified)	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)
L2509734-02A	Canister - 6L (Batch Certified)	NA	NA			Y	Absent		TO15-SIM(30),TO15-LL(30)
L2509734-03A	Canister - 6L (Batch Certified)	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)
L2509734-04A	Canister - 6L (Batch Certified)	NA	NA			Y	Absent		TO15-SIM(30),TO15-LL(30)

YES

Pace

Serial_No:03072517:41

Project Name: FLATLANDS

Project Number: Not Specified

Lab Number: L2509734

Report Date: 03/07/25

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: FLATLANDS

Project Number: Not Specified

Lab Number: L2509734 Report Date: 03/07/25

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name: FLATLANDS

Project Number: Not Specified

Serial_No:03072517:41

Lab Number: L2509734

Report Date: 03/07/25

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:FLATLANDSProject Number:Not Specified

 Lab Number:
 L2509734

 Report Date:
 03/07/25

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048 SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **MADEP-APH. Nonpotable Water: EPA RSK-175 Dissolved Gases**

Biological Tissue Matrix: EPA 3050B

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048 EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Nonpotable Water: EPA RSK-175 Dissolved Gases

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048 Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY JY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

CT PH-0825, ANÅB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 3090, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.
10				_			14							Seria	I_No	03072517:4	11
Агрна	CHAIN OF CUSTOD	(NAL)	YSIS		PAGE	_ OF	- Date	Rec'd in L	.ab:	2/22	125		AL	РНА	Job	+: L257	59734
320 Forbes Blvd, Mar	nsfield, MA 02048	Projec	ct Informa	tion			Rep	ort Inforr	natior	1 - Data	Deliver	ables	Bi	lling	Infor	mation	
Client Information	FAX: 508-822-3288	Project	Name: F	lat and	s		D F/	AX					Q S	ame a	as Clic	ent info PO #	t:
Client: Tovchsfe	ne Fusiosnapoulal	Project Project	Location: 7 #: B7	7901 Fl 80 k 141	elflands	s Ave.	O A	DEx Criteria C (Default ba	hecker	endalonu (Vitaria Index						
Address: 1919 M	ddle country rd	Project	Manager:	Ruchal	Ma		-	Other For	mats:		AND NO AND	eu)	-			and the second second	
Suite 20	5 centereout, NY	ALPHA	Quote #:	nucher	mui	nan		ditional De	dard po eliverat	df report ples:)		Re	gulat @/sed	ory i	Requirement	s/Report Lin
Phone: 63167	23530 11720	Turn-	Around Ti	me		5.1	Repo	rt to: (ir differe	wi iban Pre	oject Manage	0			err eur		riogram	Res / Com
Fax:		Stand	lard f				-						-				
reichelataman	Houchstoneenvironm	entel, e	om		Conversion of pre-a	(pproved)								AN	ALY	SIS	-
J These samples have I Other Project Spe	ceen previously analyzed by Alpha	Date Di	ue:	_	Time:								17	10	/ /		
Project-Specific T	arget Compound List	ments;											[]	1 and 1	12	81-02	
	arget compound List.	-										1	11	- AMON	olams by	[]]	
AL PHA Lab ID	A	ll Co	lumn	s Be	low N	Must	Be	Filled	d O	ut	12 2 2 2		Mil	ases	Mencal	11	
(Lab Use Only)	Sample ID	End Date	COI	LLECTIC	N Initial	Final	Sample	Sampler's	s Can	ID	ID - Flow	0.75	S C.	Yed G	8	1	
99734-01	TW-2-19	2/19/2	5 10:00	12:00	- 30.15	-L LA	Matrix*	Initials	Size	Can	Controller	16 2	14/4	5/8/	4	Sample Cor	nments (i.e. Plf
02	GD-2-19	K	10:05	18:05	20 22	1.70	- 1 1	T.M.	DL.	543	0454	V	-		+		
03	GK-2-19		10.05	18:15	310	00	TTH-	F.A.	+	1559	02261	V	-	++			
04	10-2-19	1	10.20	10.13	2070	0-00	AA	F.A.		3285	0783	V	_		-		
	20-2-11	A.	10.00	18:20	-20.13	-6.11	AH	F.A.	V	3424	01895	\mathcal{V}					
		-															
								E.									
							-			1		_	_				
									_	-							
	A	A = Ambien	t Air (Indoor)	()utdoon)				_									
*SAMPLE M	ATRIX CODES SI	= Soil Vap	or/Landfill G	as/SVE				Co	ntainer	Туре						Please print clea	rly, legibly and
	1	Relinguis	hed By:		Date/	Time		Receiv	ed Bu			Det				completely. Sam logged in and tur	ples can not be naround time
	the second	anth	h		2/11/	185173	e w	DR DOW	ALL		3	Dat	e/Time	5-4-		guities are resolv	ed. All samples
m No. 101-02 Rev (25-Sep-1	5) Well	honu	Croon	_	ZAIA	1100	×	nthony	1.gy	eens	F	EBZI	2025	210	0	Terms and Condit	lject to Alpha's lions.
age 05 of 05		02	Sto	2	2/22	25 000	6 05	2) 5	24	001	4	1221	250	5100	>	States and black	

Tuesday, April 01, 2025

Attn: Rachel Ataman Touchstone Environmental Geology, PC 1919 Middle Country Road Centereach, NY 11720

Project ID:FLATLANDS-1932 RALPH AVE. BROOKLYN, NYSDG ID:GCS93422Sample ID#s:CS93422 - CS93425

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Sample Id Cross Reference

April 01, 2025

SDG I.D.: GCS93422

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

Client Id	Lab Id	Matrix	Col Date
GD-3-27-25	CS93422	AIR	03/27/25 20:30
LO-3-27-25	CS93423	AIR	03/27/25 20:35
TW-3-27-25	CS93424	AIR	03/27/25 20:45
GK-3-27-25	CS93425	AIR	03/27/25 20:35

Analysis Report April 01, 2025

FOR: Attn: Rachel Ataman Touchstone Environmental Geology, PC 1919 Middle Country Road Centereach, NY 11720

Sample Informa	ation	Custody Inform	nation	Date	Time
Matrix:	AIR	Collected by:	FA	03/27/25	20:30
Location Code:	TOUCHSTONE	Received by:	CP	03/28/25	16:30
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					000004

Canister Id:

Client ID:

Project ID: FL

FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

GD-3-27-25

11286

Laboratory Data

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
<u>Volatiles (TO15)</u>								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/29/25	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/29/25	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/29/25	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/29/25	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	03/29/25	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	
Acetone	3.77	0.421	8.95	1.00	03/29/25	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	03/29/25	KCA	1	
Benzene	ND	0.313	ND	1.00	03/29/25	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Client ID: GD-3-27-25

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/29/25	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/29/25	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/29/25	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/29/25	KCA	1	
Carbon Tetrachloride	0.064	0.032	0.40	0.20	03/29/25	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/29/25	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/29/25	KCA	1	
Chloroform	0.297	0.205	1.45	1.00	03/29/25	KCA	1	
Chloromethane	0.878	0.485	1.81	1.00	03/29/25	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	03/29/25	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/29/25	KCA	1	
Dichlorodifluoromethane	0.544	0.202	2.69	1.00	03/29/25	KCA	1	
Ethanol	48.7	E 0.531	91.7	1.00	03/29/25	KCA	1	1
Ethyl acetate	0.279	0.278	1.00	1.00	03/29/25	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Heptane	ND	0.244	ND	1.00	03/29/25	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/29/25	KCA	1	
Hexane	ND	0.284	ND	1.00	03/29/25	KCA	1	
Isooctane	0.666	0.215	3.10	1.00	03/29/25	KCA	1	
Isopropylalcohol	31.1	0.407	76.4	1.00	03/29/25	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
m,p-Xylene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	03/29/25	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/29/25	KCA	1	
Methylene Chloride	ND	0.863	ND	3.00	03/29/25	KCA	1	
Naphthalene	ND	0.200	ND	1.05	03/29/25	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Propylene	ND	0.581	ND	1.00	03/29/25	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
Styrene	ND	0.235	ND	1.00	03/29/25	KCA	1	
Tetrachloroethene	0.268	0.037	1.82	0.25	03/29/25	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	03/29/25	KCA	1	1
Toluene	0.297	0.266	1.12	1.00	03/29/25	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	03/29/25	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Trichloroethene	ND	0.037	ND	0.20	03/29/25	KCA	1	
Trichlorofluoromethane	0.732	0.178	4.11	1.00	03/29/25	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	03/29/25	KCA	1	
Vinvl Chloride	ND	0.078	ND	0.20	03/29/25	KCA	1	
QA/QC Surrogates/Internals								
% Bromofluorobenzene	102	%	102	%	03/29/25	KCA	1	
% IS-1,4-Difluorobenzene	97	%	97	%	03/29/25	KCA	1	
% IS-Bromochloromethane	101	%	101	%	03/29/25	KCA	1	
% IS-Chlorobenzene-d5	96	%	96	%	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Client ID: GD-3-27-25

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis Shiller, Laboratory Director April 01, 2025 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report April 01, 2025

FOR: Attn: Rachel Ataman Touchstone Environmental Geology, PC 1919 Middle Country Road Centereach, NY 11720

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	FA	03/27/25	20:35
Location Code:	TOUCHSTONE	Received by:	CP	03/28/25	16:30
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					000004

Canister Id: Project ID:

Client ID:

: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

23329

LO-3-27-25

Laboratory Data

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/29/25	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/29/25	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/29/25	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/29/25	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	03/29/25	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	
Acetone	7.20	0.421	17.1	1.00	03/29/25	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	03/29/25	KCA	1	
Benzene	ND	0.313	ND	1.00	03/29/25	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Client ID: LO-3-27-25

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Bv	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/29/25	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/29/25	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/29/25	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/29/25	KCA	1	
Carbon Tetrachloride	0.090	0.032	0.57	0.20	03/29/25	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/29/25	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/29/25	KCA	1	
Chloroform	0.370	0.205	1.81	1.00	03/29/25	KCA	1	
Chloromethane	0.805	0.485	1.66	1.00	03/29/25	KCA	1	
Cis-1.2-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
cis-1.3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Cvclohexane	ND	0.291	ND	1.00	03/29/25	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/29/25	KCA	1	
Dichlorodifluoromethane	0.574	0.202	2.84	1.00	03/29/25	KCA	1	
Ethanol	64.3	E 0.531	121	1.00	03/29/25	KCA	1	1
Ethyl acetate	0.374	0.278	1.35	1.00	03/29/25	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Heptane	ND	0.244	ND	1.00	03/29/25	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/29/25	KCA	1	
Hexane	ND	0.284	ND	1.00	03/29/25	KCA	1	
Isooctane	2.15	0.215	10.0	1.00	03/29/25	KCA	1	
Isopropylalcohol	50.5	E 0.407	124	1.00	03/29/25	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
m p-Xvlene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	03/29/25	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/29/25	KCA	1	
Methylene Chloride	ND	0.863	ND	3.00	03/29/25	KCA	1	
Naphthalene	ND	0.200	ND	1.05	03/29/25	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
o-Xvlene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Propylene	ND	0.581	ND	1.00	03/29/25	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
Styrene	ND	0.235	ND	1.00	03/29/25	KCA	1	
Tetrachloroethene	0.103	0.037	0.70	0.25	03/29/25	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	03/29/25	KCA	1	1
Toluene	0.325	0.266	1.22	1.00	03/29/25	KCA	1	
Trans-1 2-Dichloroethene	ND	0.252	ND	1.00	03/29/25	KCA	1	
trans-1.3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Trichloroethene	ND	0.037	ND	0.20	03/29/25	KCA	1	
Trichlorofluoromethane	0.671	0.178	3.77	1.00	03/29/25	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	03/29/25	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	03/29/25	KCA	1	
QA/QC Surrogates/Internals								
% Bromofluorobenzene	103	%	103	%	03/29/25	KCA	1	
% IS-1.4-Difluorobenzene	97	%	97	%	03/29/25	KCA	1	
% IS-Bromochloromethane	99	%	99	%	03/29/25	KCA	1	
% IS-Chlorobenzene-d5	96	%	96	%	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Client ID: LO-3-27-25

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis, Shiller, Laboratory Director April 01, 2025 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report April 01, 2025

FOR: Attn: Rachel Ataman Touchstone Environmental Geology, PC 1919 Middle Country Road Centereach, NY 11720

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	FA	03/27/25	20:45
Location Code:	TOUCHSTONE	Received by:	CP	03/28/25	16:30
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		l ab avatam	Data		666034

Canister	ld:

FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Project ID: Client ID:

TW-3-27-25

23344

Laboratory Data

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/29/25	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/29/25	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/29/25	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/29/25	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	03/29/25	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	
Acetone	3.71	0.421	8.81	1.00	03/29/25	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	03/29/25	KCA	1	
Benzene	ND	0.313	ND	1.00	03/29/25	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

Client ID: TW-3-27-25

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/29/25	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/29/25	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/29/25	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/29/25	KCA	1	
Carbon Tetrachloride	0.066	0.032	0.41	0.20	03/29/25	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/29/25	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/29/25	KCA	1	
Chloroform	ND	0.205	ND	1.00	03/29/25	KCA	1	
Chloromethane	0.828	0.485	1.71	1.00	03/29/25	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	03/29/25	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/29/25	KCA	1	
Dichlorodifluoromethane	0.552	0.202	2.73	1.00	03/29/25	KCA	1	
Ethanol	36.5	0.531	68.7	1.00	03/29/25	KCA	1	1
Ethyl acetate	ND	0.278	ND	1.00	03/29/25	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Heptane	ND	0.244	ND	1.00	03/29/25	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/29/25	KCA	1	
Hexane	ND	0.284	ND	1.00	03/29/25	KCA	1	
Isooctane	0.384	0.215	1.79	1.00	03/29/25	KCA	1	
Isopropylalcohol	50.4	E 0.407	124	1.00	03/29/25	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
m,p-Xylene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	03/29/25	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/29/25	KCA	1	
Methylene Chloride	ND	0.863	ND	3.00	03/29/25	KCA	1	
Naphthalene	ND	0.200	ND	1.05	03/29/25	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Propylene	ND	0.581	ND	1.00	03/29/25	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
Styrene	ND	0.235	ND	1.00	03/29/25	KCA	1	
Tetrachloroethene	0.059	0.037	0.40	0.25	03/29/25	KCA	1	
Tetrahydrofuran	ND	0.339	ND	1.00	03/29/25	KCA	1	1
Toluene	ND	0.266	ND	1.00	03/29/25	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	03/29/25	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Trichloroethene	ND	0.037	ND	0.20	03/29/25	KCA	1	
Trichlorofluoromethane	0.504	0.178	2.83	1.00	03/29/25	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	03/29/25	KCA	1	
Vinyl Chloride	ND	0.078	ND	0.20	03/29/25	KCA	1	
QA/QC Surrogates/Internals								
% Bromofluorobenzene	101	%	101	%	03/29/25	KCA	1	
% IS-1,4-Difluorobenzene	96	%	96	%	03/29/25	KCA	1	
% IS-Bromochloromethane	99	%	99	%	03/29/25	KCA	1	
% IS-Chlorobenzene-d5	95	%	95	%	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Client ID: TW-3-27-25

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis, Shiller, Laboratory Director April 01, 2025 Reviewed and Released by: Anil Makol, Project Manager

Analysis Report April 01, 2025

FOR: Attn: Rachel Ataman Touchstone Environmental Geology, PC 1919 Middle Country Road Centereach, NY 11720

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	FA	03/27/25	20:35
Location Code:	TOUCHSTONE	Received by:	CP	03/28/25	16:30
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:		l ab avatam	Data		666034

Canister	ld:

Project ID:

Client ID:

GK-3-27-25

28548

Laboratory Data

FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	03/29/25	KCA	1	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,1-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	03/29/25	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,2-Dichloroethane	ND	0.247	ND	1.00	03/29/25	KCA	1	
1,2-dichloropropane	ND	0.217	ND	1.00	03/29/25	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	03/29/25	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
1,3-Butadiene	ND	0.452	ND	1.00	03/29/25	KCA	1	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	03/29/25	KCA	1	
1,4-Dioxane	ND	0.278	ND	1.00	03/29/25	KCA	1	
2-Hexanone(MBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	1
4-Ethyltoluene	ND	0.204	ND	1.00	03/29/25	KCA	1	1
4-Isopropyltoluene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	03/29/25	KCA	1	
Acetone	8.55	0.421	20.3	1.00	03/29/25	KCA	1	
Acrylonitrile	ND	0.461	ND	1.00	03/29/25	KCA	1	
Benzene	ND	0.313	ND	1.00	03/29/25	KCA	1	
Benzyl chloride	ND	0.193	ND	1.00	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

Client ID: GK-3-27-25

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	ND	1.00	03/29/25	KCA	1	
Bromoform	ND	0.097	ND	1.00	03/29/25	KCA	1	
Bromomethane	ND	0.258	ND	1.00	03/29/25	KCA	1	
Carbon Disulfide	ND	0.321	ND	1.00	03/29/25	KCA	1	
Carbon Tetrachloride	0.069	0.032	0.43	0.20	03/29/25	KCA	1	
Chlorobenzene	ND	0.217	ND	1.00	03/29/25	KCA	1	
Chloroethane	ND	0.379	ND	1.00	03/29/25	KCA	1	
Chloroform	2.25	0.205	11.0	1.00	03/29/25	KCA	1	
Chloromethane	1.19	0.485	2.46	1.00	03/29/25	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	ND	0.20	03/29/25	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Cyclohexane	ND	0.291	ND	1.00	03/29/25	KCA	1	
Dibromochloromethane	ND	0.118	ND	1.00	03/29/25	KCA	1	
Dichlorodifluoromethane	0.614	0.202	3.03	1.00	03/29/25	KCA	1	
Ethanol	86.3	E 0.531	163	1.00	03/29/25	KCA	1	1
Ethyl acetate	1.27	0.278	4.57	1.00	03/29/25	KCA	1	1
Ethylbenzene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Heptane	0.482	0.244	1.97	1.00	03/29/25	KCA	1	
Hexachlorobutadiene	ND	0.094	ND	1.00	03/29/25	KCA	1	
Hexane	ND	0.284	ND	1.00	03/29/25	KCA	1	
Isooctane	1.54	0.215	7.18	1.00	03/29/25	KCA	1	
Isopropylalcohol	79.3	E 0.407	195	1.00	03/29/25	KCA	1	
Isopropylbenzene	ND	0.204	ND	1.00	03/29/25	KCA	1	
m,p-Xylene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Methyl Ethyl Ketone	ND	0.339	ND	1.00	03/29/25	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	03/29/25	KCA	1	
Methylene Chloride	ND	0.863	ND	3.00	03/29/25	KCA	1	
Naphthalene	ND	0.200	ND	1.05	03/29/25	KCA	1	
n-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
o-Xylene	ND	0.230	ND	1.00	03/29/25	KCA	1	
Propylene	ND	0.581	ND	1.00	03/29/25	KCA	1	1
sec-Butylbenzene	ND	0.182	ND	1.00	03/29/25	KCA	1	1
Styrene	ND	0.235	ND	1.00	03/29/25	KCA	1	
Tetrachloroethene	0.074	0.037	0.50	0.25	03/29/25	KCA	1	
Tetrahvdrofuran	ND	0.339	ND	1.00	03/29/25	KCA	1	1
Toluene	0.312	0.266	1.18	1.00	03/29/25	KCA	1	
Trans-1.2-Dichloroethene	ND	0.252	ND	1.00	03/29/25	KCA	1	
trans-1.3-Dichloropropene	ND	0.221	ND	1.00	03/29/25	KCA	1	
Trichloroethene	ND	0.037	ND	0.20	03/29/25	KCA	1	
Trichlorofluoromethane	5.47	0.178	30.7	1.00	03/29/25	KCA	1	
Trichlorotrifluoroethane	ND	0.131	ND	1.00	03/29/25	KCA	1	
Vinvl Chloride	ND	0.078	ND	0.20	03/29/25	KCA	1	
QA/QC Surrogates/Internals								
% Bromofluorobenzene	104	%	104	%	03/29/25	KCA	1	
% IS-1.4-Difluorobenzene	94	%	94	%	03/29/25	KCA	1	
% IS-Bromochloromethane	98	%	98	%	03/29/25	KCA	1	
% IS-Chlorobenzene-d5	93	%	93	%	03/29/25	KCA	1	

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY Client ID: GK-3-27-25

ppbv ppbv ug/m	3 ug/m3
Parameter Result RL Resu	lt RL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis Shiller, Laboratory Director April 01, 2025 Reviewed and Released by: Anil Makol, Project Manager

Canister Sampling Information

April 01, 2025

FOR: Attn: Rachel Ataman Touchstone Environmental Geology, PC 1919 Middle Country Road Centereach, NY 11720

Location Code: TOUCHSTONE

Project ID: FLATLANDS-1932 RALPH AVE. BROOKLYN, NY

							L	aborato	ory				Field	
Client Id	Lab Id	Canis Id	ster Type	Reg. Id	Chk Out Date	Out Hg	In Hg	Out Flow	In Flow	Flow RPD	Start Hg	End Hg	Sampling Start Date	Sampling End Date
GD-3-27-25	CS93422	11286	6.0L	10645	03/26/25	-30	-5	11.5	11.5	0.0	-30	-5	03/27/25 12:30	03/27/25 20:30
LO-3-27-25	CS93423	23329	6.0L	10695	03/26/25	-30	-6	11	11	0.0	-30	-7	03/27/25 12:35	03/27/25 20:35
TW-3-27-25	CS93424	23344	6.0L	10567	03/26/25	-30	-7	10.6	10.3	2.9	-30	-7	03/27/25 12:45	03/27/25 20:45
GK-3-27-25	CS93425	28548	6.0L	0167	03/26/25	-30	-5	10.5	10.6	0.9	-30	-6	03/27/25 12:35	03/27/25 20:35

SDG I.D.: GCS93422

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

April 01, 2025

QA/QC Data

SDG I.D.: GCS93422

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 776848 (ppbv), QC	: Samp	ole No: (CS92808	(CS934	22, CS93423,	CS9342	24, CS9	3425)				
Volatiles												
1,1,1,2-Tetrachloroethane	ND	0.025	ND	0.17	101	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.250	ND	1.36	100	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.005	ND	0.03	110	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.010	ND	0.05	103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.075	ND	0.30	103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.010	ND	0.04	102	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.010	ND	0.07	101	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.250	ND	1.23	107	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.005	ND	0.04	103	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.050	ND	0.30	108	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.010	ND	0.04	103	0.15	0.14	0.036	0.035	NC	70 - 130	25
1,2-dichloropropane	ND	0.010	ND	0.05	101	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.250	ND	1.75	125	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.250	ND	1.23	106	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	0.100	ND	0.22	123	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.050	ND	0.30	109	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.040	ND	0.24	110	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.025	ND	0.09	96	ND	ND	ND	ND	NC	70 - 130	25
2,2,4-Trimethylpentane	ND	0.100	ND	0.47	103	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.250	ND	1.02	97	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.250	ND	1.23	102	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	0.250	ND	1.37	100	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.250	ND	1.02	99	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.375	ND	0.89	93	23.0	23.5	9.7	9.90	2.0	70 - 130	25
Acrylonitrile	ND	0.100	ND	0.22	99	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.100	ND	0.32	99	0.56	0.56	0.174	0.174	NC	70 - 130	25
Benzyl chloride	ND	0.100	ND	0.52	103	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.010	ND	0.07	104	0.23	0.24	0.035	0.036	NC	70 - 130	25
Bromoform	ND	0.025	ND	0.26	105	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.070	ND	0.27	118	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.250	ND	0.78	101	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.043	ND	0.27	99	0.50	0.51	0.080	0.081	NC	70 - 130	25
Chlorobenzene	ND	0.100	ND	0.46	106	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.250	ND	0.66	117	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.100	ND	0.49	103	3.35	3.44	0.686	0.705	2.7	70 - 130	25
Chloromethane	ND	0.250	ND	0.52	126	1.50	1.66	0.725	0.805	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.100	ND	0.40	101	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.050	ND	0.23	102	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.250	ND	0.86	99	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	0.010	ND	0.09	103	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.250	ND	1.24	123	2.48	2.47	0.502	0.500	NC	70 - 130	25

QA/QC Data

SDG I.D.: GCS93422

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Samp Resu ug/m	ole Sa ilt I i3 uș	ample Dup g/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethanol	ND	0.375	ND	0.71	112	141	Ε´	150	74.7 E	79.7	6.5	70 - 130	25
Ethyl acetate	ND	0.250	ND	0.90	123	ND		ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.250	ND	1.08	103	1.3	51	.37	0.310	0.315	NC	70 - 130	25
Heptane	ND	0.250	ND	1.02	99	ND		ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.010	ND	0.11	118	ND		ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.225	ND	0.79	103	ND		ND	ND	ND	NC	70 - 130	25
Isopropylalcohol	ND	0.375	ND	0.92	95	11.	51	1.7	4.67	4.78	2.3	70 - 130	25
Isopropylbenzene	ND	0.250	ND	1.23	101	ND		ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	0.500	ND	2.17	107	4.5	54	1.69	1.05	1.08	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.225	ND	0.66	102	0.8	5 C).85	0.288	0.287	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.250	ND	0.90	99	ND		ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	1.50	ND	5.21	94	ND		ND	ND	ND	NC	70 - 130	25
Naphthalene	ND	2.50	ND	13.1	102	ND		ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.250	ND	1.37	98	ND		ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.250	ND	1.08	105	1.2	1 1	.22	0.279	0.280	NC	70 - 130	25
Propylene	ND	0.250	ND	0.43	89	ND		ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.250	ND	1.37	105	ND		ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.100	ND	0.43	104	ND		ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.050	ND	0.34	102	5.1	2 5	5.16	0.755	0.761	0.8	70 - 130	25
Tetrahydrofuran	ND	0.250	ND	0.74	98	ND		ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.250	ND	0.94	103	1.5	1 1	1.55	0.402	0.412	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.100	ND	0.40	99	ND		ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.250	ND	1.13	99	ND		ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.025	ND	0.13	108	ND		ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.250	ND	1.40	102	ND		ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.250	ND	1.91	104	ND		ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.010	ND	0.03	124	ND		ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	94	%	94	%	92	103	} `	103	103	103	NC	70 - 130	25
% IS-1,4-Difluorobenzene	100	%	100	%	99	99		97	99	97	NC	60 - 140	25
% IS-Bromochloromethane	102	%	102	%	102	100)	98	100	98	NC	60 - 140	25
% IS-Chlorobenzene-d5	97	%	97	%	104	97		97	97	97	NC	60 - 140	25

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD	-	Relative Percent Difference
LCS	-	Laboratory Control Sample
LCSD	-	Laboratory Control Sample Duplicate
MS	-	Matrix Spike
MS Dup	-	Matrix Spike Duplicate
NC	-	No Criteria
Intf	-	Interference
(ISO)	-	Isotope Dilution

My llis Shille

Phyllis/Shiller, Laboratory Director April 01, 2025

Tuesday, A	pril 01, 2025		Sample Criteri	a Exceedances Report				
Criteria:	None		GCS934	22 - TOUCHSTONE				
State:	NY						RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** NI- Data	4. D'							

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

April 01, 2025

SDG I.D.: GCS93422

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

		CHAI	N OF C	OTSUS	DY RE	CORD			** C			Pac	t of	_	Γ
PHOENIX			AIR	ANAL	YSES				ata Delive	ž		-			<u> </u>
Environmental Laboratories, Inc.			æ	6-645-1	102] Fax #:						
587 East Medule Tumpake, P.O. Box 370, Mancherter, CT 05040 Telephone: 860,645, 1102 + Fax: 860,645, 0823 TOUCHSTONE			email: g	reg@phoe	mixlabs.c	mo			Email:] Ehone #:						
Report to: rachel Ataman	Project Name:	- spr	1932	(Ld	A you	<u>ت</u> ق لا	ata rmat: ((Circle)	Equis	Excel	Other:				
Customer: Touchstone Environmental Geology, PC	Invoice to:		breel	Lyn,	3	2	equested	Deliverabl R	CP A	SP CAT B					
Address: 1919 Middle Country Road					-			X	Z D	J Deliverable	ss				
17207 Centereach, NY 11720	Sampled by:	È. È	fel m	بر		ō	uote Num	ber:				ir	(C) əfis		
					2							A 100	ođu		
		Canister F	utgoing In Anister C Tressure P	coming anister ressure Re	Flow Co gulator S	Flow ntroller etting Se	ampling 8	ampling	Sample	Canister Pressure at	Canister Pressure at	bient/Indo	ab (G) Coi	H	
Phoenix ID # Client Sample ID	Canister ID #	Size (L)	("Hg) ON FOR LA	("Hg)	m # U	L/min) St	art Time E	nd Time S	tart Date	Start (" Hg)	End ("Hg)		202 210 210	ANALYSE	S
93433 GD-3-27-15	11286	9.0L	-	ن 1	0645	11.5	1:30 2	0:30]	saller	- ~ O	5	×			
93435 LO-3-27-25	23329	6.0L	- N N	٦	0695	11	:35.2	0:35		-30	14	4		~	
PU-3-27-25	23344	6.0L	- <u>30</u>	- -	0567	10.6 N	15 2	D:45	,	-30	1	4		-	<u> </u>
93435 · GK-3-27-25	28548	6.0L	, Sé	ہ ک	167 1	10.5 V	135 2	0:35	->	-30	10	+			
										i					
		. #4											č	· ·	
Relinquished by:	Accepted by:			Da	te:	Tir	ne:	ittest that all	media relea	sed by Phoeni	x Environmen	tal Laborat	ories, Inc.	have been rece	eived
A HULL	L'	Ч Г		<u>()</u>	1361	250	120 m	good workin ocument:	ig condition (and agree to th	he terms and o	conditions	as listed or	the back of th	lis
and the second sec	2	\mathcal{D}			1875	K 11	0.30s	igfiature: _				Q	ate:		
State Where Samples Collected:		Turnargund	Time	equested Cr	iteria: Ples MA	ase Circle) Li		Ŀ	Z	Ä		PA:	5		
SPECIAL INSTRUCTIONS, OC REQUIREMENTS, REGULATORY INFORM	MATION:	1 Day*		AC I/C		ndoor Air:		Indoor Air:		Vapor Intrus	sion	Indoor	Air I	ndoor Air	
(4) - 6.0L 8 hr	, ,	3 Day* [] 4 Day* []		AC RES VVC I/C	- In Ke	sidential d/Commer	cial	Kesidential Ind/Comm	erciał			Residen	tial R	lesidential ndustrial	
		5 Day* E Standard SurcHARGE		WVC RES 3WV I/C 3WV CES	N Re Re	<u>iil Gas:</u> ssidential d/Commer	cial	<u>Soil Gas:</u> Residential nd/Comme	rcial			Non- resident	ial I	<u>ub-slab</u> ¢esidential ndustrial	
		1111			-]